Markscheme

November 2019

Mathematics

Standard level

Paper 2

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http://www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/ contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers. In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \mathbf{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\mathbf{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or A0 for incorrect work) all subsequent marks may be awarded if appropriate.

5
 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an \boldsymbol{M} mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have
another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer

Section A

1. (a) evidence of set up
eg correct value for a or b (accept $r=0.966856$)
4.30161, 163.330
$a=4.30, b=163$ (accept $y=4.30 x+163$)
A1A1
(b) valid approach
(M1)
eg $\quad 4.30(154)+163$
825.778 (825.2 from 3 sf values)
(A1)
number of messages $=826$ (must be an integer)
A1
N3 [3 marks]

Total [6 marks]
2. (a) valid approach
eg $L_{1}=L_{2}, x=12, y=1$
$(12,1)$ (exact)
A1
(b) $\binom{-4}{3}$ (or any multiple of $\binom{-4}{3}$)

A1
(c) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}$ (accept any parameter for t) where
\boldsymbol{a} is a position vector for a point on L_{1}, and \boldsymbol{b} is a scalar multiple of $\binom{-4}{3}$
eg $\quad \boldsymbol{r}=\binom{12}{1}+t\binom{-4}{3}$
Note: Award A1 for the form $\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A} 1$ for the form $L=\boldsymbol{a}+t \boldsymbol{b}$, $\boldsymbol{A O}$ for the form $\boldsymbol{r}=\boldsymbol{b}+\boldsymbol{t a}$.
3. (a) attempt to form composite (in any order)
eg $\quad f\left(x^{4}-3\right),(x-8)^{4}-3$
$h(x)=x^{4}-11 \quad$ A1 A1 N2 [2 marks]
(b) recognizing that the gradient of the tangent is the derivative (M1) eg h^{\prime}
correct derivative (seen anywhere)
$h^{\prime}(x)=4 x^{3}$
correct value for gradient of f (seen anywhere)
$f^{\prime}(x)=1, m=1$
setting their derivative equal to 1
$4 x^{3}=1$
0.629960
$x=\sqrt[3]{\frac{1}{4}}$ (exact), 0.630
4. (a) correct working
eg $\quad \sin \alpha=\frac{8}{10}, \cos \theta=\frac{6}{10}, \cos \mathrm{BA} \mathrm{C}=\frac{6^{2}+10^{2}-8^{2}}{2 \times 6 \times 10}$
0.927295
$\mathrm{BAAC}=0.927 \quad\left(=53.1^{\circ}\right)$
(A1) N2
(b)

Note: There may be slight differences in the final answer, depending on the approach the candidate uses in part (b). Accept a final answer that is consistent with their working.
correct area of sector ABF (seen anywhere)
eg $\frac{1}{2} \times 6^{2} \times 0.927, \frac{53.1301^{\circ}}{360^{\circ}} \times \pi \times 6^{2}, 16.6913$
correct expression (or value) for either [AD] or [BD] (seen anywhere)
eg $\quad \mathrm{AD}=6 \cos (\mathrm{BAC})(=3.6)$

$$
\mathrm{BD}=6 \sin \left(53.1^{\circ}\right)(=4.8)
$$

correct area of triangle ABD (seen anywhere)
eg $\frac{1}{2} \times 6 \cos B \hat{A} D \times 6 \sin \hat{B A D}, 9 \sin (2 \mathrm{BA} \mathrm{C}$), 8.64 (exact)
appropriate approach (seen anywhere)
eg $\quad \mathrm{A}_{\text {triangle ABD }}-\mathrm{A}_{\text {sector }}$, their sector - their triangle ABD
8.05131
area of shaded region $=8.05\left(\mathrm{~cm}^{2}\right)$

A1
[5 marks]
Total [7 marks]
5. (a) valid approach
eg $\frac{u_{1}}{u_{2}}, \frac{2.226}{2.1}, 2.226=2.1 r$
$r=1.06$ (exact)
A1
(b) correct substitution
(A1)
eg $\quad 2.1 \times 1.06^{9}$
3.54790 A1

A1 N2
$u_{10}=3.55$
[2 marks]
(c) correct substitution into S_{n} formula
eg $\quad \frac{2.1\left(1.06^{n}-1\right)}{1.06-1}, \frac{2.1\left(1.06^{n}-1\right)}{1.06-1}>5543,2.1\left(1.06^{n}-1\right)=332.58$,
sketch of S_{n} and $y=5543$
correct inequality for n or crossover values
eg $n>87.0316, S_{87}=5532.73$ and $S_{88}=5866.79$

$$
n=88
$$

A1 N2
[3 marks]
Total [7 marks]
eg $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$
correct substitution to find AB
eg $\quad 28.4^{2}=x^{2}+(x+2)^{2}-2 x(x+2) \cos (0.667)$

$$
x=42.2822
$$

appropriate approach to find AD
eg $\quad \mathrm{AD}=x \cos (0.611), \cos (0.611)=\frac{\mathrm{AD}}{42.2822}$
34.6322
$\mathrm{AD}=34.6$
7. (a) correct approach
eg $\quad 0.2+0.5+b+a=1,0.7+a+b=1$
$b=0.3-a$
AG
NO
[1 mark]
(b) correct substitution into $\mathrm{E}(X)$
(A1)
eg $\quad 0.2+4 \times 0.5+a \times b+(a+b-0.5) \times a, 0.2+2+a \times b-0.2 a$
valid attempt to express $\mathrm{E}(X)$ in one variable
eg $\quad 0.2+4 \times 0.5+a \times(0.3-a)+(-0.2) \times a, 2.2+0.1 a-a^{2}$, $0.2+4 \times 0.5+(0.3-b) \times b+(-0.2) \times(0.3-b), 2.14+0.5 b-b^{2}$
correct value of greatest $\mathrm{E}(X)$
2.2025 (exact)
valid attempt to find least value
eg graph with minimum indicated, $\mathrm{E}(0)$ and $\mathrm{E}(0.3)$, $(0,2.2)$ and $(0.3,2.14)$ if $\mathrm{E}(X)$ in terms of a $(0,2.14)$ and $(0.3,2.2)$ if $\mathrm{E}(X)$ in terms of b
correct value of least $\mathrm{E}(X)$
eg 2.14 (exact)
difference $=0.0625$ (exact)

N2
[6 marks]

Section B

8. (a) evidence of valid approach
eg $\quad f(x)=0, y=0$
1.13843
$p=1.14$
A1
(b) (i) $0.562134,16.7641$
$(0.562,16.8)$
A2
N2
(ii) valid approach
(M1)
eg tangent at maximum point is horizontal, $f^{\prime}=0$
$y=16.8$ (must be an equation)
A1
(c) (i) METHOD 1 (using GDC)
valid approach
M1
eg $\quad f^{\prime \prime}=0, \mathrm{max} / \mathrm{min}$ on $f^{\prime}, x=-3$
sketch of either f^{\prime} or $f^{\prime \prime}$, with max/min or root (respectively)
$x=3$
A1
(M1)
eg $\quad f(3)$
$y=-225$ (exact) (accept $(3,-225))$
A1

METHOD 2 (analytical)
$f^{\prime \prime}=12 x^{2}-108$
valid approach
eg $\quad f^{\prime \prime}=0, x= \pm 3$
$x=3$
A1
substituting their x value into f
eg $\quad f(3)$
$y=-225$ (exact) (accept $(3,-225))$
A1
N1
(ii) recognizing rate of change is f^{\prime}
eg $y^{\prime}, f^{\prime}(3)$
rate of change is -156 (exact) A1

Question 8 continued
(d) attempt to substitute either their limits or the function into volume formula
eg $\quad \int_{1.14}^{3} f^{2}, \pi \int\left(x^{4}-54 x^{2}+60 x\right)^{2} \mathrm{~d} x, 25752.0$
80902.3
volume $=80900 \quad$ A2
9. (a) valid approach
eg $\mathrm{P}(X<275), 1-0.158655$
0.841344
0.841

A1
(b) valid approach
eg $\quad \mathrm{P}(X<275)-\mathrm{P}(X<m)=0.830$
correct working
eg $\quad \mathrm{P}(X<m)=0.0113447$
225.820

226 (minutes)
(c) (i) evidence of recognizing binomial distribution (seen anywhere)
eg ${ }_{n} C_{a} \times p^{a} \times q^{n-a}, \mathrm{~B}(n, p)$
evidence of summing probabilities from 7 to 12
eg $\mathrm{P}(X=7)+\mathrm{P}(X=8)+\ldots+\mathrm{P}(X=12), 1-\mathrm{P}(X \leq 6)$
0.991248
0.991

Question 9 continued
(ii) finding $\mathrm{P}(X=10)$ (seen anywhere)
eg $\quad\binom{12}{10} \times 0.83^{10} \times 0.17^{2}(=0.295952)$
recognizing conditional probability
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}(X=10 \mid X \geq 7), \frac{\mathrm{P}(X=10 \cap X \geq 7)}{\mathrm{P}(X \geq 7)}$
correct working
eg $\frac{0.295952}{0.991248}$
0.298565
0.299 A1

Note: Exception to the FT rule: if the candidate uses an incorrect value for the probability that a flight is on time in (i) and working shown, award full $\boldsymbol{F T}$ in (ii) as appropriate.
[7 marks]
(d) correct equation
eg $\quad\binom{20}{19} p^{19}(1-p)+p^{20}=0.788$
valid attempt to solve
eg graph
0.956961
0.957
10. (a) recognizing that $v=\int a$
(M1)
correct integration A1
eg $\quad-120 \cos (2 t)+c$
attempt to find c using their $v(t)$
eg $\quad-120 \cos (0)+c=140$
$v(t)=-120 \cos (2 t)+260$
A1
N3
[4 marks]
(b) evidence of valid approach to find time taken in first stage
eg graph, $-120 \cos (2 t)+260=375$
$k=1.42595$
attempt to substitute their v and/or their limits into distance formula
eg $\quad \int_{0}^{1.42595}|v|, \int 260-120 \cos (2 t), \int_{0}^{k}(260-120 \cos (2 t)) \mathrm{d} t$
353.608
distance is 354 (m)
(c) recognizing velocity of second stage is linear (seen anywhere)
eg graph, $s=\frac{1}{2} h(a+b), v=m t+c$
valid approach
eg $\quad \int v=353.608$
correct equation
eg $\quad \frac{1}{2} h(375+500)=353.608$
time for stage two $=0.808248$ (0.809142 from 3 sf)
2.23420 (2.23914 from 3 sf)
2.23 (seconds) (2.24 from 3 sf)

A1

A1
(M1)

Markscheme

May 2019

Mathematics

Standard level

Paper 2

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http:// www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers. In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks
Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \mathbf{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\mathbf{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

5
 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have
another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer

Section A

1. (a) evidence of finding $\frac{\sum x}{n}$
eg $\frac{0.3+0.4+3+\ldots+10}{10}, \frac{48.2}{10}$
$\bar{x}=4.82$ (exact)
A1
N2 [2 marks]
(b) $\quad p=4.25$ (exact)

A1
N1 [1 mark]
(c) valid approach
(M1)
eg $Q_{3}-Q_{1} 3-8,3$ to 8
$\mathrm{IQR}=5$

A1 | N2 |
| ---: |
| [2 marks] |

Total [5 marks]
2. (a) vertex is $(-10,15)$

A1A1
N1N1 [2 marks]
(b) valid approach
(M1)
eg $\quad f(0)=-20,-20=a(0+10)^{2}+15$
$a=-0.35$ (exact)
A1
N2
[2 marks]
(c) valid approach
eg $\quad f(8),-0.35(8+10)^{2}+15$
$b=-98.4$ (exact) (accept $f(8)=-98.4)$
A1
N2
[2 marks]
Total [6 marks]
3. (a) choosing product rule
eg $\quad u v^{\prime}+v u^{\prime},\left(x^{2}\right)^{\prime}\left(\mathrm{e}^{3 x}\right)+\left(\mathrm{e}^{3 x}\right)^{\prime} x^{2}$
correct derivatives (must be seen in the rule)
eg $2 x, 3 \mathrm{e}^{3 x}$
$f^{\prime}(x)=2 x \mathrm{e}^{3 x}+3 x^{2} \mathrm{e}^{3 x}$
A1
(b) valid method

$$
a=-0.667\left(=-\frac{2}{3}\right)(\text { accept } x=-0.667)
$$

A1 N2 [2 marks]
4. (a)

A1A1A1
Note: Only if the shape is approximately correct with exactly 2 maximums and 1 minimum on the interval $0 \leq x \leq 1$, award the following:
A1 for correct domain with both endpoints within circle and oval.
A1 for passing through the other x-intercepts within the circles.
A1 for passing through the three turning points within circles (ignore x-intercepts and extrema outside of the domain).
(b) evidence of reasoning (may be seen on graph)
eg $\quad f^{\prime \prime}=0,(0.524,0),(0.785,0)$
0.523598, 0.785398

$$
x=0.524\left(=\frac{\pi}{6}\right), x=0.785\left(=\frac{\pi}{4}\right)
$$

A1A1

Note: Award M1A1A0 if any solution outside domain $(\mathrm{eg} x=0)$ is also included.
(c) $0.524<x<0.785\left(\frac{\pi}{6}<x<\frac{\pi}{4}\right)$

A2
N2

Note: Award A1 if any correct interval outside domain also included, unless additional solutions already penalized in (b).
Award AO if any incorrect intervals are also included.
5. (a) valid approach
eg correct value for a or b (ignore incorrect labels)

$$
\begin{aligned}
& a=6.92986, b=8.80769 \\
& a=6.93, b=8.81(\text { accept } y=6.93 x+8.81)
\end{aligned}
$$

A1A1 [3 marks]
(b) valid approach
eg $\quad 750=x+y$, edge + interior $=750$
correct working
(A1)
eg $\quad 750-x=6.9298 x+8.807,93.4684$
93 (pieces) (accept 94) A1
N3
[3 marks]
Total [6 marks]
6. valid approach for expansion (must have correct substitution for parameters, but accept an incorrect value for r)
eg $\quad\binom{n}{r}\left(x^{2}\right)^{n-r}(1.2)^{r},\binom{n}{0}\left(x^{2}\right)^{n}+\binom{n}{1}\left(x^{2}\right)^{n-1}(1.2)+\binom{n}{2}\left(x^{2}\right)^{n-2}(1.2)^{2}+\ldots$
attempt to identify correct term
eg $\quad 2 r=6, n-r=3,\binom{n}{3},\binom{n}{n-3}$
correct expression
eg $\binom{n}{n-3} \times 1.2^{n-3} x^{6},\binom{n}{n-3} \times 1.2^{n-3}$

EITHER (solving inequality)

attempt to set up inequality in terms of n (accept equation)
eg $\quad\binom{n}{3} \times 1.2^{n-3}>200000,1.2^{n-3}\binom{n}{3} x^{6}=200000$
correct working for binomial coefficient (may be seen in equation)
eg $\quad \frac{n(n-1)(n-2)(n-3)!}{3!(n-3)!}, \frac{n(n-1)(n-2)}{6} \times 1.2^{n-3}=200000$
$n>26.4959$ (accept 26.4959 or $n=26.4959$)
$n=27$

Note: If no working shown, award $\mathbf{N} 1$ for 26.4959.

OR (using table)

valid approach
eg $\quad\binom{n}{3} \times 1.2^{n-3}>200000$, one correct coefficient of x^{6} for a value of n
correct crossover values for $n=26$ and $n=27$
eg 172243, 232528
$n=27$
7. (a) attempt to add corresponding terms
eg $\quad 2+2,6+(-6), 2(3)^{n-1}+2(-3)^{n-1}$
correct value for w_{5}
(A1)
eg 324
$4,36,324$ (accept $4+36+324$)
A1
[3 marks]
(b) (i) valid approach
(M1)

$$
\text { eg } \quad 4 \times r^{1}=36,4 \times 9^{n-1}
$$

$r=9$ (accept $\sum_{k=0}^{m} 4 \times 9^{k} ; m$ may be incorrect)
A1
(ii) recognition that 225 terms of w_{n} consists of 113 non-zero terms
(M1)
eg $\sum_{1}^{113}, \sum_{0}^{112}, 113$
$m=112$ (accept $\sum_{k=0}^{112} 4 \times r^{k} ; r$ may be incorrect)
A1

Section B

8. (a) valid attempt to find range
(M1)
eg

$2 \sin \left(3 \times \frac{\pi}{6}\right)+4$ and $2 \sin \left(3 \times \frac{\pi}{2}\right)+4,2(1)+4$ and $2(-1)+4$,
$k=2, m=6$
A1A1
N3
(b) $10 \leq y \leq 30$

A2
N2
[2 marks]
(c) (i) evidence of substitution (may be seen in part (b))
eg $5(2 \sin (3(2 x))+4), 3(2 x)$
$b=6, c=20$ (accept $10 \sin (6 x)+20$)
A1A1
Note: If no working shown, award $\mathbf{N 2}$ for one correct value.
(ii) correct working
eg $\frac{2 \pi}{b}$
1.04719
$\frac{2 \pi}{6}\left(=\frac{\pi}{3}\right), 1.05$
(d) valid approach
(M1)
eg

Note: Award $\boldsymbol{M} \mathbf{1}$ for any correct value for x or $6 x$ which lies outside the domain of f.
3.81974, 4.03424
$x=3.82, x=4.03$ (do not accept answers in degrees)
9. (a) attempt to find $f^{\prime}(8)$
eg $f^{\prime}(x), y^{\prime},-16 x^{-2}$
-0.25 (exact)
A1
N2
[2 marks]
(b) $\boldsymbol{u}=\binom{4}{-1}$ or any scalar multiple

A2
N2
[2 marks]
(c) correct scalar product and magnitudes
(A1)(A1)(A1)
scalar product $=1 \times 4+1 \times-1 \quad(=3)$
magnitudes $=\sqrt{1^{2}+1^{2}}, \sqrt{4^{2}+(-1)^{2}}(=\sqrt{2}, \sqrt{17})$
substitution of their values into correct formula
eg $\frac{4-1}{\sqrt{1^{2}+1^{2}} \sqrt{4^{2}+(-1)^{2}}}, \frac{-3}{\sqrt{2} \sqrt{17}}, 2.1112,120.96^{\circ}$
1.03037, 59.0362°
angle $=1.03,59.0^{\circ}$

A1 N4
[5 marks]
continued...

Question 9 continued
(d) (i) attempt to form composite $(f \circ f)(x)$
(M1)
eg $\quad f(f(x)), f\left(\frac{16}{x}\right), \frac{16}{f(x)}$
correct working
eg $\frac{16}{16 / x}, 16 \times \frac{x}{16}$
$(f \circ f)(x)=x$
A1
(ii) $f^{-1}(x)=\frac{16}{x}\left(\right.$ accept $\left.y=\frac{16}{x}, \frac{16}{x}\right)$

Note: Award $\boldsymbol{A} 0$ in part (ii) if part (i) is incorrect.
Award $\boldsymbol{A O}$ in part (ii) if the candidate has found $f^{-1}(x)=\frac{16}{x}$ by interchanging x and y.
(iii) METHOD 1
recognition of symmetry about $y=x$
eg

$$
(2,8) \Leftrightarrow(8,2)
$$

eg $2 \times 1.03,2 \times 59.0$
$2.06075,118.072^{\circ}$
2.06 (radians) (118 degrees)

Question 9 continued

METHOD 2

finding direction vector for tangent line at $x=2$
eg $\quad\binom{-1}{4},\binom{1}{-4}$
substitution of their values into correct formula (must be from vectors) (M1)
eg $\frac{-4-4}{\sqrt{1^{2}+4^{2}} \sqrt{4^{2}+(-1)^{2}}}, \frac{8}{\sqrt{17} \sqrt{17}}$
2.06075, 118.072
2.06 (radians) (118 degrees) A1

METHOD 3

using trigonometry to find an angle with the horizontal
eg $\tan \theta=-\frac{1}{4}, \tan \theta=-4$
finding both angles of rotation
eg $\quad \theta_{1}=0.244978,14.0362^{\circ}, \theta_{2}=1.81577,104.036^{\circ}$
$2.06075,118.072^{\circ}$
2.06 (radians) (118 degrees)
10. (a) (i) valid approach to find P (one red)
eg $\quad{ }_{n} C_{a} \times p^{a} \times q^{n-a}, \mathrm{~B}(n, p), 3\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{2},\binom{3}{1}$
listing all possible cases for exactly one red (may be indicated on tree diagram)
$P(1$ red $)=0.444\left(=\frac{4}{9}\right)[0.444,0.445]$
(ii) valid approach
eg $\quad \mathrm{P}(X=2)+\mathrm{P}(X=3), 1-\mathrm{P}(X \leq 1)$, binomcdf $\left(3, \frac{1}{3}, 2,3\right)$
correct working
eg $\frac{2}{9}+\frac{1}{27}, 0.222+0.037,1-\left(\frac{2}{3}\right)^{3}-\frac{4}{9}$
0.259259
$P($ at least two red $)=0.259\left(=\frac{7}{27}\right)$
(b) recognition that winning $\$ 10$ means rolling exactly one green
recognition that winning $\$ 10$ also means rolling at most 1 red
eg "cannot have 2 or more reds"
correct approach
eg $\quad \mathrm{P}(1 \mathrm{G} \cap 0 \mathrm{R})+\mathrm{P}(1 \mathrm{G} \cap 1 \mathrm{R}), \mathrm{P}(1 \mathrm{G})-\mathrm{P}(1 \mathrm{G} \cap 2 \mathrm{R})$,
"one green and two yellows or one of each colour"
Note: Because this is a "show that" question, do not award this A1 for purely numerical expressions.
one correct probability for their approach
eg $\quad 3\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{2}, \frac{6}{27}, 3\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{2}, \frac{1}{9}, \frac{2}{9}$
correct working leading to $\frac{1}{3}$
eg $\frac{3}{27}+\frac{6}{27}, \frac{12}{27}-\frac{3}{27}, \frac{1}{9}+\frac{2}{9}$
probability $=\frac{1}{3}$
continued..

Question 10 continued
(c) (i) $x=\frac{7}{27}, 0.259$ (check $\boldsymbol{F T}$ from (a)(ii))

A1
N1
(ii) evidence of summing probabilities to 1
eg $\quad \sum=1, x+y+\frac{1}{3}+\frac{2}{9}+\frac{1}{27}=1,1-\frac{7}{27}-\frac{9}{27}-\frac{6}{27}-\frac{1}{27}$
0.148147 (0.148407 if working with their x value to 3 sf) $y=\frac{4}{27}$ (exact), 0.148
(d) correct substitution into the formula for expected value
(A1)
eg $\quad-w \cdot \frac{7}{27}+10 \cdot \frac{9}{27}+20 \cdot \frac{6}{27}+30 \cdot \frac{1}{27}$
correct critical value (accept inequality)
eg $\quad w=34.2857\left(=\frac{240}{7}\right), w>34.2857$
\$40
A1 N2
[3 marks]

Markscheme

May 2019

Mathematics

Standard level

Paper 2

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http:// www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} 1$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers. In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks
Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \mathbf{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

5
 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have
another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer

Section A

1. (a) (i) valid approach
(M1)
eg correct value for a or b (or for correct r or $r^{2}=0.955631$ seen in (ii))

$$
\begin{aligned}
& 0.141120,11.1424 \\
& a=0.141, b=11.1
\end{aligned} \quad \text { A1A1 }
$$

(ii) $\begin{array}{r}0.977563 \\ \\ r=0.978\end{array}$

A1
[4 marks]
(b) correct substitution into their regression equation
eg $\quad 0.141(95)+11.1$
24.5488
24.5

A1
[2 marks]
Total [6 marks]
2. (a) valid approach
eg $\quad f(x)=0,4-2 \mathrm{e}^{x}=0$
0.693147
$x=\ln 2$ (exact), 0.693
A1 N2
[2 marks]
(b) attempt to substitute either their correct limits or the function into formula involving f^{2}
eg $\quad \int_{0}^{0.693} f^{2}, \quad \pi \int\left(4-2 \mathrm{e}^{x}\right)^{2} \mathrm{~d} x, \int_{0}^{\ln 2}\left(4-2 \mathrm{e}^{x}\right)^{2}$
3.42545
volume $=3.43$
3. (a) choosing cosine rule
eg $\quad c^{2}=a^{2}+b^{2}-2 a b \cos C$
correct substitution into RHS
eg $\quad 4.83^{2}+3.80^{2}-2 \times 4.83 \times 3.80 \times \cos 78.2,30.2622$,
$4.83^{2}+3.80^{2}-2(4.83)(3.80) \cos 1.36$
5.50111
5.50 (cm)
(b) correct substitution for area of triangle ABD
eg $\frac{1}{2} \times 6.73 \times 5.50111 \sin \theta$
correct equation
eg $\frac{1}{2} \times 6.73 \times 5.50111 \sin \theta=18.5, \sin \theta=0.999393$
88.0023, 91.9976, 1.53593, 1.60566
$\theta=88.0$ (degrees) or 1.54 (radians)
$\theta=92.0$ (degrees) or 1.61 (radians)
4. (a) $\cos \theta=\frac{\mathrm{OC}}{r}$

A1
$\mathrm{OC}=r \cos \theta$
AG NO [1 mark]
(b) valid approach
eg $\frac{1}{2} \mathrm{OC} \times \mathrm{OB} \sin \theta, \mathrm{BC}=r \sin \theta, \frac{1}{2} r \cos \theta \times \mathrm{BC}, \frac{1}{2} r \sin \theta \times \mathrm{OC}$
area $=\frac{1}{2} r^{2} \sin \theta \cos \theta\left(=\frac{1}{4} r^{2} \sin (2 \theta)\right)$ (must be in terms of r and θ)
A1
(c) valid attempt to express the relationship between the areas (seen anywhere) (M1)
eg $\quad \mathrm{OCB}=\frac{3}{5} \mathrm{OBA}, \frac{1}{2} r^{2} \sin \theta \cos \theta=\frac{3}{5} \times \frac{1}{2} r^{2} \theta, \frac{1}{4} r^{2} \sin 2 \theta=\frac{3}{10} r^{2} \theta$
correct equation in terms of θ only
eg $\quad \sin \theta \cos \theta=\frac{3}{5} \theta, \frac{1}{4} \sin 2 \theta=\frac{3}{10} \theta$
valid attempt to solve their equation
eg sketch, $-0.830017,0$
0.830017
$\theta=0.830$
A1
N2
Note: Do not award final A1 if additional answers given.
5. (a) valid approach
eg $\quad f(10)$
235.402

235 (fish) (must be an integer)
(b) recognizing rate of change is derivative
(M1)
eg rate $=f^{\prime}, f^{\prime}(10)$, sketch of $f^{\prime}, 35$ (fish per month)
35.9976
36.0 (fish per month)

A1 N2 [2 marks]
(c) valid approach
(M1)
eg maximum of $f^{\prime}, f^{\prime \prime}=0$
15.890
15.9 (months)

A1 N2 [2 marks]

Total [6 marks]
6. valid approach for expanding binomial (must have correct substitution for parameters, but accept " r " or an incorrect value for r)
eg $\quad\binom{15}{r}\left(\frac{1}{2 x}\right)^{(15-r)}\left(x^{2}\right)^{r},\left(\frac{1}{2 x}\right)^{15}\left(x^{2}\right)^{0}+15\left(\frac{1}{2 x}\right)^{14}\left(x^{2}\right)^{1}+\binom{15}{2}\left(\frac{1}{2 x}\right)^{13}\left(x^{2}\right)^{2}+\ldots$
recognizing need to find the term containing x^{-3} in the expansion of $\left(\frac{1}{2 x}+x^{2}\right)^{15}$
correct equation
(A1)
eg $\quad\left(x^{-1}\right)^{15-r}\left(x^{2}\right)^{r}=x^{-3},\left(x^{-1}\right)^{r}\left(x^{2}\right)^{15-r}=x^{-3},-15+r+2 r=-3$
identifying the correct term (seen anywhere)
eg $\quad r=4, r=11, n-r=4$
correct working
(A1)(A1)
eg $\quad\binom{15}{4}\left(\frac{1}{2 x}\right)^{15-4}, 1365 \times \frac{1}{2^{11}}$
Note: Award A1 for each factor.
$\frac{1365}{2048}$
A1
N2

7. METHOD 1 (Distance between the origin and P)

correct position vector for OP
eg $\quad \overrightarrow{\mathrm{OP}}=\left(\begin{array}{c}-1+4 t \\ 3+5 t \\ 8-t\end{array}\right), \mathrm{P}=(-1+4 t, 3+5 t, 8-t)$
correct expression for OP or OP^{2} (seen anywhere)
eg $\sqrt{(-1+4 t)^{2}+(3+5 t)^{2}+(8-t)^{2}},(-1+4 x)^{2}+(3+5 x)^{2}+(8-x)^{2}$
valid attempt to find the minimum of OP
eg $\quad d^{\prime}=0$, root on sketch of d^{\prime}, min indicated on sketch of d
$t=-\frac{1}{14},-0.0714285$
substitute their value of t into L (only award if there is working to find t)
eg one correct coordinate, $-1+4\left(-\frac{1}{14}\right)$
$(-1.28571,2.64285,8.07142)$
$\left(-\frac{9}{7}, \frac{37}{14}, \frac{113}{14}\right)=(-1.29,2.64,8.07)$

METHOD 2 (Perpendicular vectors)

recognizing that closest implies perpendicular
eg $\quad \overrightarrow{\mathrm{OP}} \perp L$ (may be seen on sketch), $a \cdot b=0$
valid approach involving OP
eg $\quad \overrightarrow{\mathrm{OP}}=\left(\begin{array}{c}-1+4 t \\ 3+5 t \\ 8-t\end{array}\right),\left(\begin{array}{c}4 \\ 5 \\ -1\end{array}\right) \cdot \overrightarrow{\mathrm{OP}},\left(\begin{array}{c}4 \\ 5 \\ -1\end{array}\right) \pm \overrightarrow{\mathrm{OP}}$
correct scalar product
eg $\quad 4(-1+4 t)+5(3+5 t)-1(8-t),-4+16 t+15+25 t-8+t=0,42 t+3$
$t=-\frac{1}{14},-0.0714285$
substitute their value of t into L or $\overrightarrow{\mathrm{OP}}$ (only award if scalar product used to find t)
eg one correct coordinate, $-1+4\left(-\frac{1}{14}\right)$
(-1.28571, 2.64285, 8.07142)
$\left(-\frac{9}{7}, \frac{37}{14}, \frac{113}{14}\right)=(-1.29,2.64,8.07)$

Section B

8. (a) valid approach
eg $\quad s_{A}(0), s(0), t=0$
15 (cm) A1 N2 [2 marks]
(b) valid approach
(M1)
eg $\quad s_{A}=0, s=0,6.79321,14.8651$
2.46941
$t=2.47$ (seconds)
A1
N2
[2 marks]
(c) recognizing when change in direction occurs
(M1)
eg slope of s changes sign, $s^{\prime}=0$, minimum point, 10.0144, (4.08, -4.66)
4.07702
$t=4.08$ (seconds)
(d) METHOD 1 (using displacement)
correct displacement or distance from P at $t=3$ (seen anywhere)
eg -2.69630, 2.69630
valid approach
(M1)
eg $\quad 15+2.69630, s(3)-s(0),-17.6963$
17.6963
17.7 (cm)
A1

METHOD 2 (using velocity)

attempt to substitute either limits or the velocity function into distance
formula involving $|v|$
eg $\quad \int_{0}^{3}|v| \mathrm{d} t, \int\left|-1-18 t^{2} \mathrm{e}^{-0.8 t}+4.8 t^{3} \mathrm{e}^{-0.8 t}\right|$
17.6963
17.7 (cm)

A2
N2 [3 marks]

Question 8 continued

(e) (i) recognize the need to integrate velocity
eg $\quad \int v(t)$
$8 t-\frac{2 t^{2}}{2}+c$ (accept x instead of t and missing c)
substituting initial condition into their integrated expression
(must have c)
(M1)
eg $\quad 15=8(0)-\frac{2(0)^{2}}{2}+c, c=15$
$s_{B}(t)=8 t-t^{2}+15 \quad$ A1
(ii) valid approach
eg $s_{A}=s_{B}$, sketch, $(9.30404,2.86710)$
9.30404
$t=9.30$ (seconds)
A1
Note: If candidates obtain $s_{B}(t)=8 t-t^{2}$ in part (e)(i), there are 2 solutions for part (e)(ii), 1.32463 and 7.79009. Award the last A1 in part (e)(ii) only if both solutions are given.
9. (a) METHOD 1
multiplication of $\mathrm{P}(A)$ and $\mathrm{P}(D)$
(A1)
eg $\quad 0.70 \times 0.85,0.595$
correct reasoning for their probabilities
R1
eg $\quad 0.595 \neq 0.65,0.70 \times 0.85 \neq \mathrm{P}(A \cap D)$
A and D are not independent AG
METHOD 2
calculation of $\mathrm{P}(D \mid A)$
eg $\frac{13}{14}, 0.928$
correct reasoning for their probabilities
R1
eg $\quad 0.928 \neq 0.85, \frac{0.65}{0.7} \neq \mathrm{P}(D)$
A and D are not independent
AG
[2 marks]
(b) (i) correct working
(A1)
eg $\quad \mathrm{P}(A)-\mathrm{P}(A \cap D), 0.7-0.65$, correct shading and/or value on Venn diagram
$\mathrm{P}\left(A \cap D^{\prime}\right)=0.05$
A1
(ii) recognizing conditional probability (seen anywhere)
eg $\frac{\mathrm{P}\left(D^{\prime} \cap A\right)}{\mathrm{P}(A)}, \mathrm{P}(A \mid B)$
correct working
eg $\frac{0.05}{0.7}$
0.071428
$\mathrm{P}\left(D^{\prime} \mid A\right)=\frac{1}{14}, 0.0714$

Question 9 continued
(c) finding standardized value for 28 hours (seen anywhere)
eg $\quad z=1.28155$
correct working to find σ
eg $\quad 1.28155=\frac{28-25}{\sigma}, \frac{28-25}{1.28155}$

> 2.34091
> $\sigma=2.34$
(d) $\quad \mathrm{P}(X>30)=0.0163429$
valid approach (seen anywhere)
eg $\quad[\mathrm{P}(X>30)]^{2},(0.01634)^{2}, \mathrm{~B}(2,0.0163429), 2.67 \mathrm{E}-4,2.66 \mathrm{E}-4$
0.0267090
0.0267%

A1
[3 marks]
(A1)
10. (a) attempt to find d
eg $\quad 1.4-1.3, u_{1}-u_{2}, 1.4=1.3+(2-1) d$
$d=0.1$ (may be seen in expression for u_{n})
correct equation
eg $\quad 1.3+(k-1) \times 0.1=31.2,0.1 k=30$

$$
k=300
$$

(b) correct substitution
eg $\quad \frac{300}{2}(1.3+31.2), \frac{300}{2}[2(1.3)+(300-1)(0.1)], \frac{300}{2}[2.6+299(0.1)]$
$S_{k}=4875$
A1
(c) recognizing need to find the sequence of multiples of 3 (seen anywhere)
eg first term is $u_{3}(=1.5)$ (accept notation $u_{1}=1.5$),
$d=0.1 \times 3(=0.3), 100$ terms (accept $n=100)$, last term is 31.2
(accept notation $u_{100}=31.2$), $u_{3}+u_{6}+u_{9}+\ldots$ (accept $F=u_{3}+u_{6}+u_{9}+\ldots$)
correct working for sum of sequence where n is a multiple of 3
$\frac{100}{2}(1.5+31.2), 50(2 \times 1.5+99 \times 0.3), 1635$
valid approach (seen anywhere)
(M1)
eg $\quad S_{k}-\left(u_{3}+u_{6}+\ldots\right), S_{k}-\frac{100}{2}(1.5+31.2), S_{k}-\left(\right.$ their sum for $\left.\left(u_{3}+u_{6}+\ldots\right)\right)$
correct working (seen anywhere)
eg $\quad S_{k}-1635,4875-1635$

$$
F=3240
$$

AG [5 marks]

Question 10 continued
(d) attempt to find r
eg dividing consecutive terms
correct value of r (seen anywhere, including in formula)
eg $\frac{1}{\sqrt{2}}, 0.707106 \ldots, \frac{a}{0.293 \ldots}$
correct working (accept equation)
(A1)
eg $\frac{a}{1-\frac{1}{\sqrt{2}}}<3240$
correct working

METHOD 1 (analytical)

eg $\quad 3240 \times\left(1-\frac{1}{\sqrt{2}}\right), a<948.974,948.974$

METHOD 2 (using table, must find both S_{∞} values)

eg when $a=948, S_{\infty}=3236.67 \ldots$ AND when $a=949, S_{\infty}=3240.08 \ldots$

$$
a=948
$$

Markscheme

November 2018

Mathematics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers. In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \mathbf{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\mathbf{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

5
 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have
another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer

Section A

1. (a) valid approach
(M1)
$\left(A \cap M^{\prime}\right)+(A \cap M), \frac{17}{35}, 11+6$
number of students taking art class $=17$
(b) (i) valid approach
$13+5,35-17,18,1-\mathrm{P}(A)$
0.514285
$\mathrm{P}\left(A^{\prime}\right)=\frac{18}{35}$ (exact), 0.514
A1
(ii) valid approach
$11+13,35-6-5,24$
0.685714
$\mathrm{P}(A$ or M but not both $)=\frac{24}{35}$ (exact), 0.686
2. (a) (i) evidence of set up
eg correct value for a or b or r (seen in (ii)) or $r^{2}(=0.973)$

$$
\begin{aligned}
& 9.91044,-31.3194 \\
& a=9.91, b=-31.3, y=9.91 x-31.3
\end{aligned}
$$

A1A1
(ii) 0.986417
$r=0.986$
(b) substituting $x=21.5$ into their equation
eg 9.91(21.5)-31.3
181.755

182 (cm)
3. (a) (i) valid method
eg $\quad f(0)$, sketch of graph
y-intercept is $-\frac{1}{3}$ (exact), $-0.333,\left(0,-\frac{1}{3}\right)$
A1
(ii) $x=-\frac{3}{2}$ (must be an equation)

A1
(iii) valid method
(M1)
eg $\frac{6}{2}, f(x)=3-\frac{10}{2 x+3}$, sketch of graph
$y=3$ (must be an equation)
(b) valid approach
eg recognizing that $\lim _{x \rightarrow \infty} f(x)$ is related to the horizontal asymptote,
table with large values of x, their y value from (a)(iii),
L'Hopital's rule $\lim _{x \rightarrow \infty} f(x)=3$.

$$
\lim _{x \rightarrow \infty}\left(\frac{6 x-1}{2 x+3}\right)=3
$$

A1 N2
[2 marks]

Total [7 marks]

(b) valid approach
eg $\quad a(t)=v^{\prime}(t), v^{\prime}(2)$
0.659485
$a(2)=1.96 \ln 1.4$ (exact), $a(2)=0.659\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
A1
(c) correct approach
eg $\quad \int_{0}^{5}|v(t)| \mathrm{d} t, \int_{0}^{2.95}(-v(t)) \mathrm{d} t+\int_{2.95}^{5} v(t) \mathrm{d} t$
5.3479
distance $=5.35(\mathrm{~m})$

A2
N3
[3 marks]
5. correct substitution into formula for infinite geometric series
eg $\quad 33.25=\frac{u_{1}}{1-r}$
correct substitution into formula for u_{n} (seen anywhere)
eg $\quad 7.98=u_{1} r$
attempt to express u_{1} in terms of r (or vice-versa)
eg $\quad u_{1}=\frac{7.98}{r}, u_{1}=33.25(1-r), r=\frac{7.98}{u_{1}}, r=\frac{33.25-u_{1}}{33.25}$
correct working
eg $\quad \frac{\left(\frac{7.98}{r}\right)}{1-r}=33.25,33.25(1-r)=\frac{7.98}{r},(0.4,19.95),(0.6,13.3), \frac{u_{1}}{1-\frac{7.98}{u_{1}}}=33.25$
$r=0.4 \quad\left(=\frac{2}{5}\right), r=0.6 \quad\left(=\frac{3}{5}\right)$
6. valid approach for expanding binomial
eg $\quad\binom{12}{r}\left(2 x^{4}\right)^{12-r}\left(\frac{x^{2}}{k}\right)^{r},\left(2 x^{4}\right)^{12}+\binom{12}{1}\left(2 x^{4}\right)^{11}\left(\frac{x^{2}}{k}\right)^{1}+\binom{12}{2}\left(2 x^{4}\right)^{10}\left(\frac{x^{2}}{k}\right)^{2}+\ldots$
valid attempt to find r for x^{40} or x^{38}
(M1)
eg $\quad\left(x^{4}\right)^{12-r}\left(x^{2}\right)^{r}=(x)^{40},\left(x^{4}\right)^{r}\left(x^{2}\right)^{12-r}=(x)^{40}$,
$\binom{12}{r}\left(2^{r}\right)\left(\frac{1}{k}\right)^{12-r}\left(x^{4}\right)^{r}\left(x^{2}\right)^{12-r}=\binom{12}{r}\left(2^{r}\right)\left(\frac{1}{k}\right)^{12-r} x^{38}$
correct equation for finding one value of r
eg $\quad 48-2 r=40,48-2 r=38,24+2 r=40,2 r+24=38$
correct values for r (seen anywhere)
(A1)(A1)
eg $\quad r=4, r=5$ OR $r=7, r=8$
correct equation to solve for k
eg $\quad\binom{12}{4}\left(2^{8}\right)\left(\frac{1}{k}\right)^{4}=5\binom{12}{5}\left(2^{7}\right)\left(\frac{1}{k}\right)^{5}, \frac{126720}{k^{4}}=5 \times \frac{792(128)}{k^{5}}, 990 k=3960$
$k=4$
A1
7. (a) recognizing $T R=32$ (seen anywhere, including diagram)

A1
A1
eg $\quad 32^{2}=x^{2}+38^{2}-2(x)(38) \cos 43^{\circ}, 1024=1444+x^{2}-76(x) \cos 43^{\circ}$
$x^{2}-\left(76 \cos 43^{\circ}\right) x+420=0 \quad$ AG
(b)

Note: There are many approaches to this question, depending on which triangle the candidate has used, and whether they used the cosine rule and/or the sine rule. Please check working carefully and award marks in line with the markscheme.

