

Cambridge IGCSE™

MATHEMATICS

0580/21 October/November 2024

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **7** printed pages.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao – correct answer only dep – dependent FT – follow through after error isw – ignore subsequent working oe – or equivalent SC – Special Case nfww – not from wrong working soi – seen or implied

Question	Answer	Marks	Partial Marks
1	22 32 or 10 32 pm	1	
2	$\frac{4}{5}$ or 0.8	1	
3	< = =	2	B1 for two correct
4	3.2	2	M1 for $\frac{5.6}{3+4} [\times k]$ where $k = 1, 3$ or 4
5(a)	$\begin{pmatrix} 18\\ -12 \end{pmatrix}$	1	
5(b)	$\begin{pmatrix} -3\\ 4 \end{pmatrix}$	Pl	
6(a)	58	1	
6(b)	39	1	
6(c)	251	1	
7	7(4x-5) final answer	1	
8	234	2	M1 for $\frac{3000 \times 2.6[\times 3]}{100}$
9	15		B2 for $[x =] 24$ OR M1 for $x + x + 132 = 180$ oe soi M1 for $\frac{360}{their x}$ oe provided this gives an integer answer
10(a)	0.24 oe	2	M1 for 1 – 0.28 oe
10(b)	42	1	

Question	Answer	Marks	Partial Marks
11	$\frac{16}{3} \text{ or } \frac{25}{7}$ $2\frac{1}{3} - \frac{4}{7}$	B1	Correct step for dealing with mixed numbers Allow $\frac{16k}{3k}$ or $\frac{25k}{7k}$
	$\frac{112}{21}$ and $\frac{75}{21}$ [2] $\frac{7}{21}$ and $\frac{12}{21}$	M1	Correct method to find common denominator e.g. $5\frac{7}{21}$ and $3\frac{12}{21}$
	$1\frac{16}{21}$ cao	A1	
12	Correctly eliminating one variable	M1	
	<i>x</i> = -3	A1	If A0 scored SC1 for 2 values satisfying one of the original equations
	<i>y</i> = 4	A1	the original equations.
13(a)	11	1	
13(b)	4n - 10 oe final answer and	4	B2 for $4n - 10$ oe final answer or B1 for $4n + j$ or $kn - 10$ ($k \neq 0$) or $4n - 10$ seen then spoilt
	$2n^3 + 1$ oe final answer		B2 for $2n^3 + 1$ oe final answer or B1 for any cubic expression in <i>n</i> or 3rd difference = 12 or for correct answer seen then spoilt
14	160	4 pre	M3 for $V \div \frac{2500}{8} = \frac{12^3}{15^3}$ oe or for answer figs 16 from $\frac{figs 25}{8} \times \frac{12^3}{15^3}$ or B2 for 1.28 [kg] OR M1 for 2500 ÷ 8 oe or 312.5 seen M1 for $\left(\frac{12}{15}\right)^3$ or $\left(\frac{15}{12}\right)^3$ oe
15(a)	Correct box-and-whisker plot L = 15 LQ = 38 Median = 53 UQ = 66 H = 96	3	B1 for UQ = 66 or Lowest = 15 soi M1 for at least 3 values correct within box and whisker plot

Question	Answer	Marks	Partial Marks
15(b)	Class Q scored fewer marks on average [as median is lower] oe Class Q have a larger spread of marks [as IQR is higher] oe	2	B1 for each
16	144 <i>π</i> cao	4	M2 for $[R^2 =] \frac{\frac{4}{3} \times \pi \times 6^3}{18 \times \pi}$ oe or M1 for $\frac{4}{3} \times \pi \times 6^3 = \pi \times R^2 \times 18$ oe M1 for $2 \times \pi \times theirR \times 18$ oe
17	$\frac{[]7\pm\sqrt{([-]7)^2-4(3)(-16)}}{2\times 3}$ oe	B2	B1 for $\sqrt{([-]7)^2 - 4(3)(-16))}$ or better and if in the form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$ then B1 for $p = -(-7)$ and $r = 2(3)$
	3.75 and -1.42	B2	B1 for each or SC1 for answers 3.8 or 3.754 and -1.4 or -1.42 or -1.421 or 3.75 and -1.42 seen in working or -3.75 and 1.42 as final answers
18(a)	-3	1	
18(b)	-5	2	M1 for $\frac{1}{4^2}$ or 4^{-2}
19(a)	9	1	
19(b)(i)	1, 3, 4, 6, 9	1	0.00
19(b)(ii)	2	1	FT 5 – numbers of odds in (b)(i)
20	63.7 or 63.68 to 63.69	5	M4 for tan $[QTR] = \frac{9}{18\sin 28 - 4}$ oe OR M3 for $18\sin 28 - 4$ or M2 for $18\sin 28$ or M1 for $\frac{QS}{18} = \sin 28$ oe and M1 for tan $[QTR] = \frac{9}{theirQT}$ oe

Question	Answer	Marks	Partial Marks
21	126.9 and 306.9	3	B2 for one correct answer or M1 for $\tan x = -\frac{4}{3}$ oe If M1 or 0 scored, SC1 for two angles with a difference of 180
22(a)		M1	
	A correct unsimplified expansion e.g. $x^{3} + 2x^{2} - x^{2} - 2x - x^{2} - 2x + x + 2$ oe leading to $[y =] x^{3} - 3x + 2$		
22(b)	y = 2 - 0.5x ruled	B2	B1 for $[y =] 2 - 0.5x$ soi or for $y = 2 - kx$ drawn or for $y = k - 0.5x$ drawn
	-1.5 to -1.6 0 1.5 to 1.6	B2	B1 for two correct values
23	[p =] 10 [k =] -46	2	B1 for each

Cambridge IGCSE™

MATHEMATICS

0580/22 October/November 2024

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **7** printed pages.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao – correct answer only dep – dependent FT – follow through after error isw – ignore subsequent working oe – or equivalent SC – Special Case nfww – not from wrong working soi – seen or implied

Question	Answer	Marks	Partial Marks
1	[c =] 3 [k =] -39	2	B1 for each or SC1 for $c = -39$ and $k = 3$
2	94	2	M1 for $x + 2 \times 43 = 180$ oe
3	$ \begin{array}{c} 24 \\ \sqrt{3} \\ 0.25 \end{array} $	3	B1 for each
4(a)	76	1	
4(b)	Point correctly plotted at (42, 33)	1	
4(c)(i)	Correct ruled line of best fit	1	
4(c)(ii)	An integer in the range 27 to 33		FT <i>their</i> line of best fit provided line shows positive correlation and answer is an integer
4(d)	Positive	1	
5	75 100	1	
6	4.5 oe	2	M1 for $\frac{1}{2} \times 6 \times (x+9.5) = 42$ oe or $42 \times \frac{2}{6} - 9.5$ oe
7	$\frac{2}{7} \times \frac{11}{6} \text{ or}$ $\frac{22}{77} \div \frac{42}{77} \text{ oe with common}$ denominator		3P.c0.
	$\frac{11}{21}$ cao	A1	
8	70	4	B3 for $x = 11$ OR M1 for $132 - 2x + 15 + 5x = 180$ oe M1 for collecting <i>x</i> terms on one side and number terms on the other for <i>their</i> equation. M1 for $15 + 5 \times their x$ oe where $-3 < their x < 15$ or for $132 - 2 \times their x$ oe where $21 < their x < 66$

Question	Answer	Marks	Partial Marks
9	36π cao	3	B2 for answer 113 or 113.0 to 113.1 or an answer in terms of π which rounds to 113 or M1 for correct first step for finding <i>d</i> or <i>r</i>
			72 + 72 = d^2 oe 72 - $r^2 + r^2$ oe or $\left(\sqrt{72}\right)^2 + \left(\sqrt{72}\right)^2 = r^2$ oe
			$\sqrt{72} = \frac{r}{2}$ or $\left(\frac{r}{2}\right) + \left(\frac{r}{2}\right) = r$ or $\sqrt{72} = \frac{r}{2}$ or r
			sin45 $\frac{1}{2} \times r \times r = \frac{72}{4}$ oe
10	1.4 oe	P1	RA
11(a)	3x(8x - 3y) final answer	2	B1 for $3(8x^2 - 3xy)$ or $x(24x - 9y)$ or $3x(8x - 3y)$ seen then spoilt
11(b)	7(3x+2y)(3x-2y) final answer	3	B2 for $(21x + 14y)(3x - 2y)$ or $(3x + 2y)(21x - 14y)$ or $7(3x + 2y)(3x - 2y)$ seen then spoilt or M1 for $7(9x^2 - 4y^2)$ or [] $(3x + 2y)(3x - 2y)$
12	5.6 oe	3	M1 for $y = k\sqrt{x+1}$ oe M1 for $y = their k\sqrt{1.56+1}$ oe
13		4 atpr	B1 for $y = 2$ solid line B1 for $y = x - 1$ solid line B1 for $y = -3$ dashed line
	1 -5 -4 -3 -2 -1 0 -3 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7		B1 for correct region identified satisfying the given inequalities
14(a)	2	1	
14(b)	240	3	M2 for correct complete area statement e.g. $\frac{1}{2} \times 20 \times 10 + 7 \times 20$ oe
			or M1 for one correct area

Question	Answer	Marks	Partial Marks
15	60835	2	M1 for $40000 \times \left(1 + \frac{15}{100}\right)^3$ oe
16	$\frac{17}{20}$ oe	1	
17	52	2	M1 for $360 - 90 - 90 - 128$ oe or B1 for [obtuse angle] $AOC = 128$ or AOD or $COD = 64$ or DAO or $DCO = 90$
18(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	B2 for three correctly placed or B1 for two correctly placed or correct conversion of 8×10^{-1} , 8% and $\sqrt{0.08}$ to 0.8, 0.08, 0.2[8] or 0.3
18(b)		1	
19(a)	858 or 857.7 to 857.9	3 ator	M2 for $\left[\frac{1}{2}\times\right]\frac{4}{3}\times\pi\times4.3^3 + \pi\times4.3^2\times11.9$ oe or M1 for $\left[\frac{1}{2}\times\right]\frac{4}{3}\times\pi\times4.3^3$ or $\pi\times4.3^2\times11.9$
19(b)	496 or 495.7 to 495.8	4	M3 for $\frac{1}{2} \times 4 \times \pi \times 4.3^{2} + \pi \times 4.3^{2} + 2 \times \pi \times 4.3 \times 11.9$ oe OR M1 for $\pi \times 4.3^{2} \times k$ where k is a whole number M1 for $2 \times \pi \times 4.3 \times 11.9$
20	7^{n-2} oe final answer	2	M1 for recognition of terms being powers of 7

Question	Answer	Marks	Partial Marks
21	$2x^3 + 17x^2 + 38x + 15$ final answer	3	B2 for correct expansion of the three brackets unsimplified
			or
			for simplified four-term expression of correct form with three terms correct
			or B1 for correct expansion of two of the given brackets with at least three terms out of four correct
22	$[y=] - \frac{1}{5} x + 28$ final answer	5	B1 for midpoint (20, 24) soi
		P	M1 for [gradient =] $\frac{39-9}{23-17}$ oe
	9		M1 for $\frac{-1}{their gradient}$
			M1 for substitution of <i>their</i> midpoint into <i>their</i> $y = mx + c$ oe
23	4.2 oe	3	M2 for $\sqrt[3]{1 + \frac{72.8}{100}} \times 3.5$ oe
			or M1 for $\frac{\sqrt[3]{172.8}}{\sqrt[3]{100}}$ oe
	222.85	ator	or $\frac{\sqrt[3]{100}}{\sqrt[3]{172.8}}$ oe
			or $\frac{x^3}{3.5^3} = \frac{172.8}{100}$ oe

Cambridge IGCSE™

MATHEMATICS

0580/23 October/November 2024

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **7** printed pages.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)	64	1	5
1(b)	61 or 67 or both	1	
2	7[h] 45 [min]	1	
3	2p - 5t final answer	2	B1 for $2p$ or $-5t$ in final answer or for $2p - 5t$ seen then spoilt
4(a)	85	2	B1 for 8.5 or M1 for <i>their</i> 8.5 × 10
4(b)	065	1	
5(a)	2	1	

Question	Answer	Marks	Partial Marks
5(b)	2.25	3	M1 for $[3\times0] + 1\times1 + 7\times2 + 8\times3 + [0\times4] + [0\times5]$ $+ 1\times6$ oe or for 45 M1 dep for $\frac{their\Sigma fx}{2}$ dep on first M1
6	100	1	20
0	190	1	
7	-1	2	M1 for $5h - h = 3 - 7$ or $7 - 3 = h - 5h$ or better
8	12b + 5m	2	B1 for $12b + km$ or $kb + 5m$ or correct answer seen and spoilt
9	156	2	M1 for $180 - 360 \div 15$ oe or $\frac{180 \times (15 - 2)}{15}$ oe
10	$\frac{9}{4} \text{ oe or } \frac{23}{12} \text{ oe } 1\frac{1}{4} - \frac{11}{12}$	B1	Correct step for dealing with mixed numbers Allow $\frac{9k}{4k}$ or $\frac{23k}{12k}$
	$\frac{27}{12} \text{ and } \frac{23}{12} \qquad [1]\frac{3}{12} \text{ and } \frac{11}{12}$	M1	Correct method to find common denominator e.g. $2\frac{3}{12}$ and $1\frac{11}{12}$
	$\frac{1}{3}$ cao	A1	50
11	[p =] 2 $[q =] -\frac{1}{2}$ oe	2	B1 for each
12	$V^3 y$ final answer	2	M1 for $V^3 = \frac{x}{y}$
13(a)	29 - 8n oe final answer	2	B1 for $k - 8n$ or $29 - cn$ $c \neq 0$, or $29 - 8n$ seen then spoilt
13(b)	$5 \times 2^{n-2}$ oe final answer	2	B1 for 2^k or correct answer seen and spoilt
14(a)(i)	41	1	
14(a)(ii)	37	1	

Question	Answer	Marks	Partial Marks
14(b)	130	2	M1 for $2(180-115)$ or $360-2\times115$ or for reflex <i>POR</i> = 230 or for an opposite angle in cyclic quad drawn in and labelled 65
15(a)	28	1	
15(b)	33	1	
16	9.4[0] or 9.403	3	M2 for $\sin 33.14 = \frac{\text{dist}}{17.2}$ oe
			or M1 for recognition that the line from C is perpendicular to AB
17(a)	$6x^{15}$ final answer	2	B1 for kx^{15} or $6x^c$ as final answer or correct answer seen and spoilt
17(b)	$25y^{50}$ final answer	2	B1 for ky^{50} or $25y^c$ as final answer or correct answer seen and spoilt
18	7.2	3	M2 for $4.8 \times \sqrt[3]{\frac{81}{24}}$ oe or M1 for $\sqrt[3]{\frac{81}{24}}$ oe or for $\left(\frac{4.8}{h}\right)^3 = \frac{24}{81}$ oe
19	$[y =] \frac{6}{\sqrt{x+2}}$ of final answer	2	M1 for $y = \frac{k}{\sqrt{x+2}}$ oe
20	116.6 and 296.6	3	B2 for one correct answer
			or M1 for tan $x = -2$
			If 0 or M1 scored, SC1 for two angles with a difference of 180 in range from 0 to 360
21(a)	$(B\cup C)\cap A'$ oe	1	
21(b)	5	1	

Question	Answer	Marks	Partial Marks
22	17.1 or 17.10	4	M3 for $\tan = \frac{4}{\sqrt{12^2 + 5^2}}$ oe
			or M2 for $12^2 + 5^2$ oe or $12^2 + 5^2 + 4^2$ oe
			or M1 for recognising angle <i>PBD</i>
23	$(x+4)^2 - 23$ final answer	2	B1 for $(x+4)^2$
24	7 nfww	3	M2 for $\frac{150 \text{ to} 151}{22 - 0.5}$ or for $\frac{150 + 0.5}{21 \text{ to} 22}$ oe
			or M1 for 150 + 0.5 or 150 - 0.5 or 22 + 0.5 or 22 - 0.5 oe seen
25	$\frac{3x-2}{1+y}$ final answer	4	B2 for $(3x-2)(1-y)$ or $(2-3x)(y-1)$ or B1 for $3x-2-y(3x-2)$ or for $3x(1-y)-2(1-y)$ B1 for $(1-y)(1+y)$ or $(y-1)(-1-y)$
			or $-(y-1)(1+y)$
26	$-\frac{1}{3}\mathbf{a} + \frac{4}{3}\mathbf{b}$ oe final simplified answer	4	B3 for correct unsimplified answer
			or B2 for \overrightarrow{OK} or $\overrightarrow{KC} = \frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$ oe
	24. Sata		or M1 for $\overrightarrow{AK} = \frac{2}{3} (-\mathbf{a} + \mathbf{b})$ oe
	- atpl		or $\overrightarrow{BK} = \frac{1}{3} (-\mathbf{b} + \mathbf{a})$ oe
			or a correct vector route for \overrightarrow{AC} along lines in diagram

Cambridge IGCSE™

MATHEMATICS

0580/21 May/June 2024

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Г

T

Abbreviations

C20	correct answer only
cao	contect answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1	(-3, 7)	2	B1 for correct diagram or correct coordinates for <i>their</i> point <i>D</i> or for $(-3,k)$ or $(k,7)$
2(a)	0.4 oe	Pr	
2(b)	42 0.2 0.2	2	B1 for 42 B1 for 0.2 and 0.2 If B0 scored SC1 for <i>their</i> two probabilities being half <i>their</i> (a)
3(a)	40 -275	2	B1 for each
3(b)	24	2	B1 for 324 or 289 or $\sqrt{300}$ or 17.3
4	35	2	B1 for answer 5, 7 or 70 or M1 for $2 \times 2 \times 5 \times 7$ and $2 \times 3 \times 5 \times 7$ or two correct factor trees or tables or $5 \times 7 \times k$ seen
5(a)	0.6 or $\frac{3}{5}$	tpre	.p.00
5(b)	1024	1	
6	145	3	M1 for $180 \div 6$ or any angle congruent to $BCD = 30$ M1 for $(360 - 40 - their 30) \div 2$ oe
7(a)	146 or 146.2 to 146.3	3	M1 for $\frac{1}{2} \times 12.8 \times 12.8$
			M1 for $\left[\frac{1}{2}\times\right]\pi\times\left(\frac{12.8}{2}\right)^2$

Question	Answer	Marks	Partial Marks
7(b)	51[.0] or 51.00 to 51.01	4	M1 for $\frac{1}{2} \times \pi \times 12.8$ M2 for $\sqrt{12.8^2 + 12.8^2}$ or $\frac{12.8}{\sin 45}$ oe or M1 for $12.8^2 + 12.8^2$ oe or $\sin 45 = \frac{12.8}{KI}$ oe
8	7n + 4 oe final answer	2	B1 for $7n + j$ or $kn + 4$ $k \neq 0$, or $7n + 4$ seen then spoilt
9	3375	2	M1 for $8000 \times \left(1 - \frac{25}{100}\right)^3$ oe
10	1.25 or 1.250	3	M2 for $\sqrt[8]{\frac{1656.73}{1500}}$ oe or M1 for 1656.73 = 1500 $(k)^8$ oe for any k
11	y < x x < 6 $1 \le y \le 5 \text{ oe}$	4	B1 for $y < x$ B1 for $x < 6$ B2 for $1 \le y \le 5$ or B1 for $y \ge 1$ or $y \le 5$ If B0 scored, SC2 for $y \le x, x \le 6$ and $1 < y < 5$ oe or SC1 for three correct from y = x, x = 6, y = 1 and $y = 5$
12	Correctly equating one set of coefficients	M1	p.c ⁰
	Correct method to eliminate one variable	M1	
	x = 10, y = -2	A2	A1 for $x = 10$ A1 for $y = -2$ If M0 scored SC1 for 2 values satisfying one of the original equations.
13	62	3	B2 for $m = 20$ or M1 for $5m + 4m = 180$ soi or $p + 4m + 38 = 180$ soi

Question	Answer	Marks	Partial Marks
14	221 or 220.5 to 220.6	3	M2 for $\frac{360-48}{360} \times \pi \times 9^2$ or M1 for $\frac{k}{260} \times \pi \times 9^2$ where $k < 360$
			or B1 for 312
15	146.46 – 1.46 oe	M1	
	$\frac{29}{198}$ cao	A2	Al for $\frac{145}{990}$ oe If M0 scored SC1 for $\frac{k}{990}$ with insufficient
			working.
16(a)		P	245
16(b)	17	1	
17	19.5 or 19.52	2	M1 for $\frac{1}{2} \times 6.7 \times 5.9 \times \sin 81$ oe
18	y = 2x ruled	B1	
	x = -0.5 to $-0.55x = 0.85$ to 0.9	B2	B1 for -0.5 to -0.55 B1 for 0.85 to 0.9
19(a)	3(2m+5t)(2m-5t) final answer		B2 for $(6m + 15t)(2m - 5t)$ or $(2m + 5t)(6m - 15t)$ or B1 for $3(4m^2 - 25t^2)$ or $(2m + 5t)(2m - 5t)$
19(b)	(x+3)(y+5) final answer	2	B1 for $x(y+5) + 3(y+5)$ or $y(x+3) + 5(x+3)$
20	218.7, 321.3	3	B2 for one correct or M1 for sin $x = -\frac{5}{8}$ oe If M1 or 0 scored, SC1 for two reflex angles with a sum of 540 or two non-reflex angles with a sum of 180

Question	Answer	Marks	Partial Marks
21	33.2 or 33.18	4	M3 for $\tan = \frac{6.5}{\sqrt{4^2 + 9.1^2}}$ oe
			or M2 for $4^2 + 9.1^2$ oe
			or $4^2 + 9.1^2 + 6.5^2$ oe
			or M1 for recognising the angle <i>ECH</i>
22	0.225 oe	4	M3 for $\left(1 - \frac{0.25}{0.4}\right) \times (1 - 0.4)$ oe
			OR
			M2 for $\frac{0.25}{0.4}$
			or M1 for $0.4 \times p = 0.25$ oe
	ST.		M1 for $(1 - their P(Jen red)) \times (1 - 0.4)$ oe

Cambridge IGCSE™

MATHEMATICS

0580/22 May/June 2024

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied
	-

Question	Answer	Mark	Partial Marks
1	29	1	
2	41.7[0]	2	M1 for 6.55 × 4 + 15.5
3(a)	Correct table 2 2 8 3 6 9 4 1 4 8	2	B1 for two rows correct or for fully correct unordered stem-and-leaf diagram
	5 2 4 7 7		
3(b)	46	1	
4	$\frac{1}{6}$ or equivalent fraction		B2 for $\frac{625}{750}$ oe or M2 for $750 - \frac{750}{4} - 437.5$ oe or M1 for $750 - \frac{750}{4}$ oe or $\frac{750}{4} + 437.5$ oe or $\frac{437.5}{750}$ oe
5	13 05 or 1 05pm	2	M1 for 47 [minutes]
6	0.046 cao	1	

Question	Answer	Mark	Partial Marks
7		1	
8	1.75	3	M2 for $\frac{(5700-5000)[\times100]}{5000\times 8}$ oe or $\frac{(5700-5000)\times100}{5000[\times 8]}$ oe or M1 for $[5700-5000] = \frac{5000\times8\times r}{100}$ oe or B1 for 87.5 or 0.14 or 1.14 If 0 scored SC1 for answer 14.25
9(a)	Enlargement [s f] 2 [centre] (1,-1)	3	B1 for each
9(b)	image at $(-1, 4)(-1, 5)(1, 4)$	2	B1 for translation by $\begin{pmatrix} -4 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 3 \end{pmatrix}$
10	1.74 ×10 ⁵	1	
11	93	2 tpre	M1 for $\frac{3}{40} [\times 1240]$ oe or $\frac{1240}{40} [\times 3]$ oe or $\frac{40}{3} = \frac{1240}{x}$ oe
12	52.6 or 52.61 to 52.62	2	M1 for $\cos[=]\frac{8.5}{14}$ oe
13	$\frac{9}{4} \times \frac{8}{15}$ oe or $\frac{18}{8} \div \frac{15}{8}$ oe with common denominator	M2	B1 for $\frac{9}{4}$ oe or $\frac{15}{8}$ oe or M1 for $\frac{their9}{4} \times \frac{8}{their15}$ oe
	$1\frac{1}{5}$ cao	A1	dep on M2

Question	Answer	Mark	Partial Marks
14	$y = \frac{1}{2}x + 2 \text{ oe}$	2	M1 for $\frac{6-2}{8-0}$ oe or for $y = kx + 2$
15	224	3	M2 for a fully correct method e.g. 360 - (180 - 104 + 60) oe or B2 for 120, 136, 44, 46, 14, or 16 in the correct position
			or B1 for 60, 76, 104 or 284 in the correct position or for interior angle of triangle = 60
			i.e. these positions for B2 or <u>B1</u> :
	SAT SAT	P F	
16(a)	0.2 oe	1	
16(b)	4240	3	M2 for $\frac{1}{2} \times (210 + 320) \times 16$ oe or M1 for one area correct
17	W $(5 3 10)$ G $(2 2)$	2	B1 for 2 sections out of 4 correct
18(a)	tangent ruled at $x = 3$	1	

Question	Answer	Mark	Partial Marks
18(b)	4.8 to 5.8	2	dep on a close attempt at a tangent
			M1 for $\frac{\text{rise}}{\text{run}}$ also dep on close attempt at tangent
19(a)	12	3	M1 for $y = k(x-1)^2$ oe
			M1 for $y = their k(7-1)^2$ oe
19(b)	divided by 3 oe	1	
20	3.9	3	M2 for $5.2 \times \sqrt[3]{\frac{33.75}{80}}$ oe
		P	or M1 for $\frac{\sqrt[3]{33.75}}{\sqrt[3]{80}}$ oe or $\frac{\sqrt[3]{80}}{\sqrt[3]{33.75}}$ oe
	6		or $\frac{h^3}{5.2^3} = \frac{33.75}{80}$ oe
21	$4x^2 + 3x - 85[=0]$	M2	12.2
	or $16y^2 - 113y + 7[=0]$		M1 for $4(x^2 - 18) + 3x = 13$ or $x^2 - 18 = \frac{13 - 3x}{4}$
	oe simplified		or $y = \left(\frac{13-4y}{3}\right)^2 - 18$ oe or better
	correct method to solve <i>their</i> quadratic equation e.g. factors.	M1	$\frac{-3\pm\sqrt{3^2-4\times4\times-85}}{2}$ oe. $(4x-17)(x+5)$
	quadratic formula, completing the square		2×4 -(-113)+ $\sqrt{(-113)^2 - 4 \times 16 \times 7}$
			$\frac{(113)\pm\sqrt{(113)}}{2\times16}$ oe,
	Sa	tpre	(16y - 1)(y - 7)
	x = -5 y = 7 $x = \frac{17}{100} \text{ or } y = \frac{1}{100} \text{ or } y = $	B2	B1 for one correct pair or two correct x values or two correct y values
	4 ¹⁶ ¹⁶		It B0 scored and at least 2 method marks scored, SC1 for correct substitution of both of their x values or their y values into $4y + 3x = 13$ or $y = x^2 - 18$
22(a)(i)	cubic	1	
22(a)(ii)	reciprocal	1	

Question	Answer	Mark	Partial Marks
22(b)(i)	correct sine curve sketch through (0, 0), (180, 0) and (360, 0)	2	
			M1 for correct sine curve shape through the
			origin
22(b)(ii)	203.6 and 336.4	3	B2 for one correct
			or M1 for $\sin x = -0.4$ oe
			If 0 or M1 scored, SC1 for two reflex angles with a sum of 540 or two non-reflex angles with a sum of 180
23(a)	15	1	
23(b)	$\frac{1}{2}$ of the network of the net	2	
	2		M1 for $\frac{2+3}{2+1+3+4}$ or or $1-\frac{4+1}{2+1+3+4}$ or with either the numerator or denominator correct
24(a)	$\frac{1}{2}\mathbf{b} - \frac{2}{3}\mathbf{a}$	2	B 1 for answer $\frac{1}{2}\mathbf{b} + k\mathbf{a}$ or $j\mathbf{b} - \frac{2}{3}\mathbf{a}$
			or correct unsimplified in terms of a and b
24(b)	$\frac{5}{4}\mathbf{b}$	3	M2 for $\overrightarrow{RS} = \frac{1}{4}\mathbf{b}$ oe
	Sa Sa		or $\overline{MS} = \frac{3}{2} \left(\frac{1}{2} \mathbf{b} - \frac{2}{3} \mathbf{a} \right)$ oe
			or $\overline{NS} = \frac{1}{2} \left(\frac{1}{2} \mathbf{b} - \frac{2}{3} \mathbf{a} \right)$ oe
			or M1 for a correct route in terms of vertices and/or a and/or b
			or B 1 for answer j b where $j > 1$
			or $\overrightarrow{RS} = \frac{1}{2} \overrightarrow{MQ}$, $\overrightarrow{RS} = \frac{1}{4} \overrightarrow{OR}$, oe
			$\overline{NS} = \frac{1}{2} \overline{MN} , \ \overline{MS} = \frac{3}{2} \overline{MN}$ $\overline{MS} = \frac{1}{2} \overline{MN}$
			$NS = \frac{1}{3}MS$

Cambridge IGCSE™

MATHEMATICS

0580/23 May/June 2024

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied
	-

Question	Answer	Marks	Partial Marks
1	2 002 002	1	
2	$5 - (4 \times 3 - 9) - 2$	1	
3	6x - 9y or $3(2x - 3y)$ final answer	2	B1 for $6x$ or $-9y$ in final answer or $6x - 9y$ seen then spoilt
4	4	2	M1 for $10 \times 7 \times [] = 280$ oe or better
5	0.85 oe	1	
6	xy(4x - 5y) final answer	2	B1 for $y(4x^2 - 5xy)$ or $x(4xy - 5y^2)$ or $xy(4x - 5y)$ seen then spoilt
7	14.8	2	M1 for 1 cm represents 0.4 km soi or B1 for figs 148 as answer
8	$\frac{6}{14}$ and $\frac{1}{14}$ oe	M1	Allow any correct denominator 14k
	$\frac{5}{14}$ cao	A1	0.00
9	6.39 or 6.389	2	M1 for $\cos 37 = \frac{AB}{8}$ oe
10	$-\frac{6}{5}$ oe	2	M1 for $\frac{1-7}{32}$ oe
11	[t =] 3 [w =] -2	2	B1 for each
12(a)	$2g^8$ final answer	2	B1 for final answer kg^8 or $2g^k$ or correct answer seen then spoilt
12(b)	$125k^6$ final answer	2	B1 for final answer ck^6 or $125k^c$ or correct answer seen then spoilt

0580/23

Question	Answer	Marks	Partial Marks
13(a)		1	
13(b)	$R \cap (P \cup Q)'$ or $R \cap P' \cap Q'$ oe	1	
14(a)	50	1	
14(b)	24	2	B1 for angle $PQR = 132$ soi or M1 for $\frac{180 - (180 - 48)}{2}$
15(a)	11	2	B1 for 16 or 27 seen
15(b)	6	2	M1 for 194 seen
16	$\frac{A - \pi r^2}{\pi d}$ of final answer	2	M1 for $A - \pi r^2 = \pi dh$ or $\frac{A}{\pi d} = \frac{\pi r^2}{\pi d} + h$ or $\frac{A}{\pi} - r^2 = dh$
17(a)	1.68×10^{203}	2	B1 for 16.8×10^{202}
17(b)	2.31×10^{101}	2	B1 for figs 231
18	25	3	B2 for $[y =]$ 14.4 oe or M1 for $y + 11.5y = 180$ or for 360 \div <i>their</i> y
19(a)	Rotation	3	B1 for each
	90° clockwise oe		
	(0, -2)		
19(b)	Triangle at (-5, -1), (-5, -7), (-7, -7)	2	B1 for enlargement s.f. –2 in wrong position
20(a)	5	2	M1 for $3^x + 2 = 245$
20(b)	2189	2	M1 for $x = f(7)$ or $3^7 + 2$
21	41.11 4.11 oe	M1	
	$\frac{37}{90}$ cao	A1	If M0 scored SC1 for answer $\frac{37}{90}$ with insufficient working.

0580/23

Question	Answer	Marks	Partial Marks
22	120, 300	3	B2 for one correct or M1 for tan $x = -\sqrt{3}$ oe If 0 or M1 scored SC1 for answers with difference of 180
23	$\frac{-y-3}{y(y+1)} \text{ or } \frac{-y-3}{y^2+y} \text{ or } -\frac{y+3}{y(y+1)}$ or $-\frac{y+3}{y^2+y}$ final answer	3	B1 for $2y-3(y+1)$ oe B1 for common denominator $y(y + 1)$ or $y^2 + y$ isw
24	14.2 or 14.19 to 14.20	4 P6	M3 for tan = $\frac{4}{\sqrt{15^2 + 5^2}}$ oe or M2 for $15^2 + 5^2$ or $15^2 + 5^2 + 4^2$ or M1 for recognition of angle <i>VAC</i>
25	$\frac{1-p}{1+t}$ oe final answer	4	B2 for $(p-1)(t-1)$ oe or B1 for $p(t-1)-(t-1)$ or $t(p-1)-(p-1)$ B1 for $(1-t)(1+t)$ oe
26	$\frac{4}{3}\mathbf{p} + \frac{2}{3}\mathbf{q} \text{ oe}$	4 pre	B3 for correct unsimplified answer or for $\overrightarrow{OR} = \mathbf{p} + \frac{1}{3}\mathbf{q} - \frac{1}{3}\mathbf{p}$ oe or M2 for $\overrightarrow{PR} = \frac{1}{3}(-\mathbf{p} + \mathbf{q})$ oe or $\overrightarrow{QR} = \frac{2}{3}(-\mathbf{q} + \mathbf{p})$ oe or M1 for $\overrightarrow{PQ} = -\mathbf{p} + \mathbf{q}$ oe or $\overrightarrow{QP} = -\mathbf{q} + \mathbf{p}$ oe or a correct route from <i>O</i> to <i>S</i> .

Cambridge IGCSE™

MATHEMATICS

0580/22 February/March 2024

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

correct answer only
dependent
follow through after error
ignore subsequent working
or equivalent
Special Case
not from wrong working
seen or implied

Question	Answer	Marks	Partial Marks
1	7h 28min	1	
2	24.352	1	
3	3m+10k final answer	2	B1 for $3m$ or $10k$ in final answer or for $3m+10k$ seen and spoilt
4	a = 18 $b = 10$ $c = 4$ $d = 9$	4	B1 for each If 0 scored, SC1 for <i>b</i> or $c = 4$, 5 or 10
5(a)	54	2	M1 for $\frac{3}{20}[\times 360]$ oe or $\frac{360}{20}[\times 3]$ oe
5(b)	$\frac{17}{20}$ oe	1	
6	$\begin{pmatrix} -10\\ 3 \end{pmatrix}$ final answer	-1	
7	Positive	1	1.5
8(a)	-2 1 6 Satpr	e 0 ²	B1 for any 2 correct in correct position If 0 scored SC1 for $-3-2$ 1
8(b)	3^{n-1}	2	B1 for 3^{an+k} , $a \neq 0$ or 3^c for any integer c>1
9	(4,3)	2	B1 for each or M1 for $3 = 2x - 5$ or better
10	26.6	2	M1 for $\frac{1}{2} \times (5.3 + 8.7) \times 3.8$ oe

Question	Answer	Marks	Partial Marks
11	$\frac{5}{4}$ or $\frac{1}{4} + \frac{1}{6}$	B1	Correct method for dealing with mixed number Allow $\frac{5k}{4k}$
	$\frac{15}{12}$ and $\frac{10}{12}$	M1	Correct method to find common denominator e.g. $[1]\frac{3}{12}$ and $\frac{10}{12}$
	$\frac{5}{12}$ cao	A1	
12	14	1	
13	287	2	M1 for 360 – (180 – 107) oe
	6	1	or indicates correct angle on a diagram
14	146 cao	3	M2 for $\frac{1750 + 480}{55 \times 1000} \times 60 \times 60$ oe
			or M1 for distance = $1750 + 480$ oe
		2	or $\frac{55 \times 1000}{60 \times 60}$ oe soi
			or correctly writing <i>their</i> whole number of seconds from a more accurate answer seen
15(a)(i)	reflection $x = -2$	2	B1 for each
15(a)(ii)	enlargement [sf] $\frac{1}{2}$ (-3,-4)	3	B1 for each
15(b)	Image at $(0,3)$, $(-4,3)$, $(-3,-1)$	2	B1 for correct size and orientation, wrong centre
16	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	B1 for two sections correct out of four

Question	Answer	Marks	Partial Marks
17	138.425	4	 M1 for mid-points soi (110, 125, 140, 170) M1 for use of Σfh with h in correct
			interval including both boundaries
			M1 for (dep on 2nd M1) for Σfh , 200
18	$14x^{3}$	2	B1 for $14x^k$ or $7x^3$ or $2x^3$
19	2325	3	M2 for correct method for total area e.g. $\frac{1}{2} \times 15 \times (190 + 120)$
	GATP	R	or M1 for correct method for one area e.g. $\frac{1}{2} \times 20 \times 15$, (140 – 20) × 15 or
			$\frac{1}{2} \times (190 - 140) \times 15$ oe
20	5.36 or 5.360 to 5.361	2	M1 for $\frac{1}{2} \times 5.6 \times 4.9 \times \sin 23$ oe
21(a)	$\frac{1}{5}$ oe	1	
21(b)	64 <i>x</i> ⁹	2	B1 for $64x^k$ or kx^9 as final answer or correct answer spoiled
22	$[y=]\frac{24}{(x+3)^2}$ of final answer	2	M1 for $y = \frac{k}{(x+3)^2}$
23(a)		2	M1 for correct cosine curve shape through (0, 1)
	Correct sketch to go through $(0, 1)$, close to $(360, 1)$ and reasonably close to $(180, -1)$		
23(b)	72.9 and 287.1	2	B1 for one correct
			If 0 scored, SC1 for two angles with a sum of 360

Question	Answer	Marks	Partial Marks
24	[a =] 64 [b =] -8	2	B1 for each or for both $(x - 8)^2$ and $x^2 - 16x + 64$
25	$\frac{2}{3}$ oe nfww	4	M3 for $\frac{2}{13} \times \frac{11}{12} + \frac{5}{13} \times \frac{8}{12} + \frac{6}{13} \times \frac{7}{12}$ oe
			or $1 - \left(\frac{2}{13} \times \frac{1}{12} + \frac{5}{13} \times \frac{4}{12} + \frac{6}{13} \times \frac{5}{12}\right)$ oe
			or M2 for sum of three or more correct product pairs and no incorrect pairs
			or for $\frac{2}{13} \times \frac{1}{12} + \frac{5}{13} \times \frac{4}{12} + \frac{6}{13} \times \frac{5}{12}$ and no other pairs
	SATE	R	or M1 for $\frac{j}{13} \times \frac{k}{12}$
			If 0 scored SC1 for answer $\frac{104}{169}$ oe
26	$y = \frac{2}{3}x + \frac{4}{3}$ final answer	5	B1 for midpoint $(4,4)$ soi
			M1 for [gradient $AB =$] $\frac{7-1}{2-6}$ oe
	E STATION		M1 for $[m =] \frac{-1}{their \text{ gradient of } AB}$
	3. satpr	eP	M1 for substituting <i>their</i> midpoint into y = (their m)x + c dep on at least M1 earned

Cambridge IGCSE™

MATHEMATICS

0580/21 October/November 2023

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao – correct answer only dep – dependent FT – follow through after error isw – ignore subsequent working oe – or equivalent SC – Special Case nfww – not from wrong working soi – seen or implied

Question	Answer	Marks	Partial Marks
1	98	2	M1 for $x + 41 + 41 = 180$ oe or better
2(a)	27	1	
2(b)	15	1	
2(c)	25	1	
3(a)	5	1	
3(b)	90	1	
4	Fruit Cost per kg Cost	3	B1 for 7.52 B1 for 6.02 or B1FT for 13.54 – <i>their</i> 7.52 correctly evaluated provided <i>their</i> 7.52 < 13.54
	Oranges\$7.52Bananas\$2.15\$6.02	PF	B1FT for <i>their</i> $6.02 \div 2.8$ correctly evaluated
5(a)	7m(6k-5) final answer	2	B1 for $7(6mk - 5m)$ or $m(42k - 35)$ as final answer or $7m(6k - 5)$ seen and then spoiled
5(b)	(h + 12)(h - 12) final answer	1	
6(a)	4800	1	
6(b)	Point plotted at (54 000, 6100)	1	
6(c)	Positive	1	
7	260	1	
8	24 cao	pre	P .
9	14	2	B1 for answer 2 or 7 or M1 for 2×7 as final answer or $[140 =] 2 \times 2 \times 5 \times 7$ and $[126 =] 2 \times 3 \times 3 \times 7$ or 2 correct factor trees or tables
10(a)	n^6 final answer	1	
10(b)	$4x^4$ final answer	2	B1 for kx^4 or $4x^k$ as final answer or correct answer seen and then spoiled
10(c)	9y ⁸ final answer	2	B1 for ky^8 or $9y^k$ final answer or correct answer seen and spoiled

Question	Answer	Marks	Partial Marks
11	$x \ge 11$ final answer	3	M1 for $8x - 12 \ge 43 + 3x$ or better M1 for e.g. $8x - 3x \ge 43 + 12$ oe
			OR
			M1 for $2x - 3 \ge \frac{43}{4} + \frac{3x}{4}$ M1 for $2x - \frac{3x}{4} \ge \frac{43}{4} + 3$
			$\frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$
12	42.22 – 4.22 oe	M1	M1 for correct working shown
	$\frac{19}{45}$ cao	A2	A1 for $\frac{38}{90}$ oe seen
		PR	If M0 scored SC1 for $\frac{k}{90}$ or for answer $\frac{19}{45}$ with insufficient working.
13	23 903 cao	3	B2 for answer 23900, 23902, 23902.9 or 23 903 seen then rounded OR M1 for 27 000 × $\left(1-\frac{3}{100}\right)^4$ oe B1 for <i>their</i> more accurate value seen and correctly rounded to the nearest whole number
14(a)	9	3	B2 for $x = 4$ or B1 for answer 4 (without $x = 4$ in working) OR
	W.sat	pre	M1 for $5x + x + 5 + 12 - x + 15 = 52$ oe or better
			B1FT for identifying the correct region $A \cap B$
14(b)		1	

Question	Answer	Marks	Partial Marks
15	R B1	5	B1 for $y = 1$ dashed line B1 for $x = 2$ solid line B1 for $y = x + 2$ solid line B2 for region identified satisfying all 3 inequalities or B1 for region identified satisfying only 2 of these inequalities with $y = 1$, $x = 2$ and $y = x + 2$ 2 all drawn
16	[Lower bound =] 39.9 nfww [Upper bound =] 42.1 nfww	3 PR	B2 for one correct or M1 for 11 + 0.5 or 9.5 + 0.05 or 11 - 0.5 or 9.5 - 0.05
17	33	3	B2 for $254 + 20 + x + 53 = 360$ oe or better or $53 + 20 + x + 37 + 37 = 180$ oe or better or $OAB = 33$ or $AOB = 114$ or 70 and 37 correctly identified or 53 and 20 correctly identified or B1 for any correct relevant angle identified
18	29.7 or 29.66[]	3	M2 for [sin y =] $\frac{8.3 \sin 105}{16.2}$ or M1 for $\frac{16.2}{\sin 105} = \frac{8.3}{\sin y}$ oe
19(a)	Correct sketch to go through (0, 1), close to (360, 1) and reasonably close to (180, -1)	2	B1 for correct cosine curve shape through (0,1)
19(b)	282.1 or 282.12	2	B1 implied by 77.9 or 77.87 to 77.88 or 282.13 or M1 for 360 – <i>their</i> acute angle
20(a)	$\frac{10x}{x+5}$ final answer	3	B1 for $10x(x-6)$ B1 for $(x-6)(x+5)$

Question	Answer	Marks	Partial Marks
20(b)	$\frac{61x+8}{(x+3)(8x-1)}$ final answer	3	B1 for common denominator of $(x + 3)(8x - 1)$ isw
			B1 for $7(8x - 1) + 5(x + 3)$ or better isw
21	55.9 or 55.85	4	M3 for tan[] = $\frac{15.1}{\sqrt{4.5^2 + 9.2^2}}$ oe
			or M2 for $[AH^2 =] 4.5^2 + 9.2^2$ or $[BH^2 =] 4.5^2 + 9.2^2 + 15.1^2$ or M1 for recognising angle <i>BHA</i>
			if 0 scored SC1 for [angle <i>BHD</i> =] 59.7[1] or 59.72
22	110 or 110.3	4	M3 for $[2 \times] (2(\frac{1}{2} \times 13.6^2 \times \sin 41) - (\frac{41}{360} \times \pi \times 13.6^2))$ oe OR M1 for $\left[\frac{1}{2} \times\right] 13.6^2 \times \sin 41$ oe M1 for $[2 \times] \frac{41}{360} \times \pi \times 13.6^2$ oe

Cambridge IGCSE™

MATHEMATICS

0580/22 October/November 2023

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao – correct answer only dep – dependent FT – follow through after error isw – ignore subsequent working oe – or equivalent SC – Special Case nfww – not from wrong working soi – seen or implied

Question	Answer	Marks	Partial Marks
1(a)	24.08 cao	1	
1(b)	20 cao	1	
2	-14	1	
3	16	2	B1 for -14 or M1 for 30 - 2 × 7
4	0.062	1	
5	64		B1 for any of these angles labelled on the diagram $ \begin{array}{r} (50^{\circ}) \\ x \\ (50^{\circ}) \\ x \\ 66 \\ 50 \\ x + 50 \\ (114^{\circ}) \\ x + 50 \\ x + 50 \\ \hline \end{array} $ or M1 for $x + 50 = 114$ or better
6(a)	Multiple of 3 or multiple of 37	1	
6(b)	113	1	
7	231		B1 for any of these angles in correct place on diagram 51 or 129 or 141 between east line drawn from <i>P</i> and <i>QP</i> or 39 between west line drawn from <i>P</i> and <i>QP</i> or indicating the correct bearing of <i>Q</i> from <i>P</i> on the diagram or M1 for $180 + (90 - 39)$ oe or $360 - (90 + 39)$ oe
8	$\frac{25}{8} \text{ or } \frac{7}{4}$ $2\frac{1}{8} - \frac{3}{4}$	B1	Correct step for dealing with mixed numbers Allow $\frac{25k}{8k}$ or $\frac{7k}{4k}$
	$\frac{25}{8}$ and $\frac{14}{8}$ $2\frac{1}{8}$ and $\frac{6}{8}$ oe	M1	Correct method to find common denominator e.g. $3\frac{1}{8} - 1\frac{6}{8}$, $\frac{100 - 56}{32}$

Question	Answer	Marks	Partial Marks
	$1\frac{3}{8}$ cao	A1	
9	$2 \times 3 \times 3 \times 5$ or $2 \times 3^2 \times 5$	2	B1 for 2, 3, 3, 5 or M1 for correct factor tree/diagram/list/table.
10	5w - t final answer	2	B1 for $2t + 2w$ or $3w - 3t$ or for $5w - t$ seen then spoiled or for $5w$ or $-t$ in the final answer
11(a)	3.5	2	M1 for $\frac{9}{5} = \frac{6.3}{h}$ oe
11(b)	51.84	2	M1 for $\left(\frac{9}{5}\right)^2$ or $\left(\frac{5}{9}\right)^2$ oe or $\left(\frac{6.3}{their(a)}\right)^2$ or $\left(\frac{their(a)}{6.3}\right)^2$ oe
12(a)	2.5 oe	1	
12(a)	140	2	M1 for a correct area
			e.g. 10×12 , $\frac{1}{2} \times 4 \times 10$, $0.5 \times (16 + 12) \times 10$
13(a)	1.2 oe	2	B1 for 3^{2p+3p} or 3^6 soi
13(b)	$2x^2$ final answer	2	B1 for kx^2 or $2x^k$ as final answer or correct answer spoiled
14	$[\pm]\sqrt{\frac{y+x}{2}}$ of final answer		 M1 for isolating term in w M1 for division by 2 M1 for square root Max 2 marks if answer incorrect
15(a)	E	1	
15(b)	\mathcal{E} A 9 3 7 B 1 9 3 7	2	B1 for two correct or for $n(A) = 12$ and $n(B) = 10$ and $n(A \cap B) \neq 0$
16	$24x^{12}$ final answer	2	B1 for $24x^k$ or kx^{12} in final answer

Question	Answer	Marks	Partial Marks
17(a)	62	2	B1 for angle $AOB = 124$
			or M1 for $\frac{180-28-28}{2}$ oe
17(b)	81	2	B1 for angle $RQP = 47$ or $QPU = 52$ or M1 for $180 - 52 - 47$
18	408 or 408.4 to 408.5	4	M3 for $2 \times \pi \times 5 \times 8 + 2 \times \pi \times 5^2$ oe
			OR
			M1 for $2 \times \pi \times 5 \times 8$ M1 for $[2] \times \pi \times 5^2$
19(a)	14 - 3n oe final answer	2	B1 for $14 - kn$ or $c - 3n$
	6		or $14 - 3n$ seen then spoiled
19(b)	5^{n-1} oe	2	B1 for 5^{an+b} where $a > 0$
			or 5^k for any integer $k > 1$
20	6.5 nfww	3	M2 for $\frac{55.2+0.05}{8 \text{ to 9}}$ or $\frac{55.2 \text{ to } 55.3}{9-0.5}$ or M1 for 9 + 0.5 or 9 - 0.5 or 55.2 + 0.05 or 55.2 - 0.05
21	(2, 3) and (-2, -1)	4 tore	B3 for $x = 2$ and $x = -2$ or B2 for $x^2 - 4[=0]$ or better or for (2, 3) or (-2, -1) or M1 for $x + 1 = x^2 + x - 3$ oe
22	$\frac{12}{\sqrt{w}}$ of final answer	2	M1 for $x = \frac{k}{\sqrt{w}}$ oe
23	10	2	M1 for $\frac{7.5}{18 \div 6}$ oe or better
			or [frequency densities] 3 and 4
			or 45 and 4 <i>h</i> or 45 and 40
24	$\frac{x-2}{a+1}$ final answer	4	B2 for $(x-2)(a-1)$ or M1 for $a(x-2)-(x-2)$ or $x(a-1)-2(a-1)$ B1 for $(a-1)(a+1)$

Question	Answer	Marks	Partial Marks
25	a = 3 k = 5	2	B1 for each or M1 for $2 \times 7ax^6 + 3kx^{k-1}$ or better
26	$\mathbf{b} + \frac{4}{3}\mathbf{a}$	3	B2 for correct unsimplified answer or $\overrightarrow{QX} = \frac{1}{3}\mathbf{a}$ seen
			or B1 for a correct route for <i>OX</i> or answer $\mathbf{b} + k\mathbf{a}$ where $k > 1$ $\overrightarrow{} = 3$
	SAT	PF	or $\overrightarrow{OK} = \mathbf{a} + \frac{1}{4}\mathbf{b}$ seen or $\overrightarrow{QX} = \frac{1}{3}\overrightarrow{OP}$ or $\overrightarrow{OX} = \frac{4}{3} \times \overrightarrow{OK}$

Cambridge IGCSE™

MATHEMATICS

0580/23 October/November 2023

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao – correct answer only dep – dependent FT – follow through after error isw – ignore subsequent working oe – or equivalent SC – Special Case nfww – not from wrong working soi – seen or implied

Question	Answer	Marks	Partial Marks
1	1923 or 723 pm	1	
2(a)	64	1	
2(b)	61	1	
3(a)	12.2	1	
3(b)	12.1	2	B1 for 157.3 oe or M1 for <i>their</i> total ÷ 13
4	67.5[0]	2	M1 for $\frac{750 \times 1.8 [\times 5]}{100}$ oe
5(a)	Parallelogram	1	
5(b)	68	2	M1 for 180 – 112 oe or for 180 – 112 – 44
6(a)	0.11 oe	2	M1 for $1 - (0.4 + 0.32 + 0.17)$ oe
6(b)	576	1	
7	$\frac{11}{6} \times \frac{15}{11} \text{ or}$ $\frac{55k}{30k} \div \frac{22k}{30k} \text{ oe with common}$ denominator $2\frac{1}{2} \text{ cao}$	M2 A1	B1 for $\frac{11}{6}$ oe or M1 for <i>their</i> $\frac{their11}{6} \times \frac{15}{11}$
8	16 Satp	2	B1 for answer 2 or 4 or 8 or M1 for $2 \times 2 \times 2 \times 2$ oe as final answer or $[48 =] 2 \times 2 \times 2 \times 2 \times 3$ and $[80 =] 2 \times 2$ $\times 2 \times 2 \times 5$ or for 2 correct factor trees or tables
9	4.5, $4\frac{1}{2}$ or $\frac{9}{2}$	3	M2 for $y^2 = \frac{3P}{2w}$ or $y^2 = \frac{3 \times 108}{2 \times 8}$ or better or M1 for $108 = \frac{2 \times 8 \times y^2}{3}$ or better
10(a)	$\begin{pmatrix} 21 \\ -9 \end{pmatrix}$	1	
10(b)	7.62 or 7.615 to 7.616	2	M1 for $(7)^2 + (-3)^2$ oe
			If 0 scored SC1 for 22.8 or 22.84 to 22.85

Question	Answer	Marks	Partial Marks
11	1.573 cao	4	B3 for answer figs 157[0] or 1573 OR M2 for $\frac{4}{3} \times \pi \times 3.6^3 \times 8.05$ oe or better or M1 for $\frac{4}{3} \times \pi \times 3.6^3$ oe M1 for division by 1000 of <i>their</i> mass in g and correct rounding to 3 dp B2 for 250
12			or M2 for $(305 \div 122) \times 22$ oe or better or M1 for $\left(1 + \frac{22}{100}\right)m = 305$ oe or better
13	Correct region indicated	4	B1 for $4x + 3y = 12$ dashed line B1 for $y = 1$ solid line B2 for region identified satisfying all 3 inequalities or B1 for region satisfying only 2 of these inequalities with $4x + 3y = 12$ and $y = 1$ both drawn
14(a)	3.3	1	-0 ⁻
14(b)	0.55	rei	
15	$[d=] \frac{T^2 + e}{3} \text{oe final answer}$	3	M1 for $T^2 = 3d - e$ M1 for isolating term in <i>d</i> M1 for dividing by 3 Max 2 marks if answer incorrect
16	693 or 692.7 to 692.8	4	M2 for $\frac{105}{2 \times 12.5}$ oe or M1 for $2 \times \pi \times r \times 12.5 = 105\pi$ or better M1 for $\pi \times (their r)^2 \times 12.5$
17(a)	16y ¹⁸ final answer	2	B1 for $16y^k$ or ky^{18} as final answer or correct answer spoiled
17(b)	$\frac{1}{x+5}$ final answer	2	B1 for $(x + 5)(x - 5)$

Question	Answer	Marks	Partial Marks
18	19	3	M2 for $\left(1 + \frac{40}{100}\right) \left(1 - \frac{15}{100}\right)$ [ma] oe or M1 for $F = kma$ or better or $\left(1 + \frac{40}{100}\right)$ and $\left(1 - \frac{15}{100}\right)$ oe seen
19	116.9 or 116.85	4	M3 for $180 - \sin^{-1}\left(\frac{18\sin 42}{13.5}\right)$ or B3 for 63.1 or 63.14 to 63.15 or M2 for [sin <i>PRQ</i> =] $\frac{18\sin 42}{13.5}$ or M1 for $\frac{18}{\sin PRQ} = \frac{13.5}{\sin 42}$ oe
20	[a =] - 3 [b =] 1 [c =] - 15	3	B1 for $a = -3$ B1FT for $b = 7 + 2 \times their a$ B1FT for $c = 6 + 7 \times their a$ If B0 scored B1 for correct expansion of a pair of brackets or of three brackets $(x^2 + ax + 2x + 2a)[2x + 3]$ or $[x+a](2x^2 + 4x + 3x + 6)$ or $2x^3 + (2a+7)x^2 + (7a+6)x + 6a$ oe or for $b = 7 + 2a$ or for $c = 6 + 7a$
21(a)	11.7 or 11.74 to 11.75	3	M2 for $\left(\frac{14}{2}\right)^2 + 5^2 + 8^2$ oe or M1 for $\left(\frac{14}{2}\right)^2 + 5^2$, $5^2 + 8^2$ or $\left(\frac{14}{2}\right)^2 + 8^2$
21(b)	42.9 to 43.14	3	M2 for sin [] = $\frac{8}{their}$ (a) oe or M1 for recognising angle <i>MBX</i> where <i>X</i> is the midpoint of <i>DC</i>
22	$x^2 - 4x + 4 = 0$	M2	M1 for $9 - 4x = 5 - x^2$ oe
	(x-2)(x-2)	M1	Accept alt methods e.g. use of formula, complete the square for <i>their</i> 3 – term quadratic equation
	(2, 1)	B2	B1 for <i>x</i> = 2

Cambridge IGCSE™

MATHEMATICS

0580/21 May/June 2023

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	51	2	M1 for 360 – (56 + 104 + 71)
2	06 15 or 6:15 am	1	
3	58, vertically opposite	2	B1 for each
	122, interior	2	B1 for each
4	$\frac{7 \times 2}{20 - 6}$	M1	
	1 nfww	A1	If 0 scored SC1 for 3 correct roundings or for all correct but with any trailing zeros
5	0.22 oe	2	M1 for 1 – (0.3 + 0.35 + 0.13) oe or B1 for 0.78 oe
6	57.9 or 57.90 to 57.91	2	M1 for $\frac{4}{3} \times \pi \times \left(\frac{4.8}{2}\right)^3$
7	11.75	2	M1 for $\frac{9.4 \times 125000}{100 \times 1000}$ oe or B1 for figs 1175 or 1 cm : 1.25 km
8(a)	961	2	B1 for 2 correct
8(b)	3n + 4 oe final answer	2	B1 for $3n + j$ or $kn + 4$ $k \neq 0$, or $3n + 4$ seen then spoilt
9	6.3	2	M1 for $\frac{5.6}{h} = \frac{7.2}{8.1}$ oe or better
10	$\frac{15}{7} \times \frac{9}{5}$ oe or $\frac{135}{63} \div \frac{35}{63}$ oe with common denominator	M2	B1 for $\frac{15}{7}$ oe or M1 for $\frac{their 15}{7} \times \frac{9}{5}$ oe

Question	Answer	Marks	Partial Marks
	$3\frac{6}{7}$ cao	A1	
11(a)	Enlargement [sf] 2 (0, 7)	3	B1 for each
11(b)	Rotation (3, 1) 90° clockwise oe	3	B1 for each
12(a)	SSS	1	
12(b)(i)	42	1	
12(b)(ii)	42	1	FT their part (i)
12(b)(iii)	84	Pi	FT 2 × their part (ii)
13	1.24[0]	3	M2 $\sqrt[8]{\frac{6000+621.70}{6000}}$ oe or M1 for $6000+621.70 = 6000(k)^8$ oe
14	3.2 oe	3	M1 for $y = k(x+3)^2$ oe or better M1 for substituting <i>their k</i> into $y = k(1+3)^2$
15	$\frac{20}{39}$ oe	3 Itpre	M2 for $\frac{5}{13} \times \frac{8}{12} [\times 2]$ oe or M1 for $\frac{5}{13}$ or $\frac{8}{12}$ or $\frac{5}{12}$ or $\frac{8}{13}$ If 0 scored SC1 for answer $\frac{80}{169}$ oe
16(a)	6.4[0] or 6.403	2	M1 for $(-4)^2 + 5^2$ oe
16(b)	$2\mathbf{x} - \mathbf{y}$	1	
17	$27x^9$ final answer	2	B1 for answer $27x^n$ or nx^9 , or for correct answer seen and spoilt

Question	Answer	Marks	Partial Marks
18	236[.0]	4	M2 for $\frac{27.3 \times \sin 125}{62.4}$
			or M1 for $\frac{27.3}{\sin UWV} = \frac{62.4}{\sin 125}$
			M1 for $180 + (125 - 90) + their 21$ oe or $180 + (90 - their 34)$ oe
			If 0 scored SC1 for the correct bearing marked at <i>W</i>

Question	Answer	Marks	Partial Marks
19(a)	correct sketch Correct sketch to go through (0, 1), (360, 1) and (180, -1)	2	B1 for correct cosine curve shape through (0, 1)
19(b)	126.9 or 126.86 to 126.87 233.1 or 233.13 to 233.14	3	B2 for 1 correct angle or M1 for $\cos x = -\frac{3}{5}$ oe If M1 or 0 scored SC1 for two angles with a sum of 360
20(a)	0.75 and -1.25	1	
20(b)	Correct curve	3	B2 FT for 6 or 5 correct plots or B1 FT for 4 or 3 correct plots
20(c)	ruled line $y = 2x + 1$	B2	B1 for correct equation [y=]2x+1 soi or $y = 2x+k$ or $y = kx+1$ drawn
	-0.35 to -0.45	B1	
21(a)	- 9	3	B2 for $3x^2 - 12$ isw or B1 for $3x^2 - k$ or $kx^2 - 12$
21(b)	(-2, 16) (2, -16)	3 Itore	M1 for <i>their</i> $(3x^2 - 12) = 0$ or stating $\frac{dy}{dx} = 0$ A1 for $x = \pm 2$ or $(-2, 16)$ or $(2, -16)$

Cambridge IGCSE™

MATHEMATICS

0580/22 May/June 2023

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

. 1
correct answer only
dependent
follow through after error
ignore subsequent working
or equivalent
Special Case
not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	-13	1	
2	108	2	B1 for 47 or 61 identified
3(a)	0 (1 3) 4 5 5 8 1 1 2 2 3 4	2	B1 for a correct diagram with one error or omission or for a fully correct unordered stem-and-leaf diagram
3(b)	6.5	1	
4	8.75	2	M1 for $\frac{3.5 \times 250000}{100 \times 1000}$ oe or B1 for figs 875 or 1 cm : 2.5 km
5	0.4 oe	2	M1 for 1 – (0.2 + 0.05 + 0.35) oe or B1 for 0.6 oe
6(a)	4 cao	atol	BP.C.
6(b)	10, 20	1	
6(c)	An odd number or decimal in the range $1 \le x \le 20$	1	
7	$\frac{\frac{4}{7} \times \frac{21}{26} \text{ oe}}{\text{or}}$ or $\frac{\frac{12}{21} \div \frac{26}{21}}{\frac{21}{21}} \text{ oe with common}$ denominator $\frac{\frac{6}{13}}{\frac{12}{3}} \text{ cao}$	M2 A1	B1 for $\frac{26}{21}$ or $\frac{21}{26}$ oe or M1 for $\frac{4}{7} \times \frac{21}{their 26}$ oe
8(a)	5	1	

Question	Answer	Marks	Partial Marks
8(b)	$x \ge 3$ final answer	3	M1 for correct first step $11x - 3 \ge 4x + 18$ or $5.5x - 1.5 \ge 2x + 9$ or better
			M1 for correctly collecting <i>their x</i> terms on one side and <i>their</i> number terms on the other side e.g. $11x - 4x \ge 18 + 3$ or better
9(a)	$\begin{pmatrix} 24\\ -9 \end{pmatrix}$	1	
9(b)	$\begin{pmatrix} -4 \\ 32 \end{pmatrix}$	1	
9(c)	(9, -7)	1	
9(d)	37	2	M1 for $(-12)^2 + 35^2$ oe
10(a)	Reflection $y = 2$	2	B1 for each
10(b)	Shape at (-2, -2), (-6, -5), (-6, -3), (-4, -2)	2	B1 for correct size and orientation but wrong position or for rotation of 90° anticlockwise about (-1, 2) or for three correct vertices
10(c)	Shape at (0, -2), (0, 2), (-2, 6), (-6, 6)	2	B1 for correct size and orientation but wrong position or for three correct vertices
11	9.1	3	M2 for $\frac{140}{360} \times [\pi] \times (3.2 + 2.6)^2 - \frac{140}{360} \times [\pi] \times 3.2^2 \text{ oe}$ or M1 for $\frac{140}{360} \times [\pi] \times 3.2^2 \text{ oe}$ or $\frac{140}{360} \times [\pi] \times (3.2 + 2.6)^2 \text{ oe}$ or $[\pi] \times (3.2 + 2.6)^2 - [\pi] \times 3.2^2$
12(a)	53	2	M1 for $a \times 8^2 + b = 181$ oe seen
12(b)	-8	1	

Question	Answer	Marks	Partial Marks
13	116	2	B1 for <i>ABD</i> = 32, <i>CAB</i> = 32, <i>BDC</i> = 32 or <i>CED</i> = 116 or M1 for 180 - 32 - 32
14	$\frac{x-2}{5}$ of final answer	2	M1 for a correct first step $x = 5y + 2$ or $y - 2 = 5x$ or $\frac{y}{5} = x + \frac{2}{5}$
15(a)	(9,7)	2	B1 for each
15(b)	2	2	M1 for $\frac{151}{13 - 5}$ oe
15(c)	$[y=]-\frac{1}{2}x+\frac{23}{2}$ oe	3	
	final answer	P	M1 for gradient = $-\frac{1}{their(b)}$ oe
	2		M1 for correct substitution of <i>their</i> (a) into y = (their m)x + c oe
16	621.21 – 6.21 oe	M1	
	$\frac{41}{66}$ cao	A2	A1 for $\frac{615}{990}$ oe If M0 scored SC1 for $\frac{k}{990}$ or for answer $\frac{41}{66}$ with insufficient working
17	40.7 or 40.73 to 40.74	2	M1 for $\frac{1}{2} \times 92.5 \times 71 \sin x = 2143$ oe
18	$\frac{5c}{2c-3}$ of final answer	atp ⁴	 M1 for correctly clearing the denominator and expanding bracket or correctly clearing the denominator and dividing by c M1 for correctly collecting terms in x on one side and terms not in x on the other M1 for correct factorising M1 for correct division dependent on x appearing only once in a factorised expression Maximum 3 marks for an incorrect answer

Question	Answer	Marks	Partial Marks
19	0.16 oe	3	M1 for $m = \frac{k}{(t+2)^2}$ oe M1 for substituting <i>their k</i> into $m = \frac{their k}{(8+2)^2}$ OR M2 for $0.64 \times (3+2)^2 = m(8+2)^2$ oe
20	\mathcal{E} A B C C B	1 P	
21	216.9 or 216.86 to 216.87 323.1 or 323.13	3	B2 for one correct angle or M1 for $\sin x = -\frac{3}{5}$ or better If M1 or 0 scored SC1 for two reflex angles with a sum of 540 or two non-reflex angles with a sum of 180
22	$\frac{22x+3}{(3x+2)(2x-1)}$ final answer	3	B1 for a common denominator $(3x + 2)(2x - 1)$ oe isw B1 for $5(2x - 1) + 4(3x + 2)$ oe isw
23	$\frac{1}{3}$ oe		M1 for $\left(1-\frac{2}{5}\right) \times p = \frac{1}{10}$ oe M1 for $\frac{2}{5} \times (1-their p)$ where $0 < their p < 1$

Cambridge IGCSE™

MATHEMATICS

0580/23 May/June 2023

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	2	1	
1(b)		2	B1 for one correct line and no extras or two correct lines and one extra
2	2015 or [0]8.15pm	1	
3	158	3	M2 for $[2](8 \times 5 + 8 \times 3 + 5 \times 3)$ or M1 for 8×5 or 8×3 or 5×3
4	72.6	2	M1 for $4-9.8 \times -7$ or better
5	d^6	Pí	RA
6	52	2	M1 for $12 = x \times \frac{3}{13}$ oe or better e.g. $12 \div \frac{3}{13}$ oe
7(a)	0.11 oe	2	M1 for 1 – (0.3 + 0.16 + 0.18 + 0.25) oe or B1 for 0.89 oe
7(b)	0.46 oe	2	M1 for 0.3 + 0.16
8	Rotation	3	B1 for each
	(0,0) oe		.5
	90° clockwise oe		co'
9(a)	32.5	2	M1 for $\frac{65}{their time}$ or $\frac{their distance}{2}$
9(b)	correct ruled line from (12 00, 65) to (13 18, 0)	1	
10	$ \frac{k}{12} + \frac{27}{12} \qquad [5] \frac{11}{12} \text{ and} \\ \text{or} \\ \frac{71}{12} + \frac{c}{12} \text{ oe} \qquad [2] \frac{3}{12} \text{ oe} $	M1	Accept with other correct common denominators e.g. 24, 36, 48 such as $\frac{71f}{12f}$ and $\frac{27f}{12f}$
	$8\frac{1}{6}$ cao	A2	A1 for fraction equivalent to $8\frac{1}{6}$ e.g. $\frac{49k}{6k}$ or $8\frac{1k}{6k}$ or $7\frac{7}{6}$

Question	Answer	Marks	Partial Marks
11(a)	$ \begin{array}{c} $	2	B1 for 1 region correct
11(b)		1	
12	$\sqrt{1^2 + (-5)^2}$	M2	M1 for $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$ or $(5-4)^2 + (3-8)^2$ or $\sqrt{e^2 + f^2}$ from their $\overrightarrow{OB} = \begin{pmatrix} e \\ f \end{pmatrix}$ or their $B = (e, f)$ or only $\sqrt{1+25}$
	Correct working leading to 5.09[9]	A1	Dep. on M2 or M1 for only $\sqrt{1+25}$
13	8.03 or 8.032 to 8.033	1	
14	581.81 5.81oe	M1	
	$\frac{32}{55}$ cao	A2	A1 for $\frac{576}{990}$ oe If M0 scored SC1 for $\frac{k}{990}$ or for answer $\frac{32}{55}$ with insufficient working.
15	807	2	M1 for $980 \times \left(1 - \frac{1.75}{100}\right)^{11}$ oe or better
16	7.00 or 6.998 to 7.002	3	M2 for $[r^2] = \frac{1970}{12.8 \times \pi}$ oe or better or M1 for $1970 = \pi \times r^2 \times 12.8$ or better

Question	Answer	Marks	Partial Marks
17	$m = \frac{2k}{(2-R)}$ or $m = \frac{-2k}{(R-2)}$	4	M1 for all and for a firm
	final answer		MI for clearing fractions
			M1 for expanding brackets (or ÷ 2)
			M1 for collecting terms in m on one side and terms not in m on the other
			M1 for dividing by a bracket maximum of 3 if final answer incorrect
18	8	3	M1 for $y = \frac{k}{\sqrt[3]{x+5}}$ oe
			M1 for substituting <i>their k</i> into $y = \frac{k}{\sqrt{2}}$ oe
			∛22+5 OR
	9		M2 for $12\sqrt[3]{3+5} = y\sqrt[3]{22+5}$ oe
19	$\frac{-5\pm\sqrt{5^2-4\times1\times-7}}{2\times1}$	B2	B1 for $\sqrt{5^2 - 4 \times 1 \times -7}$
			and if in form $\frac{p+\sqrt{q}}{\sqrt{q}}$ or $\frac{p-\sqrt{q}}{\sqrt{q}}$
			B1 for $p = -5$ and $r = 2 \times 1$
	-6.14 and 1.14 cao	B2	B1 for 1 correct answer for -6.1 and 1.1 or -6.140 and 1.140 or 6.14 and -1.14 or correct answers seen in working
20(a)	6x + 5 cao final answer	2	M1 for $6(x+2)-7$ oe
20(b)	$\frac{x+7}{6}$ or $\frac{x}{6} + \frac{7}{6}$ final answer	2	M1 for $x = 6y - 7$ or $y + 7 = 6x$ or $\frac{y}{6} = x - \frac{7}{6}$
20(c)	$\frac{1}{5}$ or 0.2	2	M1 for $x^{-3} = 6 \times 22 - 7$ or better
21	$\frac{x+4}{2x+3}$ final answer	4	B1 for $(2x-3)(2x+3)$
			B2 for $(2x-3)(x+4)$
			or B1 for $(2x + a)(x + b)$ where $ab = -12$ or $a + 2b = 5$
			or $x(2x-3)+4(2x-3)$ or $2x(x+4)-3(x+4)$

Question	Answer	Marks	Partial Marks
22	$[a =] \frac{-1}{2}$ oe	5	B4 for $\frac{1}{4}n^3 - \frac{1}{2}n^2 + 3n$ seen
	[h =]3		OR 1
			M2 for any two of $\frac{1}{4} + a + b = 2.75$
			$8 \times \frac{1}{4} + 4a + 2b = 6$
			$27 \times \frac{1}{4} + 9a + 3b = 11.25$
			$64 \times \frac{1}{4} + 16a + 4b = 20$
			or M1 for one correct equation
			M1 for correct method to eliminate 1 variable
		PF	B1 for 1 correct answer
23	1h 48 min nfww	4	B3 for 1.8 [hrs], $1\frac{4}{5}$ [hrs], $\frac{9}{5}$ [hrs] or 108
			[mins] nfww
			or M2 for $\frac{220 \text{ to } 221}{125 - 2.5}$ or $\frac{220 + 0.5}{120 \text{ to } 125}$
			or M1 for 220 + 0.5 or 220 – 0.5 or 125 + 2.5 or 125 – 2.5

Cambridge IGCSE™

MATHEMATICS

0580/22 February/March 2023

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2023 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Abbreviations

correct answer only
dependent
follow through after error
ignore subsequent working
or equivalent
Special Case
not from wrong working
seen or implied

Question	Answer	Marks	Partial Marks
1(a)	27	1	
1(b)	29	1	
2(a)	(-3)	1	
	(-2)	PR	
2(b)	$\begin{pmatrix} -2\\6 \end{pmatrix}$	1	
3	Correct shading	1	
4(a)	-1 4	1	1.5
4(b)	29 - 6n oe final answer	2	B1 for $k - 6n$ or $29 - kn$ or $29 - 6n$ seen then spoiled
5	2g(4-g) final answer	2	B1 for $2(4g - g^2)$ or for $g(8 - 2g)$ or for $2g(4 - g)$ seen then spoiled
6	$\frac{4}{7} \times \frac{1}{8}$ oe or $\frac{4}{7} \div \frac{56}{7}$ oe	M1	
	$\frac{1}{14}$ cao	A1	
7(a)	$-\frac{1}{4}$ oe	2	M1 for $15t + t = 4 - 8$ oe
7(b)	9.5 oe	2	M1 for $25 - 2u = 3 \times 2$ oe
			or for $\frac{25}{3} - 2 = \frac{2u}{3}$

0580/22

Question	Answer	Marks	Partial Marks
8	9×10 ⁻²	2	B1 for 0.09 oe or M1 for <i>their</i> decimal correctly converted to standard form if negative power
9	Correctly eliminating one variable	M1	
	[<i>x</i> =] 5	A1	
	[y =] -2	A1	If M0 scored SC1 for 2 values satisfying one of the original equations.
10	9.45	3 PR	M2 for $\frac{2.7 \times 7.5}{3} + 2.7$ oe OR B2 for 6.75 oe or M1 for $\frac{3}{7.5} = \frac{2.7}{XC}$ oe If 0 scored SC1 for answer 7.7
11	$4x^{12}$ final answer	2	B1 for $4x^k$ or kx^{12} or for $4x^{12}$ seen then spoiled
12	24	3	M2 for $180(n-2) = 11 \times 360$ oe OR M1 for $\frac{180}{11+1}$ [× 11] oe M1 for $\frac{360}{their \ 15}$ or for $\frac{(n-2) \times 180}{n} = (180 - their \ 15)$
13	90	2 Dref	M1 for a correct area calculation e.g. 8×10 or $0.5 \times 2 \times 10$ or better
14	6.12 or 6.116 to 6.118	3	M1 for $\sin = \frac{3}{9}$ or $\cos = \frac{9^2 + 9^2 - 6^2}{2 \times 9 \times 9}$ or M1 dep for $\frac{\text{their angle}}{360} \times \pi \times 2 \times 9$ dependent on use of trig for their angle
15	$5w^{625}$ final answer	2	B1 for kw^{625} or $5w^k$ final answer or for $5w^{625}$ then spoiled

Question	Answer	Marks	Partial Marks
16	4.5 oe	3	M2 for $2^2 \times y = 3^2 \times 2$ OR M1 for $y = \frac{k}{x^2}$ M1 for $y = \frac{theirk}{2^2}$
17(a)	42	1	
17(b)	55	1	
17(c)	85	1	
17(d)	108	2	M1 for [angle <i>ACD</i> =] 53 or [angle <i>BAC</i> =] 30
17(e)	53	1	
18	99	3	M2 for $44 \times \left(\frac{81}{24}\right)^{\frac{2}{3}}$ oe or M1 for $\left(\frac{81}{24}\right)^{\frac{1}{3}}$ oe or $\left(\frac{24}{81}\right)^{\frac{1}{3}}$ oe or $\left(\frac{44}{Area}\right)^{3} = \left(\frac{24}{81}\right)^{2}$ oe
19	0 and -3	3 pret	B2 for $x^2 + 3x = 0$ or better or M1 for $10 - 6x = x^2 - 3x + 10$ oe or for correct simplification of <i>their</i> quadratic to the form $ax^2 + bx + c = 0$ or better or finding $y = 28$ and $y = 10$
20(a)	$(n-1)^3 - 1$ oe	2	M1 for any cubic or third differences = 6
20(b)	$24 \times \left(\frac{1}{2}\right)^{n-1}$ oe	2	M1 for $c \times \left(\frac{1}{2}\right)^{an+b}$ oe where <i>a</i> , <i>b</i> and <i>c</i> are constants and $a > 0$
21	1.08	3	M2 for $\frac{13 \text{ to } 14}{12 + 0.5}$ oe or $\frac{14 - 0.5}{12 \text{ to } 13}$ oe or M1 for 14 + 0.5 oe or 14 - 0.5 oe or 12 + 0.5 oe or 12 - 0.5 oe

Question	Answer	Marks	Partial Marks
22	24.9 or 24.93 to 24.94	4	M3 for $\tan = \frac{4}{\sqrt{5^2 + 7^2}}$ oe
			or M2 for $5^2 + 7^2$ oe or $5^2 + 7^2 + 4^2$ oe
			or M1 for recognition of angle <i>PCA</i> .
23	$\frac{5x-4}{x+3}$ final answer	4	B2 for $(5x-4)(x-3)$ or B1 for $(5x+a)(x+b)$ with $ab = 12$ or $a + 5b = -19$ or for $5x(x-3) - 4(x-3)$ or $x(5x-4) - 3(5x-4)$
			B1 for $(x+3)(x-3)$
24	7	2	B1 for answer 6 or M1 for $\left(\frac{2}{3}\right)^k \left(\frac{1}{3}\right)$ shown with $k > 1$ or $\left(\frac{2}{3}\right)^{an+b} \left(\frac{1}{3}\right) = \frac{64}{2187}$ oe or for $3^n = 2187$ soi or $2^{n-1} = 64$ or $3^{n-1} = 729$ or better
25	$\sqrt[3]{x-1}$ or $(x-1)^{\frac{1}{3}}$	2	M1 for $x = y^3 + 1$ or for $y - 1 = x^3$ or better

Cambridge IGCSE™

MATHEMATICS

0580/21 October/November 2022

Paper 2 Extended MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao – correct answer only dep – dependent FT – follow through after error isw – ignore subsequent working oe – or equivalent SC – Special Case nfww – not from wrong working soi – seen or implied

Question	Answer	Marks	Partial Marks
1	Any multiple of 72	1	
2	7 h 10 min	1	
3	$\frac{4}{25}$ cao	2	M1 for $\frac{32}{200}$ oe
4	140, 60	2	M1 for $\frac{200}{(7+3)} \times k$ where $k = 1, 7 \text{ or } 3$
5	54	2	M1 for $180 - 71 - 55$ oe or B1 for 55 or 125 in a relevant correct position on the diagram
6	442	2 PR	M1 for $\frac{100-15}{100} \times 520$ oe or B1 for 78
7(a)	a, b, c, d	1	
7(b)	6	1	
8(a)	243	1	
8(b)	4n + 9 oe final answer	2	B1 for $4n + k$ or $jn + 9$, $j \neq 0$ or for correct answer seen then spoilt
9	$\frac{2}{6} + \frac{5}{6}$ oe	M1	i.e. correct fractions with common denominator 6k
	$1\frac{1}{6}$ cao	A1	.5
10	$2x^9$ final answer	re ²	B1 for kx^9 or $2x^k$ as final answer or $2x^9$ spoiled
11	[x =] 4 [y =] -1	2	B1 for each
12(a)	6	1	
12(b)	8	2	M1 for $\left(\frac{2}{3}\right)^2$ or $\left(\frac{3}{2}\right)^2$ oe seen
13(a)	2.8 oe	1	
13(b)	175	2	M1 for a correct relevant area calculation e.g. $(15-5) \times 14$ or $\frac{1}{2} \times 5 \times 14$ oe or better

Question	Answer	Marks	Partial Marks
14	Rotation (5, 3) 90° clockwise oe	3	B1 for each
15	71.6 or 71.61 to 71.62	3	M2 for $\frac{\text{angle}}{360} = \frac{26 - 8 - 8}{2\pi \times 8}$ or better or M1 for $\frac{\text{angle}}{360} \times 2\pi \times 8$ oe
16	[u =] 20[v =] 52[w =] 108[x =] 36	4	B1 for each
17	$5x^{625}$ final answer	2	B1 for final answer kx^{625} or $5x^k$ or correct answer spoiled
18	12.7 or 12.68 to 12.69	4	M3 for $\frac{7 \sin 115}{\sin(180 - 115 - 35)}$ or B2 for 8.03 seen OR B1 for [angle C =] 30 M2 for $\frac{7 \sin 115}{\sin(their \text{ angle } C)}$ or M1 for $\frac{\sin 115}{BC} = \frac{\sin(their \text{ angle } C)}{7}$ oe
19	$2x^3 - 5x^2 - 4x + 12$ final answer	3 re9	B2 for correct expansion of the three brackets unsimplified or for simplified four- term expression of correct form with three terms correct or B1 for correct expansion of two of the three given brackets with at least three terms out of four correct
20(a)	(1+x)(1-y) final answer	2	B1 for $1 + x - y(1 + x)$ or $1 - y + x(1 - y)$
20(b)	2x(x+3y)(x-3y) final answer	3	B2 for $2x(x^2-9y^2)$ or correctly factorising into two brackets e.g. $(2x^2+6xy)(x-3y), (x^2-3xy)(2x+6y)$ or B1 for $2(x^3-9xy^2)$ or $x(2x^2-18y^2)$ or for $(x+3y)(x-3y)$

Question	Answer	Marks	Partial Marks
21	Correct sketch with maximum at origin and minimum in fourth quadrant	2	B1 for any cubic with exactly 2 distinct turning points
22(a)	Correct sketch to go through (0, 1), (360, 1) and (180, -1)	2	To go through (0, 1) and close to (360, 1) and reasonably close to (180, -1) B1 for correct cosine curve shape through (0, 1)
22(b)	120, 240	2	B1 for each or for two values with sum of 360
23	$\frac{144}{w}$ oe	3	M2 for $y = \frac{k}{w}$ oe or M1 for $x = cw^2$ or for $y = \frac{j}{\sqrt{x}}$ oe
24	4 nfww	2	M1 for 39 + 0.5 or 36 – 0.5 or better seen 39 – 0.5 or 36 + 0.5
25(a)(i)	$\frac{3}{4}$ oe	rep	.00
25(a)(ii)	45	1	FT $60 \times their$ (a)(i) correctly evaluated
25(b)	47/66 oe	4	M3 for $1 - \left(\frac{5}{12} \times \frac{4}{11} + \frac{4}{12} \times \frac{3}{11} + \frac{3}{12} \times \frac{2}{11}\right)$ oe or M2 for $\left(\frac{5}{12} \times \frac{4}{11} + \frac{4}{12} \times \frac{3}{11} + \frac{3}{12} \times \frac{2}{11}\right)$ oe or $\left(\frac{5}{12} \times \frac{4}{11} + \frac{5}{12} \times \frac{3}{11} + \frac{4}{12} \times \frac{3}{11}\right)$ oe or M1 for $\frac{5}{12} \times \frac{4}{11}$ or $\frac{5}{12} \times \frac{3}{11}$ or $\frac{4}{12} \times \frac{3}{11}$ or $\frac{3}{12} \times \frac{2}{11}$ oe If 0 scored, SC1 for $\frac{47}{72}$ oe

Question	Answer	Marks	Partial Marks
25(c)	5	2	M1 for correct trial to at least two balls one of which is not green

Cambridge IGCSE™

MATHEMATICS

0580/22 October/November 2022

Paper 2 Extended MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.	
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.	
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.	
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).	
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.	
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.	

Abbreviations

cao – correct answer only dep – dependent FT – follow through after error isw – ignore subsequent working oe – or equivalent SC – Special Case nfww – not from wrong working soi – seen or implied
Question	Answer	Marks	Partial Marks
1	112	2	M1 for $180 - 34 \times 2$ oe
2	-50y	1	
3	0	1	
4	$3x + x^3$ final answer	2	B1 for one correct term from two in final answer or for correct answer then spoilt
5	6.55	3	M2 for $(33.48 - 2.4 \times 0.85)$ oe
			or M1 for 2.4×0.85
6(a)	2 -9	2	B1 for one correct
6(b)	Sequence A $7n-4$ oe final answer	2	B1 for $7n + c$ or $kn - 4$ $k \neq 0$ or for correct answer seen then spoilt
	Sequence B	2	M1 for finding second differences of 6
	$3n^2 - 1$ oe final answer		or has an answer that is a quadratic sequence
			or for correct answer seen then spoilt
7	$\frac{10}{18}$ and $\frac{3}{18}$	M1	Allow any correct common denominator 18k
	$\frac{7}{18}$ cao	A1	
8(a)	3.5	2	M1 for values in correct order 1.5 2 2 3 4 4.5 5 18
	· satp	reP	or 3 and 4 identified as middle numbers
8(b)	One extreme value oe	1	
9(a)	A and C	1	
9(b)	ASA	1	
10(a)	3456	1	
10(b)	0.75 or $\frac{3}{4}$ oe	1	
10(c)	0.25 or $\frac{1}{4}$	1	
11(a)	5	2	M1 for $(0-3)(0+b)(0+2) = -30$ oe or better

Question	Answer	Marks	Partial Marks
11(b)	(3, 0)	1	
12	5×199^{57}	2	M1 for $[315 =] 3^2 \times 5 \times 7$ oe
			or $3^2 \times 5^2 \times 7 \div 315 = 5$
13(a)	A correct cumulative frequency diagram	3	 B1 for correct horizontal placement for 7 plots B1 for correct vertical placement for 7 plots B1FT dep on at least B1 for reasonable increasing curve or polygon through <i>their</i> 7 points If 0 scored SC1 FT for 6 out of 7 points correctly plotted
13(b)	33 to 34.5		FT <i>their</i> increasing cumulative frequency graph
14	104	2	M1 for 0.5×136 oe or 0.25×144 oe
15	Opposite angles add up to 180 oe	1	
16(a)		2	B1 for each
16(b)	$\begin{array}{c} A \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2	B1 for 2 correct
17(a)	9	1	
17(b)	2x-5 final answer	2	M1 for correct first step e.g. $x = \frac{y+5}{2}$ or $2y = x+5$ or $y - \frac{5}{2} = \frac{x}{2}$ or better

Question	Answer	Marks	Partial Marks
17(c)	11	3	M1 for $\frac{x^2 + 5}{2}$
			2 M1 for hh ⁻¹ (63) = 63 soi
18	419.19–4.19 oe	M1	
	$\frac{83}{198}$ cao	A2	Al for $\frac{415}{990}$ oe
			If M0 scored SC1 for $\frac{k}{990}$ or correct answer with insufficient working
19	$\frac{3}{7}$ oe	3	M1 for clearly identifying the 7 even outcomes 2 6, 3 5, 3 7, 3 9, 5 5, 5 7, 5 9
	SATP	R	M1 for clearly identifying the 3 even outcomes with just one five 3 5, 5 7 and 5 9
			If 0 scored SC1 for answer $\frac{1}{4}$ oe
20(a)	$27x^{12}$ final answer	2	B1 for kx^{12} or $27x^c$ final answer or for $27x^{12}$ then spoilt
20(b)	[±] y	1	
21	228 or 228.3 to 228.4	4	M1 for $\frac{1}{3} \times \pi \times \left(\frac{9.2}{2}\right)^2 \times 12.5$ oe
	W.satp	rep	M1 for $\frac{9.2}{12.5} = \frac{diameter}{12.5 - 5.5}$ oe or better
			M1 for $\frac{1}{3} \times \pi \times \left(\frac{their 5.152}{2}\right)^2 \times (12.5 - 5.5)$
			OR
			M2 for
			$\frac{\pi}{3} \times \left(\frac{9.2}{2}\right)^2 \times 12.5 - \frac{\pi}{3} \times r^2 \times (12.5 - 5.5) \text{ oe} $ for any $r < 4.6$
			If 0 scored SC1 for 913 or 913.3 to 913.5

Question	Answer	Marks	Partial Marks
22	45	3	M2 for $\sqrt[3]{\frac{875}{56}} \times 18$ oe or M1 for $\sqrt[3]{\frac{875}{56}}$ or $\sqrt[3]{\frac{56}{875}}$ oe or $\frac{18^3}{h^3} = \frac{56}{875}$ oe
23	$[0 =] 6x^2 - 19x + 3$	B5	B4 for $8x - 20 + 2x + 2 = 6x^2 + 6x - 15x - 15$ or better OR M2 for 4(2x - 5) + 2(x + 1) = 3(x + 1)(2x - 5) oe or M1 for $4(2x - 5) + 2(x + 1)$ or better or common denominator $(x + 1)(2x - 5)$ or better B1 for $2x^2 + 2x - 5x - 5$ or better seen M1 for correctly simplifying <i>their</i> quadratic to the form $[0 =]ax^2 + bx + c$
	Correct method to solve <i>their</i> three term quadratic	M1	e.g. $(6x - 1)(x - 3)$ $-(-19) \pm \sqrt{(-19)^2 - 4 \times 6 \times 3}$ 2×6
	$x = 3, x = \frac{1}{6}$ oe	B1	.5

Cambridge IGCSE™

MATHEMATICS

0580/23 October/November 2022

Paper 2 Extended MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao – correct answer only dep – dependent FT – follow through after error isw – ignore subsequent working oe – or equivalent SC – Special Case nfww – not from wrong working soi – seen or implied

Question	Answer	Marks	Partial Marks
1	5[h] 23[min]	1	
2(a)	121	1	
2(b)	216	1	
3	6.05 or 6.054 to 6.055	1	
4	93 95 101 101	3	 M1 for 4 × 97.5 implied by 390 or for four numbers which add to 390 B1 for four numbers with a range of 8 B1 for four numbers with mode of 101 to a maximum of 2 marks
5	$\frac{15}{21}$ and $\frac{14}{21}$ oe	M1	Allow any correct common denominator 21k
	$\frac{1}{21}$ cao	A1	
6(a)	$\frac{7}{20}$ oe or 0.35 or 35%	2	M1 for $1 - \left(\frac{2}{5} + \frac{1}{4}\right)$ oe
6(b)	48	1	
7	180	2	M1 for answer $2 \times 2 \times 3 \times 3 \times 5$ or better or for answer $180k$ or two correct factor trees, tables or Venn diagram or better or a list of multiples of both 36 and 60 with at least 3 correct of each
8	(1, 3.5)	2	B1 for each
9	[x =] 9 [y =] 3	2	B1 for each answer
10(a)	9.8[0] or 9.797 to 9.798	3	M2 for $14^2 - 10^2$ oe or better or M1 for $10^2 + h^2 = 14^2$ oe or better
10(b)	33.8 or 33.79 to 33.80	1	FT 24 + <i>their</i> (a)
11	15	4	B2 for $x = 16$ soi or M1 for $7x + 44 + x + 8 = 180$ or better M1 for $360 \div (their x + 8)$ oe
12	320.18	3	B2 for 4320.18 or M1 for 4000 × $\left(1 + \frac{2.6}{100}\right)^3 [-4000]$ oe

Question	Answer	Marks	Partial Marks
13	2.4–0.24 oe	M1	
	$\frac{11}{45}$ cao	B 1	If 0 scored SC1 for $\frac{k}{90}$.
14	49.6	2	M1 for answer figs 496
15(a)	2	1	
15(b)	25.125	4	M3 for $\frac{15 \times 30}{2} + 30(k-15)[=$ figs 45] oe OR B2 for 44 775 or 44.775 OR M1 for $\frac{15 \times 30}{2}$ or $30(k-15)$ oe B1 for 45 000 or 0.225 or 0.03
16	$[y=] -\frac{1}{4}x - \frac{11}{2}$ oe	3	M1 for grad = $-\frac{1}{4}$ oe soi M1 for correct substitution shown of (-2, -5) into $y = (their m)x + c$ oe (their $m \neq 4$)
17	8	3	
18	16	3	M2 for $12 \times \sqrt[3]{\frac{768}{324}}$ oe or M1 for $\sqrt[3]{\frac{768}{324}}$ or $\sqrt[3]{\frac{324}{768}}$ or $\frac{h^3}{12^3} = \frac{768}{324}$ oe
19(a)	$\frac{2}{x-1}$ final answer	2	M1 for $\frac{10}{5x-3-2}$ or better
19(b)	$\frac{10}{x} + 2$ or $\frac{10 + 2x}{x}$ final answer	3	M2 for $y-2 = \frac{10}{x}$ or $x = \frac{10+2y}{y}$ oe or $yx = 10 + 2x$ oe or M1 for $x = \frac{10}{y-2}$ or $y(x-2) = 10$ oe or better
19(c)	x-1	1	

Question	Answer	Marks	Partial Marks
20(a)	Correct sketch to go through (0, 0), (180, 0) and (360, 0)	2	B 1 for correct sine curve shape through the origin
20(b)	187.2 and 352.8	3	B2 for one correct value, if more than two answers given award B2 if any of the correct answers found and may be in the working or M1 for sin $x = -\frac{1}{8}$ oe soi If 0 scored, SC1 for two reflex angles with a sum of 540 or two non-reflex angles with a sum of 180
21	076 or 076.4 to 076.5	5	B3 for [angle <i>ABC</i> =] 144 or 144.4 to 144.5 OR M2 for [sin <i>ABC</i> =] $\frac{17.6 \sin 25}{12.8}$ oe or M1 for $\frac{17.6}{\sin B} = \frac{12.8}{\sin 25}$ oe M1 for 180 – <i>their</i> 35.5 AND M1 for <i>their</i> angle <i>ABC</i> – (180 – 112) oe
22(a)	$2x^3 + x^2 - 25x + 12$ final answer	3	B2 for correct unsimplified expanded expression or for simplified four-term expression of correct form with 3 terms correct or B1 for correct expansion of 2 brackets with at least 3 terms out of 4 correct
22(b)	$\frac{2}{x}$ final answer	4	M1 for $\left[\frac{4}{2x-3}\right] \times \frac{2x^2 + 11x - 21}{2x^2 + 14x}$ oe soi B1 for $(x+7)(2x-3)$ oe factorised B1 for $2x(x+7)$ oe factorised

Cambridge IGCSE™

SUBJECT

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70 0580/21 May/June 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Question	Answer	Marks	Partial Marks
1	31 or 37	1	
2	399	1	
3	2h 57 min	1	
4	4.286 cao	2	B1 for 4.285[7] or 4.29 or $\frac{30}{7}$ or $4\frac{2}{7}$
			decimal to 4sf
5	320	2	M1 for 380.8 ÷ 1.19 oe
6	$2 \times 2 \times 3 \times 3 \times 5$ oe	2	B1 for 2, 2, 3, 3, 5 or M1 for correct factor tree/diagram/table.
7	$\frac{9}{21}$ and $\frac{2}{21}$ oe	M1	Allow any correct denominator 21k
	$\frac{1}{3}$ cao and correct working	A1	
8(a)	7.2 oe	1	
8(b)	$[\pm] \sqrt{\frac{2s}{a}}$ final answer	2	M1 for $\frac{s}{a} = \frac{1}{2}t^2$ or $2s = at^2$ or better
9	7y(2x-y) final answer	2	B1 for $7(2xy - y^2)$ or $y(14x - 7y)$ or $7y(2x - y)$ seen then spoilt
10(a)	-3	1	- 2
10(b)	27-5n oe final answer	2 Itpre	B1 for $j - 5n$ or $27 - kn$, $k \neq 0$ or for $27 - 5n$ seen then spoilt
11(a)	4.5 oe	2	M1 for $\frac{8}{6} = \frac{6}{QR}$ oe or better
11(b)	135	2	M1 for $\left(\frac{6}{8}\right)^3$ or $\left(\frac{8}{6}\right)^3$ or $\left(\frac{their 4.5}{6}\right)^3$ oe
12	162	3	M2 for $\left(\frac{(5-2)\times 180}{4+5+5+7+9}\right) \times k$ where $k = 1, 4, 5, 7, 9$
			or M1 for $180n \div (4 + 5 + 5 + 7 + 9)$ where $n \ge 2$
			or for $(5-2) \times 180$ oe