METHOD 1

correct values for x (seen anywhere)
$x=9.02007$, 46.5628
recognizing the need to find difference in values of x
eg 46.5-9.02, $x_{1}-x_{2}$
37.5427
37.5 (km)

A1

METHOD 2

correct use of sine rule in $\triangle \mathrm{SRT}$
eg $\quad \frac{\sin \mathrm{SRT}}{38}=\frac{\sin 43^{\circ}}{32}, \mathrm{SRT}=54.0835^{\circ}$
recognizing isosceles triangle (seen anywhere)
eg $\quad \hat{T}=180^{\circ}-2 \cdot 54.0835^{\circ}$, two sides of 32
correct working to find distance
eg $\sqrt{32^{2}+32^{2}-2 \cdot 32 \cdot 32 \cos \left(180^{\circ}-2 \cdot 54.0835^{\circ}\right)}$,

$$
\frac{\sin 71.8329^{\circ}}{d}=\frac{\sin 54.0835^{\circ}}{32}, 32^{2}=32^{2}+x^{2}-2 \cdot 32 x \cos (0.944)
$$

37.5427
37.5 (km)

Section B

8.

Note: There may be slight differences in answers, depending on which combination of unrounded values and previous correct 3 sf values the candidates carry through in subsequent parts. Accept answers that are consistent with their working.
(a) (i) valid approach
eg

$$
\mathrm{B}-\mathrm{A}, \mathrm{AO}+\mathrm{OB},\left(\begin{array}{c}
8 \\
-1 \\
5
\end{array}\right)-\left(\begin{array}{c}
-3 \\
4 \\
2
\end{array}\right)
$$

$\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}11 \\ -5 \\ 3\end{array}\right)$
(ii) correct substitution into formula
eg $\sqrt{11^{2}+(-5)^{2}+3^{2}}$
12.4498
$|\overrightarrow{\mathrm{AB}}|=\sqrt{155} \quad$ (exact), 12.4
(b) (i) valid approach to find t
eg $\left(\begin{array}{l}5 \\ y \\ 1\end{array}\right)=\left(\begin{array}{c}2 \\ 0 \\ -5\end{array}\right)+t\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right), 5=2+t, 1=-5+2 t$
$t=3 \quad$ (seen anywhere)
attempt to substitute their parameter into the vector equation
eg $\quad\left(\begin{array}{l}5 \\ y \\ 1\end{array}\right)=\left(\begin{array}{c}2 \\ 0 \\ -5\end{array}\right)+3\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right), 3 \cdot(-2)$
$y=-6$
A1
N2
continued...

Question 8 continued
(ii) correct approach

$$
\begin{aligned}
& \text { eg }\left(\begin{array}{c}
5 \\
-6 \\
1
\end{array}\right)-\left(\begin{array}{c}
-3 \\
4 \\
2
\end{array}\right), \mathrm{AO}+\mathrm{OC}, c-a \\
& \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}
8 \\
-10 \\
-1
\end{array}\right)
\end{aligned}
$$

Note: Do not award $\boldsymbol{A 1}$ in part (ii) unless answer in part (i) is correct and does not result from working backwards.
[5 marks]
(c) finding scalar product and magnitude

(A1)(A1)

scalar product $=11 \times 8+-5 \times-10+3 \times-1 \quad(=135)$
$|\overrightarrow{\mathrm{AC}}|=\sqrt{8^{2}+(-10)^{2}+(-1)^{2}} \quad(=\sqrt{165}, 12.8452)$
evidence of substitution into formula
eg $\quad \cos \theta=\frac{11 \times 8+-5 \times-10+3 \times-1}{|\overrightarrow{\mathrm{AB}}| \times \sqrt{8^{2}+(-10)^{2}+(-1)^{2}}}, \cos \theta=\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{\sqrt{155} \times \sqrt{8^{2}+(-10)^{2}+(-1)^{2}}}$
correct substitution
eg $\cos \theta=\frac{11 \times 8+-5 \times-10+3 \times-1}{\sqrt{155} \times \sqrt{8^{2}+(-10)^{2}+(-1)^{2}}}, \cos \theta=\frac{135}{159.921 \ldots}$,
$\cos \theta=0.844162 . .$.
$0.565795,32.4177^{\circ}$
$\hat{A}=0.566,32.4^{\circ}$
(d) correct substitution into area formula
eg $\frac{1}{2} \times \sqrt{155} \times \sqrt{165} \times \sin (0.566 \ldots), \frac{1}{2} \times \sqrt{155 \times 165} \times \sin (32.4)$
42.8660
area $=42.9$
9. (a) 0.010724
0.0107

A2 N2 [2 marks]
(b) correct z-value
0.263714...
evidence of appropriate approach
eg $\quad \frac{0.65-0.592}{\sigma}, 0.264=\frac{x-\mu}{\sigma}$
correct substitution
(A1)
eg $\quad 0.263714=\frac{0.65-0.592}{\sigma}, \sigma=\frac{0.65-0.592}{0.264}$
0.219934
$\sigma=0.220$
(c) correct work for P (group X and $t>0.65$) or P (group Y and $t>0.65$) (may be seen anywhere)
eg $\quad \mathrm{P}($ group X$) \times \mathrm{P}(t>0.65 \mid \mathrm{X}), \mathrm{P}(X \cap t>0.65)=0.0107 \times 0.38(=0.004075)$, $\mathrm{P}(Y \cap t>0.65)=0.396 \times 0.62$
recognizing conditional probability (seen anywhere)
(M1)
eg $\quad \mathrm{P}(\mathrm{X} \mid t>0.65), \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
valid approach to find $\mathrm{P}(t>0.65)$
eg

$\mathrm{P}(\mathrm{X}$ and $t>0.65)+\mathrm{P}(\mathrm{Y}$ and $t>0.65)$
correct work for $\mathrm{P}(t>0.65)$
eg $\quad 0.0107 \times 0.38+0.396 \times 0.62,0.249595$
correct substitution into conditional probability formula
eg $\frac{0.0107 \times 0.38}{0.0107 \times 0.38+0.396 \times 0.62}, \frac{0.004075}{0.249595}$
0.016327
$\mathrm{P}(\mathrm{X} \mid t>0.65)=0.0163270 \quad$ A1

Question 9 continued
(d) recognizing binomial probability
eg $\quad X \sim \mathrm{~B}(n, p),\binom{n}{r} p^{r} q^{n-r},(0.016327)^{2}(0.983672)^{8},\binom{10}{2}$
valid approach
(M1)
eg $\quad \mathrm{P}(X \geq 2)=1-\mathrm{P}(X \leq 1), 1-\mathrm{P}(X<a)$, summing terms from 2 to 10
(accept binomcdf(10, 0.0163, 2, 10))
0.010994
$\mathrm{P}(X \geq 2)=0.0110 \quad$ A1

Total [15 marks]
10. (a) attempt to substitute correct limits or the function into formula involving f^{2}
eg $\quad \pi \int_{-2}^{2} y^{2} \mathrm{~d} y, \pi \int\left(\sqrt{\frac{4-x^{2}}{8}}\right)^{2} \mathrm{~d} x$
4.18879
volume $=4.19, \frac{4}{3} \pi \quad($ exact $)\left(\mathrm{m}^{3}\right)$
Note: If candidates have their GDC incorrectly set in degrees, award \boldsymbol{M} marks where appropriate, but no \boldsymbol{A} marks may be awarded. Answers from degrees are $p=13.1243$ and $q=26.9768$ in (b)(i) and 12.3130 or 28.3505 in (b)(ii).
(b) (i) recognizing the volume increases when g^{\prime} is positive
eg $\quad g^{\prime}(t)>0$, sketch of graph of g^{\prime} indicating correct interval
1.73387, 3.56393
$p=1.73, q=3.56$
A1A1
(ii) valid approach to find change in volume
eg $\quad g(q)-g(p), \int_{p}^{q} g^{\prime}(t) \mathrm{d} t$
3.74541
total amount $=3.75\left(\mathrm{~m}^{3}\right) \quad$ A2

Question 10 continued
(c)

Note: There may be slight differences in the final answer, depending on which values candidates carry through from previous parts. Accept answers that are consistent with correct working.
recognizing when the volume of water is a maximum
eg maximum when $t=q, \int_{0}^{q} g^{\prime}(t) \mathrm{d} t$
valid approach to find maximum volume of water
eg $\quad 2.3+\int_{0}^{q} g^{\prime}(t) \mathrm{d} t, 2.3+\int_{0}^{p} g^{\prime}(t) \mathrm{d} t+3.74541,3.85745$
correct expression for the difference between volume of container and maximum value
eg $\quad 4.18879-\left(2.3+\int_{0}^{q} g^{\prime}(t) \mathrm{d} t\right), 4.19-3.85745$
0.331334
$0.331\left(\mathrm{~m}^{3}\right)$

Markscheme

May 2018

Mathematics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have
another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \mathbf{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) $f^{\prime}(x)=\frac{1}{x}-5$

A1A1 N2 [2 marks]
(b) $\quad f^{\prime \prime}(x)=-x^{-2}$

A1 N1 [1 mark]
(c) METHOD 1 (using GDC)
valid approach
(M1)
eg
0.558257
$x=0.558$
Note: Do not award A1 if additional answers given.

METHOD 2 (analytical)

attempt to solve their equation $f^{\prime}(x)=f^{\prime \prime}(x)\left(\right.$ do not accept $\left.\frac{1}{x}-5=-\frac{1}{x^{2}}\right)$
eg $\quad 5 x^{2}-x-1=0, \frac{1 \pm \sqrt{21}}{10}, \frac{1}{x}=\frac{-1 \pm \sqrt{21}}{2},-0.358$
0.558257
$x=0.558$
Note: Do not award A1 if additional answers given.
2. (a) evidence of summing to 1
eg $\quad 0.28+k+0.15+0.3=1,0.73+k=1$
$k=0.27$
A1
N2
[2 marks]
(b) correct substitution into formula for $\mathrm{E}(X)$
eg $\quad 1 \times 0.28+2 \times k+3 \times 0.15+4 \times 0.3$
$\mathrm{E}(X)=2.47$ (exact)
A1 N2
[2 marks]
(c) valid approach
eg $n p, 80 \times 0.15$
12
A1 N2 [2 marks]

Total [6 marks]

3. (a) valid approach to find area of segment
eg area of sector - area of triangle, $\frac{1}{2} r^{2}(\theta-\sin \theta)$
correct substitution
eg $\frac{1}{2}(4)^{2} \theta-\frac{1}{2}(4)^{2} \sin \theta, \frac{1}{2} \times 16[\theta-\sin \theta]$
area $=8 \theta-8 \sin \theta, 8(\theta-\sin \theta)$
A1
N2
[3 marks]
(b) setting their area expression equal to 12
eg $\quad 12=8(\theta-\sin \theta)$
2.26717
$\theta=2.27$ (do not accept an answer in degrees)
A2
N3
[3 marks]
Total [6 marks]
4. (a) $(1,5)$ (exact)

A1 N1
(b)

Note: The shape must be a concave-down parabola.
Only if the shape is correct, award the following for points in circles:
A1 for vertex,
A1 for correct intersection points,
A1 for correct endpoints.
(c) integrating and subtracting functions (in any order)
(M1)
eg $\quad \int f-g$
correct substitution of limits or functions (accept missing $\mathrm{d} x$, but do not accept any errors, including extra bits)
eg $\quad \int_{-1}^{2} g-f, \int-(x-1)^{2}+5-x^{2}$
area $=9$ (exact)
5. (a) valid approach
eg Venn diagram, $\mathrm{P}(A)-\mathrm{P}(A \cap B), 0.62-0.18$
$\mathrm{P}\left(A \cap B^{\prime}\right)=0.44$
A1
N2 [2 marks]
(b) valid approach to find either $\mathrm{P}\left(B^{\prime}\right)$ or $\mathrm{P}(B)$
(M1)
eg

(seen anywhere), $1-\mathrm{P}\left(A \cap B^{\prime}\right)-\mathrm{P}\left((A \cup B)^{\prime}\right)$
correct calculation for $\mathrm{P}\left(B^{\prime}\right)$ or $\mathrm{P}(B)$
(A1)
eg $\quad 0.44+0.19,0.81-0.62+0.18$
correct substitution into $\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}$
eg $\quad \frac{0.44}{0.19+0.44}, \frac{0.44}{1-0.37}$
0.698412
$P\left(A \mid B^{\prime}\right)=\frac{44}{63}$ (exact), 0.698
A1
N3
[4 marks]
6. correct substitution into the formula for area of a triangle
eg $\quad 15=\frac{1}{2} \times 8.1 \times 12.3 \times \sin C$
correct working for angle C
eg $\sin C=0.301114,17.5245 \ldots, 0.305860$
recognizing that obtuse angle needed
eg 162.475, 2.83573, $\cos C<0$
evidence of choosing the cosine rule

> (M1)
eg $\quad a^{2}=b^{2}+c^{2}-2 b c \cos (A)$
correct substitution into cosine rule to find c
(A1)
eg $\quad c^{2}=(8.1)^{2}+(12.3)^{2}-2(8.1)(12.3) \cos C$
$c=20.1720$
(A1)
$8.1+12.3+20.1720=40.5720$
perimeter $=40.6$

A1
Total [7 marks]
7. (a) valid approach to find maxima eg one correct value of x_{k}, sketch of f
any two correct consecutive values of x_{k}
eg $x_{1}=1, x_{2}=5$

$$
a=4
$$

(b) recognizing the sequence $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ is arithmetic
eg $\quad d=4$
correct expression for sum
eg $\quad \frac{n}{2}(2(1)+4(n-1))$
valid attempt to solve for n
(M1)
eg graph, $2 n^{2}-n-861=0$

$$
n=21
$$

Section B

8. (a) valid approach
(M1)
eg one correct value
-0.453620, 6.14210
$a=-0.454, b=6.14$
A1A1
N3 [3 marks]
(b) correct substitution
eg $\quad-0.454 \ln 3.57+6.14$
correct working
eg $\quad \ln y=5.56484$
261.083 (260.409 from 3 sf)
$y=261, \quad(y=260$ from 3sf)
Note: If no working shown, award N1 for 5.56484 .
If no working shown, award $\mathbf{N} 2$ for $\ln y=5.56484$.
(c) METHOD 1
valid approach for expressing $\ln y$ in terms of $\ln x$
eg $\quad \ln y=\ln \left(k x^{n}\right), \ln \left(k x^{n}\right)=a \ln x+b$
correct application of addition rule for logs
eg $\quad \ln k+\ln \left(x^{n}\right)$
correct application of exponent rule for logs
eg $\quad \ln k+n \ln x$
comparing one term with regression equation (check FT)
eg $\quad n=a, b=\ln k$
correct working for k
eg $\quad \ln k=6.14210, k=\mathrm{e}^{6.14210}$
465.030
$n=-0.454, k=465$ (464 from 3sf)
A1A1
N2N2

Question 8(c) continued

METHOD 2

valid approach
eg $\quad \mathrm{e}^{\ln y}=\mathrm{e}^{a \ln x+b}$
correct use of exponent laws for $\mathrm{e}^{a \ln x+b}$
eg $\quad \mathrm{e}^{a \ln x} \times \mathrm{e}^{b}$
correct application of exponent rule for $a \ln x$
eg $\quad \ln x^{a}$
correct equation in y
eg $y=x^{a} \times \mathrm{e}^{b}$
comparing one term with equation of model (check FT)
eg $\quad k=\mathrm{e}^{b}, n=a$
465.030
$n=-0.454, k=465$ (464 from 3sf) A1A1

METHOD 3

valid approach for expressing $\ln y$ in terms of $\ln x$ (seen anywhere)
eg $\quad \ln y=\ln \left(k x^{n}\right), \ln \left(k x^{n}\right)=a \ln x+b$
correct application of exponent rule for logs (seen anywhere)
eg $\quad \ln \left(x^{a}\right)+b$
correct working for b (seen anywhere)
eg $\quad b=\ln \left(\mathrm{e}^{b}\right)$
correct application of addition rule for logs
eg $\quad \ln \left(\mathrm{e}^{b} x^{a}\right)$
comparing one term with equation of model (check FT)
eg $\quad k=\mathrm{e}^{b}, n=a$
465.030
$n=-0.454, k=465(464$ from 3sf) A1A1

N2N2
[7 marks]

Total [13 marks]

9. (a) correct approach indicating subtraction
eg $\quad 0.79-0.095$, appropriate shading in diagram
$\mathrm{P}(289<w<310)=0.695$ (exact), 69.5%

A1 [2 marks]
(b) METHOD 1
(i) valid approach
eg $1-p, 21$
-0.806421
$z=-0.806$
A1
N2
(ii) attempt to standardize
eg $\quad \sigma=\frac{289-297}{z}, \frac{289-297}{\sigma}$
correct substitution with their z (do not accept a probability)
eg $\quad-0.806=\frac{289-297}{\sigma}, \frac{289-297}{-0.806}$
9.92037
$\sigma=9.92$
A1
N2

METHOD 2

(i) \& (ii)
correct expression for Z (seen anywhere)
eg $\frac{289-\mu}{\sigma}$
valid approach
eg $1-p, 21$
-0.806421
$z=-0.806$ (seen anywhere)
valid attempt to set up an equation with their z
(do not accept a probability)
eg $\quad-0.806=\frac{289-297}{\sigma}, \frac{289-297}{-0.806}$
9.92037
$\sigma=9.92$
A1

Question 9 continued
(c) valid approach
eg $\quad \mathrm{P}(W<w)=0.35,-0.385320$ (accept 0.385320), diagram showing values in a standard normal distribution
correct score at the 35th percentile
eg 293.177

$$
294(\mathrm{~g}) \quad \text { A1 }
$$

Note: If working shown, award (M1)(A1)AO for 293.
If no working shown, award $\boldsymbol{N} \mathbf{1}$ for 293.177, $\boldsymbol{N} \mathbf{1}$ for 293.
Exception to the FT rule: If the score is incorrect, and working shown, award A1FT for correctly finding their minimum weight (by rounding up)
(d) evidence of recognizing binomial (seen anywhere)
eg $\quad X \sim \mathrm{~B}(36, p),{ }_{n} \mathrm{C}_{a} \times p^{a} \times q^{n-a}$
correct probability (seen anywhere)
eg 0.65

EITHER

finding $\mathrm{P}(X \leq 18)$ from GDC
eg 0.045720
evidence of using complement
eg $1-\mathrm{P}(X \leq 18)$
0.954279
$\mathrm{P}(X>18)=0.954 \quad$ A1

OR

recognizing $\mathrm{P}(X>18)=\mathrm{P}(X \geq 19)$
summing terms from 19 to 36
eg $\quad \mathrm{P}(X=19)+\mathrm{P}(X=20)+\ldots+\mathrm{P}(X=36)$
0.954279
$\mathrm{P}(X>18)=0.954$

A1 [5 marks]
(e) correct calculation
$0.954^{2},\binom{2}{2} 0.954^{2}(1-0.954)^{0}$
0.910650
0.911 A1

A1 N2
[2 marks]
10. (a) $-0.394791,13$

A $(-0.395,13)$
A1A1
N2 [2 marks]
(b) (i) 13

A1
 N1

(ii) $2 \pi, 6.28$

A1
N1 [2 marks]
(c) valid approach
(M1)
eg recognizing that amplitude is p or shift is r

$$
f(x)=13 \cos (x+0.395)(\text { accept } p=13, r=0.395)
$$

A1A1
Note: Accept any value of r of the form $0.395+2 \pi k, k \in \mathbb{Z}$
(d) recognizing need for $d^{\prime}(t)$

(M1)

eg $\quad-12 \sin (t)-5 \cos (t)$
correct approach (accept any variable for t)
eg $\quad-13 \sin (t+0.395)$, sketch of $d^{\prime},(1.18,-13), t=4.32$
maximum speed $=13\left(\mathrm{~cm} \mathrm{~s}^{-1}\right)$
(A1)

A1 N2 [3 marks]
(e) recognizing that acceleration is needed
(M1)
eg $\quad a(t), d^{\prime \prime}(t)$
correct equation (accept any variable for t)
eg $\quad a(t)=-2,\left|\frac{\mathrm{~d}}{\mathrm{~d} t}\left(d^{\prime}(t)\right)\right|=2,-12 \cos (t)+5 \sin (t)=-2$
valid attempt to solve their equation
(M1)
eg sketch, 1.33
1.02154
1.02

A2
N3
[5 marks]

Markscheme

May 2018

Mathematics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find
the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) (i) valid approach
eg correct value for a or b (or for r seen in (ii))

$$
a=1.91966 \quad b=7.97717
$$

$$
a=1.92, b=7.98 \quad \text { A1A1 }
$$

(ii) 0.984674
$r=0.985$

A1 N1
[4 marks]
(b) correct substitution into their equation
eg $\quad 1.92 \times 1.95+7.98$
11.7205
11.7 (kg)

A1
N2
[2 marks]
[Total: 6 marks]
2. (a) evidence of choosing sine rule
eg $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
correct substitution
eg $\frac{\mathrm{DB}}{\sin 59^{\circ}}=\frac{11}{\sin 100^{\circ}}$
9.57429
$\mathrm{DB}=9.57(\mathrm{~cm})$
A1 N2 [3 marks]
(b) evidence of choosing cosine rule
(M1)
eg $\quad a^{2}=b^{2}+c^{2}-2 b c \cos (A), \mathrm{DC}^{2}=\mathrm{DB}^{2}+\mathrm{BC}^{2}-2 \mathrm{DB} \times \mathrm{BC} \times \cos (\mathrm{D} \hat{\mathrm{BC}})$
correct substitution into RHS
eg $\quad 9.57^{2}+6^{2}-2 \times 9.57 \times 6 \times \cos 82^{\circ}, 111.677$
10.5677
$\mathrm{DC}=10.6(\mathrm{~cm})$

A1 [3 marks]
[Total: 6 marks]
3. (a) valid approach
eg $\quad f(x)=0, \mathrm{e}^{x}=180$ or $0 \ldots$
1.14472
$x=\ln \pi$ (exact), 1.14
A1
N2
[2 marks]
(b) attempt to substitute either their limits or the function into formula involving f^{2}
(M1)
eg $\quad \int_{0}^{1.14} f^{2}, \pi \int\left(\sin \left(\mathrm{e}^{x}\right)\right)^{2} \mathrm{~d} x, 0.795135$
2.49799
volume $=2.50$
4. (a) correct substitution into infinite sum
eg $\quad 200=\frac{4}{1-r}$

$$
r=0.98 \quad \text { (exact) }
$$

A1 N2 [2 marks]
(b) correct substitution
$\frac{4\left(1-0.98^{8}\right)}{1-0.98}$
29.8473
29.8
(c) attempt to set up inequality (accept equation)
(M1)
eg $\quad \frac{4\left(1-0.98^{n}\right)}{1-0.98}>163, \frac{4\left(1-0.98^{n}\right)}{1-0.98}=163$
correct inequality for n (accept equation) or crossover values
eg $n>83.5234, n=83.5234, S_{83}=162.606$ and $S_{84}=163.354$

$$
n=84
$$

A1
5. valid approach to find one of the required terms (must have correct substitution for parameters but accept " r " or an incorrect value for r)
eg $\quad\binom{9}{r}(2 x)^{9-r}\left(\frac{k}{x}\right)^{r},\binom{9}{6}(2 x)^{6}\left(\frac{k}{x}\right)^{3},\binom{9}{0}(2 x)^{0}\left(\frac{k}{x}\right)^{9}+\binom{9}{1}(2 x)^{1}\left(\frac{k}{x}\right)^{8}+\ldots$, Pascal's triangle to 9th row

Note: Award $\mathbf{M O}$ if there is clear evidence of adding instead of multiplying.
identifying correct terms (must be clearly indicated if only seen in expansion)
(A1)(A1)
eg for x^{3} term: $r=3, r=6$, 7 th term, $\binom{9}{6},\binom{9}{3},(2 x)^{6}\left(\frac{k}{x}\right)^{3}, 5376 k^{3}$
for x^{5} term: $r=2, r=7$, 8th term, $\binom{9}{7},\binom{9}{2},(2 x)^{7}\left(\frac{k}{x}\right)^{2}, 4608 k^{2}$
correct equation (may include powers of x)
eg $\quad\binom{9}{3}(2 x)^{6}\left(\frac{k}{x}\right)^{3}=\binom{9}{2}(2 x)^{7}\left(\frac{k}{x}\right)^{2}$
valid attempt to solve their equation in terms of k only
eg sketch, $84 \times 64 k^{3}-36 \times 128 k^{2}=0,5376 k-4608=0,\binom{9}{3} 2^{6} k^{3}=\binom{9}{2} 2^{7} k^{2}$
0.857142
$k=\frac{4608}{5376}\left(=\frac{6}{7}\right)$ (exact), 0.857
6. (a) valid approach to find k
(M1)
eg 8 minutes is half a turn, $k+$ diameter, $k+111=117$
$k=6$
A1
N2 [2 marks]
(b) METHOD 1
valid approach
(M1)
eg $\quad \frac{\text { max }- \text { min }}{2}, a=$ radius
$|a|=\frac{117-6}{2}, 55.5$
(A1)
$a=-55.5 \quad$ A1 N2

METHOD 2

attempt to substitute valid point into equation for f
(M1)
eg $\quad h(0)=6, h(8)=117$
correct equation
(A1)
eg $\quad 6=61.5+a \cos \left(\frac{\pi}{8} \times 0\right), 117=61.5+a \cos \left(\frac{\pi}{8} \times 8\right), 6=61.5+a$
$a=-55.5$
A1
N2
[3 marks]
(c) valid approach
eg sketch of h and $y=30, h=30,61.5-55.5 \cos \left(\frac{\pi}{8} t\right)=30, t=2.46307, t=13.5369$
18.4630
$t=18.5$ (minutes)

A2 [3 marks]
7. (a) valid approach
eg $\quad c x+6=0,-\frac{6}{c}=3$

$$
c=-2
$$

(b) valid approach
eg $\quad \lim _{x \rightarrow \infty} f(x), y=\frac{8}{c}$
$y=-4$ (must be an equation)
A1 N2
[2 marks]
(c) valid approach to analyze modulus function
(M1)
eg sketch, horizontal asymptote at $y=4, y=0$
$k=4, k=0$
A2
[3 marks]

Section B

8. (a) (i) valid approach
eg $(7,4,9)-(3,2,5), A-B$

$$
\overrightarrow{\mathrm{PQ}}=4 \boldsymbol{i}+2 \boldsymbol{j}+4 \boldsymbol{k}\left(=\left(\begin{array}{l}
4 \\
2 \\
4
\end{array}\right)\right)
$$

A1 N2
(ii) correct substitution into magnitude formula

$$
e g \quad \sqrt{4^{2}+2^{2}+4^{2}}
$$

$$
|\overrightarrow{P Q}|=6
$$

A1
N2
[4 marks]
(A1)(A1)
scalar product $=(4 \times 6)+(2 \times(-1))+(4 \times 3)(=34)$
magnitude of $\mathrm{PR}=\sqrt{36+1+9}(=6.782)$
correct substitution of their values to find cos QPRR
eg $\quad \cos \mathrm{Q} \hat{\mathrm{P}}=\frac{24-2+12}{(6) \times(\sqrt{46})}, 0.8355$
0.581746
$\mathrm{QPR}=0.582$ radians or $\mathrm{QPR}=33.3^{\circ}$
A1
N3
[4 marks]
(c) correct substitution
eg $\quad \frac{1}{2} \times|\overrightarrow{\mathrm{PQ}}| \times|\overrightarrow{\mathrm{PR}}| \times \sin P, \frac{1}{2} \times 6 \times \sqrt{46} \times \sin 0.582$
11.1803
area is 11.2 (sq. units)
(d) recognizing shortest distance is perpendicular distance from R to line through P and Q
(M1)
eg sketch, height of triangle with base [PQ], $\frac{1}{2} \times 6 \times h, \sin 33.3^{\circ}=\frac{h}{\sqrt{46}}$ correct working
eg $\quad \frac{1}{2} \times 6 \times d=11.2,|\overrightarrow{\mathrm{PR}}| \times \sin P, \sqrt{46} \sin 33.3^{\circ}$
3.72677
distance $=3.73$ (units)
9. (a) initial velocity when $t=0$
eg $\quad v(0)$

$$
v=7\left(\mathrm{~ms}^{-1}\right)
$$

A1 N2 [2 marks]
(b) recognizing maximum speed when $|v|$ is greatest
eg minimum, maximum, $v^{\prime}=0$
one correct coordinate for minimum
eg 6.37896, - 24.6571
$24.7\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
A1
N2 [3 marks]
(c) recognizing $a=v^{\prime}$
eg $\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}$, correct derivative of first term
identifying when $a=0$
eg turning points of v, t-intercepts of v^{\prime}
3
(d) recognizing P changes direction when $v=0$
$t=0.863851$
-9.24689
$a=-9.25\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
(e) correct substitution of limits or function into formula
eg $\quad \int_{0}^{7}|v|, \int_{0}^{0.8638} v \mathrm{~d} t-\int_{0.8638}^{7} v \mathrm{~d} t, \int\left|7 \cos x-5 x^{\cos x}\right| \mathrm{d} x, 3.32+60.6$
63.8874
63.9 (metres)

A1 N3
[3 marks]

A2
N3
[4 marks]

(M1)

艮

A2 N3 [3 marks]
[Total: 15 Marks]
10. (a) (i) evidence of using $\sum p_{i}=1$
(M1)
eg $\quad k+0.98+0.01=1$
$k=0.01$
A1
N2
(ii) recognizing that 93 and 119 are symmetrical about μ
(M1) eg $\quad \mu$ is midpoint of 93 and 119
correct working to find μ
A1
$\frac{119+93}{2}$
$\mu=106$
AG
No
[4 marks]
(b) finding standardized value for 93 or 119
eg $\quad z=-2.32634, z=2.32634$
correct substitution using their z value
(A1)
eg $\quad \frac{93-106}{\sigma}=-2.32634, \frac{119-106}{2.32634}=\sigma$
$\sigma=5.58815$
0.024508
$\mathrm{P}(X<95)=0.0245$
(A1)

A2
N3
[5 marks]
(c) evidence of recognizing binomial

(M1)

eg ${ }_{n} C_{a} \times p^{a} \times q^{n-a}, n=10$ and $p=0.0245, \mathrm{~B}(n, p)$
valid approach
(M1)
eg $\quad \mathrm{P}(X \leq 1), \mathrm{P}(X=0)+\mathrm{P}(X=1)$
0.976285
0.976

N2
[3 marks]

Question 10 continued
(d) (i) recognizing new binomial probability
(M1)
eg $\quad \mathrm{B}(50,0.976)$
correct substitution
(A1)
eg $\mathrm{E}(X)=50(0.976285)$
48.81425
48.8 A1
(ii) valid approach
(M1)
eg $\mathrm{P}(\mathrm{X} \geq 48), 1-\mathrm{P}(\mathrm{X} \leq 47)$
0.884688
0.885

A1
[5 marks]
[Total: 17 marks]

Markscheme

November 2017

Mathematics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final $\boldsymbol{A 1}$.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have
another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \mathbf{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) evidence of choosing sine rule
eg $\quad \frac{\sin A}{a}=\frac{\sin B}{b}$
correct substitution
eg $\quad \frac{\mathrm{BC}}{\sin 50}=\frac{5}{\sin 112}$
4.13102
$B C=4.13(\mathrm{~cm})$
A1 [3 marks]
(b) correct working
eg $\quad \hat{B}=180-50-112,18^{\circ}, \mathrm{AC}=1.66642$
correct substitution into area formula
(A1)
eg $\quad \frac{1}{2} \times 5 \times 4.13 \times \sin 18,0.5(5)(1.66642) \sin 50, \frac{1}{2}(4.13)(1.66642) \sin 112$
3.19139
area $=3.19\left(\mathrm{~cm}^{2}\right)$

A1 N2
[3 marks]
2. (a) valid approach
eg $\quad f(x)=0, \pm 0.816$
0.816496
$x=\sqrt{\frac{2}{3}}$ (exact), 0.816
A1
(b) (2.29099, 2.78124)

A (2.29, 2.78)

A1A1
N2 [2 marks]
(c)

A1A1A1

Notes: Award A1 for correct domain and endpoints at $x=0$ and $x=7$ in circles,
A1 for maximum in square,
A1 for approximately correct shape that passes through their x-intercept in circle and has changed from concave down to concave up between 2.29 and 7.
3. (a) correct substitution
eg $\sqrt{4^{2}+1^{2}+2^{2}}$
4.58257
$|\overrightarrow{\mathrm{AB}}|=\sqrt{21}$ (exact), 4.58
A1
(b) finding scalar product and $|\overrightarrow{A C}|$

(A1)(A1)

scalar product $=(4 \times 3)+(1 \times 0)+(2 \times 0)(=12)$
$|\overrightarrow{\mathrm{AC}}|=\sqrt{3^{2}+0+0} \quad(=3)$
substituting their values into cosine formula
eg $\quad \cos B \hat{A} C=\frac{4 \times 3+0+0}{\sqrt{3^{2}} \times \sqrt{21}}, \frac{4}{\sqrt{21}}, \cos \theta=0.873$
0.509739 (29.2059 ${ }^{\circ}$)
$B \hat{A} C=0.510 \quad\left(29.2^{\circ}\right)$
4. (a) valid approach
eg total probability = 1
correct equation
eg $\quad 0.475+2 k^{2}+\frac{k}{10}+6 k^{2}=1,8 k^{2}+0.1 k-0.525=0$
$k=0.25$
(b) $\quad \mathrm{P}(X=2)=0.025$