Question	Answer	Marks	Partial Marks
13	1.98×10^{100}	2	B1 for 200×10^{98} or 0.02×10^{100} or answer with figs 198
14	90	3	B2 for 210 or 0.09 km OR
			M1 for speed × time seen
			M1 for correct conversion of both km to m and between h and s
15	-3	1	
16	Enlargement	3	B1 for each
	$[sf] - \frac{1}{2}$		
	[centre] (4, 4)	PF	2
17	3.37 or 3.367 to 3.368	3	M2 for isolating r^3 , e.g. $r^3 = \frac{120}{\pi}$ or M1 for $\frac{1}{2} \times \frac{4}{2} \times \pi r^3 = 80$ oe
			² ³ If 0 scored SC1 for answer 2.67 or 2.672 to 2.673
18	[x =] 38 [y =] 22	3	B1 for $[x =]$ 38 and B2 for $[y =]$ 22 or M1 for angle $ACB = their x$
	22		or angle $BAD = 60$ or angle $CBA = 120$
19	<i>PQX</i> and alternate <i>PXQ</i> and [vertically] opposite oe	tpr4	B2 for lines 1 and 2 correct or B1 for line 1 or 2 correct, or both angles
	ASA		correct
	XB		B1 for line 3 correct B1 for line 4 correct
20(a)	1.5 or $1\frac{1}{2}$	1	
20(b)	240	2	M1 for one correct area
21	(1-q)(1-a) or $(a-1)(q-1)final answer$	2	B1 for $1 - q - a(1 - q)$ or $1 - a - q(1 - a)$ or better or correct answer seen and spoilt
22	$36y^{144}$ final answer	2	B1 for ky^{144} or $36y^k$ final answer $k \neq 0$ or correct answer seen and spoilt

Question	Answer	Marks	Partial Marks
23(a)	[p =] 4 [q =] -6	2	B1 for one correct or $(x+4)^2 - 6$ or $x^2 + px + px + p^2 [+q]$
23(b)	-10 and 2	2	M1 for $(x+4)^2 = 36$ or $(x+their4)^2 = 30-their(-6)$ or for correct method to solve quadratic e.g. $(x+10)(x-2)$
24	28	3	M2 for $24^2 + 12^2 + 8^2$ or M1 for $24^2 + 12^2$ or $24^2 + 8^2$ or $12^2 + 8^2$
25	$\frac{16}{\sqrt{x}}$ oe final answer	3	M2 for $w = \frac{k}{\sqrt{x}}$ oe
	GAT	PF	OR M1 for $w = j\sqrt{y}$
			M1 for $y = \frac{c}{x}$
26	$\frac{5}{3}$ a + $\frac{1}{3}$ b final answer	4	M1 for $\overrightarrow{AK} = -\frac{1}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$ or $\overrightarrow{BK} = \frac{2}{3}\mathbf{a} - \frac{2}{3}\mathbf{b}$
			M1 for \overrightarrow{AL} (or \overrightarrow{OK}) = $\mathbf{a} + their \overrightarrow{AK}$ oe soi
			or OK (or AL) = b + their AK oe soi or $\overrightarrow{BL} = \mathbf{a} + their \overrightarrow{AK}$ oe soi
	22		M1 for a correct route e.g. \overrightarrow{OL} , $\mathbf{a} + \overrightarrow{AL}$, $\mathbf{b} + \overrightarrow{BL}$
27	(−2, −1) and (6, 7)	itpr4	B3 for $x = -2$ and 6 OR M1 for $x^2 - 3x - 11 = x + 1$ or better M1 for correct method to solve <i>their</i> quadratic e.g. $(x+2)(x-6)$
			If 0 scored, SC1 for one correct pair of coordinates

Cambridge IGCSE™

MATHEMATICS

0580/22 May/June 2022

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Question	Answer	Marks	Partial Marks
1	13 or –13	1	
2	54	2	M1 for $\frac{360}{8+5+4+3}$ [×3] or $\frac{3}{8+5+4+3}$ [×360] oe
3	11 27	3	M1 for 500 ÷ 43 oe
			M1 for $500 - their 11 \times 43$ oe <i>their</i> 11 must be an integer from 2 to 11
4	102	1	
5	180	3	M2 for $[2 \times](8 \times 6 + 8 \times 3 + 3 \times 6)$ oe
			or M1 for 8×6 or 8×3 or 3×6
6	0.48 oe	2	M1 for $1 - (0.2 + 0.32)$ oe
7	103.32 cao	2	M1 for $126 \times \left(1 - \frac{18}{100}\right)$ oe
8	13 16 21	2	B1 for 2 correct terms in correct position or SC1 for 12, 13, 16
9	239	2	M1 for 180 + 59 or 360 – (180 – 59) oe
			or indicates correct angle on diagram
10(a)(i)	$\begin{pmatrix} 3\\4 \end{pmatrix}$	1	.5
10(a)(ii)	$\begin{pmatrix} 12\\ 48 \end{pmatrix}$	atpl	ep.
10(b)	5	2	M1 for $(their3)^2 + (their4)^2$ or better
11	24	1	
12(a)	correct graph	3	B1 for line from (0, 0) to (1.5, 30)
			B1 for horizontal line from (<i>their</i> 1.5, <i>their</i> 30) for 0.5 hours
			B1 for a line from (<i>their</i> 2, <i>their</i> 30) ending at distance 70 with a gradient of 16 Provided it fits on the grid and <i>their</i> 30 is <70

Question	Answer	Marks	Partial Marks
12(b)	15.6 or 15.55 to 15.56 nfww	3	M2 for 70 ÷ (<i>their</i> final time in hours) (final time =) $1.5 + 0.5 + \frac{70 - their 30}{16}$ or 4.5 or <i>their</i> final time from graph or M1 for 70 ÷ any time
13	$\frac{33}{8} \text{ or } \frac{17}{6} \qquad 2\frac{1}{8} - \frac{5}{6}$	B1	Correct step for dealing with mixed numbers Allow $\frac{33k}{8k}$ or $\frac{17k}{6k}$
	$\frac{99}{24}$ and $\frac{68}{24}$ $[2]\frac{3}{24} - \frac{20}{24}$	M1	Correct method to find common denominator e.g. $4\frac{3}{24}$ and $2\frac{20}{24}$
	$1\frac{7}{24}$ cao and correct working	A1	STA STA
14	2.6[0] or 2.600	3	M2 for $\sqrt[10]{\frac{1328.54 + 4540}{4540}}$ or M1 for 4540 × k^{10} = 1328.54 + 4540 for any k If 0 scored SC1 for answer -11.6 or -11.56
15	$4a^2b$ final answer	2	M1 for two correct parts out of three from 4, a^2 and <i>b</i> in final answer
16(a)	$(M \cup G) \cap P'$	1	
16(b)	22	atph	ep.
16(c)	$\frac{8}{23}$ oe	2	M1 for $\frac{k}{23}$ or $\frac{k}{3+9+5+6}$ or $\frac{8}{c}$ or $\frac{3+5}{c}$ $c \neq 1$ or for 8 and 23 identified
17(a)	Correct sketch to go through (0, 0), (180, 0) and (360, 0)	2	B1 for correct sine curve shape through the origin

Question	Answer	Marks	Partial Marks
17(b)	199.5 or 199.47 and 340.5 or 340.52 to 340.53	3	B2 for one correct or M1 for sin $x = -\frac{1}{3}$ oe If 0 scored SC1 for two reflex angles with sum of 540 or two non-reflex angles with sum of 180
18(a)	2.5	3	M1 for $y = k \times \sqrt[3]{x+1}$ M1 for $y = theirk \times \sqrt[3]{124+1}$
18(b)	multiplied by 4 oe	1	
19(a)	$\frac{x+8}{7}$ final answer	2	M1 for $x = 7y - 8$ or $y + 8 = 7x$ or $\frac{y}{7} = x - \frac{8}{7}$
19(b)	4	2	M1 for $4 \div \frac{1}{3} + 5$ oe or better
20(a)	(2m+3p)(1-4k) final answer	2	B1 for $2m+3p-4k(2m+3p)$ or better or $2m(1-4k)+3p(1-4k)$ or correct answer seen and spoilt
20(b)	5(x-2y)(x+2y) final answer	3	B2 for $(5x - 10y)(x + 2y)$ or $(x - 2y)(5x + 10y)$ or correct answer seen then spoilt or B1 for $5(x^2 - 4y^2)$ or for $(x - 2y)(x + 2y)$
21	[a =] 2 [b =] - 1	5 atpr	M2 for correct method to find two simultaneous equations e.g. two from $a \times 1^2 + b \times 1 - 4 = -3$ $a \times 2^2 + b \times 2 - 4 = 2$ 3a + b = 23 or M1 for 1 correct equation M1 for correctly eliminating one variable for <i>their</i> simultaneous equations A1 for a = 2 A1 for b = -1
22	4 : 3 oe	2	M1 for $\overrightarrow{AD} = -\frac{4}{7}x + \frac{4}{7}y$ oe or $\overrightarrow{DB} = -\frac{3}{7}x + \frac{3}{7}y$ oe

Question	Answer	Marks	Partial Marks
23	18.4 or 18.40	4	M3 for $\frac{600 - \frac{1}{2} \times 4 \times \pi \times 6.2^2}{6.2 \times \pi}$ oe
			$\frac{1}{2} \times 4 \times \pi \times 6.2^2 + \pi \times 6.2 \times l = 600 \text{ oe}$
			or $\frac{600 - 4 \times \pi \times 6.2^2}{6.2 \times \pi}$ or better
			or M1 for $\left[\frac{1}{2}\right] \times 4 \times \pi \times 6.2^2$ or $\pi \times 6.2 \times l$

Cambridge IGCSE™

MATHEMATICS

0580/23 May/June 2022

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

ABBREVIATIONS IN MARK SCHEME

Abbreviation	Meaning		
М	Method marks - for a correct method applied to appropriate numbers.		
Α	Accuracy marks – depend on M marks. Hence M0 A1 is not possible.		
B Independent of method marks – for a correct final answer, a partially correct answer or a correct intermediate stage.			
SC Marks given in special cases only when indicated in mark scheme.			
FT	FT Work can be followed through after an error.		
isw Ignore subsequent working (after correct answer obtained)			
cao Correct answer only			
nfww	Not from wrong working		
oe	Or equivalent		
soi Seen or implied			
eeo	Each error or omission		
dep	Dependent on the previous mark(s)		

Question	Answer	Marks	Partial Marks
1	0.95 oe	1	
2	792 or 792.1	2	M1 for $\frac{4 \times 7^3}{\sqrt{3}}$ oe or B1 for 1372
3	97	2	M1 for 360 – (73 + 129 + 75)
4(a)	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	2	B1 for two rows correct or for fully correct unordered stem-and-leaf diagram or for a correct diagram with one error or omission
4(b)	1.15	1	
5	0, 3, 8	R 2	B1 for 2 correct terms in correct position or SC1 for -1, 0, 3
6(a)	y^{-2} or $\frac{1}{y^2}$ final answer	1	
6(b)	7	1	
7(a)	27 000	1	
7(b)	Point plotted at (175, 9)	1	
7(c)	Correct single ruled line of best fit	1	
7(d)	300 to 350	1	FT <i>their</i> straight line of best fit provided positive gradient
8	$\frac{2}{9} \times \frac{6}{5}$ or $\frac{4}{18} \div \frac{15}{18}$ oe	M1	
	$\frac{4}{15}$ cao	A1	
9	18	2	M1 for $\frac{300 \times 60}{1000}$ oe or B1 for figs 18 in <i>their</i> answer
10	40	1	
11	DE	1	

Question	Answer	Marks	Partial Marks
12	0.14 oe nfww	4	M3 for $\frac{14}{50 \times 2}$ with at least 2 out of 3 values correct and for the one incorrect value: <i>f</i> must be 1, 2 or 7 <i>m</i> must be a multiple of 50 <i>p</i> must be prime OR B1 for <i>f</i> = 14 B1 for <i>m</i> = 50 B1 for <i>p</i> = 2 If 0 scored SC1 for a correct multiple for <i>m</i> , factor for <i>f</i> or prime for <i>p</i>
13(a)	9p(2x-3) final answer	2	B1 for $9(2px - 3p)$ or $p(18x - 27)$ or $3p(6x - 9)$ or $9p(2x - 3)$ seen and spoilt
13(b)	(m+n)(t-1) final answer	2	B1 for $m(t-1) + n(t-1)$ or $t(m+n) - [1](m+n)$ or correct answer seen and spoilt
14	$3n^2 + 5$ oe final answer	2	M1 for correctly finding second differences or an answer that is a quadratic sequence
15	$x \ge 2$ final answer	2	M1 for $12x - 4x \ge 13 + 3$ oe
16	D B C	B1	, S , S
	$\frac{1}{3}$ or 0.333	B1	
	150	B2	or M1 for $\frac{1}{2} \times 30 \times 10$
17	ADC and ADB and 90	3	B1 for each correct line
	AD		
	RHS		

Question	Answer	Marks	Partial Marks
18	252	3	M2 for $180 \div (7-2)$ oe
			OR
			M1 for $180 - x + y = 360$ oe
			M1 for correct use of ratio
19(a)	3	2	M1 for $k(-5k)^2 = 675$ or better
19(b)	$\frac{5}{7x-2}$ final answer	1	
19(c)	$\frac{1}{2}$ or 0.5	4	B3 for answer $\frac{7}{14}$
	2		I4 OR
	ATP	RA	B2 for $\frac{5x+2}{7}$
	6		or M1 for correct first step for $h^{-1}(x)$
			e.g. $x = \frac{7y-2}{5}$ $5y = 7x-2$
			$y + \frac{2}{5} = \frac{7x}{5}$
			M1FT for $\frac{2(5x+2)}{14} + \frac{3-10x}{14}$ oe with
20	00.2 00.19		
20	90.2 or 90.18	4	B3 for 9.82[%]
	Z		OR $(2 45 (k)^2)$
	W.Sota	.00.	M3 for $[100 \times] \left(k^2 - \frac{10}{360} \times \pi \times \left(\frac{\pi}{2} \right) \right) \div k^2$
	Patpi	OF	$(1)^{2}$
			or M2 for $[100 \times] \frac{45}{360} \times \pi \times \left(\frac{k}{2}\right) \div k^2$ oe
			or $k^2 - \frac{45}{260} \times \pi \times \left(\frac{k}{2}\right)^2$
			or $100 \times (k^2 - m\pi k^2) \div k^2$
			or M1 for $\frac{c}{360} \times \pi \times \left(\frac{k}{2}\right)^2$ oe or for $(k^2 - m\pi k^2) \div k^2$
			or for $100 \times (k^2 - mk^2) \div k^2$

Question	Answer	Marks	Partial Marks
21	13.75 14.85	3	B2 for one correct answer or both correct answers seen in working then rounded to 3sf or both correct but reversed
			or M1 for 2 correct seen from 23 + 0.5, 23 - 0.5, 8.7 + 0.05 or 8.7 - 0.05 or better
22	$\frac{x}{5+x}$ final answer nfww	3	B1 for $x(5-x)$ B1 for $(5-x)(5+x)$ or
23	221.8 or 221.81 and 318.2 or 318.18 to 318.19	3	B2 for one correct or M1 for sin $x = -\frac{2}{3}$ oe
	TP	R	If 0 scored, SC1 for two reflex angles with a sum of 540 or two non-reflex angles with a sum of 180
24	2.8	3	M1 for $y = \frac{k}{(x-1)^3}$ M1 for $y = \frac{their k}{(4-1)^3}$ OR M2 for $y(4-1)^3 = 9.45(3-1)^3$
25	81	3	M2 for $m^{\frac{3}{4}} = 27$ or better or M1 for $\frac{1}{m^{\frac{1}{4}}} = \frac{27}{m}$ or better or $m^{-\frac{1}{4}-1} = 27$ If 0 scored SC1 for answer $\frac{1}{81}$

Cambridge IGCSE™

MATHEMATICS

0580/22 February/March 2022

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Г

Т

Т

Abbreviations

correct answer only
dependent
follow through after error
ignore subsequent working
or equivalent
Special Case
not from wrong working
seen or implied

Т

Question	Answer	Marks	Partial Marks
1	40°	1	
2	80.50 cao	2	B1 for 80.498 or 80.5 or correctly rounding their more accurate decimal to 2 dp
3	7 [h] 18 [min]	1	
4	166	3	M2 for [2 ×] (7×4 + 4×5 + 5×7) or M1 for 7×4 or 4×5 or 5×7
5(a)	5	1	
5(b)	(0, 7)	1	
6	correct triangle with arcs	2	B1 for correct triangle with incorrect or no arcs or for two correct arcs. or a triangle with arcs but one side not in range
7	n > -1 oe	1	is
8(a)(i)	triangle at (-1, 1) (-4, 2) (-3, 5)	1	0
8(a)(ii)	triangle at $(-2, -3)(1, -2)(0, 1)$	2	B1 for translation by $\begin{pmatrix} -3 \\ k \end{pmatrix}$ or by $\begin{pmatrix} k \\ -4 \end{pmatrix}$
8(b)	enlargement [sf] $\frac{1}{2}$ [centre] (9, -1)	3	B1 for each
9	$3a(4a^2-7)$ final answer	2	B1 for $3(4a^3 - 7a)$ or $a(12a^2 - 21)$ or for $3a(4a^2 - 7)$ seen then spoilt
10(a)	8 11 16	2	B1 for two correct
10(b)	23 - 8n oe final answer	2	B1 for $j - 8n$ or $23 - kn \ k \neq 0$ or $23 - 8n$ seen then spoilt
11	Positive	1	

Question	Answer	Marks	Partial Marks
12(a)	805	3	B2 for 105 or M2 for $\frac{700 \times 2.5 \times 6}{100} + 700$ oe or M1 for $\frac{700 \times 2.5 \times 6}{100}$ oe
12(b)	2.3[0]	3	M2 for $\sqrt[17]{\frac{1030.35}{700}}$ oe or M1 for $1030.35 = 700(k)^{17}$ oe for any k
13(a)	h^7 final answer	1	
13(b)	$\frac{x^3}{343}$ final answer		
13(c)	6	1	
14	29.5 or 29.53	2	M1 for $2 \times \pi \times 4.7$ oe
15	$\frac{7}{3}$ oe improper fraction	M1	or $\frac{k}{3} \times \frac{11}{14}$ where $k > 3$
	$1\frac{5}{6}$ cao	A2	A1 for $\frac{77}{42}$ or $\frac{11}{6}$ or $1\frac{35}{42}$
16(a)	[y=]-2x-7 final answer	2	B1 for $-2x + c$ or $kx - 7$, $k \neq 0$ final answer
16(b)	$y = \frac{1}{2}x[\pm 0]$ final answer	2 bref	FT $-\frac{1}{their gradient in (a)}$
			B1 for $y = kx[\pm 0]$ oe, $k \neq 0$ or $y = their \frac{1}{2}x + c$ oe for any c or $their \frac{1}{2}x$ [± 0] oe
Question	Answer	Marks	Partial Marks
----------	-------------------------------	-----------	--
17	77.8 or 77.77 to 77.80	5	B4 for answer 22.2[%] or 22.20[%] to 22.23[%] OR
			M1 for $tan^{-1}\frac{11}{4}$ oe or $tan^{-1}\frac{4}{11}$ oe
			M2 for $4 \times 11 - \frac{\text{their acute angle}}{360} \times \pi \times 4^2$ oe
			or M1 for $\frac{their acute angle}{360} \pi \times 4^2$ oe
			M1 for $\frac{\text{their shaded area}}{4 \times 11}$ [×100] oe
	AT	PR	or $\frac{\text{their sector area}}{4 \times 11} \times 100$ oe
18	A correct equation leading to	3	M2 for $4x = 164$
	41		or M1 for $x + 2(x - 24) + x - 16 = 100$ oe
			or M1 for correctly simplifying <i>their</i> equation to the form $kx = c$ provided at least one part correct from $[2](x-24)$ oe or x-16
	z		or B1 for answer 41 without an equation in x shown
19	$\frac{2}{3}$ oe	3 pref	M1 for $y = \frac{k}{\sqrt{x+4}}$
			M1 for $y = \frac{theirk}{\sqrt{77+4}}$

Question	Answer	Marks	Partial Marks
20	$x^{2} + 6x - 40$ [=0] or $y^{2} - 40y - 41$ [=0]	M2	M1 for correct method to eliminate one variable e.g. $x^{2} - 2(11 - 3x) = 18$ or $\frac{(11 - y)^{2}}{3^{2}} - 2y = 18$
	(x-4)(x+10) [=0] or $(y-41)(y+1)$ [=0]	M1	or for correct factors for <i>their</i> quadratic equation
			or for correct use of quadratic formula for <i>their</i> quadratic equation
			or for correctly completing the square for <i>their</i> quadratic equation
	x = 4, y = -1 x = -10, y = 41	B2	B1 for $x = 4$, $x = -10$ or for $y = -1$, $y = 41$ or for a correct pair of x and y values If B0 scored and at least 1 method mark scored SC1 for correct substitution shown of both of <i>their</i> x values or <i>their</i> y values into $3x + y = 11$ or $x^2 - 2y = 18$
21(a)	35.1 or 35.05 to 35.06		M3 for $\tan = \frac{14.5}{\sqrt{18.6^2 + 9^2}}$ oe or M2 for $[AC^2 =]18.6^2 + 9^2$ oe or better or $[AG^2 =]18.6^2 + 9^2 + 14.5^2$
			or MI for recognising the angle GAC

0580/22

Question	Answer	Marks	Partial Marks
21(b)	$30 - \sqrt{18.6^2 + 9^2 + 14.5^2}$	M2	M1 for $AG^2 = 18.6^2 + 9^2 + 14.5^2$ oe or better
	$30 - \frac{14.5}{\sin(their(\mathbf{a}))}$ or $30 - \frac{\sqrt{18.6^2 + 9^2}}{\cos(their(\mathbf{a}))}$		or $\sin(their(\mathbf{a})) = \frac{14.5}{AG}$ or $\cos(their(\mathbf{a})) = \frac{\sqrt{18.6^2 + 9^2}}{AG}$
	4.75 to 4.78	A1	
22(a)	$a - \frac{2}{5}b$ oe simplified	2	M1 for $-b + a + \frac{3}{5}b$ or a correct route
22(b)	$\frac{5}{2}a$ oe	2	B1 for <i>k</i> a where $k > 1$ or $\frac{5}{2} \overrightarrow{OR}$

Cambridge IGCSE™

MATHEMATICS

0580/21 October/November 2021

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1	79	2	B1 for 64 or 81 seen or for answer 61, 62, 67, 71 or 73
2(a)	Sunday 24 [July] 02 15	3	B1 for Sunday 24th [July] as final answer B2 for 02 15 oe as final answer
			or B1 for sight of any of these 12 40 oe, 11 15 oe, 28h 35min, 50 15, 35 15
			or 0215 oe spoilt
			or M1 for departure time + 13h35min + 15h evaluated as a time with one interval correctly added
2(b)	6320.4[0]	1	
3	3.1	Pı	22
4(a)	22	1	0
4(b)	30	1	
5	lost drawn	3	B2 for 0.6 oe or 0.3 oe
	0.6 oe 0.3 oe		or M1 for 1 – 0.1 or 0.9 seen
6(a)	32.8	2	M1 for 8[cm] to 8.4[cm] seen
			or for <i>their</i> measurement [in cm] multiplied by 4
6(b)	065	1	
6(c)	X correctly placed 7 cm from P on a bearing of 140°	tpre	M1 for <i>X</i> on bearing of 140 from <i>P</i> or for <i>X</i> 7 cm from <i>P</i>
			If 0 scored SC1 for X on bearing of 140 from Q and 7 cm from Q
7	$\frac{25 \text{ or } 55}{30} \text{ and } \frac{12}{30}$	M1	Accept $\frac{25k \operatorname{or} 55k}{30k}$ and $\frac{12k}{30k}$
	$2\frac{7}{30}$ cao	A2	A1 for $\frac{67k}{30k}$ or $1\frac{37k}{30k}$

Question	Answer	Marks	Partial Marks
8	Correctly eliminates one variable	M1	
	[<i>x</i> =] – 3 , [<i>y</i> =] 0.5 oe	A2	A1 for either correct If M0 scored, SC1 for 2 values satisfying one of the original equations If 0 scored, SC1 for correct answers from no working
9	54.3 or 54.31	2	M1 for $\cos[x] = \frac{7}{12}$ oe
10	60	2	M1 for $360 \div (180 - 174)$ or for $\frac{180(n-2)}{n} = 174$ oe
11	$y = \frac{1}{5}x + 6$ oe final answer	3	B2 for $y = \frac{1}{5}x + c$ oe or $\frac{1}{5}x + 6$ oe or y = mx + 6 oe or B1 for [gradient =] $\frac{1}{5}$ oe or $mx + 6$
12	[-]9	3 Itpre	M2 for $[k \times] \left(1 - \frac{35}{100}\right) \times \left(1 + \frac{40}{100}\right)$ oe or better or for $[k \times] \left(\frac{35}{100} - \left(1 - \frac{35}{100}\right) \times \frac{40}{100}\right)$ or M1 for $[k \times] \left(1 - \frac{35}{100}\right)$ oe or $[k \times] \left(1 + \frac{40}{100}\right)$ or better
13	$x \leq 1$ final answer	3	M1 for $20 - 15x \ge 6 - x$ or $4 - 3x \ge \frac{6}{5} - \frac{x}{5}$ M1 for correctly isolating terms in x FT <i>their</i> first step of dealing with the 5 $20 - 6 \ge -x + 15x$ or $-3x + \frac{x}{5} \ge \frac{6}{5} - 4$

Question	Answer	Marks	Partial Marks
14	38	3	M2 for $12 \times \sqrt{4.25 - 2} = 3 \times \sqrt{x - 2}$
			OR $k = k$
			$\sqrt{x-2}$ de
			M1 for $3 = \frac{their k}{\sqrt{x-2}}$ oe
15	3 : 5 nfww	4	M3 for $5^2 - 1$ oe and $8^2 - 5^2 + 1$ oe
			or M2 for $5^2 - 1$ oe or $8^2 - 5^2 + 1$ oe
			or M1 for 5^2 oe or 8^2 oe seen
16(a)	$n^3 + 7$ oe final answer	2	B1 for any cubic or for 3rd differences of 6
16(b)	$\frac{n+1}{2}$ of final answer	3	B1 for <i>n</i> + 1
	4^{n-1}		B2 for 4^{n-1} oe
			or B1 for 4^{n-k} oe k can be 0
			Maximum 2 marks if not correctly combined as a fraction
17	$[x =] \frac{y+2}{2}$ of final answer	4	M1 $y(1-x) = 3x - 2$ or better
	<i>y</i> +3		M1 for correctly isolating <i>x</i> terms on one side FT <i>their</i> first step/bracket expansion
	22		M1dep for correctly removing factor of <i>x</i> FT <i>their</i> previous step
	Se Se	tpre	M1dep for correct division to isolate <i>x</i> Max 3 marks for an incorrect answer
18	1150	3	M2 for $\left(\frac{1}{2} \times 800 \times 2300 \times \sin 30\right) \div 400$ oe
			or M1 for $\frac{1}{2} \times 800 \times 2300 \times \sin 30$ oe
19	$\frac{8-5x-x^2}{2}$ or $\frac{8-5x-x^2}{2}$	3	B1 for $7 \times 2 - (x+2)(x+3)$ or better seen
	$7(x+3) \qquad 7x+21$		B1 for common denominator $7(x + 3)$ oe isw

Question	Answer	Marks	Partial Marks
20	109.4 to 109.5 and 250.5 to 250.6	3	B2 for one correct angle
			or M1 for $\cos x = \frac{5}{3} - 2$ or better
			If 0 scored SC1 for two angles that sum to 360
21	68.6 or 68.55 to 68.56	4	M3 for tan[] = $\frac{9}{\frac{1}{2}\sqrt{5^2 + 5^2}}$ oe
			or M2 for $\frac{1}{2}\sqrt{5^2+5^2}$ oe
		P	or M1 for $5^2 + 5^2$ oe or $2.5^2 + 2.5^2$ oe or $x^2 + x^2 = 5^2$ oe
	6		or B1 for indicating required angle
22(a)	x^{-2} or $\frac{1}{x^2}$ final answer	1	
22(b)	$\frac{2}{3}$	1	
22(c)	1 nfww	3	M1 for $3^{-2(4-3x)}$ oe or better
			or $9^{\frac{3x}{2}} \times 9^{-(4-3x)} = 9^{\frac{1}{2}}$ oe or better
	2		M1 for $3x + (their - 2) \times (4 - 3x) = 1$ oe or better
	77.So	itpre	or their $\frac{3x}{2} - (4 - 3x) = their \frac{1}{2}$ oe or better

Cambridge IGCSE™

MATHEMATICS

0580/22 October/November 2021

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao – correct answer only dep – dependent FT – follow through after error isw – ignore subsequent working oe – or equivalent SC – Special Case nfww – not from wrong working soi – seen or implied

Question	Answer	Marks	Partial Marks
1	7.5	1	
2	41 43 20	3	B1 for each
3	129	1	
4	79 nfww	3	M2 for $x + x + 58 + 58 + 86 = 360$ oe or $86 - (180 - 2 \times 58)$ implied by CAB = 22 or B1 for $DCA = 58$ or $BCA = x$ or $DAC = 64$
5	12	3	M2 for $(95.25 - 15.5) \div 7.25$ oe or $(95.25 - (15.5 - 7.25)) \div 7.25$ oe
	6		or M1 for 95.25 – 15.5 or B1 for 79.75
6	$\frac{1}{3} \times \frac{6}{7}$ oe or $\frac{2}{6} \div \frac{7}{6}$ oe	M1	
	$\frac{2}{7}$ oe	A1	
	<i>their</i> $\frac{2}{7} + \frac{1}{5}$ with a correct method to find fractions with a common denominator	M1	e.g. $\frac{10}{35} + \frac{7}{35}$ oe
	17/35 cao		If order of operations not correct SC2 for answer $\frac{10}{41}$ with correct working for $\frac{1}{3} \div \left(\frac{7}{6} + \frac{1}{5}\right)$ or SC1 for $\frac{35}{30} + \frac{6}{30}$ oe
7	$\frac{37}{60}$ oe	4	B3 for $x = 18$ or 37 [yellow] or SC2 for answer $\frac{5}{12}$ or M2 for $\frac{1}{12} = \frac{5}{5}$ oe
			or M1 for $5 + x + 2x + 1$ oe or [total number of flowers =] 60
			- J

Question	Answer	Marks	Partial Marks
8	2.5 oe	1	
9	$-\frac{24}{2} < 2.1 \times 10^{-1} < 22\% < 0.2 < \sqrt{0.2}$	2	M1 for four values in the correct order
	1000		or for conversion to consistent comparable form e.g. 0.21, 0.22, 0.22, 0.4, 0.024
10	15	2	M1 for $360 \div (180 - 156)$ or $\frac{180(n-2)}{n} = 156$ oe
11	Straight line from $(20, 14)$ to $(35, 14)$	3	M1 for 210 ÷ 14 soi
	straight line from (35, 14) to (45, 0)		M1 for $14 \div 1.4$ or any line with gradient -1.4 ending at <i>x</i> axis
12	13-5n oe final answer	5	B2 for $13 - 5n$ oe final answer or P1 for $5n + c$ or $13 - kn + k \neq 0$
	$\frac{n+1}{n}$ of final answer		or $13 - 5n$ seen then spoilt
	2^{n-2} oe final answer		B1 for $\frac{n+1}{n}$ of final answer
			B2 for 2^{n-2} oe final answer
			or B1 for 2^{n-k} or k can be 0
13(a)	3^{6n+5} final answer	2	B1 for 3^5 or $(3^3)^{2n}$ or better or answer $6n + 5$
13(b)	$2^3 \times 3^5 \times p^6$ final answer	2	B1 for two parts correct
		rep	or $2 \times 3 \times 2 \times 3^2 \times p^3 \times 2 \times 3^2 \times p^3$ or $1944p^6$
			or $k^2 = 2^2 \times 3^4 \times p^6$
14(a)	55 Alternate segment theorem	2	B1 for 55
14(b)	Tangents from an external point are equal in length	1	
15(a)	[y =] 3x + 7 final answer	3	M1 for $\frac{31-16}{8-3}$. oe
			M1 for correct substitution of (3, 16) or (8, 31) into $y = (their m)x + c$
15(b)	-2	1	

Question	Answer				Marks	Partial Marks		
16(a)			Multi	ples o	f 3	1	2	B1 for at least 4 correct entries
		+	3	6	9			
	Prime	2	5	8	11			
	numbers	3	6	9	12			
		5	8	11	14			
16(b)	$\frac{2}{5}$ oe						2	B2FT for $\frac{their 2}{their 5}$
								or B1FT for $\frac{their 2}{k}$ k is any integer in the
							R	
								or $\frac{c}{their 5}$ c is 0, 1 or 2
17	$\frac{3}{5}$ oe and	$-\frac{7}{2}$ o	e				1	
18	$x^2 - 11x + 2$ or $y^2 - 16y + 3$	24 = 0 39 = 0]				M2	M1 for $x^2 - 9x + 21 = 2x - 3$ oe or $y = \left(\frac{y+3}{2}\right)^2 - 9\left(\frac{y+3}{2}\right) + 21$ oe
	(x-8)(x-3)	3) [= 0]				M1	or for correct factors for <i>their</i> quadratic equation
	(y - 13)(y -	- 3) [=	0]				00	or for correct use of quadratic formula for <i>their</i> equation
	[x =] 3 [y = [x =] 8 [y =	=] 3 =] 13				P	B2	B1 for one correct pair or two correct <i>x</i> values or two correct <i>y</i> values.
								If B0 scored and at least 2 method marks scored SC1 for correct substitution of both of <i>their x</i> values or <i>their y</i> values into $y = x^2 - 9x + 21$ or $y = 2x - 3$
19		\sum) (E	D E)	2	B1 for each
20(a)	32						2	M1 for f(6) = 8
								or ff(x) = $2^{(2^{x-3})-3}$ oe

Question	Answer	Marks	Partial Marks
20(b)	<i>x</i> + 21	1	
20(c)	-1	2	M1 for $\frac{1}{16}$ oe or 2 ⁻⁴ oe
21	$2x^3 - 7x^2 - 12x + 45$ final answer	3	B2 for unsimplified expansion of the three brackets with at most one error
			or
			for simplified four-term expression of correct form with three terms correct
			or B1 for correct expansion of two of the given brackets with at least three terms out of four correct
22	196.6 or 196.60 and	3	B2 for one correct angle
	343.4 or 343.39		or M1 for sin $x = -\frac{2}{7}$ or better
			If 0 scored SC1 for two angles that sum to 540°
23	$\frac{3y-5}{2(x-12)}$ or $\frac{3y-5}{2x-24}$ final answer	4	SC3 for answer $\frac{3y-5}{x-12}$
	-(or B3 for $(3y - 5)(x + 12)$
			and $2(x-12)(x+12)$ or $(2x-24)(x+12)$
	32		or B2 for $(3y - 5)(x + 12)$
	4.8.1		or $2(x-12)(x+12)$ or $(2x-24)(x+12)$
	satp	rep	or $(2x - 24)(x + 12)$ or $(2x + 24)(x - 12)$
			or B1 for $3y(x + 12) - 5(x + 12)$ or $x(3y - 5) + 12(3y - 5)$ or $2(x^2 - 144)$ or $(x - 12)(x + 12)$

Cambridge IGCSE™

MATHEMATICS

0580/23 October/November 2021

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1	12.5	1	
2	48	2	B1 for 132 or 48 in the correct position on the diagram or M1 for 180 – 132
3	13	1	
4(a)	\neq and > indicated	1	
4(b)	7 - (3 - 1) + 2 = 7 cao	1	
5	170	1	
6	357	2 R	M1 for $\left(1 - \frac{15}{100}\right) \times 420$ oe or B1 for 63
7	$8g^{28}$ final answer	2	B1 for kg^{28} or $8g^k$ as final answer or correct answer seen and spoilt
8	4.32	3	B1 for $\frac{1}{4}$ oe or $\frac{2}{4.5}$ oe seen M1 dep on B1 for $\frac{1+2}{their\frac{1}{4}+their\frac{2}{4.5}}$ oe
9	$\frac{3}{11}$ oe fraction	1	
10(a)	-13	1	· · ·
10(b)	-4n+7 of final answer Sato	2	B1 for $-4n + k$ or $jn + 7$ ($j \neq 0$) or for a correct answer spoilt
11(a)	2925	2	M1 for $100(3^2 + 4.5^2)$ or B1 for 29.25 seen
11(b)	$\begin{bmatrix} \pm \end{bmatrix} \sqrt{\frac{P}{M} - h^2}$ or $\begin{bmatrix} \pm \end{bmatrix} \sqrt{\frac{P - Mh^2}{M}}$ final answer	3	M1 for correct division by M M1 for correct re-arrangement to isolate g or g^2 M1 for correct square root of two term expression Max 2 marks for an incorrect answer
12	$\frac{11}{12} + \frac{9}{12}$ oe	M1	Allow any correct common denominator 12k
	$1\frac{2}{3}$ cao	A2	A1 for $\frac{20}{12}$ or equivalent improper fraction or mixed number

Question	Answer	Marks	Partial Marks
13	$1[.0] \times 10^{-2}$ cao	2	B1 for 0.01 oe
14(a)	b, c, d, e, f, g	1	
14(b)	4	1	
14(c)	3	1	
15	145	2	M1 for $x\left(1+\frac{6}{100}\right) = 153.7$ oe or better
16	31:21	3	B2 for equivalents e.g. 15.5 oe and 10.5 oe or for an equivalent ratio e.g. 3.1 : 2.1
			or M1 for e.g. $x + 5 + x = 26$ oe or $x - 5 + x = 26$ oe
17	240	2	M1 for $360 \div (180 - 178.5)$ oe or for $\frac{180(n-2)}{n} = 178.5$ oe
18	[y =] 12x - 26 final answer	3	M1 for $\frac{102}{3-2}$ oe M1 for correct substitution of (2, -2) or (3, 10) into $y = (their m)x + c$ oe
19	33.8 or 33.78 to 33.80	4	M2 for $2 \times 12.6 \times \sin 40$ oe or M1 for $\sin 40 = \frac{()}{12.6}$ oe M1 for $\frac{80}{360} \times 2 \times \pi \times 12.6$ oe
20	40 000	3	B2 for 1 cm to 0.4 km or 2.5 cm to 1 km or 1 600 000 000 or M2 for $\sqrt{\frac{3 \times 10^k}{18.75}}$ oe where $k > 5$ or M1 for 1 cm ² to 0.16 km ² or 6.25 cm ² to 1 km ² or for 3×10^{10} oe or 1.875×10^{-9} oe or 3×10^6 oe and 1.875×10^{-3} oe
21	$27y^6$ final answer	2	B1 for ky^6 or $27y^k$ as final answer or correct answer seen and spoilt

Question	Answer	Marks	Partial Marks
22	$x^{2} - 4x - 12 [= 0]$ or $y^{2} - 2y - 15 [= 0]$	M2	M1 for $x^2 - 3x - 13 = x - 1$ or for $y = (y + 1)^2 - 3(y + 1) - 13$
	(x-6)(x+2) = 0 or (y-5)(y+3) = 0	M1	or for correct factors for <i>their</i> quadratic equation or for correct use of quadratic formula or completing the square for <i>their</i> equation
	[x =] 6, [y =] 5[x =] -2, [y =] -3	B2	B1 for one correct pair or two correct <i>x</i> values or two correct <i>y</i> values
			If B0 scored and at least 2 method marks scored SC1 for correct substitution of both of <i>their x</i> values or <i>their y</i> values into $y = x^2 - 3x - 13$ or $y = x - 1$
23(a)	13.6 or 13.60	3	M2 for $12^2 + 5^2 + 4^2$ or M1 for $5^2 + 4^2$ or $12^2 + 4^2$ or $12^2 + 5^2$
23(b)	17.1 or 17.08 to 17.10	3	M2 for sin = $\frac{4}{their (a)}$ oe or $tan = \frac{4}{their AP}$ or $cos = \frac{their AP}{their (a)}$ or M1 for recognising angle CAP.
24	60 and 240	2	B1 for 60 or 240 If 0 scored SC1 for two answers with a difference of 180°
25	$\frac{3x}{a+2c}$ final answer	4	B1 for $3x(x-6)$ B2 for $(x-6)(a+2c)$ or B1 for $a(x-6)+2c(x-6)$ or x(a+2c)-6(a+2c)
26	$\frac{3}{5}$ r + $\frac{2}{5}$ t or $\frac{1}{5}$ (3 r + 2 t)	3	M2 for $\mathbf{r} + \frac{2}{5}(-\mathbf{r} + \mathbf{t})$ oe or $\mathbf{t} + \frac{3}{5}(\mathbf{r} - \mathbf{t})$ oe or M1 for $\overrightarrow{RT} = -\mathbf{r} + \mathbf{t}$ oe or $T\overrightarrow{R} = \mathbf{r} - \mathbf{t}$ M1 for $\overrightarrow{OR} + \overrightarrow{RX}$ or $\overrightarrow{OT} + \overrightarrow{TX}$ any other correct route.

Cambridge IGCSE™

MATHEMATICS

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70 0580/21 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Question	Answer	Marks	Partial Marks
1(a)	4	1	
1(b)		2	B1 for 2 or 3 correct lines drawn or for 4 correct lines and one wrong extra line
2	0.85 oe	1	
3(a)	28	1	
3(b)	21	1	
3(c)	35	1	
4	[<i>a</i> =] 59 [<i>b</i> =] 37 [<i>c</i> =] 84	3	B1 for each If 0 scored SC1 for <i>their</i> $(a + b + c) = 180$ if a, b, c > 0
5(a)	$\begin{pmatrix} 14 \\ -6 \end{pmatrix}$	1	
5(b)	$\begin{pmatrix} -12\\ 21 \end{pmatrix}$	1	
6(a)	4 10 18	2	B1 for 2 correct
6(b)	32 - 7n oe final answer	2	B1 for $32 - kn$ oe $k \neq 0$ or $j - 7n$ oe or $32 - 7n$ seen then spoilt
7	correctly eliminating 1 variable	M1	
	<i>x</i> = 5	A1	
	y = -7	A1	If M0 scored SC1 for two values satisfying one of the original equations

Question	Answer	Marks	Partial Marks
8	$\frac{11}{8} \left[-\frac{5}{6} \right] \frac{3}{8} + \frac{1}{6}$	B1	Correct step for dealing with mixed number Allow $\frac{11k}{8k}$
	$\frac{33}{24}$ and $\frac{20}{24}$ $\frac{9}{24}$ and $\frac{4}{24}$	M1	Correct method to find common denominator e.g. 1 $\frac{9}{24}$ and $\frac{20}{24}$
	$\frac{13}{24}$ cao	A1	
9(a)	(7, -1)	2	B1 for each
9(b)	8.94 or 8.944	3	M2 for $\sqrt{(9-5)^2 + (3-5)^2}$ oe
	GA		or M1 for $(9-5)^2 + (3-5)^2$ oe
10(a)(i)	Rotation	3	B1 for each
	90° anticlockwise oe		
	(0, -1)		
10(a)(ii)	enlargement [s.f.] $\frac{1}{3}$ (6, 6)	3	B1 for each
10(b)	triangle at (- 4, 7) (- 4, 1) (- 1, 1)	2	B1 for translation by $\binom{k}{10}$ or $\binom{2}{k}$
11(a)	$256a^4b^{20}$ final answer	2	B1 for two correct elements in final answer
11(b)	27	1	
11(c)	6	2	M1 for $3^k \div 3^t = 3^2$ or $3^8 \div 3^t = 3^k$ oe or better or $3^t = 729$ oe
12	9080 or 9080.13	2	M1 for 9500× $\left(1 - \frac{0.9}{100}\right)^5$
13	1.8432	2	M1 for $\frac{32 \times 24000 \times 24000}{100000 \times 100000}$ oe If 0 scored, SC1 for figs 184[32] as answer

Question	Answer	Marks	Partial Marks
14	24	3	M1 for $y = k\sqrt{x-3}$ oe M1 for $y = their k\sqrt{39-3}$ oe
15	$\frac{g}{2m+g}$ final answer	4	M1 for expanding brackets or $\div g$ M1 for isolating terms in h M1 for factorising M1 for dividing by bracket to isolate h Incorrect/unsimplified final answer scores max 3 marks
16(a)	$-\frac{3}{4}$ or -0.75	2	M1 for correct rise over run or B1 for answer $\frac{3}{4}$ oe
16(b)	$[y=]-\frac{3}{4}x+2$ oe	2	FT $[y=]$ <i>their</i> (a) $x+2$ oe B1 for $[y=]$ <i>their</i> (a) $x+c$ or $[y=]mx+2$.
16(c)	$[y=]\frac{4}{3}x-23$ oe	3	M1 for gradient $\frac{-1}{their}$ (a) M1 for (12, -7) substituted into y = their mx + c
17	$\frac{19}{60}$ oe	3	M2 for $\frac{8}{16} \times \frac{7}{15} + \frac{5}{16} \times \frac{4}{15}$ or M1 for $\frac{8}{16} \times \frac{7}{15}$ or $\frac{5}{16} \times \frac{4}{15}$ If 0 scored SC1 for $\frac{89}{256}$ oe
18	$\frac{5}{9}\mathbf{a} + \frac{4}{9}\mathbf{b}$	2	M1 for $\frac{4}{9}$ (b - a) or $\frac{5}{9}$ (a - b) or a correct route
19(a)	Correct sketch	2	1 for one correct branch or correct sketch but with branches joined
19(b)	11.3 or 11.30 to 11.31	2	B1 for each
	and		If 0 scored SC1 for two answers with a difference of 180°
	191.3 or 191.30 to 191.31		

Question	Answer	Marks	Partial Marks
20	68 nfww	3	M2 for $\frac{600-5}{8h40 \text{ to} 8h50}$ or $\frac{590 \text{ to} 600}{8h40+5[\text{m}]}$ oe
			or M1 for $600 - 5$ oe or $8h 40 + 5[m]$ oe or $520 + 5$ oe[m] seen

Cambridge IGCSE™

MATHEMATICS

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70 0580/22 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Question	Answer	Marks	Partial Marks
1(a)	$\frac{3}{10}$ oe	1	
1(b)	35	1	
2	0.4 or $\frac{2}{5}$	1	
3	Mode16Median11Range17	3	B1 for each
4	<i>k</i> – 1	1	
5(a)	It is not possible to tell if there is correlation as there are not enough points.	RI	
5(b)	С	1	
6	Accurate construction of rhombus with sides 6.5 cm and correct construction arcs.	2	B1 for accurate diagram with no/wrong arcs or for one triangle (6.5 cm, 6.5 cm, 8 cm) correctly constructed with correct arcs or for four correct arcs
7(a)	5 97	2	B1 for each
7(b)	√7 2	1	.5
8	[±] 7.5 oe	2	M1 for $5.625 = \frac{b^2}{2 \times 5}$ or better
9	$\frac{\frac{2}{3} \times \frac{7}{10}}{\frac{14}{21} \div \frac{30}{21}}$ or with common denominator	M2	B1 for $\frac{10}{7}$ oe or M1 for $\frac{2}{3} \times their \frac{7}{10}$
	$\frac{7}{15}$ cao	A1	
10(a)	6.54×10^{-3}	1	
10(b)	99	1	
11	$\frac{4}{99}$ cao	1	
12(a)(i)	Even square numbers oe	1	

Question	Answer	Marks	Partial Marks
12(a)(ii)		1	
12(b)		1	
13	68	³	M1 for correctly identifying 90° angle soi or $DAC/DCA = 68$ M1 for [obtuse angle] AOC identified as 2x soi or $x = their DAC/DCA$
14	456 or 456.4	4	M2 for $\frac{18.2}{\tan 62}$ oe or M1 for $\tan 62 = \frac{18.2}{x}$ oe M1 for $\frac{1}{2}((their trapezium base) + 15.4) \times 18.2$ oe
15	CongruentSASCongruentSSSNot congruentNone	3	B1 for each correct row
16(a)	8.94 or 8.944	3	M2 for $\sqrt{(9-5)^2 + (-1-7)^2}$ oe or M1 for $(9-5)^2 + (-1-7)^2$ oe
16(b)	y = -2x + 17 oe final answer	3	B2 for answer $-2x + 17$ OR M1 for $\frac{-1-7}{9-5}$ oe M1 for correct substitution of (5, 7) or (9, -1) into $y = their mx + c$ oe
17	$-\frac{3}{4}$ or -0.75	2	M1 for $y = \frac{4x-5}{3}$ or better or for $\frac{-1}{their \ gradient}$

Question	Answer	Marks	Partial Marks
18	[x =] -2.1 oe	4	M3 for $x^2 + 10x = x^2 - 21$ or better OR M1 for $(x + 1 + 4)^2 - 25$ or better M1 for $x^2 - 25 + 4$ or better If 0 scored SC1 for answer $-\frac{11}{6}$ oe
19(a)	77.3 or 77.32 to 77.33	3	M2 for $\frac{360-60}{360} \times \pi \times 12.4 \times 2$ oe [$\pm n \times 12.4$] or M1 for angle 60° or 300° soi or for $\frac{k}{360} \times \pi \times 12.4 \times 2$ oe [$\pm n \times 12.4$]
19(b)	5.17 or 5.172 to 5.173	3	M2 for $\frac{74.5}{\pi} \times \frac{360}{360 - 41} = r^2$ oe or better or M1 for $74.5 = \frac{360 - 41}{360} \times \pi r^2$ oe or for $\sqrt{\frac{74.5}{\pi} \times \frac{360}{k}}$ oe
20	$2x^3 + 7x^2 - 7x - 30$ final answer	3	B2 for unsimplified expansion with at most one error or for simplified four-term expression of correct form with three terms correct or B1 for correct expansion of two brackets with at least three terms out of four correct
21(a)	$[F=]\frac{108}{d^2}$ final answer	2	M1 for $F = \frac{k}{d^2}$ oe or better
21(b)	$[n=]\frac{1}{4} \text{ or } 0.25$	1	
22	$\frac{2x+3}{3x}$ final answer	4	B2 for $(x-4)(2x+3)$ or B1 for $(x + a) (2x + b)$ where $ab = -12$ or $2a + b = -5$ or $x(2x+3) - 4(2x+3)$ or $2x(x-4) + 3(x-4)$ B1 for $3x(x-4)$
23	48.6 or 48.59 and	2	B1 for each If 0 scored SC1 for two answers with a
	131.4 or 131.4		sum of 180°
Question	Answer	Marks	Partial Marks
----------	-------------------	-------	---
24	x = 3, x = -3nfww	5	M2 for $x + 9 + 9(x + 1) = (x + 1)(x + 9)$ oe or better or M1 for $x + 9 + 9(x + 1)$ or $(x + 1)(x + 9)$ oe or better B1 for $x^2 + x + 9x + 9$ seen M1 dep for $[0 =]x^2 - 9$ oe simplified or better

Cambridge IGCSE™

MATHEMATICS

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70 0580/23 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Question	Answer	Marks	Partial Marks
1	-24.6	1	
2(a)	$\frac{18}{25}$ cao	1	
2(b)	$\frac{1}{250}$ cao	1	
3	Corresponding	1	
4	130	2	M1 for 360 – 100 or better
5	63	2	M1 for $600 \times \frac{1.5}{100}$ oe or better
			If 0 scored SC1 for answer 663
6	100 <i>y</i> – <i>np</i>	2	B1 for 100 <i>y</i> seen or for answer $[10^k] y - np$
7(a)	125	1	
7(b)	29	1	
8	162.07 cao	2	M1 for 190 ÷ 1.1723
9	$\frac{5}{3} \times \frac{2}{15}$ oe or	M2	B1 for $\frac{5}{3}$ oe or $\frac{15}{2}$ oe
	$\frac{10}{6} \div \frac{45}{6}$ oe with common denominator		or M1 for their $\frac{-\times their}{3}$ $\frac{15}{15}$
	$\frac{2}{9}$ cao	A1	
10(a)	Translation $ \begin{pmatrix} -1 \\ -8 \end{pmatrix} $	2	B1 for each
10(b)	Image at (-1, -1), (-4, -1), (-1, -2)	2	B1 for image correct scale factor and orientation but wrong position $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ control
			(0, 0) (0, 0)
11	$12x^7$ final answer	2	B1 for $12x^{j}$ or kx^{7} ($j, k \neq 0$) as final answer
12	-1, 0, 1 final answer	2	B1 for $-1 \le x < 2$ or two correct answers and no extras or three correct answers and one extra/wrong
13	4 <i>t</i> final answer	2	B1 for $6t - 6q$ or $-2t + 6q$ or $2t - 6q$ or for $4t$ or $0q$ in the final answer

Question	Answer	Marks	Partial Marks
14	[<u>+</u>]21	3	M2 for $29^2 - 20^2$ oe or better or M1 for $20^2 + k^2 = 29^2$ oe
15(a)	Similar	1	
15(b)	4	2	M1 for $\frac{12}{6} = \frac{8}{BX}$ oe or better If 0 scored SC1 for answer 3.5
15(c)(i)	6.7265 or 6.73 or 6.726 to 6.727	2	M1 for scale factor 2^2 or $\left(\frac{1}{2}\right)^2$ oe soi
15(c)(ii)	13.453 or 13.5 or 13.45 to 13.46	1	FT their (c)(i) $\times 2$
16	477	2	M1 for $80 - 0.5$ oe or better seen
17	72	2	M1 for $\frac{360}{180 - 175}$ oe or $\frac{180(n-2)}{n} = 175$ oe
18(a)	12	1	
18(b)	144	2	FT $12 \times their V$ M1 for any relevant area FT <i>their V</i>
19(a)	80	2	B1 for angle $PQT = 50$
19(b)	[w =] 68 [x =] 36	3	B1 for 68 B2 for 36 or M1 for $3x + 2x + 68 + 112 = 360$ or better
20	2.31×10 ^p	2	B1 for $21 \times 10^{p-1}$ or 0.21×10^{p} or answer with figs 231
21	14.1 or 14.12	3	M2 for sin $65 = \frac{12.8}{BC}$ oe or better or M1 for recognition that the line from <i>B</i> is perpendicular to <i>AC</i>
22	$\frac{81}{(y-2)^2}$ final answer	2	M1 for $z = \frac{k}{(y-2)^2}$ oe or better

Question	Answer	Marks	Partial Marks
23	70.5 or 70.52 to 70.53	4	B3 for 59(.0) or 58.99 or 50.5 or 50.47 to 50.48 OR M2 for $\frac{10^2 + 9^2 - 11^2}{2 \times 10 \times 9}$ oe or equivalent expression for smaller angle or M1 for $11^2 = 10^2 + 9^2 - 2 \times 10 \times 9 \cos()$ oe or equivalent expression for smaller angle A1 for $\frac{1}{3}$ oe
24(a)	Correct sketch	2	B1 for one correct branch or attempt at correct shape
24(b)	Correct sketch	2	B1 for correct shape but crossing <i>x</i> -axis or for correct shape but just drawn in one quadrant
25	0 and 4 final answer	4	B3 for $5x^{3}(x-4)$ or better or B2 for $5x^{4} - 20x^{3}$ or B1 for $5x^{4}$ or $-20x^{3}$
26	0.845 oe	3	M2 for $0.7 \times 0.95 + (1 - 0.7) \times 0.6$ oe or M1 for one of these products

Cambridge IGCSE™

MATHEMATICS

Paper 22 (Extended) MARK SCHEME Maximum Mark: 70 0580/22 March 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	2	1	
1(b)	2 correct lines	2	B1 for each
2	30 48	2	M1 for $\frac{78}{5+8} \times k$ oe where $k = 1, 5$ or 8
3(a)	1 5 7 8 9 2 2 4 4 5 9 3 1 5 6 8	2	B1 for two rows correct or for a fully correct unordered stem-and-leaf diagram or for a correct diagram with one leaf incorrect or omitted
3(b)	24	1	
4	3, 80, 30 and 10 seen and answer 12	2	M1 for 3 out of 4 correct elements or for all correct but with any trailing zeros If 0 scored SC1 for answer 12
5	Negative	1	<u>.</u>
6	271.2[0]	2	M1 for $56.50 \div 5$ or 56.50×24 oe or better
7	$\frac{9}{4}$ and $\frac{11}{3}$ oe improper fractions	M1	
	$\frac{99}{12}$ oe improper fraction	A1	
	$8\frac{1}{4}$ cao final answer	A1	dep on 1 st A1 If M0 scored SC1 for $\frac{9}{4}$ or $\frac{11}{3}$ oe improper fraction
8	$\frac{37}{99}$ oe fraction	1	
9	4.18×10^7 cao	1	

Question	Answer	Marks	Partial Marks
10	343	2	B1 for 103 in correct position and 60 or 17 in correct position 103 103 103 103 103 103 103
11	12	2	M1 for $2^2 \times 3^2$ and $2^2 \times 3 \times 7$ or for $2 \times 2 \times 3$ final answer or B1 for 2, 3, 4 or 6 as final answer
12	34.6 or 34.63 to 34.64	3	M2 for $\frac{1}{4} \times \pi \times 5^2 + \frac{1}{2} \times 5 \times 6$ oe or M1 for $\frac{1}{4} \times \pi \times 5^2$ oe or $\frac{1}{2} \times 5 \times 6$ oe
13	15.8 or 15.76 to 15.77	2	M1 for $125.9 \times \left(1 - \frac{34}{100}\right)^5$ oe
14(a)	1 - 6	2	B1 for each If 0 scored, SC1 for two terms with a difference of -7
14(b)	$n^2 + 3$ oe	2	M1 for any quadratic or second differences = 2
15	36	2	M1 for angle <i>EHG</i> = 72 or for angle <i>EHF</i> = 47 and <i>GHF</i> = 25
16	3 correct ruled lines and R clearly indicated	5 pref	B1 for each line y = 1 dashed y = 2x + 2 dashed x + y = 3 solid B2 for correct region or B1 for region satisfying 2 inequalities y = 2x + 2 dashed x + y = 3 solid B2 for correct region or B1 for region satisfying 2 inequalities or SC1 for shading of the wanted region only

Question	Answer	Marks	Partial Marks
17	13 nfww	3	M2 for $251+7x = 7.6(32+x)$ or better or M1 for $\frac{5 \times 4 + 6 \times 5 + 7x + 8 \times 11 + 9 \times 7 + 10 \times 5}{32+x} = 7.6$ oe
18	$49x^6$ final answer	2	B1 for $49x^k$ or nx^6 as final answer
19	$x^{2} + x - 156$ [=0] or $y^{2} + 15y - 100$ [=0]	M2	M1 for $x^2 + x = 7 + 149$ or correct substitution
	(x-12)(x+13) [=0] or $(y-5)(y+20)$ [=0]	M1	or for correct factors for <i>their</i> quadratic equation or for correct use of quadratic formula or completing the square for <i>their</i> equation
	[x =] 12 [y =] 5 $[x =] -13 [y =] -20$	B2	B1 for $x = 12$, $x = -13$ or for $y = 5$, $y = -20$ or for a correct pair of x and y values If B0 scored and at least 2 method marks scored SC1 for correct substitution of both of <i>their</i> x values or <i>their</i> y values into $x - y = 7$ or $x^2 + y = 149$
20(a)	1.84	2	M1 for $\frac{1.61}{x} = \frac{2.8}{3.2}$ oe
20(b)	9.20 or 9.204 to 9.205		M2 for $11.5 \times \sqrt[3]{\frac{4}{7.8}}$ oe or M1 for $\sqrt[3]{\frac{4}{7.8}}$ or $\sqrt[3]{\frac{7.8}{4}}$ oe seen or for $\frac{11.5^3}{x^3} = \frac{7.8}{4}$ oe
21(a)	Correct sketch	2	B1 for one correct branch or attempt at correct shape
21(b)	Correct sketch	2	B1 for correct shape but crossing <i>x</i> -axis or correct shape but just in one quadrant

Question	Answer	Marks	Partial Marks
22(a)	245	1	
22(b)	69 cao nfww	3	M2 for $\frac{200+0.5}{3-0.1}$ oe or M1 for 200 ± 0.5 oe or 3 ± 0.1 oe seen
23	56.1 or 56.09	4	M3 for cos[] = $\frac{\frac{1}{2}\sqrt{10^2 + 12^2}}{14}$ oe or M2 for [<i>MC</i> =] $\frac{1}{2}\sqrt{10^2 + 12^2}$ oe or M1 for [<i>AC</i> ² =] 10 ² + 12 ² oe or B1 for indicating required angle
24	(0, 5) $\left(\frac{4}{3}, \frac{103}{27}\right)$ oe	5	B2 for $3x^2 - 4x$ or B1 for $3x^2$ or $-4x$ M1 for <i>their</i> derivative = 0 oe or $\frac{dy}{dx} = 0$ B1 for $[x =] 0$ and $\frac{4}{3}$ or for 1 correct coordinate pair

Cambridge IGCSE™

MATHEMATICS

0580/21 October/November 2020

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

M				
IVI				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied
	1

Question	Answer	Marks	Partial Marks
1	-a + 8b final answer	2	B1 for $-a$ or $[+]8b$ in final answer or for $-a + 8b$ spoilt
2	Correct triangle constructed with $AC = 5$ cm and $BC = 6.5$ cm and intersecting arcs	3	B2 for correct triangle with no/incorrect arcs or SC2 for accurate triangle with arcs but sides interchanged
			or B1 for 6.5 [cm] or 5 [cm] soi
3	1.75	3	M2 for $(13.72 - 2.8 \times 2.65) \div 3.6$ oe or M1 for 2.8×2.65
4(a)	4 points correctly plotted	2	B1 for 2 or 3 points correctly plotted
4(b)	Negative	1	
4(c)	Correct ruled line of best fit	1	
4(d)	10 to 12	1	FT their straight line of best fit
5	$\frac{50-10}{4\times 2}$	M1	Allow M1 for 3 out of 4 values correctly rounded or for all correct but with any trailing zeros
	5	A1	dep on $\frac{50-10}{4\times 2}$
6	$\frac{8}{3}$ and $\frac{11}{4}$ oe improper fractions	M1	
	$\frac{88}{12}$ oe improper fraction	A1	
	$7\frac{1}{3}$ cao final answer	A1	dep on 1 st A1 If M0 scored SC1 for $\frac{8}{3}$ or $\frac{11}{4}$ oe improper fraction
7	$[x=]\frac{2y+7}{5}$ oe or $[x=]\frac{2y}{5}+\frac{7}{5}$ oe final answer	2	M1 for $2y + 7 = 5x$ oe or $\frac{2y}{5} = x - \frac{7}{5}$ oe
8(a)	0	1	
8(b)	$2^2 \times 3 \times 7$ or $2 \times 2 \times 3 \times 7$	2	B1 for 2, 2, 3, 7
9(a)	40×4	1	
9(b)	$\sqrt{2^2 + (-3)^2}$	1	

Question	Answer	Marks	Partial Marks
10	48 700 cao	3	M1 for $45000 \times \left(1 + \frac{1.6}{100}\right)^5$ oe
			A1 for 48 710 to 48 720
			If A0 scored B1 for <i>their</i> more accurate value correctly rounded to the nearest 100
11	[a =] -1 [b =] 5	2	B1 for two or three correct
	$\begin{bmatrix} c & = \end{bmatrix} 1 \\ \begin{bmatrix} d & = \end{bmatrix} 4$		or SC1 for $[a =] x \ge -1$ $[b =] x \le 5$ $[c =] y \ge 1$ $[d =] y \le 4$
12	15	2	M1 for $\frac{360}{180 - 156}$ or $\frac{180(n-2)}{n} = 156$ oe
13	17.77 – 1.77 oe	M1	M1 for correct working shown
	$\frac{8}{45}$ cao	A2	B1 for $\frac{16}{90}$ oe seen
14	2	2	M1 for $y = \frac{5-4x}{8}$ oe or better
15(a)	0.3	1	
15(b)	360	3	M2 for correct complete area statement e.g.
	".sato	eP	$18 \times 60 + \frac{1}{2} \times 40 \times (18 + 6) - 12 \times 100$
			or $\frac{1}{2} \times 6 \times (60 + 80) - \frac{1}{2} \times 6 \times 20$ or for answer 420
			or M1 for one area calculation
16	(3x-4)(2x+5) final answer	2	B1 for $(ax + b)(cx + d)$ where $ac = 6$ and ad + bc = 7 or $bd = -20$
17(a)	[<i>a</i> =] 7	2	M1 for $3(-2)^2 + a = 19$ or better
17(b)(i)	6x - 9 or $3(2x - 3)$ final answer	2	M1 for $2(3x - 8) + 7$ or better
17(b)(ii)	$\frac{x-7}{2}$ final answer	2	M1 for a correct first step $x = 2y + 7$ or $y - 7 = 2x$
			or $\frac{y}{2} = x + \frac{7}{2}$

0580/21

Question	Answer	Marks	Partial Marks
18	990 or 989.58 to 989.73	4	M1 for $4 \times \pi \times 7^2$ [÷2] M1 for $\pi \times 7^2$ M1 for $\pi \times 7 \times 2 \times 12$
19	M P	1	
20	107	4	B2 for $x = 40$ or M1 for $2x + x + 60 = 180$ oe
	ATP	R	M1 for correctly substituting <i>their x</i> into 4x - 87 + y = 180 oe or $4x - 87 + x + 60 + y + 2x = 360$ oe
21	11.7 or 11.73	3	M2 for $\sin 43 = \frac{PT}{17.2}$ oe or M1 for identifying angle <i>PVT</i>
22	$\frac{x}{2(x+5)}$ or $\frac{x}{2x+10}$ final answer	4	B1 for $x(x-5)$ B2 for $2(x-5)(x+5)$ or $(x-5)(2x+10)$ or $(2x-10)(x+5)$ or B1 for $2(x^2-25)$ or $(x-5)(x+5)$
23(a)	$\frac{5}{6}$ m - $\frac{1}{3}$ n	3	B2 for correct unsimplified answer in terms of m and n e.g. $\frac{1}{3}$ (m - n) + $\frac{1}{2}$ m or M1 for a correct route or for $\overline{FC} = \mathbf{m} - \mathbf{n}$ or $\overline{CF} = \mathbf{n} - \mathbf{m}$ or better e.g. $\overline{AC} = \frac{1}{3}$ (m - n)
23(b)	$\overrightarrow{GH} = 3 \overrightarrow{JK}$ oe or \overrightarrow{GH} has a greater magnitude	2	B1 for each
	\overrightarrow{GH} and \overrightarrow{JK} are parallel		

Cambridge IGCSE™

MATHEMATICS

0580/22 October/November 2020

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

- caocorrect answer onlydepdependentFTfollow through after erroriswignore subsequent workingoeor equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Question	Answer	Marks	Partial Marks
1	200 017	1	
2	7 - (5 - 3) + 4	1	
3	1.2 or $1\frac{1}{5}$ or $\frac{6}{5}$	2	M1 for $6 = 2x + 3x$ or better
4	[x =] 60 [y =] 80	3	B1 for $[x =] 60$ B2 for $[y =] 80$ or B1 for 40 in a correct place on diagram If 0 scored SC1 for <i>their</i> $x + their y = 140$
5	48.72	2	M1 for $\frac{16}{100} \times 42$ oe or better
6	4(1-2x)	1	
7	9	2	M1 for $\frac{1}{2} \times 6 \times h = 27$ oe
8	171	2	M1 for $180 - (360 \div 40)$ oe or $\frac{(40-2) \times 180}{40}$ oe
9	[x =] 3 [y =] 1	2	B1 for each
10	$\frac{5}{6} \times \frac{3}{4} \text{ or } \frac{5}{6} \div \frac{8}{6} \text{ oe}$	M2	M1 for $\frac{4}{3}$ seen or for $\frac{5}{6} \times their \frac{3}{4}$ or for $\frac{5}{6} \div \frac{their8}{6}$
	$\frac{5}{8}$ cao	Al	dep on M2
11	$10x^7$ final answer	2	B1 for kx^7 or $10x^k$ final answer or for correct answer then spoilt
12	15	2	M1 for 4 [parts] = 20 soi or a correct equation e.g. $\frac{x+20}{7} = \frac{x}{3}$ oe
13	60	3	M2 for $12 \times \sqrt{13^2 - 12^2}$ or M1 for $13^2 - 12^2$
1.6	2		or for $12 \times their 5$ from Pythagoras or trig
14	2.03×10^{201}	2	B1 for figs 203 or $[0].03 \times 10^{201}$ or 200×10^{199}

Question	Answer	Marks	Partial Marks
15	29.5 or 29.45 to 29.46	2	M1 for $\frac{60}{360} \times \pi \times 7.5^2$ oe
16	25	2	M1 for $x \times \left(1 + \frac{6}{100}\right) = 26.50$ oe or better
17(a)	0.1 or $\frac{1}{10}$	1	
17(b)	90	3	M2 for $\frac{1}{2} \times 10 \times 2 + 10 \times 2 + \frac{1}{2}(2+4) \times 20$ oe or M1 for one area calculation or indicated on diagram
18	27.15 cao	3	M2 for $(9.4 + 0.05) \times 2 + 8.2 + 0.05$ or better or M1 for $8.2 + 0.05$ or $9.4 + 0.05$ or better seen OR SC2 for answer 25.95 or SC1 for answer 26.85
19(a)	61.1 or 61.08 to 61.09	3	M2 for $[\sin x =] \frac{8\sin 100}{9}$ oe or better or M1 for $\frac{9}{\sin 100} = \frac{8}{\sin x}$ oe
19(b)	11.7 or 11.66 to 11.67	3	M2 for $\frac{1}{2} \times 9 \times 8 \times \sin(180 - 100 - their (a))$ oe or M1 for $180 - 100 - their (a)$
20	60	3	M2 for $4 \times \sqrt[3]{\frac{40500}{12}}$ oe
			or M1 for $\left(\frac{4}{l}\right)^3 = \frac{12}{40500}$ oe or $\sqrt[3]{\frac{40500}{12}}$ oe or $\sqrt[3]{\frac{12}{40500}}$ oe
21(a)	4 - 2x	2	B1 for 4 or – 2 <i>x</i>
21(b)	(2, 10)	2	B1 for <i>x</i> -coordinate of 2 or M1 for <i>their</i> $4 - 2x = 0$
22(a)	$-\mathbf{a} + \mathbf{b}$	1	

Question	Answer	Marks	Partial Marks
22(b)	$2\mathbf{a} - \frac{1}{2}\mathbf{b}$	3	B2 for answer $2\mathbf{a} + p\mathbf{b}$ or $q\mathbf{a} - \frac{1}{2}\mathbf{b} \ q \neq \frac{1}{2}$ or correct unsimplified answer in terms of a and b or M1 for $\overrightarrow{AC} = \frac{3}{2}\mathbf{a}$ or $\overrightarrow{OC} = \frac{5}{2}\mathbf{a}$ or correct route If 0 scored SC1 for answer $\mathbf{a} + \frac{1}{2}\mathbf{b}$
23	$\frac{3}{x+1}$ final answer	3	B1 for $2(x+1)-(2x-1)$ oe B1 for common denominator $x + 1$
24	(2.4, 1.8) oe	5	M1 for [gradient =] $-1 \div \frac{1}{3}$ oe M1 for substituting (2, 3) into y = (their m)x + c oe M1 for $\frac{1}{3}x + 1 = their(mx + c)$ with $their m \neq \frac{1}{3}$ M1 for substituting <i>their x</i> -coord into either equation to find y or for substituting <i>their y</i> -coord into either equation to find x
25	63.4 or 63.43 243.4 or 243.4	2	B1 for each If 0 scored SC1 for two answers with a difference of 180
26	$\frac{x-2}{u+1}$ of final answer	4	B2 for $(x-2)(u-1)$ or B1 for $u(x-2) - (x-2)$ or x(u-1) - 2(u-1) B1 for $(u-1)(u+1)$

Cambridge IGCSE™

MATHEMATICS

0580/23 October/November 2020

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

- caocorrect answer onlydepdependentFTfollow through after erroriswignore subsequent workingoeor equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Question	Answer	Marks	Partial Marks
1	64	1	
2	80	1	
3	Accurate triangle with correct construction arcs	2	B1 for accurate triangle with no/incorrect arcs or SC1 for accurate triangle with arcs with sides interchanged
4	a^{-4} or $\frac{1}{a^4}$ final answer	1	
5	396	1	
6(a)	Kite	1	
6(b)	80	2	M1 for (180 – 82 – 58) or better
7	45.7	1	
8	18.25, 18.35	2	B1 for each or SC1 for both values correct but reversed
9	$\frac{8}{7}$ and $\frac{21}{10}$ oe improper fractions	M1	
	$\frac{168}{70}$ oe improper fractions	A1	
	$2\frac{2}{5}$ cao final answer	A1	Dep. on first A1 If M0 scored SC1 for $\frac{8}{7}$ or $\frac{21}{10}$ oe improper fractions
10	Correctly eliminates one variable	M1	
	[x =] 6 [y =] -0.5 oe	A2	A1 for either correct If M0 scored, SC1 for 2 values satisfying one of the original equations
11(a)	50	2	M1 for $\frac{5}{7+5+2}$ [× 140]
			or $\frac{7+5+2}{7+5+2}$ [× 5]
11(b)	26	2	M1 for $\frac{5+9}{n} = \frac{2}{7}$ oe or $\frac{5+9}{p+7+5+2+9} = \frac{2}{7}$ oe

Question	Answer	Marks	Partial Marks
12(a)	5	1	
12(b)	$(-\frac{12}{5} \text{ oe, } 0)$	2	M1 for $5x + 12 = 0$
12(c)	$-\frac{1}{5}$ oe	1	FT $-\frac{1}{their(a)}$
13	$A'\cap B$	1	
14	21	2	B1 for 3×7 soi or $2^4 \times 3^2 \times 7^6$ oe or answer of $21 \times k^2$
15	$[x =] y(m - 2p)^{2} \text{ nfww}$ or $[x =] y(m^{2} - 4mp + 4p^{2}) \text{ final answer}$	3 R	 M1 for subtract 2p or <i>their</i> term in p to isolate a term in x M1 for squaring M1 for multiplying by <i>their</i> term in y Maximum of 2 marks for an incorrect answer
16	205.8	3	M2 for 38.4 × $\left(\frac{7}{4}\right)^3$ oe or M1 for $\left(\frac{7}{4}\right)^3$ or $\left(\frac{4}{7}\right)^3$ oe or $\frac{7}{4} = \sqrt[3]{\frac{v}{38.4}}$ oe
17	492.2[0]	3	B2 for 32.2[0] OR M1 for $x \times \left(1 - \frac{7}{100}\right) = 427.8[0]$ oe or better M1 for <i>their</i> $460 \times \left(1 + \frac{7}{100}\right)$ oe or <i>their</i> $460 \times \frac{7}{100}$ correctly evaluated

0580/23

Question	Answer	Marks	Partial Marks
18(a)	$64x^3y^6$ final answer	2	B1 for kx^3y^6 or $64x^ky^6$ or $64x^3y^k$ final answer or correct answer then spoilt
18(b)	$\frac{2}{3}$	1	
19(a)	$\frac{5}{12}$ or 0.417 or 0.4166 to 0.4167	1	
19(b)	32.5	4	M3 for $\frac{1}{2}(v+v+10) \times 24 + \frac{1}{2} \times 16(v+10) = 1240$ oe OR
			M2 for $\frac{1}{2}(v+v+10) \times 24$ oe and $\frac{1}{2} \times 16(v+10)$ oe or M1 for one area expression M1 for correctly solving <i>their</i> ($av + b = 1240$) oe ($a \neq 0, b \neq 0$)
20	(3x+8y)(1-2a)	2	M1 for $3x(1-2a) + 8y(1-2a)$ or $3x + 8y - 2a(3x + 8y)$ or better
21(a)	1.07 or 1.071 to 1.072	3	M2 for [8 –] 8 cos 30 oe or M1 for $\frac{OP}{8} = \cos 30$ oe
21(b)	2.9[0] or 2.895 to 2.901	3	M1 for $\frac{30}{360} \times \pi \times 8^2$ oe M1 for $\frac{1}{2} \times 8 \times their 6.93 \times \sin 30$ oe or $\frac{1}{2} \times 8\cos 30 \times 4$ oe

Question	Answer	Marks	Partial Marks
22(a)	27.625	4	M1 for 5, 12.5, 17.5, 30, 57.5 M1 for $\sum fx$ where x is in correct interval including boundaries M1 dep on second M1 for $\frac{\Sigma fx}{100}$
22(b)	6 and 2.4	3	B2 for either correct or M1 for [fd =] 1.5 or 0.6 oe or B1 for [multiplier] 4
23	$y = \frac{10.5}{\sqrt{x}}$ oe final answer	2	M1 for $y = \frac{k}{\sqrt{x}}$
24	$\frac{x+5}{x-12}$ nfww final answer	4 R	B1 for $(x + 5) (x - 5)$ B2 for $(x - 12) (x - 5)$ or B1 for $x(x - 5) - 12 (x - 5)$ or $x(x - 12) - 5(x - 12)$ or for $(x + a)(x + b)$ where $ab = -60$ or $a + b = -17$
25	126.9 or 126.86 to 126.87 and 306.9 or 306.86 to 306.87	3	B2 for one correct or M1 for $\tan x = -\frac{4}{3}$ if 0 scored then SC1 for two answers with a difference of 180°

Cambridge IGCSE™

MATHEMATICS

0580/21 May/June 2020

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	86	2	M1 for correct method to find the perimeter e.g. $(8 + 3) \times 2 \times 5 - 3 \times 8$ If 0 scored, SC1 for answer 98
2	15	1	
3(a)	66	1	
3(b)	Positive	1	
3(c)	Ruled line of best fit	1	
3(d)	46 to 50	1	FT <i>their</i> line of best fit if a positive gradient
4(a)	0.22 oe	2	M1 for $0.15 + 0.2 + ? + 0.43 = 1$ or better
4(b)	40	1	
5(a)	52	1	
5(b)	7n + 5 oe final answer	2	B1 for $7n + a$ or $bn + 5$ $b \neq 0$
6	7	3	M2 for $166 + 2x = 180$ or better or M1 for $97 - 3x + 69 + 5x = 180$ oe
7	$2^5 \times 3^4 \times 13^2$	atp ₁	3P
8	$\frac{56}{24} - \frac{21}{24}$	M2	M2 for correct method for common denominator or B1 for $\frac{7}{3}$
	their $\frac{35}{24} \times \frac{6}{25}$	M1	
	$\frac{7}{20}$	A1	
9(a)	7a(3a+4b) final answer	2	B1 for partial factorisation $7(3a^2 + 4ab)$ or $a(21a + 28b)$

Question	Answer	Marks	Partial Marks
9(b)	5(2x+3y)(2x-3y) final answer	3	B2 for $(2x + 3y)(2x - 3y)$ or $(10x + 15y)(2x - 3y)$ or $(2x + 3y)(10x - 15y)$ or B1 for $5(4x^2 - 9y^2)$
10	[x =] 55 [y =] 24	2	B1 for each
11	990	3	M2 for correct complete area statement e.g. $\frac{1}{2} \times 30 \times (6 + 12) + 60 \times 12$ oe or M1 for one area calculation
12(a)	22	2	B1 for 48 and 70
12(b)	Children Adults 20 40 00 10 100 There (separately	2	M1 for a box with two whiskers and at least two correct from Min 28, LQ 42, Med 58, UQ 70, Max 75
13	16.6 or 16.64		M2 for $21 \times \frac{18}{13.5} = [AC]$ oe or M1 for scale factor $\frac{13.5}{18}$ or $\frac{18}{13.5}$ oe soi Then Pythagoras method: and M2 for $\sqrt{28^2 + 18^2}$ [$\div 2$] or $\sqrt{(theirAC)^2 + 18^2}$ [$\div 2$] or M1 for $AD^2 = 28^2 + 18^2$ or $AD^2 = (theirAC)^2 + 18^2$ OR alternative trigonometry method e.g. M1 for tan $E = \frac{21}{13.5}$ and M1 for $AD = \frac{18}{\cos their 57.3}$
14(a)	[<i>p</i> =] –13	2	M1 for $4(5x - 4) + 3$ or better
14(b)	$\frac{3x+1}{5}$	3	M2 for $x = \frac{3y+1}{5}$, $5y = 3x + 1$ or $y - \frac{1}{5} = \frac{3x}{5}$ M1 for $x = \frac{5y-1}{3}$, $3y = 5x - 1$ or $y + \frac{1}{3} = \frac{5x}{3}$

Question	Answer	Marks	Partial Marks
15	Complete explanation with geometrical reasons	3	B1 for $RQP = x^{\circ} QR$ bisects angle PQB B1 for $RPQ = x^{\circ}$ alternate segment theorem B1 for triangle PQR has two equal angles both less than 60 (so can't be equilateral) so must be isosceles
16	1.8 or $1\frac{4}{5}$	3	M2 for $m = \frac{k}{(p-1)^2}$ or M1 for $m = \frac{theirk}{(6-1)^2}$ OR M2 for $5(4-1)^2 = m(6-1)^2$ oe
17(a)(i)	$\begin{pmatrix} 15\\21 \end{pmatrix}$	P	RA
17(a)(ii)	26	2	M1 for $10^2 + (-24)^2$ or better
17(b)	$\mathbf{p} + \frac{3}{4} \mathbf{q}$	2	M1 for a correct route or for $\overrightarrow{AE} = \frac{3}{4}$ q
18	34	2	M1 for $12 + 0.5$ or $4 + 0.5$ or better seen
19	12.2 or 12.24	5 atpr	M4 for tan = $\frac{4.5}{\sqrt{20^2 + 5.5^2}}$ oe or M1 for recognising angle <i>GAC</i> M1 for $\frac{495}{20 \times 5.5}$ M1 for $\sqrt{20^2 + 5.5^2}$ or $\sqrt{20^2 + 5.5^2 + (their 4.5)^2}$ M1 for tan = $\frac{their 4.5}{\sqrt{20^2 + 5.5^2}}$ oe
20	[y =] 5x - 4	1	
21	$3x^3 - 7x^2 - 43x + 15$	3	B2 for correct expansion and simplification of two of the brackets or B1 for correct expansion of two brackets with at least 3 terms correct

Question	Answer	Marks	Partial Marks
22	142 or 142.2 to 142.3	3	M2 for $\frac{1}{2} \times 7.4 \times 7.4 \times \sin 60 \times 6$ or $\tan 60 \times \frac{7.4}{2} \times \frac{7.4}{2} \times 6$ or M1 for $\frac{1}{2} \times 7.4 \times 7.4 \times \sin 60$ or $\tan 60 \times \frac{7.4}{2}$

Cambridge IGCSE™

MATHEMATICS

0580/22 May/June 2020

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Г

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

soi seen or implied

Question	Answer		Marks	Partial Marks
1	2		1	
2	-5		1	
3	25		2	B1 for 130 seen or M1 for 50 ÷ 2
4(a)	Any square number	er greater than 10	1	
4(b)	Any irrational num	nber	1	
5	-2		2	M1 for (-3)(-2) + (-8)
6	45		2	M1 for $\frac{11+7}{2} \times 5$ oe
7	Intersection shade	d	1	
8	0.0625		1	
9	285		2	M1 for $180 + 105$ or 75 or 105 seen in correct position at <i>B</i>
10	$\frac{2p^2}{t}$		2	B1 for correct unsimplified answer
11	$\frac{7}{4}$	$\frac{9}{12}$	B 1	
	$\frac{21}{12}$	$1 - \frac{2}{12}$	M1	
	$\frac{5}{6}$	$\frac{5}{6}$	A1	
12	8		2	M1 for $\frac{5-4.60}{5}$ [×100] or $\frac{4.60}{5}$ ×100
13	$2t^4$		2	B1 for $2t^n$ or kt^4 $(n, k \neq 0)$

Question	Answer	Marks	Partial Marks
14	-14	2	M1 for $1 - x = 3 \times 5$ or better or $\frac{x}{3} = 5 - \frac{1}{3}$ or better
15	177.5	1	
16	2.7×10^{-8}	1	
17	108	3	M1 for $(105 + 225) \div 11$ M1 for <i>their</i> speed × $\frac{60 \times 60}{1000}$
18	Enlargement [scale factor] $-\frac{1}{2}$ [centre] (3, 4)	3	B1 for each
19	$[\pm]\sqrt{\frac{h^2 - x^2}{2}}$	3	M1 for correct rearrangement for y or y^2 term M1 for correct square root M1 for correct division by 2 or $\sqrt{2}$
20(a)	49	1	
20(b)	98	1	FT $2 \times their$ (a)
20(c)	20	1	
20(d)	70	1	FT 90 – their (c)
21(a)	125x ¹²	2	B1 for $125x^k$ or kx^{12}
21(b)	8x ⁹⁶	2	B1 for $8x^k$ or kx^{96}
22	16		M1 for $p = k(q+2)^2$ M1 for $p = (their k)(10+2)^2$ OR M2 for $\frac{p}{(10+2)^2} = \frac{1}{(1+2)^2}$ oe
23(a)	Correct lines and correct region clear	5	B2 for $2x + y = 8$ correctly ruled or B1 for ruled line with negative gradient B1 for $y = x$ correctly ruled B1 for $x = 2$ correctly ruled
23(b)	6	1	

Question	Answer	Marks	Partial Marks
24	25.6 or 25.59 to 25.60	4	M3 for $\frac{6.4}{2 \times \pi \times 8} \times \pi \times 8^2$
			or M2 for $\frac{x}{360} = \frac{6.4}{2 \times \pi \times 8}$ oe
			or M1 for $\frac{x}{360} \times 2 \times \pi \times 8 = 6.4$ oe
25	$\frac{2x-5}{a-2b}$ final answer	5	B2 for $(2x-5)(x+3)$ or B1 for $(2x+p)(x+q)$ where $pq = -15$ or p+2q = 1 B2 for $(x+3)(a-2b)$ or B1 for $x(a-2b) + 3(a-2b)$ or $a(x+3) - 2b(x+3)$
26	4	2	M1 for $y^{\frac{2}{3}} = x^{\frac{1}{6}}$ or $y^2 = \sqrt{x}$ or $y^4 = x$
27	64.9 or 64.89 to 64.90	6	B5 for $[\cos =] \frac{100 + 72 - 100}{2 \times 10 \times \sqrt{72}}$ OR
			M1 for $8^2 + 6^2$ M1 for $6^2 + 6^2$ M2 for $\frac{(theirAF)^2 + (theirAH)^2 - (theirHF)^2}{2 \times (theirAF) \times (theirAH)}$ or M1 for $(theirHF)^2 = (theirAF)^2 + (theirAH)^2$ $- 2 \times (theirAF) \times (theirAH) \cos(HAF)$ AF, AH etc from correct method

Cambridge IGCSE™

MATHEMATICS

0580/23 May/June 2020

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Г

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
	n at frame remains a recordering

nfww not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)	32	1	
1(b)	36	1	
1(c)	37	1	
2	208		RA
3	116	2	M1 for angle $ACB = 32$ soi
4(a)	1509	1	Accept 3 09 pm
4(b)	472	2	M1 for $80 \times their$ time oe or B1 for time = 5.9
5	42	2	M1 for $\frac{7}{15}$ [× 90]
6(a)	p^6	1	
6(b)	<i>m</i> ¹⁰	1	
6(c)	k ¹⁵	ator	ap.o
7	Correct common denominator	M1	
	Correct method	M1	e.g. $1\frac{3-8}{12}$ or $\frac{12+3-8}{12}$ or $\frac{((3\times4)+1)\times3-((2\times3)+2)\times4}{12}$ or $\frac{39-32}{12}$
	$\frac{7}{12}$ cao	A1	
8	[0]94	2	M1 for 86 or 274 – 180 or for sketch with 274 marked correctly

Question	Answer	Marks	Partial Marks
9	15.5 or 15.48 to 15.49	3	B2 for 1550 or 1548 to 1549 or M2 for $\frac{42}{360} \times \pi \times 6.5^2$ or M1 for $\frac{42}{360} \times \pi \times 65^2$
10	141 or 141.3 to 141.4	4	M1 for $[2 \times] \pi \times 3^2$ M2 for $2 \times \pi \times 3 \times 4.5$ or M1 for $2 \times \pi \times 3 [\times 4.5]$
11	[<i>y</i> =] 1	3	M1 for $y = k \times \sqrt[3]{x+3}$ M1 for $y = their k \times \sqrt[3]{24+3}$ OR M2 for $\frac{y}{\sqrt[3]{24+3}} = \frac{2}{3} \times \frac{1}{\sqrt[3]{5+3}}$ oe
12	3.7[0] or 3.689 to 3.699	3	M2 for $\frac{19.02}{2+\pi}$ or M1 for $2r + \pi r$ [=19.02] oe
13	x + y < 4 $y \ge 1.5$ $y \le 2x + 1$	4	B3 for any two correct or B1 for $y \ge 1.5$ B2 for $x + y < 4$ or $y \le 2x + 1$ or $x + y = 4$ and $y = 2x + 1$ or with incorrect inequality signs or B1 for $x + y = 4$ or $y = 2x + 1$ or SC3 for > instead of \ge etc.
14(a)	0.3 oe	1	5
14(b)	3060	3 atpr	M2 for $\frac{1}{2}(300+210) \times 12$ oe or M1 for one correct part area
15	28.33 or 28.3 or 28.33	4	M1 for midpoints soi M1 for use of $\sum fx$ M1 dep for $\sum fx \div 60$
16	1.22 or 1.219 to 1.22	5	M1 for SI = $\frac{2000 \times 5 \times 1.25}{100}$ M3 for $\sqrt[5]{\frac{2000 + their 125}{2000}}$ or M2 for $2000k^5 = 2000 + their$ SI or M1 for CI = $2000k^5$

Question	Answer	Marks	Partial Marks
17	5	3	M2 for $8 \times \sqrt{\frac{52.5}{134.4}}$ oe or M1 for $\sqrt{\frac{52.5}{134.4}}$ or $\sqrt{\frac{134.4}{52.5}}$ oe
18(a)	$(x-9)^2 - 108$	2	B1 for $(x+h)^2 - 108$ or $(x-9)^2 + h$ or $k = -9$
18(b)	19.4 or 19.39 - 1.39 or - 1.392	2	M1FT $x - their9 = \pm \sqrt{their108}$ A1 for $9 \pm \sqrt{108}$ or $9 \pm 6\sqrt{3}$
19(a)(i)		2	B1 for two correct
19(a)(ii)	$G \cup D'_{oe}$	1	
19(b)	15	1	
19(c)		atpr	Shade whole rectangle except for region containing <i>x</i>
20	65.3 or 65.28	4	M3 for $\cos = \frac{\frac{1}{2}\sqrt{11^2 + 11^2}}{18.6}$ or better or M2 for $AM = \frac{1}{2}\sqrt{11^2 + 11^2}$ oe or M1 for $AC^2 = 11^2 + 11^2$ If 0 scored, SC1 for identifying angle <i>VAM</i>

0580/23

Question	Answer	Marks	Partial Marks
21(a)(i)	$\mathbf{a} - \mathbf{b}$ or $-\mathbf{b} + \mathbf{a}$	2	B1 for a correct route or identifying \overrightarrow{OT}
21(a)(ii)	$\frac{1}{2}\mathbf{a} - \mathbf{b}$ or $-\mathbf{b} + \frac{1}{2}\mathbf{a}$	1	
21(b)	$\overrightarrow{PT} = \mathbf{a} - 2\mathbf{b}$ oe	M1	
	$\overrightarrow{PT} = 2\overrightarrow{RV}$ oe	A1	Dep on correct vector <i>RV</i> Accept in words

Cambridge IGCSE™

MATHEMATICS

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70 0580/22 March 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	12	1	
1(b)	8	1	
1(c)	5	1	
1(d)	$\sqrt{7}$	P 1	34
2(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	M1 for correct but not ordered or for two correct rows ordered
2(b)	27	1	
3	$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	1	
4	165	2	M1 for $\frac{(24-2)\times180}{24}$ or $180-\frac{360}{24}$
5	$\frac{15}{28} \times \frac{7}{4}$ or $\frac{15}{28} \div \frac{16}{28}$ oe	M1	p.co
	$\frac{15}{16}$ cao	A2	A1 for $\frac{105}{112}$ oe
6	7.2	3	M1 for $5 \times 8 + 6 \times 5 + 7 \times 11 + 8 \times 7 + 9 \times 5 + 10 \times 4$ M1dep for $\div 40$
7(a)	45.9	2	M1 for $0.5 \times 8.5 \times 10.8$ oe
7(b)	33[.0] or 33.04	3	M2 for $8.5 + 10.8 + \sqrt{8.5^2 + 10.8^2}$ oe or M1 for $8.5^2 + 10.8^2$ oe
8	2.98×10^{-3}	1	
9(a)	3x(x-4y) final answer	2	B1 for $3(x^2 - 4xy)$ or $x(3x - 12y)$

Question	Answer	Marks	Partial Marks
9(b)	$m^2 - m - 6$ final answer	2	M1 for 3 terms from m^2 , $-3m$, $+2m$, -6
10(a)	Correct sketch	1	Line with positive gradient and negative y intercept
10(b)	Correct sketch	2	B1 for only one branch or attempt at correct shape
11(a)	Rotation 90° clockwise oe (0, 2)	3	B1 for each
11(b)	Reflection $y = x$	2	B1 for each
11(c)	Enlargement [sf] $\frac{1}{2}$ (4, 6)	3	B1 for each
12	229 500 cao	3	B2 for 229460 OR
	".sat	pre	M1 for 250 000 × $\left(1 - \frac{1.7}{100}\right)^5$ oe
			B1 for <i>their</i> more accurate answer correctly rounded to the nearest 100
13	$2.\dot{6} - 0.2\dot{6}$ oe	M1	
	$\frac{4}{15}$ oe fraction nfww	A1	If M0 scored SC1 for $\frac{k}{90}$
14(a)	11.5	1	
14(b)(i)	12	1	
14(b)(ii)	8.5	1	

Question	Answer	Marks	Partial Marks
15	116°	B1	
	alternate segment theorem	B1	
	angles in opposite segments are supplementary or cyclic quadrilateral or angles at a point on a straight line	B1	
16	$8y^2 - 42y + 10[=0]$ or $8x^2 + 14x - 400[=0]$	M3	M1 for $(7-3y)^2 - y^2 = 39$ oe or $x^2 - \left(\frac{7-x}{3}\right)^2 = 39$ oe M1 for $49 - 21y - 21y + 9y^2$ or better or $49 - 7x - 7x + x^2$ or better or for correct expansion of their quadratic binomial
	(8y-2)(y-5)[=0] oe (8x-50)(x+8)[=0] oe	M1	M1 for correct method to solve <i>their</i> quadratic equation e.g. factors, quadratic formula, completing the square
	x = 6.25 oe $y = 0.25$ oe x = -8 $y = 5$	B2	B1 for $x = 6.25$, $x = -8$ or for $y = 0.25$, $y = 5$ or for a correct pair of x and y values
17	$[y=]-\frac{1}{6}x+\frac{11}{2}$ oe	4	M1 for [gradient of $AB = \frac{57}{3 - 1}$ oe M1 for [gradient of perpendicular =] $-\frac{1}{their}$ grad AB M1 for substituting (3, 5) in <i>their</i> linear equation
18	22.5 nfww	3	M2 for $\frac{146.2 + 0.05}{7 - 0.5}$ or M1 for 146.2 + 0.05 or 7 - 0.5 or better seen
19(a)	Correct sketch	2	 Needs all three features for 2 marks: Correct curve shape Maximum at (0, 1) and at (360, 1) and minimum at (180, -1) Passing through (90, 0) and (270, 0) only B1 for two correct features

Question	Answer	Marks	Partial Marks
19(b)	75.5 or 75.52 and 284.4 to 284.5	3	B2 for one correct or M1 for $\cos x = \frac{1}{4}$ oe If 0 scored, SC1 for two answers with a sum of 360
20	[a =] 36 [b =] - 6	2	B1 for each or SC1 for correct answers reversed
21	X, Y and Z are collinear oe	1	Allow in a straight line
	X is the midpoint of ZY oe	1	Allow e.g. $ZY = 2XY$, $ZX = XY$ oe