A1
N1
[1 mark]
(c) valid approach for finding $\mathrm{P}(X>0)$
eg $\quad 1-0.475,2\left(0.25^{2}\right)+0.025+6\left(0.25^{2}\right), 1-\mathrm{P}(X=0), 2 k^{2}+\frac{k}{10}+6 k^{2}$
correct substitution into formula for conditional probability
eg $\frac{0.025}{1-0.475}, \frac{0.025}{0.525}$
0.0476190
$\mathrm{P}(X=2 \mid X>0)=\frac{1}{21}$ (exact), 0.0476
A1
5. (a) valid approach
eg $\quad f(p)=4$, intersection with $y=4, \pm 2.32$
2.32143
$p=\sqrt{\mathrm{e}^{2}-2}$ (exact), 2.32
A1
(b) attempt to substitute either their limits or the function into volume formula (must involve f^{2}, accept reversed limits and absence of π and/or $\mathrm{d} x$, but do not accept any other errors)
eg $\quad \int_{-2.32}^{2.32} f^{2}, \pi \int\left(6-\ln \left(x^{2}+2\right)\right)^{2} \mathrm{~d} x, 105.675$
331.989
volume $=332$
6. valid approach for expansion (must have correct substitution for parameters, but accept an incorrect value for r)
eg $\binom{11}{r}(2)^{11-r} a x^{r},\binom{11}{3}(2)^{8}(a x)^{3}, 2^{11}+\binom{11}{1}(2)^{10}(a x)^{1}+\binom{11}{2}(2)^{9}(a x)^{2}+\ldots$
recognizing need to find term in x^{2} in binomial expansion
eg $\quad r=2,(a x)^{2}$
correct term or coefficient in binomial expansion (may be seen in equation)
eg $\quad\binom{11}{2}(a x)^{2}(2)^{9}, 55\left(a^{2} x^{2}\right)(512), 28160 a^{2}$
setting up equation in x^{5} with their coefficient/term (do not accept other powers of x) (M1)
eg $\quad a x^{3}\binom{11}{2}(a x)^{2}(2)^{9}=11880 x^{5}$
correct equation
eg $\quad 28160 a^{3}=11880$
$a=\frac{3}{4}$
7. finding the z-value for 0.17
eg $z=-0.95416$
setting up equation to find σ,
eg $\quad z=\frac{168-180}{\sigma},-0.954=\frac{-12}{\sigma}$
$\sigma=12.5765$
EITHER (Properties of the Normal curve)
correct value (seen anywhere)
eg $\quad \mathrm{P}(X<192)=0.83, \mathrm{P}(X>192)=0.17$
correct working
(A1)
eg $\quad \mathrm{P}(X<192-h)=0.83-0.8, \mathrm{P}(X<192-h)=1-0.8-0.17$, $\mathrm{P}(X>192-h)=0.8+0.17$
correct equation in h
eg $\quad \frac{(192-h)-180}{12.576}=-1.88079,192-h=156.346$
35.6536
$h=35.7$
A1
OR (Trial and error using different values of \boldsymbol{h})
two correct probabilities whose 2 sf will round up and down, respectively, to 0.8
eg $\mathrm{P}(192-35.6<X<192)=0.799706, \mathrm{P}(157<X<192)=0.796284$,
$\mathrm{P}(192-36<X<192)=0.801824$
$h=35.7$

Section B

8. (a) evidence of setup
eg correct value for a or b

$$
\begin{aligned}
& a=6.96103, b=-454.805 \\
& a=6.96, b=-455 \text { (accept } 6.96 x-455 \text {) }
\end{aligned}
$$

(b) substituting $N=270$ into their equation
eg 6.96(270)-455
1424.67
$P=1420$ (g)
(c) 40 (hives)
(d) (i) valid approach

A1 N1 [1 mark]
(M1)
(A1)
A1 N3
(M1)

A1 N2 [5 marks]
(e) recognize binomial distribution (seen anywhere)
eg $\quad X \sim \mathrm{~B}(n, p),\binom{n}{r} p^{r}(1-p)^{n-r}$
correct values
eg $\quad n=40($ check $\boldsymbol{F T})$ and $p=0.75$ and $r=30,\binom{40}{30} 0.75^{30}(1-0.75)^{10}$
0.144364
0.144

A1 N2 [3 marks]
9. (a) $t=\frac{2}{3}$ (exact), $0.667, t=4$

A1A1
[2 marks]
(b) recognizing that v is decreasing when a is negative eg $\quad a<0,3 t^{2}-14 t+8 \leq 0$, sketch of a
correct interval
A1
N2
eg $\frac{2}{3}<t<4$

(M1)

[2 marks]
(c) valid approach (do not accept a definite integral)

(M1)

eg $\quad v=\int a$
correct integration (accept missing c)
(A1)(A1)(A1)
$t^{3}-7 t^{2}+8 t+c$
substituting $t=0, v=3$ (must have c)
(M1)
eg $3=0^{3}-7\left(0^{2}\right)+8(0)+c, c=3$

$$
v=t^{3}-7 t^{2}+8 t+3
$$

A1
(d) recognizing that v increases outside the interval found in part (b)

(M1)

eg $\quad 0<t<\frac{2}{3}, 4<t<5$, diagram
one correct substitution into distance formula
eg $\quad \int_{0}^{\frac{2}{3}}|v|, \int_{4}^{5}|v|, \int_{\frac{2}{3}}^{4}|v|, \int_{0}^{5}|v|$
one correct pair
(A1)
eg 3.13580 and 11.0833, 20.9906 and 35.2097
14.2191
$d=14.2$ (m)
A1
N2
[4 marks]
Total [14 marks]
10. (a) substituting $x=2 \pi$

> eg $\quad 2 \pi+a \sin \left(2 \pi-\frac{\pi}{2}\right)+a$
> $2 \pi+a \sin \left(\frac{3 \pi}{2}\right)+a$
$2 \pi-a+a$
$f(2 \pi)=2 \pi$
No [3 marks]
(b) (i) substituting the value of k

(M1)

$$
\mathrm{P}_{0}(0,0), \mathrm{P}_{1}(2 \pi, 2 \pi)
$$

A1A1
(ii) attempt to find the gradient

$$
\text { eg } \quad \frac{2 \pi-0}{2 \pi-0}, m=1
$$

correct working

$$
\text { eg } \quad \frac{y-2 \pi}{x-2 \pi}=1, b=0, y-0=1(x-0)
$$

$$
y=x
$$

(c) subtracting x-coordinates of P_{k+1} and P_{k} (in any order)
eg $2(k+1) \pi-2 k \pi, 2 k \pi-2 k \pi-2 \pi$
correct working (must be in correct order)
eg $\quad 2 k \pi+2 \pi-2 k \pi,|2 k \pi-2(k+1) \pi|$
distance is 2π

Question 10 continued

(d) METHOD 1

recognizing the toothed-edge as the hypotenuse
eg $300^{2}=x^{2}+y^{2}$, sketch
correct working (using their equation of L)
eg $\quad 300^{2}=x^{2}+x^{2}$
$x=\frac{300}{\sqrt{2}}$ (exact), 212.132
dividing their value of x by 2π (do not accept $\frac{300}{2 \pi}$)
(M1)
eg $\frac{212.132}{2 \pi}$
33.7618

33 (teeth)

METHOD 2

vertical distance of a tooth is 2π (may be seen anywhere)
attempt to find the hypotenuse for one tooth
eg $\quad x^{2}=(2 \pi)^{2}+(2 \pi)^{2}$
$x=\sqrt{8 \pi^{2}}$ (exact), 8.88576
dividing 300 by their value of x
eg
33.7618

33 (teeth)

A1 [6 marks]

Total [17 marks]

Markscheme

May 2017

Mathematics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\mathbf{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} \mathbf{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

11 Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have
another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \mathbf{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer.
Units will appear in brackets at the end.

Section A

1. (a) (i) $\operatorname{mode}=10$

A1
N1
(ii) valid approach
(M1)
eg $\quad x_{\text {max }}-x_{\text {min }}$, interval 2 to 11
range $=9$
A1 N2 [3 marks]
(b) (i) 7.14666
mean $=7.15$
A2
N2
(ii) recognizing that variance is (sd) ${ }^{2}$
eg $\quad \mathrm{var}=\sigma^{2}, 2.90605^{2}, 2.92562^{2}$

$$
\begin{aligned}
& \sigma^{2}=8.44515 \\
& \sigma^{2}=8.45
\end{aligned}
$$

A1 N2
[4 marks]
2. finding scalar product and magnitudes
scalar product $=(-10 \times 3)+(2 \times-4)+(1 \times 0) \quad(=-38)$
magnitudes $=\sqrt{10^{2}+2^{2}+1^{2}}, \sqrt{3^{2}+(-4)^{2}+(0)^{2}} \quad(\sqrt{105}, \sqrt{25})$
substituting their values into formula
eg $\quad \cos \theta=\frac{-30-8+0}{\left(\sqrt{10^{2}+2^{2}+1^{2}}\right) \times\left(\sqrt{3^{2}+(-4)^{2}+(0)^{2}}\right)}$
2.40637; 137.875°
$\theta=2.4 ; 137.9^{\circ}$

A2
[6 marks]
3. (a) valid approach
eg $\quad f(0)$,

y-intercept is 2.9
A1 N2 [2 marks]
(b) valid approach involving equation or inequality
(M1)
eg $\quad 5 x-10=0,2, x \neq 2$
$x=2$ (must be an equation)
A1
N2 [2 marks]
(c) 7.01710
min value $=7.02 \quad$ A2 N2
Note: If candidate gives the minimum point as their final answer, award $\boldsymbol{A 1}$ for (3, 7.02).
4. (a) evidence of binomial distribution (may be seen in part (b))
eg $n p, 150 \times 0.08$

$$
k=12
$$

(b) (i) $\quad \mathrm{P}(X=12)=\binom{150}{12}(0.08)^{12}(0.92)^{138}$
0.119231
probability $=0.119 \quad$ A1
N2
(ii) recognition that $X \leq 11$
(M1)
0.456800
$\mathrm{P}(X<12)=0.457$

A1 [4 marks]
5. attempt to find the central angle or half central angle
$e g$
cosine rule, right triangle
correct working
eg $\quad \cos \theta=\frac{8^{2}+8^{2}-12^{2}}{2 \cdot 8 \cdot 8}, \sin ^{-1}\left(\frac{6}{8}\right), 0.722734,41.4096^{\circ}, \frac{\pi}{2}-\sin ^{-1}\left(\frac{6}{8}\right)$
correct angle AÔB (seen anywhere)
eg $\quad 1.69612,97.1807^{\circ}, 2 \times \sin ^{-1}\left(\frac{6}{8}\right)$
correct sector area
eg $\frac{1}{2}(8)(8)(1.70), \frac{97.1807}{360}(64 \pi), 54.2759$
area of triangle (seen anywhere)
eg $\frac{1}{2}(8)(8) \sin 1.70, \frac{1}{2}(8)(12) \sin 0.722, \frac{1}{2} \times \sqrt{64-36} \times 12,31.7490$
appropriate approach (seen anywhere)
(M1)
eg $\quad A_{\text {triangle }}-A_{\text {sector }}$, their sector-their triangle
22.5269
area of shaded region $=22.5\left(\mathrm{~cm}^{2}\right)$
Note: Award M0A0A0A0A1 then M1A0 (if appropriate) for correct triangle area without any attempt to find an angle in triangle OAB.

6. METHOD 1

derivative of $f(x)$
$7\left(x^{2}+3\right)^{6}(2 x)$
recognizing need to find x^{4} term in $\left(x^{2}+3\right)^{6}$ (seen anywhere)
eg $\quad 14 x\left(\right.$ term in $\left.x^{4}\right)$
valid approach to find the terms in $\left(x^{2}+3\right)^{6}$
eg $\binom{6}{r}\left(x^{2}\right)^{6-r}(3)^{r},\left(x^{2}\right)^{6}(3)^{0}+\left(x^{2}\right)^{5}(3)^{1}+\ldots$, Pascal's triangle to 6th row
identifying correct term (may be indicated in expansion)
eg $\quad 5$ th term, $r=2,\binom{6}{4},\left(x^{2}\right)^{2}(3)^{4}$
correct working (may be seen in expansion)
eg $\quad\binom{6}{4}\left(x^{2}\right)^{2}(3)^{4}, 15 \times 3^{4}, 14 x \times 15 \times 81\left(x^{2}\right)^{2}$

$17010 x^{5}$

METHOD 2

recognition of need to find x^{6} in $\left(x^{2}+3\right)^{7}$ (seen anywhere)
valid approach to find the terms in $\left(x^{2}+3\right)^{7}$
eg $\binom{7}{r}\left(x^{2}\right)^{7-r}(3)^{r},\left(x^{2}\right)^{7}(3)^{0}+\left(x^{2}\right)^{6}(3)^{1}+\ldots$, Pascal's triangle to 7 th row
identifying correct term (may be indicated in expansion)
eg 6th term, $r=3,\binom{7}{3},\left(x^{2}\right)^{3}(3)^{4}$
correct working (may be seen in expansion)
eg $\quad\binom{7}{4}\left(x^{2}\right)^{3}(3)^{4}, 35 \times 3^{4}$
correct term
$2835 x^{6}$
differentiating their term in x^{6}
eg $\quad\left(2835 x^{6}\right)^{\prime},(6)\left(2835 x^{5}\right)$
$17010 x^{5}$
7.
(a) (i) $t=2$

A1
N1
(ii) substitution of limits or function into formula or correct sum
(A1)
eg $\quad \int_{0}^{8}|v| \mathrm{d} t, \int\left|v_{\mathrm{Q}}\right| \mathrm{d} t, \int_{0}^{2} v \mathrm{~d} t-\int_{2}^{4} v \mathrm{~d} t+\int_{4}^{6} v \mathrm{~d} t-\int_{6}^{8} v \mathrm{~d} t$

$$
\begin{aligned}
& 9.64782 \\
& \text { distance }=9.65 \text { (metres) }
\end{aligned}
$$

A1 [3 marks]
(b) correct approach
eg $\quad s=\int \sqrt{t}, \int_{0}^{k} \sqrt{t} \mathrm{~d} t, \int_{0}^{k}\left|v_{Q}\right| \mathrm{d} t$
correct integration
eg $\int \sqrt{t}=\frac{2}{3} t^{\frac{3}{2}}+c,\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{k}, \frac{2}{3} k^{\frac{3}{2}}$
equating their expression to the distance travelled by their P
eg $\frac{2}{3} k^{\frac{3}{2}}=9.65, \int_{0}^{k} \sqrt{t} \mathrm{~d} t=9.65$
5.93855
5.94 (seconds)

A1
N3
[4 marks]

Section B

8. (a) (i) attempt to find the difference of x-values of A and B
eg 6.25-12.5
6.25 (hours), (6 hours 15 minutes) A1
(ii) attempt to find the difference of y-values of A and B
eg 1.5-0.6
0.9 (m)
(b) (i) valid approach
(M1)
eg $\frac{\max -\mathrm{min}}{2}, 0.9 \div 2$
$p=0.45$
A1
N2
(ii) METHOD 1
period $=12.5$ (seen anywhere)
valid approach (seen anywhere)
eg \quad period $=\frac{2 \pi}{b}, q=\frac{2 \pi}{\text { period }}, \frac{2 \pi}{12.5}$
0.502654
$q=\frac{4 \pi}{25}, 0.503\left(\right.$ or $\left.-\frac{4 \pi}{25},-0.503\right)$
METHOD 2
attempt to use a coordinate to make an equation
e.g. $p \cos (6.25 q)+r=0.6, p \cos (12.5 q)+r=1.5$
correct substitution
eg $0.45 \cos (6.25 q)+1.05=0.6,0.45 \cos (12.5 q)+1.05=1.5$
0.502654
$q=\frac{4 \pi}{25}, 0.503\left(\right.$ or $\left.-\frac{4 \pi}{25},-0.503\right)$
A1
N2
(iii) valid method to find r
eg $\frac{\mathrm{max}+\mathrm{min}}{2}, 0.6+0.45$
$r=1.05$
A1

Question 8 continued

(c) METHOD 1

attempt to find start or end t-values for 12 December
eg $3+24, t=27, t=51$
finds t-value for second max
$t=50$
23:00 (or 11 pm)
A1

METHOD 2

valid approach to list either the times of high tides after 21:00 or the t-values of high tides after 21:00, showing at least two times
eg $\quad 21: 00+12.5,21: 00+25,12.5+12.5,25+12.5$
correct time of first high tide on 12 December
eg 10:30 (or 10:30 am)
time of second high tide $=23: 00$
A1

METHOD 3

attempt to set their h equal to 1.5
eg $\quad h(t)=1.5,0.45 \cos \left(\frac{4 \pi}{25} t\right)+1.05=1.5$
correct working to find second max
eg $\quad 0.503 t=8 \pi, t=50$
23:00 (or 11 pm)
9. (a) valid approach
eg $\quad \mathrm{P}(X<\mu)=0.5,0.5-0.3$

$$
\mathrm{P}(X<9)=0.2 \text { (exact) }
$$

(b) $\quad Z=-0.841621 \quad$ (may be seen in equation)
valid attempt to set up an equation with their z
eg $\quad-0.842=\frac{\mu-X}{\sigma},-0.842=\frac{X-\mu}{\sigma}, z=\frac{9-\mu}{2.1}$
10.7674
$\mu=10.8$
A1 N3
[3 marks]
(c) $\mathrm{P}(X>9)=0.8$ (seen anywhere)
valid approach
(M1)
eg $\quad \mathrm{P}(A) \times \mathrm{P}(B)$
correct equation
(A1)

A1

A1
N3
[5 marks]
(d) finding $\mathrm{P}(9<Y<13)=0.373450$ (seen anywhere)
(A2)
recognizing conditional probability
(M1)
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}(Y<13 \mid Y>9)$
correct working
eg $\frac{0.373}{0.5}$
0.746901
0.747

A1
N3
[5 marks]
Total [15 marks]
10. (a) (i) $q=2$

A1
N1
(ii) $h=0 \quad$ A1

A1 N1
(iii) $k=3 \quad \boldsymbol{A 1}$

Note: Accept $q=1, h=0$, and $k=3-\ln (2), 2.31$ as candidate may have rewritten $g(x)$ as equal to $3+\ln (x)-\ln (2)$.
(b) (i) 2.72409
2.72

A2
N2
(ii) recognizing area between $y=x$ and h equals 2.72
(M1)
eg

recognizing graphs of h and h^{-1} are reflections of each other in $y=x$
eg area between $y=x$ and h equals between $y=x$ and h^{-1}
$2 \times 2.72, \int_{0.111}^{3.31}\left(x-h^{-1}(x)\right) \mathrm{d} x=2.72$
5.44819
5.45

A1
continued...

Question 10 continued
(c) valid attempt to find d
eg difference in y-coordinates, $d=h(x)-x$
correct expression for d
eg $\quad\left(\ln \frac{1}{2} x+3\right)(\cos 0.1 x)-x$
valid approach to find when d is a maximum
(M1)
eg max on sketch of d, attempt to solve $d^{\prime}=0$

$$
0.973679
$$

$x=0.974 \quad$ A2
substituting their x value into $h(x)$
(M1)
2.26938
$y=2.27$

A1 N2 [7 marks]

Markscheme

May 2017

Mathematics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

11 Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have
another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) correct substitution into arc length formula
eg (40)(1.9)
arc length $=76(\mathrm{~cm})$
A1 N2 [2 marks]
(b) valid approach
(M1)
eg arc $+2 r, 76+40+40$
perimeter $=156(\mathrm{~cm})$
A1 N2 [2 marks]
(c) correct substitution into area formula
(A1)
eg $\frac{1}{2}(1.9)(40)^{2}$
area $=1520\left(\mathrm{~cm}^{2}\right)$

A1 [2 marks]
[Total 6 marks]
2. (a) (i) evidence of set up
eg correct value for a or b

$$
0.667315,22.2117
$$

$$
a=0.667, b=22.2
$$

A1A1
N3
(ii) 0.922958
$r=0.923$
A1 [4 marks]
(b) valid approach
eg $\quad 0.667(15)+22.2, N(15)$
32.2214

32 (visitors) (must be an integer)
3. (a) correct interval

A2
eg $0 \leq y \leq 6,[0,6]$, from 0 to 6
(b)

Note: Award $\boldsymbol{M 1}$ for a horizontal shift of the whole shape, 5 units to the left or right and A1 for the correct graph.
(c) correct interval
eg $\quad-1 \leq x \leq 3,[-1,3]$, from -1 to 3
4. (a) valid approach
(M1)
eg $\frac{\max -\min }{2}$, sketch of graph, $9.7=p \cos (0)+7.5$

$$
p=2.2
$$

(b) valid approach
eg $\quad B=\frac{2 \pi}{\text { period }}$, period is $14, \frac{360}{14}, 5.3=2.2 \cos 7 q+7.5$
0.448798
$q=\frac{2 \pi}{14}\left(\frac{\pi}{7}\right), 0.449$ (do not accept degrees)
A1 N2
[2 marks]
(c) valid approach
eg $\quad d(10), 2.2 \cos \left(\frac{20 \pi}{14}\right)+7.5$
7.01045
7.01 (m)

A1
N2 [2 marks]
5. attempt to find r
eg $\frac{576}{768}, \frac{768}{576}, 0.75$
correct expression for u_{n}
eg $\quad 768(0.75)^{n-1}$

EITHER (solving inequality)

valid approach (accept equation)
eg $\quad u_{n}<7$
valid approach to find n
eg $\quad 768(0.75)^{n-1}=7, n-1>\log _{0.75}\left(\frac{7}{768}\right)$, sketch
correct value
eg $n=17.3301$
$n=18$ (must be an integer)
A1
N2
OR (table of values)
valid approach
(M1)
eg $\quad u_{n}<7$, one correct crossover value
both crossover values, $u_{17}=7.69735$ and $u_{18}=5.77301$
A2
$n=18$ (must be an integer)

OR (sketch of functions)
valid approach
eg sketch of appropriate functions
valid approach
eg finding intersections or roots (depending on function sketched)
correct value
eg $\quad n=17.3301$
$n=18$ (must be an integer)
6. (a) attempt to form composite in either order
eg $\quad f\left(x^{2}-2\right),\left(x^{2}-1\right)^{2}-2$

$$
\left(x^{4}-4 x^{2}+4\right)-1 \quad \text { A1 }
$$

$$
(f \circ g)(x)=x^{4}-4 x^{2}+3 \quad \quad A G
$$

(b)

Note: Award A1 for approximately correct shape which changes from concave down to concave up. Only if this $\boldsymbol{A 1}$ is awarded, award the following:
A1 for left hand endpoint in circle and right hand endpoint in oval,
A1 for minimum in oval.
(c) evidence of identifying max/min as relevant points
eg $\quad x=0,1.41421, y=-1,3$
correct interval (inclusion/exclusion of endpoints must be correct)
A2
eg $\quad-1<k \leq 3,]-1,3],(-1,3]$

7. METHOD 1 (displacement)

recognizing $s=\int v \mathrm{~d} t$
consideration of displacement at $t=2$ and $t=5$ (seen anywhere)
eg $\quad \int_{0}^{2} v$ and $\int_{0}^{5} v$
Note: Must have both for any further marks.

```
correct displacement at \(t=2\) and \(t=5\) (seen anywhere)
-2.28318 (accept 2.28318), 1.55513
```

valid reasoning comparing correct displacements
eg $\quad|-2.28|>|1.56|$, more left than right
2.28 (m)

A1
Note: Do not award the final A1 without the R1.

METHOD 2 (distance travelled)

recognizing distance $=\int|v| \mathrm{d} t$
consideration of distance travelled from $t=0$ to 2 and $t=2$ to 5 (seen anywhere)
eg $\quad \int_{0}^{2} v$ and $\int_{2}^{5} v$
Note: Must have both for any further marks.
correct distances travelled (seen anywhere)
2.28318 , (accept -2.28318), 3.83832
valid reasoning comparing correct distance values
eg $3.84-2.28<2.28,3.84<2 \times 2.28$
2.28 (m)
A1

Note: Do not award the final $\mathbf{A 1}$ without the R1.

Section B

8. (a) evidence of valid approach
(M1)
eg $\quad f(x)=0, y=0$
2.73205
$p=2.73$
A1
N2 [2 marks]
(b) (i) $1.87938,8.11721$
(1.88, 8.12)
(ii) rate of change is 0 (do not accept decimals)
(c) (i) METHOD 1 (using GDC)
valid approach
M1
eg $\quad f^{\prime \prime}=0, \mathrm{max} / \mathrm{min}$ on $f^{\prime}, x=-1$
sketch of either f^{\prime} or $f^{\prime \prime}$, with max/min or root (respectively)
$x=1$
A1
(M1)
eg $\quad f(1)$
$y=4.5$
A1
METHOD 2 (analytical)
$f^{\prime \prime}=-6 x^{2}+6$
A1
setting $f^{\prime \prime}=0$
$x=1$
substituting their x value into f
(M1)
eg $\quad f(1)$
$y=4.5$
A1

(M1)

A1

Question 8 continued
(ii) recognizing rate of change is f^{\prime}
eg $\quad y^{\prime}, f^{\prime}(1)$
rate of change is 6
A1
(d) attempt to substitute either limits or the function into formula
involving f^{2} (accept absence of π and/or $\mathrm{d} x$)
eg $\quad \pi \int\left(-0.5 x^{4}+3 x^{2}+2 x\right)^{2} \mathrm{~d} x, \int_{1}^{1.88} f^{2}$
128.890
volume $=129 \quad$ A2 $\begin{array}{r}\text { N3 } \\ \text { [3 marks] }\end{array}$
9. (a) valid method
eg $180+55,360-90-35$
235° (accept S55W, W35S)
A1
N2
[2 marks]
(b) valid approach to find AÊC (may be seen in (a))
eg $\quad \mathrm{AEC}=180-55-\mathrm{AC} E, 134=\mathrm{E}+55$
correct working to find AECC (may be seen in (a))
eg $\quad 180-55-46,134-55, \mathrm{AEC}=79^{\circ}$
evidence of choosing sine rule (seen anywhere)
eg $\quad \frac{a}{\sin A}=\frac{b}{\sin B}$
correct substitution into sine rule
eg $\frac{\mathrm{CE}}{\sin 55^{\circ}}=\frac{175}{\sin \mathrm{AEC}}$
146.034
$C E=146(\mathrm{~km})$

A1 N2

 [5 marks](c) evidence of choosing cosine rule
eg $\mathrm{DE}^{2}=\mathrm{DC}^{2}+\mathrm{CE}^{2}-2 \times \mathrm{DC} \times \mathrm{CE} \times \cos \theta$
correct substitution into right-hand side
(A1)
eg $\quad 60^{2}+146.034^{2}-2 \times 60 \times 146.034 \cos 134$
192.612

DE = 193 (km)
A1
N2
[3 marks]
(d) valid approach for locating B

(M1)

eg $\quad \mathrm{BE}$ is perpendicular to ship's path, angle $\mathrm{B}=90$
correct working for BE
eg $\sin 46^{\circ}=\frac{\mathrm{BE}}{146.034}, \mathrm{BE}=146.034 \sin 46^{\circ}, 105.048$
valid approach for expressing time
eg $t=\frac{d}{s}, t=\frac{d}{r}, t=\frac{192.612}{50}$
correct working equating time
eg $\quad \frac{146.034 \sin 46^{\circ}}{r}=\frac{192.612}{50}, \frac{s}{105.048}=\frac{50}{192.612}$
27.2694
27.3 (km per hour)
10. (a) (i) correct substitution into $\mathrm{E}(X)$ formula
eg $\quad 0(p)+1(0.5)+2(0.3)+3(q)=1.2$

$$
q=\frac{1}{30}, 0.0333
$$

N2
(ii) evidence of summing probabilities to 1
(M1)
eg $\quad p+0.5+0.3+q=1$

$$
p=\frac{1}{6}, 0.167
$$

(b) (i) $\mathrm{P}(3$ blue $)=\frac{1}{30}, 0.0333$
A1
(ii) valid reasoning
eg $\quad \mathrm{P}(3$ white $)=\mathrm{P}(0$ blue $)$

$$
P(3 \text { white })=\frac{1}{6}
$$

$$
A G
$$

(iii) valid method

(M1)

eg $\quad \mathrm{P}(3$ white $)=\frac{w}{10} \times \frac{w-1}{9} \times \frac{w-2}{8}, \frac{{ }_{w} C_{3}}{{ }_{10} C_{3}}$
correct equation
eg $\frac{w}{10} \times \frac{w-1}{9} \times \frac{w-2}{8}=\frac{1}{6}, \frac{w C_{3}}{{ }_{10} C_{3}}=0.167$

$$
w=6
$$

A1

(c) valid approach

(M1)

eg

$$
\mathrm{B}(n, p),\binom{n}{r} p^{r} q^{n-r},(0.167)^{2}(0.833)^{7},\binom{9}{2}
$$

0.279081
0.279

A1 N2 [2 marks]

Question 10 continued
(d) recognizing one prize in first seven attempts
eg $\binom{7}{1},\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{6}$
correct working
eg $\quad\binom{7}{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{6}, 0.390714$
correct approach
eg $\binom{7}{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{6} \times \frac{1}{6}$
0.065119
0.0651

Markscheme

November 2016

Mathematics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award MO followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

3

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award No.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks
Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

$9 \quad$ Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have
another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) attempt to substitute $x=8$
(M1)

A1 N2
[2 marks]
(b) attempt to form composition (in any order)
eg $\quad f(x-5), g(f(x)),\left(x^{2}+2 x+1\right)-5$
$(g \circ f)(x)=x^{2}+2 x-4$
A1 N2 [2 marks]
(c) valid approach
(M1)
2. (a) $\mathrm{A}(2,-3.6)$

A1A1
N2 [2 marks]
(b) (i) (ii)

Notes: (i) Award A1 for correct cubic shape with correct curvature.
Only if this A1 is awarded, award the following:
A1 for passing through their point A and the origin,
A1 for endpoints,
A1 for maximum.
(ii) Award A1 for horizontal line through their A.
3. (a) $\theta=\frac{2 \pi}{5}$

A1
N1
(b) correct expression for area
eg $\quad A=\frac{1}{2} r^{2}\left(\frac{2 \pi}{5}\right), \frac{\pi r^{2}}{5}$
evidence of equating their expression to 20π
eg $\frac{1}{2} r^{2}\left(\frac{2 \pi}{5}\right)=20 \pi, r^{2}=100, r= \pm 10$
$r=10$
A1 N2
[3 marks]
(c) METHOD 1
evidence of choosing cosine rule
(M1)
eg $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$
correct substitution of their r and θ into RHS
eg $10^{2}+10^{2}-2 \times 10 \times 10 \cos \left(\frac{2 \pi}{5}\right)$
11.7557
$\mathrm{AB}=11.8(\mathrm{~mm})$
A1

METHOD 2

evidence of choosing sine rule
eg $\quad \frac{\sin A}{a}=\frac{\sin B}{b}$
correct substitution of their r and θ
eg $\frac{\sin \frac{2 \pi}{5}}{\mathrm{AB}}=\frac{\sin \left(\frac{1}{2}\left(\pi-\frac{2 \pi}{5}\right)\right)}{10}$
11.7557

$$
\mathrm{AB}=11.8 \quad(\mathrm{~mm})
$$

A1 N2
[3 marks]
4. (a) valid attempt to find the intersection
(M1)
eg $\quad f=g$, sketch, one correct answer
$p=0.357402, q=2.15329$
$p=0.357, q=2.15$
A1A1
(b) attempt to set up an integral involving subtraction (in any order)
eg $\quad \int_{p}^{q}[f(x)-g(x)] \mathrm{d} x, \int_{p}^{q} f(x) \mathrm{d} x-\int_{p}^{q} g(x) \mathrm{d} x$
0.537667
area $=0.538$
A2
N3 [3 marks]
5. (a) valid approach
eg $z=-1.61643$,
2.48863
$w=2.49(\mathrm{~kg})$
A2
N3
[3 marks]
(b) correct value or expression (seen anywhere)
eg $\quad 0.053-\mathrm{P}(X \leq 2.15), 0.039465$
(A1)
evidence of conditional probability
(M1)
eg $\quad \frac{\mathrm{P}(2.15 \leq X \leq w)}{\mathrm{P}(X \leq w)}, \frac{0.039465}{0.053}$
0.744631
0.745

A1 N2
[3 marks]
6. (a) attempt to substitute correct limits or the function into the formula involving
y^{2}
(M1)
eg $\quad \pi \int_{-0.5}^{0.5} y^{2} \mathrm{~d} x, \pi \int\left(-0.8 x^{2}+0.5\right)^{2} \mathrm{~d} x$
0.601091
volume $=0.601\left(\mathrm{~m}^{3}\right)$
A2
(b) attempt to equate half their volume to V
eg $\quad 0.30055=0.8\left(1-\mathrm{e}^{-0.1 t}\right)$, graph
4.71104
4.71 (minutes)

A2
N3
[3 marks]
[Total 6 marks]
7.
(a) $\quad \mathrm{P}($ red $)=\frac{5}{15+m}$
(b) recognizing binomial distribution
eg $\quad X \sim \mathrm{~B}(n, p)$

A1
correct value for the complement of their p (seen anywhere)
eg $1-\frac{5}{15+m}, \frac{10+m}{15+m}$
correct substitution into $\operatorname{Var}(X)=n p(1-p)$
eg $\quad 4\left(\frac{5}{15+m}\right)\left(\frac{10+m}{15+m}\right), \frac{20(10+m)}{(15+m)^{2}}<0.6$
$m>12.2075$
$m=13$

Section B

8. (a) attempt to substitute into formula for mean
eg $\quad \frac{\sum x}{10}, \frac{252}{n}, \frac{252}{10}$
mean $=25.2$ (hours)
A1
N2 [2 marks]
(b) (i) mean $=30.2$ (hours)
(ii) $\sigma=5$ (hours)

A1
N1 [2 marks]
(c) (i) valid approach
(M1)
eg $95 \%, 5 \%$ of 27
correct working
(A1)
eg $\quad 0.95 \times 27,27-(5 \%$ of 27$)$
median $=25.65$ (exact), 25.7 (hours)
A1
N2
(ii) METHOD 1
variance $=(\text { standard deviation })^{2}($ seen anywhere $)$
valid attempt to find new standard deviation
eg $\quad \sigma_{\text {new }}=0.95 \times 5,4.75$
variance $=22.5625$ (exact), 22.6
A1
N2
METHOD 2
variance $=(\text { standard deviation })^{2}($ seen anywhere $)$
valid attempt to find new variance
eg $0.95^{2}, 0.9025 \times \sigma^{2}$
new variance $=22.5625$ (exact), 22.6

A1
[6 marks]

Question 8 continued
(d) (i) both correct frequencies
eg 80, 150
subtracting their frequencies in either order
eg $\quad 150-80,80-150$
70 (students) A1
N2
(ii) evidence of a valid approach
(M1)
eg 10% of $200,90 \%$
correct working
(A1)
eg $\quad 0.90 \times 200,200-20,180$ students
$k=35$
A1 [6 marks]
9. (a) valid attempt to substitute $t=0$ into the correct function
eg $-2(0)+2$

2
A1
(b) recognizing $v=0$ when P is at rest
5.21834

$$
p=5.22 \text { (seconds) }
$$

(c) (i) recognizing that $a=v^{\prime}$
eg $\quad v^{\prime}=0$, minimum on graph
1.95343
$q=1.95$
A1
(ii) valid approach to find their minimum
(M1)
eg $\quad v(q),-1.75879$, reference to min on graph
1.75879
speed $=1.76\left(\mathrm{cms}^{-1}\right)$
A1 N2
[4 marks]
(d) (i) substitution of correct $v(t)$ into distance formula,
(A1)
eg $\quad \int_{1}^{p}\left|3 \sqrt{t}+\frac{4}{t^{2}}-7\right| \mathrm{d} t,\left|\int 3 \sqrt{t}+\frac{4}{t^{2}}-7 \mathrm{~d} t\right|$,
4.45368
distance $=4.45 \quad(\mathrm{~cm})$
A1
(ii) displacement from $t=1$ to $t=p$ (seen anywhere)
eg $\quad-4.45368, \int_{1}^{p}\left(3 \sqrt{t}+\frac{4}{t^{2}}-7\right) \mathrm{d} t$
displacement from $t=0$ to $t=1$
eg $\quad \int_{0}^{1}(-2 t+2) \mathrm{d} t, 0.5 \times 1 \times 2,1$
valid approach to find displacement for $0 \leq t \leq p$
eg $\quad \int_{0}^{1}(-2 t+2) \mathrm{d} t+\int_{1}^{p}\left(3 \sqrt{t}+\frac{4}{t^{2}}-7\right) \mathrm{d} t, \int_{0}^{1}(-2 t+2) \mathrm{d} t-4.45$
-3.45368
displacement $=-3.45(\mathrm{~cm})$
10. (a) (i) valid approach
(M1)
eg $\frac{5+17}{2}$
$c=11$
A1
(ii) valid approach
eg period is 12 , per $=\frac{2 \pi}{b}, 9-3$
$b=\frac{2 \pi}{12}$
A1
$b=\frac{\pi}{6}$
AG
No
(iii) METHOD 1
valid approach
(M1)
eg $5=a \sin \left(\frac{\pi}{6} \times 3\right)+11$, substitution of points
$a=-6$
A1
METHOD 2
valid approach
(M1)
eg $\frac{17-5}{2}$, amplitude is 6
$a=-6$
A1
N2
[6 marks]
(b) (i) $k=2.5$
(ii) $\quad g(x)=-6 \sin \left(\frac{\pi}{6}(x-2.5)\right)+11$

A1 N1

A2
N2
[3 marks]
continued...

Question 10 continued
(c) (i) METHOD 1 Using g
recognizing that a point of inflexion is required
eg sketch, recognizing change in concavity
evidence of valid approach
eg $g^{\prime \prime}(x)=0$, sketch, coordinates of max/min on g^{\prime}
$w=8.5$ (exact) A1

METHOD 2 Using f

recognizing that a point of inflexion is required
eg sketch, recognizing change in concavity
evidence of valid approach involving translation
eg $x=w-k$, sketch, $6+2.5$
$w=8.5$ (exact) A1
(ii) valid approach involving the derivative of g or f (seen anywhere)
eg $\quad g^{\prime}(w),-\pi \cos \left(\frac{\pi}{6} x\right)$, max on derivative, sketch of derivative
attempt to find max value on derivative
eg $\quad-\pi \cos \left(\frac{\pi}{6}(8.5-2.5)\right), f^{\prime}(6)$, dot on max of sketch
3.14159
max rate of change $=\pi$ (exact), 3.14

A1
[6 marks]
[Total 15 marks]

Markscheme

May 2016

Mathematics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\mathbf{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final $\boldsymbol{A 1}$.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \mathbf{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \mathbf{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

11 Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 -
there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A} \boldsymbol{O}$ for the final answer.

Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value)
the exact value if applicable, the correct 3 sf answer Units will appear in brackets at the end.

Section A

1. (a)

Note: Award A1 for vertical line clearly to right of mean, A1 for shading to left of their vertical line.
[2 marks]
(b) $\mathrm{P}(X \leq 25)=0.894350$
$\mathrm{P}(X \leq 25)=0.89$ (must be 2 d.p.)
(c) $c=22.0976$
$c=22.1$
A2

Total [6 marks]
2. (a) valid approach
eg sketch
0, 1.73843
$x=0, x=1.74(\operatorname{accept}(0,0)$ and $(1.74,3.02))$
A1A1
N3
[3 marks]
(b) integrating and subtracting functions (in any order)
(M1)
eg $\quad \int g-f$
correct substitution of their limits or function (accept missing $\mathrm{d} x$)
eg $\quad \int_{0}^{1.74} g-f, \int 3 \ln (x+1)-x^{2}$
Note: Do not award $\boldsymbol{A 1}$ if there is an error in the substitution.
1.30940
1.31
3. (a) valid approach
eg $70+(180-115), 360-(110+115)$

$$
\mathrm{ABC}=135^{\circ} \quad A 1
$$

(b) choosing cosine rule
eg $\quad c^{2}=a^{2}+b^{2}-2 a b \cos C$
correct substitution into RHS
eg $\quad 5^{2}+8^{2}-2 \times 5 \times 8 \cos 135$
12.0651
12.1 (km)
(c) correct substitution (must be into sine rule)
eg $\frac{\sin \mathrm{A} \hat{C} B}{5}=\frac{\sin 135}{\mathrm{AC}}$
17.0398
$\mathrm{A} \hat{\mathrm{C}} \mathrm{B}=17.0$
[2 marks]
4. (a) valid approach to find the required term
eg $\binom{9}{r}(x)^{9-r}(2)^{r}, x^{9}+9 x^{8}(2)+\binom{9}{2} x^{7}(2)^{2}+\ldots$, Pascal's triangle to the 9 th row
identifying correct term (may be indicated in expansion)
eg $\quad 4$ th term, $r=6,\binom{9}{3},(x)^{6}(2)^{3}$
correct calculation (may be seen in expansion)
eg $\quad\binom{9}{3}(x)^{6}(2)^{3}, 84 \times 2^{3}$
$672 x^{6}$
A1
N3
[4 marks]
(b) valid approach
(M1)
eg recognizing x^{7} is found when multiplying $5 x \times 672 x^{6}$
$3360 x^{7}$
A1
5. (a) strong, negative (both required)

(b) METHOD 1

valid approach
eg $\quad \mathrm{e}^{\ln M}=\mathrm{e}^{-0.12 t+4.67}$
correct use of exponent laws for $\mathrm{e}^{-0.12 t+4.67}$
eg $\quad \mathrm{e}^{-0.12 t} \times \mathrm{e}^{4.67}$
comparing coefficients/terms
eg $\quad b^{t}=e^{-0.12 t}$
$b=\mathrm{e}^{-0.12}$ (exact), $0.887 \quad$ A1

METHOD 2

valid approach
eg $\quad \ln \left(a \times b^{t}\right)=-0.12 t+4.67$
correct use of log laws for $\ln \left(a b^{t}\right)$
eg $\quad \ln a+t \ln b$
comparing coefficients
eg $\quad-0.12=\ln b$
$b=\mathrm{e}^{-0.12}$ (exact), 0.887
6. correct equation to find r
eg $\quad u_{1} r^{3}=8 u_{1}, r^{3}=8$
$r=2$ (seen anywhere)
correct equation to find u_{1}
eg $\quad u_{1}\left(2^{10}-1\right)=2557.5, u_{1}=\frac{2557.5}{r^{10}-1}(r-1)$
$u_{1}=2.5$
$u_{10}=2.5(2)^{9}$

1280
7. (a) (i) valid approach
eg $\quad 0.9=\mathrm{e}^{k(1)}$
$k=-0.105360$
$k=\ln 0.9$ (exact), -0.105
(ii) correct interpretation
eg population is decreasing, growth rate is negative
(b) METHOD 1
valid approach (accept an equality, but do not accept 0.74)
eg $\quad P<0.75 P_{0}, P_{0} \mathrm{e}^{k t}<0.75 P_{0}, 0.75=\mathrm{e}^{t \ln 0.9}$
valid approach to solve their inequality
eg logs, graph
$t>2.73045$ (accept $t=2.73045$) (2.73982 from -0.105)
28 years
A2

METHOD 2

valid approach which gives both crossover values accurate to at least 2 sf
eg $\quad \frac{P_{2.7}}{P_{0}}=0.75241 \ldots, \frac{P_{2.8}}{P_{0}}=0.74452 \ldots$
$t=2.8$
28 years

Section B

8. (a) evidence of summing to 1
eg $\quad 0.55+0.3+0.1+k=1$
$k=0.05$ (exact)
A1 N2
[2 marks]
(b) (i) 0.55
(ii) recognizing binomial probability

A1
N1
(M1)
eg $\quad X: B(n, p),\binom{5}{4},(0.55)^{4}(1-0.55),\binom{n}{r} p^{r} q^{n-r}$
$\mathrm{P}(X=4)=0.205889$
$\mathrm{P}(X=4)=0.206$
A1
N2
[3 marks]
(c) correct substitution into formula for $\mathrm{E}(X)$
(A1)
eg $\quad 0.2+(2 \times 0.08)+(3 \times 0.02)$
$\mathrm{E}(B)=0.42$ (exact)
A1
N2
[2 marks]
(M1)
(A1)
recognizing there are 3 ways of having 2 breakdowns
correct working
eg $\quad(0.1 \times 0.7)+(0.55 \times 0.08)+(0.3 \times 0.2)$
$\mathrm{P}(2$ breakdowns $)=0.174$ (exact)
A1
N3
(ii) recognizing conditional probability
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}(2 A \mid 2$ breakdowns $)$
correct working
eg $\frac{0.1 \times 0.7}{0.174}$
$\mathrm{P}(A=2 \mid$ two breakdowns $)=0.402298$
$\mathrm{P}(A=2 \mid$ two breakdowns $)=0.402$
9. (a) METHOD 1
recognizing $s=\int v$
recognizing displacement of P in first 5 seconds (seen anywhere)
(accept missing $\mathrm{d} t$)
eg $\quad \int_{0}^{5} v \mathrm{~d} t,-3.71591$
valid approach to find total displacement
eg $\quad 4+(-3.7159), s=4+\int_{0}^{5} v$
0.284086
0.284 (m)

METHOD 2

recognizing $s=\int v$
correct integration
eg $\quad \frac{1}{3} \sin 3 t+2 \cos t-\frac{t}{2}+c$ (do not penalize missing " c ")
attempt to find c
(M1)
eg $\quad 4=\frac{1}{3} \sin (0)+2 \cos (0)-\frac{0}{2}+c, 4=\frac{1}{3} \sin 3 t+2 \cos t-\frac{t}{2}+c, 2+c=4$
attempt to substitute $t=5$ into their expression with c
eg $\quad s(5), \frac{1}{3} \sin (15)+2 \cos (5)-\frac{5}{2}+2$
0.284086
0.284 (m)
(b) recognizing that at rest, $v=0$
$t=0.179900$
$t=0.180$ (secs)
(c) recognizing when change of direction occurs
eg $\quad v$ crosses t axis
2 (times) A1

Question 9 continued
(d) acceleration is v^{\prime} (seen anywhere)
eg $\quad v^{\prime}(3)$
0.743631
$0.744\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
(e) valid approach involving max or min of v
eg $\quad v^{\prime}=0, a=0$, graph
one correct co-ordinate for min
eg 1.14102, -3.27876
$3.28\left(\mathrm{~ms}^{-1}\right) \quad$ A1
N2
[3 marks]

Total [14 marks]

10. (a) valid approach (addition or subtraction)
eg $\mathrm{AO}+\mathrm{OB}, \mathrm{B}-\mathrm{A}$

$$
\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
9 \\
6 \\
-3
\end{array}\right)
$$

(b) METHOD 1
valid approach using $\overrightarrow{\mathrm{OC}}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
eg $\quad \overrightarrow{\mathrm{AC}}=\left(\begin{array}{l}x+3 \\ y+2 \\ z-2\end{array}\right), \overrightarrow{\mathrm{CB}}=\left(\begin{array}{c}6-x \\ 4-y \\ -1-z\end{array}\right)$
correct working
eg $\quad\left(\begin{array}{l}x+3 \\ y+2 \\ z-2\end{array}\right)=\left(\begin{array}{c}12-2 x \\ 8-2 y \\ -2-2 z\end{array}\right)$
all three equations
eg $x+3=12-2 x, y+2=8-2 y, z-2=-2-2 z$,
$\overrightarrow{\mathrm{OC}}=\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)$

Question 10 continued

METHOD 2

valid approach
eg $\quad \overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}=2(\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OC}})$
correct working
eg $\quad 3 \overrightarrow{\mathrm{OC}}=2 \overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OA}}$
correct substitution of $\overrightarrow{\mathrm{OB}}$ and $\overrightarrow{\mathrm{OA}}$
eg $\quad 3 \overrightarrow{\mathrm{OC}}=2\left(\begin{array}{c}6 \\ 4 \\ -1\end{array}\right)+\left(\begin{array}{c}-3 \\ -2 \\ 2\end{array}\right), 3 \overrightarrow{\mathrm{OC}}=\left(\begin{array}{l}9 \\ 6 \\ 0\end{array}\right)$
$\overrightarrow{\mathrm{OC}}=\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)$

METHOD 3

valid approach
eg $\quad \overrightarrow{\mathrm{AC}}=\frac{2}{3} \overrightarrow{\mathrm{AB}}$, diagram, $\overrightarrow{\mathrm{CB}}=\frac{1}{3} \overrightarrow{\mathrm{AB}}$
correct working
eg $\overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}6 \\ 4 \\ -2\end{array}\right), \overrightarrow{\mathrm{CB}}=\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)$
correct working involving $\overrightarrow{\mathrm{OC}}$
eg $\quad \overrightarrow{\mathrm{OC}}=\left(\begin{array}{c}-3 \\ -2 \\ 2\end{array}\right)+\left(\begin{array}{c}6 \\ 4 \\ -2\end{array}\right),\left(\begin{array}{c}6 \\ 4 \\ -1\end{array}\right)-\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)$
$\overrightarrow{\mathrm{OC}}=\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)$

Question 10 continued
(c) finding scalar product and magnitudes
scalar product $=(9 \times 3)+(6 \times 2)+(-3 \times 0) \quad(=39)$
magnitudes $\sqrt{81+36+9}(=11.22), \sqrt{9+4}(=3.605)$
substitution into formula
M1
eg $\quad \cos \theta=\frac{(9 \times 3)+12}{\sqrt{126} \times \sqrt{13}}$
$\theta=0.270549$ (accept 15.50135°)
$\theta=0.271$ (accept 15.5°)
(d) (i) attempt to use a trig ratio
eg $\sin \theta=\frac{\mathrm{DE}}{\mathrm{CD}},|\overrightarrow{\mathrm{CE}}|=|\overrightarrow{\mathrm{CD}}| \cos \theta$
attempt to express $\overrightarrow{\mathrm{CD}}$ in terms of $\overrightarrow{\mathrm{OC}}$
eg $\quad \overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{OD}}, \mathrm{OC}+\mathrm{CD}=\mathrm{OD}$ correct working
eg $|k \overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OC}}| \sin \theta$
$|\overrightarrow{\mathrm{DE}}|=(k-1)|\overrightarrow{\mathrm{OC}}| \sin \theta$
eg recognizing $|\overrightarrow{\mathrm{DE}}|<3, \mathrm{DE}=3$
correct working (accept equation)
eg $\quad(k-1)(\sqrt{13}) \sin 0.271<3, k-1=3.11324$
$1<k<4.11$ (accept $k<4.11$ but not $k=4.11$)
[6 marks]

Markscheme

May 2016

Mathematics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

\boldsymbol{M} Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award MO followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} \mathbf{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A} 1$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

11 Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 -
there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first A1 is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A O}$ for the final answer.

Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer Units will appear in brackets at the end.

Section A

1. (a) valid approach
eg $\quad 1.5-0.3,1.5-2.7,2.7=0.3+2 d$

$$
d=1.2
$$

A1 N2
[2 marks]
(b) correct substitution into term formula
eg $\quad 0.3+1.2(30-1), u_{30}=0.3+29(1.2)$

$$
u_{30}=35.1
$$

(c) correct substitution into sum formula
eg $\quad S_{30}=\frac{30}{2}(0.3+35.1), \frac{30}{2}(2(0.3)+29(1.2))$
$S_{30}=531$
2. (a) evidence of choosing sine rule
eg $\frac{a}{\sin A}=\frac{b}{\sin B}$
correct substitution
eg $\frac{a}{\sin 1.75}=\frac{7}{\sin 0.82}$
9.42069
$\mathrm{BD}=9.42$ (cm)
(b) evidence of choosing cosine rule
eg $\quad \cos B=\frac{d^{2}+c^{2}-b^{2}}{2 d c}, a^{2}=b^{2}+c^{2}-2 b c \cos B$
correct substitution
eg $\frac{8^{2}+9.42069^{2}-12^{2}}{2 \times 8 \times 9.42069}, 144=64+\mathrm{BD}^{2}-16 \mathrm{BD} \cos B$
1.51271
$\mathrm{DBC}=1.51$ (radians) (accept 86.7°) A1
3. (a) (i) $y=-1$

A1
N1
(ii) valid attempt to find x-intercept
eg $\quad f(x)=0$
1.38629 A1
$x=2 \ln 2$ (exact), 1.39
(iii) $y=-2$ (must be equation)
A1
N1
[4 marks]
(b)

4. (a) valid approach
eg $\quad h(0),-15 \cos (1.2 \times 0)+17,-15(1)+17$

$$
h(0)=2(\mathrm{~m})
$$

(b) correct substitution into equation
eg $\quad 20=-15 \cos 1.2 t+17,-15 \cos 1.2 k=3$
valid attempt to solve for k
eg

$$
\cos 1.2 k=-\frac{3}{15}
$$

1.47679
$k=1.48$
(c) recognize the need to find the period (seen anywhere)
eg next t value when $h=20$
correct value for period
eg \quad period $=\frac{2 \pi}{1.2}, 5.23598,6.7-1.48$
5.2 (min) (must be 1 dp)

A1	N2
[3 marks]	
Total $[8$ marks]	

(b) valid approach
eg $\quad\binom{10}{r}\left(x^{2}\right)^{10-r}\left(\frac{2}{x}\right)^{r}, a^{10} b^{0}+\binom{10}{1} a^{9} b^{1}+\binom{10}{2} a^{8} b^{2}+\ldots$
Pascal's triangle to $11^{\text {th }}$ row
valid attempt to find value of r which gives term in x^{8}
eg $\quad\left(x^{2}\right)^{10-r}\left(\frac{1}{x^{r}}\right)=x^{8}, x^{2 r}\left(\frac{2}{x}\right)^{10-r}=x^{8}$
identifying required term (may be indicated in expansion)
eg $r=6$, 5th term, 7th term
correct working (may be seen in expansion)
eg $\binom{10}{6}\left(x^{2}\right)^{6}\left(\frac{2}{x}\right)^{4}, 210 \times 16$
6. (a) 0.0668072
$\mathrm{P}(S<50)=0.0668$ (accept $\mathrm{P}(S \leq 49)=0.0548)$
(b) valid approach

Eg $\mathrm{P}(S<50) \times \mathrm{P}(R<x)$
correct equation (accept any variable)
eg $\quad \mathrm{P}(S<50) \times \mathrm{P}(R<x)=1 \%, 0.0668072 \times p=0.01, \mathrm{P}(R<x)=\frac{0.01}{0.0668}$
finding the value of $\mathrm{P}(R<x)$
eg $\frac{0.01}{0.0668}, 0.149684$
9.40553
$x=9.41 \quad$ (accept $x=9.74$ from 0.0548)
7. correct approach
$e g s=\int v, \int_{0}^{p} 6 t-6 \mathrm{~d} t$
correct integration
eg $\int 6 t-6 \mathrm{~d} t=3 t^{2}-6 t+C,\left[3 t^{2}-6 t\right]_{0}^{p}$
recognizing that there are two possibilities
eg 2 correct answers, $s= \pm 2, c \pm 2$
two correct equations in p
eg $3 p^{2}-6 p=2,3 p^{2}-6 p=-2$
$0.42265,1.57735$
$p=0.423$ or $p=1.58$
A1A1
N3

Section B

8.

Note: There may be slight differences in answers, depending on which values candidates carry through in subsequent parts. Accept answers that are consistent with their working.
(a) (i) valid approach
eg correct value for r (or for a or b seen in (ii))
-0.994347
$r=-0.994$

$$
A 1 \quad N 2
$$

(ii) $-1.58095,33480.3$
$a=-1.58, \quad b=33500$
A1A1
N2
(b) correct substitution into their regression equation
eg $\quad-1.58095(11000)+33480.3$
(A1)
16089.85 (16120 from 3 sf)
price $=16100$ (dollars) (must be rounded to the nearest 100 dollars)
(c) METHOD 1
valid approach
eg $\quad P \times(\text { rate })^{t}$
rate $=0.95$ (may be seen in their expression)
correct expression
eg 16100×0.95^{6}
11834.97

11800 (dollars)
A1
N2

METHOD 2

attempt to find all six terms
eg $\quad(((16100 \times 0.95) \times 0.95) \ldots) \times 0.95$, table of values
5 correct values (accept values that round correctly to the nearest dollar) $15295,14530,13804,13114,12458$

11835
11800 (dollars)
A1
N2
[4 marks]

Question 8 continued

(d) METHOD 1
correct equation
eg $16100 \times 0.95^{x}=10000$
valid attempt to solve
eg
, using logs

9.28453
(A1)
year 2019
A1
N2

METHOD 2

valid approach using table of values
both crossover values (accept values that round correctly to the nearest dollar)
eg $\quad P=10147$ (1 Jan 2019), $P=9639.7$ (1 Jan 2020)
year 2019

A1
[4 marks]
9. (a) $y=2$ (correct equation only)
(b) valid approach

$$
\begin{aligned}
& \text { eg } \quad(x-1)^{-1}+2, f^{\prime}(x)=\frac{0(x-1)-1}{(x-1)^{2}} \\
& -(x-1)^{-2}, f^{\prime}(x)=\frac{-1}{(x-1)^{2}}
\end{aligned}
$$

(c) correct equation for the asymptote of g eg $y=b$

$$
\begin{equation*}
b=2 \tag{A1}
\end{equation*}
$$

(d) correct derivative of g (seen anywhere)
eg $\quad g^{\prime}(x)=-a \mathrm{e}^{-x}$
correct equation
(A1)
eg $\quad-\mathrm{e}=-a \mathrm{e}^{-1}$
7.38905
$a=\mathrm{e}^{2}$ (exact), 7.39
(e) attempt to equate their derivatives
eg $\quad f^{\prime}(x)=g^{\prime}(x), \frac{-1}{(x-1)^{2}}=-a \mathrm{e}^{-x}$
valid attempt to solve their equation
(M1)
eg correct value outside the domain of f such as 0.522 or 4.51 ,
correct solution (may be seen in sketch)
eg $\quad x=2,(2,-1)$
gradient is $-1 \quad$ A1 N3
[4 marks]
10. (a) valid approach
eg
$\mathrm{B}-\mathrm{A}, \mathrm{AO}+\mathrm{OB},\left(\begin{array}{c}-9 \\ 9 \\ -6\end{array}\right)-\left(\begin{array}{c}1 \\ 5 \\ -7\end{array}\right)$
$\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}-10 \\ 4 \\ 1\end{array}\right)$
A1 N2 [2 marks]
(b) valid approach
$e g \quad \mathrm{OC}=\mathrm{OA}+\mathrm{AC},\left(\begin{array}{c}1+6 \\ 5-4 \\ -7+0\end{array}\right)$
$\mathrm{C}(7,1,-7)$
A1
N2 [2 marks]
(c) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b}$ (accept any parameter for t)
where a is $\left(\begin{array}{c}-9 \\ 9 \\ -6\end{array}\right)$, and b is a scalar multiple of $\left(\begin{array}{c}6 \\ -4 \\ 0\end{array}\right)$
eg $\quad r=\left(\begin{array}{c}-9 \\ 9 \\ -6\end{array}\right)+t\left(\begin{array}{c}6 \\ -4 \\ 0\end{array}\right), r=-9 \boldsymbol{i}+9 \boldsymbol{j}-6 \boldsymbol{k}+s(6 \boldsymbol{i}-4 \boldsymbol{j}+0 \boldsymbol{k})$
(d) correct magnitudes
eg $\sqrt{(-10)^{2}+(-4)^{2}+1^{2}}, \sqrt{6^{2}+(-4)^{2}+(0)^{2}}, \sqrt{10^{2}+4^{2}+1}, \sqrt{6^{2}+4^{2}}$

$$
k=\frac{\sqrt{117}}{\sqrt{52}}(=1.5) \text { (exact) }
$$

A1 N3 [3 marks]
continued...

Question 10 continued
(e) correct interpretation of relationship between magnitudes
eg $\quad \mathrm{AB}=1.5 \mathrm{AC}, \mathrm{BD}=1.5 \mathrm{AC}, \sqrt{117}=\sqrt{52 t^{2}}$
recognizing D can have two positions (may be seen in working)
eg $\quad \overrightarrow{\mathrm{BD}}=1.5 \overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{BD}}=-1.5 \overrightarrow{\mathrm{AC}}, t= \pm 1.5$, diagram, two answers valid approach (seen anywhere)
eg $\quad \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{BD}},\left(\begin{array}{c}-9 \\ 9 \\ -6\end{array}\right)+t\left(\begin{array}{c}6 \\ -4 \\ 0\end{array}\right), \overrightarrow{\mathrm{BD}}=k\left(\begin{array}{c}6 \\ -4 \\ 0\end{array}\right)$
one correct expression for $\overrightarrow{\mathrm{OD}}$
eg $\quad \overrightarrow{\mathrm{OD}}=\left(\begin{array}{c}-9 \\ 9 \\ -6\end{array}\right)+1.5\left(\begin{array}{c}6 \\ -4 \\ 0\end{array}\right),\left(\begin{array}{c}-9 \\ 9 \\ -6\end{array}\right)-1.5\left(\begin{array}{c}6 \\ -4 \\ 0\end{array}\right)$
$\mathrm{D}=(0,3,-6), \mathrm{D}=(-18,15,-6)$ (accept position vectors)
A1A1

Markscheme

November 2015

Mathematics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final $\boldsymbol{A 1}$.

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \mathbf{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\mathbf{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or A0 for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

11 Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 -
there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".
The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \mathbf{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer.

Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show a truncated 6 sf value, the exact value if applicable, the correct 3 sf answer. Units will appear in brackets at the end.

Section A

1. (a) correct substitution
eg $\quad l=1.3 \times 3$
$l=3.9$ (cm) A1
A1 N2 [2 marks]
(b) METHOD 1
valid approach
(M1)
eg finding reflex angle, $2 \pi-$ CÔA
correct angle
eg $2 \pi-1.3,4.98318$
correct substitution
eg $\frac{1}{2}(2 \pi-1.3) 3^{2}$
22.4243
area $=9 \pi-5.85$ (exact), $22.4\left(\mathrm{~cm}^{2}\right)$
A1

METHOD 2

correct area of small sector
eg $\frac{1}{2}(1.3) 3^{2}, 5.85$
valid approach
eg circle - small sector, $\pi r^{2}-\frac{1}{2} \theta r^{2}$
correct substitution
eg $\quad \pi\left(3^{2}\right)-\frac{1}{2}(1.3) 3^{2}$
22.4243
area $=9 \pi-5.85$ (exact), $22.4\left(\mathrm{~cm}^{2}\right)$
2. (a) evidence of using $\sum p_{i}=1$
correct substitution
A1
eg $\quad 0.15+k+0.1+2 k=1,3 k+0.25=1$
$k=0.25$
A1
N2 [3 marks]
(b) correct substitution

(A1)

eg $\quad 0 \times 0.15+1 \times 0.25+2 \times 0.1+3 \times 0.5$
$\mathrm{E}(X)=1.95$
A1
N2
3. (a) valid approach
eg horizontal translation 3 units to the right $x=3$ (must be an equation)

A1
N2 [2 marks]
(b) valid approach
(M1)
eg $\quad f(x)=0, e^{0}=x-3$
$4, x=4,(4,0)$
A1
N2
[2 marks]
(c) attempt to substitute either their correct limits or the function into formula involving f^{2}
eg $\quad \int_{4}^{10} f^{2}, \pi \int(2 \ln (x-3))^{2} d x$
141.537
volume $=142$
4. (a) valid approach
eg $\frac{u_{1}}{u_{2}}, \frac{4}{1.6}, 1.6=r(0.64)$
$r=2.5\left(=\frac{5}{2}\right)$
A1 N2
(b) correct substitution into S_{6}
eg $\frac{0.64\left(2.5^{6}-1\right)}{2.5-1}$
$S_{6}=103.74$ (exact), 104
A1
(c) METHOD 1 (analytic)
valid approach
(M1)
eg $\quad \frac{0.64\left(2.5^{n}-1\right)}{2.5-1}>75000, \frac{0.64\left(2.5^{n}-1\right)}{2.5-1}=75000$
correct inequality (accept equation)
(A1)
eg $n>13.1803, n=13.2$
$n=14 \quad$ A1
N1

METHOD 2 (table of values)

both crossover values A2
eg $\quad S_{13}=63577.8, S_{14}=158945$

$$
n=14
$$

5. (a) $P(C \cap D)=2 k \times 3 k^{2}$
(A1)

A1 N2
[2 marks]
(A1)

A1 N2
[2 marks]
(c) METHOD 1
finding their $\mathrm{P}\left(C^{\prime} \cap D\right)$ (seen anywhere)
eg $0.4 \times 0.27,0.27-0.162,0.108$
correct substitution into conditional probability formula
eg $\quad \mathrm{P}\left(C^{\prime} \mid D\right)=\frac{\mathrm{P}\left(C^{\prime} \cap D\right)}{0.27}, \frac{(1-2 k)\left(3 k^{2}\right)}{3 k^{2}}$
$\mathrm{P}\left(C^{\prime} \mid D\right)=0.4$

METHOD 2

recognizing $\mathrm{P}\left(C^{\prime} \mid D\right)=\mathrm{P}\left(C^{\prime}\right)$
finding their $\mathrm{P}\left(C^{\prime}\right)=1-\mathrm{P}(C)$ (only if first line seen)
(A1)
eg $1-2 k, 1-0.6$
$\mathrm{P}\left(C^{\prime} \mid D\right)=0.4$
A1 N2
[3 marks]
Total [7 marks]
(M1)
eg $\quad(0.3 t+0.1)^{t}-4=0, x$-intercept on graph of v
$t=4.27631$
$t=4.28$ (seconds)
A2
[3 marks]
(b) valid approach to find t when a is 0
(M1)

A2
N3
[3 marks]
7. (a) correct substitution into chain rule

A2
eg $\quad f^{\prime}(x)=\frac{1}{x^{2}} \times 2 x$

$$
f^{\prime}(x)=\frac{2}{x}
$$

No
[2 marks]

There are many approaches to this question, especially the steps to set up the correct equation, for the two M marks. There are a few processes they may need to apply at some stage, for the M1M1. These include substituting $f^{\prime}(d)$ and points P and/or Q into the gradient of PQ or equation of the tangent line $P Q$. There may be other approaches, please check working and award marks in line with markscheme.
(b) at P, $y=\ln \left(d^{2}\right)$ (seen anywhere)

A1
gradient of tangent at P is $\frac{2}{d}$ (seen anywhere) A1
substituting $(1,-3),\left(d, \ln d^{2}\right)$ or gradient $\frac{2}{d}$ into equation of tangent at P
eg

$$
y-(-3)=m(x-1), y=\left(\frac{2}{d}\right) x+b, y-\ln d^{2}=m(x-d)
$$

second substitution
eg $\quad y+3=\left(\frac{2}{d}\right)(x-1),-3=\left(\frac{2}{d}\right) 1+b, m=\frac{\ln d^{2}+3}{d-1}$
any correct equation (in d or x)
A1
eg $\quad-3-\ln \left(d^{2}\right)=\left(\frac{2}{d}\right)(1-d), \ln \left(x^{2}\right)+1+\left(\frac{2}{x}\right)=0$
-1.30505
$d=-1.31$ (accept $x=-1.31$)

A1
[6 marks]

Section B

8. (a) evidence of choosing sine rule
eg $\frac{A C}{\sin \mathrm{CBA}}=\frac{\mathrm{AB}}{\sin \mathrm{ACB}}$
correct substitution
eg $\frac{A C}{\sin 44^{\circ}}=\frac{15}{\sin 83^{\circ}}$
10.4981
$\mathrm{AC}=10.5 \quad(\mathrm{~cm})$
A1
(b) finding CAB (seen anywhere)
eg $180^{\circ}-44^{\circ}-83^{\circ}, \mathrm{CAB}=53^{\circ}$
correct substitution for area of triangle ABC
eg $\frac{1}{2} \times 15 \times 10.4981 \times \sin 53^{\circ}$
62.8813
area $=62.9\left(\mathrm{~cm}^{2}\right) \quad$ A1
(c) correct substitution for area of triangle DAC
eg $\frac{1}{2} \times 6 \times 10.4981 \times \sin \theta$
attempt to equate area of triangle ACD to half the area of triangle ABC
eg area $\mathrm{ACD}=\frac{1}{2} \times$ area $\mathrm{ABC} ; 2 \mathrm{ACD}=\mathrm{ABC}$
correct equation
eg $\quad \frac{1}{2} \times 6 \times 10.4981 \times \sin \theta=\frac{1}{2}(62.9), 62.9887 \sin \theta=62.8813, \sin \theta=0.998294$
86.6531, 93.3468
$\theta=86.7^{\circ}, \theta=93.3^{\circ}$
A1A1
(d) Note: Note: If candidates use an acute angle from part (c) in the cosine rule , award M1A0A0 in part (d).
evidence of choosing cosine rule
eg $\mathrm{CD}^{2}=\mathrm{AD}^{2}+\mathrm{AC}^{2}-2 \times \mathrm{AD} \times \mathrm{AC} \times \cos \theta$
correct substitution into rhs
eg $\quad \mathrm{CD}^{2}=6^{2}+10.498^{2}-2(6)(10.498) \cos 93.336^{\circ}$
12.3921
12.4 (cm)

A1
N2
9. (a) evidence of setup
eg correct value for a or b
13.3823, 137.482
$a=13.4, b=137$
A1A1
N3 [3 marks]
(b) correct substitution into their regression equation
eg $\quad 13.3823 \times 7+137.482$
(A1)
correct calculation
231.158
(A1)
231 (coyotes) (must be an integer)
A1
N2 [3 marks]
(c) recognizing $t=0$
eg $\quad f(0)$
correct substitution into the model
eg $\frac{2000}{1+99 e^{-k(0)}}, \frac{2000}{100}$
(A1)
20 (foxes)
A1 N2 [3 marks]
(d) recognizing $(5,64)$ satisfies the equation
eg $\quad f(5)=64$
correct substitution into the model
eg $\quad 64=\frac{2000}{1+99 e^{-k(5)}}, 64\left(1+99 e^{-5 k}\right)=2000$
0.237124
$k=-\frac{1}{5} \ln \left(\frac{11}{36}\right)$ (exact), 0.237
A1
N2
(e) valid approach
(M1)
eg $\quad c=f$, sketch of graphs
correct working
eg $\frac{2000}{1+99 e^{-0.237124 t}}=13.382 t+137.482$, sketch of graphs, table of values
$t=12.0403$
2007
10. (a) finding standardized value for 4 kg (seen anywhere)
eg $\quad z=-1.64485$
attempt to standardize
eg $\quad \sigma=\frac{x-\mu}{z}, \frac{4-10}{\sigma}$
correct substitution
eg $\quad-1.64=\frac{4-10}{\sigma}, \frac{4-10}{-1.64}$
$\sigma=3.64774$
$\sigma=3.65$

A1 N2 [4 marks]

(b) valid approach
eg $\quad 1-p, 0.62, \frac{w-10}{3.65}=0.305$
$w=11.1143$
$w=11.1$
(c) attempt to restrict melon population
eg 95% are delivered, P (medium | delivered), $57+38$ correct probability for medium watermelons
eg $\frac{0.57}{0.95}$
$\frac{57}{95}, 0.6,60 \%$
(d) proportion of large watermelons (seen anywhere)
eg $\quad P($ large $)=0.4,40 \%$
correct approach to find total sales (seen anywhere)
eg $\quad 150=$ sales -300 , total sales $=\$ 450$
correct expression
eg $\quad 1.75(0.6 x)+3(0.4 x), 1.75(0.6)+3(0.4)$
evidence of correct working
eg $1.75(0.6 x)+3(0.4 x)=450,2.25 x=450$
200 watermelons in the delivery

A1
N2
[5 marks]

Markscheme

May 2015

Mathematics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions and the document "Mathematics SL: Guidance for e-marking May 2015". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the RM assessor tool. Please check that you are entering marks for the right question. All the marks will be added and recorded by RM assessor.

If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.

- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where there are two or more A marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), $\mathbf{N 3}$, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal (see examples on next page).

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	5.65685 (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \mathbf{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.
- Where there are anticipated common errors, the FT answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only FT answers accepted, neither should \boldsymbol{N} marks be awarded for these answers.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation". Accept sloppy notation in the working, where this is followed by correct working eg $-2^{2}=4$ where they should have written $(-2)^{2}=4$.

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A O}$ for the final answer.

Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value, the exact value if applicable, and the correct 3 sf answer.
Units (which are generally not required) will appear in brackets at the end.

Section A

1. (a) (i) evidence of valid approach
eg 1 correct value for r, (or for a or b, seen in (ii))

$$
0.946591
$$

$$
r=0.947
$$

A1
N2
(ii) $\quad a=0.500957, b=0.803544$

$$
a=0.501, b=0.804
$$

A1A1
N2
(b) substituting $x=3.7$ into their equation
eg $\quad 0.501(3.7)+0.804$
2.65708 (2 hours 39.4252 minutes)
$y=2.7$ (hours)(must be correct 1 dp , accept 2 hours 39.4 minutes)
2. (a) 9 terms

A1
N1 [1 mark]
(M1)
eg $\quad\binom{8}{r}(2 x)^{8-r}(3)^{r},(2 x)^{8}(3)^{0}+(2 x)^{7}(3)^{1}+\ldots$, Pascal's triangle to $8^{\text {th }}$ row
identifying correct term (may be indicated in expansion)
eg 6th term, $r=5,\binom{8}{5},(2 x)^{3}(3)^{5}$
correct working (may be seen in expansion)
eg $\quad\binom{8}{5}(2 x)^{3}(3)^{5}, 56 \times 2^{3} \times 3^{5}$
$108864 x^{3}$ (accept $109000 x^{3}$)

Notes: Do not award any marks if there is clear evidence of adding instead of multiplying.
Do not award final $\boldsymbol{A 1}$ for a final answer of 108864 , even if $108864 \chi^{3}$ is seen previously. If no working shown award N2 for 108864.
3. (a) $d=-1.5$

A1
[1 mark]
(b) METHOD 1
valid approach
(M1)
eg $u_{10}=u_{1}+9 d, 8=u_{1}-9(-1.5)$
correct working
eg $8=u_{1}+9 d, 6.5=u_{1}+10 d, u_{1}=8-9(-1.5)$

$$
u_{1}=21.5
$$

METHOD 2

attempt to list 3 or more terms in either direction
eg $9.5,11,12.5, \ldots$; 5, 3.5, 2,... ...
correct list of 4 or more terms in correct direction
eg $9.5,11,12.5,14$
$u_{1}=21.5$
A1 [3 marks]
(c) correct expression
eg $\quad \frac{50}{2}(2(21.5)+49(-1.5)), \frac{50}{2}(21.5-52), \sum_{k=1}^{50} 21.5+(k-1)(-1.5)$ sum $=-762.5$ (exact)
4. (a) (i) valid approach
eg sketch, $f(x)=0,0=2 x-6$

$$
x=3 \text { or }(3,0)
$$

(ii) $x=1$ (must be equation)

A1
N1
(iii) valid approach
(M1)
eg sketch, $\frac{2 x}{-1 x}$, inputting large values of x, L'Hopital's rule $y=-2$ (must be equation)
(b) valid approach
eg recognizing that $\lim _{x \rightarrow \infty}$ is related to the horizontal asymptote, table with large values of x, their y value from (a)(iii), L'Hopital's rule

$$
\lim _{x \rightarrow \infty} f(x)=-2
$$

5. (a)

A1A1A1
Note: Curve must be approximately correct exponential shape (concave up and decreasing). Only if the shape is approximately correct, award the following: A1 for left endpoint in circle,
A1 for right endpoint in circle,
A1 for asymptotic to $y=40$ (must not go below $y=40$).
(b) attempt to find G (45)
eg 78.6241, value read from their graph multiplying cost times number of people (M1)
eg $\quad 45 \times 78.6241, G(45) \times 45$
3538.08

3540 (dollars)
6. recognizing that the gradient of tangent is the derivative
eg f^{\prime}
finding the gradient of f at P
eg $\quad f^{\prime}(0.25)=16$
evidence of taking negative reciprocal of their gradient at P
eg $\frac{-1}{m},-\frac{1}{f^{\prime}(0.25)}$
equating derivatives
eg $\quad f^{\prime}(x)=\frac{-1}{16}, f^{\prime}=-\frac{1}{m}, \frac{x\left(\frac{1}{x}\right)-\ln (4 x)}{x^{2}}=16$
finding the x-coordinate of $\mathrm{Q}, x=0.700750$
$x=0.701$
A1
N3
attempt to substitute their x into f to find the y-coordinate of Q
(M1)

A1
N2
[7 marks]
7. (a) $(-0.3,-0.967)$
$x=-0.3$ (exact), $y=-0.967$ (exact)
A1A1
N2 [2 marks]
(b) y-coordinate of local maximum is $y=11.2$
negating the y-coordinate of one of the max/min
(M1)
eg $y=0.967, y=-11.2$
recognizing that the solution set has two intervals R1 eg two answers,

$$
k<-11.2, k>0.967 \quad \text { A1A1 }
$$

A1A1 N3N2
[5 marks]

Notes: If working shown, do not award the final mark if strict inequalities are not used. If no working shown, award $\mathbf{N} \mathbf{2}$ for $k \leq-11.2$ or $\mathbf{N} \mathbf{1}$ for $k \geq 0.967$

Section B

8. (a) valid approach
eg \quad speed $=\frac{\text { distance }}{\text { time }}, 6 \times 1.5$
SL $=9$ (km) A1
A1 N2 [2 marks]
(b) evidence of choosing sine rule
eg $\quad \frac{\sin A}{a}=\frac{\sin B}{b}, \sin \theta=\frac{(\mathrm{SL}) \sin 20^{\circ}}{5}$
correct substitution
(A1)
eg $\frac{\sin \theta}{9}=\frac{\sin 20^{\circ}}{5}$
37.9981

SPPL=38.0
recognition that second angle is the supplement of first (M1) eg $180-x$
142.001

SQQL $=142^{\circ}$

A1 N2 [5 marks]
continued...