MATHEMATICS

0580/21 October/November 2019

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Cambridge IGCSE – Mark Scheme PUBLISHED

Abbreviations

correct answer only
dependent
follow through after error
ignore subsequent working
or equivalent
Special Case
not from wrong working
seen or implied

Question	Answer	Marks	Partial Marks
1	1.25	1	
2	p(5+t) final answer	1	
3	4.6 cao nfww	2	B1 for 4.57 or 4.58 or 4.579 to 4.580
	NT P	RA	If 0 scored, SC1 for their calculation rounded to 2 sf if more than 2sf seen
4(a)	Fifteen thousand [and] sixty	1	
4(b)	$1.506[0] \times 10^4$	1	
5	3c - 4d final answer	2	B1 for $3c + kd$ or $kc - 4d$
6	11	2	M1 for $x - 2 = 3 \times 3$ oe or $\frac{x}{3} = 3 + \frac{2}{3}$ oe or better
7	$6x^5$ final answer	2	B1 for kx^5 or $6x^k$
8	$\frac{5}{16} \times \frac{8}{7}$	M1	0.5
	$\frac{5}{14}$ cao	Al	
9	1.5	2	M1 for $\frac{600 \times r \times 10}{100} = 90$ oe or better
10	$\frac{16}{x^4}$ or $16x^{-4}$	2	M1 for $\left(\frac{x}{2}\right)^{-4}$ or $\left(\frac{8}{x^3}\right)^{\frac{4}{3}}$ or $\left(\frac{x^{12}}{4096}\right)^{-\frac{1}{3}}$ or better or B1 for $\frac{16}{x^k}$ or $16x^k$ or $\frac{k}{x^4}$ or kx^{-4} final answer
11	$\frac{P}{2+\pi}$	2	M1 for $P = r(2 + \pi)$
12	229.5225 final answer cao	2	M1 for $(15.1 + 0.05)^2$ or B1 for 15.15 seen

Question	Answer	Marks	Partial Marks
13	45[.0] or 44.99 to 45.00	2	M1 for $\frac{1}{2} \times 13 \times 11 \times \sin 39$ oe
14	49 000	3	M1 for $4.9 \times (10\ 000\ 000)^2$ M1 for $\div (100\ 000)^2$ OR M1 for 1 cm : 100 km M1 for $4.9 \times (their\ 100)^2$ OR M2 for $(\sqrt{4.9} \times 10\ 000\ 000\ \div\ 100\ 000)^2$ or M1 for $\sqrt{4.9} \times 10\ 000\ 000\ \div\ 100\ 000$
15	128		M1 for $y = \frac{k}{x^2}$ M1 for $y = \frac{their k}{\left(\frac{1}{2}\right)^2}$ OR M2 for $\frac{2 \times 4^2}{\left(\frac{1}{2}\right)^2}$ or M1 for $2 \times 4^2 = y \times \left(\frac{1}{2}\right)^2$
16	109.3 or 109.26 to 109.27	3	M2 for $\frac{12 \sin 39}{8}$ or M1 for $\frac{8}{\sin 39} = \frac{12}{\sin()}$ oe
17	6.28 or 6.283 to 6.284	· · · · · · · · · · · · · · · · · · ·	M2 for $\frac{45}{360} \times \pi \times 5^2$ oe and $\frac{45}{360} \times \pi \times 3^2$ oe or M1 for $\frac{45}{360} \times \pi \times 5^2$ oe or $\frac{45}{360} \times \pi \times 3^2$ oe or $\pi \times 5^2 - \pi \times 3^2$ oe
18	$\frac{x^2 - 3x - 8}{2(x+1)}$ or $\frac{x^2 - 3x - 8}{2x+2}$ final answer	3	B1 for common denominator $2(x + 1)$ or 2x + 2 M1 for $x(x + 1) - 2(2x + 4)$ or better
19(a)	$ \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix} $	2	B1 for 2 or 3 elements correct

Question	Answer	Marks	Partial Marks
19(b)	-2 final answer	1	
20	$\frac{147}{160}$ oe	3	M2 for $\frac{1}{10} \times \frac{3}{4} + \frac{9}{10} \times \frac{15}{16}$ or M1 for $\frac{1}{10} \times \frac{3}{4}$ or $\frac{9}{10} \times \frac{15}{16}$
21(a)	Translation $ \begin{pmatrix} -1 \\ -5 \end{pmatrix} $	2	B1 for each
21(b)	Correct reflection at (6, 2), (6, 6), (7, 6), (7, 3)	2	B1 for three correct vertices
22	2592	4 R ^g	M3 for $1.2 \times 100 \times 60 \times 60 \times 6 \div 1000$ oe or M2 for $1.2 \times 60 \times 60 \times 6$ oe or M1 for figs $12 \times$ figs 6 or 60×60 or correct conversion e.g. their value in cm ³ ÷ 1000 their value in m ³ × 1000 1.2×100 $6 \div 10\ 000$
23	2, 5 3 <i>AB</i> ′ ⊂	4	B1 for each
24(a)	19	2	M1 for $3(2^x) - 5$ soi or for f(8)
24(b)	$\frac{x+5}{3}$ of final answer	2	M1 for correct first step $y+5=3x$ or $\frac{y}{3}=x-\frac{5}{3}$ or $x=3y-5$
25(a)	$-\frac{1}{3}\mathbf{q}+\frac{1}{2}\mathbf{p}$ oe	2	M1 for correct unsimplified answer or correct route
25(b)	$\frac{1}{2}\mathbf{p} + \frac{1}{2}\mathbf{q}$ oe	2	M1 for correct unsimplified answer or correct route

Question	Answer	Marks	Partial Marks
26	380	5	B2 for time = 8, implied by 23 on t-axis or M1 for $\frac{20}{t} = 2.5$ or $\frac{20}{t-15} = 2.5$ or $\frac{0-20}{t-15} = -2.5$ oe M2 for $\frac{1}{2}$ (<i>their</i> 23 + 15) × 20 or $20 \times 15 + \frac{1}{2} \times their$ 8 × 20 oe or M1 for any relevant area found

MATHEMATICS

0580/22 October/November 2019

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Marks Question Answer **Partial Marks** 1 6.8 1 2 7.6[0] or 7.604 to 7.605 1 3 $a^4 + 3a$ final answer 1 4 1 5(a) 23 1 1 5(b) One extreme value oe 6 135 2 **M1** for $\frac{12}{12+7+9+4}$ [×360] or $\frac{360}{12+7+9+4}$ [×12] oe 7 440 or 440.2 to 440.3 2 **M1** for 30000 ÷ 68.14 8 282 2 **M1** for 180 + 102 or 360 - (180 - 102) 9 x < -10 final answer 2 M1 for $-12 - 13 > 3x - \frac{x}{2}$ oe 10 67.7 – 6.7 oe **M1** A1 61 If 0 scored, SC1 for $\frac{k}{90}$ 90

Question	Answer		Marks	Partial Marks
11	$\frac{29}{8}$ or $\frac{5}{3}$	$2\frac{5}{8} - \frac{2}{3}$	M1	Allow $\frac{29k}{8k}$ or $\frac{5k}{3k}$ Correct step for dealing with mixed numbers
	$\frac{87}{24}$ and $\frac{40}{24}$	$[2]\frac{15}{24}$ and $\frac{16}{24}$	M1	Correct method to find common denominator e.g. $3\frac{15}{24}$ and $1\frac{16}{24}$
	$1\frac{23}{24}$ cao		A1	
12	90		3	M2 for $360 \div (180 - 176)$ oe or M1 for $180(n - 2) = 176n$ oe or 180 - 176
13	352		3	B2 for figs 352 or M1 for $\left(\frac{75}{30}\right)^3$ oe or $\left(\frac{30}{75}\right)^3$ oe OR M2 for $5.5 \times \left(\frac{30}{75}\right)^3 \times 1000$
14	Gradient = $\frac{5}{4}$ oe		M1	M marks can be in any order
	$y = k - \frac{4}{5}x$ oe and g	radient = $-\frac{4}{5}$ oe	M1	
	Use of product of gra	dients is -1 oe	M1	······································
15(a)	2.45x + 3.15y final a	answer	re ²	B1 for one correct term in final answer If 0 scored, SC1 for $245x + 315y$
15(b)	13		2	M1 for $60.55 - 2.45 \times 8$ oe
16	y = 5 ruled y = x + 1 ruled Correct region indica	ted	4	 B2 for two correct lines or B1 for one correct line B2 for indication of correct region or B1 for shading that satisfies two of the inequalities

Question	Answer	Marks	Partial Marks
17	Bisector of angle Q accurate with two pairs of correct arcs and Arc centre R , radius 6.5 cm With bird table correctly indicated or implied by correct intersecting constructions	4	 M2 for bisector of angle Q accurate with two pairs of correct arcs or M1 for accurate bisector with no/wrong arcs M2 for arc centre R, radius 6.5 cm or M1 for arc centre R Maximum 3 marks if incorrect position/region is labelled, or there is no label and a region is shaded, or <i>their</i> constructions do not intersect
18(a)	0.3 oe	2	M1 for 0.4 × 0.75
18(b)	0.975 oe		M1 for $1 - 0.4 \times 0.25 \times 0.25$ oe or $0.6 + 0.4 \times 0.75 + 0.4 \times 0.25 \times 0.75$ or $0.6 + their$ (a) $+ 0.4 \times 0.25 \times 0.75$
19(a)	180 - 4x	1	0
19(b)	90 - 2x	1	FT <i>their</i> (a) \div 2 in its simplest form dep on expression in <i>x</i> in (a)
19(c)	90 + <i>x</i>	2	FT 180 – <i>their</i> (b) – x oe dep on expression in x in (b) then fully simplified M1 for 180 – (90 – $2x + x$) oe or 180 – <i>their</i> (b) – x oe dep on expression in x in (b)
20(a)	(3y+2x)(6-a) oe final answer	2	M1 for $3y (6 - a) + 2x(6 - a)$ oe or $6(2x + 3y) - a(2x + 3y)$ oe
20(b)	3(x+4y)(x-4y) final answer	3	M2 for $(3x + 12y)(x - 4y)$ or (3x - 12y)(x + 4y) or M1 for $3(x^2 - 16y^2)$ or for (x + 4y)(x - 4y)
21(a)	6	2	B1 for 3^4 or 3^{x-2} or M1 for $3^x = 81 \times 3^2$ or better
21(b)	8	3	M2 for $x^{\frac{5}{3}} = 32$ or better or M1 for $\frac{1}{x^{\frac{1}{3}}} = \frac{32}{x^2}$ or better or $x^{-\frac{1}{3}-2} = 32$ or better
22(a)	$\begin{pmatrix} 2 & 17 \\ 10 & -25 \end{pmatrix}$	2	B1 for 2 correct elements

0580/22

Question	Answer	Marks	Partial Marks
22(b)	2	2	M1 for $-3 - 5k = -13$ oe
22(c)	$\frac{1}{10} \begin{pmatrix} 0 & -2 \\ 5 & 3 \end{pmatrix} \text{ oe isw}$	2	M1 for $k \begin{pmatrix} 0 & -2 \\ 5 & 3 \end{pmatrix}$ or for det = 10 or soi
23(a)	Tangent ruled at $t = 24$	B1	
	-0.7 to -0.3	B2	B2 dep on correct tangent or close attempt at tangent
			M1 for rise/run also dep on correct tangent drawn or close attempt at tangent. Must see correct or implied calculation from a drawn tangent.
23(b)	acceleration or deceleration oe	1	
23(c)	68	2	M1 for (22 – 5) × 4

MATHEMATICS

0580/23 October/November 2019

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	-10	1	
2	6	1	
3(a)	27	1	
3(b)	47		
4	21	2	M1 for $[84 =] 2 \times 2 \times 3 \times 7$ or $[105 =] 3 \times 5 \times 7$ or 3×7 as final answer or B1 for 3 or 7 as final answer
5(a)	7.2×10^4	1	
5(b)	1.8×10^{-3}	1	
6	$x^2 + 8x + 15$ final answer	2	M1 for three terms correct from $x^2 + 3x + 5x + 15$
7	$-\frac{2}{5}$ or -0.4	2	M1 for gradient = $\frac{5}{2}$ oe soi
8(a)	21.1 or 21.10	1	0
8(b)	158.9 or 158.8 to 158.9	tpre	FT 180 – <i>their</i> (a) providing answer is an obtuse angle
9	298	3	M2 for $[2 \times] (5 \times 7 + 5 \times 9.5 + 7 \times 9.5)$ oe or M1 for one correct area, 5×7 or 5×9.5 or 7×9.5
10	30	3	M1 for $\frac{391+n+n-1}{3} = 5n$ oe M1 for correct first step for solving <i>their</i> equation e.g. $391+n+n-1=3\times 5n$, $\frac{390+2n}{3}=5n$
11(a)	3(4x+5) final answer	1	
11(b)	(x+3)(y-2) final answer	2	B1 for $y(x + 3) - 2(x + 3)$ or $x(y - 2) + 3(y - 2)$ or correct answer seen then spoilt

Question	Ans	wer	Marks	Partial Marks
12	7.62 or 7.615 to 7	.616	3	M2 for $\sqrt{(9-2)^2 + (4-1)^2}$ oe or M1 for $(9-2)^2 + (4-1)^2$ oe or 58
13	2.75 oe		3	M2 for $65=2(3k-k)$ oe or better or M1 for $\frac{65}{3k-k}$ oe If 0 scored, SC1 for -2.75 oe as answer
14(a)	$\frac{1}{2n}$ oe final answ	er	1	
14(b)	5^{n-1} oe final ansv	ver	2	M1 for recognition of terms being powers of 5
15	$\frac{2}{12}$ oe or $\frac{1}{2} \times \frac{1}{3}$	$\frac{2}{3}\left(1+\frac{1}{4}\right)$	M1	M1 for correct first step to deal with multiplication
	$\frac{8}{12}[+]\frac{2}{12}$ oe	$\frac{2}{3} \times \frac{5}{4}$	M1	M1 for correct working for common denominator with <i>their</i> $\frac{2}{12}$ oe or correct evaluation of bracket
	$\frac{5}{6}$ cao		A2	A1 for $\frac{10}{12}$ oe
16(a)	12.88		1	
16(b)	two correct points	s plotted	1	
16(c)	ruled line of best	fit	1	0.00
16(d)	negative			1 P
17		2	4	B1 for $x = -2$ dashed ruled line and $x = 3$ solid ruled line B1 for $y = x + 3$ solid ruled line B2 for indication of correct region or B1 for shading that satisfies two of the inequalities, e.g. two of $x > -2$, $x \le 3$ and $y \le x + 3$

0580/23

Question	Answer	Marks	Partial Marks
18(a)(i)	4	1	
18(a)(ii)	At least one and fewer than four numbers from {2, 3, 4, 5}	1	
18(b)	\mathcal{E}		B1 for each
19(a)	0.3 or $\frac{3}{10}$	1	
19(b)	760	3 tore	M2 for correct complete area statement e.g. $70 \times 10 + \frac{1}{2} \times 20 \times 6$ oe or M1 for one of these area calculations $70 \times 10, \frac{1}{2} \times 20 \times 6, 50 \times 10$ or $\frac{1}{2} \times (16 + 10) \times 20$
20(a)	$\frac{45}{(x+1)^2}$ final answer	2	M1 for $t = \frac{k}{(x+1)^2}$
20(b)	4	2	M1 for $1.8 \times (x + 1)^2 = their 45$ or better
21(a)	$\frac{1}{5} \begin{pmatrix} -5 & -10 \\ -1 & -3 \end{pmatrix}$ oe isw	2	M1 for $k \begin{pmatrix} -5 & -10 \\ -1 & -3 \end{pmatrix}$ or det = 5 soi
21(b)	$\begin{bmatrix} x = \\ 0 \end{bmatrix} 6 \\ \begin{bmatrix} y = \\ 0 \end{bmatrix} 7$	3	B1 for $x = 6$ B2 for $y = 7$ or M1 for $2 \times 1 + 9y = 65$ or $2 \times -4 + 2y = 6$

Question	Answer	Marks	Partial Marks
22	15.2	5	M4 for $\left(\pi \times 5^{2} \times 12 - \frac{1}{3} \times \pi \times 5^{2} \times 4.8\right) \div \left(\pi \times 5^{2}\right)$ or M3 for $\pi \times 5^{2} \times 12 - \frac{1}{3} \times \pi \times 5^{2} \times 4.8$ or M1 for $\pi \times 5^{2} \times 12$ M1 for $\frac{1}{3} \times \pi \times 5^{2} \times 4.8$
23(a)	10 [< <i>t</i> ≤] 15	1	
23(b)	Correct histogram		B1 for each correct block If 0 scored, SC1 for correct frequency densities 3.8, 3.2, 0.4 soi by correct heights

MATHEMATICS

0580/21 May/June 2019

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question Answer Marks **Partial Marks** 1 7.5 oe 1 2 1 y(5-6p) final answer 3 4.01 or 4.007 to 4.008 1 4 46.5 1 **M1** for $180 \div 6^2$ oe 5 2 5 1 6(a) t^{14} final answer 6(b) u^{25} final answer 1 6.88 or 6.882 to 6.883 7 2 **M1** for sin 35 [=] $\frac{x}{12}$ oe or better 100 8 2 M1 for reflex angle = 2×130 or opposite angle of a cyclic quadrilateral shown = 509 47.77...-4.77... oe **M1** A1 Allow equivalent fractions 43 90 If **M0** then **SC1** for $\frac{43}{90}$ or equivalent fraction with no/insufficient working 10 5 - 2x final answer 2 M1 for 2(1-x) + 3 oe 2 11 **M1** for $\frac{2}{5} \times \frac{1}{4}$ oe $\frac{2}{20}$ oe 28 1 12(a) 27 12(b) 1 12(c) 29 or 31 1

Question	Answer	Marks	Partial Marks
13	[a =] 2 [b =] - 13	3	B2 for either correct or $(x + 2)^2 - 13$ OR M1 for $2a = 4$ soi M1 for $a^2 + b = -9$ soi OR M1 for $x^2 + ax + ax + a^2$ [+b] or better
14	$\frac{5}{6} + \frac{4}{6}$ oe	M1	2 correct fractions with a suitable common denominator $6k$
	$1\frac{1}{2}$ cao	A2	A1 for $\frac{9}{6}$ oe
15	$3x^2 - 3x + 2$ final answer	3 PR	B2 for $x^2 + 2x + x + 2 + 2x^2 - 6x$ oe or B1 for 3 correct terms of $x^2 + 2x + x + 2$ oe
16	[±] 0.6 oe	3	M1 for $y = \frac{k}{\sqrt{x+1}}$ M1 for $y = \frac{theirk}{\sqrt{99+1}}$ OR M2 for $\frac{2\sqrt{8+1}}{\sqrt{99+1}}$ or M1 for $2\sqrt{8+1} = y\sqrt{99+1}$
17(a)	(p-q)(p+q) final answer	1	_0`
17(b)	$\frac{7}{2}$ oe	0102	M1 for $2 \times (p+q) = 7$ or for $(2+q)^2 - q^2 = 7$ or $p^2 - (p-2)^2 = 7$
18(a)	$27y^{12}$ final answer	2	B1 for ky^{12} or $27y^k$ in final answer
18(b)	$\frac{3}{2}$ oe	1	
19	1500	3	M2 for $12 \div \left(\frac{20}{100}\right)^3$ oe or M1 for $\left(\frac{20}{100}\right)^3$ or $\left(\frac{100}{20}\right)^3$ oe OR M1 for $\div 20^3$ oe M1 for $\times 100^3$ oe

0580/21

Question	Answer	Marks	Partial Marks
20	$\frac{x-5}{x-5}$ final answer	3	B1 for common denominator isw expansion
	(x+2)(3x-1)		M1 for $3x - 1 - 2(x + 2)$ or better
21	60.5 or 60.50	4	M3 for tan = $\frac{10}{\frac{1}{2}\sqrt{8^2 + 8^2}}$ oe
			or M2 for $[\frac{1}{2} \times] \sqrt{8^2 + 8^2}$
			or M1 for $8^2 + 8^2$ or $4^2 + 4^2$
			or B1 for recognising the angle required
22(a)(i)	17		
22(a)(ii)	3n + 2 oe final answer	2	B1 for $3n + k$ or $cn + 2$, $c \neq 0$
22(b)	$\frac{31}{12}$ oe	1	
23(a)	$\begin{pmatrix} 11 & 7 \\ 14 & 18 \end{pmatrix}$	2	B1 for 2 or 3 correct elements
23(b)	$\frac{1}{10} \begin{pmatrix} 4 & -1 \\ -2 & 3 \end{pmatrix}$ oe isw	2	B1 for $k \begin{pmatrix} 4 & -1 \\ -2 & 3 \end{pmatrix}$ or for det = 10 soi
24(a)	2	1	.5
24(b)	1300	3	M2 for $\frac{20}{2} \times (60 + 70)$ oe
	·sat	pref	or M1 for any relevant area
25(a)	$\frac{1}{3}\mathbf{p} - \frac{1}{2}\mathbf{q}$ oe simplified	2	M1 for a correct unsimplified answer or a correct route
25(b)	$\frac{5}{6}\mathbf{p} + \frac{3}{4}\mathbf{q}$ oe simplified	2	M1 for a correct unsimplified answer or a correct route

0580/21

Question	Answer	Marks	Partial Marks
26(a)	y = 2x - 3 oe	3	B2 for $2x-3$ or $y = theirm x - 3$ or $y = 2x + c$
			or M1 for $\frac{9-(-3)}{6-0}$ or $9 = 6m - 3$ or
			or B1 for 2x seen or $[y =]mx - 3 m \neq 0$
26(b)	$y = -\frac{1}{2}x + 2 \text{ oe}$	2	FT their (a) $y = -\frac{1}{their m}x + 2$
			B1 for gradient $-\frac{1}{2}$, gradient FT <i>their</i> (a) or for $y = mx + 2 \ m \neq 0$

MATHEMATICS

0580/22 May/June 2019

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

caocorrect answer onlydepdependentFTfollow through after erroriswignore subsequent workingoeor equivalentSCSpecial Casenfwwnot from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	53 or 59	1	
2	0.839 or 0.8386 to 0.8387	1	
3	$\frac{7}{9}$	1	
4(a)	Trapezium	RI	
4(b)	Obtuse	1	
5	56.4 or 56.44	2	M1 for $\frac{254}{their 4.5}$ or $\frac{254}{their 270} [\times 60]$
6	2	2	M1 for $9f - 3f$ oe or $23 - 11$ oe
7	14.7	2	M1 for $\frac{1}{2} \times 8.4 \times 3.5$ oe
8(a)	0.048 cao	1	
8(b)	5.27×10^{-3}	1	0.
9	6 Satp		M1 for $2 \times 3^2 \times 5$ or $2^4 \times 3$ or for 2×3 as final answer or B1 for 2 or 3 as final answer
10	2.1	2	M1 for $\frac{33.6 \times 25000^2}{100000^2}$ oe or answer figs 21
11	$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	2	B1 for one row or one column correct in a 2 by 2 matrix in the final answer or SC1 for $\begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$
12(a)	$10m^5$ final answer	2	B1 for $10m^k$ or km^5 as final answer
12(b)	x^{24} final answer	1	

0580/22

Question	Answer	Marks	Partial Marks
13	$\frac{9}{4} \times \frac{7}{3}$ or $\frac{63}{28} \div \frac{12}{28}$ oe with common denominator	M2	B1 for $\frac{9}{4}$ oe seen or M1 for <i>their</i> $\frac{9}{4} \times \frac{7}{3}$
	$5\frac{1}{4}$ cao	A1	
14	Correctly eliminating one variable	M1	
	[x =] - 4 [y =] 3	A2	A1 for one correct If M0 scored, SC1 for 2 values satisfying one of the original equations
15	495	3 R	M2 for $435.6 \div \frac{100 - 12}{100}$ oe or B1 for recognising 435.6 as 88[%]
16(a)	<i>R</i> identified correctly	2	B marks
16(b)	7	1	
17	$\frac{3x^2 - 4x + 9}{(x+3)(x-5)}$ final answer	3	B1 for common denominator (x+3)(x-5) oe isw M1 for $2x(x-5)+(x+3)(x+3)$ or better
18	12.8 4.4 0.8	3	B2 for 2 correct heights or 3 correct freq densities or B1 for 1 correct height or 2 correct freq densities

Question	Answer	Marks	Partial Marks
19	$m = \frac{k}{P-1}$ final answer	4	B3 for final answer $\frac{k}{P-1}$ OR M1 for multiplying or dividing by <i>m</i> correctly
			M1 for term(s) in <i>m</i> on one side correctly and terms not in <i>m</i> on the other side correctly
			M1 for correctly factorising <i>m</i> with a 2-term bracket oe
	TE	R	M1 for correct division by <i>their</i> 2-term bracket with <i>m</i> as the subject To a maximum of M3 for an incorrect answer
20	$-(-2)\pm\sqrt{(-2)^2-4(3)(-10)}$	B2	B1 for $\sqrt{(-2)^2 - 4(3)(-10)}$ or better
	2×3		$p + \sqrt{q}$ $p - \sqrt{q}$
			and it in form $\frac{r}{r}$ or $\frac{r}{r}$ then B1 for $p = -(-2)$ and $r = 2(3)$
	-1 52 and 2 10 final ans cao	R1R1	If $BOBO$ SC1 for -1.5 and 2.2
		DIDI	or -1.523 to -1.522 and 2.189
			or 1.52 and -2.19
	5		or -1.52 and 2.19 seen in working
21(a)	X	1	
		rep	
21(b)(i)	$\frac{9}{16}$ oe	2	B1 for $\frac{9}{k}$ or $\frac{k}{16}$ provided fraction is less than 1
21(b)(ii)	46	1	
22(a)	$\begin{pmatrix} 6 & 15 \\ 3 & 7 \end{pmatrix}$	2	B1 for 2 correct elements
22(b)	$\begin{pmatrix} -3 & 7\\ 1 & -2 \end{pmatrix}$ oe isw	2	B1 for $k \begin{pmatrix} 3 & -7 \\ -1 & 2 \end{pmatrix}$ soi or det = -1 soi

Question	Answer	Marks	Partial Marks
23(a)	$\frac{5}{3}$ p -2 q oe simplified	2	M1 for correct unsimplified answer or $c\mathbf{p}-2\mathbf{q}$ or $\frac{5}{3}\mathbf{p}+c\mathbf{q}$ $c \neq 0$ or for a correct route
23(b)	$\frac{5}{6}$	2	B2FT for $\frac{their c}{2}$ if their (a) is $c\mathbf{p}-2\mathbf{q}$ oe M1 for $\overline{MX} = \frac{5}{6}\mathbf{p}-\mathbf{q}$ or $\overline{MX} = \frac{1}{2}$ their (a) or $\overline{BX} = \frac{1}{2} \overline{AN}$ or $\mathbf{q} + \frac{1}{2}$ their (a) or $\mathbf{q} + \overline{MX} - k\mathbf{p} = 0$ oe
24	31.9 or 31.85	4	M3 for tan = $\frac{12}{\sqrt{18^2 + 7^2}}$ oe or M2 for $\sqrt{18^2 + 7^2}$ or M1 for $18^2 + 7^2$ or B1 for identifying correct angle <i>CAG</i>
25(a)	Rotation 90° clockwise oe (1, 0)	3	B1 for each
25(b)	Enlargement - 2 (0, 2)	3 rep	B1 for each

MATHEMATICS

0580/23 May/June 2019

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	1.90 cao	1	
2	x(2x-1)	1	
3	$\frac{5}{24}$ or 0.208 or 0.2083	1	
4	Mode	1	
5(a)	(0, -8)	1	
5(b)	3	1	
6(a)	6	1	
6(b)	2.15 or 2.154	1	
7(a)	31 or $\sqrt{121}$	1	
7(b)	$\sqrt{13}$	1	
8(a)	32	1	
8(b)	Positive	1	
9	$\frac{84}{315} \text{ or } \frac{4}{35} \times \frac{7}{3} \text{ or } \frac{12}{5} \times \frac{1}{9} \text{ or } \frac{4}{5} \times \frac{1}{3}$	M1	Accept any correct cancelling
	$\frac{4}{15}$ cao	A1	
10	$[w=] \frac{P}{2} - h \text{ or } \frac{P-2h}{2} \text{ final}$ answer	2	M1 for $w + h = \frac{P}{2}$ or $2w + 2h = P$
11	2m + 1	2	B1 for $2m + c$ or $km + 1$ ($k \neq 0$)
12	72.8 or 72.79 to 72.80	2	M1 for $\frac{217}{360} \times \pi \times 6.2^2$

Question	Answer	Marks	Partial Marks
13(a)	4	1	
13(b)	Accurate drawing with correct construction arcs	2	B1 for accurate drawing without the correct arcs
14(a)	3	2	M1 for $a \times 7^2 + a = 150$ oe
14(b)	-7	1	
15	13.9 or 13.92 to 13.93	3	M2 for $\sqrt{(7-2)^2 + (121)^2}$ oe or M1 for $(7-2)^2 + (121)^2$ oe
16	6 nfww	3 PR	B1 for 10 + 0.5 or 4 – 0.5 soi M1 for $[b =] \frac{2A}{h}$ soi
17	$\frac{x^2}{x-5}$ final answer	3	B1 for $x^2(x+5)$ B1 for $(x-5)(x+5)$
18	0.14 oe	3	M1 for $y = \frac{k}{(x+1)^2}$ M1 for $y = \frac{their k}{(4+1)^2}$ OR M2 for $\frac{0.875(1+1)^2}{(4+1)^2}$ or M1 for $y(4+1)^2 = 0.875(1+1)^2$
19	36	pre4	B1 for angle <i>KNL</i> or <i>MNJ</i> = 76 B2 for angle <i>LJM</i> or <i>LKM</i> = 68 or B1 for angle <i>LMJ</i> = 90 or <i>LKJ</i> = 90 or <i>LCM</i> = 136 (<i>C</i> = centre) OR B1 for <i>MKJ</i> = 22 B2 for <i>LJM</i> or <i>LKM</i> = 68 or B1 for <i>LKJ</i> = 90 or <i>KJL</i> = 54 OR B1 for <i>MNL</i> = 104 B1 for <i>LMN</i> = 54 B1 for <i>LMJ</i> = 90

Question	Answer	Marks	Partial Marks
20(a)(i)	$\frac{8}{15}$ oe	1	
20(a)(ii)	Do not have Do not have a computer a phone 23 2 7 8	2	B1 for 2 or 3 correct out of 4 regions
20(b)	\mathcal{C}	1 PR	
21(a)	$\begin{pmatrix} 15 & 20 \\ 25 & 0 \end{pmatrix}$	1	
21(b)	$\begin{pmatrix} 4 & 8 \\ 2 & 2 \end{pmatrix}$	1	
21(c)	$\begin{pmatrix} -9 & 20 \\ 5 & 20 \end{pmatrix}$	2	B1 for two correct elements
22(a)	-s+t	pref) ·
22(b)	$-\frac{4}{5}\mathbf{s} - \frac{1}{5}\mathbf{t}$ oe simplified	3	M2 for correct unsimplified e.g. $-\mathbf{t} + \frac{4}{5}(-\mathbf{s} + \mathbf{t}) \text{ or } -\mathbf{s} - \frac{1}{5}(-\mathbf{s} + \mathbf{t})$ or M1 for a correct route e.g. $\overrightarrow{CB} + \overrightarrow{BN}$ or $[\overrightarrow{BN} =] \frac{4}{5}(-\mathbf{s} + \mathbf{t})$ or $[\overrightarrow{DN} =] -\frac{1}{5}(-\mathbf{s} + \mathbf{t})$
23(a)(i)	5	1	
23(a)(ii)	2.4 to 2.6	2	B1 for [LQ=] 3.4 to 3.6 or [UQ=] 6
23(b)	26, 74	2	B1 for each

Question	Answer	Marks	Partial Marks	
24	Correct lines and region indicated	5	B1 for $y = 2$ solid line B1 for $x = 3$ dashed line B1 for $y = x + 4$ solid line B2, B1 or B0 for region	
25(a)	126		M3 for $\frac{360 - [180 - (360 \div 5)]}{2}$ or $\frac{360 - 180 \times (5 - 2) \div 5}{2}$ or M2 for $\frac{180 \times (5 - 2)}{5}$ or $180 - \frac{360}{5}$ or M1 for $180 \times (5 - 2)$ or $\frac{360}{5}$	
25(b)	7:2	2	M1 for $\sqrt{\frac{73.5}{6}}$ or $\sqrt{\frac{6}{73.5}}$	
3. satprep. 0				

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/22 March 2019

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	-14	1	
2	330	1	
3	$\frac{23}{99}$	1	
4(a)	0.047	1	R.C.
4(b)	2.76×10^{6}	1	
5	467.42 or 467	2	M1 for 500 ÷ 1.0697
6	70	2	M1 for 25000 × 0.0028 oe
7	308	2	M1 for 180 + 128 oe or 52 seen
8	$\mathbf{x} + 7\mathbf{y}$	2	M1 for a correct route
9	$[y =]\frac{1}{4}(x-4)$ oe final answer	2	M1 for $y = k(x-4)$
10	375	3 tore	M2 for $2(12 \times 5 + 12 \times 7.5 + 5 \times 7.5)$ oe or M1 for 12×5 or 12×7.5 or 5×7.5
11	$22\frac{2}{9}$ or 22.2 or 22.22	3	M2 for $\frac{77-63}{63}$ [×100] oe or $\frac{77}{63}$ ×100 [-100] oe or M1 for $\frac{77}{63}$ oe
12	4.21 or 4.212	3	M2 for $\sqrt{\frac{275 \times 3}{14.8 \times \pi}}$ oe or M1 for $275 = \frac{1}{3} \times \pi \times r^2 \times 14.8$ oe

Question	Answer	Marks	Partial Marks
13(a)	k(7k-15) final answer	1	
13(b)	4(m+p)(3+2m+2p)final answer	2	B1 for $(m + p)(12 + 8(m + p))$ or $(m + p)(12 + 8m + 8p)$ or $(4m + 4p)(3 + 2m + 2p)$ or $(2m + 2p)(6 + 4m + 4p)$ or $2(2m + 2p)(3 + 2m + 2p)$ or $2(m + p)(6 + 4m + 4p)$
14	6290[.0]	3	M2 for $\frac{6999.31}{\left(1+\frac{2.16}{100}\right)^5}$ or M1 for $[A]\left(1+\frac{2.16}{100}\right)^5$
15	73	3	B1 for angle $PBC = 52$ B1 for APO or $BPC = 55$ or APC or $OPB = 125$
16	tangent ruled at $x = 2$	B1	
	-0.7 to -0.3	B2	dep on B1 or a close attempt at tangent at $x = 2$ or M1 for rise/run for their tangent at $x = 2$ must see correct or implied calculation from a drawn tangent
17(a)	- 3	1	
17(b)	$\frac{m}{4}$ or 0.25 <i>m</i> final answer	2	B1 for $\frac{1}{4}$ or 0.25 or 4^{-1} or <i>m</i> correct in final answer
18	917 or 918 or 917.4 to 917.6	itpr ³	M2 for $\pi \times 2.6^2 \times 12 \times 60 \times 60 \div 1000$ or M1 for $\pi \times 2.6^2$ isw or $12 \times 60 \times 60 \div 1000$ isw If 0 scored SC1 for figs 917 to 918
19	$\frac{b}{a+b}$ final answer	3	B1 for $b(a-b)$ B1 for $(a+b)(a-b)$
20(a)	$\begin{pmatrix} 7 & 8 \\ -11 & 36 \end{pmatrix}$	2	B1 for 2 correct elements
20(b)	4	2	M1 for $3x - (-1) \times (-7) = 5$ or better

0580/22

Question	Answer	Marks	Partial Marks
21	$\frac{25}{8}$	B1	or $\frac{75}{24}$
	<i>their</i> $\frac{25}{8} \times \frac{12}{5}$ or <i>their</i> $\frac{75}{24} \div \frac{10}{24}$ oe	M1	$\frac{75}{24} \times \frac{24}{10}$
	their $\frac{300}{40}$ oe	M1	oe e.g. $\frac{1800}{240}$, $\frac{75}{10}$, $\frac{60}{8}$, $\frac{30}{4}$, $\frac{15}{2}$
	$7\frac{1}{2}$ cao	A1	
22(a)	$1\frac{2}{3}$ or 1.67 or 1.666 to 1.667	1	
22(b)	1062.5	3	M2 for $\frac{25}{2}(50+35)$ oe
	6		or M1 for one area
23(a)	(4.5, -1)	2	B1 for each
23(b)	$[y=]\frac{5}{8}x+\frac{7}{4}$	4	M1 for $\frac{-5-3}{7-2}$ oe
			M1 for $-1/$ their $-\frac{8}{5}$
			M1 for $3 = 2 \times their$ gradient + <i>c</i> oe
24(a)	5.95 or 5.954	3	M2 for $\frac{7.4}{\sin 97} \times \sin 53$
		tpre	or M1 for $\frac{\sin 97}{7.4} = \frac{\sin 53}{SR}$ oe
24(b)	3.73 or 3.733 to 3.734	4	M2 for $8.5^2 + 7.4^2 - 2 \times 8.5 \times 7.4 \times \cos 26$ or M1 for implicit form A1 for 13.9[4]

MATHEMATICS

0580/21 October/November 2018

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	8[h] 55[min]	1	
2	Congruent	1	
3	Negative	1	
4	7.36×10^{7}	2	B1 for figs 736
5	$6x^2 + 13x - 63$ final answer	2	M1 for 3 correct terms of $6x^2 - 14x + 27x - 63$
6	[0]47	2	B1 for 133 or 47 seen or M1 for 227 – 180 oe
7	$\frac{4}{x^3}$ of final answer	2	M1 for $y = \frac{k}{x^3}$ oe
8	121 nfww	2	M1 for (6000 + 50) ÷ 50 or B1 for 6050 seen
9	896	3 orev	M2 for $800 + \frac{800 \times 4 \times 3}{100}$ oe or M1 for $\frac{800 \times 4 \times 3}{100}$ oe
10	900	3	M2 for $\frac{150 \times 100 \times 60}{1000}$ oe or M1 for $150 \times 100 \times 60$ or $1.5[\times 1] \times 0.6$ or B1 for figs 9
11(a)	23	1	
11(b)	3n+5 oe	2	B1 for $3n + j$ or $kn + 5$, $k \neq 0$
12	4, 5, 6	3	B2 for 1 error or 1 omission
			or M2 for $3.75 \le n < 7$ oe
			or M1 for $3.75 \le n$ or $n < 7$ or better

Question	Answer	Marks	Partial Marks
13(a)	Correct angle bisector at <i>B</i> with two pairs of correct arcs reaching <i>AC</i>	2	B1 for accurate with no/wrong arcs or for two pairs of correct arcs with no or wrong line or short line
13(b)	Correct region shaded	1	
14	$\frac{3}{8} \times \frac{4}{9}$ oe or $\frac{3}{8} \div \frac{18}{8}$ oe with common denominator	M2	B1 for $\frac{9}{4}$ oe seen or M1 for $\frac{3}{8} \times their \frac{4}{9}$
	$\frac{1}{6}$ cao	A1	
15	$\frac{x^2 - 3x + 8}{3(x+2)} \text{ or } \frac{x^2 - 3x + 8}{3x+6}$ final answer	3 PR	B1 for common denominator $3(x + 2)$ M1 for $(x-5)(x+2)+3\times 6$
16	[<i>x</i> =] 62	2	B1 for 56 identified as angle A or M1 for $\frac{(180-56)}{2}$
	[<i>y</i> =] 118	2	FT for 2 marks <i>their</i> acute $x + their y = 180$ or 56 + <i>their</i> acute $x = their y$ or B1 for any of <i>ACB</i> , <i>BCM</i> or <i>LCN</i> = 62 or <i>their</i> acute x or M1 for 180 - 62 or 180 - <i>their</i> acute x or 56 + 62 or 56 + <i>their</i> acute x
17(a)	8	1	.5
17(b)(i)	$\frac{x^2}{16}$ final answer	pret	
17(b)(ii)	$a^{-3}b^5$ or $\frac{b^5}{a^3}$ final answer	2	B1 for $a^{-3}b^k$ or a^kb^5
18	for correctly equating one set of coefficients	M1	
	for correct method to eliminate one variable	M1	
	[x =] 6 [y =] -8	A2	A1 for each If M0 scored, SC1 for 2 values satisfying one of the original equations or if no working shown, but 2 correct answers given

Question	Answer	Marks	Partial Marks
19	$\frac{-7\pm\sqrt{(7)^2-4(3)(-11)}}{2\times 3}$	B2	B1 for $\sqrt{(7)^2 - 4(3(-11))}$ or better
			and B1 for $\frac{-7 + \sqrt{q}}{2(3)}$ or $\frac{-7 - \sqrt{q}}{2(3)}$
	-3.41 and 1.08 cao	B2	B1 for each If B0 , SC1 for -3.4 and 1.1 or -3.409 and 1.076 or -3.4089 and 1.0756 or 3.41 and -1.08 or -3.41 and 1.08 seen in working
20(a)	$\begin{pmatrix} 26 & 2 \\ 19 & 8 \end{pmatrix}$	2	B1 for 2 or 3 correct elements
20(b)	$\frac{1}{10} \begin{pmatrix} 3 & -2 \\ -7 & 8 \end{pmatrix} \text{ oe isw}$	2	B1 for $k \begin{pmatrix} 3 & -2 \\ -7 & 8 \end{pmatrix}$ soi or det = 10 soi
21(a)(i)	20	1	
21(a)(ii)	14	1	FT part (i) providing $20 < \text{part}$ (i) ≤ 40
21(a)(iii)	280	1	
21(b)	$2[\times 20] = [20] \left(1 + \frac{r}{100}\right)^{14}$ oe isw	2	FT 2 marks for $2[their (\mathbf{a})(\mathbf{i})] = [their (\mathbf{a})(\mathbf{i})] \left(1 + \frac{r}{100}\right)^{their(\mathbf{a})(\mathbf{i})}$
	24		MIT for $n(x)$ or $n(x)$ or $n(x)$ or seen isw
22(a)	$\frac{94}{200}$ oe	pre ²	M1 for $\frac{46}{200} + \frac{48}{200}$ oe
22(b)	14.1 or 14.07	3	M2 for $2\left(\frac{50}{200} \times \frac{56}{199}\right)$ oe or M1 for $\frac{50}{200} \times \frac{56}{199}$ oe
23(a)	27	2	M1 for 3^{3x} seen
23(b)	3	2	M1 for $7 + 3x = 2^4$
23(c)	$\frac{x-7}{3}$ of final answer	2	M1 for $x = 7 + 3y$ or $y - 7 = 3x$ or $-3x = 7 - y$ or $\frac{y}{3} = \frac{7}{3} + x$

MATHEMATICS

0580/22 October/November 2018

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.
Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	2.3×10^{4}	1	
2	5	1	
3	4	1	
4	$6x - 2x^3$ final answer	2	B1 for $6x$ or $-2x^3$
5	$\left[\frac{1}{15}+\right]\frac{2\times3}{5\times3}$	M1	or better e.g. $\left[\frac{1}{15} + \right]\frac{6}{15}$ Allow any correct common denominator 15k
	$\frac{7}{15}$ cao	A1	
6	$m \ge 3$ final answer	2	M1 for correct first step e.g. $7m \ge 19 + 2$
7(a)	$C \cap D = \{10\}$	1	
7(b)	7	1	1
8	(x+5)(y+2) final answer	2	B1 for $y(x+5) + 2(x+5)$ or $x(y+2) + 5(y+2)$
9	26 600 cao	2	M1 for $30000 \times \left(1 - \frac{2}{100}\right)^6$ oe
10	$\left(2w, \frac{r+t}{2}\right)$ final answer	2	B1 for $2w$ or $\frac{r+t}{2}$ or
11	34.5 and 37.5 final answers	2	B1 for 11.5 or 12.5 seen or M1 for $(12 - 0.5) \times 3$ or $(12 + 0.5) \times 3$
12	154.5 or 154.5	2	B1 for 25.5 or 25.46 to 25.47 or M1 for $180 - \sin^{-1}(0.43)$ oe
13	6 <i>n</i> – 10 oe	2	B1 for $6n + c$ or $kn - 10$ ($k \neq 0$)

Question	Answer	Marks	Partial Marks	
14	Correct region identified	3	$ \begin{array}{c c} \mathbf{B} \text{ marks} & \mathbf{or} \mathbf{SC1} \text{ for} \\ \hline 1 & 2 \\ \hline 0 & 2 \\ 1 & 2 \\ \hline 1 & 2 \\ \hline \end{array} $	
15(a)	$\begin{pmatrix} 15 & -9 \\ -3 & 6 \end{pmatrix}$	1		
15(b)	$\frac{1}{7} \begin{pmatrix} 2 & 3 \\ 1 & 5 \end{pmatrix}$ oe isw	2	B1 for $k \begin{pmatrix} 2 & 3 \\ 1 & 5 \end{pmatrix}$ soi or det = 7 soi	
16	(a =) 36 (b =) -6	3	B2 for $a = 36$ or M1 for $b = -6$ or $x^{2} + bx + bx + b^{2}$ or better or $b^{2} = a$	
17	-2 <i>x</i> + 5	4	M1 for $\frac{7-2}{91}$ oe M1 for gradient of perpendicular = $\frac{-1}{their 0.5}$ M1 for (1, 3) correctly substituted into their y = $-2x + c$	
18	Correct pie chart e.g.	4 atpre	B3 for correct chart no labels or for 2 correct sectors with or without labels or B2 for 3 correct angles seen (171°, 135° and 54°) or 3 correct percentages (47.5%, 37.5% and 15%) or M1 for method e.g. $\frac{57}{120} \times 360$, 57×3 or $\frac{57}{120} \times 100$ oe or one correct sector on the pie chart	
19(a)	Correct ruled bisector with two pairs of arcs	2	B1 for correct ruled bisector with no/wrong arcs	
19(b)	Correct arc centre <i>E</i> radius 3 cm inside pentagon	1		
19(c)	Correct region shaded	1	Dependent on at least B1 in part (a) and 1 mark in part (b) and a closed region	

Question	Answer	Marks	Partial Marks
20	$\frac{2x}{3+x}$ oe final answer	4	M1 for correctly clearing the denominator and expanding bracket
			M1 for correctly collecting terms in m on one side and terms not in m on the other
			M1 for correct factorising
			M1 for correct division dependent on <i>m</i> appearing only once in a factorised expression
21	30.2 or 30.20 to 30.21	4	M3 for $\frac{1}{2} \times 10 \times 10 \times \sin 60 - \frac{60}{360} \times \pi \times \left(\frac{10}{2}\right)^2$
		P	or M1 for $\frac{k}{360} \times \pi \times \left(\frac{10}{2}\right)^2$ oe
	9		and M1 for $\frac{1}{2} \times 10 \times 10 \times \sin c$ oe
22	25.1 or 25.06	4	M3 for tan = $\frac{8}{\sqrt{16.2^2 + 5.5^2}}$ oe or M2 for $\sqrt{16.2^2 + 5.5^2}$
			or M1 for $16.2^2 + 5.5^2$
	ź		or B1 for identifying correct angle
23(a)	$2^3 \times 7 \text{ or } 2 \times 2 \times 2 \times 7$	2	B1 for identifying 2 and 7 as the only prime factors
23(b)	168	2	B1 for $168k$ or $2 \times 2 \times 2 \times 3 \times 7$ oe or for listing multiples of each up to 168
24(a)	25	1	
24(b)	12	2	B1 for 16 or 28
24(c)	5	2	B1 for 75
25(a)(i)	$5x^3 + 2$ final answer	1	
25(a)(ii)	$\frac{x-2}{5}$ final answer	2	M1 for correct first step e.g. $y - 2 = 5x$, $x = 5y + 2$, $\frac{y}{5} = x + \frac{2}{5}$
25(b)	5	2	M1 for $a \times (-2)^2 + 1 = 21$

MATHEMATICS

0580/23 October/November 2018

Paper 2 Extended MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	126	1	
2	y(1-2y) final answer	1	
3	2	1	
4	6.59 or 6.594 to 6.595		
5	$\frac{9}{25}$ oe	1	
6(a)	5000207	1	
6(b)	8.13×10 ⁻³	1	
7	-3p-4q final answer	2	B1 for $-3p$ or $-4q$
8(a)	0.076 cao	1	
8(b)	10000 cao	1	
9	$\frac{1}{4} \times \frac{3}{2}$ or $\frac{3}{12} \div \frac{8}{12}$ oe	M1	
	$\frac{3}{8}$ oe	A1	Accept equivalent fractions
10	13	2	M1 for $3w = 32 + 7$ or $w - \frac{7}{3} = \frac{32}{3}$ or better
11	$\frac{A - \pi r^2}{\pi r}$ or $\frac{A}{\pi r} - r$ or final answer	2	M1 for $A - \pi r^2 = \pi r l$ or $\pi r^2 - A = -\pi r l$ or $\frac{A}{\pi r} = l + r$
12	6.5[0] nfww final answer	2	M1 for 42.5 – 0.25 implied by 42.25
13	1.88 – 0.188 oe	M1	e.g. 18.88 – 1.88 or 18.88 – 0.188
	$\frac{17}{90}$ or equivalent fraction	B1	

Question	Answer	Marks	Partial Marks
14	Reflection $y = x$	2	B1 for each
15	600	3	M2 for $\frac{108 \times 1000 \times 20}{60 \times 60}$ oe or M1 for $\frac{108 \times 1000}{60 \times 60}$ oe or for figs108 × time oe
16(a)	$\frac{1}{w}$ or w^{-1}	1	
16(b)	$27w^9$ final answer	2	B1 for kw^9 or $27w^k$
17	10		M1 for $y = k\sqrt{x}$ M1 for $y = their \ k \times \sqrt{25}$ OR M2 for $\frac{y}{6} = \sqrt{\frac{25}{9}}$
18	$\frac{1}{x(x+1)}$ oe final answer nfww	3	B1 for common denominator $x(x+1)$ oe M1 for $x + 1 - x$
19	[p =] 12 $[q =] \frac{12}{5}$ oe	3	B1 for $[p =]$ 12 and B2 for $[q =] \frac{12}{5}$ or M1 for $\frac{72}{360} [\times \pi] \times 2 \times 6$ oe
20	$\frac{-(-2)\pm\sqrt{(-2)^2-4(3)(-2)}}{2(3)}$ oe	B2	B1 for $\sqrt{(-2)^2 - 4(3)(-2)}$ or better or B1 for $\frac{-(-2) + \sqrt{q}}{2(3)}$ or $\frac{-(-2) - \sqrt{q}}{2(3)}$
	-0.55, 1.22	B2	B1 for each If zero scored, SC1 for – 0.6 and 1.2 or –0.549 or –0.548 and 1.215 or 0.55 and –1.22 or –0.55 and 1.22 seen in working

0580/23

Question	Answer	Marks	Partial Marks
21(a)	1.2	1	
21(b)	45	3	M2 for $\frac{1}{2} \times 10 \times 12 + 12(T - 10) = 480$ oe or M1 for one relevant area OR M1 for $480 - \frac{1}{2} \times 10 \times 12$ implied by 420 M1 for $\frac{420}{12} [+10]$
22	$\frac{x-1}{x}$ or $1-\frac{1}{x}$ nfww final answer	4	B1 for $x(2x+1)$ B2 for $(2x+1)(x-1)$ or B1 for $2x(x-1) + [1](x-1)$ or $x(2x+1) - [1](2x+1)$ or $(2x+a)(x+b)$ where $ab = -1$ or $a + 2b = -1$
23	16.6 or 16.60	4	M3 for $\tan = \frac{4}{\sqrt{12^2 + 6^2}}$ oe or M2 for $\sqrt{12^2 + 6^2}$ or M1 for $12^2 + 6^2$ oe or B1 for recognising angle <i>PAC</i> is required
24(a)	$\begin{pmatrix} 9 & 3 \\ 6 & 9 \end{pmatrix}$	1	
24(b)	$\begin{pmatrix} 2 & 10 \\ -1 & 16 \end{pmatrix}$	2	B1 for 2 or 3 correct elements
24(c)	$\frac{1}{6} \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \text{ oe isw}$	2 tpre	B1 for $k \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$ soi or det = 6 soi
25(a)	(x+y)(p-1) final answer	2	M1 for $p(x+y) - (x+y)$ or $x(p-1) + y(p-1)$
25(b)	2(t+7m)(t-7m) final answer	3	M2 for $(2t+14m)(t-7m)$ or (t+7m)(2t-14m) or correct answer seen or M1 for $2(t^2-49m^2)$ or $(t+7m)(t-7m)$ or $2(t+7)(t-7)$

Question	Answer	Marks	Partial Marks
26(a)	$\mathbf{c} + \frac{2}{3}\mathbf{a}$	2	M1 for correct unsimplified form or correct route e.g. $\overrightarrow{OC} + \overrightarrow{CP}$
26(b)(i)	$\frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{c}$	2	M1 for correct unsimplified form or correct route e.g. $\overrightarrow{OC} + \overrightarrow{CX}$
26(b)(ii)	3:2 oe	2	B1 for $\overrightarrow{OX} = \frac{3}{5}\overrightarrow{OP}$ oe or $\overrightarrow{XP} = \frac{2}{5}\mathbf{c} + \frac{4}{15}\mathbf{a}$

MATHEMATICS

0580/21 May/June 2018

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	23 or 29	1	
2	3.87×10^{-5}	1	
3	$\frac{7}{11}$ oe	1	
4	66	2	B1 for 84 or –18 seen
5	94	2	B1 for <i>ACB</i> or <i>PAB</i> or <i>ABC</i> = 43 or M1 for $180 - 2 \times 43$ or $\frac{1}{2}x = 90 - 43$
6	81.7 or 81.71 to 81.72	2	M1 for $\pi \times 5.1^2$
7	4.8[0] or 4.802	2	M1 for $[AC^2 =]2.5^2 + 4.1^2$
8	7y - 23 final answer	2	M1 for $12y - 18$ or $-5y - 5$ or B1 for answer $7y - k$ or $cy - 23$ $c \neq 0$
9	-7 %.satpr	2	B1 for 3^{-3} or 3^4 or 3^7 or 3^{-7} seen or SC1 for final answer 7
10(a)	6.58331	1	
10(b)	6.5833	1	FT their (a) correctly rounded to 4 dp
11	$\frac{4}{7}$ oe exact answer	2	B1 for 4 or $\frac{1}{7}$
12	$n < -4.4$ or $n < -4\frac{2}{5}$ final answer	2	M1 for $8n - 3n < -5 - 17$ or better or $3n - 8n > 17 + 5$ or better

Question	Answer	Marks	Partial Marks
13	$\frac{7}{4}$	M1	or $\frac{k}{4} \times \frac{6}{35}$ where $k > 4$
	$\frac{3}{10}$ cao	A2	A1 for $\frac{42}{140}$ or $\frac{21}{70}$ or $\frac{6}{20}$
14	19.3 or 19.26 to 19.27 nfww	3	M2 for $[\sin =]5.9 \times \frac{\sin 84.6}{17.8}$ or M1 for $\frac{5.9}{\sin B} = \frac{17.8}{\sin 84.6}$ oe
15	9	3	M1 for $y = k(x-1)^2$ M1 for $[y =]$ their $k(7-1)^2$ OR M2 for $\frac{4}{(5-1)^2} = \frac{y}{(7-1)^2}$ oe
16	Shape with vertices at (1, 1), (1, 4), (-1, 2), (-1, 4)	3	M2 for 3 correct vertices on grid or in working or M1 for correct set-up $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 4 & 4 \\ 1 & -1 & -1 & 1 \end{pmatrix}$ or for rotation, 90° [anti-clockwise], centre O
17(a)	2200	30.0	M2 for $\frac{1}{2}(90+130) \times 20$ or $\frac{1}{2}(10 \times 20) + (90 \times 20) + \frac{1}{2}(30 \times 20)$ or M1 for one area
17(b)	16.9 or 16.92	1	FT <i>their</i> (a) ÷ 130
18(a)	10 nfww	2	B1 for UQ = 30 or LQ = 20 clearly identified
18(b)	4	2	B1 for 116 indicated
19	46.2 or 46.17 to 46.18	4	M2 for $[\cos =] \frac{16^2 + 19^2 - 14^2}{2 \times 16 \times 19}$ or M1 for $14^2 = 19^2 + 16^2 - 2 \times 19 \times 16 \cos M$ A1 for 0.692 or $\frac{421}{608}$

Question	Answer	Marks	Partial Marks
20(a)	$\frac{8}{15}$ oe	1	
20(b)	$\frac{168}{210}$ oe	3	M2 for $1 - \frac{7}{15} \times \frac{6}{14}$ oe or $3(\frac{7 \times 8}{15 \times 14})$ oe or M1 for $\frac{7}{15} \times \frac{6}{14}$ or $\frac{7}{15} \times \frac{8}{14}$ or $\frac{8}{15} \times \frac{7}{14}$ oe
21	$y \ge 1.5 \text{ oe}$ $y \ge \frac{3}{4}x \text{ oe}$ $y < -\frac{1}{2}x + 3 \text{ oe}$		SC3 for $y > 1.5$ oe and $y > \frac{3}{4}x$ oe and $y < -\frac{1}{2}x + 3$ oe or B3 for any two correct inequalities or B1 for $y \ge 1.5$ oe and B2 for $y \ge \frac{3}{4}x$ oe or $y < -\frac{1}{2}x + 3$ oe or $y = \frac{3}{4}x$ oe and $y = -\frac{1}{2}x + 3$ oe or with incorrect inequality signs or B1 for $y = \frac{3}{4}x$ oe OR $y = -\frac{1}{2}x + 3$ oe or with incorrect inequality signs
22(a)	-17	2	M1 for $f(11)$ seen or $5 - 2(5 - 2x)$ or better
22(b)(i)	$4x^2 + 8$ oe	1	
22(b)(ii)	$\frac{5-x}{2}$ of final answer	2	M1 for $x = 5 - 2y$ or $2x = 5 - y$ or $y - 5 = -2x$ or $\frac{y}{2} = \frac{5}{2} - x$

Question	Answer	Marks	Partial Marks
23(a)(i)	4	1	
23(a)(ii)	3.2	3	M1 for Σfx , allow one error or omission and M1dep for $\frac{their \ 128}{40}$
23(b)	27	2	M1 for $\frac{3}{40}$ or $\frac{360}{40}$
24(a)	78.7 or 78.69	3	M2 for $\tan = \frac{5}{2-1}$ oe or M1 for use of tangent oe
24(b)	$[y=]-\frac{1}{3}x+12$ final answer	3	M1 for gradient = $-\frac{1}{3}$ M1 for substituting (6, 10) into y = their mx + c

MATHEMATICS

0580/22 May/June 2018

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	2 [h] 55 [min]	1	
2	7x - 56 final answer	1	
3	[a =] 15 [b =] -27	2	B1 for each or SC1 for reversed answers
4(a)	[<i>w</i> =] 7	PA	
4(b)	[12 <i>x</i> =] 36	1	
5	24	2	B1 for 17 or 41 identified
6	$\frac{8}{12}$ and $\frac{1}{12}$ oe	M1	For correct fractions with a common denominator $12k$
	$\frac{7}{12}$ cao	A1	
7	320	2	M1 for 180 + 140 oe
8(a)	1.36×10^{6} oe	1	1.5
8(b)	5.21×10^{-3} oe	1	
9	Correct perpendicular bisector of <i>AB</i> with 2 pairs of correct arcs	2	B1 for correct perpendicular bisector of <i>AB</i> with no or wrong arcs or for 2 pairs of correct arcs
10	(x+2)(y+3) final answer	2	B1 for $y(x + 2) + 3(x + 2)$ or $x(y + 3) + 2(y + 3)$
11	80	2	M1 for $\left(\frac{12}{3}\right)^2$ or $\left(\frac{3}{12}\right)^2$ oe or $\frac{3^2}{5} = \frac{12^2}{A}$ oe
12	7 cao nfww	2	B1 for 31 + 0.5 or 5 – 0.5 or 31.5 or 4.5 seen
13	15 and 22	2	M1 for 1.5 × 10 or 1.1 × 20
14	62	3	M1 for [height =] 21 ÷ 7
			M1 for $2(1 \times their3 + their3 \times 7 + 1 \times 7)$ oe

Question	Answer	Marks	Partial Marks
15	628 or 628.3 to 628.4	3	B2 for 628 or 628.3 to 628.4 or M1 for $5^2 \times 8 \times \pi$
	cm ³		B1 for cm ³
16	7.5 nfww	3	M2 for $[OB^2 =] \left(\frac{12}{2}\right)^2 + 4.5^2$ oe
			or B1 for recognition of right angle
17	30	3	M2 for $\frac{1}{2}(8+2) \times v$ [= 150] oe or M1 for $\frac{1}{2} \times 6 \times v$ or $2 \times v$ oe
18(a)	$d = 4.9t^2$	2	M1 for $d = kt^2$
18(b)	19.6	1	FT <i>their</i> 4.9×4
19	$y \ge 2$ oe final answer $y \ge 3 - x$ oe final answer	3	B1 for $y \ge 2$ oe final answer B2 for $y \ge 3 - x$ oe final answer or B1 for $y = 3 - x$ oe soi or SC2 for $y \ge 2$ oe and $y \ge 3 - x$ oe final answer
20(a)	C ²	2	B1 for any correct matrix calculation evaluated
20(b)	-9	1	
20(c)	The determinant is 0 oe	1	e.g. it is singular.
21(a)	140 000	1	.5
21(b)	Points correctly plotted at (40, 80) and (80, 150)	1	.00.
21(c)	Correct ruled line of best fit	1	
21(d)	80 000 to 110 000	1	FT their straight line provided it has positive gradient
22(a)	6a - 2b or 2(3a - b)	2	M1 for $4a + b - (-2a + 3b)$ or better
22(b)	$5\mathbf{a} - \mathbf{b}$	2	M1 for a correct route e.g. $\overrightarrow{OD} + \overrightarrow{DE}$, $4\mathbf{a} + \mathbf{b} + \mathbf{a} - 2\mathbf{b}$, \overrightarrow{OE}
23(a)	5	3	M2 for $20 - x + x + 8 - x = 23$ or better or B1 for identifying the correct region $A \cup B$
23(b)	$\frac{7}{30}$ oe	2	B1 for $\frac{7}{c}$ or $\frac{k}{30}$

Question	Answer	Marks	Partial Marks
24(a)	$\frac{4}{5}$ oe	2	M1 for $\frac{2}{3} \times p = \frac{8}{15}$ or better
24(b)	$\frac{1}{15}$ oe	3	3FT $(1 - their \frac{4}{5}) \times \frac{1}{3}$ correctly evaluated
			M2 for $(1 - their \frac{4}{5}) \times (1 - \frac{2}{3})$ oe
			or M1 for $1 - their \frac{4}{5}$ or $1 - \frac{2}{3}$
25(a)	$[y=] - \frac{2}{5}x + 3$ or $[y=] -0.4x + 3$	4	B2 for [gradient of perpendicular =] $-\frac{2}{5}$ oe
	final answer		or M1 for [gradient =] $\frac{24-9}{22-16}$ or $-\frac{22-16}{24-9}$
	GA	R	M1 for substituting (5, 1) into $y = their mx + c$
25(b)	(20, 19)	2	M1 for $\frac{2}{3}(22-16)+16$ or $\frac{2}{3}(24-9)+9$ oe
			or SC1 for answer (18, 14)

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/23 May/June 2018

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	- 5	1	
2	$w(1+w^2)$ final answer	1	
3	6.15 or 6.153 to 6.154 or $6\frac{2}{13}$		R
4	3, 4, 6, 9, 12, 18	2	B1 for list with one or two errors or omissions or for a complete list of products
5	25.3[0]	2	M1 for $22 \times \frac{15}{100}$ oe or better
6(a)	210 000 cao	1	
6(b)	4120 cao	1	
7	162	2	M1 for 225 × 0.72 oe
8(a)	[0].004 82 cao	1	
8(b)	5.2×10^{7}		rep.
9	-11	2	M1 for $1 - p = 3 \times 4$ or better or $-\frac{p}{3} = 4 - \frac{1}{3}$ or better
10	(a+2b)(2-x) final answer	2	M1 for $2(a+2b) - x(a+2b)$ or $a(2-x) + 2b(2-x)$ or $-a(x-2) - 2b(x-2)$
11	$[\pm]\sqrt{\frac{A}{2\pi+y}}$ final answer	2	M1 for $\frac{A}{2\pi + y} = x^2$ M1 for correctly square rooting their expression in x^2 If zero scored SC1 for $\frac{[\pm]\sqrt{A}}{2\pi + y}$
12	8	2	M1 for Venn diagram with 1 correct region or for a correct method e.g. $5+13-x+x+10-x=20$ oe or better

Question	Answer	Marks	Partial Marks
13	$\frac{1}{3-x}$ nfww final answer	2	B1 for $(3-x)(3+x)$ or $-(x-3)(x+3)$
14	$\frac{2}{3}\mathbf{p}+\frac{1}{3}\mathbf{q}$	2	M1 for correct route e.g. \overrightarrow{OT} or $\overrightarrow{OQ} + \overrightarrow{QT}$ or for $\overrightarrow{QT} = \frac{2}{3}(-\mathbf{q} + \mathbf{p})$ oe or for $\overrightarrow{PT} = \frac{1}{3}(-\mathbf{p} + \mathbf{q})$ oe
15	$\frac{6}{5}$	B1	accept equivalent fractions e.g. $\frac{18}{15}$
	$\frac{2}{3} \times their \frac{5}{6}$	M1	or $\frac{10}{15} \div \frac{18}{15}$ oe
	$\frac{5}{9}$ cao	A1	
16(a)	50 cao nfww	2	B1 12.5 seen or M1 for 12 + 0.5 or better
16(b)	12.3	1	
17(a)	27	1	
17(b)	3t ⁹ final answer	2	B1 for kt^9 or for $3t^k$ ($k \neq 0$)
18	$6p^2 + 5p - 6$ final answer	3	B2 for $6p^2 + 9p - 4p - 6$ or B1 for three correct terms
19	150	3 Satp	M1 for $y = k(x-1)^2$ M1 for $[y =]$ their $k \times (6-1)^2$ oe OR M2 for $\frac{y}{24} = \frac{(6-1)^2}{(3-1)^2}$
20	[w =] 95 [x =] 85 [y =] 48	3	B1 for each If B0 scored for x and for y, SC1 for <i>their</i> $x + their y = 133$
21	$\frac{1}{y(y-1)}$ or $\frac{1}{y^2 - y}$ final answer	3	B1 for common denominator of $y(y-1)$ or $y^2 - y$ B1 for $y - (y-1)$ or $y - y + 1$
22(a)	15 - 4n final answer	2	B1 for $15 - kn$ or $p - 4n$ ($k \neq 0$)
22(b)	$3 \times 2^{n-1}$ oe final answer	2	B1 for recognition of powers of 2 such as 2^k

Question	Answer	Marks	Partial Marks
23	102.1 or 102.06 to 102.07	4	M2 for $[\cos x =] \frac{11^2 + 5^2 - 13^2}{2 \times 11 \times 5}$ or M1 for $13^2 = 11^2 + 5^2 - 2 \times 11 \times 5 \cos x$
			A1 for -0.209 or $-\frac{23}{110}$
24(a)	25	2	M1 for $\frac{90 \times 1000}{60 \times 60}$ oe
24(b)	1.25	1	FT $\frac{their(\mathbf{a})}{20}$ correctly evaluated
24(c)	1250	2	2FT for <i>their</i> (a) × 50 correctly evaluated or M1 for one area e.g. $\frac{1}{2}(40 + 60) \times 25, 25 \times 40, \frac{1}{2} \times 25 \times 20$ $\frac{1}{2}(40 + 60) \times 90, 90 \times 40, \frac{1}{2} \times 90 \times 20$ $\frac{1}{2}(40 + 60) \times their 25, their 25 \times 40, \frac{1}{2} \times their 25 \times 20$
25(a)	1.8	2	M1 for $\frac{10}{8} = \frac{9}{AP}$ oe
25(b)	10.3 or 10.31 to 10.32	3	M2 for $13 \times \sqrt[3]{\frac{0.25}{0.5}}$ oe or M1 for $\sqrt[3]{\frac{0.5}{0.25}}$ oe or $\sqrt[3]{\frac{0.25}{0.5}}$ oe or $\frac{0.5}{0.25} = \left(\frac{13}{h}\right)^3$ oe
26(a)	Enlargement	3	B1 for each
	[scale factor] 2		
	[centre] (7, 0)	Satr	prep.oc
26(b)	Image at (6, 4), (7, 4), (6, 8)	3	B2 for rotation through 90° clockwise but about other point
			or B1 for rotation through 90° anticlockwise about any point or for triangle at $(6, 4)$, $(7, 4)$, $(6, k)$

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/22 March 2018

Paper 22 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1	Positive	1	
2	5.23×10^{-5}	1	
3	2.29 or 2.292	1	
4	$\frac{8}{9}$ oe, must be fraction	Pł	
5(a)	5	1	
5(b)	1	1	
6	$5m(3k^2-4m^3)$ final answer	2	B1 for $5(3k^2m - 4m^4)$ or $m(15k^2 - 20m^3)$ or for $5m(3k^2 - 4m^3)$ with one error in a number
7	2 q + p	2	B1 for $CF = 2(\mathbf{q} + \mathbf{p})$ or $BA = \mathbf{q} + \mathbf{p}$ or $DE = \mathbf{q} + \mathbf{p}$ or $DA = 2\mathbf{q}$ or for correct route
8	21400 or 21430 or 21434.[]	tpr2	M1 for $23000 \times \left(1 - \frac{1.4}{100}\right)^5$ oe
9	-12	2	B1 for 2^3 , 2^{-3} , 2^{12} or 2^{-12}
10	12	3	M2 for $9 \times 8 = 6y$ oe OR M1 for $y = \frac{k}{x}$ oe M1 for $[y =]$ their $\frac{k}{6}$
11	92	3	M2 for $[600-](0.18 \times 600 + \frac{2}{3} \times 600)$ or M1 for 108 or 400 seen

Question	Answer	Marks	Partial Marks
12	common denominator 24	B1	accept 24k
	$\frac{21}{24}$ and $\frac{4}{24}$ oe	M1	
	$1\frac{1}{24}$	A1	
13	correctly eliminating one variable	M1	
	[x =] 7 [y =] - 2	A2	A1 for each If M0 scored SC1 for 2 values satisfying one of the original equations or SC1 if no working shown, but 2 correct answers given
14(a)	similar	1	
14(b)	11.61	3	M2 for 8.6 × $\sqrt{\frac{65.61}{36}}$ or M1 for $\sqrt{\frac{65.61}{36}}$ or $\sqrt{\frac{36}{65.61}}$ or $\left(\frac{8.6}{BX}\right)^2 = \frac{36}{65.61}$ oe
15	63 corresponding [angles] 59 angles [in a] triangle [add up to] 180 oe	4	B1 for $[a =]$ 63 B1 for corresponding angles B1FT for $[b =]$ 59 or <i>their</i> $a + their$ $b = 122$ B1 for angles [in a] triangle [add up to] 180 oe
16(a)	2.24	2	M1 for 0.5×1.6×2.8
16(b)	3.22 or 3.224 to 3.225	2	M1 for $[AC^2 =]1.6^2 + 2.8^2$

Question	Answer	Marks	Partial Marks
17	$\frac{-7\pm\sqrt{(7)^2-4(2)(-3)}}{2\times 2}$	B2	B1 for $\sqrt{(7)^2 - 4(2)(-3)}$ or better
	2.4.2		B1 for $p = -7$ and $r = 2 \times 2$
			if in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$
			Completing the square method: B1 for $(r + 1.75)^2$ or
			B1 for $-1.75 \pm \sqrt{1.5 + 1.75^2}$ oe
	0.39 and – 3.89 final ans cao	B2	B1 for each If B0 , SC1 for 0.4 and – 3.9 or 0.386and – 3.886 or 0.39 and – 3.89 seen in working or – 0.39 and 3.89
18(a)	Correct ruled perpendicular bisector of <i>AB</i> with correct pairs of arcs	2	B1 for correct perpendicular bisector without correct arcs or for correct arcs, with no/wrong line
18(b)	Correct ruled bisector of angle <i>ABC</i> with 2 correct pairs of arcs	2	B1 for correct angle bisector without correct arcs or for correct arcs, with no/wrong line
19(a)(i)	E	1	
19(a)(ii)	$X \cap Y$ oe	1	
19(a)(iii)	Ø	1	
19(b)	и, v, w	1	
19(c)	5	1	
20(a)	Rotation [centre] origin oe 90°[anti-clockwise] oe	tpr3	B1 for each
20(b)	Enlargement [centre] (0, 3) [sf] – 2	3	B1 for each
21(a)	2	2	M1 for $f(5)$ or $7-(7-x)$ or better
21(b)	30-4x final answer	2	M1 for $4(7-x)+2$ or better or for correct answer then spoilt
21(c)	$15 - 4x^2$ final answer	2	M1 for $15 - (2x)^2$ or better or for correct answer then spoilt

Question	Answer	Marks	Partial Marks
22(a)	$\frac{9}{20}$ oe	1	
22(b)(i)	$\frac{6}{20} \times \frac{5}{19}$	M1	
	$\frac{30}{380}$ oe	A1	
22(b)(ii)	$\frac{258}{380} \text{ oe}$	4	M3 for $1 - \frac{3}{38} - \frac{5}{20} \times \frac{4}{19} - \frac{9}{20} \times \frac{8}{19}$ oe
			or M2 for $\frac{3}{38} + \frac{5}{20} \times \frac{4}{19} + \frac{9}{20} \times \frac{8}{19}$ oe
	DT.	PR	or $\frac{3}{20} \times \frac{9}{19} + \frac{6}{20} \times \frac{9}{19} + \frac{6}{20} \times \frac{3}{19}$ oe
	19		or M1 for one correct product other than $\frac{6}{20} \times \frac{5}{19}$

MATHEMATICS

0580/21 October/November 2017

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

soi seen or implied

Question	Answer	Mark	Partial marks
1	101	1	
2	2	1	
3(a)	1.49220	1	
3(b)	1.5	1FT	FT <i>their</i> answer to (a) rounded correctly to 2 significant figures
4	88	2	M1 for $\frac{68+81+74+89+x}{5} = 80$ oe or B1 for 400
5	3x(4x + 5y - 3) final answer	2	B1 for $3(4x^2 + 5xy - 3x)$ or $x(12x + 15y - 9)$ allow in working or correct answer spoiled If zero scored, SC1 for $3x(4x + 5y - 3)$ with only 2 correct elements in the brackets, allow in working
6(a)	(-2, 3)	1	.5
6(b)	Correct rhombus with 4th point at (2,2)	pre	
7	Diagonal line from (0, 0) to (30, 12)	1	
	and Horizontal line from (30, 12) to (70, 12)	1FT	FT for horizontal line from $(30, k)$ to $(70, k)$ where <i>k</i> is <i>their</i> 12
8	19.65 cao	2	B1 for 6.55 seen (must be evaluated, not 6.5 + 0.05) or M1 for 3 × (6.5 + 0.05)
9	7615.15	2	M1 for $12400 \times \left(1 - \frac{15}{100}\right)^3$ oe

Question	Answer		Mark	Partial marks
10	$\frac{5}{3}$	$\frac{2}{3} + \frac{4}{15}$	B1	Allow $\frac{5k}{3k}$
	$\frac{25}{15}$ [and $\frac{11}{15}$]	$\frac{10}{15}$ [and $\frac{4}{15}$]	M1	Correct method to find common denominator e.g. $\frac{75}{45}$ and $\frac{33}{45}$
				Follow through <i>their</i> $\frac{5}{3}$ for the M1 mark
	$\frac{14}{15}$ cao	$\frac{14}{15}$ cao	A1	
11	54		3	M2 for $\frac{180 \times (5-2)}{5}$ or $180 - \frac{360}{5}$
		5	PR	or M1 for $180 \times (5-2)$ or $\frac{360}{5}$
12(a)	343	0	1	
12(b)	-11		1	
12(c)	343		1	
13(a)	m^{10} final answer		1	
13(b)	$20x^5y^2$ final answ	er	2	B1 for 2 out of 3 elements correct in final answer or correct answer spoiled
14(a)	(9, -4)		1	
14(b)	-5	324	2	M1 for $t^2 + 12^2 = 13^2$ oe or SC1 for answer 5 or ± 5
15(a)	Fewer than 6 elem {1, 2, 3, 4, 5, 6} o	then the form α and β and	pre	0.
15(b)		V	1	
		В	1	

Question	Answer	Mark	Partial marks
16	Enlargement	1	
	$\frac{1}{3}$	1	
	(2, 1)	1	
17(a)	$(y=) \frac{72}{\left(x+1\right)^2} \text{ oe}$	2	M1 for $y = \frac{k}{(x+1)^2}$
17(b)	32	1FT	FT correct evaluation from <i>their</i> equation in (a) using 0.5
18	Correct position of <i>S</i> with 2 pairs of correct construction arcs for line	4 PR	B3 for correct position of <i>S</i> with missing/incorrect construction arcs but correct line or
			 B2 for correct ruled line equidistant from the two trees with correct arcs or B1 for correct line with no/wrong arcs or correct arcs with no line and B1 for arc centre bird bath, radius 5 cm or S in correct position with no/incorrect working
19	$\frac{x^2 + 20x + 31}{2(x - 3)(x + 7)}$ final answer	4 Ipre	B1 for a common denominator of [2](x-3)(x+7) seen isw M1 for $2\times5\times(x+7) + 2\times3\times(x-3) + (x-3)(x+7)$ oe and must have attempted to expand all the brackets in the numerator M1 for $10x + 70 + 6x - 18$ or $x^2 - 3x + 7x - 21$ or $[2](5x + 25 + 2x - 0)$ or better
20(a)	1480	1	or $[2](3x + 33 + 3x - 9)$ of better
20(a) 20(b)	30	3	M2 for $10 \times \sqrt{\frac{3960}{440}}$ or $10 \div \sqrt{\frac{440}{3960}}$ or M1 for $\sqrt{\frac{3960}{440}}$ or $\sqrt{\frac{440}{3960}}$ or $\left(\frac{h}{10}\right)^2 = \frac{3960}{440}$ oe

Question	Answer	Mark	Partial marks
21	46.7 or 46.68 to 46.69	4	M3 for tan [=] $\frac{9}{\frac{1}{2}\sqrt{12^2 + 12^2}}$ oe or M1 for $\left[\frac{1}{2}\times\right]\sqrt{12^2 + 12^2}$ oe e.g. $\sqrt{\frac{12^2}{2}}$ and M1 for identifying angle <i>MCE</i>
22(a)	80 to 84	2	M1 for 116 to 120
22(b)	Correct curve or ruled lines	3	B2 for 7 or 8 correct points B1 for 5 or 6 correct points
22(c)	26	2	B1 for 156 or 130 or for <i>their</i> 130 from <i>their</i> increasing curve (or lines)
23(a)	$\begin{array}{c} x + y \leqslant 16 \text{ oe} \\ x \geqslant 4 \text{ oe} \end{array}$	2	B1 for each mark final answers If zero scored, SC1 for $x + y < 16$ and $x > 4$
23(b)	Correct shading	3	M2 for lines at $x = 4$ and $x + y = 16$ or for correct shading of $x < 4$ or $x + y > 16$ or M1 for line at $x = 4$ or <i>their</i> $x = 4$ or for line at $x + y = 16$ or <i>their</i> $x + y = 16$
23(c)	144		M1 for (8, 8) selected or for $10 \times x + 8 \times y$ for any numerical point which is inside or on the boundary of <i>their</i> unshaded region

MATHEMATICS

0580/22 October/November 2017

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Abbreviations

- cao correct answer only
 dep dependent
 FT follow through after error
 isw ignore subsequent working
 oe or equivalent
 SC Special Case
 nfww not from wrong working
- soi seen or implied

Question	Answer	Marks	Partial marks
1	- 3	1	
2	[0].00517	1	
3	BC AB oe	1	
4(a)	2, 3, 4, 6	P	RA
4(b)	27, 36 cao	1	
5	[x =] 60 [y =] 40	2	B1 for each or for two numbers that add to 100
6	2.5	2	B1 for 2200 or 0.055 seen or SC1 for answer figs 25
7	32	2	M1 for $\frac{1}{2} \times 33 \times h = 528$ oe
8	16.5	2	M1 for $\frac{55}{60}$ or speed × time (numerical)
9	1.32×10^{41}	atp2	M1 for 0.12×10^{41} or 12×10^{40} or SC1 for figs 132
10	20.75 final answer cao	2	B1 for one of 5.15, 6.25 or 9.35 seen or M1 for (5.2 - 0.05) + (6.3 - 0.05) + (9.4 - 0.05)
11	48.48 – 0.48 oe	M1	SC1 for $\frac{48}{99}$ or $\frac{16}{33}$ or equivalent fraction with no/insufficient working
	$\frac{48}{99}$ or $\frac{16}{33}$ or equivalent fraction	A1	
12	$15 + 2n - n^2$ final answer	2	M1 for three terms of $15 + 5n - 3n - n^2$ correct

Question	Answer	Marks	Partial marks
13(a)	$3\frac{2}{3}$ cao	1	
13(b)	$\frac{3}{12} [\text{and} \frac{5}{12}] \text{ oe}$	M1	For correct method to find common denominator e.g. $\frac{12}{48}$ and $\frac{20}{48}$
	$\frac{2}{3}$ cao	A1	
14	-1, 0, 1, 2, 3	3	B2 for $-2 < n \le 3$ or list with one error or omission
			or M1 for $-5 + 1 < 2n$ or $2n \le 5 + 1$ or a list with 3 correct and no more than 1 incorrect
		P	or if zero scored, SC1 for 5, 3, 1, -1, -3
15	$\frac{y+x}{xy}$ final answer	3	B1 for $y(x+1) - x(y-1)$ B1 for common denominator xy or SC2 for $\frac{y-x}{xy}$ final answer
16(a)	-1	1	
16(b)	-6 <i>n</i> + 29 oe	2	M1 for $-6n + k$ (any k) or $-kn + 29$ ($k \neq 0$)
17	60	3	B2 for $x = 6$ or M1 for $29x + x = 180$ oe and M1 for $360 \div 6$ or $360 \div their x$ or $180(n-2) = their x \times 29n$
18	Correctly eliminating one variable	M1	ep.o
	$[x =] \frac{2}{3}$ or 0.667 or 0.6666	A1	
	$[y=]\frac{1}{3}$ or 0.333 or 0.333	A1	If zero scored, SC1 for 2 values satisfying one of the original equations or if no working shown but 2 correct answers given
19	$[\pm] \sqrt{y^2 - 1}$ final answer	3	M1 for correct squaring M1 for correct rearranging for x or x^2 term M1 for correct square root
20	132	3	M2 for $\frac{1}{2}(7+15) \times 12$
			or wir for any contest area

Question	Answer	Marks	Partial marks
21	$\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$ oe simplified	3	B2 for correct unsimplified vector for \overrightarrow{OK} in terms of a and b
			or M1 for a correct route for \overrightarrow{OK} or $\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$ or $\overrightarrow{BA} = -\mathbf{b} + \mathbf{a}$ or recognition of \overrightarrow{OK} as a position vector
22	[w =] 54 [x =] 126 [v =] 60	3	B1 for [<i>w</i> =] 54 B1 for [<i>x</i> =] 126
			If B0 B0 for first two B marks then B1 for their $w + their x = 180$
			B1 for $[y =] 60$ or for their $w +$ their $x +$ their $y = 240$
23	[k =] 3 [c =] 9	3	M1 for $\frac{30}{360} \times \pi \times 6^2$ M1 for $\frac{1}{2} \times 6 \times 6 \times \sin 30$
24(a)	$\frac{5}{14}$ or 0.357 or 0.357	2	M1 for $7 - 2 = 11n + 3n$ oe or better
24(b)	18	2	M1 for $p - 3 = 3 \times 5$ or $\frac{p}{5} = 3 + \frac{3}{5}$
25(a)	(x-12)(x+11) final answer	2	B1 for $(x+a)(x+b)$ where $ab = -132$ or $a + b = -1$
25(b)	x(x+2)(x-2) final answer	2	B1 for $x(x^2 - 4)$
	4. S.	atpr	or $(x+2)(x^2-2x)$ or $(x-2)(x^2+2x)$
26	21.8 or 21.80	4	M3 for $\tan = \frac{2}{\sqrt{3^2 + 4^2}}$ oe
			or
			M1 for $\sqrt{3^2 + 4^2}$ or $\sqrt{3^2 + 4^2 + 2^2}$
			and M1 for recognising angle QAC

Question	Answer	Marks	Partial marks
27(a)	27	1	
27(b)	x^2 final answer	1	
27(c)	$\frac{y^2}{2}$ or $0.5y^2$ final answer	2	M1 for $\left(\frac{y^6}{8}\right)^{\frac{1}{3}}$ or $\left(\frac{2}{y^2}\right)^{-1}$ or better
			or SC1 for answer $\frac{y}{c}$ or $\frac{y}{2}$ or $\frac{z}{y^2}$

MATHEMATICS

0580/21 May/June 2017

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

International Examinations

[Turn over

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Mark	Part marks
1	x^{10}	1	
2	2	1	
3(a)	23.46 cao	1	
3(b)	20 cao		
4(a)	Chicago	1	
4(b)	-3	1	
5	4n(3n - m) final answer	2	B1 for $4(3n^2 - mn)$ or $n(12n - 4m)$ or $2n(6n - 2m)$ or $2(6n^2 - 2mn)$
6(a)	-4	1	
6(b)	$\frac{1}{5}$ or 0.2	1	
7	$\frac{14(\text{or } 35)}{21} + \frac{15}{21}$	M1	$\operatorname{accept} \frac{14k(\operatorname{or} 35k)}{21k} + \frac{15k}{21k}$
	$2\frac{8}{21}$ cao	A2	or A1 for $\frac{50}{21}$ or $1\frac{8}{21}$ or $\frac{29}{21}$ or $1\frac{29}{21}$
8	$ \begin{array}{r} rt \\ (1-t) r \\ (1-r)t \text{ oe} \\ (1-r)(1-t) \text{ oe} \\ \end{array} $	3	B1 for each
9	7.65	3	M1 for $h = k\sqrt{p}$ oe
			M1 for $h = their k \sqrt{p}$
			or M2 for $\frac{5.4}{\sqrt{1.44}} = \frac{h}{\sqrt{2.89}}$ oe

Question	Answer	Mark	Part marks
10	Correct region identified	3	0 1 2 1 2 3 2 1 2 1 SC1 for
11	76.9 or 76.94 to 76.95	3	M2 for $90 \div \sqrt[3]{\frac{160}{100}}$ or $90 \times \sqrt[3]{\frac{100}{160}}$ or M1 for $\sqrt[3]{\frac{160}{100}}$ soi or $\sqrt[3]{\frac{100}{160}}$ soi or $\left(\frac{h}{90}\right)^3 = \frac{100}{160}$ oe
12	k - 3 or -3 + k	3	M1 for $5 = \frac{23-8}{k-x}$ oe M1 for $5(k-x) = 23-8$ or better e.g. $[x =]k - \frac{23-8}{5}$
13	22.6 or 22.61 to 22.62	3 bre9	M2 for sin [=] $\frac{5}{13}$ oe or M1 for identifying angle <i>AGE</i>
14	165	3	M2 for $\frac{360}{8} + \frac{360}{3}$ oe or M1 for [exterior angle of octagon =] $\frac{360}{8}$ or [exterior angle of triangle =] $\frac{360}{3}$ oe
15(a)	0.8 or $\frac{4}{5}$	1	
15(b)	1180	3	M2 for ($0.5 \times 16 \times 20$) + ($0.5 \times 4 \times 30$) + (80×12) oe or M1 for part area
16(a)	Points plotted at (4.5, 33) and (6.5, 35)	1	

Question	Answer	Mark	Part marks
16(b)	Positive	1	
16(c)	Correct ruled line	1	
16(d)	33.5 to 37.5	1FT	FT from <i>their</i> line providing positive gradient
17(a)	F	1	
17(b)(i)	$\begin{array}{c cccc} A & & & & & \\ \hline & & & & \\ \hline & & & & \\ & & & &$	2 PR	B1 for four out of the eight regions correct
17(b)(ii)	Any even square number that is also a multiple of 3	1	
18(a)	$2\mathbf{a} + \mathbf{b}$	1	
18(b)	D	1	
18(c)	\overrightarrow{CF} and \overrightarrow{BG}	2	B1 for each
19	5.53 or 5.54 or 5.534 to 5.543	4 brep	M3 for $2 \times \{(\frac{40}{360} \times \pi \times 10^2) - (\frac{1}{2} \times 10^2 \times \sin 40)\}$ or M2 for $\left[\frac{1}{2} \times\right] 10^2 \times \sin 40$ and $[2 \times] \frac{40}{360} \times \pi \times 10^2$ or M1 for $\left[\frac{1}{2} \times\right] 10^2 \times \sin 40$ or $[2 \times] \frac{40}{360} \times \pi \times 10^2$
20(a)	5 7 7 8 10 7 9 9 10 12	1	
20(b)	7	1	

Question	Answer	Mark	Part marks
20(c)(i)	$\frac{7}{25}$ or 0.28 or 28%	2FT	FT $\frac{their 7}{25}$
			B1 for $\frac{k}{25}$
			If zero scored, then SC1 for $\frac{2}{5}$ or $\frac{6}{15}$ if no
			values in the bottom two rows of the table.
20(c)(ii)	0	1FT	FT $\frac{their 0}{25}$
21(a)	[<i>u</i> =] 35	1	
	[v=] 110	2	B1 for <i>ACB</i> or <i>ADB</i> = 35
21(b)	75	2	B1 for 150
	9		or M1 for $\frac{360-210}{2}$
22(a)	$\frac{x}{x+3}$ final answer	3	B1 for $x(x-3)$ B1 for $(x-3)(x+3)$
22(b)	$\frac{8x+7}{(x-4)(2x+5)}$ final answer	3	B1 for common denominator of $(x - 4)(2x + 5)$ oe
			M1 for $3(2x + 5) + 2(x - 4)$ oe with an attempt to expand the brackets
	ZZZ sate	orep	

MATHEMATICS

0580/22 May/June 2017

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

International Examinations

Abbreviations

correct answer only cao dependent dep follow through after error FT ignore subsequent working isw or equivalent oe Special Case not from wrong working SC nfww

seen or implied soi

Question	Answer	Marks	Part Marks
1	[0].072	1	
2	[0].15 oe	1	
3	[0].62	1	
4	[0].394 or [0].3944 to [0].3945	R	
5	41.9 or 41.87	1	
6	7(2x-3y) final answer	1	
7	41	2	M1 for 5(7) – 3(–2)
8	110	1	
	70	1	
9	$\frac{5}{6} - \frac{3}{6}$ oe	M1	oe for $\frac{5k}{6k} - \frac{3k}{6k}$
	$\frac{1}{3}$ cao final answer	A1	co.
10	$\frac{1}{6}$ oe	2	M1 for $2 - 1 = 5x + x$ oe
11(a)	6.05×10^{-2}	1	
11(b)	5.1×10^{3}	1	
12	34.8 or 34.84 to 34.85	2	M1 for sin [=] $\frac{4}{7}$
13	n < 3.5 oe final answer	2	M1 for $18 - 11 > 5n - 3n$ oe
14(a)	25	1	
14(b)	9	1	

Question	Answer	Marks	Part Marks
15	$[\pm]\sqrt{\frac{p}{2}}$ oe	2	M1 for $\frac{p}{2} = q^2$ or $\sqrt{p} = \sqrt{2} q$ or $[q] = \sqrt{their \frac{p}{2}}$ or $[q] = \frac{\sqrt{p}}{their \sqrt{2}}$
16(a)	Correct bisector with correct arcs	2	B1 for correct bisector but no arcs or correct arcs but no line
16(b)	Correct region shaded	1	
17	4.34 or 4.336 to 4.337	3	M2 for $\frac{8.15 \sin 30}{\sin 110}$ or M1 for $\frac{\sin 110}{8.15} = \frac{\sin 30}{AC}$ oe
18	2859.75 2968.75 cao final answer	3	B2 for one correct seen or B1 for 62.5 or 61.5 or 46.5 or 47.5 seen or M1 for $(62 + 0.5) \times (47 + 0.5)$ or $(62 - 0.5) \times (47 - 0.5)$
19	37.4 or 37.38 and 142.6 or 142.6	3	B2 for one correct or M1 for $0.5 \times 8 \times 7 \sin = 17$ oe If zero or M1 only scored, SC1 for two answers with a sum of 180
20	$\frac{2x^2 + x - 7}{3(x+1)} \text{ or } \frac{2x^2 + x - 7}{3x+3}$ final answer	3	M1 for $(2x - 1)(x + 1) - 2 \times 3$ oe with an attempt to expand the brackets B1 for $3(x + 1)$ or $3x + 3$ for denominator
21	1.5 or $\frac{3}{2}$ or $1\frac{1}{2}$	3	M1 for $\frac{k}{\sqrt{1+x}}$ M1 for $y = \frac{their k}{\sqrt{1+15}}$ or M2 for $\frac{2}{\sqrt{1+15}} = \frac{y}{\sqrt{1+8}}$
22(a)	(3t+u)(3t-u) final answer	2	B1 for $(at + bu)(ct + du)$ final answer where $ac = 9$ or $ad + bc = 0$ or $bd = -1$
22(b)	(c-2d)(2-p) or $(p-2)(2d-c)final answer$	2	M1 for $2(c-2d) - p(c-2d)$ or $c(2-p) - 2d(2-p)$ or $p(2d-c) - 2(2d-c)$ or $2d(p-2) - c(p-2)$
23(a)(i)	24	1	
23(a)(ii)	5	1	

Question	Answer	Marks	Part Marks
23(a)(iii)	$\frac{7}{12}$	1	
23(b)		1	
24(a)	Similar	1	
24(b)	5.6	2	M1 for $\frac{4}{8} = \frac{2.8}{AX}$ oe
24(c)	$\frac{y}{4}$ oe	1	
25(a)	$8x^{12}$ final answer	2	B1 for $8x^k$ or kx^{12} in final answer $k \neq 0$
25(b)	9	2	M1 for $27^{\frac{2}{3}}$ or 3^k or $p^{\frac{1}{2}} = 3$ or $p^3 = 729$
26	[w =] 40	1	
	[<i>x</i> =] 95	2	B1 for angle $ABC = 85$ or <i>their</i> $w + their CBD = 85$
	[<i>y</i> =] 45	2	B1 for angle $CBD = 45$ or angle $ACD = 40$ or angle $ACD = their w$ or $y = their CBD$
27(a)	y = 2x + 4	3	B2 for $2x + 4$ or $y = 2x + c$ or $y = mx + 4$ or B1 for $2x + c$ or for $kx + 4$ or M1 for rise/run
27(b)	$y = -\frac{1}{2}x + \frac{3}{2}$ oe	- (4	B1 for (-1, 2) M1 for the gradient $-\frac{1}{2}$ oe or $\frac{-1}{their 2}$ oe M1 for substituting <i>their</i> (-1, 2) into <i>their</i> $y = mx + c$ oe

MATHEMATICS

0580/23 May/June 2017

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

CAMBRIDGE

-

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Part Marks
1	0.407 or 0.4067	1	
2	4x(x-2y) final answer	2	M1 for $4(x^2 - 2xy)$ or $x(4x - 8y)$ or $2(2x^2 - 4xy)$ or $2x(2x - 4y)$
3	120	2	M1 for finding a correct product of prime factors or correctly listing a minimum of 3 multiples of 20 and 24 or for answer $2^3 \times 3 \times 5$ oe or $120k$ where k is an integer > 1
4	$(x-y)^2$ oe final answer	2	M1 for $x - y = \sqrt{a}$ or <i>their</i> $(x - y)$ squared
5	68.6 or 68.62 to 68.64	2	M1 for $\frac{1}{2} \times \frac{4}{3}\pi \times 3.2^3$ If zero scored, SC1 for final answer 137 or 137.2 to 137.3
6	$\frac{4}{25}$ oe	2	M1 for $\frac{2}{5} \times \frac{2}{5}$ oe or denominator 5 ² oe
7	$\frac{32}{x^2}$ or $32x^{-2}$ final answer	2	M1 for $y = \frac{k}{x^2}$ oe or $[k =]$ 32
8	$\frac{2}{a^4}$ or $2a^{-4}$ final answer	2	B1 for $\frac{2}{a^k}$ oe or $\frac{k}{a^4}$ oe $(k \neq 0)$ final answer
9(a)(i)	$\begin{pmatrix} 30 \\ -20 \end{pmatrix}$	1	
9(a)(ii)	$\begin{pmatrix} -6\\ 4 \end{pmatrix}$	1	
9(b)	-4	1	