Question 8 continued
(c) (i) new store is at Q

A1
N1
(ii) METHOD 1
attempt to find third angle
eg SL̂P $=180-20-38$, SL̂Q $=180-20-142$
$\mathrm{SLQ}=17.998^{\circ}$ (seen anywhere) A1
evidence of choosing sine rule or cosine rule (M1)
correct substitution into sine rule or cosine rule
eg $\frac{x}{\sin 17.998}=\frac{5}{\sin 20}\left(=\frac{9}{\sin 142}\right), 9^{2}+5^{2}-2(9)(5) \cos 17.998^{\circ}$
4.51708 km
4.52 (km)

A1
N3

METHOD 2

evidence of choosing cosine rule
correct substitution into cosine rule
eg $\quad 9^{2}=x^{2}+5^{2}-2(x)(5) \cos 142^{\circ}$
attempt to solve
eg sketch; setting quadratic equation equal to zero;

$$
0=x^{2}+7.88 x-56
$$

one correct value for x
eg $x=-12.3973, x=4.51708$
4.51708
4.52 (km)
9. (a) 0.0477903
probability $=0.0478$
(b) $\mathrm{P}($ volume $<250)=0.02$
(M1)
A1
$z=-2.05374 \quad$ (may be seen in equation)
(M1)
attempt to set up equation with z
eg $\quad \frac{\mu-260}{\sigma}=z, 260-2.05(\sigma)=250$
4.86914
$\sigma=4.87$ (ml)
A1
(c) (i) 0.968062
$\mathrm{P}(250<\mathrm{Vol}<271)=0.968$
A2
N2
(ii) recognizing conditional probability (seen anywhere, including in correct working)
eg $\quad \mathrm{P}(A \mid B), \frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}, \mathrm{P}(A \cap B)=\mathrm{P}(A \mid B) \mathrm{P}(B)$
correct value or expression for P (not underfilled)
eg $\quad 0.98,1-0.02,1-P(X<250)$
probability $=\frac{0.968}{0.98}$
0.987818
probability $=0.988$

A1
continued..

Question 9 continued

(d) METHOD 1

evidence of recognizing binomial distribution (seen anywhere)
eg $\quad X \quad \mathrm{~B}(50,0.968)$, binomial cdf, $p=0.968, r=47$
$\mathrm{P}(X \leq 47)=0.214106$
(A1)
evidence of using complement
eg $\quad 1-\mathrm{P}(X \leq 47)$
0.785894
probability $=0.786 \quad$ A1

METHOD 2

evidence of recognizing binomial distribution (seen anywhere)
eg $\quad X \quad \mathrm{~B}(50,0.968)$, binomial cdf, $p=0.968, r=47$
$\mathrm{P}($ not pass $)=1-\mathrm{P}($ pass $)=0.0319378$
evidence of attempt to find P (2 or fewer fail)
eg 0,1 , or 2 not pass, $\mathrm{B}(50,2)$
0.785894
probability $=0.786$

METHOD 3

evidence of recognizing binomial distribution (seen anywhere)
eg $\quad X \quad \mathrm{~B}(50,0.968)$, binomial $\mathrm{cdf}, p=0.968, r=47$
evidence of summing probabilities
eg $\mathrm{P}(X=48)+\mathrm{P}(X=49)+\mathrm{P}(X=50)$
correct working
eg $\quad 0.263088+0.325488+0.197317$
0.785894
probability $=0.786 \quad$ A1
10. (a) $p=6$

A1 N1
R1 N1
recognising that turning points occur when $f^{\prime}(x)=0$
eg correct sign diagram
f^{\prime} changes from positive to negative at $x=6$
R1
N1 [3 marks]
(b) $\quad f^{\prime}(2)=-2$ A1 N1 [1 mark]
(c) attempt to apply chain rule
eg $\ln (x)^{\prime} \times f^{\prime}(x)$
correct expression for $g^{\prime}(x)$
eg $\quad g^{\prime}(x)=\frac{1}{f(x)} \times f^{\prime}(x)$
substituting $x=2$ into their g^{\prime}
eg $\frac{f^{\prime}(2)}{f(2)}$
-0.666667
$g^{\prime}(2)=-\frac{2}{3}($ exact $),-0.667$
A1
N3
[4 marks]
(d) evidence of integrating $g^{\prime}(x)$
eg $\left.\quad g(x)\right|_{2} ^{a},\left.g(x)\right|_{a} ^{2}$
applying the fundamental theorem of calculus (seen anywhere)
R1
eg $\quad \int_{2}^{a} g^{\prime}(x)=g(a)-g(2)$
correct substitution into integral
eg $\quad \ln 3+g(a)-g(2), \ln 3+g(a)-\ln (f(2))$
$\ln 3+g(a)-\ln 3 \quad A 1$
$\ln 3+\int_{2}^{a} g^{\prime}(x)=g(a)$

No
[4 marks]
continued..

Question 10 continued

(e) METHOD 1

substituting $a=5$ into the formula for $g(a)$
eg $\quad \int_{2}^{5} g^{\prime}(x) \mathrm{d} x, g(5)=\ln 3+\int_{2}^{5} g^{\prime}(x) \mathrm{d} x \quad$ (do not accept only $g(5)$)
attempt to substitute areas
eg $\ln 3+0.66-0.21, \ln 3+0.66+0.21$
correct working
eg $\quad g(5)=\ln 3+(-0.66+0.21)$
0.648612
$g(5)=\ln 3-0.45$ (exact), 0.649

METHOD 2

attempt to set up an equation for one shaded region
eg $\quad \int_{4}^{5} g^{\prime}(x) \mathrm{d} x=0.21, \int_{2}^{4} g^{\prime}(x) \mathrm{d} x=-0.66, \int_{2}^{5} g^{\prime}(x) \mathrm{d} x=-0.45$
two correct equations
eg $\quad g(5)-g(4)=0.21, g(2)-g(4)=0.66$
combining equations to eliminate $g(4)$
eg $g(5)-[\ln 3-0.66]=0.21$
0.648612
$g(5)=\ln 3-0.45($ exact $), 0.649$

METHOD 3

attempt to set up a definite integral
eg $\quad \int_{2}^{5} g^{\prime}(x) \mathrm{d} x=-0.66+0.21, \int_{2}^{5} g^{\prime}(x) \mathrm{d} x=-0.45$
correct working
eg $\quad g(5)-g(2)=-0.45$
correct substitution
eg $\quad g(5)-\ln 3=-0.45$
0.648612
$g(5)=\ln 3-0.45$ (exact), 0.649

A1
[4 marks]

MARKSCHEME

May 2015

MATHEMATICS

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners (red changed since M13)

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions and the document "Mathematics SL: Guidance for e-marking May 2015". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the RM assessor tool. Please check that you are entering marks for the right question. All the marks will be added and recorded by RM assessor.

If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.

- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal (see examples on next page).

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	5.65685 (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \mathbf{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the $\boldsymbol{F T}$ rules may result in further loss of marks.
- Where there are anticipated common errors, the FT answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only FT answers accepted, neither should N marks be awarded for these answers.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation". Accept sloppy notation in the working, where this is followed by correct working eg $-2^{2}=4$ where they should have written $(-2)^{2}=4$.

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

12
 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A O}$ for the final answer.

Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value, the exact value if applicable, and the correct 3 sf answer.
Units (which are generally not required) will appear in brackets at the end.

Section A

1. (a) evidence of choosing sine rule
eg $\frac{A C}{\sin (A \hat{B C})}=\frac{B C}{\sin (B \hat{A C})}$
correct substitution
eg $\frac{\mathrm{AC}}{\sin 80^{\circ}}=\frac{10}{\sin 35^{\circ}}$
AC $=17.1695$
$\mathrm{AC}=17.2 \quad(\mathrm{~cm})$
A1
N2 [3 marks]
(b) $\mathrm{A} \hat{C} B=65^{\circ}$ (seen anywhere)
correct substitution
eg $\frac{1}{2} \times 10 \times 17.1695 \times \sin 65^{\circ}$
area $=77.8047$
area $=77.8 \quad\left(\mathrm{~cm}^{2}\right)$
A1 N2
[3 marks]
Total [6 marks]
2. (a) (i) correct substitution
(A1)
eg $\quad 6 \times 2+3 \times 2+6 \times 1$

$$
u \cdot v=24
$$

(ii) correct substitution into magnitude formula for \boldsymbol{u} or \boldsymbol{v}
eg $\sqrt{6^{2}+3^{2}+6^{2}}, \sqrt{2^{2}+2^{2}+1^{2}}$, correct value for $|v|$

$$
|\boldsymbol{u}|=9
$$

(iii) $|\boldsymbol{v}|=3$
(b) correct substitution into angle formula
eg $\frac{24}{9 \times 3}, 0 . \overline{8}$
$0.475882,27.26604^{\circ}$
3. (a) (i) evidence of set up
eg correct value for a, b or r

$$
a=4.8, b=1.2 \quad \text { A1A1 }
$$

N3
(ii) $r=0.988064$
$r=0.988$

A1 N1 [4 marks]
(b) correct substitution into their regression equation
eg $\quad 4.8 \times 7+1.2$
34.8 (millions of dollars) (accept 35 and 34800000)

A1 N2
[2 marks]
Total [6 marks]
4. valid approach to find the required term
eg $\quad\binom{8}{r} x^{8-r} k^{r}$, Pascal's triangle to $8^{\text {th }}$ row, $x^{8}+8 x^{7} k+28 x^{6} k^{2}+\ldots$
identifying correct term (may be indicated in expansion)
eg $\quad\binom{8}{2} x^{6} k^{2},\binom{8}{6} x^{6} k^{2}, r=2$
setting up equation in k with their coefficient/term
eg $\quad 28 k^{2} x^{6}=63 x^{6},\binom{8}{6} k^{2}=63$
$k= \pm 1.5$ (exact)
A1A1
N3
[5 marks]
5. (a)

Note: Curve must be approximately correct exponential shape (increasing and concave up). Only if the shape is approximately correct, award the following: A1 for right end point in circle,
A1 for y-intercept in circle,
A1 for asymptotic to $y=2$, (must be above $y=2$).
(b) valid attempt to find g
eg $\quad f(x-3)-1, g(x)=\mathrm{e}^{x+1-3}+2-1, \mathrm{e}^{x+1-3}, 2-1$, sketch $g(x)=\mathrm{e}^{x-2}+1$

A2

6. METHOD 1

recognize that the distance walked each minute is a geometric sequence
eg $\quad r=0.9$, valid use of 0.9
recognize that total distance walked is the sum of a geometric sequence
eg $\quad S_{n}, a\left(\frac{1-r^{n}}{1-r}\right)$
correct substitution into the sum of a geometric sequence
eg $\quad 80\left(\frac{1-0.9^{n}}{1-0.9}\right)$
any correct equation with sum of a geometric sequence
eg $\quad 80\left(\frac{0.9^{n}-1}{0.9-1}\right)=660,1-0.9^{n}=\frac{66}{80}$
attempt to solve their equation involving the sum of a GP
eg graph, algebraic approach
$n=16.54290788$
A1
since $n>15$
R1
he will be late
AG

Note: Do not award the \boldsymbol{R} mark without the preceding \boldsymbol{A} mark.

Question 6 continued

METHOD 2

recognize that the distance walked each minute is a geometric sequence
eg $\quad r=0.9$, valid use of 0.9
recognize that total distance walked is the sum of a geometric sequence
eg $\quad S_{n}, a\left(\frac{1-r^{n}}{1-r}\right)$
correct substitution into the sum of a geometric sequence
eg $\quad 80\left(\frac{1-0.9^{n}}{1-0.9}\right)$
attempt to substitute $n=15$ into sum of a geometric sequence
correct substitution
eg $80\left(\frac{0.9^{15}-1}{0.9-1}\right)$
$S_{15}=635.287$
since $S<660$
he will not be there on time
Note: Do not award the \boldsymbol{R} mark without the preceding \boldsymbol{A} mark.

METHOD 3

recognize that the distance walked each minute is a geometric sequence
eg $\quad r=0.9$, valid use of 0.9
recognize that total distance walked is the sum of a geometric sequence
eg $\quad S_{n}, a\left(\frac{1-r^{n}}{1-r}\right)$
listing at least 5 correct terms of the GP
15 correct terms
80, 72, 64.8, 58.32, 52.488, 47.2392, 42.5152, 38.2637, 34.4373, 30.9936, 27.8942, 25.1048, 22.59436, 20.3349, 18.3014
attempt to find the sum of the terms
eg $S_{15}, 80+72+64.8+58.32+52.488+\ldots+18.301433$
$S_{15}=635.287$

Note: Do not award the \boldsymbol{R} mark without the preceding \boldsymbol{A} mark.
7. attempt to set up equation
eg $\quad f=g, k x^{2}+k x=x-0.8$
rearranging their equation to equal zero
eg $\quad k x^{2}+k x-x+0.8=0, k x^{2}+x(k-1)+0.8=0$
evidence of discriminant (if seen explicitly, not just in quadratic formula)
eg $\quad b^{2}-4 a c, \Delta=(k-1)^{2}-4 k \times 0.8, D=0$
correct discriminant
(A1)
eg $\quad(k-1)^{2}-4 k \times 0.8, k^{2}-5.2 k+1$
evidence of correct discriminant greater than zero
R1
eg $\quad k^{2}-5.2 k+1>0,(k-1)^{2}-4 k \times 0.8>0$, correct answer
both correct values

eg 0.2,5

correct answer
A2
eg $\quad k<0.2, k \neq 0, k>5$

Section B

8.

Note: The values of p and q found in (a) are used throughout the question. Please check $\boldsymbol{F T}$ carefully on their values.
(a) attempt to find intersection
(M1)
eg $\quad f=g$

$$
p=1, q=3
$$

A1A1
(b) $\quad f^{\prime}(p)=-1$

A2
N2 [2 marks]
(c) (i) correct approach to find the gradient of the normal eg $m_{1} m_{2}=-1,-\frac{1}{f^{\prime}(p)}$, correct value of 1

EITHER

attempt to substitute coordinates (in any order) and correct normal gradient to find c
eg $3=-\frac{1}{f^{\prime}(p)} \times 1+c, 1=1 \times 3+c$
$c=2$
$y=x+2$

N2

OR

attempt to substitute coordinates (in any order) and correct normal gradient into equation of a straight line
eg $\quad y-3=-\frac{1}{f^{\prime}(p)}(x-1), y-1=1 \times(x-3)$
correct working
eg $\quad y=(x-1)+3$

$$
y=x+2
$$

A1

A1

N1

[5 marks]
(d) appropriate approach involving subtraction
(M1)
eg $\quad \int_{a}^{b}(L-g) \mathrm{d} x, \int\left(3 x^{2}-(x+2)\right)$
substitution of their limits or function
eg $\quad \int_{0}^{p}(L-g) \mathrm{d} x, \int\left((x+2)-3 x^{2}\right)$
area $=1.5$
9. Note: There may be slight differences in answers, depending on which values candidates carry through in subsequent parts. In particular there are a number of ways of doing (d). Accept answers that are consistent with their working.
(a) valid approach
eg $\frac{L-\mu}{\sigma}$, using a value for σ, using 68% and 95%
correct working
$\mathrm{P}(-1<Z<2)$, correct probabilities $(0.6826 \ldots+0.1359 \ldots)$
$\mathrm{P}(50-\sigma<L<50+2 \sigma)=0.818594$

$$
\mathrm{P}(50-\sigma<L<50+2 \sigma)=0.819
$$

(b) $\quad z=1.95996$
correct equation
eg $\quad \frac{53.92-50}{\sigma}=1.95996, \sigma=2.00004$
$\sigma=2.00$
AG
No [2 marks]
(c) valid set up
eg $\quad \mathrm{P}(L>t)=0.75$, right tail, \qquad 0.25
$t=48.6510$
$t=48.7$ (do not accept 48.5 from using $z=-0.75$)

A2 N2 [3 marks] continued...

Question 9 continued
(d) (i) correct approach
eg from t to 50.1, $\mathrm{P}(48.7<X<50.1), 0.269942$
recognize conditional probability (seen anywhere, including in correct working)
eg $\quad \mathrm{P}(\mathrm{A} \mid \mathrm{B})$
correct substitution
eg $\quad \frac{\mathrm{P}(48.7<X<50.1)}{\mathrm{P}(X>48.7)}, \frac{0.269942}{0.75}$
0.359923
0.360 A1
(ii) $\mathrm{P}(X \geq 2)$
attempt to find $\mathrm{P}(X \geq 2)$
eg $\quad 1-\mathrm{P}(X=0)-\mathrm{P}(X=1), \mathrm{P}(X=2)+\mathrm{P}(X=3)+\ldots$
recognize binomial distribution
eg $\quad X \sim \mathrm{~B}(n, p)$
0.923741
0.924
10. (a) area of $A B C D=A B^{2}$ (seen anywhere)
choose cosine rule to find a side of the square
eg $a^{2}=b^{2}+c^{2}-2 b c \cos \theta$
correct substitution (for triangle AOB)
eg $r^{2}+r^{2}-2 \times r \times r \cos \theta, \mathrm{OA}^{2}+\mathrm{OB}^{2}-2 \times \mathrm{OA} \times \mathrm{OB} \cos \theta$
correct working for AB^{2}
eg $2 r^{2}-2 r^{2} \cos \theta$
area $=2 r^{2}(1-\cos \theta)$
AG
Note: Award no marks if the only working is $2 r^{2}-2 r^{2} \cos \theta$.
(b) (i) $\frac{1}{2} \alpha r^{2}\left(\operatorname{accept} 2 r^{2}(1-\cos \alpha)\right)$

A1 N1
(ii) correct equation in one variable
eg $\quad 2(1-\cos \alpha)=\frac{1}{2} \alpha$

$$
\begin{aligned}
& \alpha=0.511024 \\
& \alpha=0.511 \quad \text { (accept } \theta=0.511)
\end{aligned}
$$

A2
Note: Award A1 for $\alpha=0.511$ and additional answers.

Question 10 continued
(c) Note: In this part, accept θ instead of β, and the use of equations instead of inequalities in the working.
attempt to find R
eg subtraction of areas, square - segment
correct expression for segment area
eg $\frac{1}{2} \beta r^{2}-\frac{1}{2} r^{2} \sin \beta$
correct expression for R
eg $\quad 2 r^{2}(1-\cos \beta)-\left(\frac{1}{2} \beta r^{2}-\frac{1}{2} r^{2} \sin \beta\right)$
correct inequality
eg $\quad 2 r^{2}(1-\cos \beta)-\left(\frac{1}{2} \beta r^{2}-\frac{1}{2} r^{2} \sin \beta\right)>2\left(\frac{1}{2} \beta r^{2}\right)$
correct inequality in terms of angle only
eg $\quad 2(1-\cos \beta)-\left(\frac{1}{2} \beta-\frac{1}{2} \sin \beta\right)>\beta$
attempt to solve their inequality, must represent $R>$ twice sector
eg sketch, one correct value

Note: Do not award the second (M1) unless the first (M1) for attempting to find R has been awarded.
both correct values 1.30573 and 2.67369
correct inequality $1.31<\beta<2.67$

MARKSCHEME

November 2014

MATHEMATICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners (red new, green check carefully)

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\boldsymbol{A} Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions and the document "Mathematics SL: Guidance for e-marking May 2014". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the RM assessor tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

All the marks will be added and recorded by RM assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M} \boldsymbol{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
N marks

If no working shown, award \boldsymbol{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, $\boldsymbol{A}, \boldsymbol{R}$).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the N marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A 0}$ for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then $\boldsymbol{F T}$ marks should be awarded if appropriate. Examiners are expected to check student work in order to award $\boldsymbol{F T}$ marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final $\boldsymbol{A 1}$. Note that if the error occurs within the same subpart, the $\boldsymbol{F T}$ rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted, neither should N marks be awarded for these answers.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an \boldsymbol{M} mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite $\mathrm{GP}, \sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark
explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked. The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant \boldsymbol{A} marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for $\boldsymbol{F T}$.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Clarification of intermediate values accuracy instructions

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A 0}$ for the final answer. However, do not penalise inaccurate intermediate values that lead to an acceptable final answer.

All examiners must read this section carefully, as there are some changes (in red) since M13.

These instructions apply when answers need to be rounded, they do not apply to exact answers which have 3 or fewer figures. The answers will give a range of acceptable values, and any answer given to 3 or more sf that lies in this range will be accepted as well as answers given to the correct $2 s f$ (which will usually not be in the acceptable range). Answers which are given to 1 sf are not acceptable. There is also a change to the awarding of N marks for acceptable answers.

Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer and the range of acceptable values. This range includes both end values. Once an acceptable value is seen, ignore any subsequent values (even if rounded incorrectly).
Units (which are generally not required) will appear in brackets at the end.

Example
1.73205
$\sqrt{3}$ (exact), $1.73[1.73,1.74]$ (m)

Note that 1.73 is the correct $3 \mathrm{sf}, 1.74$ is incorrectly rounded but acceptable, 1.7 is the correct 2 sf value but 1.72 is wrong.

For subsequent parts, the markscheme will show the answers obtained from using unrounded values, and the answers from using previous correct 3 sf answers. Examiners will need to check the work carefully if candidates use any other acceptable answers. If other acceptable answers lead to an incorrect final answer (ie outside the range), do not award the final $\boldsymbol{A 1}$. This should not be considered as $\boldsymbol{F T}$.

Intermediate values do not need to be given to the correct 3 sf . If candidates work with fewer than 3 sf , or with incorrectly rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A 0}$ for the final answer. However, do not penalise intermediate inaccurate values that lead to an acceptable final answer.

In questions where the final answer gains $\boldsymbol{A 2}$, if other working shown, award $\boldsymbol{A 1}$ for a correctly rounded 1 sf answer.

If there is no working shown, award the \boldsymbol{N} marks for any acceptable answer, eg in the example above, if 1.73 achieves $\boldsymbol{N} 4$, then $1.74,1.7,1.7320$ all achieve $\boldsymbol{N} 4$, but 2 achieves NO.

The following table shows what achieves the final mark if this is the only numerical answer seen, as long as there is other working.

	Correctly rounded	Incorrectly rounded
1 sf	No	No
2 sf	Yes	No
3 sf	Yes	Yes (if in the acceptable range)
4 or more sf	Yes (if in the acceptable range)	Yes (if in the acceptable range)

Examples: The correct marking is given at the end of this section. Please decide what marks you would give each answer, and then check. Assume that working is shown unless otherwise indicated. If you disagree, please discuss with your team leader.

Example 1 (awards $\boldsymbol{A 1}$ for final answer)

Markscheme	
7.43798	
$7.44[7.43,7.44]$	A1
	N3

	Candidate's Script	Marking
(i)	7.43798 followed by anything	
(ii)	7.5	
(iii)	7.4	
(iv)	7.4 (with no working)	
(v)	7	
(vi)	7.438	
(vii)	7.43	
(viii)	7.43 (with no working)	
(ix)	7.437	
(x)	7.433	

Example 2 (awards $\boldsymbol{A} 2$ for final answer)

Markscheme	
8.43482	
$8.43[8.43,8.44]$	$\boldsymbol{A 2} \quad$ N3

	Candidate's Script	Marking
(i)	8.433016	
(ii)	8.44	
(iii)	8	
(iv)	8.42	
(v)	8.4 (with no working)	
(vi)	8 (with no working)	
(vii)	8.44 (with no working)	
(viii)	8.43 (with no working)	

Answers to the examples.

Example 1 (awards A1 for final answer)

(i)	7.43798 followed by anything	$\boldsymbol{A 1}$
(ii)	7.5 (wrong)	$\boldsymbol{A 0}$
(iii)	7.4 (correct 2 sf)	$\boldsymbol{A 1}$
(iv)	7.4 (with no working)	$\boldsymbol{N} 3$
(v)	$7(1$ sf)	$\boldsymbol{A 0}$
(vi)	7.438 (in acceptable range)	$\boldsymbol{A 1}$
(vii)	7.43 (acceptable 3 sf)	$\boldsymbol{A 1}$
(viii)	7.43 (with no working)	N3
(ix)	7.437 (in acceptable range)	$\boldsymbol{A 1}$
(x)	7.433 (in acceptable range)	$\boldsymbol{A 1}$

Example 2 (awards $\boldsymbol{A} 2$ for final answer)

	Candidate's Script	Marking
(i)	8.433016 (in acceptable range)	$\boldsymbol{A 2}$
(ii)	8.44	$\boldsymbol{A 2}$
(iii)	8 (1 sf, penalise 1 mark)	$\boldsymbol{A 1}$
(iv)	8.42 (outside acceptable range)	$\boldsymbol{A 0}$
(v)	8.4 (with no working)	$\boldsymbol{N} 3$
(vi)	8 (with no working)	$\boldsymbol{N 0}$
(vii)	8.44 (with no working)	N3
(viii)	8.43 (with no working)	$\boldsymbol{N} 3$

SECTION A

1. (a) attempt to form composite (in any order)
eg $\quad f\left(x^{3}\right),(2 x+3)^{3}$
$(f \circ g)(x)=2 x^{3}+3,2(x)^{3}+3$
(b) evidence of appropriate approach
eg $\quad 2 x^{3}=-3$, sketch
correct working
eg $\quad x^{3}=\frac{-3}{2}$, sketch
-1.14471
$x=\sqrt[3]{\frac{-3}{2}}$ (exact), $-1.14[-1.15,-1.14]$
2. (a) evidence of set up
$e g \quad$ correct value for r (or for a or b, seen in (b))
0.996010
$r=0.996 \quad[0.996,0.997]$
(b) $\quad a=3.15037, b=-15.4393$
$a=3.15[3.15,3.16], b=-15.4[-15.5,-15.4]$
(c) substituting 26 into their equation
eg $\quad y=3.15(26)-15.4$
66.4704
66.5 [66.4, 66.5]

A1 N2
[2 marks]
Total [6 marks]
3. (a) correct substitution into formula
eg $\quad l=1.2 \times 8$
$9.6(\mathrm{~cm})$
A1 N2
(b) METHOD 1
evidence of choosing cosine rule
$e g \quad 2 r^{2}-2 \times r^{2} \times \cos (\mathrm{AOB})$
correct substitution into right hand side
eg $\quad 8^{2}+8^{2}-2 \times 8 \times 8 \times \cos (1.2)$
9.0342795
$\mathrm{AB}=9.03[9.03,9.04](\mathrm{cm})$
A1
N2

METHOD 2

evidence of choosing sine rule
(M1)
$e g \quad \frac{\mathrm{AB}}{\sin (\mathrm{AOB})}=\frac{\mathrm{OB}}{\sin (\mathrm{OAB})}$
finding angle OAB or OBA (may be seen in substitution)
eg $\frac{\pi-1.2}{2}, 0.970796$
$\mathrm{AB}=9.03[9.03,9.04](\mathrm{cm}) \quad$ A1
[3 marks]
continued ...

Question 3 continued

(c) correct working
eg $\quad P=9.6+9.03$
18.6342
18.6 [18.6, 18.7] (cm)

Total [7 marks]
4. (a)

A1A1A1

Note: Award A1 for both endpoints in circles,
A1 for approximately correct shape (concave up to concave down).
Only if this $\boldsymbol{A 1}$ for shape is awarded, award $\boldsymbol{A 1}$ for maximum point in circle.
(b) $\quad x=1 \quad x=1.83928$
$x=1$ (exact) $\quad x=1.84[1.83,1.84]$
A1A1
N2 [2 marks]
(c) attempt to substitute either $(\boldsymbol{F T})$ limits or function into formula with f^{2}
(M1)
(accept absence of π or $\mathrm{d} x$, but do not accept any errors, including extra bits)
$e g \quad V=\pi \int_{1}^{1.84} f^{2}, \int\left(-x^{4}+2 x^{3}-1\right)^{2} \mathrm{~d} x$
0.636581
$V=0.637[0.636,0.637] \quad \boldsymbol{A 2}$
5. (a) valid approach
eg $\frac{2-1}{2}, 2-1.5$

$$
p=0.5 \quad A 1
$$

(b) valid approach
eg $\frac{1+2}{2}$
$r=1.5$
A1 N2
[2 marks]
(c) METHOD 1
valid approach (seen anywhere)
M1
$e g \quad q=\frac{2 \pi}{\text { period }}, \frac{2 \pi}{\left(\frac{2 \pi}{3}\right)}$
period $=\frac{2 \pi}{3}($ seen anywhere $)$
$q=3$
A1

METHOD 2

attempt to substitute one point and their values for p and r into y
$e g \quad 2=0.5 \sin \left(q \frac{\pi}{6}\right)+1.5, \frac{\pi}{2}=0.5 \sin (q 1)+1.5$
correct equation in q
eg $\quad q \frac{\pi}{6}=\frac{\pi}{2}, q \frac{\pi}{2}=\frac{3 \pi}{2}$
$q=3$
A1

METHOD 3

valid reasoning comparing the graph with that of $\sin x$
R1
eg position of max/min, graph goes faster
correct working
eg max at $\frac{\pi}{6}$ not at $\frac{\pi}{2}$, graph goes 3 times as fast
$q=3$
A1
6. valid approach to find the required term
(M1)
$e g \quad\binom{8}{r}\left(\frac{x^{3}}{2}\right)^{8-r}\left(\frac{p}{x}\right)^{r},\left(\frac{x^{3}}{2}\right)^{8}\left(\frac{p}{x}\right)^{0}+\binom{8}{1}\left(\frac{x^{3}}{2}\right)^{7}\left(\frac{p}{x}\right)^{1}+\ldots$, Pascal's triangle to required value
identifying constant term (may be indicated in expansion)
$e g \quad 7^{\text {th }}$ term, $r=6,\left(\frac{1}{2}\right)^{2},\binom{8}{6},\left(\frac{x^{3}}{2}\right)^{2}\left(\frac{p}{x}\right)^{6}$
correct calculation (may be seen in expansion)
eg $\quad\binom{8}{6}\left(\frac{x^{3}}{2}\right)^{2}\left(\frac{p}{x}\right)^{6}, \frac{8 \times 7}{2} \times \frac{p^{6}}{2^{2}}$
setting up equation with their constant term equal to 5103
M1
eg $\quad\binom{8}{6}\left(\frac{x^{3}}{2}\right)^{2}\left(\frac{p}{x}\right)^{6}=5103, p^{6}=\frac{5103}{7}$
$p= \pm 3$
7. (a) correct substitution of function and/or limits into formula
(accept absence of $\mathrm{d} t$, but do not accept any errors)
$e g \quad \int_{0}^{\frac{\pi}{2}} v, \int\left|\mathrm{e}^{\frac{1}{2} \cos t}-1\right| \mathrm{d} t, \int\left(\mathrm{e}^{\frac{1}{2} \cos t}-1\right)$
0.613747
distance is $0.614[0.613,0.614](\mathrm{m}) \quad A 1$
(b) METHOD 1
valid attempt to find the distance travelled between $t=\frac{\pi}{2}$ and $t=4$
$e g \quad \int_{\frac{\pi}{2}}^{4}\left(\mathrm{e}^{\frac{1}{2} \cos t}-1\right), \int_{0}^{4}\left|\mathrm{e}^{\frac{1}{2} \cos t}-1\right| \mathrm{d} t-0.614$
distance is 0.719565
valid reason, referring to change of direction (may be seen in explanation)
valid explanation comparing their distances
eg $0.719565>0.614$, distance moving back is more than distance moving forward

Note: Do not award the final R1 unless the $\boldsymbol{A 1}$ is awarded.
particle passes through A again
AG No

METHOD 2

valid attempt to find displacement
$e g \quad \int_{\frac{\pi}{2}}^{4}\left(\mathrm{e}^{\frac{1}{2} \cos t}-1\right), \int_{0}^{4}\left(\mathrm{e}^{\frac{1}{2} \cos t}-1\right)$
correct displacement
eg $\quad-0.719565,-0.105817$
recognising that displacement from 0 to $\frac{\pi}{2}$ is positive
$e g \quad$ displacement $=$ distance from 0 to $\frac{\pi}{2}$
valid explanation referring to positive and negative displacement
eg $0.719565>0.614$, overall displacement is negative, since displacement after $\frac{\pi}{2}$ is negative, then particle gone backwards more than forwards

Note: Do not award the final $\boldsymbol{R 1}$ unless the $\boldsymbol{A 1}$ and the first $\boldsymbol{R 1}$ are awarded.

Question 7 continued

Note: Special Case. If all working shown, and candidates seem to have misread the question, using $v=\mathrm{e}^{\frac{1}{2} \cos t}$, award marks as follows:
(a) correct substitution of function and/or limits into formula

AOMR (accept absence of $\mathrm{d} t$, but do not accept any errors)

$$
e g \quad \int_{0}^{\frac{\pi}{2}}\left(\mathrm{e}^{\frac{1}{2} \cos t}\right), \int\left|\mathrm{e}^{\frac{1}{2} \cos t}\right| \mathrm{d} t, \int\left(\mathrm{e}^{\frac{1}{2} \cos t}\right)
$$

2.184544
distance is 2.18 [2.18, 2.19] (m)
(b) METHOD 1
valid attempt to find the distance travelled between $t=\frac{\pi}{2}$ and $t=4$
$e g \quad \int_{\frac{\pi}{2}}^{4}\left(\mathrm{e}^{\frac{1}{2} \cos t}\right), \int_{0}^{4}\left|\mathrm{e}^{\frac{1}{2} \cos t}\right| \mathrm{d} t-2.18$
distance is 1.709638
reference to change of direction (may be seen in explanation)
reasoning/stating particle passes/does not pass through A again

METHOD 2

valid attempt to find displacement
$e g \int_{\frac{\pi}{2}}^{4}\left(\mathrm{e}^{\frac{1}{2} \cos t}\right), \int_{0}^{4}\left(\mathrm{e}^{\frac{1}{2} \cos t}\right)$
correct displacement
eg 1.709638, 3.894182
recognising that displacement from 0 to $\frac{\pi}{2}$ is positive
reasoning/stating particle passes/does not pass through A again

With method 2 , there is no valid reasoning about whether the particle passes through A again or not, so they cannot gain the \boldsymbol{R} marks.