Question	Answer	Marks	Part Marks
10(a)	10	2	M1 for $5x + 6x + 7x = 180$ oe or $\frac{180}{5+6+7}$ or B1 for angles 50, 60 and 70
10(b)	70	1FT	FT $7 \times their$ (a) provided $0 < their answer < 180$
11	Correct region	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	6		SC1 for <i>R</i> not marked and reverse shading
12(a)	3+12x final answer	1	
12(b)	24x + 31 final answer	2	M1 for $3 + 4(6x + 7)$
13	150	3	M2 for $\left(\frac{1}{0.512}\right)^{\frac{2}{3}}$ oe or $\left(\frac{0.512}{1}\right)^{\frac{2}{3}}$ oe or M1 for scale factor $\left(\frac{1}{0.512}\right)^{\frac{1}{3}}$ oe or $\left(\frac{0.512}{[1]}\right)^{\frac{1}{3}}$ oe
14	$10^{k+2} \times [0].\dot{6}\dot{3} - 10^k \times [0].\dot{6}\dot{3}$ oe where $k > 1$	M1	
	$\frac{63}{99}$ or equivalent fraction	A1	e.g. $\frac{6300}{9900}$ but not $\frac{7}{11}$
	$\frac{7}{11}$	B1	
15	35.8 or 35.77	3	M2 for $[\sin =] \frac{24 \times \sin 71.8}{39}$ or M1 for $\frac{39}{\sin 71.8} = \frac{24}{\sin x}$ oe
16(a)	$x \leq 3$ final answer	2	M1 for $13 - 7 \ge 3x - x$ oe
16(b)	1, 2, 3	1FT	correct answer or FT their answer to (a)

Question	Answer	Marks	Part Marks
17	$\frac{2}{7}\mathbf{p} + \frac{5}{7}\mathbf{q}$	3	M1 for $PZ = \frac{5}{7} (\mathbf{q} - \mathbf{p})$ oe or $QZ = \frac{2}{7} (\mathbf{p} - \mathbf{q})$ oe M1 for correct route from <i>O</i> to <i>Z</i> or identifying <i>OZ</i>
18	3000	3	M2 for $12.5 \times \frac{1}{2}(200 + 280)$ oe or M1 for part area
19	common denominator 12	B1	accept $k \times 12$ throughout
	one correct from $\frac{9}{12}$ or $\frac{8}{12}$ oe	M1	accept $\frac{9k}{12k}$ or $\frac{8k}{12k}$
	$\frac{5}{6}$ cao	A2	A1 for $\frac{10}{12}$ or $\frac{10k}{12k}$
20(a)	6	1	
20(b)	$2x^3$ final answer	1	
20(c)	$15y^4$ final answer	2	B1 for $15y^k$ or ky^4 as final answer $(k \neq 0)$
21	$\sqrt{10^2 - 4 \times 5 \times 2}$ oe or better	B1	If completing the square: B1 for $(x+1)^2$ oe B1 for $-1+\sqrt{1-\frac{2}{5}}$ or $-1-\sqrt{1-\frac{2}{5}}$ oe
	$\frac{-10 + \sqrt{q}}{2(5)}$ or $\frac{-10 - \sqrt{q}}{2(5)}$ oe	B1	o.c ^{o.}
	– 0.23, –1.77 final ans cao	B1B1	SC1 for - 0.2 or - 0.225 and -1.8 or -1.774 or -1.775 or 0.23 and 1.77 as answer or - 0.23 and -1.77 seen in working Maximum score without working is 2
22	35.3 or 35.26	4	M3 for [tan =] $\frac{26}{\sqrt{26^2 + 26^2}}$ oe or M1 for [AC^2 =] $26^2 + 26^2$ oe and M1 for [tan =] $26 \div their AC$ oe or for angle CAG indicated

Question	Answer	Marks	Part Marks
23(a)	4(x-6) or $4x - 24$ as final answer	1	
23(b)	$x^2 + 23x + 26$ final answer	3	B2 for $x^2 + 4x + 4x + 16$ or better or B1 for $15x + 10$
24	1.96 cao	5	M4 for $\left(\left(\left(\left(\sqrt[3]{\frac{2500 \times 1.6 \times 3}{100} + 2000}}{\sqrt[3]{\frac{2500 \times 1.6 \times 3}{2000}}}\right) - 1\right)\right) - 1\right) \times 100\right]$ or or 1.00 or 1.96 or 101.96 or 101.96 or 1.0196 or 0.0196 or 1.0196 or 0.0196 or 1.0196 or 0.0196 or

MATHEMATICS

0580/22 March 2017

Paper 22 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Г

Cambridge IGCSE – Mark Scheme PUBLISHED

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Part Marks
1	18w + 14 final answer	2	M1 for $20w+12$ or $-2w+2$ or answer $18w+k$ or $kw+14$
2	Equilateral triangle with correct arcs	2	M1 for clear evidence of constructed 60° angles or arcs crossing equal in length to <i>AB</i> or an accurate diagram with no/incorrect arcs
3	$\frac{10 \times 20}{90 - 40}$	M1	
	4 nfww	A1	
4	4 nfww	2	M1 for $[7.31 =] 7 \left(1 + \frac{1.1}{100} \right)^k$ oe
5	150	2	M1 for $2 \times 3 + 16 \times 3^2$
6	$10^k \times 0.1\dot{7} - [10] \times 0.1\dot{7} \ k \ge 1$ oe	M1	
	$\frac{16}{90}$ or $\frac{8}{45}$ oe nfww	A1	.5
7	70.7625 cao and 72.4625 cao	3	B2 for 70.7625 or 72.4625 or M2 for 9.25 × 7.65 and 9.35 × 7.75 or B1 for two of 9.25, 9.35, 7.65, 7.75 seen
8	$\frac{10}{3}$ or $\frac{5}{2}$	B1	oe improper fractions
	their $\frac{10}{3} \times their \frac{2}{5}$	M1	accept $\frac{20}{6} \div \frac{15}{6}$
	$1\frac{1}{3}$ cao	A1	
9	18.1 or 18.10	3	M2 for $\sqrt{20^2 - \left(\frac{1}{2}(17)\right)^2}$ oe
			or M1 for $h^2 + \left(\frac{1}{2}(17)\right)^2 = 20^2$

Question	Answer	Marks	Part Marks
10	1050	3	M2 for 924 $\div \frac{(100-12)}{100}$ oe or M1 for 88[%] associated with 924 oe
11		3	B2 for correct translation of A seen or B1 for translation of A by $\begin{pmatrix} -1 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 3 \end{pmatrix}$ seen and B1 for correct reflection of their translation in $x = 2$ seen If 0 scored SC2 for correct TM(4)
	AT F	R	or SC1 for reflection in $x = 2$ seen or a correct translation of $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$ seen
12	4	3	M1 for $y = \frac{k}{x^2}$ M1 for $y = \frac{their k}{10^2}$ or M2 for $5^2 \times 16 = 10^2 \times y$ oe
13 (a)	5c(3c-1) final answer	2	B1 for $5(3c^2 - c)$ or $c(15c - 5)$
(b)	(2p-m)(k+3) final answer	2	B1 for $k(2p-m)+3(2p-m)$ or $2p(k+3)-m(k+3)$
14 (a)	Point at (3, 5)	orp	2 .
(b)	$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$	1FT	FT their \overrightarrow{AC}
(c)	$\begin{pmatrix} 0 \\ 4 \end{pmatrix} \text{ or } \begin{pmatrix} 0 \\ -4 \end{pmatrix}$	2	M1 for a vector of magnitude 4 or of form $\begin{pmatrix} 0 \\ \pm k \end{pmatrix}$
15 (a)	t^{20} final answer	1	
(b)	x^{10} final answer	1	
(c)	$27m^6$ final answer	2	B1 for $27m^k$ or km^6 as final answer

Question		Answer	Marks	Part Marks
16	(a)	0.25 or $\frac{1}{4}$	1	
	(b)	0.45	3	B2 for 450 or
				M2 for $\frac{1}{2} \times 60 \times 15 \div 1000$
				or M1 for $\frac{1}{2} \times 60 \times 15$
				If 0 scored SC1 for correct conversion of their distance in metres to kilometres
17	(a) (i)	B L S L	2	B1 for 2 correct of 4, 2, 5, 9 in the correct places or SC1 for
			PR	
	(ii)	9	1FT	FT their 9
	(b)		1	
18	(a)	$\begin{pmatrix} 27 & -24 \\ -5 & -10 \end{pmatrix}$	2	B1 for two correct elements
	(b)	$-\frac{1}{13}\begin{pmatrix} -2 & -3\\ -1 & 5 \end{pmatrix}$ oe isw	2	B1 for $k \begin{pmatrix} -2 & -3 \\ -1 & 5 \end{pmatrix}$ or det = -13 soi
19	(a)	11.4 or 11.40 to 11.41	2	M1 for $\frac{1}{2} \times 2.8 \times 8.3 \times \sin 79$ oe
	(b)	231 or 230.8 to 231.1	2FT	FT <i>their</i> (a) $\times 4.5^2$ M1 for 4.5^2 or 20.25 seen

Q	uestion	Answer	Marks	Part Marks
20	(a)	[y=]-2x+3	3	B2 for $[y =] - 2x + c$
				or M1 for rise/run and B1 for $[y =]kx + 3$, $k \neq 0$ or $c = 3$
	(b)	$y = \frac{1}{2}x - \frac{5}{2}$ oe final answer	3	M1 for gradient = $-\frac{1}{their \text{ gradient in (a)}}$ or gradient = 0.5 oe M1 for substitution of (3, -1) into their y = mx + c oe
21	(a)	10	2	M1 for $\frac{x}{4} - 3 = -0.5$
	(b)	$\frac{x+7}{6}$ final answer	2	M1 for $y + 7 = 6x$ or $\frac{y}{6} = x - \frac{7}{6}$ or $x = 6y - 7$
	(c)	-2	2	M1 for $[f(13) =]\frac{1}{4}$

MATHEMATICS

0580/21 October/November 2016

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of **5** printed pages.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0580	21

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

soi seen or implied

Q	Juestion	Answer	Mark	Part marks
1		-7	1	
2	(a)	[0].0402	1	
	(b)	[0].040	RF	
3		[0].67	2	M1 for 14 × 0.905 [–12] or 12.67
				If zero scored, SC1 for answer [0].74[0]
4		$\frac{8}{12}$ and $\frac{3}{12}$ oe	M1	Correct fractions with common denominator
		$\frac{5}{12}$ cao	A1	
5	(a)	$\frac{1}{125}$	1	
	(b)	4.56×10^{-3}	1	
6		42	P_2^{e}	M1 for $Q = 90$ or $WPQ = 90 - 42$ or $WPQ = 48$
7		$\frac{x^2 + 2y^2}{xy} \text{ or } \frac{x}{y} + \frac{2y}{x}$	2	B1 for $xy(x^2 + 2y^2)$
		final answer		or M1 for $\frac{x^2y + 2y^3}{xy^2}$ or $\frac{x^3 + 2xy^2}{x^2y}$
8		$\frac{pt - 2t - 3p}{pt}$ final answer	2	B1 for $pt - 2t - 3p$ or $1 - \frac{2t + 3p}{pt}$
9		[<i>x</i> =] 55	1	
		[<i>y</i> =] 125	1FT	correct or FT (180 – their x)

```
Page 3
```

Mark Scheme Cambridge IGCSE – October/November 2016

Syllabus	Paper
0580	21

Qu	iestion	Answer	Mark	Part marks
10		$6x^8$ final answer	2	B1 for $6x^k$, $6 \times x^8$ or $kx^8 (k \neq 0)$ as final answer
11		Correctly eliminating one variable	M1	
		[x =] -1 and	A1	If zero scored,
		[<i>y</i> =] 5	A1	SCI for 2 values that satisfy one of the original equations
				or SC1 if no working shown, but 2 correct answers given
12	(a)	$\frac{1}{8}$ cao	1	
	(b)	2	2	M1 for 18.18–0.18 oe
		11		or B1 for $\frac{2k}{11k}$ (k not 0 or 1)
13	(a)	(2p-3)(2p+3) final answer	1	
	(b)	(a-2b)(2x-y) oe final answer	2	B1 for $2x(a-2b) - y(a-2b)$ or $a(2x-y) - 2b(2x-y)$
14		$6\frac{2}{3}$ oe	3	M1 for $y = k\sqrt{x+2}$ oe or better
		4	2	e.g. $2 = k\sqrt{7+2}$
		24		M1 for $[y =]$ their $k \times \sqrt{98 + 2}$
		V.Sat	pre	or $\sqrt{08+2}$
				M2 for $\frac{y}{2} = \frac{\sqrt{30+2}}{\sqrt{7+2}}$
15	(a)	$\begin{pmatrix} 5\\8 \end{pmatrix}$	1	
	(b)	(8) final answer	2	B1 for final answer 8 without brackets

Page 4	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0580	21

Q	uestion	Answer	Mark	Part marks
16		6.35 or 6.349 to 6.350	3	M2 for $\frac{8}{h} = \sqrt[3]{\frac{0.5}{0.25}}$ oe
				or M1 for $\left(\frac{8}{h}\right)^3 = \frac{0.5}{0.25}$ oe
				or for $\sqrt[3]{\frac{0.5}{0.25}}$ or $\sqrt[3]{\frac{0.25}{0.5}}$ oe
17	(a)	Accurate arc, centre <i>B</i> , radius 5 cm meeting both <i>BA</i> and <i>BC</i>	1	
	(b)	Accurate bisector through angle <i>B</i> with 2 pairs of correct arcs and reaching to at least <i>AC</i>	2 P <i>F</i>	B1 for accurate line from <i>B</i> to at least <i>AC</i> or M1 for correct arcs
	(c)	Correct region identified	1	
18	(a)	4	2	B1 for 25 or –21
	(b)	$\sqrt{y-qr}$ oe final answer	2	M1 for $y - qr = p^2$ or M1 for correctly square rooting <i>their</i> function of y, q and r
19	(a)	6n + 1 oe final answer	2	B1 for $6n + c$ or for $kn + 1$ ($k \neq 0$)
	(b)	$(n+2)^2$ final answer	2	M1 for any quadratic expression or reaching second difference of 2
20	(a)	$\frac{3mx}{50}$ or 0.06mx	2	M1 for $m \times x \times 60 \div 1000$ oe
	(b)	35	2	M1 for $5 \times x \times 60 \div 1000 = 10.5$ oe or for substituting $m = 5$ in <i>their</i> (a) and equating to 10.5 oe

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0580	21

Q	uestion	Answer	Mark	Part marks
21		$y \ge 0$ and $x \ge 1$ oe and $x + y \le 4$ oe	4	SC3 for $y > 0$, $x > 1$ and $x + y < 4$ oe or B1 for $y \ge 0$ B1 for $x \ge 1$ oe and B2 for $x + y \le 4$ oe or M1 for grad = -1 soi If B0 scored for first two B marks, SC1 for y = 0 and $x = 1$ or with incorrect inequality sign
22	(a) (i)	$\begin{bmatrix} A \\ 3 \\ 4 \\ 2 \end{bmatrix}_{1}^{B}$	2	B1 for $n(A \cap B) = 4$
	(ii)	$\frac{2}{10}$ oe	1FT	allow correct answer or FT $\frac{their 2}{10}$
	(b)		1	
23		$\sqrt{(3)^2 - 4(2)(-3)}$ oe or better	B 1	If completing the square, B1 for $\left(x + \frac{3}{4}\right)^2$ oe
		$\frac{-3+\sqrt{k}}{2(2)}$ or $\frac{-3-\sqrt{k}}{2(2)}$ oe	B1	B1 for $-\frac{3}{4} + \sqrt{\frac{3}{2} + \left(\frac{3}{4}\right)^2}$ or $-\frac{3}{4} - \sqrt{\frac{3}{2} + \left(\frac{3}{4}\right)^2}$ oe
		-2.19, 0.69	B1B1	SC1 for -2.2 or -2.186 and 0.7 or 0.686 or -2.19 and 0.69 seen but not final answer or 2.19 and -0.69 Maximum score without working is 2
24	(a)	13.9 or 13.85 to 13.86	3	M2 for $\sqrt{8^2 + 8^2 + 8^2}$ oe
	(b)	35.1 to 35.5[4]	2	or M1 for $8^2 + 8^2$ or better for one face M1 for $\sin = \frac{8}{their(\mathbf{a})}$ or $\cos = \frac{\sqrt{8^2 + 8^2}}{their(\mathbf{a})}$ or $\tan = \frac{8}{\sqrt{8^2 + 8^2}}$ oe

MATHEMATICS

0580/22 October/November 2016

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 5 printed pages.

CAMBRIDGE International Examinations

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0580	22

Abbreviations

cao	correct answer only
dep	dependent

FT follow through after error

ignore subsequent working or equivalent isw

oe

Special Case SC

not from wrong working nfww

seen or implied soi

Question	Answer	Mark	Part marks
1 (a)	15000 cao	1	
(b)	1.5×10^4	1FT	FT their (a)
2	25	2	B1 for 67 or 113 seen once in correct position
	GATE	PR	or M1 for $a + 42 = 67$ or $a + 42 + 113 = 180$ or better
3	21	2	M1 for $k - 8 = 13$ or $6k - 48 = 78$ or better
4	58	2	M1 for $\frac{(13+16)\times 4}{2}$ or $4\times 13 + \frac{1}{2}\times 4\times 3$ oe
5	$9y^3$ final answer	2	B1 for $9y^k$, $9 \times y^3$ or ky^3 ($k \neq 0$) as final answer
6	72.25 cao	2	M1 for $8 + 0.5$ or better seen
7	1, 2, 3	3	B2 for $t < 4$ or M1 for $2 + 6 > 3t - t$ oe or better If zero scored, SC1 for answer 0, 1, 2, 3 or 1, 2, 3, 4
8	correctly eliminating one variable	M1	
	[x =] 9 [y =] 3.5	A1 A1	If zero scored, SC1 for 2 values satisfying one of the original equations SC1 if no working shown but 2 correct answers given
9	234 or 234.3 to 234.4	3	M2 for $[dist =]\frac{300}{\tan 52}$ oe or M1 for correct implicit trig statement allow M1 if they use <i>their</i> 52 or <i>their</i> 38 provided it is marked on the diagram or B1 for 52 or 38 correctly placed If zero scored, SC1 for final answer 384

Page 3Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2016058022

(Question	Answer	Mark	Part marks
10		46.3 or 46.29 to 46.30	3	M2 for $53 \times \sqrt[3]{\frac{20}{30}}$ oe
				or M1 for $\sqrt[3]{\frac{20}{30}}$ or $\sqrt[3]{\frac{30}{20}}$ or $\left(\frac{53}{x}\right)^3 = \frac{30}{20}$ or better
11	(a)	Accurate angle bisector with correct arcs	2	B1 for accurate angle bisector or correct arcs with no/wrong line
	(b)	Equidistant (oe) from AB and AC	1	
12	(a)	38	2	M1 for $57 \div (2 + 1)$ or better
	(b)	12 : 7	2	M1FT for <i>their</i> 38 – 2 and <i>their</i> 19 + 2 seen dep on sum = 57 If M0 SC1 for answer 7 : 12
13	(a)	$m(m^2+1)$ final answer	1	
	(b)	(5-y)(5+y) final answer	1	
	(c)	(x-4)(x+7) final answer	2	B1 for $(x-4)(x+7)$ seen then spoiled or M1 for $(x+a)(x+b)$ where $ab = -28$ or $a+b=3$ or for $x(x+7)-4(x+7)$ or $x(x-4)+7(x-4)$
14		Common denominator 24	B1	accept $k \times 24$
		Two correct from $\frac{18}{24}$, $\frac{16}{24}$ and $\frac{3}{24}$ oe	M1	accept $\frac{18k}{24k}$, $\frac{16k}{24k}$ and $\frac{3k}{24k}$
		$1\frac{7}{24}$ cao	A2	A1 for $\frac{31}{24}$ or $\frac{31k}{24k}$ or $1\frac{7k}{24k}$
15	(a) (i)	9	1	
	(ii)	12	1	
	(b)	$\frac{5}{14}$	1	
	(c)		1	

Page 4	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0580	22

Question	Answer	Mark	Part marks
16 (a)	$\begin{pmatrix} -7\\ 3 \end{pmatrix}$	2	M1 for $\overrightarrow{CB} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$ or for correct route allow e.g. $BA - BC$, $CB + BA$
(b)	7.81 or 7.810	2	M1 for $\sqrt{(-5)^2 + 6^2}$
17	1024 cao	5	B4 for 1023 to 1024.0 or 1020 or M3 for $\frac{125}{360} \times \pi \times 48^2 - \frac{125}{360} \times \pi \times 40^2 + 32 \times 8$ or M1 for $\frac{125}{360} \times \pi \times 48^2$ or $\frac{125}{360} \times \pi \times 40^2$ and M1 for $32 \times 8 + k\pi$ If B0 scored B1 for <i>their</i> more accurate decimal answer rounded correctly to an integer
18 (a)	Enlargement [s.f.] $\frac{1}{2}$ [centre] (-1, 3)	1 1 1	
(b)	Triangle at (3,-1)(5,-1)(5,-5)	3	M2 for 2 correct vertices on grid or in working or M1 for identifying matrix as a reflection in the <i>x</i> -axis or for $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 3 & 5 & 5 \\ 1 & 1 & 5 \end{pmatrix}$ oe
19 (a)	$\frac{1}{7}\begin{pmatrix} -4 & 3\\ -5 & 2 \end{pmatrix}$ oe isw	2	B1 for $k \begin{pmatrix} -4 & 3 \\ -5 & 2 \end{pmatrix}$ or det = 7 soi
(b)	6 nfww	4	M3 for $(w-6)^2 = 0$ or M2 for $w^2 - 12w + 36[=0]$ or M1 for $w(w-12) - 4 \times (-9)[=0]$ oe or clear attempt at determinant = 0 oe

_	Page 5	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE – October/November 2016			0580	22
	Question	estion Answer Mark		Part marks		
20	(a)	(7,1)	1			
	(b)	$-1.25 \text{ or } -\frac{5}{4} \text{ or } -1\frac{1}{4}$	2	M1 for rise/run		
	(c)	$y = \frac{4}{5}x + 2 \text{ oe}$	3	B2 for $\frac{4}{5}x + 2$ or $y =$	$\frac{-1}{their(\mathbf{b})}x+$	2 oe
				or M1 for $-\frac{1}{their(\mathbf{b})}$	oe	
				or B1 for $\frac{4}{5}x$ seen or	[y=]mx+	2 $(m \neq 0)$

MATHEMATICS

0580/23 October/November 2016

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of **5** printed pages.

CAMBRIDGE International Examinations

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0580	23

Abbreviations

cao	correct	answer	only
			-)

dep dependent

follow through after error \mathbf{FT}

ignore subsequent working or equivalent isw

oe

SC Special Case

not from wrong working nfww

seen or implied soi

Q	uestion	Answer	Mark	Part marks
1		36	1	
2		n^7 final answer	1	
3		В	1	
4	(a)	2.47×10^{6}		
	(b)	7.9×10^{-3}	1	
5		$\frac{18}{30}$ and $\frac{5}{30}$ oe must be shown	M1	$\frac{18k}{30k}$ and $\frac{5k}{30k}$
		$\frac{23}{30}$ cao	A1	
6		Thursday	2	M1 for 5.4 found or at least two of: 3.8, 3.6 and 4 found
7		$0.4^2 \ 0.6^3 \ 0.22 \ \sqrt{0.09}$	2	M1 for decimal conversion 0.216 and 0.3 and 0.16
8		4.25 4.15	2	B1 for each or both answers reversed
9	(a)	A	1	
	(b)	A ruled line joining (65, 23) to (80, 28)	1	
10	(a)	2.9[0] or 2.900 to 2.901	1	
	(b)	3.17 or 3.172 to 3.173	1	
11		18 360	2	M1 for $34000 \times \left(1 - \frac{40}{100}\right) \times \left(1 - \frac{10}{100}\right)$ oe
12		32.7 or 32.72 to 32.73	2	M1 for $\left[\frac{1}{2} \times\right] \frac{4}{3} \times \pi \times \left(\frac{5}{2}\right)^3$
Page 3	Mark Scheme	Syllabus	Paper	
--------	---	----------	-------	
	Cambridge IGCSE – October/November 2016	0580	23	

Q	uestion	Answer	Mark	Part marks
13		$\frac{2}{9}$ oe, must be a fraction	2	M1 for $2.\dot{2} - 0.\dot{2}$ oe or B1 for $\frac{k}{9}$
14	(a)	30	1	
	(b)	47.5	2	M1 for 4.5×5 oe
15	(a)	68	1	
	(b)	9	2	M1 for $360 \div 40$ oe or $\frac{180(n-2)}{n} = 140$ oe
16		1.25	3	M1 for $d = \frac{k}{(w+1)^2}$ or better M1 for $[d=] \frac{their k}{(7+1)^2}$
				or M2 for $3.2(4+1)^2 = d(7+1)^2$ oe
17		y = 2x oe	3	M1 for $\frac{1-3}{12-8}$ oe M1 for perpendicular gradient × <i>their</i> $\frac{1-3}{12-8} = -1$ oe If zero scored, SC1 for answer $y = kx \ k \neq 2$ or 0
18	(a)	25 Sat	pire	BP.C
	(b)	$\frac{x^2-3}{2}$ of final answer	1	
	(c)	2x + 3 final answer	2	M1 for correct first step, e.g. $x = \frac{y-3}{2}$ or $2y = x - 3$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0580	23

Q	uestion	Answer	Mark	Part marks
19	(a)	Correct tangent	B1	No daylight between tangent and curve at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = 0.8$ and $x = 1.2$
		2.1 ≤ grad ≤ 3.9	2	dep on B1 M1 for $\frac{rise}{run}$ also dep on any tangent drawn or close attempt at tangent at any point Must see correct or implied calculation from a drawn tangent
	(b)	(-2, 8)	1	
20	(a)	$\mathcal{E} \qquad A \qquad 9.3 \\ \hline 7 \qquad 9.3 \\ \hline 7 \qquad 5 \\ \hline 9 \\ 2\sqrt{8} \\ \hline 2\sqrt{8} \\ \hline 9 \\ 2\sqrt{8} \\ \hline 9 \hline$	2	B1 for 3 elements in the correct place
	(b)	C	1	
		E F G		
21	(a)	14.4 or 14.42 to 14.43	2	M1 for $\frac{1}{2} \times 6.2 \times 4.7 \times \sin 82$ oe
	(b)	30.7 or 30.72	2	M1 for sin = $\frac{2050}{\frac{1}{2} \times 107 \times 75}$
22		1 3.5 1	4	B3 for 2 correct B2 for 1 correct or M1 for 2, 7, [] and 2 seen [FDs]
23		$\frac{7n}{2t+3m}$ final answer	4	M1 for $7n(6p - 1)$ seen and M2 for $(2t + 3m)(6p - 1)$ seen or M1 for $2t(6p - 1) + 3m(6p - 1)$ or $6p(2t + 3m) - 1(2t + 3m)$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0580	23

Question	Answer	Mark	Part marks
24	$y \le -\frac{3}{5} x + 6 \text{ oe}$ $x \ge 2 \text{ oe}$ y > x oe final answers	5	SC4 for $y < -\frac{3}{5}x + 6$, $x > 2$, $y \ge x$ oe or B3 for $y \le -\frac{3}{5}x + 6$ oe or B2 for $y = -\frac{3}{5}x + 6$ oe or B1 for gradient $= -\frac{3}{5}$ oe soi
			and B2 for $x \ge 2$ and $y > x$ oe or B1 for either $x \ge 2$ or $y > x$ oe or for $x = 2$ and $y = x$ with incorrect inequalities
25 (a)	СВ	1	
(b)	$\begin{pmatrix} 36 & -2 \\ 18 & -1 \end{pmatrix}$	2	B1 for two correct entries
(c)	$\frac{1}{47} \begin{pmatrix} 5 & 3 \\ -4 & 7 \end{pmatrix} \text{ oe isw}$	2	B1 for $k \begin{pmatrix} 5 & 3 \\ -4 & 7 \end{pmatrix}$ seen or det = 47 soi
(d)	The determinant is 0 oe	1	

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/21 May/June 2016

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 5 printed pages.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0580	21

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

Question	Answer	Mark	Part marks
1	8(h) 52 (min)	1	
2	3.75 or 3 ³ / ₄	1	
3	[0].00127	1	
4	157 900 cao	2	B1 for 158000 or 157860 or 157862 to 157863
	9		If zero scored, SC1 for <i>their</i> answer to more than 4 figs correctly rounded to 4 sf
5	393	2	B1 for 393.1 to 393.2 or M1 for 2000 ÷ 5.087
6	144	2	M1 for finding a correct product of prime factors or correctly listing a minimum of 3 multiples of 36 and 48 or for answer $2^4 \times 3^2$ oe or $144k$
7	11	2	M1 for $-2 \times -7 - 3$ soi
8	$\frac{py}{q}$ final answer	2	M1 for one correct step
9	[a =] 70 [b =] 40	2	B1 for each
10	28.35 cao	2	B1 for 9.45 seen or M1 for $(9.4 + 0.05) \times 3$
11 (a)	112	1	
(b)	56	1	
12	$2p^4$ final answer	2	B1 for kp^4 or $2p^k$ as answer
13	<i>n</i> > 3.75	2	M1 for $7 + 8 < 5n - n$ oe
14	More than 20m from D oe Nearer to CD than to CB oe	2	B1 for each

Page 3Mark SchemeSyllabusPaperCambridge IGCSE – May/June 2016058021

Qu	estion	Answer	Mark	Part marks
15	(a)	- 3	1	
	(b)	9 – 2 <i>n</i> oe	2	B1 for $-2n + k$ or $dn + 9$ where $d \neq 0$
16		$\frac{6}{7} \times \frac{3}{5}$ or $\frac{18}{21} \div \frac{35}{21}$ oe	M2	B1 for $\frac{5}{3}$ oe
				or M1 for $\frac{6}{7} \times their \frac{3}{5}$
		$\frac{18}{35}$ cao	A1	
17		145	3	M2 for $(6-2) \times 180 - 5 \times 115$ or M1 for $(6-2) \times 180$ <u>Alt method</u> M2 for $180 - (360 - 5 \times (180 - 115))$ or M1 for $360 - 5 \times (180 - 115)$
18		1.38 or 1.381 to 1.382	3	M2 for $(36 + 4.3) \div (105 \times \frac{1000}{60 \times 60})$ oe or M1 for $105 \times \frac{1000}{60 \times 60}$ or for a distance \div a speed or SC2 for answer 1.23(4)
19		$\frac{5}{6}$ oe	3	M2 for $1 - \frac{2}{3} \times \frac{1}{4}$ or $\frac{1}{3} + \frac{2}{3} \times \frac{3}{4}$ or $\frac{1}{3} \times \frac{3}{4} + \frac{1}{3} \times \frac{1}{4} + \frac{2}{3} \times \frac{3}{4}$ or M1 for $\frac{2}{3} \times \frac{1}{4}$ or $\frac{1}{3} \times \frac{1}{4} + \frac{2}{3} \times \frac{3}{4}$
20		27	3	M2 for $\frac{6\pi}{\pi \times 2 \times 9} \times \pi \times 9^2$ oe or M1 for $\frac{6\pi}{\pi \times 2 \times 9}$ oe
21		2	3	M1 for $y = k\sqrt{x}$ A1 for $k = 4$ or M2 for $\frac{\sqrt{9}}{12} = \frac{\sqrt{1/4}}{y}$ oe

	Page	4	Mark Scheme		e	Syllabus	Paper	
			Cambridge IGC	SE – Ma	y/June 2016	0580	21	
				1	I			
Qu	estion		Answer	Mark	Part m	arks		
22	(a)	3		1				
	(b)	$\frac{1}{2}$	$\frac{9}{7}$ oe	1				
	(c)	$\frac{7}{10}$	- oe	1				
	(d)			1				
23		69	9.3 or 69.28	4	M2 for height = $\sqrt{8^2 - 4^2}$ or M1 for $4^2 + h^2 = 8^2$ oe and M1 for $\frac{1}{2}(8+12) \times their$ n	ern height o	s.	
			6		2 (0 + 12) × men p		.	
24	(a)	(4	(n+2)(2+p) final answer	2	B1 for $2(a+2) + p(a+2)$ or	a(2+p)+2((2+p)	
	(b)	2	(9+2t)(9-2t) oe	2	B1 for $2(81-4t^2)$ oe or $(18-1)$ If 0 scored SC1 for $(9+2t)(9-1)$	(+ 4t)(9 - 2t) - 2t final an	oe swer	
25		у	$=-\frac{3}{7}x+11$ oe	6 Atp	B2 for gradient = $-\frac{3}{7}$ or M1 for [gradient =] $\frac{15}{10}$ - or for the negative reciprocal of and B2 for [midpoint of AB =] (for or B1 for (7, k) or (k, 8) and M1 for substitution of a (10, 15) into a linear equation	- <u>1</u> oe of <i>their</i> gradi 7, 8) <i>Their</i> midpoi	ent Int or (4, 1) o	or

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0580	21

Question	Answer	Mark	Part marks
26 (a)	20.1 or 20.07 to 20.08	2	M1 for $\frac{1}{2} \times 7 \times 10 \times \sin 35$ oe
(b)	5.86 or 5.858	4	M2 for $7^{2} + 10^{2} - 2 \times 7 \times 10 \times \cos 35$ A1 for 34.3 or M1 for $\cos 35 = \frac{7^{2} + 10^{2} - AC^{2}}{2 \times 7 \times 10}$

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/22 May/June 2016

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 5 printed pages.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0580	22

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent

SC Special Case

nfww not from wrong working

Question	Answer	Mark	Part marks
1	5.74×10^{-5}	1	
2	5.89 or 5.885 to 5.886	1	
3	3.590 cao	1	
4	Parallelogram	P /	
5 (a)	9 and 16	1	
(b)	11	1	
6	$\frac{1}{8}x^2$ or $0.125x^2$ final answer	2	B1 for answer $\frac{1}{8}x^k$ or nx^2
7	460	2	B1 for 1 cm^2 : 100 km ² oe or M1 for $4.6 \times 1000000^2 \div 100000^2$ oe seen
8	x > -9	2	M1 for $\frac{x}{3} > 2 - 5$ oe or $\left(\frac{x}{3} + 5\right) \times 3 > 2 \times 3$ oe
9	45		M2 for 360 ÷ (180 – 172) or M1 for 180 – 172 or $\frac{180(n-2)}{n} = 172$ oe
10	$p = \frac{8r-5}{r-3}$ oe final answer	3	 M1 for correctly collecting terms in p on one side and terms not in p on the other side M1 for correct factorising M1 for correct division dependent on p appearing only once in a factorised expression Maximum M2 for an incorrect final answer
11	68 76 78 78	3	B1 for four values with a mode of 78B1 for four values with a median of 77B1 for total of four values is 300

Page 3Mark SchemeSyllabusPaperCambridge IGCSE – May/June 2016058022

Question	Answer	Mark	Part marks
12	$\frac{11}{30}$ cao	3	B2 for $\frac{33}{90}$ oe as final answer or M1 for $36.\dot{6} - 3.\dot{6}$ or $36.6^{r} - 3.6^{r}$ oe or B1 for $\frac{k}{90}$
13	10 cao nfww	3	M2 for $42.5 \times 2 \div 8.5$ allowing one error in the UB or LB provided it is still UB $\times 2 \div LB$ or M1 for one of 42.5 or 8.5 seen as bounds
14	$\frac{21}{8} \times \frac{3}{7}$ oe	M1	Must be shown
	$1\frac{1}{8}$ cao final answer	A2	A1 for $\frac{9}{8}$ oe e.g. $\frac{63}{56}$
15	$a = 3.5 \text{ or } \frac{7}{2}$ and $b = -17.25 \text{ or } -\frac{69}{4}$	3	B2 for one correct or M2 for $(x + \frac{7}{2})^2 - 5 - (\frac{7}{2})^2$ or M1 for $(x + \frac{7}{2})^2$ oe or $2a = 7$ or $a^2 + b = -5$ after $x^2 + 2ax + a^2$
16	Correctly eliminating one variable x = 4 y = 0.5 oe	M1 A1 A1	If zero scored SC1 for 2 values satisfying one of the original equations or if no working shown, but 2 correct answers given
17 (a)	Bisector of angle <i>B</i> accurate with two pairs of correct arcs	1219	B1 for accurate line with no/wrong arcs or for correct arcs with no/wrong line
(b)	Ruled line parallel to AC at a distance of 3 cm to AC only inside the triangle	1	
18 (a)	3n + 13 oe final answer	2	M1 for $3n + c$ or $kn + 13$
(b)	3^{n-1} oe final answer	2	M1 for recognition of terms being powers of 3
19 (a)	7.74 or 7.738 to 7.739 [billion]	2	M1 for 7.23 × $\left(1 + \frac{1.14}{100}\right)^6$
(b)	2042	2	B1 for 28 or 28.6or 29 or answer 2043

Page 4Mark SchemeSyllabusPaperCambridge IGCSE – May/June 2016058022

Qu	estion	Answer	Mark	Part marks
20 ((a)	240	2	M1 for any three pairs of products from $2.5 \times 12, 2.5 \times 26, 5 \times 15, 5 \times 10, 10 \times 2$
((b)	29.2 or 29.16 to 29.17	2	M1 for $(5 \times 10 + 10 \times 2) / their$ (a) or for their total of the bars above 10 minutes \div <i>their</i> (a)
21		62 on answer line or clearly identified as <i><acb< i=""> and two correct supporting reasons</acb<></i>	4	B1 for $ or for their orother appropriate correct angle one step from B1 for any correct reasone.g. isosceles triangle or angles in triangle = 180B1 for a different correct reason leading directly toe.g. angle at circumference is \frac{1}{2} angle at centre oeB1 for 62$
22 ((a)	$\begin{pmatrix} 20 & 4 \\ -12 & -8 \end{pmatrix}$	1	
((b)	$\begin{pmatrix} 22 & 3 \\ -9 & 1 \end{pmatrix}$	2	B1 for two correct elements
((c)	$-\frac{1}{7}\begin{pmatrix} -2 & -1 \\ 3 & 5 \end{pmatrix}$ oe isw	2	M1 for $-\frac{1}{7} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ or $k \begin{pmatrix} -2 & -1 \\ 3 & 5 \end{pmatrix}$ or det = -7 soi
23		Correct shading with three ruled accurate solid boundary lines	tpre	B2 for $3x + 4y = 12$ line through (0, 3) and (4, 0) or B1 for a diagonal line through one of these points B1 for $y = 2x$ line through (0, 0) and (1, 2) or through (1, 2) and (3, 6) B1 for $x = 3$ line

Page 5	Mark SchemeSyllabusPaperCambridge IGCSE – May/June 2016058022					
Question	Question Answer Mark Part marks					
24 (a)	a + b - c	1				
(b)	$\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} + \frac{1}{2}\mathbf{c}$	2	M1 for $\mathbf{c} + \frac{1}{2}$ (<i>their</i> (a)) \mathbf{c} e.g. $\overrightarrow{OC} + \frac{1}{2}\overrightarrow{CB}$, \overrightarrow{OQ}	or for a correc	t route	
(c)	$\frac{1}{2} \mathbf{c} - \frac{1}{2} \mathbf{a} - \frac{1}{6} \mathbf{b}$	2	M1 for $\frac{1}{3}$ b $-\frac{1}{2}$ (<i>their</i> (a)	a)) or other co	prrect route	
			e.g. $-\frac{2}{3}\mathbf{b}-\mathbf{a}+their$ (b),	, $\overrightarrow{PO} + \overrightarrow{OQ}$		

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/23 May/June 2016

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 4 printed pages.

© UCLES 2016

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0580	23

cao correct answer	only
--------------------	------

dep dependent

FT follow through after error

isw ignore subsequent working

oe or equivalent

SC Special Case

nfww not from wrong working

Question	Answer	Mark	Part marks
1	17	1	
2	71000 cao	1	
3	10.3 oe	2	M1 for $5x = 51.5$ oe
4	0.5 or $\frac{1}{2}$	2	M1 for correct first step e.g. $6y + 6 = 9$ or $y + 1 = \frac{9}{6}$
5	$\frac{1}{12} \times \frac{6}{5}$ oe $\frac{1}{10}$ final answer cao	M1 A1	Must be shown
6	Correct perpendicular bisector with 2 pairs of correct arcs	2	B1 for correct bisector with no arcs or incorrect arcs or for correct intersecting arcs with no/wrong line
7	$8x^6$ final answer	2	B1 for $8x^k$ or cx^6
8	$\frac{29}{90}$ oe, must be a fraction		M1 for $32.2 - 3.2$ or B1 for $\frac{k}{90}$
9	$\frac{1}{4}\mathbf{a} - \frac{1}{4}\mathbf{b} - \frac{1}{4}\mathbf{c} \text{oe}$	2	B1 for $\overrightarrow{GK} = \mathbf{a} - \mathbf{b} - \mathbf{c}$ oe soi or $\overrightarrow{GL} = \frac{1}{4} (\overrightarrow{GK})$ or for any correct route
10	14	2	M1 for $56 = 2 \times 2 \times 2 \times 7$ soi or $70 = 2 \times 5 \times 7$ soi or 2×7 as final answer
11 (a)	0.6 oe	1	
(b)	20 0.3 oe 0.3 oe	2	B1 for 20 B1 for 0.3 oe and 0.3 oe
12	110	3	B2 for <i>ADC</i> = 25 or B1 for <i>AEC</i> = 135 or <i>CAE</i> = 25

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0580	23

Q	uestion	Answer	Mark	Part marks
13	(a)	72	1	
	(b)	123	2FT	FT dep. on answer being obtuse M1 for $(360 - their(a) - 42)$ [÷2]
14	(a) (i)	8	1	
	(ii)	9, 15	1	
	(b)		1	
15		310 or 310.2 to 310.3	3	M2 for $7^3 - \frac{1}{2} \times \frac{4}{3} \times \pi \times \left(\frac{5}{2}\right)^3$
		19		or M1 for $\frac{1}{2} \times \frac{4}{3} \times \pi \times \left(\frac{5}{2}\right)^3$
				or SC1 for $7^3 - \frac{4}{3} \times \pi \times \left(\frac{5}{2}\right)^3$ soi
16		90	3	M1 for $y = k(x + 2)^2$ A1 for $k = 2.5$ or M2 for $\frac{(8+2)^2}{250} = \frac{(4+2)^2}{y}$ oe
17	(a)	10.4675 cao nfww	2	B1 for 3.95 or 2.65 seen or M1 for $(4.0 - 0.05) \times (2.7 - 0.05)$
	(b)	34 nfww	2	B1 for 7.65 or 0.225 seen or M1 for (7.6 + 0.05) ÷ (0.23 – 0.005)
18	(a)	2 cao	2	M1 for rise/run attempted e.g. 4/2 or other correct method for finding gradient or SC1 for $y = 2x - 1$ as answer
	(b)	y = 2x + 6 oe	2FT	FT for $y = their(a)x + 6$ B1 for $y = mx + 6$ ($m \neq 0$ or 2) or $y = 2x [+k]$ or $y = their(a)x [+k]$ ($k \neq 6$) or for answer $2x + 6$ or answer $their(a)x + 6$
19	(a)	57 122	2	M1 for $20000 \times (1 + \frac{30}{100})^4$ oe
	(b)	15	2	M1 for two substitutions greater than 4 e.g. 20 000 × $(1 + \frac{30}{100})^k$ where $k > 4$

Page 4

Mark Scheme Cambridge IGCSE – May/June 2016

SyllabusPaper058023

Q	uestion	Answer	Mark	Part marks
20		y < 4 $y \ge 3$ $x \ge 2$ y > x	4	B1 for each correct answer to a maximum of 3 marks. First two may be combined as a single inequality e.g. $3 \le y < 4$ for B2 After 0 scored SC1 for use of = signs or incorrect inequality signs in all four equations
21	(a)	5	2	M1 for $\frac{9}{k} = \frac{6+4.8}{6}$ oe
	(b)	24	3	M2 for $\sqrt[3]{\frac{2592}{1500}} \times 20$ oe
			P	or M1 for $\sqrt[3]{\frac{2592}{1500}}$ or $\sqrt[3]{\frac{1500}{2592}}$
22	(a)	1.5 nfww	2	B1 for 2.5 or 1
	(b)	3.5	2	B1 for 114 soi
	(c)	18	2	B1 for 102 soi
23	(a)	9.11 or 9.110	4	M3 for $\sqrt{5^2 + 3^2 + 7^2}$ or M2 for $\sqrt{5^2 + 3^2}$ or $\sqrt{3^2 + 7^2}$ or $\sqrt{5^2 + 7^2}$ or M1 for $5^2 + 3^2$ or $3^2 + 7^2$ or $5^2 + 7^2$
	(b)	33.3 or 33.28 to 33.29	3	M2 for $\sin = \frac{5}{their(a)}$ oe or B1 for identifying angle <i>ECH</i>

MARK SCHEME for the March 2016 series

0580 MATHEMATICS

0580/22

Paper 2 (Paper 22 – Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0580	22

cao	correct answer only
1	1 1 /

depdependentFTfollow through

FT follow through after error isw ignore subsequent working

oe or equivalent

SC Special Case

nfww not from wrong working

Qu.	Answers	Mark	Part Marks
1	7, -4	1	
2	2x(1-2y) final answer	2	M1 for $2(x - 2xy)$ or $x(2 - 4y)$ or for correct answer then spoilt
3	75.1 or 75.09 to 75.10	2	M1 for $\cos[=] \frac{0.9}{3.5}$
4	n < 1.5 oe final answer	2	B1 for 1.5 oe in answer
			or M1 for $3 > 8n - 6n$ oe
5	9.1 oe	2	M1 for $\frac{5.2}{PQ} = \frac{12.4}{21.7}$ oe
6	$\frac{4}{9}$ oe, must be fraction	2	M1 for $10 \times 0.\dot{4} - 0.\dot{4}$ oe
7	130 or 130.0 to 130.1	2	M1 for $\frac{1}{2} \times 22.3 \times 27.6 \times \sin 25$
8	$\frac{1}{5} \begin{pmatrix} 7 & 2 \\ 8 & 3 \end{pmatrix} \text{ oe isw}$	2 ore	M1 for $\frac{1}{5} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ soi or $k \begin{pmatrix} 7 & 2 \\ 8 & 3 \end{pmatrix}$ $k \neq 0$ or det = 5 soi
9	$\frac{35(or 95)}{60} + \frac{39}{60}$ $2\frac{7}{30}$	M1 A2	accept $\frac{35k(or \ 95k)}{60k} + \frac{39k}{60k}$ or A1 for $\frac{67}{30}$ or $\frac{134k}{60k}$ or $1\frac{74k}{60k}$ or $2\frac{14k}{60k}$
10	64 000	3	M2 for $\frac{1.6 \times 20000^2}{100^2}$ oe or
			M1 for figs 64 in answer or $1 \text{ cm}^2 = 40000 \text{ m}^2$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0580	22

Qu.	Answers	Mark	Part Marks
11	16.58 cao	3	B2 for 16.6 or 16.580 to 16.583 final answer or 16.58 not as final answer or M1 for $\frac{38}{360} \times 2 \times \pi \times 25$ and B1 for rounding their more accurate answer correctly to 4sf
12	87 cao nfww	3	B2 for 87.04 or 87.0 nfww or M1 for 500.5 or 5.75 seen or for $(500 + 0.5) \div (5.8 - 0.05)$ and B1 for truncating their decimal answer to an integer
13 (a)	$2^5 \times 3^2 \times 7$ oe final answer	3	B2 for product of two of 2^5 , 3^2 , 7 or B1 for 2, 3 and 7 seen or M1 for 2 × 1008 or 3 × 672 or 7 × 288 soi
(b)	2.016×10^3	1	
14 (a)	x^8y^7 final answer	2	B1 for answer $x^8 y^k$ or $x^k y^7 (k \neq 0)$
(b)	$27 p^6 m^{15}$ final answer	2	B1 for 2 correct of 27, p^6 , m^{15} in a product as answer
15	111.2 or 111.1 to 111.2	4 ore	M2 for $[\cos =] \frac{2.8^2 + 3.6^2 - 5.3^2}{2 \times 2.8 \times 3.6}$ or M1 for implicit form A1 for $[\cos =] -0.362$ to -0.361
16	44.1 or 44.07	4	M1 for 4 of mid-values 15 30 45 55 75 soi M1 for $\sum fx$ for any x in intervals including boundaries M1 dep for $\sum fx \div 70$ Dep on 2nd M mark earned