SECTION B

8. (a) recognizing that the median is at half the total frequency
eg $\frac{2000}{2}$
$m=2500$ (dollars)
A1
N2
[2 marks]
(b) (i) 500 families have a monthly income less than 2000

A1
N1
(ii) correct cumulative frequency, 1850
subtracting their cumulative frequency from 2000
eg 2000-1850
150 families have a monthly income of more than 4000 dollars A1
Note: If working shown, award M1A1A1 for $128+22=150$, using the table.
(c) correct calculation
eg $2000-(436+64+765+28+122), 1850-500-765$

$$
p=585
$$

A1
N2 [2 marks]
(d) (i) correct working

$$
e g \quad 436+765+28
$$

$$
0.6145 \text { (exact) }
$$

$$
\frac{1229}{2000}, 0.615[0.614,0.615]
$$

$$
A 1
$$

(ii) correct working/probability for number of families
eg $\quad 122+28, \frac{150}{2000}, 0.075$
0.186666

$$
\frac{28}{150}\left(=\frac{14}{75}\right), 0.187[0.186,0.187]
$$

$$
A 1
$$

(e) evidence of using correct mid-interval values (1500, 3000, 4500)
attempt to substitute into $\frac{\sum f x}{\sum f}$
eg $\frac{1500 \times 64+3000 \times p+4500 \times 122}{64+585+122}$
3112.84

3110 [3110, 3120] (dollars)
9. (a) (i) valid approach
$e g \quad r=\frac{u_{2}}{u_{1}}, \frac{4}{4.2}$
$r=1.05$ (exact)
(ii) attempt to substitute into formula, with their r
eg $4 \times 1.05^{n}, 4 \times 1.05 \times 1.05 \ldots$
correct substitution
eg $\quad 4 \times 1.05^{4}, 4 \times 1.05 \times 1.05 \times 1.05 \times 1.05$
$u_{5}=4.862025$ (exact), $4.86[4.86,4.87]$
A1
(b) (i) attempt to substitute $n=1$
eg $\quad 0.05=a \times 1^{k}$
$a=0.05$
A1
N2
(ii) correct substitution of $n=2$ into v_{2}
eg $\quad 0.25=a \times 2^{k}$
correct work
$e g \quad$ finding intersection point, $k=\log _{2}\left(\frac{0.25}{0.05}\right), \frac{\log 5}{\log 2}$
2.32192
$k=\log _{2} 5$ (exact), $2.32[2.32,2.33]$
(c) correct expression for u_{n}
eg $\quad 4 \times 1.05^{n-1}$

EITHER

correct substitution into inequality (accept equation)
eg $\quad 0.05 \times n^{k}>4 \times 1.05^{n-1}$
valid approach to solve inequality (accept equation)
eg finding point of intersection, $n=7.57994$ (7.59508 from 2.32)

$$
n=8 \text { (must be an integer) } \quad \boldsymbol{A 1}
$$

OR

table of values
when $n=7, u_{7}=5.3604, v_{7}=4.5836$
when $n=8, u_{8}=5.6284, v_{8}=6.2496$ A1
$n=8$ (must be an integer)

A1
[4 marks]
10. Note: There may be slight differences in answers, depending on which values candidates carry through in subsequent parts. Accept answers that are consistent with their working.
(a) (i) $\mathrm{P}(X>760)=0.5$ (exact), $[0.499,0.500]$

A1
(ii) evidence of valid approach
recognising symmetry, $\frac{0.7887}{2}, 1-\mathrm{P}(W<815), \frac{21.13}{2}+78.87 \%$
correct working
(A1)
eg $\quad 0.5+0.39435,1-0.10565$,

0.89435 (exact), 0.894 [0.894, 0.895]
(b) (i) 1.24999
$z=1.25[1.24,1.25]$
A1
N1
(ii) evidence of appropriate approach
eg $\quad \sigma=\frac{x-\mu}{1.25}, \frac{815-760}{\sigma}$
correct substitution
(A1)
eg $\quad 1.25=\frac{815-760}{\sigma}, \frac{815-760}{1.24999}$
44.0003
$\sigma=44.0 \quad[44.0,44.1](\mathrm{g})$
A1
(c) correct working
eg $\quad 760-1.5 \times 44$
693.999
$694[693,694]$ (g)
(d) 0.0668056
$\mathrm{P}(X<694)=0.0668[0.0668,0.0669]$
A2

Question 10 continued

(e) recognizing conditional probability (seen anywhere)
(M1)
$e g \quad \mathrm{P}(\mathrm{A} \mid \mathrm{B}), \frac{0.025}{0.0668}$
appropriate approach involving conditional probability (M1)
$e g \quad \mathrm{P}(S \mid T)=\frac{\mathrm{P}(S \text { and } T)}{\mathrm{P}(T)}$,
correct working
$e g \quad \mathrm{P}($ salmon and tiddler $)=0.25 \times 0.1, \frac{0.25 \times 0.1}{0.0668}$
0.374220
0.374 [0.374, 0.375]

A1

MARKSCHEME

May 2014

MATHEMATICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

All examiners must read these instructions carefully, as there are some changes since M13.

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\boldsymbol{A} Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking May 2014". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the new scoris tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.
- If a part is completely wrong, $\operatorname{stamp} \boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

All the marks will be added and recorded by scoris.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M} \mathbf{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.

3
 N marks

If no working shown, award \boldsymbol{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, $\boldsymbol{A}, \boldsymbol{R}$).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to $\boldsymbol{M 0}$ or $\boldsymbol{A 0}$ for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then $\boldsymbol{F T}$ marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final $\boldsymbol{A 1}$. Note that if the error occurs within the same subpart, the $\boldsymbol{F T}$ rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F} \boldsymbol{T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted, neither should N marks be awarded for these answers.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an \boldsymbol{M} mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark
explaining this decision.

Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant \boldsymbol{A} marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for $\boldsymbol{F T}$. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers ($e g 6 / 8$). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Clarification of intermediate values accuracy instructions

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A 0}$ for the final answer. However, do not penalise inaccurate intermediate values that lead to an acceptable final answer.

11 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation

The Mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

12 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets

14. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

SECTION A

1. (a) evidence of choosing cosine rule
eg $\quad \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2(\mathrm{AB})(\mathrm{BC}) \cos (\mathrm{ABC})$
correct substitution into the right-hand side
eg $\quad 6^{2}+10^{2}-2(6)(10) \cos 100^{\circ}$
$\mathrm{AC}=12.5234$
$\mathrm{AC}=12.5 \quad(\mathrm{~cm})$
(b) evidence of choosing a valid approach
eg sine rule, cosine rule
correct substitution
$e g \quad \frac{\sin (\mathrm{BCA})}{6}=\frac{\sin 100^{\circ}}{12.5}, \cos (\mathrm{~B} \hat{\mathrm{C}} \mathrm{A})=\frac{(\mathrm{AC})^{2}+10^{2}-6^{2}}{2(\mathrm{AC})(10)}$
$\mathrm{BCA}=28.1525$
$\mathrm{BCA}=28.2^{\circ}$
A1
2. (a) 11 terms
(b) evidence of binomial expansion
eg $\quad\binom{n}{r} a^{n-r} b^{r}$, attempt to expand
evidence of choosing correct term
$e g \quad 8^{\text {th }}$ term, $r=7,\binom{10}{7},(x)^{3}(3)^{7}$
correct working
eg $\quad\binom{10}{7}(x)^{3}(3)^{7},\binom{10}{3}(x)^{3}(3)^{7}$,
$262440 x^{3}$ (accept 262000x ${ }^{3}$) A1
3. (a)
(i) $\quad \begin{aligned} a & =0.486 \quad \text { (exact) } \\ b & =-12.41 \quad \text { (exact), }-12.4\end{aligned}$
(ii) correct substitution
eg $\quad 0.486(172)-12.41$

A1
N1
71.182
$71.2(\mathrm{~kg}) \quad$ A1
(b) (i) $\quad r=0.997276$
$r=0.997$
(ii) strong, positive (must have both correct)
4. (a) METHOD 1

Note: Award $\boldsymbol{A 1}$ for segment connecting endpoints and $\boldsymbol{A 1}$ for direction (must see arrow).

METHOD 2

A1A1
Notes: Award $\boldsymbol{A 1}$ for segment connecting endpoints and $\boldsymbol{A 1}$ for direction (must see arrow).
Additional lines not required.
(b) evidence of setting scalar product equal to zero (seen anywhere)
R1
eg $\boldsymbol{u} \cdot \boldsymbol{v}=0,15+2 n+3=0$
correct expression for scalar product (A1)
eg $3 \times 5+2 \times n+1 \times 3,2 n+18=0$
attempt to solve equation (M1)
eg $\quad 2 n=-18$

$$
n=-9
$$

5. (a) $t=5$
correct substitution into formula
eg $\quad 210 \sin (0.5 \times 5-2.6)+990, P(5)$
969.034982...

969 (deer) (must be an integer) A1
(b) (i) evidence of considering derivative
104.475

104 (deer per month) A1
(ii) (the deer population size is) increasing

6. METHOD 1

$S_{L}(0)=60 \quad$ (seen anywhere)
recognizing need to integrate V_{R}
eg $\quad S_{R}(t)=\int V_{R} \mathrm{~d} t$
correct expression
eg $\quad 40 t-\frac{1}{3} t^{3}+C$

Note: Award $\boldsymbol{A 1}$ for $40 t$, and $\boldsymbol{A 1}$ for $-\frac{1}{3} t^{3}$.
equate displacements to find C
$e g \quad 40(0)-\frac{1}{3}(0)^{3}+C=60, S_{L}(0)=S_{R}(0)$
$C=60$
attempt to find displacement
$e g \quad S_{R}(10), 40(10)-\frac{1}{3}(10)^{3}+60$
126.666
$126 \frac{2}{3}$ (exact), 127 (m)

Question 6 continued

METHOD 2

recognizing need to integrate V_{R}
$e g \quad S_{R}(t)=\int V_{R} \mathrm{~d} t$
valid approach involving a definite integral
eg $\quad \int_{a}^{b} V_{R} \mathrm{~d} t$
correct expression with limits
$e g \quad \int_{0}^{10}\left(40-t^{2}\right) \mathrm{d} t, \int_{0}^{10} V_{R} \mathrm{~d} t,\left[40 t-\frac{1}{3} t^{3}\right]_{0}^{10}$
66.6666
$S_{L}(0)=60 \quad$ (seen anywhere)
valid approach to find total displacement
eg $\quad 60+66.666$
126.666
$126 \frac{2}{3}$ (exact), 127 (m)

METHOD 3

$S_{L}(0)=60$ (seen anywhere)
recognizing need to integrate V_{R}
eg $\quad S_{R}(t)=\int V_{R} \mathrm{~d} t$
correct expression
eg $\quad 40 t-\frac{1}{3} t^{3}+C$
Note: Award $\boldsymbol{A 1}$ for $40 t$, and $\boldsymbol{A 1}$ for $-\frac{1}{3} t^{3}$.
correct expression for Ramiro displacement
$e g \quad S_{R}(10)-S_{R}(0),\left[40 t-\frac{1}{3} t^{3}+C\right]_{0}^{10}$
66.6666
valid approach to find total displacement
eg $\quad 60+66.6666$
126.666
$126 \frac{2}{3}$ (exact), 127 (m)
7. recognizing need to find $f(2)$ or $f^{\prime}(2)$
$f(2)=\frac{18}{6}$ (seen anywhere)
correct substitution into the quotient rule
$e g \quad \frac{6(5)-18(2)}{6^{2}}$
$f^{\prime}(2)=-\frac{6}{36}$
gradient of normal is 6
attempt to use the point and gradient to find equation of straight line (M1)
$e g \quad y-f(2)=-\frac{1}{f^{\prime}(2)}(x-2)$
correct equation in any form
A1
eg $\quad y-3=6(x-2), y=6 x-9$

SECTION B

8. (a) (i) 50 (g)

A1
N1
(ii) 65 rats weigh less than 70 grams
attempt to find a percentage
(M1)
eg $\frac{65}{80}, \frac{65}{80} \times 100$
81.25 (\%) (exact), 81.3

A1
N3
(b) (i) $p=10$

A2
(ii) subtracting to find q (M1) eg 75-45-10

A1
(c) evidence of mid-interval values
eg 15, 45, 75, 105
$\bar{x}=52.5$ (exact), $\sigma=22.5$ (exact)
A1A1
(d) 0.781650
78.2 (\%)

$$
q=20
$$

(e) recognize binomial probability
$e g \quad X \sim \mathrm{~B}(n, p),\binom{5}{r} \times 0.782^{r} \times 0.218^{5-r}$
valid approach
eg $\mathrm{P}(X \leq 3)$
0.30067
0.301
9. (a)

A1A1A1
N3
Note: Award A1 for approximately correct sinusoidal shape.
Only if this $\boldsymbol{A 1}$ is awarded, award the following:
A1 for correct domain,
A1 for approximately correct range.
(a) recognizes decreasing to the left of minimum or right of maximum,
eg $\quad f^{\prime}(x)<0$
x-values of minimum and maximum (may be seen on sketch in part (a)) (A1)(A1) eg $\quad x=-3,(1,1.4)$
two correct intervals
A1A1
eg $\quad-4<x<-3,1 \leq x \leq 4 ; x<-3, x \geq 1$
(c) (i) recognizes that a is found from amplitude of wave
y-value of minimum or maximum
eg $\quad(-3,-1.41),(1,1.41)$
$a=1.41421$
$a=\sqrt{2}$, (exact), 1.41,
A1

Question 9 continued
(ii) METHOD 1
recognize that shift for sine is found at x-intercept (R1)
attempt to find x-intercept
$e g \quad \cos \left(\frac{\pi}{4} x\right)+\sin \left(\frac{\pi}{4} x\right)=0, x=3+4 k, k \in \mathbb{Z}$
$x=-1$
$c=1$
A1

METHOD 2

attempt to use a coordinate to make an equation
eg $\quad \sqrt{2} \sin \left(\frac{\pi}{4} c\right)=1, \sqrt{2} \sin \left(\frac{\pi}{4}(3-c)\right)=0$
attempt to solve resulting equation
$e g \quad$ sketch, $x=3+4 k, k \in \mathbb{Z}$
$x=-1$
$c=1$
10. (a) $x=q, y=3$ (must be equations)
(b) recognizing connection between point of intersection and asymptote eg $\quad x=1$

$$
\begin{equation*}
q=1 \tag{A1}
\end{equation*}
$$

(c) correct substitution into distance formula
$e g \quad \sqrt{(x-1)^{2}+(y-3)^{2}}$
attempt to substitute $y=\frac{3 x}{x-1}$
$e g \sqrt{(x-1)^{2}+\left(\frac{3 x}{x-1}-3\right)^{2}}$
correct simplification of $\left(\frac{3 x}{x-1}-3\right)$
eg $\quad \frac{3 x-3(x-1)}{x-1}$
correct expression clearly leading to the required answer
$e g \quad \frac{3 x-3 x+3}{x-1}, \sqrt{(x-1)^{2}+\left(\frac{3 x-3 x+3}{x-1}\right)^{2}}$
$\mathrm{PQ}=\sqrt{(x-1)^{2}+\left(\frac{3}{x-1}\right)^{2}}$
(d) recognizing that closest is when PQ is a minimum
$e g$ sketch of $\mathrm{PQ},(\mathrm{PQ})^{\prime}(x)=0$
$x=-0.73205 x=2.73205$ (seen anywhere)
attempt to find y-coordinates
eg $\quad f(-0.73205)$
$(-0.73205,1.267949),(2.73205,4.73205)$
(-0.732, 1.27), (2.73, 4.73)

A1A1

MARKSCHEME

May 2014

MATHEMATICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

All examiners must read these instructions carefully, as there are some changes since M13.

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\boldsymbol{A} Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
\boldsymbol{N} Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking May 2014". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the new scoris tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

All the marks will be added and recorded by scoris.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.

N marks

If no working shown, award \boldsymbol{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the N marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A 0}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through ($\boldsymbol{F T}$) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F} \boldsymbol{T}$ marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final $\boldsymbol{A 1}$. Note that if the error occurs within the same subpart, the $\boldsymbol{F T}$ rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted, neither should \boldsymbol{N} marks be awarded for these answers.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite $G P, \sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant \boldsymbol{A} marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for FT. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Clarification of intermediate values accuracy instructions

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A 0}$ for the final answer. However, do not penalise inaccurate intermediate values that lead to an acceptable final answer.

11 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation

The Mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

12 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets

14. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, $\boldsymbol{F T}$ marks should be awarded if appropriate.

SECTION A

1. (a) (i) correct substitution into arc length formula
eg $\quad 0.7 \times 5$
arc length $=3.5(\mathrm{~cm}) \quad \boldsymbol{A 1}$
(ii) valid approach
eg $3.5+5+5, \operatorname{arc}+2 r$
perimeter $=13.5(\mathrm{~cm}) \quad$ A1
(b) correct substitution into area formula
eg $\quad \frac{1}{2}(0.7)(5)^{2}$
area $=8.75\left(\mathrm{~cm}^{2}\right)$
2. (a) recognizing $f(x)=0$
eg $\quad f=0, x^{2}=5$
$x= \pm 2.23606$
$x= \pm \sqrt{5}$ (exact), $x= \pm 2.24$
A1A1
(b) attempt to substitute either limits or the function into formula involving f^{2}
$e g \quad \pi \int\left(5-x^{2}\right)^{2} \mathrm{~d} x, \pi \int_{-2.24}^{2.24}\left(x^{4}-10 x^{2}+25\right), 2 \pi \int_{0}^{\sqrt{5}} f^{2}$
187.328
volume $=187$
3. (a) (i) $a=0.0823604, b=0.306186$

$$
a=0.0824, b=0.306 \quad \text { A1A1 }
$$

(ii) correct explanation with reference to number of litres required for 1 km
eg a represents the (average) amount of fuel (litres) required to drive 1 km , (average) litres per kilometre, (average) rate of change in fuel used for each km travelled
(b) valid approach
$e g \quad y=0.0824(110)+0.306$, sketch
9.36583
9.37 (litres)
4. (a) correct substitution
eg $\quad 0.3 \times 0.6$
$\mathrm{P}(A \cap B)=0.18$
(b) correct substitution
eg $\quad \mathrm{P}(A \cup B)=0.3+0.6-0.18$

$$
\mathrm{P}(A \cup B)=0.72
$$

(c) (i)

(ii) appropriate approach
(M1)
eg $\quad 0.3-0.18, \mathrm{P}(A) \times \mathrm{P}\left(B^{\prime}\right)$
$\mathrm{P}\left(A \cap B^{\prime}\right)=0.12$ (may be seen in Venn diagram)
A1
5. (a) correct substitution into area formula
eg $\quad \frac{1}{2}(6)(8) \sin A=16, \sin A=\frac{16}{24}$
correct working
eg $\quad A=\arcsin \left(\frac{2}{3}\right)$
$A=0.729727656 \ldots, 2.41186499 \ldots ;\left(41.8103149^{\circ}, 138.1896851^{\circ}\right)$
$A=0.730 ; 2.41$
(accept degrees ie $41.8^{\circ} ; 138^{\circ}$)
(b) evidence of choosing cosine rule
eg $\quad \mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}-2(\mathrm{AB})(\mathrm{AC}) \cos A, a^{2}+b^{2}-2 a b \cos C$
correct substitution into RHS (angle must be obtuse)
(A1)
eg $\quad \mathrm{BC}^{2}=6^{2}+8^{2}-2(6)(8) \cos 2.41,6^{2}+8^{2}-2(6)(8) \cos 138^{\circ}$,

$$
\mathrm{BC}=\sqrt{171.55}
$$

$\mathrm{BC}=13.09786$
$\mathrm{BC}=13.1 \mathrm{~cm}$
6. (a) $r=-4$

A2
N2
Note: Award A1 for $r=4$.
(b) (i) evidence of valid approach
$e g \quad \frac{\max y \text { value }-\min y \text { value }}{2}$, distance from $y=10$
$p=8 \quad \boldsymbol{A 1}$
(ii) valid approach
$e g \quad$ period is $24, \frac{360}{24}$, substitute a point into their $f(x)$
$q=\frac{2 \pi}{24}\left(\frac{\pi}{12}\right.$, exact $), 0.262$ (do not accept degrees)
(c) valid approach
$e g \quad$ line on graph at $y=7,8 \cos \left(\frac{2 \pi}{24}(x-4)\right)+10=7$

$$
\begin{aligned}
& x=11.46828 \\
& x=11.5(\operatorname{accept}(11.5,7))
\end{aligned}
$$

Note: Do not award the final $A 1$ if additional values are given. If an incorrect value of q leads to multiple solutions, award the final $\boldsymbol{A 1}$ only if all solutions within the domain are given.
7. valid approach
eg $\quad\binom{8}{r}\left(3 x^{2}\right)^{8-r}\left(\frac{k}{x}\right)^{r}$,

$$
\left(3 x^{2}\right)^{8}+\binom{8}{1}\left(3 x^{2}\right)^{7}\left(\frac{k}{x}\right)+\binom{8}{2}\left(3 x^{2}\right)^{6}\left(\frac{k}{x}\right)^{2}+\ldots, \text { Pascal's }
$$ triangle to $9^{\text {th }}$ line

attempt to find value of r which gives term in x^{0}
$e g \quad$ exponent in binomial must give $x^{-2}, x^{2}\left(x^{2}\right)^{8-r}\left(\frac{k}{x}\right)^{r}=x^{0}$
correct working
$e g \quad 2(8-r)-r=-2,18-3 r=0,2 r+(-8+r)=-2$
evidence of correct term
$e g \quad\binom{8}{2},\binom{8}{6}\left(3 x^{2}\right)^{2}\left(\frac{k}{x}\right)^{6}, r=6, r=2$
equating their term and 16128 to solve for k
$e g \quad x^{2}\binom{8}{6}\left(3 x^{2}\right)^{2}\left(\frac{k}{x}\right)^{6}=16128, k^{6}=\frac{16128}{28(9)}$
$k= \pm 2$
A1A1
Note: If no working shown, award NO for $k=2$.

SECTION B

8. (a) correct substitution into formula
eg $\quad 12 \mathrm{e}^{0.4(0)}$
12 bacteria in the dish A1
N2
(b) correct substitution into formula
eg $\quad 12 \mathrm{e}^{0.4(4)}$
59.4363
(A1)
59 bacteria in the dish (integer answer only)
A1
N3
[3 marks]
(c) correct equation
eg $\quad A(t)=400,12 \mathrm{e}^{0.4 t}=400$
valid attempt to solve
eg graph, use of logs
8.76639
8.77 (hours)
(d) valid attempt to solve
eg $\quad n(4)=60,60=24 \mathrm{e}^{4 k}$, use of logs
correct working
eg sketch of intersection, $4 k=\ln 2.5$
$k=0.229072$
$k=\frac{\ln 2.5}{4}$ (exact), $k=0.229$
A1
N3
[3 marks]

Question 8 continued

(e) METHOD 1
setting up an equation or inequality (accept any variable for n)
eg $\quad A(t)>B(t), 12 \mathrm{e}^{0.4 n}=24 \mathrm{e}^{0.229 n}, \mathrm{e}^{0.4 n}=2 \mathrm{e}^{0.229 n}$
correct working
$e g \quad$ sketch of intersection, $\mathrm{e}^{0.171 n}=2$
4.05521 (accept 4.05349)
$n=5$ (integer answer only) A1

METHOD 2

$A(4)=59, B(4)=60($ from earlier work $)$
$A(5)=88.668, B(5)=75.446$
valid reasoning
eg $A(4)<B(4)$ and $A(5)>B(5)$
$n=5$ (integer answer only)
9. (a) substituting $t=1$ into v
eg $\quad v(1),\left(1^{2}-4\right)^{3}$
velocity $=-27\left(\mathrm{~ms}^{-1}\right)$
(b) valid reasoning
$e g \quad v=0,\left(t^{2}-4\right)^{3}=0$
correct working
$e g \quad t^{2}-4=0, t= \pm 2$, sketch

$$
t=2 \quad A 1
$$

(c) correct integral expression for distance
$e g \quad \int_{0}^{3}|v|, \int\left|\left(t^{2}-4\right)^{3}\right|,-\int_{0}^{2} v d t+\int_{2}^{3} v d t$,

$$
\left.\int_{0}^{2}\left(4-t^{2}\right)^{3} \mathrm{~d} t+\int_{2}^{3}\left(t^{2}-4\right)^{3} \mathrm{~d} t \quad \text { (do not accept } \int_{0}^{3} v \mathrm{~d} t\right)
$$

86.2571
distance $=86.3(\mathrm{~m})$
A2
$e g \quad v^{\prime}(t)$
$a=3\left(t^{2}-4\right)^{2}(2 t)$
$a=6 t\left(t^{2}-4\right)^{2}$

$$
A G
$$

(e) METHOD 1
valid approach M1
$e g \quad$ graphs of v and a
correct working
$e g \quad$ areas of same sign indicated on graph
$2<t \leq 3$ (accept $t>2$) A2

METHOD 2

recognizing that $a \geq 0$ (accept a is always positive) (seen anywhere) R1
recognizing that v is positive when $t>2$ (seen anywhere) (R1)
$2<t \leq 3$ (accept $t>2$) A2
10. (a) (i) valid approach
eg $\quad \mathrm{P}(G)=\mathrm{P}(H>60), z=0.875, \mathrm{P}(H>60)=1-0.809, \mathrm{~N}\left(53,8^{2}\right)$
0.190786
$\mathrm{P}(G)=0.191$ A1
(ii) finding $\mathrm{P}(H>70)=0.01679$ (seen anywhere)
recognizing conditional probability
$e g \quad \mathrm{P}(A \mid B), \mathrm{P}(H>70 \mid H>60)$
correct working
eg $\frac{0.01679}{0.191}$
0.0880209
$\mathrm{P}(X>70 \mid G)=0.0880$
(b) attempt to square their $\mathrm{P}(G)$
eg 0.191^{2}
0.0363996
$\mathrm{P}($ both $G)=0.0364$
A1 N2 [2 marks]
(c) (i) correct substitution into formula for $\mathrm{E}(X)$
eg 100(0.191)
$\mathrm{E}(G)=19.1[19.0,19.1]$
(ii) recognizing binomial probability (may be seen in part (c)(i))
eg $\quad X \sim \mathrm{~B}(n, p)$
valid approach (seen anywhere)
eg $\quad \mathrm{P}(X \geq 25)=1-\mathrm{P}(X \leq 24), 1-\mathrm{P}(X<a)$
correct working
eg $\mathrm{P}(X \leq 24)=0.913 \ldots, 1-0.913 \ldots$
0.0869002
$P(X \geq 25)=0.0869$ A1

MARKSCHEME

November 2013

MATHEMATICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking November 2013". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the new scoris tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.

If no working shown, award N marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the N marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the N marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or A0 for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an A mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the $\boldsymbol{F T}$ rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted, neither should \boldsymbol{N} marks be awarded for these answers.
$7 \quad$ Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant A marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for FT. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Clarification of intermediate values accuracy instructions

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A} \boldsymbol{0}$ for the final answer. However, do not penalise inaccurate intermediate values that lead to an acceptable final answer.

11 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation

The Mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

14. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first A1 is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

SECTION A

1. (a) $\boldsymbol{A}^{-1}=\left(\begin{array}{ccc}-1 & 4 & -1.5 \\ 1 & -4 & 2 \\ -1 & 5 & -2.5\end{array}\right)$ A2 N2

Note: Award A1 for 6, 7 or 8 correct elements.
(b) attempt to solve equation
eg multiplying by A^{-1}, setting up system of equations
$\boldsymbol{X}=\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)$ (accept $x=2, y=3, z=-1$)
2. (a) valid approach
eg $\quad f(x)=0$, sketch of parabola showing two x-intercepts

$$
x=1, x=4(\text { accept }(1,0),(4,0))
$$

A1A1
(b) attempt to substitute either limits or the function into formula involving f^{2}

```
(M1)
```

eg $\quad \int_{1}^{4}(f(x))^{2} \mathrm{~d} x, \pi \int((x-1)(x-4))^{2}$
volume $=8.1 \pi($ exact $), 25.4$
A2
N3
[3 marks]
Total [6 marks]
3. (a) expressing f as $x^{\frac{4}{3}}$
(M1)
$f^{\prime}(x)=\frac{4}{3} x^{\frac{1}{3}} \quad\left(=\frac{4}{3} \sqrt[3]{x}\right)$
A1
(b) attempt to integrate $\sqrt[3]{x^{4}}$
eg $\frac{x^{\frac{4}{3}+1}}{\frac{4}{3}+1}$
$\int f(x) \mathrm{d} x=\frac{3}{7} x^{\frac{7}{3}}-\frac{x}{2}+c$
A1A1A1
N4
[4 marks]

Total [6 marks]

4. (a) correct approach
eg $\quad 0.5=0.2+\mathrm{P}(B), \mathrm{P}(A \cap B)=0$
$\mathrm{P}(B)=0.3$
A1
N2 [2 marks]
(b) Correct expression for $\mathrm{P}(A \cap B)$ (seen anywhere)
eg $\quad \mathrm{P}(A \cap B)=0.2 \mathrm{P}(B), 0.2 x$
attempt to substitute into correct formula for $\mathrm{P}(A \cup B)$
eg $\quad \mathrm{P}(A \cup B)=0.2+\mathrm{P}(B)-\mathrm{P}(A \cap B), \mathrm{P}(A \cup B)=0.2+x-0.2 x$
correct working
eg $\quad 0.5=0.2+\mathrm{P}(B)-0.2 \mathrm{P}(B), 0.8 x=0.3$
$P(B)=\frac{3}{8}(=0.375$, exact $)$
5. (a)

Notes: Award A1 for approximately correct domain $0 \leq t \leq 4$.
The shape must be approximately correct, with maximum skewed left. Only if the shape is approximately correct, award A2 for all the following approximately correct features, in circle of tolerance where drawn (accept seeing correct coordinates for the maximum, even if point outside circle):

Maximum point, passes through origin, asymptotic to t-axis (but must not touch the axis).

If only two of these features are correct, award $\mathbf{A 1}$.
(b) valid approach (including 0 and 3)
eg $\quad \int_{0}^{3} 10 t e^{-1.7 t} \mathrm{dt}, \int_{0}^{3} f(x)$, area from 0 to 3 (may be shaded in diagram)
distance $=3.33(\mathrm{~m})$
A1
N2
[2 marks]
(c) recognizing acceleration is derivative of velocity
eg $\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}$, attempt to find $\frac{\mathrm{d} v}{\mathrm{~d} t}$, reference to maximum on the graph of v
valid approach to find v when $a=0$ (may be seen on graph)
eg $\quad \frac{\mathrm{d} v}{\mathrm{~d} t}=0,10 \mathrm{e}^{-1.7 t}-17 t \mathrm{e}^{-1.7 t}=0, t=0.588$
velocity $=2.16\left(\mathrm{~ms}^{-1}\right)$
Note: Award R1M1A0 for $(0.588,2.16)$ if velocity is not identified as final answer
6.

Note: There may be slight differences in answers, depending on whether candidates use tables or GDCs, or their 3 sf answers in subsequent parts. Do not penalise answers that are consistent with their working and check carefully for $\boldsymbol{F T}$.
(a) attempt to standardize
eg $\quad z=\frac{21.8-20}{1.25}, 1.44$
$\mathrm{P}(T<21.8)=0.925$
A1 [2 marks]
(b) attempt to subtract probabilities
eg $\quad \mathrm{P}(T<21.8)-\mathrm{P}(T<k)=0.3, \quad 0.925-0.3$

$$
\mathrm{P}(T<k)=0.625
$$

EITHER

finding the z-value for 0.625
eg $\quad z=0.3186$ (from tables), $z=0.3188$
attempt to set up equation using their z-value
eg $\quad 0.3186=\frac{k-20}{1.25},-0.524 \times 1.25=k-20$
$k=20.4$
A1
N3

OR

$$
k=20.4
$$

7. (a) (i) valid approach (may be seen on diagram)
eg $\quad \mathrm{Q}$ to 6 is x

$$
\mathrm{PQ}=6-2 x
$$

A1
(ii) $\quad A=(6-2 x) \sqrt{6 x-x^{2}}$

A1
N1 [3 marks]
(b) (i) recognising $\frac{\mathrm{d} A}{\mathrm{~d} x}$ at $x=2$ needed (must be the derivative of area)

$$
\frac{\mathrm{d} A}{\mathrm{~d} x}=-\frac{7 \sqrt{2}}{2}, \quad-4.95
$$

A1
(ii) $\quad a=0.879 \quad b=3$

A1A1

SECTION B

8. Notes: In this question, there may be slight differences in answers, depending on which values candidates carry through in subsequent parts. Accept answers that are consistent with their working.
Candidates may have their GDCs in degree mode, leading to incorrect answers. If working shown, award marks in line with the markscheme, with $\boldsymbol{F T}$ as appropriate. Ignore missing or incorrect units.
(a) evidence of choosing sine rule
eg $\frac{\sin \hat{A}}{a}=\frac{\sin \hat{B}}{b}$
correct substitution
eg $\quad \frac{\sin \hat{A}}{10.4}=\frac{\sin 1.058}{12.2}$

$$
B \hat{A} C=0.837
$$

A1 [3 marks]
(b) METHOD 1
evidence of subtracting angles from π
eg $\quad \mathrm{ABC}=\pi-A-C$
correct angle (seen anywhere)
$\mathrm{A} \hat{B} \mathrm{C}=\pi-1.058-0.837,1.246,71.4^{\circ}$
attempt to substitute into cosine or sine rule
correct substitution
eg $\quad 12.2^{2}+10.4^{2}-2 \times 12.2 \times 10.4 \cos 71.4, \frac{\mathrm{AC}}{\sin 1.246}=\frac{12.2}{\sin 1.058}$
$\mathrm{AC}=13.3 \quad(\mathrm{~cm})$

METHOD 2

evidence of choosing cosine rule
eg $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$
correct substitution
eg $\quad 12.2^{2}=10.4^{2}+b^{2}-2 \times 10.4 b \cos 1.058$

$$
\mathrm{AC}=13.3 \quad(\mathrm{~cm})
$$

A2

Question 8 continued

(c) METHOD 1
valid approach
eg $\quad \cos \mathrm{AO} C=\frac{\mathrm{OA}^{2}+\mathrm{OC}^{2}-\mathrm{AC}^{2}}{2 \times \mathrm{OA} \times \mathrm{OC}}, \mathrm{AOC}=2 \times \mathrm{A} \hat{\mathrm{B}} \mathrm{C}$
correct working
eg $\quad 13.3^{2}=7^{2}+7^{2}-2 \times 7 \times 7 \cos \mathrm{AÔC}, O=2 \times 1.246$

$$
\begin{equation*}
\text { AÔC = } 2.492 \quad\left(142.8^{\circ}\right) \tag{A1}
\end{equation*}
$$

EITHER

correct substitution for arc length (seen anywhere)
eg $\quad 2.492=\frac{l}{7}, l=17.4,14 \pi \times \frac{142.8}{360}$
subtracting arc from circumference
eg $2 \pi r-l, 14 \pi-17.4$
OR
attempt to find AÔC reflex
eg $2 \pi-2.492,3.79,360-142.8$
correct substitution for arc length (seen anywhere)
eg $\quad l=7 \times 3.79,14 \pi \times \frac{217.2}{360}$

THEN

arc $\mathrm{ABC}=26.5$
A1
N4

METHOD 2

valid approach to find AÔB or BÔC
eg choosing cos rule, twice angle at circumference
correct working for finding one value, AÔB or BÔC
eg $\quad \cos \mathrm{AO} B=\frac{7^{2}+7^{2}-12.2^{2}}{2 \times 7 \times 7}$, $\mathrm{AO} \mathrm{B}=2.116, \quad$ BÔ $\mathrm{C}=1.6745$
two correct calculations for arc lengths
eg $\quad \mathrm{AB}=7 \times 2 \times 1.058(=14.8135), \quad 7 \times 1.6745(=11.7216)$
adding their arc lengths (seen anywhere)
eg rAÔB $+r$ BÔC $, 14.8135+11.7216,7(2.116+1.6745) \quad$ M1
arc $\mathrm{ABC}=26.5(\mathrm{~cm}) \quad$ A1

Note: Candidates may work with other interior triangles using a similar method. Check calculations carefully and award marks in line with markscheme.
9. (a) appropriate approach
$e g \quad\left(\begin{array}{c}11 \\ 8 \\ 2\end{array}\right)+s\left(\begin{array}{c}4 \\ 3 \\ -1\end{array}\right)=\left(\begin{array}{c}1 \\ 1 \\ -7\end{array}\right)+t\left(\begin{array}{c}2 \\ 1 \\ 11\end{array}\right), L_{1}=L_{2}$
any two correct equations
eg $11+4 s=1+2 t, 8+3 s=1+t, 2-s=-7+11 t$
attempt to solve system of equations
eg $\quad 10+4 s=2(7+3 s),\left\{\begin{array}{c}4 s-2 t=-10 \\ 3 s-t=-7\end{array}\right.$
one correct parameter
eg $s=-2, t=1$
$\mathrm{P}(3,2,4)$ (accept position vector)
A1
(b) choosing correct direction vectors for L_{1} and L_{2}
eg $\left(\begin{array}{c}4 \\ 3 \\ -1\end{array}\right),\left(\begin{array}{c}2 \\ 1 \\ 11\end{array}\right)$ (or any scalar multiple)
evidence of scalar product (with any vectors)
eg $\quad a \cdot b,\left(\begin{array}{c}4 \\ 3 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}2 \\ 1 \\ 11\end{array}\right)$
correct substitution
eg $4(2)+3(1)+(-1)(11), 8+3-11$
calculating $a \cdot b=0$
Note: Do not award the final A1 without evidence of calculation.
vectors are perpendicular
AG
NO
[5 marks]
continued ...

Question 9 continued

(c) Note: Candidates may take different approaches, which do not necessarily involve vectors. In particular, most of the working could be done on a diagram. Award marks in line with the markscheme.

METHOD 1

attempt to find $\overrightarrow{\mathrm{QP}}$ or $\overrightarrow{\mathrm{PQ}}$
correct working (may be seen on diagram)
eg $\quad \overrightarrow{\mathrm{QP}}=\left(\begin{array}{c}-4 \\ -3 \\ 1\end{array}\right), \overrightarrow{\mathrm{PQ}}=\left(\begin{array}{l}7 \\ 5 \\ 3\end{array}\right)-\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)$
recognizing R is on L_{1} (seen anywhere)
eg on diagram
Q and R are equidistant from P (seen anywhere)
eg $\quad \overrightarrow{\mathrm{QP}}=\overrightarrow{\mathrm{PR}}$, marked on diagram
correct working
eg $\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)-\left(\begin{array}{l}7 \\ 5 \\ 3\end{array}\right)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)-\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right),\left(\begin{array}{c}-4 \\ -3 \\ 1\end{array}\right)+\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)$
$R(-1,-1,5)$ (accept position vector)

METHOD 2

recognizing R is on L_{1} (seen anywhere)
eg on diagram
Q and R are equidistant from P (seen anywhere)
eg $\quad \mathrm{P}$ midpoint of QR , marked on diagram
valid approach to find one coordinate of mid-point
eg $\quad x_{P}=\frac{x_{Q}+x_{R}}{2}, \quad 2 y_{P}=y_{Q}+y_{R}, \frac{1}{2}\left(z_{Q}+z_{R}\right)$
one correct substitution
eg $\quad x_{R}=3+(3-7), \quad 2=\frac{5+y_{R}}{2}, 4=\frac{1}{2}(z+3)$
correct working for one coordinate
eg $\quad x_{R}=3-4, \quad 4-5=y_{R}, 8=(z+3)$
$R(-1,-1,5)$ (accept position vector)
10. (a) appropriate approach
eg $\quad \mathrm{P}(R \cap B)+\mathrm{P}\left(R^{\prime} \cap B\right)$, tree diagram,
one correct multiplication
eg $0.2 \times 0.5,0.24$
correct working
eg $0.2 \times 0.5+0.8 \times 0.3,0.1+0.24$

$$
P(\text { bus })=0.34 \text { (exact) }
$$

(b) recognizing conditional probability
eg $\quad \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
correct working
eg $\frac{0.2 \times 0.5}{0.34}$
$\mathrm{P}(R \mid B)=\frac{5}{17}, 0.294$
A1 N2
[3 marks]
(c) recognizing binomial probability
eg $\quad X \sim \mathrm{~B}(n, p),\binom{5}{3}(0.34)^{3},(0.34)^{3}(1-0.34)^{2}$
$\mathrm{P}(X=3)=0.171$
(d) METHOD 1
evidence of using complement (seen anywhere)
eg 1-P (none), 1-0.95
valid approach
eg $\quad 1-\mathrm{P}($ none $)>0.95, \mathrm{P}($ none $)<0.05,1-\mathrm{P}($ none $)=0.95$
correct inequality (accept equation)
eg $\quad 1-(0.66)^{n}>0.95,(0.66)^{n}=0.05$
$n>7.209$ (accept $n=7.209$)
$n=8$

METHOD 2

valid approach using guess and check/trial and error
eg finding $\mathrm{P}(X \geq 1)$ for various values of n
seeing the "cross over" values for the probabilities

$$
n=7, \mathrm{P}(X \geq 1)=0.9454, n=8, \mathrm{P}(X \geq 1)=0.9639
$$

recognising $0.9639>0.95$
$n=8$

MARKSCHEME

May 2013

MATHEMATICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking
May 2013". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the new scoris tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for M1 is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\mathbf{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), $N 3$, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- \boldsymbol{A} marks are often dependent on the \boldsymbol{R} mark being awarded for justification for the \boldsymbol{A} mark, in which case it is not possible to award A1R0. Hence the A1 is not awarded for a correct answer if no justification or the wrong justification is given.

N marks

If no working shown, award N marks for correct answers. In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if correct work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen or implied in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1). An exception to this is where at least one numerical final answer is not given to the correct three significant figures (see the accuracy booklet).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if correct work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or A0 for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then $\boldsymbol{F T}$ marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further A marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate. (However, as noted above, if an A mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1, use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted, neither should N marks be awarded for these answers.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant A marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for $\boldsymbol{F T}$. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully, as there are a number of changes.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Clarification of intermediate values accuracy instructions

Intermediate values do not need to be given to the correct three significant figures. If candidates work with any rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A} \boldsymbol{0}$ for the final answer. However, do not penalise inaccurate intermediate values that lead to an acceptable final answer.

11 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation

The Mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

12 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

14. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

SECTION A

1. (a) $d=3$

A1
[1 mark]
(A1)

A1
N2
(ii) correct substitution into sum formula
eg $S_{100}=\frac{100}{2}(2(5)+99(3)), S_{100}=\frac{100}{2}(5+302)$
$S_{100}=15350$
(c) correct substitution into term formula
eg $1502=5+3(n-1), 1502=3 n+2$

$$
n=500
$$

eg $35-26,26+p=35$

$$
p=9
$$

(b) (i) mean $=26.7$
(ii) recognizing that variance is $(\mathrm{sd})^{2}$
eg 11.021... ${ }^{2}, \sigma=\sqrt{\mathrm{var}}, 11.158 \ldots{ }^{2}$
$\sigma^{2}=121$

A1
N2
[4 marks]

A1
N2
[2 marks]
Total [7 marks]
(M1)

A1 N2 [2 marks]

A2
(M1)
(A1)
3. (a) $p=5, q=7, r=7$ (accept $r=5$)

A1A1A1
N3
(b) correct working
eg $\binom{12}{7} \times(3 x)^{5} \times(-2)^{7}, 792,243,-2^{7}, 24634368$
coefficient of term in x^{5} is -24634368
A1
N2
Note: Do not award the final A1 for an answer that contains x.
4. (a)
(i) $\quad \boldsymbol{A}=\left(\begin{array}{ccc}-1 & -1 & 1 \\ 1 & 1 & 0 \\ -2 & -1 & 2\end{array}\right)$

A1
(ii) $\quad \boldsymbol{A}^{-1}=\left(\begin{array}{ccc}2 & 1 & -1 \\ -2 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$

A2
N2

Note: Award A1 for 6, 7 or 8 correct elements.
(b) evidence of multiplying by \boldsymbol{A}^{-1} (in any order)
eg $\boldsymbol{X}=\boldsymbol{A}^{-1} \boldsymbol{B}, \boldsymbol{B A}^{-1}$, one correct element

$$
\left.\boldsymbol{X}=\left(\begin{array}{c}
9 \\
-8 \\
3.5
\end{array}\right) \quad \text { (accept } x=9, y=-8, z=3.5\right)
$$

[^0][3 marks]
Total [6 marks]
5. (a)

A1A1A1

Note: Award A1 for approximately correct shape crossing x-axis with $3<x<3.5$. Only if this A1 is awarded, award the following:
A1 for maximum in circle, $\mathbf{A 1}$ for endpoints in circle.
(b) (i) $t=\pi$ (exact), 3.14

A1
N1
(ii) recognizing distance is area under velocity curve
eg $\quad s=\int v$, shading on diagram, attempt to integrate v
valid approach to find the total area
$e g \quad$ area $\mathrm{A}+$ area $\mathrm{B}, \int v \mathrm{~d} t-\int v \mathrm{~d} t, \int_{0}^{3.14} v \mathrm{~d} t+\int_{3.14}^{5} v \mathrm{~d} t, \int|v|$
correct working with integration and limits (accept $\mathrm{d} x$ or missing $\mathrm{d} t$)
$e g \quad \int_{0}^{3.14} v \mathrm{~d} t+\int_{5}^{3.14} v \mathrm{~d} t, 3.067 \ldots+0.878 \ldots, \int_{0}^{5}\left|\mathrm{e}^{\sin t}-1\right|$
distance $=3.95(\mathrm{~m})$
A1
6. (a) (i) $k=2$

A1 N1
(ii) $\quad p=-1$

A1
N1
(iii) $q=5$

A1
N1
[3 marks]
(b) recognizing one transformation
eg horizontal stretch by $\frac{1}{3}$, reflection in x-axis,
A^{\prime} is $(2,-5)$
A1A1
7. recognizing one quartile probability (may be seen in a sketch)
(M1)
eg $\mathrm{P}\left(X<Q_{3}\right)=0.75,0.25$
finding standardized value for either quartile
eg $Z=0.67448 \ldots, z=-0.67448 \ldots$
attempt to set up equation (must be with z - values)
(M1)
eg $\quad 0.67=\frac{Q_{3}-150}{10},-0.67448=\frac{x-150}{10}$
one correct quartile
eg $Q_{3}=156.74 \ldots, Q_{1}=143.25 \ldots$
correct working
eg other correct quartile, $Q_{3}-\mu=6.744 \ldots$
valid approach for IQR (seen anywhere)
eg $Q_{3}-Q_{1}, 2\left(Q_{3}-\mu\right)$
$\mathrm{IQR}=13.5$
A1

SECTION B

8. (a) evidence of choosing cosine rule
eg $c^{2}=a^{2}+b^{2}-2 a b \cos C, \mathrm{CD}^{2}+\mathrm{AD}^{2}-2 \times \mathrm{CD} \times \mathrm{AD} \cos D$
correct substitution
eg $11.5^{2}+8^{2}-2 \times 11.5 \times 8 \cos 104,196.25-184 \cos 104$
$A C=15.5(\mathrm{~m})$
A1
[3 marks]
(b) (i) METHOD 1
evidence of choosing sine rule
eg $\frac{\sin A}{a}=\frac{\sin B}{b}, \frac{\sin \mathrm{ACD}}{\mathrm{AD}}=\frac{\sin D}{\mathrm{AC}}$
correct substitution
eg $\frac{\sin A \hat{C} D}{8}=\frac{\sin 104}{15.516 \ldots}$
$A \hat{C} D=30.0^{\circ}$
evidence of choosing cosine rule
eg $c^{2}=a^{2}+b^{2}-2 a b \cos C$
correct substitution
eg $8^{2}=11.5^{2}+15.516 \ldots{ }^{2}-2(11.5)(15.516 \ldots) \cos C$
$A \hat{C} D=30.0^{\circ}$
eg $73-\mathrm{A} \hat{C} D, 70-30.017 \ldots$
$A \widehat{C} B=43.0^{\circ}$
(c) correct substitution
$e g \quad$ area $\Delta \mathrm{ADC}=\frac{1}{2}(8)(11.5) \sin 104$
area $=44.6\left(\mathrm{~m}^{2}\right) \quad$ A1
eg circle $-\mathrm{ABCD}, \pi r^{2}-\Delta \mathrm{ADC}-\Delta \mathrm{ACB}$
area $\Delta \mathrm{ACB}=\frac{1}{2}(15.516 \ldots)(14) \sin 42.98(=74.0517 \ldots)$
correct working
eg $\pi(8)^{2}-44.6336 \ldots-\frac{1}{2}(15.516 \ldots)(14) \sin 42.98,64 \pi-44.6-74.1$
shaded area is $82.4\left(\mathrm{~m}^{2}\right)$

A1
(M1)

A1

A1
(M1)

A1
N2
[5 marks]
(M1)
9. (a) $f(0)=\frac{100}{51}$ (exact), 1.96

A1
[1 mark]
(M1)
eg $95=\frac{100}{1+50 \mathrm{e}^{-0.2 x}}$, sketch of graph with horizontal line at $y=95$
$x=34.3$
(c) upper bound of y is 100
(A1)
lower bound of y is 0
(A1)
range is $0<y<100$
(d) METHOD 1
setting function ready to apply the chain rule
(M1)
eg $100\left(1+50 \mathrm{e}^{-0.2 x}\right)^{-1}$
evidence of correct differentiation (must be substituted into chain rule)
(A1)(A1)
eg $u^{\prime}=-100\left(1+50 \mathrm{e}^{-0.2 x}\right)^{-2}, v^{\prime}=\left(50 \mathrm{e}^{-0.2 x}\right)(-0.2)$
correct chain rule derivative
eg $\quad f^{\prime}(x)=-100\left(1+50 \mathrm{e}^{-0.2 x}\right)^{-2}\left(50 \mathrm{e}^{-0.2 x}\right)(-0.2)$
correct working clearly leading to the required answer
eg $f^{\prime}(x)=1000 \mathrm{e}^{-0.2 x}\left(1+50 \mathrm{e}^{-0.2 x}\right)^{-2}$
$f^{\prime}(x)=\frac{1000 \mathrm{e}^{-0.2 x}}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$
AG

METHOD 2

attempt to apply the quotient rule (accept reversed numerator terms)
eg $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}, \frac{u v^{\prime}-v u^{\prime}}{v^{2}}$
evidence of correct differentiation inside the quotient rule
eg $\quad f^{\prime}(x)=\frac{\left(1+50 e^{-0.2 x}\right)(0)-100\left(50 e^{-0.2 x} \times-0.2\right)}{\left(1+50 e^{-0.2 x}\right)^{2}}, \frac{100(-10) \mathrm{e}^{-0.2 x}-0}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$
any correct expression for derivative (0 may not be explicitly seen)
eg $\frac{-100\left(50 \mathrm{e}^{-0.2 x} \times-0.2\right)}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$
correct working clearly leading to the required answer
eg $f^{\prime}(x)=\frac{0-100(-10) \mathrm{e}^{-0.2 x}}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}, \frac{-100(-10) \mathrm{e}^{-0.2 x}}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$
$f^{\prime}(x)=\frac{1000 \mathrm{e}^{-0.2 x}}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$

Question 9 continued

(e) METHOD 1
sketch of $f^{\prime}(x)$
eg

recognizing maximum on $f^{\prime}(x)$
eg dot on max of sketch
finding maximum on graph of $f^{\prime}(x)$
eg (19.6, 5), $x=19.560 \ldots$
maximum rate of increase is 5

METHOD 2

recognizing $f^{\prime \prime}(x)=0$
(M1)
finding any correct expression for $f^{\prime \prime}(x)$
(A1)
$e g \frac{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}\left(-200 \mathrm{e}^{-0.2 x}\right)-\left(1000 \mathrm{e}^{-0.2 x}\right)\left(2\left(1+50 \mathrm{e}^{-0.2 x}\right)\left(-10 \mathrm{e}^{-0.2 x}\right)\right)}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{4}}$
finding $x=19.560 \ldots$
A1
maximum rate of increase is 5
10. (a) valid approach
eg 13 + diameter, $13+122$
maximum height $=135(\mathrm{~m})$
A1
(b) (i) \quad period $=\frac{60}{2.4}$
period $=25$ (minutes)
AG
NO
(ii) $\quad b=\frac{2 \pi}{25} \quad(=0.08 \pi)$

A1 N1
[2 marks]
(c) METHOD 1
valid approach
(M1)
eg $\max -74,|a|=\frac{135-13}{2}, 74-13$
$|a|=61$ (accept $a=61$)
(A1)

A1 N2
[3 marks]

METHOD 2

attempt to substitute valid point into equation for h
eg $135=74+a \cos \left(\frac{2 \pi \times 12.5}{25}\right)$
correct equation
(A1)
eg $135=74+a \cos (\pi), 13=74+a$
$a=-61$
A1
N2
[3 marks]
continued ...

Question 10 continued

(d)

A1A1A1A1
N4
Note: Award A1 for approximately correct domain, A1 for approximately correct range, A1 for approximately correct sinusoidal shape with 2 cycles.
Only if this last A1 awarded, award A1 for max/min in approximately correct positions.
(e) setting up inequality (accept equation)
(M1)
eg $h>105,105=74+a \cos b t$, sketch of graph with line $y=105$
any two correct values for t (seen anywhere)
A1A1
eg $t=8.371 \ldots, t=16.628 \ldots, t=33.371 \ldots, t=41.628 \ldots$,
valid approach
M1
eg $\frac{16.628-8.371}{25}, \frac{t_{1}-t_{2}}{25}, \frac{2 \times 8.257}{50}, \frac{2(12.5-8.371)}{25}$
$p=0.330$

A1
[5 marks]
Total [16 marks]

MARKSCHEME

May 2013

MATHEMATICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking
May 2013". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the new scoris tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for M1 is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), $N 3$, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- A marks are often dependent on the \boldsymbol{R} mark being awarded for justification for the A mark, in which case it is not possible to award A1R0. Hence the A1 is not awarded for a correct answer if no justification or the wrong justification is given.

N marks

If no working shown, award N marks for correct answers. In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the N marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the N marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if correct work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen or implied in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1). An exception to this is where at least one numerical final answer is not given to the correct three significant figures (see the accuracy booklet).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if correct work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or A0 for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then $\boldsymbol{F T}$ marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further A marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate. (However, as noted above, if an A mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only FT answers accepted, neither should N marks be awarded for these answers.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an \mathbf{M} mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10
 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant A marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for $\boldsymbol{F T}$. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully, as there are a number of changes.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Clarification of intermediate values accuracy instructions

Intermediate values do not need to be given to the correct three significant figures. If candidates work with any rounded values, this could lead to an incorrect answer, in which case award A0 for the final answer. However, do not penalise inaccurate intermediate values that lead to an acceptable final answer.

11 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation

The Mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

12 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

14. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

SECTION A

1. (a) $\boldsymbol{A}^{-1}=\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & -1\end{array}\right)$

Note: Award A1 for 6, 7, or 8 correct elements.
(b) evidence of attempting to solve equation
eg multiply by A^{-1} (on left or right), setting up system of equations, 1 or 2 correct elements

$$
\boldsymbol{X}=\left(\begin{array}{c}
-4 \\
4 \\
-5
\end{array}\right) \quad(\text { accept } x=-4, y=4, z=-5)
$$

Note: Award A1 for two correct elements.
2. (a) evidence of appropriate approach
eg $z=\frac{22.9-20}{5}$
$z=0.58$

(A1)	
A1	N 3
	$[3$ marks]

(b) z-score for 0.55 is 0.12566 .
valid approach (must be with $z-$ values)
(M1)
eg using inverse normal, $0.1257=\frac{k-20}{5}$
$k=20.6$

A1 N3
3. (a) correct substitution into area formula
eg $\frac{1}{2}(18 x) \sin 50$
setting their area expression equal to 80
(M1)
eg $\quad 9 x \sin 50=80$

$$
x=11.6
$$

(b) evidence of choosing cosine rule
eg $\quad c^{2}=a^{2}+b^{2}+2 a b \sin C$
correct substitution into right hand side (may be in terms of x)
eg $11.6^{2}+18^{2}-2(11.6)(18) \cos 50$
$\mathrm{BC}=13.8$
A1
4. appropriate approach
eg $\quad\left(\begin{array}{c}10 \\ 6 \\ -1\end{array}\right)+s\left(\begin{array}{c}2 \\ -5 \\ -2\end{array}\right)=\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)+t\left(\begin{array}{l}3 \\ 5 \\ 2\end{array}\right), L_{1}=L_{2}$
any two correct equations
A1A1
eg $\quad 10+2 s=2+3 t, 6-5 s=1+5 t,-1-2 s=-3+2 t$
attempt to solve
eg substituting one equation into another
one correct parameter
eg $\quad s=-1, t=2$
correct substitution
eg $2+3(2), 1+5(2),-3+2(2)$
$\mathrm{A}=(8,11,1) \quad$ (accept column vector)
A1
5. correct substitution into sum of a geometric sequence
eg

$$
62.755=u_{1}\left(\frac{1-r^{3}}{1-r}\right), u_{1}+u_{1} r+u_{1} r^{2}=62.755
$$

correct substitution into sum to infinity
eg $\quad \frac{u_{1}}{1-r}=440$
attempt to eliminate one variable
eg substituting $u_{1}=440(1-r)$
correct equation in one variable
eg
$62.755=440(1-r)\left(\frac{1-r^{3}}{1-r}\right), 440(1-r)\left(1+r+r^{2}\right)=62.755$
evidence of attempting to solve the equation in a single variable
eg sketch, setting equation equal to zero, $62.755=440\left(1-r^{3}\right)$
$r=0.95=\frac{19}{20}$
6. evidence of binomial expansion
eg selecting correct term, $\left(\frac{x}{a}\right)^{6}\left(\frac{a^{2}}{x}\right)^{0}+\binom{6}{1}\left(\frac{x}{a}\right)^{5}\left(\frac{a^{2}}{x}\right)^{1}+\ldots$
evidence of identifying constant term in expansion for power 6
eg $\quad r=3,4^{\text {th }}$ term
evidence of correct term (may be seen in equation)
eg $\quad 20 \frac{a^{6}}{a^{3}},\binom{6}{3}\left(\frac{x}{a}\right)^{3}\left(\frac{a^{2}}{x}\right)^{3}$
attempt to set up their equation
eg $\quad\binom{6}{3}\left(\frac{x}{a}\right)^{3}\left(\frac{a^{2}}{x}\right)^{3}=1280, a^{3}=1280$
correct equation in one variable a
eg $\quad 20 a^{3}=1280, a^{3}=64$
$a=4$

N4
7. (a) use right triangle trigonometry

A1
eg $\quad \cos 1.4=\frac{\mathrm{OC}}{r}$
$\mathrm{OC}=r \cos 1.4$
AG
No
[1 mark]
(b) correct value for BC
eg $\quad \mathrm{BC}=r \sin 1.4, \sqrt{r^{2}-(r \cos 1.4)^{2}}$
area of $\Delta \mathrm{OBC}=\frac{1}{2} r \sin 1.4 \times r \cos 1.4\left(=\frac{1}{2} r^{2} \sin 1.4 \times \cos 1.4\right)$
area of sector $\mathrm{OAB}=\frac{1}{2} r^{2} \times 1.4\left(=0.7 r^{2}\right)$ A1
attempt to subtract in any order
eg sector - triangle, $\frac{1}{2} r^{2} \sin 1.4 \times \cos 1.4-0.7 r^{2}$
correct equation
eg $\quad 0.7 r^{2}-\frac{1}{2} r \sin 1.4 \times r \cos 1.4=25$
attempt to solve their equation
eg sketch, writing as quadratic, $\frac{25}{0.616 \ldots}$
$r=6.37$

A1
[7 marks]

Note: Exception to FT rule. Award A1FT for a correct FT answer from a quadratic equation involving two trigonometric functions.

SECTION B

8. (a) (i) appropriate approach
eg $\quad \overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OB}}, \mathrm{B}-\mathrm{A}$
$\overrightarrow{\mathrm{AB}}=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$
A1

A1
(ii) $\overrightarrow{\mathrm{AC}}=\left(\begin{array}{l}2 \\ 4 \\ a\end{array}\right)$
(b) valid reasoning (seen anywhere)
eg scalar product is zero, $\cos \frac{\pi}{2}=\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{|\boldsymbol{u}||\boldsymbol{v}|}$
correct scalar product of their $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ (may be seen in part (c))
eg $\quad 1(2)+3(4)+2(a)$
correct working for their $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$
eg $\quad 2 a+14,2 a=-14$

$$
a=-7
$$

A1
N3
[4 marks]
(c) (i) correct magnitudes (may be seen in (b))

$$
\sqrt{1^{2}+3^{2}+2^{2}}(=\sqrt{14}), \sqrt{2^{2}+4^{2}+a^{2}}\left(=\sqrt{20+a^{2}}\right)
$$

substitution into formula
eg $\quad \cos \theta=\frac{1 \times 2+3 \times 4+2 \times a}{\sqrt{1^{2}+3^{2}+2^{2}} \sqrt{2^{2}+4^{2}+a^{2}}}, \frac{14+2 a}{\sqrt{14} \sqrt{4+16+a^{2}}}$
simplification leading to required answer
eg $\quad \cos \theta=\frac{14+2 a}{\sqrt{14} \sqrt{20+a^{2}}}$
$\cos \theta=\frac{2 a+14}{\sqrt{14 a^{2}+280}}$
(ii) correct setup
eg $\quad \cos 1.2=\frac{2 a+14}{\sqrt{14 a^{2}+280}}$
valid attempt to solve
(M1)
eg sketch, $\frac{2 a+14}{\sqrt{14 a^{2}+280}}-\cos 1.2=0$, attempt to square
$a=-3.25$

9. (a) METHOD 1

(i) appropriate approach
(M1)
eg $\frac{6}{10} \times \frac{6}{10}, \frac{6}{10} \times \frac{5}{9}, \frac{6}{10} \times \frac{5}{10}$
$\mathrm{P}(X=0)=\frac{9}{25}=0.36$
A1
N2
(ii) multiplying one pair of gold and silver probabilities
(M1)
eg $\frac{6}{10} \times \frac{4}{10}, \frac{6}{10} \times \frac{4}{9}, 0.24$
adding the product of both pairs of gold and silver probabilities
(M1)
eg $\frac{6}{10} \times \frac{4}{10} \times 2, \frac{6}{10} \times \frac{4}{9}+\frac{4}{10} \times \frac{6}{9}$
$\mathrm{P}(X=1)=\frac{12}{25}=0.48$
A1
N3
correct substitution into formula for $\mathrm{E}(X)$
eg $0 \times 0.36+1 \times 0.48+2 \times 0.16,0.48+0.32$
$\mathrm{E}(X)=\frac{4}{5}=0.8$
A1
N3
[8 marks]

METHOD 2

(i) evidence of recognizing binomial (may be seen in part (ii))
eg

$$
X \sim \mathrm{~B}(2,0.6),\binom{2}{0}(0.4)^{2}(0.6)^{0}
$$

correct probability for use in binomial
eg $\quad p=0.4, X \sim \mathrm{~B}(2,0.4),{ }^{2} C_{0}(0.4)^{0}(0.6)^{2}$
$\mathrm{P}(X=0)=\frac{9}{25}=0.36$
A1
N3
(ii) correct set up
eg $\quad{ }_{2} C_{1}(0.4)^{1}(0.6)^{1}$
$\mathrm{P}(X=1)=\frac{12}{25}=0.48$

A1
N2

Question 9 continued

(iii) attempt to substitute into $n p$
eg 2×0.6
correct substitution into $n p$
eg 2×0.4
$\mathrm{E}(X)=\frac{4}{5}=0.8$
(M1)

A1
N3
[8 marks]

Let Y be the number of gold balls drawn from the bag in parts (b), (c), and (d).
(b) evidence of recognizing binomial (seen anywhere)
eg $\quad{ }_{14} C_{5}(0.4)^{5}(0.6)^{9}, \mathrm{~B}(14,0.4)$
$P(Y=5)=0.207$
A1
N2
[2 marks]
(c) recognize need to find $\mathrm{P}(Y \leq 5)$
$P(Y \leq 5)=0.486$
(M1)

A1 N2
[2 marks]
(d) recognizing conditional probability
(M1)
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}(Y=5 \mid Y \leq 5), \frac{\mathrm{P}(Y=5)}{\mathrm{P}(Y \leq 5)}, \frac{0.207}{0.486}$
$\mathrm{P}(Y=5 \mid Y \leq 5)=0.42522518$
(A1)
$\mathrm{P}(Y=5 \mid Y \leq 5)=0.43$ (to 2 dp$)$
10. (a) (i)

A1A1
Notes: Award A1 for the graph of f positive, increasing and concave up. Award A1 for graph of g increasing and linear with y-intercept of 0 . Penalize one mark if domain is not $[-5,5]$ and/or if f and g do not intersect in the first quadrant.
(ii) attempt to find intersection of the graphs of f and g
eg $\quad \mathrm{e}^{\frac{x}{4}}=x$
$x=1.42961$.
valid attempt to find area of R
eg $\quad \int\left(x-\mathrm{e}^{\frac{x}{4}}\right) \mathrm{d} x, \int_{0}^{1}(g-f), \int(f-g)$

Area $=0.697$
(b) recognize that area of R is a maximum at point of tangency
eg $\quad m=f^{\prime}(x)$
equating functions
eg $\quad f(x)=g(x), \mathrm{e}^{\frac{x}{4}}=m x$
$f^{\prime}(x)=\frac{1}{4} \mathrm{e}^{\frac{x}{4}}$
equating gradients
eg $f^{\prime}(x)=g^{\prime}(x), \frac{1}{4} \mathrm{e}^{\frac{x}{4}}=m$
attempt to solve system of two equations for x
eg $\quad \frac{1}{4} \mathrm{e}^{\frac{x}{4}} \times x=\mathrm{e}^{\frac{x}{4}}$
$x=4$
attempt to find m
eg $\quad f^{\prime}(4), \frac{1}{4} e^{\frac{4}{4}}$
$m=\frac{1}{4} \mathrm{e}$ (exact), 0.680

MARKSCHEME

November 2012

MATHEMATICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Note: Changes linked to e-marking are noted in red. Other marking changes since November 2011 are noted in green. In particular, please note the removal of the accuracy and misread penalties and the revised accuracy instructions.

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

R Marks awarded for clear Reasoning.

N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking November 2012". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the new scoris assessor marking tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $A 0$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for M1 is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

If no working shown, award N marks for correct answers. In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets e.g. (M1).

- Implied marks can only be awarded if correct work is seen or if implied in subsequent working (a correct answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen or implied in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets e.g. M1.

- Must be seen marks can only be awarded if correct work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or A0 for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (i.e. there is no working expected), then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate. (However, as noted above, if an A mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error leads to not showing the required answer, there is a 1 mark penalty. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
$7 \quad$ Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant A marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for FT. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully, as there are a number of changes.

Do not accept unfinished numerical answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (e.g. 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

11 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

12 Style

The markscheme aims to present answers using good communication, e.g. if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, e.g. if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the e.g. notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \mathbf{M} marks, the examples may include ones using poor notation, to indicate what is acceptable.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on lined paper. Sometimes, they need more room for Section A, and use lined paper (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.
The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the lined paper, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on the lined paper, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on the lined paper.
14. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\mathbf{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded. However, if the graph is based on previous calculations, $\boldsymbol{F} \boldsymbol{T}$ marks should be awarded if appropriate.

SECTION A

1. (a) valid method
(M1)
e.g. subtracting terms, using sequence formula

$$
d=1.7
$$

A1
(b) correct substitution into term formula
e.g. $5+27(1.7)$
$28^{\text {th }}$ term is 50.9 (exact)
A1
(c) correct substitution into sum formula
e.g. $\quad S_{28}=\frac{28}{2}(2(5)+27(1.7)), \frac{28}{2}(5+50.9)$
$S_{28}=782.6$ (exact) [782, 783]
A1

[2 marks] Total [6 marks]

A2 N2
2.
(a) $\left.\quad A^{-1}=\left(\begin{array}{ccc}-0.5 & 0 & 0.5 \\ 1.5 & 1 & -1.5 \\ -1 & -2 & 2\end{array}\right)\left(\begin{array}{ccc}-\frac{1}{2} & 0 & \frac{1}{2} \\ 2 & - & \frac{3}{3} \\ \frac{3}{2} & 1 & -\frac{2}{2} \\ -1 & -2 & 2\end{array}\right)\right)$

Note: Award A1 for 6, 7 or 8 correct elements.
[2 marks]
(b) evidence of multiplying $\boldsymbol{A B}$ by \boldsymbol{A}^{-1} (on left or right)
e.g. 6,7 or 8 correct elements

$$
\boldsymbol{B}=\left(\begin{array}{ccc}
3 & -2 & 4 \\
-4 & 5 & -9 \\
1 & 0 & 9
\end{array}\right)
$$

Notes: Award A1 for 6, 7 or 8 correct elements. Award M1A1 if correct answer follows from working where matrices are written in reversed order.
3. (a) $x=2 \quad(\operatorname{accept}(2,0))$
(b) evidence of finding gradient of f at $x=2$
e.g. $\quad f^{\prime}(2)$
the gradient is 10
A1
N2
[2 marks]
(c) evidence of negative reciprocal of gradient
e.g. $\frac{-1}{f^{\prime}(x)},-\frac{1}{10}$
evidence of correct substitution into equation of a line
e.g. $y-0=\frac{-1}{10}(x-2), 0=-0.1(2)+b$
$y=-\frac{1}{10} x+\frac{2}{10} \quad($ accept $a=-0.1, b=0.2)$
A1
N2
e.g. $\quad(2 x)^{6} p^{0}+\binom{6}{1}(2 x)^{5}(p)^{1}+\ldots,\binom{n}{r}(2 x)^{r}(p)^{n-r}$
one correct calculation for term in x^{4} in the expansion for power 6
e.g. $15,16 x^{4}$
correct expression for term in x^{4}
e.g. $\binom{6}{2}(2 x)^{4}(p)^{2}, 15.2^{4} p^{2}$

Notes: Accept sloppy notation e.g. omission of brackets around $2 x$. Accept absence of x in middle factor.
correct term
e.g. $\quad 240 p^{2} x^{4}$ (accept absence of x^{4})
setting up equation with their coefficient equal to 60 M1
e.g. $\binom{6}{2}(2)^{4}(p)^{2}=60,240 p^{2} x^{4}=60 x^{4}, p^{2}=\frac{60}{240}$
$p= \pm \frac{1}{2}(p= \pm 0.5)$
A1A1
5. (a) (i) $a=5$ (accept -5)

A1
(ii) $\quad c=3$ (accept $c=7$, if $a=-5$)

A1
N1
Note: Accept other correct values of c, such as $11,-5$, etc.
(b) attempt to find period
e.g. $\quad 8, b=\frac{2 \pi}{\text { period }}$
0.785398...
$b=\frac{2 \pi}{8}$ (exact), $\frac{\pi}{4}, 0.785[0.785,0.786] \quad$ (do not accept 45)
(c) valid approach
e.g. $f(x)=0$, symmetry of curve

$$
x=5 \quad(\operatorname{accept}(5,0))
$$

A1
6. correct z-values
$-1.750686 \ldots, 0.524400 \ldots$
attempt to set up their equations, must involve z-values, not $\%$
e.g. one correct equation
two correct equations
A1A1
e.g. $\quad \mu-1.750686 \sigma=5, \quad 0.5244005=\frac{25-\mu}{\sigma}$
attempt to solve their equations
e.g. substitution, matrices, one correct value
$\mu=20.39006 \ldots, \sigma=8.790874 \ldots$
$\mu=20.4[20.3,20.4], \sigma=8.79[8.79,8.80]$

A1A1
N4
[8 marks]
7. (a)

A1A1A1A1
Note: Award A1 for approximately correct shape (do not accept line segments). Only if this A1 is awarded, award the following:

A1 for maximum and minimum within circles,
A1 for x-intercepts between 1 and 2 and between 4 and 5,
$\boldsymbol{A 1}$ for left endpoint at $(0,0)$ and right endpoint within circle.
(b) appropriate approach
e.g. recognizing that $v=s^{\prime}$, finding derivative, $a=s^{\prime \prime}$
valid method to find maximum
e.g. sketch of $v, v^{\prime}(t)=0, t=5.08698 \ldots$
$v=10.20025 \ldots$
$v=10.2[10.2,10.3]$
A1
N2

SECTION B

8. Note: In this question, do not penalise for missing or incorrect units. They are not included in the markscheme, to avoid complex answer lines.

(a) METHOD 1

choosing cosine rule (must have cos in it)
(M1)
e.g. $\quad c^{2}=a^{2}+b^{2}-2 a b \cos C$
correct substitution (into rhs)
A1
e.g. $\quad 20^{2}+20^{2}-2(20)(20) \cos 1.5, \mathrm{AB}=\sqrt{800-800 \cos 1.5}$
$\mathrm{AB}=27.26555 . .$.
$\mathrm{AB}=27.3[27.2,27.3]$
A1

METHOD 2

choosing sine rule
e.g. $\frac{\sin A}{a}=\frac{\sin B}{b}, \frac{\mathrm{AB}}{\sin O}=\frac{\mathrm{AO}}{\sin B}$
correct substitution
e.g. $\frac{\mathrm{AB}}{\sin 1.5}=\frac{20}{\sin (0.5(\pi-1.5))}$
$\mathrm{AB}=27.26555 .$.
$\mathrm{AB}=27.3[27.2,27.3]$

A1	N 2
[3 marks]	

(b) correct substitution into area formula
e.g. $\quad \frac{1}{2}(20)(20) \sin 1.5, \frac{1}{2}(20)(27.2655504 \ldots) \sin (0.5(\pi-1.5))$
area $=199.498997 \ldots$ (accept $199.75106=200$, from using 27.3)
area $=199[199,200]$
A1

Question 8 continued

(c) appropriate method to find angle AOC
(M1)
e.g. $2 \pi-1.5-2.4$
correct substitution into arc length formula
e.g. $(2 \pi-3.9) \times 20,2.3831853 \ldots \times 20$
arc length $=47.6637 .$. .
arc length $=47.7 \quad$ (47.6, 47.7] (i.e. do not accept 47.6)
A1
Notes: Candidates may misread the question and use $\mathrm{AO} \mathrm{C}=2.4$. If working shown, award M0 then A0MRA1 for the answer 48. Do not then penalize AÔC in part (d) which, if used, leads to the answer 679.498...

However, if they use the prematurely rounded value of 2.4 for AÔC , penalise 1 mark for premature rounding for the answer 48 in (c). Do not then penalize for this in (d).
(d) calculating sector area using their angle AOC
e.g. $\frac{1}{2}(2.38 \ldots)\left(20^{2}\right), 200(2.38 \ldots), 476.6370614 \ldots$
shaded area $=$ their area of triangle AOB + their area of sector
e.g. 199.4989973... $476.6370614 \ldots, 199+476.637$
shaded area $=676.136 \ldots$ (accept $675.637 \ldots=676$ from using 199)
shaded area $=676[676,677]$,
N2
[3 marks]
(e) dividing to find number of cans

(M1)

e.g. $\frac{676}{140}, 4.82857 \ldots$

5 cans must be purchased
multiplying to find cost of cans
e.g. $\quad 5(32), \frac{676}{140} \times 32$
cost is 160 (dollars)
9. (a)

A1A1A1A1
Note: The shape must be an approximately correct upwards parabola.
Only if the shape is approximately correct, award the following:
A1 for vertex $x \approx 2, \boldsymbol{A 1}$ for x-intercepts between 0 and 1 , and 3 and 4, $\boldsymbol{A 1}$ for correct y-intercept $(0,1), \boldsymbol{A 1}$ for correct domain. $[-1,5]$.
Scale not required on the axes, but approximate positions need to be clear.
(b) $\quad p=2$

A1
N1
[1 mark]
(c) correct vertical reflection, correct vertical translation
e.g. $-f(x),-\left((x-2)^{2}-3\right),-y,-f(x)+6, y+6$
transformations in correct order
e.g. $\quad-\left(x^{2}-4 x+1\right)+6,-\left((x-2)^{2}-3\right)+6$
simplification which clearly leads to given answer
A1
e.g. $\quad-x^{2}+4 x-1+6,-\left(x^{2}-4 x+4-3\right)+6$
$g(x)=-x^{2}+4 x+5$
AG
Note: If working shown, award A1A1A0A0 if transformations correct, but done in reverse order, e.g. $-\left(x^{2}-4 x+1+6\right)$.

Question 9 continued

(d) valid approach
(M1)
e.g. sketch, $f=g$
-0.449489... , 4.449489...
$(2 \pm \sqrt{6})$ (exact), $-0.449[-0.450,-0.449] ; 4.45[4.44,4.45]$
A1A1
(e) attempt to substitute limits or functions into area formula (accept absence of $\mathrm{d} x$) (M1)
e.g. $\quad \int_{a}^{b}\left(\left(-x^{2}+4 x+5\right)-\left(x^{2}-4 x+1\right)\right) \mathrm{d} x, \int_{4.45}^{-0.449}(f-g)$,

$$
\int\left(-2 x^{2}+8 x+4\right) \mathrm{d} x
$$

approach involving subtraction of integrals/areas (accept absence of $\mathrm{d} x$)
e.g. $\int_{a}^{b}\left(-x^{2}+4 x+5\right)-\int_{a}^{b}\left(x^{2}-4 x+1\right), \int(f-g) \mathrm{d} x$
area $=39.19183 \ldots$
area $=39.2[39.1,39.2]$
10. (a) valid approach
e.g. Venn diagram with intersection, union formula, $\mathrm{P}(S \cap F)=0.75+0.40-1$

15 (accept 15%)
A1
(M1)
e.g. Venn diagram, 75-15

60 (accept 60%)
(c) (i) valid approach
e.g. tree diagram, multiplying probabilities, $\mathrm{P}(S \mid G) \times \mathrm{P}(G)$
correct calculation
e.g. 0.52×0.85
$\mathrm{P}(G \cap S)=0.442$ (exact)
A1
R1
e.g. $\mathrm{P}(G) \times \mathrm{P}(S) \neq \mathrm{P}(G \cap S), \mathrm{P}(S \mid G) \neq \mathrm{P}(S)$, not equal,
one correct value
A1
e.g. $\mathrm{P}(G) \times \mathrm{P}(S)=0.39, P(S \mid G)=0.85,0.39 \neq 0.442$
G and S are not independent
AG
NO
[5 marks]
(d) METHOD 1
48% are boys (seen anywhere)
e.g. $\quad \mathrm{P}(B)=0.48$
appropriate approach
e.g. $\quad \mathrm{P}($ girl and Spanish $)+\mathrm{P}($ boy and Spanish $)=\mathrm{P}($ Spanish $)$
correct approach to find P (boy and Spanish)
e.g. $\quad \mathrm{P}(B \cap S)=\mathrm{P}(S)-\mathrm{P}(G \cap S), \mathrm{P}(B \cap S)=\mathrm{P}(S \mid B) \times \mathrm{P}(B), 0.308$
correct substitution
e.g. $0.442+0.48 x=0.75,0.48 x=0.308$
correct manipulation
e.g. $\quad P(S \mid B)=\frac{0.308}{0.48}$
$\mathrm{P}($ Spanish \mid boy $)=0.641666 \ldots, 0.641 \overline{6}$
$\mathrm{P}($ Spanish \mid boy $)=0.642[0.641,0.642]$

Question 10 continued

METHOD 2

48% are boys (seen anywhere)	A1
e.g. 0.48 used in tree diagram	

appropriate approach (M1)
e.g. tree diagram
correctly labelled branches on tree diagram
(A1)
e.g. first branches are boy/girl, second branches are Spanish/not Spanish
correct substitution
(A1)
e.g. $\quad 0.442+0.48 x=0.75$
correct manipulation
e.g. $\quad 0.48 x=0.308, \mathrm{P}(S \mid B)=\frac{0.308}{0.48}$
$\mathrm{P}($ Spanish \mid boy $)=0.641666 \ldots, 0.641 \overline{6}$
$P($ Spanish \mid boy $)=0.642[0.641,0.642]$

MARKSCHEME

May 2012

MATHEMATICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking May 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} 1$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

If no working shown, award N marks for correct answers. In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the N marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets e.g. (M1).

- Implied marks can only be awarded if correct work is seen or if implied in subsequent working (a correct answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen or implied in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets e.g. M1.

- Must be seen marks can only be awarded if correct work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or A0 for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (i.e. there is no working expected), then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate. (However, as noted above, if an A mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error leads to not showing the required answer, there is a 1 mark penalty. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then stamp MR against the answer. Scoris will automatically deduct 1 mark from the question total. A candidate should be penalized only once for a particular mis-read. Do not stamp MR again for that question, unless the candidate makes another mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant A marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for FT. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully, as there are a number of changes.

Do not accept unfinished numerical answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (e.g. 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

11 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

12 Style

The markscheme aims to present answers using good communication, e.g. if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, e.g. if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the e.g. notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \mathbf{M} marks, the examples may include ones using poor notation, to indicate what is acceptable.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

SECTION A

1. (a) (i) $d=4$
(ii) evidence of valid approach
e.g. $u_{8}=36+7(4)$, repeated addition of d from 36
$u_{8}=64$
(b) (i) correct substitution into sum formula
e.g. $S_{n}=\frac{n}{2}\{2(36)+(n-1)(4)\}, \frac{n}{2}\{72+4 n-4\}$
evidence of simplifying
e.g. $\frac{n}{2}\{4 n+68\}$
$S_{n}=2 n^{2}+34 n$
(ii) 868
2. (a) (i) $(2,-17)$ or $x=2, y=-17$
(ii) evidence of valid approach
e.g. graph, completing the square, equating coefficients

$$
f(x)=2(x-2)^{2}-17
$$

A1
(M1)

A1
N2
[3 marks]
A1

A1

AG
No
A1
N1
[3 marks]
Total [6 marks]

A1A1
N2
(M1)

A1
N2
[4 marks]
(M1)

A1A1
N3 [3 marks]

Total [7 marks]
3. (a) correct substitution into formula for determinant
e.g. $(x)(1)-(2 x)\left(x^{2}\right)$
$\operatorname{det} \boldsymbol{M}=x-2 x^{3}$
A1
N2 [2 marks]
(b) $\operatorname{det} N=-26$

A1
N1
[1 mark]
evidence of valid approach
(M1)
e.g. $x-2 x^{3}=-26$, graph
2.42219559...
$x=2.42$
A2
N3
[3 marks]
Total [6 marks]
4. (a) evidence of valid approach
e.g. $\quad y=0, \sin x=0$
$2 \pi=6.283185 \ldots$
$k=6.28$
A1
N2 [2 marks]
(b) attempt to substitute either limits or the function into formula (accept absence of $\mathrm{d} x$)
e.g. $V=\pi \int_{\pi}^{k}(f(x))^{2} \mathrm{~d} x, \pi \int((x-1) \sin x)^{2}, \pi \int_{\pi}^{6.28 \ldots} y^{2} \mathrm{~d} x$
correct expression
(M1)
(M1)
e.g. $\pi \int_{\pi}^{6.28}(x-1)^{2} \sin ^{2} x \mathrm{~d} x, \pi \int_{\pi}^{2 \pi}((x-1) \sin x)^{2} \mathrm{~d} x$
(c) $\quad V=69.60192562 \ldots$
$V=69.6$
A2
N2
[2 marks]
Total [7 marks]
5. (a) evidence of valid approach
e.g. finding the inverse of $\boldsymbol{M}^{-1}, \boldsymbol{M} \boldsymbol{M}^{-1}=\boldsymbol{I}$

$$
p=1, q=2
$$

(b) evidence of attempt to solve system
e.g. $\boldsymbol{X}=\boldsymbol{M}^{-1}\left(\begin{array}{c}7 \\ 2 \\ -3\end{array}\right), 1$ or 2 correct values , substitution
$x=-0.5, y=-2.5, z=-2.5$
6. (a) Valid attempt to find term in x^{20}
e.g. $\binom{8}{1}\left(2^{7}\right)(b),\left(2 x^{3}\right)^{7}\left(\frac{b}{x}\right)=3072$
correct equation
e.g. $\binom{8}{1}\left(2^{7}\right)(b)=3072$
$b=3$
(b) evidence of choosing correct term
e.g. $7^{\text {th }}$ term, $r=6$
correct expression
e.g. $\binom{8}{6}\left(2 x^{3}\right)^{2}\left(\frac{3}{x}\right)^{6}$
$k=81648$ (accept 81600)

A1A1
N3 [3 marks]

A2
N3
[3 marks]
Total [6 marks]

A1

(M1)

(M1)

marks]

(M1)

A1

A1
N2 [3 marks]

(M1)

A1
N2 [3 marks]

Total [6 marks]
7. (a) evidence of recognizing binomial distribution
e.g. $\quad X \sim \mathrm{~B}(10,0.57), p=0.57, q=0.43$

EITHER

$\mathrm{P}(X \leq 3)=2.16 \times 10^{-4}+0.00286+0.01709+0.06041 \quad(=0.08057 \ldots)$
evidence of using complement
e.g. 1 - any probability, $\mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)$
0.919423...
$\mathrm{P}(X \geq 4)=0.919 \quad$ A1

OR
summing the probabilities from $X=4$ to $X=10$
correct expression or values
e.g. $\sum_{r=4}^{10}\binom{10}{r}(0.57)^{r}(0.43)^{10-r}, 0.14013+0.2229+\ldots+0.02731+0.00362$
0.919424
$\mathrm{P}(X \geq 4)=0.919$
A1
[4 marks]
(M1)
e.g. three tails in nine tosses, $\binom{9}{3}(0.57)^{3}(0.43)^{6}$
correct calculation
e.g. $\binom{9}{3}(0.57)^{3}(0.43)^{6} \times 0.57,0.09834 \times 0.57$
0.05605178...
$\mathrm{P}\left(4^{\text {th }}\right.$ tail on $10^{\text {th }}$ toss $)=0.0561$
解
(b) evidence of valid approach

(M1)

(M1)

SECTION B

8. (a)
(i) $p=17, q=11$ A1A1

N2
(ii) $75 \leq T<85$

A1
N1 [3 marks]
(b) evidence of valid approach
(M1)
e.g. adding frequencies

$$
\begin{aligned}
& \frac{76}{93}=0.8172043 \ldots \\
& P(T<95)=\frac{76}{93}=0.817
\end{aligned}
$$

A1
[2 marks]
(c) (i) 10
(ii) 50

A1
A1
N1
N1 [2 marks]
(d) (i) evidence of approach using mid-interval values (may be seen in part (ii)) (M1) 79.1397849

$$
\bar{x}=79.1
$$

(ii) 16.4386061

$$
\sigma=16.4
$$

A1
[4 marks]

(M1)

e.g. standardizing, $z=0.9648$...
0.8326812
$\mathrm{P}(T<95)=0.833$
A2
(e) evidence of valid approach

A1 [2 marks]
9. (a) (i) evidence of valid approach
(M1) e.g. choosing cosine rule correct substitution e.g. $6^{2}=(5 p)^{2}+(4 p)^{2}-2 \times(4 p) \times(5 p) \cos 0.7$
simplification
e.g. $36=25 p^{2}+16 p^{2}-40 p^{2} \cos 0.7$
$p^{2}(41-40 \cos 0.7)=36$
AG
(ii) 1.85995...

$$
p=1.86
$$

A1
Note: Award $\mathbf{A 0}$ for $p= \pm 1.86$, i.e. not rejecting the negative value.
(b) $\quad \mathrm{BD}=6$

A1
[4 marks]
A1 N1 [1 mark]
(c) evidence of valid approach
e.g. choosing sine rule
correct substitution
e.g. $\frac{\sin A \hat{D} B}{4 p}=\frac{\sin 0.7}{6}$
acute $A \hat{D} B=0.9253166 \ldots$
$\pi-0.9253166 \ldots=2.216275 \ldots$
A $\hat{D} B=2.22$

A1
[4 marks]
continued ...

Question 9 continued

(d) (i) evidence of valid approach
(M1)
e.g. recognize isosceles triangle, base angles equal
$\pi-2$ (0.9253...) A1
CBD=1.29 AG No
(ii) area of sector BCD
e.g. $0.5 \times(1.29) \times(6)^{2}$
area of triangle BCD
(A1)
e.g. $0.5 \times(6)^{2} \sin 1.29$
evidence of subtraction M1 5.92496...
5.937459...
area $=5.94$
A1
N3
[6 marks]
Total [15 marks]
10. (a) (i) evidence of valid approach
(M1)
e.g. ship A where B was, B 11 km away
distance $=11 \quad$ A1
(M1) e.g. new diagram, Pythagoras, vectors

$$
\begin{aligned}
& s=\sqrt{15^{2}+22^{2}} \\
& \sqrt{709}=26.62705 \ldots \\
& s=26.6
\end{aligned}
$$

Note: Award MOA0A0 for using the formula given in part (b).
(b) evidence of valid approach
e.g. a table, diagram, formula $d=r \times t$
distance ship A travels t hours after noon is $15(t-1)$
distance ship B travels in t hours after noon is $11 t$
evidence of valid approach
e.g. $s(t)=\sqrt{[15(t-1)]^{2}+(11 t)^{2}}$
correct simplification
e.g. $\sqrt{225\left(t^{2}-2 t+1\right)+121 t^{2}}$
$s(t)=\sqrt{346 t^{2}-450 t+225}$
(A2)

AG

NO

[6 marks]
continued ...

Question 10 continued

(c)

A1A1A1
Note: Award A1 for shape, A1 for minimum at approximately ($0.7,9$), A1 for domain.
(d) evidence of valid approach
(M1)
e.g. $s^{\prime}(t)=0$, find minimum of $s(t)$, graph, reference to "more than 8 km "
$\min =8.870455$... (accept 2 or more sf)
A1
since $s_{\text {min }}>8$, captain cannot see ship B
[3 marks]
Total [17 marks]

MARKSCHEME

May 2012

MATHEMATICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

\boldsymbol{M} Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking
May 2011". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

If no working shown, award N marks for correct answers. In this case, ignore mark breakdown ($\boldsymbol{M}, \boldsymbol{A}, \boldsymbol{R}$).

- Do not award a mixture of N and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the N marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the N marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets e.g. (M1).

- Implied marks can only be awarded if correct work is seen or if implied in subsequent working (a correct answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen or implied in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets e.g. M1.

- Must be seen marks can only be awarded if correct work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A 0}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (i.e. there is no working expected), then $\boldsymbol{F T}$ marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error leads to not showing the required answer, there is a 1 mark penalty. Note that if the error occurs within the same subpart, the $F T$ rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then stamp MR against the answer. Scoris will automatically deduct 1 mark from the question total. A candidate should be penalized only once for a particular mis-read. Do not stamp MR again for that question, unless the candidate makes another mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant A marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for FT. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully, as there are a number of changes.

Do not accept unfinished numerical answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (e.g. 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

11 Calculators

A GDC is required for paper 2 , but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

12 Style

The markscheme aims to present answers using good communication, e.g. if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, e.g. if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the e.g. notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

SECTION A

1. (a) $\mathrm{R} \hat{P} \mathrm{Q}=65^{\circ}$

A1 N1 [1 mark]
(b) evidence of choosing sine rule (M1)
correct substitution
e.g. $\frac{\mathrm{PR}}{\sin 45^{\circ}}=\frac{9}{\sin 65^{\circ}}$
7.021854078
$\mathrm{PR}=7.02$
A1
N2
[3 marks]
(c) correct substitution
e.g. area $=\frac{1}{2} \times 9 \times 7.02 \ldots \times \sin 70^{\circ}$
29.69273008
area $=29.7$
2. (a) $f^{\prime}(x)=-\mathrm{e}^{x} \sin \left(\mathrm{e}^{x}\right)$

A1A1
(b)

AlA1A1AI
N4
Note: Award $\boldsymbol{A 1}$ for shape that must have the correct domain (from -2 to +2) and correct range (from -6 to 4), $\boldsymbol{A 1}$ for minimum in circle, $\boldsymbol{A} \boldsymbol{1}$ for maximum in circle and $\boldsymbol{A 1}$ for intercepts in circles.
3. (a) correct substitution into sum of a geometric sequence
e.g. $200\left(\frac{1-r^{4}}{1-r}\right), 200+200 r+200 r^{2}+200 r^{3}$
attempt to set up an equation involving a sum and 324.8
e.g. $200\left(\frac{1-r^{4}}{1-r}\right)=324.8,200+200 r+200 r^{2}+200 r^{3}=324.8$
$r=0.4$ (exact)
A2
N3
[4 marks]
(b) correct substitution into formula
e.g. $u_{10}=200 \times 0.4^{9}$
$u_{10}=0.0524288$ (exact), 0.0524
A1
N1
[2 marks]
Total [6 marks]
4. (a) evidence of appropriate method
e.g. $\quad z=\frac{122.5-117}{5}$, sketch of normal curve showing mean and $122.5,1.1$
$\mathrm{P}(Z<1.1)=0.8643$
(A1)
0.135666
$\mathrm{P}(\mathrm{H}>122.5)=0.136$
A1
N3
[3 marks]
(b) $z=0.3853$
(A1)
set up equation
(M1)
e.g. $\frac{X-117}{5}=0.3853$, sketch
$k=118.926602$
$k=199$

A1
N3
[3 marks]
Total [6 marks]
5. (a) recognizing that acceleration is the derivative of velocity (seen anywhere)
(R1)
e.g. $a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}, v^{\prime}, 12-6 t^{2}$
correctly substituting 2.7 into their expression for a (not into v)
e.g. $s^{\prime \prime}(2.7)$
acceleration $=-31.74($ exact $),-31.7$
A1
N3 [3 marks]
(b) recognizing that displacement is the integral of velocity

R1
e.g. $s=\int v$

Correctly substituting 1.3
(A1)
e.g. $\quad \int_{0}^{1.3} v \mathrm{~d} t$
displacement $=7.41195($ exact $), 7.41(\mathrm{~cm})$
A1
N2
[3 marks]
Total [6 marks]
6. (a) $\boldsymbol{A}^{-1}=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1\end{array}\right)$

A2
N2
[2 marks]
(b) Note: The first two steps may be done in any order.
evidence of premultiplying by \boldsymbol{A}^{-1}
(M1)
evidence of postmultiplying by \boldsymbol{A}
(M1)
correct expression
e.g. $\boldsymbol{A}^{-1} \boldsymbol{B} \boldsymbol{A}, \boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{C A}^{-1} \boldsymbol{A}=\boldsymbol{A}^{-1} \boldsymbol{B} \boldsymbol{A}$
$\boldsymbol{C}=\left(\begin{array}{ccc}3 & 0 & 1 \\ 2 & -1 & 1 \\ 4 & 0 & 0\end{array}\right)$
7.
(a) evidence of recognizing binomial (seen anywhere)
e.g. $\mathrm{B}(n, p), 0.95^{30}$
finding $\mathrm{P}(X=0)=0.21463876$
(M1)
appropriate approach
e.g. complement, summing probabilities
0.785361 (M1)
probability is 0.785
A1
N3
(b) identifying correct outcomes (seen anywhere)
e.g. $\mathrm{P}(X=1)+\mathrm{P}(X=2), 1$ or 2 defective, $0.3389 \ldots+0.2586 \ldots$
recognizing conditional probability (seen anywhere) [4 marks]
(A1)
e.g. $\mathrm{P}(A \mid B), \mathrm{P}(X \leq 2 \mid X \geq 1), \mathrm{P}$ (at most $2 \mid$ at least 1)
appropriate approach involving conditional probability e.g. $\frac{\mathrm{P}(X=1)+\mathrm{P}(X=2)}{\mathrm{P}(X \geq 1)}, \frac{0.3389 \ldots+0.2586 \ldots}{0.785 \ldots}, \frac{1 \text { or } 2}{0.785}$

0.760847

probability is 0.761
(M1)

[4 marks]

Total [8 marks]

SECTION B

8. (a) (i) valid approach
(M1)
e.g. $\mathrm{OA}+\mathrm{AB}$
$\mathrm{OB}=4 i+3 j$
A1
(ii) valid approach
e.g. $\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BF}} ; \overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{BF}} ; \overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{CG}}+\overrightarrow{\mathrm{GF}}$
$\overrightarrow{\mathrm{OF}}=4 i+3 j+2 k$
A1
(iii) correct approach
e.g. $\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{CG}} ; \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BF}}+\overrightarrow{\mathrm{FG}} ; \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CG}}$
$\overrightarrow{\mathrm{AG}}=-4 i+3 j+2 k$
$A G$
(b) (i) any correct equation for (OF) in the form $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b}$

A2
where \boldsymbol{a} is 0 or $4 i+3 j+2 k$, and \boldsymbol{b} is a scalar multiple of $4 i+3 j+2 k$
e.g. $\boldsymbol{r}=t(4,3,2), \boldsymbol{r}=\left(\begin{array}{l}4 t \\ 3 t \\ 2 t\end{array}\right), \boldsymbol{r}=4 i+3 j+2 k+t(4 i+3 j+2 k)$
(ii) any correct equation for (AG) in the form $\boldsymbol{r}=\boldsymbol{a}+s \boldsymbol{b}$ A2
where \boldsymbol{a} is $4 i$ or $3 j+2 k$ and \boldsymbol{b} is a scalar multiple of $-4 i+3 j+2 k$
e.g. $\boldsymbol{r}=(4,0,0)+s(-4,3,2), \boldsymbol{r}=\left(\begin{array}{c}4-4 s \\ 3 s \\ 2 s\end{array}\right), \boldsymbol{r}=3 j+2 k+s(-4 i+3 j+2 k)$

Question 8 continued

(c) choosing correct direction vectors, $\overrightarrow{\mathrm{OF}}$ and $\overrightarrow{\mathrm{AG}}$
scalar product $=-16+9+4(=-3)$
(A1)(A1)
magnitudes $\sqrt{4^{2}+3^{2}+2^{2}}, \sqrt{(-4)^{2}+3^{2}+2^{2}} \quad(\sqrt{29}, \sqrt{29})$ (A1) (A1)(A1)
substitution into formula
M1
e.g. $\cos \theta=\frac{-16+9+4}{\left(\sqrt{4^{2}+3^{2}+2^{2}}\right) \times \sqrt{(-4)^{2}+3^{2}+2^{2}}}=\left(-\frac{3}{29}\right)$
$95.93777^{\circ}, 1.67443$ radians
$\theta=95.9^{\circ}$ or 1.67
A1
N4
9. (a) attempt to substitute coordinates in f
e.g. $f(2)=9$
correct substitution
e.g. $a \times 2^{3}+b \times 2^{2}+c=9$
$8 a+4 b+c=9$
(b) recognizing that $(1,4)$ is on the graph of f
e.g. $\quad f(1)=4$
correct equation
e.g. $\quad a+b+c=4$
recognizing that $f^{\prime}=0$ at minimum (seen anywhere)
e.g. $\quad f^{\prime}(1)=0$
$f^{\prime}(x)=3 a x^{2}+2 b x \quad$ (seen anywhere)
correct substitution into derivative
e.g. $3 a \times 1^{2}+2 b \times 1=0$
correct simplified equation
e.g. $3 a+2 b=0$
(c) valid method for solving system of equations
e.g. inverse of a matrix, substitution
$a=2, b=-3, c=5$

```
(M1)
(M1)
A1
            A1
            AG NO
        [2 marks]
            (M1)
            A1
```

```A1A1(A1)
            A1
            [7 marks]
            (M1)
                    A1A1A1
                        N4
                                    [4 marks]
10. (a) correct substitution into cosine rule
e.g. \(\mathrm{PQ}^{2}=r^{2}+r^{2}-2(r)(r) \cos (2 \theta), \mathrm{PQ}^{2}=2 r^{2}-2 r^{2}(\cos (2 \theta))\)
substituting \(1-2 \sin ^{2} \theta\) for \(\cos 2 \theta\) (seen anywhere)
A1
e.g. \(\mathrm{PQ}^{2}=2 r^{2}-2 r^{2}\left(1-2 \sin ^{2} \theta\right)\)
working towards answer (A1)
e.g. \(\mathrm{PQ}^{2}=2 r^{2}-2 r^{2}+4 r^{2} \sin ^{2} \theta\)
recognizing \(2 r^{2}-2 r^{2}=0\) (including crossing out) (seen anywhere) A1
e.g. \(\mathrm{PQ}^{2}=4 r^{2} \sin ^{2} \theta, \mathrm{PQ}=\sqrt{4 r^{2} \sin ^{2} \theta}\)
\(\mathrm{PQ}=2 r \sin \theta\)
AG
N0
[4 marks]
(b) \(\mathrm{PRQ}=r \times 2 \theta\) (seen anywhere)
(A1)
correct set up
e.g. \(1.3 \times 2 r \sin \theta-r \times(2 \theta)=0\)
attempt to eliminate \(r\)
(M1)
correct equation in terms of the one variable \(\theta\)
(A1)
e.g. \(1.3 \times 2 \sin \theta-2 \theta=0\)
1.221496215
\(\theta=1.22\) (accept \(70.0^{0}\) (69.9)
A1
N3
(c) (i)


A1A1A1
Note: Award \(\boldsymbol{A 1}\) for approximately correct shape, \(\boldsymbol{A 1}\) for \(x\)-intercept in approximately correct position, \(\boldsymbol{A 1}\) for domain. Do not penalise if sketch starts at origin.
(ii) 1.221496215
\(\theta=1.22\)
(d) evidence of appropriate approach (may be seen earlier) M2
e.g. \(2 \theta<2.6 \sin \theta, 0<f(\theta)\), showing positive part of sketch
\(0<\theta<1.221496215\)
\(0<\theta=1.22\) (accept \(\theta<1.22\) )

\title{
MARKSCHEME
}

\section*{November 2011}

\section*{MATHEMATICS}

\section*{Standard Level}

\section*{Paper 2}

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

\section*{Instructions to Examiners}

\section*{Abbreviations}
\(\boldsymbol{M}\) Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\(\boldsymbol{A} \quad\) Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
\(\boldsymbol{A} \boldsymbol{G}\) Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{1 General}

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking November 2011". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A 0}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award \(\boldsymbol{M 0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A} \operatorname{mark}(\mathrm{s})\) depend on the preceding \(\boldsymbol{M} \operatorname{mark}(\mathrm{s})\), if any. An exception to this rule is when work for \(\boldsymbol{M 1}\) is missing, as opposed to incorrect (see point 4).
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, e.g. M1A1, this usually means \(\boldsymbol{M 1}\) for an attempt to use an appropriate method (e.g. substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where there are two or more \(\boldsymbol{A}\) marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.

\section*{\(N\) marks}

If no working shown, award \(N\) marks for correct answers. In this case, ignore mark breakdown ( \(\boldsymbol{M}, \boldsymbol{A}, \boldsymbol{R}\) ).
- Do not award a mixture of \(N\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \(N\) marks and the implied marks. There are times when all the marks are implied, but the \(\boldsymbol{N}\) marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \(\boldsymbol{N}\) marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \(N\) marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \(N\) marks for the correct answer.

\section*{4 Implied and must be seen marks}

Implied marks appear in brackets e.g. (M1).
- Implied marks can only be awarded if correct work is seen or if implied in subsequent working (a correct answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen or implied in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets e.g. M1.
- Must be seen marks can only be awarded if correct work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to \(\boldsymbol{M 0}\) or \(\boldsymbol{A 0}\) for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (ie there is no working expected), then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.
- Within a question part, once an error is made, no further \(\boldsymbol{A}\) marks can be awarded for work which uses the error, but \(\boldsymbol{M}\) marks may be awarded if appropriate. (However, as noted above, if an \(\boldsymbol{A}\) mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , use of \(r>1\) for the sum of an infinite GP, \(\sin \theta=1.5\), non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error leads to not showing the required answer, there is a 1 mark penalty. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.
- Where there are anticipated common errors, the \(\boldsymbol{F T}\) answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only \(\boldsymbol{F T}\) answers accepted.

\section*{Mis-read}

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then stamp MR against the answer. Scoris will automatically deduct 1 mark from the question total. A candidate should be penalized only once for a particular mis-read. Do not stamp MR again for that question, unless the candidate makes another mis-read.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (e.g. probability greater than 1 , use of \(r>1\) for the sum of an infinite GP, \(\sin \theta=1.5\), non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

\section*{\(7 \quad\) Discretionary marks ( \(d\) )}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

\section*{10 Accuracy of Answers}

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant \(\boldsymbol{A}\) marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for FT.

Do not accept unfinished numerical answers such as \(3 / 0.1\) (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (e.g. 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

\section*{11 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics SL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{12 Style}

The markscheme aims to present answers using good communication, e.g. if the question asks to find the value of \(k\), the markscheme will say \(k=3\), but the marks will be for the correct value 3 - there is usually no need for the " \(k="\). In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, e.g. if the question asks to find the value of \(p\) and of \(q\), then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the e.g. notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \(\boldsymbol{M}\) marks, the examples may include ones using poor notation, to indicate what is acceptable.

\section*{13 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.
1. (a) interchanging \(x\) and \(y\) (may be seen at any time)
evidence of correct manipulation
(M1)
e.g. \(x=2 y+4\)
\(f^{-1}(x)=\frac{x-4}{2} \quad\left(\right.\) accept \(\left.y=\frac{x-4}{2}, \frac{x-4}{2}\right)\)
A1
\(N 2\)
[3 marks]
(b) attempt to form composite (in any order)
e.g. \(f\left(7 x^{2}\right), 2\left(7 x^{2}\right)+4,7(2 x+4)^{2}\)
\((f \circ g)(x)=14 x^{2}+4\)
(c) correct substitution
e.g. \(7 \times 3.5^{2}, 14(3.5)^{2}+4\)
\((f \circ g)(3.5)=175.5 \quad(\) accept 176)
A1
N2
[2 marks]
Total [7 marks]
2. (a) median \(=174(\mathrm{~cm})\)
(b) attempt to find number shorter than 161
e.g. line on graph, 12 boys
\(p=\frac{12}{200}(=0.06)\)
A1
N2
[2 marks]
(c) METHOD 1

18 \% have a height less than \(h\)
\(0.18 \times 200=36\) ( 36 may be seen as a line on the graph)
(A1)
\(h=166(\mathrm{~cm})\)
A1
N2
[3 marks]

\section*{METHOD 2}
\(0.82 \times 200=164(164\) may be seen as a line on the graph \()\)
\(200-164=36\)
\(h=166(\mathrm{~cm})\)

N2
[3 marks]
Total [6 marks]
3. (a) correct substitution
e.g. \(8.5=\theta(6.8), \theta=\frac{8.5}{6.8}\)
\(\theta=1.25 \quad\) (accept 71.6 \()\)
A1

N2
[2 marks]
(b) METHOD 1
correct substitution into area formula (seen anywhere)
e.g. \(A=\pi(6.8)^{2}, 145.267 \ldots\)
correct substitution into area formula (seen anywhere)
e.g. \(A=\frac{1}{2}(1.25)\left(6.8^{2}\right), 28.9\)
valid approach
M1
e.g. \(\pi(6.8)^{2}-\frac{1}{2}(1.25)\left(6.8^{2}\right) ; 145.267 \ldots-28.9 ; \pi r^{2}-\frac{1}{2} r^{2} \sin \theta\)
\[
A=116\left(\mathrm{~cm}^{2}\right)
\]

\section*{METHOD 2}
attempt to find reflex angle
e.g. \(2 \pi-\theta, 360-1.25\)
correct reflex angle
AÔB \(=2 \pi-1.25\) ( \(=5.03318 \ldots\) )
correct substitution into area formula
e.g. \(A=\frac{1}{2}(5.03318 \ldots)\left(6.8^{2}\right)\)
\[
A=116\left(\mathrm{~cm}^{2}\right)
\]
4. Note: accept answers given in degrees, and minutes.
(a) evidence of choosing sine rule
(M1)
e.g. \(\frac{\sin A}{a}=\frac{\sin B}{b}\)
correct substitution
A1
e.g. \(\frac{\sin \theta}{10}=\frac{\sin 30^{\circ}}{7}, \sin \theta=\frac{5}{7}\)
\(A \hat{C} B=45.6^{\circ}, A \hat{C} B=134^{\circ}\)
A1A1
N1N1

Note: If candidates only find the acute angle in part (a), award no marks for (b).
(b) Attempt to substitute their larger value into angle sum of triangle
(M1)
e.g. \(180^{\circ}-\left(134.415 \ldots .{ }^{\circ}+30^{\circ}\right)\)
\(A \hat{B} C=15.6^{\circ}\)
A1
5. (a) 10 terms
(b) evidence of binomial expansion
e.g. \(\quad a^{9} b^{0}+\binom{9}{1} a^{8} b+\binom{9}{2} a^{7} b^{2}+\ldots,\binom{9}{r}(a)^{n-r}(b)^{r}\), Pascal's triangle
evidence of correct term
e.g. \(8^{\text {th }}\) term, \(r=7,\binom{9}{7},\left(3 x^{2}\right)^{2} 2^{7}\)
correct expression of complete term
(A1)
e.g. \(\binom{9}{7}\left(3 x^{2}\right)^{2}(2)^{7},{ }_{2}^{9} C\left(3 x^{2}\right)^{2}(2)^{7}, 36 \times 9 \times 128\)
\(41472 x^{4}\) (accept \(41500 x^{4}\) )
6. (a) \(A(0)=10\)

A1
(b) substitution into formula
e.g. \(10(0.5)^{0.014(50)}, A(50)\)
\(A(50)=6.16\)
A1
N2
[2 marks]
(c) set up equation
e.g. \(A(t)=0.395\)
attempting to solve
e.g. graph, use of logs
correct working
e.g. sketch of intersection, \(0.014 t \log 0.5=\log 0.0395\)
\(t=333.00025\).
A1
correct time \(18: 33\) or 18:34 (accept \(6: 33\) or \(6: 34\) but nothing else)
A1
7. (a) applies vertical stretch parallel to the \(y\)-axis factor of \(\frac{1}{3}\)
e.g. multiply by \(\frac{1}{3}, \frac{1}{3} f(t), \frac{1}{3} \times 2\)
applies horizontal shift 2 units to the right
e.g. \(f(t-2), t-2\)
applies a vertical shift 4 units down
e.g. subtracting \(4, f(t)-4, \frac{7}{3}-4\)
\(v(t)=\frac{2}{3}(t-2)^{2}-\frac{5}{3}\)
A1
(b) recognizing that distance travelled is area under the curve
e.g. \(\int v, \frac{2}{9}(t-2)^{3}-\frac{5}{3} t\), sketch


\footnotetext{
distance \(=15.576(\) accept 15.6\()\)
}

A2
[3 marks]
Total [7 marks]
8. (a) (i) correct approach
e.g. \(u_{4}=(40) \frac{1}{2}^{(4-1)}\), listing terms
\[
u_{4}=5
\]
e.g. \(S_{\infty}=\frac{40}{1-0.5}, S_{\infty}=\frac{40}{0.5}\)
\[
S_{\infty}=80
\]

A1
(b) (i) attempt to set up expression for \(u_{8}\)
e.g. \(-36+(8-1) d\)
correct working
e.g. \(-8=-36+(8-1) d, \frac{-8-(-36)}{7}\)
\[
d=4
\]

A1
N2
(ii) correct substitution into formula for sum
e.g. \(S_{n}=\frac{n}{2}(2(-36)+(n-1) 4)\)
correct working
e.g. \(S_{n}=\frac{n}{2}(4 n-76),-36 n+2 n^{2}-2 n\)
\[
S_{n}=2 n^{2}-38 n
\]
(c) multiplying \(S_{n}\) (AP) by 2 or dividing \(S\) (infinite GP) by 2
\[
\text { e.g. } 2 S_{n}, \frac{S_{\infty}}{2}, 40
\]
evidence of substituting into \(2 S_{n}=S_{\infty}\)
e.g. \(2 n^{2}-38 n=40,4 n^{2}-76 n-80(=0)\)
attempt to solve their quadratic (equation)
e.g. intersection of graphs, formula
\[
n=20
\]

\section*{N3}
[5 marks]
Total [14 marks]

Note: There may be slight differences in answers, depending on whether candidates use tables or GDCs, or their 3 sf answers in subsequent parts. Do not penalise answers that are consistent with their working and check carefully for \(\boldsymbol{F T}\).
(a) evidence of recognizing binomial (seen anywhere in the question)

\section*{(M1)}
e.g. \({ }_{n} C_{r} p^{r} q^{n-r}, \mathrm{~B}(n, p),{ }^{10} C_{1}(0.012)^{1}(0.988)^{9}\)
\(p=0.108\)
A1
(b) valid approach
(M1)
e.g. \(\mathrm{P}(X \leq 1), 0.88627 \ldots+0.10764 \ldots\)
\(p=0.994\)
A1 N2
[2 marks]
(c) (i)


Note: Award A1 for vertical line to right of mean, A1 for shading to left of their vertical line.
(ii) valid approach
e.g. \(\mathrm{P}(X<22.63)\)
working to find standardized value
e.g. \(\frac{22.63-22}{0.3}, 2.1\)
\(p=0.982\)

\section*{Question 9 continued}
(d) (i) valid approach
e.g. \(\mathrm{P}(21.37<X<22.63), \mathrm{P}(-2.1<z<2.1)\)
correct working
e.g. \(0.982-(1-0.982))\)
\(p=0.964\)
A1
(ii) correct working
e.g. \(\quad X \sim \mathrm{~B}(10,0.964),(0.964)^{10}\)
\(p=0.695\) (accept 0.694 from tables)
A1
(e) valid approach
(M1)
e.g. \(\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B),(0.994) \times(0.964)^{10}\)
\(p=0.691\) (accept 0.690 from tables )
A1
N2
[2 marks]
10. (a)


A1A1A1
Note: Award A1 for approximately correct shape with inflexion/ change of curvature, A1 for maximum skewed to the left,
A1 for asymptotic behaviour to the right.
(b) (i) \(x=3.33 \sim\) A1
(ii) correct interval, with right end point \(3 \frac{1}{3}\)

A1A1
N2 e.g. \(0<x \leq 3.33,0 \leq x<3 \frac{1}{3}\)

Note: Accept any inequalities in the right direction.
(c) valid approach
(M1)
e.g. quotient rule, product rule

2 correct derivatives (must be seen in product or quotient rule)
(A1)(A1)
e.g. 20, \(0.3 \mathrm{e}^{0.3 x}\) or \(-0.3 \mathrm{e}^{-0.3 x}\)
correct substitution into product or quotient rule
e.g. \(\frac{20 \mathrm{e}^{0.3 x}-20 x(0.3) \mathrm{e}^{0.3 x}}{\left(\mathrm{e}^{0.3 x}\right)^{2}}, 20 \mathrm{e}^{-0.3 x}+20 x(-0.3) \mathrm{e}^{-0.3 x}\)
correct working
A1
e.g. \(\frac{20 \mathrm{e}^{0.3 x}-6 x \mathrm{e}^{0.3 x}}{\mathrm{e}^{0.6 x}}, \frac{\mathrm{e}^{0.3 x}(20-20 x(0.3))}{\left(\mathrm{e}^{0.3 x}\right)^{2}}, \mathrm{e}^{-0.3 x}(20+20 x(-0.3))\)
\(f^{\prime}(x)=\frac{20-6 x}{\mathrm{e}^{0.3 x}}\)

Question 10 continued
(d) consideration of \(f^{\prime}\) or \(f^{\prime \prime}\)
(M1)
valid reasoning R1
e.g. sketch of \(f^{\prime}, f^{\prime \prime}\) is positive, \(f^{\prime \prime}=0\), reference to minimum of \(f^{\prime}\)
correct value \(6.6666666 \ldots\left(6 \frac{2}{3}\right)\)
correct interval, with both end points A1
e.g \(\quad 6.67<x \leq 20, \quad 6 \frac{2}{3} \leq x<20\)```


[^0]:    Note: Award A1 for two correct elements.