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0580	22

	Qu.	Answers	Mark	Part Marks
17		$\frac{-(-11)\pm\sqrt{(-11)^2-4(3)(4)}}{2\times 3}$	2	B1 for $\sqrt{(-11)^2 - 4(3)(4)}$ or better
		0.41 and 3.26 final ans cao	B1B1	and, if in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$, B1 for $p = -(-11)$ and $r = 2(3)$ SC1 for 0.4 and 3.3 or 0.409 and 3.257 or -0.41 and -3.26 or 0.41 and 3.26 seen in working
18	(a)	47	1	
	(b)	117	2	M1 for 360 – (115 + 85 + 97)
	(c)	244	2	B1 for 116 seen at centre or 122 seen at circumference
19		$y < 2$ oe and $x \ge -2$ oe	2	B1 for either correct
		$y \ge \frac{1}{2} x + 1$ oe and $y \le -x + 3$ oe	3 ore	B2 for either $y \ge \frac{1}{2}x + 1$ oe or $y \le -x + 3$ oe or SC2 for $y = \frac{1}{2}x + 1$ oe and $y = -x + 3$ oe or SC1 for $y = \frac{1}{2}x + 1$ oe or $y = -x + 3$ oe or SC4 for $y \le 2$ oe, $x > -2$ oe, $y > \frac{1}{2}x + 1$ oe and $y < -x + 3$ oe
20	(a)	9a+3b	1	
	(b)	36a + 6b = 96 or $9a + 3b = 21$	B 1	
		for correct method to eliminate one variable	M1	
		a = 3 b = -2	A1 A1	If M0 A0 A0 scored SC1 for 2 values satisfying $36a+6b=96$ or $9a+3b=21$ or if no working shown, but 2 correct answers given

Ρ	age 5	Mark	Mark Scheme		
		Cambridge IG	2016 0580 22		
	Qu.	Answers	Mark	Part Marks	
21	(a)	$\frac{2}{3}$ oe	1		
	(b)	<i>their</i> $\frac{2}{3}$, $\frac{7}{8}$, $\frac{5}{8}$ oe	2	B1 for either $\frac{7}{8}$ or $\frac{5}{8}$	
	(c) (i)	$\frac{1}{24}$ oe	2	M1 for $\frac{1}{3} \times \frac{1}{8}$ seen	
	(ii)	$\frac{17}{24}$ oe	3	M2FT for $\frac{1}{3} \times \frac{7}{8} + \frac{2}{3} \times \frac{5}{8}$	
				or M1FT for $\frac{1}{3} \times \frac{7}{8}$ or $\frac{2}{3} \times \frac{5}{8}$	

MARK SCHEME for the October/November 2015 series

0580 MATHEMATICS

0580/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2015	0580	21

cao	correct answer only
-----	---------------------

- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Question	Answer	Mark	Part Marks
1	[+]17	1	
2		1	PRES
3	Triangle (3, -2), (4, -2), (4, -1)	2	B1 for movement 2 right or 3 down
4	628	2	M1 for $\frac{785}{1+4} [\times 4]$
5	7 nfww	2	M1 for 7.5×8 or for $(7 + 8 + 8 + y + 6 + 9 + 10 + 5) \div 8 = 7.5$ or better oe
6	$\frac{\sqrt{4} \times 30}{9-3}$	M1	Allow one error and 2 for $\sqrt{4}$ and 6 for $9-3$
	10 nfww	A1	
7	18	2	M1 for $36 = 2 \times 2 \times 3 \times 3$ soi or $90 = 2 \times 3 \times 3 \times 5$ soi or listing the correct factors of 36 and 90 showing a minimum of 2, 3, 6, 9 and 18
8 (a)	90	1	
(b)	8.29 or 8.289 to 8.29	2	M1 for $\frac{OP}{11} = \tan 37^\circ$ oe

Page 3		Mark Scheme			Syllabus	Paper
		Cambridge IGCSE -	- Octob	er/November 2015	0580	21
						
9	(a)	(a+3c)(x+y) final answer	2	B1 for $a(x + y) + 3c(x + y)$		
				or $x(a+3c) + y(a+3c)$		
	(b)	3(a-2b)(a+2b) final answer	3	B2 for $3(a-2b)(a+2b)$ seen a	nd then spoil	ed
				or $(3a - 6b)(a + 2b)$,	
				or $(a - 2b)(3a + 6b)$		
				or $(a - 2b)(a + 2b)$		
				or		
				B1 for $3(a^2 - 4b^2)$		
10		$\frac{14}{2}$ oe must be fraction	2	M1 for $15.\dot{5} - 1.\dot{5}$ oe		
		90		or		
				B1 for $\frac{k}{k}$		
				90		
11		31.4 or 31.36 to 31.37	3	M2 for $\begin{vmatrix} -\times \\ 2 \end{vmatrix} 6.1 \times \pi + 2 \times 6.1$ oe		
				or		
				B2 for 19.16 to 19.17 or 19.2		
				or		
				M1 for $6.1 \times \pi$ or for $12.2 \times \pi$		
12		81	3	M1 for $V = k(r+1)^3$		
				and A1 for $k = 3$		
				or		
				M2 for $\frac{V}{V} = \frac{3^3}{2}$ or		
				24^{-23}		
		$\sqrt{v-h}$		2.		2
13		$\left \frac{1}{2} \right \frac{y}{a}$ oe final answer	3	M1 for correctly subtracting to	isolate term i	$n x^2$
				M1 for correct division	ly finding th	0.001070
			atp	root	iy mang u	e square
14		10 nfww	4	B3 10 3 or 10 28 to 10 20		
17		17 m w w	-	or		
				300×60^2		
				M12 for $\frac{1}{56 \times 1000}$ oe		
				or	1	
				WII for distance divided by spee	ea ×1000	
				e.g. <i>their</i> $300 \div their 56$ or $\frac{50}{2}$	$\frac{1000}{60^2}$	
				If B0 then B1 for seeing their ar	iswer in deci	mal form
				correctly written to the nearest i	nteger	

Ра	ge 4	1 Mark Scheme Syllabus Par						
		Cambridge IGCSE -	- Octob	ober/November 2015 0580 21				
r				Ι				
15		$\frac{x+4}{x+1}$ final answer	4	B1 for $(x - 4)(x + 4)$ and B2 for $(x - 4)(x + 1)$ or SC1 for $(x + a)(x + b)$ where $a + b = -3$ or $ab = -4$				
16		198	4	B3 for 197.7 or answer 198.0 or M2 for $1800 \times \left(1 + \frac{1.5}{100}\right)^7 - 180$ or B2 for answer 1998 or M1 for $1800 \times \left(1 + \frac{1.5}{100}\right)^7$ If B0 then B1 for seeing their ar correctly written to the nearest i)0)0 nswer in decin nteger	mal form		
17	(a)	Enlargement	1	1.01				
1,	(")	1						
		$\overline{2}$	1					
		origin oe	1					
	(b)	$\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$ oe	2FT	correct or FT <i>their</i> (a) allow for where $k = their$ scale factor in (a B1 for one correct row or correct $(k \neq 0 \text{ or } 1)$	$k 2 \text{ marks} \begin{pmatrix} k \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ k \end{pmatrix} \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$		
18	(a)	$\begin{pmatrix} -9 & -5 \\ -7 & -5 \end{pmatrix}$	2	B1 for two correct elements				
	(b)	$\frac{1}{10} \begin{pmatrix} 4 & 2 \\ -3 & 1 \end{pmatrix} \text{ oe }$	2	B1 for $\frac{1}{10} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ or $k \begin{pmatrix} 4 & 2 \\ -3 & 1 \end{pmatrix}$ or det = 10 soi	seen			
	(c)	Not the same order oe	1					

Ра	<u>ge 5</u>	Mark Scheme Syllabus Paper				
		Cambridge IGCSE -	- Octob	er/November 2015	0580	21
19		281 or 280.8 to 280.9	5	M2 for $\frac{25}{360} \times 2 \times \pi \times 15 \times 5$ oe or M1 for $\frac{25}{360} \times 2 \times \pi \times 15$ oe and M1 for $[2] \times \frac{25}{360} \times \pi \times 15^2$ oe and B1 for $15 \times 5 [\times 2]$		
20	(a)	0.16 oe	2	M1 for 0.4 × 0.4 If zero scored SC1 for fully corr involving a without replacement	rect evaluate t method	d method
	(b)	0.58 oe	4 atp	M3 for $1 - (0.4^2 + 0.5^2 + 0.1^2)$ or M2 for $0.4^2 + 0.5^2 + 0.1^2$ ALT method M3 for $0.4 \times (0.5 + 0.1) + 0.5 \times (0.4 + 0.1)$ or M2 for addition of any three of $0.4 \times 0.5, 0.4 \times 0.1, 0.5 \times 0.4, 0.5$ and 0.1×0.5 or M1 for addition of any two of: $0.4 \times 0.5, 0.4 \times 0.1, 0.5 \times 0.4, 0.5$ and 0.1×0.5 If zero scored SC2 for fully corr involving a without replacement	oe) + 0.1×(0.4 $\approx 0.1, 0.1 \times 0.1$ × 0.1, 0.1×0. rect evaluated t method	+ 0.5) oe .4 .4 d method
21	(a)	512	2	B1 for $[f(2) =]8$		
	(b) (c)	6x - 2 or $2(3x - 1)$ final answer $\frac{1}{2}(x - 1)$ oe	2 2	M1 for $(x^3)^3$ or better B1 for $3(2x+1) - 5$ or better M1 for correct first step eg $y-1=2x$ or $\frac{y}{2}=x+\frac{1}{2}$ or $x=2y+1$ or better		

MARK SCHEME for the October/November 2015 series

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2015	0580	22

- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Question	Answer	Mark	Part Marks
1	17	1	
2	Parallelogram	1	
3	694 or 694.4[4]	2	M1 for 950 ÷ 1.368
4	5.83 or 5.830 to 5.831	2	M1 for $\sqrt{(-3)^2 + 5^2}$
5	262 or 261.7 to 261.83	2	M1 for $\frac{1}{2} \times \frac{4}{3} \pi \times 5^3$ If zero scored SC1 for final answer 524 or 523.5 to 523.7
6 (a) (b)		1	
7	$\begin{pmatrix} 11 & -8 \\ -6 & 8 \end{pmatrix}$	20	B1 for two correct elements
8	3826 or 3826.38	2	M1 for $8000 \times \left(1 - \frac{10}{100}\right)^7$ oe
9	0.3	2	M1 for $\frac{k \times 50000 \times 50000}{100000 \times 100000}$ oe If zero scored SC1 for figs 3
10	54	3	M2 for $14.4 \times \frac{15}{4}$ oe or M1 for $14.4 \div 4$ or $\frac{4}{15}$ associated with 14.4 If zero scored SC1 for final answer 19.6[4]

Page 3	Mark Scheme Syllabus				
Cambridge IGCSE – October/November 2015					22
11	6.24 or 6.244 to 6.245	3	M2 for $\sqrt{8^2 - 5^2}$ or M1 for $8^2 = 5^2 + x^2$ or	better	
12	$2\frac{3}{12}$ or $1\frac{15}{12}$ or $\frac{27}{12}$ or $\frac{9 \times 3}{4 \times 3}$	M1	Accept any correct converse denominator 12k	rsion with co	ommon
	<i>their</i> $\left(\frac{27}{12} - \frac{11}{12} = \frac{16}{12}\right)$ oe	M1	Correct resolving of <i>their</i> denominator 12k showing	subtraction full working	with g
	$1\frac{1}{3}$ or $\frac{4}{3}$ cao	A1	Working and then simplif	ied answer n	nust both be
13	8.12 or 8.118	3	M2 for $\frac{12.4}{\sin 74} \times \sin 39$		
	AT	PF	or M1 for implicit version	$\frac{\sin 39}{y} = \frac{\sin 39}{1}$	$\frac{n}{2.4}$ oe
14	2500 nfww	3	M2 for $2475 \div \left(1 - \frac{1}{100}\right)$ or M1 for 2475 associate	oe d with 99%	
15 (a)	(3w+10)(3w-10) final answer	1			
(b)	(m+n)(p-6q) oe final answer	2	B1 for $p(m+n) - 6q(m-m) = m(p-6q) + n(p-6q) + n(p-6q$	+ n) oe or - 6q)oe	
16	36.8 or 36.80 to 36.81	3	M1 for $\frac{26}{360} \times 2 \times \pi \times 15$ M1 for $2 \times 15 + a$ term in	volving π	
17	175	pre	M1 for $y = k(x-1)^2$ oe A1 for $k = 7$ or M2 for $\frac{63}{(4-1)^2} = \frac{y}{(6-1)^2}$	$\overline{\left(\right)^{2}}$ oe	
18	16.2 16.6 nfww	3	M1 for two of 2.35, 5.75, or $2 \times (5.8 - 0.05 + 2.4)$ or $2 \times (5.8 + 0.05 + 2.4 + 16.2)$ A1 16.2 or 16.6 in either a If zero scored SC2 for boo answers provided 16.6 nf	2.45, 5.85 so 0.05) 0.05) answer space th correct rev ww	een e versed

Page 4	Mark Scheme Syllabus Pap				Paper
	Cambridge IGCSE – Octo	ber/No	vember 2015	0580	22
19	$\sqrt{(-6)^2 - 4(5)(-3)}$ or better seen	B1	If completing the square B1 for $\left(x - \frac{3}{5}\right)^2$ oe		
	if $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ seen then $p = -(-6)$ and $r = 2 \times 5$	B1	B1 for $\frac{3}{5} + \sqrt{\frac{3}{5} + \left(\frac{3}{5}\right)^2}$ o	$r \frac{3}{5} - \sqrt{\frac{3}{5} + (}$	$\left(\frac{3}{5}\right)^2$ oe
	-0.38 1.58 cao final answers	B1 B1	If B0, SC1 for - 0.4 and 1.6 or - 0.379[795] and 1.	579[795]	
			or - 1.58 and 0.38 as final answers or - 0.38 and 1.58 see	en in working	7
20 (a)	8	B1 B1	line from (0, 8) to (10, 8) line from <i>their</i> (10, 8) to ((55, 0)	
(b)	10 55 260	3FT	M2FT for 8 × 10 + 0.5 ×	8 × 45 oe	
			or for a fully correct area graph or M1FT for 8×10 or 0.3	calculation f $5 \times 8 \times 45$ or	for <i>their</i>
			correct area calculation for	or <i>their</i> graph	1
21 (a)	12	2	M1 for $\frac{7.2}{x} = \frac{15}{25}$ oe or be	etter eg 7.2 × -	25 15
(b)	12.8	3	M2 for $16 \times \sqrt[3]{\frac{192}{375}}$ oe or		
			M1 for $\sqrt[3]{\frac{192}{375}}$ or $\sqrt[3]{\frac{375}{192}}$ or	be or $\left(\frac{16}{y}\right)^3$	$=\frac{375}{192}$ oe
22 (a)	3.5 nfww	3	M1 for Σfx soi M1 (dep) for \div 24		
(b)	2 nfww	3	M2FT for $\frac{their 84 + x}{25} = 3$ or M1 for 25 × 3.44	.44 or better	

Page 5	Mark Scheme			Syllabus	Paper
	Cambridge IGCSE – Octob	0580	22		
23 (a)	$\frac{8}{14}$ and $\frac{5}{13}$	1			
	$\frac{6}{13}$ and $\frac{7}{13}$	1			
(b) (i)	$\frac{30}{182}$ oe	2	M1FT for $\frac{6}{14} \times their \frac{5}{13}$		
(ii)) $\frac{126}{182}$ oe	3	M2FT for $1 - \frac{8}{14} \times \frac{7}{13}$ or $\frac{6}{14} \times \frac{5}{13} + \frac{6}{14} \times \frac{8}{13} + \frac{6}{14}$ or $\frac{6}{14} + \frac{8}{14} \times \frac{6}{13}$ oe or M1FT for sum of any $\frac{6}{14} \times \frac{5}{12}$ or $\frac{6}{14} \times \frac{8}{12}$ or $\frac{8}{14}$	$\frac{8}{14} \times \frac{6}{13}$ two of $- \times \frac{6}{12}$	

MARK SCHEME for the October/November 2015 series

0580 MATHEMATICS

0580/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0580	23

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu	estion	Answer	Mark	Part marks
1		170 cao	1	
2		[0].101 or [0].1005 to [0].1006	1	
3		[0].00017	1	PRA
4		6	1	
5	(a)	12, 15	1	
	(b)	11, 13	1	
6		5-u final answer	2	B1 for $5 + ku$ or $j - u$, $k \neq 0$ as final answer
7		2x(1-2x) final answer	2	B1 for $2(x-2x^2)$ or $x(2-4x)$ as final answer
8		4140	2	M1 for $(25-2) \times 180$ or $25 \times \left(180 - \frac{360}{25}\right)$
9		23.6 or 23.57 to 23.58	2 ato	M1 for $\sin[=]\frac{2}{5}$ oe
10	(a)	625	1	
	(b)	9	1	
11	(a)	$\frac{3x}{2}$ of final answer	1	
	(b)	$\frac{x^2+2}{x}$ oe final answer	1	
12	(a)	10	1	
	(b)	$P\cup Q'$ oe	1	
13		10	2	B1 for $7 \times 3 - 2 \times u$

Page 3

Mark Scheme Cambridge IGCSE – October/November 2015

SyllabusPaper058023

Question	Answer	Mark	Part marks
14	6	3	M2 for $4.5 \times \sqrt[3]{\frac{128}{54}}$ oe or better
			M1 for $\sqrt[3]{\frac{128}{54}}$ or $\sqrt[3]{\frac{54}{128}}$ oe or $\frac{54}{128} = \left(\frac{4.5}{x}\right)$ oe
15	Any two of $\frac{8}{12}, \frac{2}{12}$ or $\frac{3}{12}$ oe	M1	M1 for any 2 correct over a common denominator e.g. $\frac{4}{6}$ and $\frac{1}{6}$
	$\frac{8}{12} + \frac{2}{12} - \frac{3}{12}$ oe	M1	or SC2 for final answer $\frac{13}{12}$ or $1\frac{1}{12}$ with full working
	$\frac{7}{12}$	A1	RA
16	$\frac{2(s-ut)}{t^2}$ oe final answer	3	M1 for correctly isolating term in <i>a</i> M1 for correctly multiplying by 2 (or -2) M1 for correctly dividing by t^2 (or $-t^2$)
17	$\frac{x^{16}}{2y^4}$ final answer	3	B2 for fraction as final answer with two of x^{16} , 2, y^4 correct and in correct position or B1 for fraction as final answer with one of x^{16} , 2, y^4 correct and in correct position
18	0.96 oe	3	M2 for $1 - 0.2 \times 0.2$ or $0.8 + 0.2 \times 0.8$ or $0.8 \times 0.8 + 0.8 \times 0.2 + 0.2 \times 0.8$ or B1 for one of 0.2×0.2 , 0.8×0.8 , 0.8×0.2 , 0.2×0.8 seen
19	$\frac{18}{(x+2)^2}$ oe	2	M1 for $y = \frac{k}{(x+2)^2}$ or better If zero scored SC1 for final answer of $y = \frac{k}{(x+2)^2}$ where $k \neq 0$ or 18
20	18 cao nfww	3	M2 for $\frac{877.5}{7.5 \times 6.5}$ or B1 for any two of 877.5, 7.5 and 6.5 seen

```
Page 4
```

Mark Scheme Cambridge IGCSE – October/November 2015

Syllabus	Paper
0580	23

Questio	n Answer	Mark	Part marks		
21	$\sqrt{(4)^2 - 4(3)(-5)}$ or better seen	B1	If completing the square		
	if $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ seen then		B1 for $\left(x+\frac{2}{3}\right)^2$ oe		
	p = -4 and $r = 2(3)$	B1	B1 for $-\frac{2}{3} + \sqrt{\frac{5}{3} + \frac{2^2}{3^2}}$ or $-\frac{2}{3} - \sqrt{\frac{5}{3} + \frac{2^2}{3^2}}$		
	– 2.12 0.79 final answers	B1 B1	If B0, SC1 for 0.786[299] and -2.119[632] - 2.1 and 0.8 or - 2.120 or - 2.119 and 0.786 or 2.12 and -0.79 final answers -2.12 and 0.79 seen not as final answers		
22	$\frac{1}{2-5w}$ final answer nfww	4	B1 for $2(2 + 5w)$ B1 for $2(4 - 25w^2)$ B1 for $[2](2 + 5w)(2 - 5w)$		
			ALT method B3 for $\frac{4+10w}{(4+10w)(2-5w)}$ or B2 for $(4+10w)(2-5w)$		
23 (a)	$\frac{1}{3}(-\mathbf{a}+\mathbf{b})$ oe	2	M1 for any correct route eg $AO+OB+\frac{2}{3}BA$ or B1 for $\overrightarrow{AB} = -a + b$ of		
(b)	$\frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$ oe simplified	2FT	FT their $(a) + a$ simplified only if in terms of a and b .		
		atp	M1 for identifying \overrightarrow{OC} as position vector or correct route in any form or for correct unsimplified answer		
24 (a)	6.2	1			
(b)	5.8	2	M1 for 24 soi		
(c)	70	2	M1 for 10 soi		
25	2.9[0] or 2.898 to 2.901	5	M4 for $\frac{30}{360} \times \pi \times 8^2 - 0.5 \times 8\cos 30 \times 8\sin 30$ or M1 for $\frac{30}{360} \times \pi \times 8^2$ and M2 for [area of triangle =] $0.5 \times 8\cos 30 \times 8\sin 30$ oe or M1 for $\frac{OC}{8} = \cos 30$ oe or $\frac{BC}{8} = \sin 30$ oe		
Page 5	Mark Scheme			Syllabus	Paper
------------	---	-----	--	--	--------------
	Cambridge IGCSE – October/November 2015				23
26 (a)	12.5 oe	2	M1 for $45 \times 1000 \div 60 \div 60$	be	
(b)	1.25 oe	1FT	FT <i>their</i> (a) ÷ 10		
(c)	312.5 oe	3FT	FT for $25 \times their$ (a) M2 for $20 \times their$ $12.5 + 0.5 \times$ or M1 for one correct relevant or SC2 for final answer 1125	10 × <i>their</i> 12 area calculati	.5 oe ion

MARK SCHEME for the May/June 2015 series

0580 MATHEMATICS

0580/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	21

- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Question.	Answer	Mark	Part Marks
1	9.5	1	
2	7.37 or 7.371	1	
3	2.7×10^{5}	1	
4	$2x^2 + 8x - 35$ final answer	2	B1 for 2 correct terms in final answer or M1 for $2x^2 + 3x$ or $5x - 35$
5	Sammy and correct reason with 25.7% oe shown	2	B1 for 25.7% or 0.257 seen or conversion of 26% to fraction and common denominator
6	44	2	B1 for 75.5 or 119.5 seen
7	$24u^2w^3$ final answer	2	B1 for 2 correct elements in final answer
8	13.6 or 13.60	3	M2 for $\sqrt{(-4-7)^2 + (6-(-2))^2}$ oe or M1 for $(-4-7)$ oe or $(6-(-2))$ oe
9	$\frac{9}{5}$	B1 tpre	or $\frac{63}{35}$
	their $\frac{9}{5} \times \frac{7}{3}$ or $\frac{9 \times 7}{5 \times 3}$	M1	or <i>their</i> $\frac{63}{35} \div \frac{15}{35}$ or equivalent division with fractions with common denominators
	$\frac{21}{5}$ or $4\frac{1}{5}$ cao	A1	
10	2520	3	M2 for $12 \times (1+6) \div 2$ oe or M1 for 1 area correct
			If zero scored B1 for top speed = 720 m per min or total time = 360 sec

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	21

Qu	estion.	Answer	Mark	Part Marks
11	(a)	4 <i>n</i> oe final answer	1	
	(b)	$3n^2 + 8$ oe final answer	2	M1 for a quadratic expression as final answer or $3n^2 + 8$ oe in working
12		18	3	M2 for $2(2+4)^2 = p(-2+4)^2$ oe
				A1 for $k = 72$
13		72	3	M2 for $\frac{1280}{64} \times \frac{60 \times 60}{1000}$
		GAT	PF	M1 for working out distance \div speed e.g. figs 1280 \div 64 or figs $\frac{1280}{their speed}$
				or for working out km/h to m/s conversion e.g. $64 \times \frac{1000}{60 \times 60}$ oe
				or their $\left(\frac{1280}{64}\right) \times \frac{60 \times 60}{1000}$ oe
14	(a)	a + 2b - a or $a - (a - 2b)$ oe	1	
	(b)	Parallelogram	1	
		<i>PM</i> equal and parallel to <i>QR</i>	1	SC1 for answer trapezium with reason PM parallel to QR
		or	tpre	:P.
		PM or PS parallel to $QRand MR found = a so 2 pairs ofparallel sides$		
15		<i>y</i> < 8	1	
		$y \ge 6 - x$ oe and $y \ge x + 2$ oe	3	B2 for either $y \ge 6 - x$ oe or $y \ge x + 2$ oe or SC2 for $y = 6 - x$ oe and $y = x + 2$ oe or SC1 for $y \ge 6 - x$ or $y = 6 - x$ or $y \ge x + 2$ or $y = x + 2$

Page 4	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	21

Qu	estion.	Answer	Mark	Part Marks
16		1597 cao	4	B3 for 1597.39 or 1597.3[9] or 1597.4 or 6597
				or B2 for 6597.3[9] or 6597.4
				or B1 for $5000 \left(1 + \frac{2}{100} \right)^{14}$
				If B1 scored
				B0 scored and an attempt at compound interest is shown SC1 for <i>their</i> 6597[] – 5000 evaluated correctly provided answer positive and SC1 for <i>their</i> final answer rounded correctly to nearest \$ from their more accurate answer
17	(a)	2 × 3 × 5	P	P1 for 2, 3, 5 as prime fectors
1/	(a)	00	2	D1 for $0.0k$
	(D)	90	2	or for listing multiples of each up to 90 or $2 \times 3^2 \times 5$
18		Correctly equating one set of coefficients	M1	
		Correct method to eliminate one variable	M1	Dependent on the coefficients being the same for one of the variables Correct consistent use of addition or subtraction using their equations
		<i>x</i> = 0.8	A1	If zero scored SC1 for
		<i>y</i> = -3	A1	2 values satisfying one of the original equations or
			pre	if no working shown, but 2 correct answers given
19	(a)	7.5	2	M1 for $[10] \times \frac{6}{8}$ oe
	(b)	12 cao	2	M1 for $9 \times \frac{8}{6}$ oe or $9 \times \frac{10}{4 \min(n)}$
•				$\frac{1}{2}$
20	(a)	(p+t)(y+2x) final answer	2	B1 for $y(p+t) + 2x(p+t)$ or p(y+2x) + t(y+2x)
				p(y + 2x) + i(y + 2x)
	(b)	7(h+k)(h+k-3) final answer	2	B1 for $7((h+k)^2 - 3(h+k))$ or $(h+k)(7(h+k)-21)$

Page 5	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	21

Que	estion.	Answer	Mark	Part Marks
21		285 cao	4	M1 for $\frac{1}{3} \times \pi \times 4^2 \times 9$, 48π
				M1 for $\frac{1}{2} \times \frac{4}{3} \times \pi \times 4^3$, $\frac{128\pi}{3}$
				A1 for 284.8 to 284.9, $\frac{272\pi}{3}$
				If A0 then B1 for <i>their</i> final answer rounded correctly to nearest whole number from their more accurate answer dependent on at least M1
22	(a)	$\begin{pmatrix} 22 & 17 \\ 18 & 7 \end{pmatrix}$	2	M1 for a 2×2 matrix with 2 correct elements
	(b)	$\frac{1}{2} \begin{pmatrix} 4 & -3 \\ -6 & 5 \end{pmatrix}$	2	M1 for $\frac{1}{2} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ or $k \begin{pmatrix} 4 & -3 \\ -6 & 5 \end{pmatrix}$ soi
		9		or det = 2 soi
23	(a)	-13	1	
	(b)	-3x - 1 or $5 - 3(x + 2)$	1	
	(c)	9x - 10 cao	2	M1 for $5 - 3(5 - 3x)$
	(d)	$\frac{5-x}{3}$ final answer oe	2	M1 for correct first step e.g.
		J Z	2	$y + 3x = 5$ or $\frac{y}{3} = \frac{5}{3} - x$ or $y - 5 = -3x$ or
		24		better
		·Sa	tpre	or
				for interchanging x and y, e.g. $x = 5 - 3y$, this does not need to be the first step

MARK SCHEME for the May/June 2015 series

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	22

cao	correct answer only
-----	---------------------

- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Question	Answer	Mark	Part marks
1	5.34×10^{7}	1	
2	9 [h] 30 [min] cao	1	
3	$\frac{1}{4}$ or 0.25	1	
4 (a)	7	1	
(b)	Any number except 3, 7 or 20	1	
5	0.2 oe	2	M1 for 1 – (0.15 + 0.3 + 0.35)
6	8×10^3 or 8000 nfww	2	M1 for $w + 4 \times 10^3 = 1.2 \times 10^4$ oe or $5w + 20 \times 10^3 = 6 \times 10^4$ oe
7	Parallel	1	
	Same length	1	
8	$2n^2 + 3$ oe final answer	2	M1 for a quadratic expression as final answer
	· Satp	rep	or $2n^2 + 3$ oe in working
9	$\frac{23}{90}$ oe, must be fraction	2	M1 for $25.\dot{5} - 2.\dot{5}$ oe e.g. $2.55^{r} - 0.25^{r}$ or B1 for $\frac{k}{90}$
10	7	2	B1 for 120.5 or 113.5 seen
11	$\frac{1}{5}\begin{pmatrix} -2 & -1\\ 11 & 3 \end{pmatrix}$ oe	2	M1 for $k \begin{pmatrix} -2 & -1 \\ 11 & 3 \end{pmatrix}$ soi
			or $\frac{1}{5} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
			or $det = 5$ soi

Page	9 3	Mark Schem	е		Syllabus	Paper
		Cambridge IGCSE – Ma	y/June 20	015	0580	22
				T		
12		$\frac{8}{3}$	B1	or $\frac{40}{15}$ accept $\frac{3}{8}$ or	$\frac{15}{40}$	
		$\frac{4}{5} \times their \frac{3}{8}$ oe	M1	or $\frac{12}{15} \div their \frac{40}{15}$ or equivalent division with fractions with common denominators		
		$\frac{3}{10}$ cao	A1			
13	(a)	11	1			
	(b)	8	2FT	FT $30-2 \times their$ (a	ı)	
		TF	R	or M1 for $4 \times 7 = 2$ or $4(x-4) = 2$ or $2 \times 7 + 2(x)$ Allow x to be their	P(x-1) + FG P(x-1) + FG -4) = 2(x - 1) (a) in each	f oe oe 1) + FG oe
14		684	3	M2 for $0.95 \times 4 \times 3$	× 60	
				or M1 for 0.95×4 or $4 \times 3 \times 60$ or $0.95 \times 3 \times 60$ or $0.95 \times 4 \times 60$	[× 3]	
15		$\frac{2x-23}{(x+2)(2x-5)}$ final answer	3	B1 for a common de $(x+2)(2x-5)$	enominator o	f
		5		B1 for $3(2x - 5) - 4$ or SC2 for final ans	$(x+2)$ or between $\frac{2x}{(x+2)}$	tter -7 (2r-5)
		Satp	rep	or SC1 for numerate answer	or of $2x - 7$ is	n final
16	(a) (i)	0.5 or -0.5 or $\frac{1}{2}$ or $-\frac{1}{2}$	1			
	(ii)	4	1			
	(b)	1.37 or 1.37[4]	1			
17	(a)	[y =] 2x + 3 cao	3	M2 for correct unsite or B1 for gradient = better and B1 for c =	mplified equation $(11-3) \div (4)$ = 3	ation 4 – 0) or
	(b)	$-\frac{1}{2}$ oe	1FT	$-1 \div their m$		

Page	e 4	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE – Ma	y/June 20)15	0580	22
				1		
18	(a)	78	3	M2 for $5 \times 12 + \frac{1}{2} \times \frac{1}{2} \times 6 \times (5+8) \times 2$	< 12 × (8 – 5) oe	or
				or M1 for 5×12 , $\frac{1}{2}$ $\frac{1}{2} \times 6 \times (5+8)$ or 1	$\frac{1}{2} \times 12 \times (8 - 2 \times 8 - (\dots))$	5),
	(b)	1170	1FT	$15 \times their$ (a)		
19	(a)		1	Correct circle, radiu	as 4 cm centre	e C
	(b)		2	B2 for correct bisec arcs or B1 for correct bis	tor with 2 pa sector with n	irs of correct o/wrong arcs
	(c)	À B	1	Correct complete bo shading. Dep on at least B1 i	oundary and n (b)	correct
20	(a) (i)	4	1			
	(ii)	{3, 9}	1			
	(iii)	fewer than 6 numbers from {1, 3, 5, 7, 9, 11} or Ø	1			
	(b)		1 reP	.5 0'		
21	(a)	m = 2	2	B1 for <i>m</i> = 2		
		n = -10		B1 for $n = -10$ If 0 scored SC1 for	$(x+2)^2$ in w	vorking
				or $x^2 + 2mx + m^2 + m^2$ coefficients $2m[x] = 4[x]$ or m^2 -	<i>n</i> and equatir + $n = -6$	ng
	(b)	1.16 or 1.16[2] from completing square	2FT	FT dep on negative B1 for $(x + their m)$	$e^{2} = -their n$	
				or SC1 for correct a formula or for both answers method used	nswer from 1.16 and –5	using .16 whatever

Page	e 5	Mark Sch	neme		Syllabus	Paper	
		Cambridge IGCSE -	- May/June 2	015	0580	22	
22	(a)	44	2	M1 for 48 soi			
	(h)	24	2	M1 for 40 or 16 or both lines drawn from 15			
	(~)		_	and 45 across and down to the horizontal			
				axis			
	(c)	5	2	M1 for answer 55 or line or mark on graph			
	(•)		_	indicating 55		n on Brupn	
		2					
23	(a)	0.4 or $\frac{2}{5}$	1				
		5					
	(b)	1430	3	M2 for correct, complete, area statement			
				e.g. $120 \times 10 + \frac{1}{2} \times 20 \times 8 + \frac{1}{2} \times 30 \times 10$ of			
				or M1 for one area calculation			
				e g 10 × 120 or $\frac{1}{2}$ × 20 × 8 or $\frac{1}{2}$ × 30 × 10			
			PR	c.g. 10 × 120 or $\frac{1}{2}$ × 20 × 8 or $\frac{1}{2}$ × 30 × 10			
	(c)	11.9 or 11.91 to 11.92	1FT	<i>their</i> (b) ÷ 120			
24	(a)	9x ²	1				
	(h)	r = 5	2	M1 for correct first	algebraic ste	neo	
	(0)	$\left \frac{x-3}{3}\right $		5 2 y	5	р с . <u>Б</u> .	
				$y - 3 = 3x$ or $\frac{1}{3} = 3x$	$x + \frac{1}{3}$ or bet	ler	
				or			
				for interchanging x	andvegr	= 3v + 5 this	
				does not need to be	the first step	<i>by</i> • <i>b</i> , and	
	(a)	$9x \pm 20$ and final answer		M1 for $2(2x \pm 5) \pm$	5		
	(C)	9x + 20 cao final answer	2	1VII 10F $3(3x + 5) +$	3		

MARK SCHEME for the May/June 2015 series

0580 MATHEMATICS

0580/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	23

cao	correct answer only
dep	dependent
FT	follow through after error

isw ignore subsequent working

oe or equivalent

SC Special Case

nfww not from wrong working

soi seen or implied

Question	Answer	Mark	Part Marks
1	168	2	M1 for $240 \div (7 + 3)$ or better
2	3x(3x-2) final answer	2	B1 for $3(3x^2 - 2x)$ or $x(9x - 6)$
3	66.4[2]	2	M1 for $\cos[=]\frac{2}{5}$ oe
4	18.45 18.75	1 1	If 0 scored, SC1 for 6.15 and 6.25 seen or for correct answers reversed
5	(2x+1)(x-3)	2	B1 for $(2x + a)(x + b)$, where $ab = -3$ or $a + 2b = -5$
6	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	2	B1 for one correct column
7	1.60 cao	3	B2 for 1.597 or 1.6 or M1 for 2 ÷ 1.252
8	$\frac{15}{8}$	B1	or $\frac{135}{72}$
	their $\frac{15}{8} \times \frac{9}{5}$ oe	M1	or $\frac{135}{72} \div \frac{40}{72}$ or equivalent division with fractions with common denominators
	$\frac{27}{8}$ or $3\frac{3}{8}$ cao	A1	
9	2.8 oe	3	M2 for $12 + 2 = 8x - 3x$ or better or M1 for $3x + 12$ or $8x - 2$
10	20.6 or 20.58 to 20.59	3	M2 for $\frac{85-67.5}{85} \times 100$ or $\left(1-\frac{67.5}{85}\right) \times 100$
			or M1 for $\frac{85-67.5}{85}$ or $\frac{67.5}{85} \times 100$
			If zero scored SC1 for $\frac{67.5 - 85}{85} \times 100$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	23

Qı	iestion	Answer	Mark	Part Marks
11		12.2 or 12.18 to 12.19	3	M2 for $\frac{24 \sin 30}{\sin 100}$ or M1 for correct implicit equation e.g. $\frac{\sin 100}{24} = \frac{\sin 30}{BC}$
12	(a)	5	3	M2 for $\frac{u \times 10}{2} + 2u \times 10 = 125$ oe or M1 for evidence that area represents distance e.g. $\frac{u \times 10}{2}$, $2u \times 10$ or $3u \times 10$
	(b)	2	1FT	FT $10 \div their u$ correctly evaluated
13	(a)	$4x^9$ final answer	2	B1 for answer kx^9 or $4x^k$ ($k \neq 0$)
	(b)	$2y^{32}$ final answer	2	B1 for answer ky^{32} or $2y^k (k \neq 0)$
14		$\sqrt{1^2 - 4(2)(-2)}$ If in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$	B1 B1	If completing the square B1 for $\left(x + \frac{1}{4}\right)^2$ oe B1 for $x = -\frac{1}{4} + \sqrt{1 + \left(\frac{1}{4}\right)^2}$
		p = -1, r = 2(2) or 4 - 1.28 0.78	B1 B1	or $x = -\frac{1}{4} - \sqrt{1 + (\frac{1}{4})^2}$ If 0 scored for the last two B marks then SC1 for - 1.3 and 0.8 or - 1.281 to - 1.280 and 0.781 or 0.7807 to 0.7808 or 1.28 and - 0.78 or - 1.28 and 0.78 seen in the working
15	(a) (b)	4.77 or 4.774 to 4.775 35.7 or 35.8 or 35.74 to 35.82	2 2	M1 for $30 \div [2]\pi$ M1 for $0.5 \times \pi \times (their (a))^2$
				or $0.5 \times \pi \times (30 \div 2\pi)^2$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	23

Qu	estion	Answer	Mark	Part Marks
16	(a) (i)	14	2	M1 for any two of 1, 11, 14, 4 correctly placed on Venn diagram or for 1+25-x+x+18-x=30 oe
	(ii)	$\frac{11}{30}$ oe	1FT	FT $\frac{25 - their(\mathbf{a})(\mathbf{i})}{30}$ or $\frac{their 11}{30}$ from diagram
	(iii)	$\frac{11}{12}$ oe	1FT	FT their diagram e.g. $\frac{their 11}{12}$ or $\frac{25 - their (\mathbf{a})(\mathbf{i})}{12}$
	(b)		1 PR	
17	(a)	6	1	
	(b)	2	2	M1 for 7 identified as the UQ or 5 identified as the LQ
				or both lines drawn from the 150 and 50 across and down to the horizontal axis
	(c)	180	2	M1 for answer 20 or line or mark on graph indicating 20
18		912 or 912.2	5	M4 for $4 \times 0.5 \times 20 \times \sqrt{8^2 + 10^2} + 20 \times 20$ or better or M3 for $4 \times 0.5 \times 20 \times \sqrt{8^2 + 10^2}$ or better
		satp	bret	or
				M1 for $\sqrt{8^2 + 10^2}$ and M1 for $0.5 \times 20 \times \sqrt{8^2 + 10^2}$ and M1 for 20×20

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	23

Question	Answer	Mark	Part Marks
19 (a) (i)	$-\mathbf{b} + \mathbf{a}$	1	
(ii)	$\mathbf{b} + \frac{1}{2}\mathbf{a}$	1	
(b)	$[\overrightarrow{OX} =] \mathbf{b} + \frac{1}{3}(-\mathbf{b} + \mathbf{a})$ oe	M1	
	$\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$ oe	A1	
	2 statements from: $\overrightarrow{OM} = \mathbf{b} + \frac{1}{2}\mathbf{a}$ oe	B2	B1 for any one of these statements
	or $[\overrightarrow{OX} =] \frac{2}{3}(\mathbf{b} + \frac{1}{2}\mathbf{a})$ oe	PR	
	or $\overrightarrow{OX} = \frac{2}{3} \overrightarrow{OM}$ oe		
20	9.37 or 9.370 to 9.371	6	M2 for sin[<i>P</i>] = $\frac{38.5}{0.5 \times 9 \times 10}$
			or M1 for $0.5 \times 10 \times 9 \times \sin = 38.5$
			M3 for $\sqrt{9^2 + 10^2 - 2 \times 9 \times 10} \times \cos(\text{their P})$ or M2 for $9^2 + 10^2 - 2 \times 9 \times 10 \times \cos(\text{their P})$
			or M1 for a correct implicit expression
	4		e.g. $\cos(\text{their } P) = \frac{9^2 + 10^2 - RQ^2}{2 \times 9 \times 10}$
	Th.sati	bref	Note: 87.8, 87.81[] or 87.7[55] score 4 marks
			<i>M</i> is foot of perpendicular from <i>R</i> to <i>PQ</i> M2 for perp.ht = $38.5 \div \frac{1}{2} \times 10$ or 7.7
			or M1 for $\frac{1}{2} \times 10 \times [] = 38.5$
			M1 for $PM = \sqrt{(9^2 - 7.7^2)} [= 4.659 \text{ or } 4.66]$ M1 for $QM = 10 - their 4.659 [= 5.34]$ M1 for $QR = \sqrt{(their QM)^2 + 7.7^2)}$

MARK SCHEME for the March 2015 series

0580 MATHEMATICS

0580/22

Paper 2 (Paper 22 – Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE[®] components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0580	22

- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

	Qu.	Answers	Mark	Part Marks		
1		Negative	1			
2		96	2	B1 for 96 <i>k</i> or $2^5 \times 3$ or for listing multiples of each up to 96		
3		572.4	2	M1 for figs $(120 \times 90 \times 53)$		
4		7p(2p+3q)	2	B1 for $7(2p^2 + 3pq)$ or $p(14p + 21q)$		
5		18 – 5 <i>n</i> oe	2	M1 for $5n$ or $-5n$		
6	(a)	Correct arc centre <i>B</i> , radius 5.7	1			
	(b)	Shading below <i>CN</i> outside arc	1FT	FT shading below <i>CN</i> outside their arc centre <i>B</i>		
7		37	2	M1 for $180 - 90 - 53$ oe or B1 for 53 or the right angle, either marked in correct place on diagram		
8	(a)	68	1	0		
	(b)	15 Sati	2	M1 for $\frac{360}{n} = 24$ or $(n-2)180 = 156n$		
9		400 350 250	3	M1 for $\frac{1000}{8+7+5}$ implied by 50 A1 for one clearly assigned correct answer or SC2 for 3 correct answers in wrong order		
10	(a)	x + x + 4 + x + 4 = 26 oe	1			
	(b)	6[.00] cao	2	M1 for their linear eqn simplified to $ax = b$		

Page 3	Mark Sche	me		Syllabus	Paper	
	Cambridge IGCSE –	March 2	2015	0580	22	
11	Correctly eliminating one variable $[x =] 6$	M1 A1				
	$[y =]\frac{1}{4}$	A1	If 0 scored SC1 for 2 values satisfying one of the original equations SC1 if no working shown but correct answers given			
12	44 300 cao	3	M1 for $50000 \times (0.97)$ and B1 for 44260 or better or SC1 for correct method	') ⁴ oe d for 3% incr	rease with	
			final answer of 56300			
13	12	3	M1 for $x = k \sqrt[3]{y}$ oe A1 for $k = 3$ or M2 for $\frac{6}{\sqrt[3]{8}} = \frac{x}{\sqrt[3]{64}}$ or	0e		
14	3y + x = 19 oe	3	M1 for <i>their</i> $m \times 3 = -$ M1 for $4 = 7 \times their m$	$1 \text{ oe or } -\frac{1}{3}$ + c	soi	
15 (a)	$\begin{pmatrix} 76 & 30 \\ 40 & 16 \end{pmatrix}$	2	B1 for two correct eler	nents		
(b)	$\frac{1}{4} \begin{pmatrix} 2 & -3 \\ -4 & 8 \end{pmatrix} $ oe	2	B1 for $k \begin{pmatrix} 2 & -3 \\ -4 & 8 \end{pmatrix}$ so or det = 4 soi	i or $\frac{1}{4} \begin{pmatrix} a \\ c \end{pmatrix}$	$\begin{pmatrix} b \\ d \end{pmatrix}$ seen	
16	$\frac{25}{9}$	B1	(Alt) $\frac{25}{9}$			
	$\frac{a}{b} \times \frac{6}{5}$ where $a > b$	M1	$\frac{their 25 \times 2}{9 \times 2} \div \frac{5 \times 3}{6 \times 3} \text{ oe}$			
	Their $\frac{150}{45}$ or their correct full cancelling	M1FT dep	$\frac{their 25 \times 2}{5 \times 3} \text{ oe or}$ $\frac{50}{18} \div \frac{15}{18} \text{ oe with 18's c}$	ancelled		
	$\frac{10}{3}$ or $3\frac{1}{3}$ nfww	A1				

Pa	ge 4	Mark Sche	Syllabus	Paper			
		Cambridge IGCSE –	March 2	2015 0580 22			
r			T	Γ			
17	(a)	b – a	2	M1 if unsimplified or of <i>P</i> , <i>Q</i> , <i>R</i> , <i>S</i>	correct route	e in terms	
	(b)	$\frac{5}{8}\mathbf{x} + \frac{3}{8}\mathbf{y}$	2	M1 for a correct route e.g. $OX + XM$ or for $\frac{3}{8}\overrightarrow{XY}$ or $\frac{5}{8}\overrightarrow{YX}$			
18		14.4 or 14.36	4	M3 for tan = $\frac{1}{their\sqrt{1}}$ or M1 for $AC = \sqrt{15^2}$ and M1 for identifying	$\frac{5}{5^2 + 18^2} \text{of} \frac{1}{18^2}$	e or better gle	
19		95	4	B1 for 2.3 or $2\frac{18}{60}$ M1 for 75 ÷ 30 (= 2.5) M1 for $\frac{381+75}{their 2.3 + their}$	ir 2.5		
20	(a)	35	2	M1 for $[Z =]$ 180 – 88 or $YZX = 35$	– 57 or <i>VW2</i>	<i>K</i> = 57	
	(b)	10.8	2	M1 for $\frac{AC}{7.2} = \frac{12.6}{8.4}$ oe			
21	(a) (i)) 1	1				
	(ii)	m^7	1	-5			
	(iii)) $2p^2$	2	SC1 for $2p^k$ or kp^2	$k \neq 0$		
	(b)	$\frac{2}{5}$ or 0.4	2	B1 for 3^5 or 3^{5x} or	$243^{\frac{1}{5}}$ or 243	$\frac{2}{5}$ seen	
22	(a)	17	2	M1 for $[g(-2) =]4$ set	en or for $5x^2$	- 3	
	(b)	$25x^2 - 30x + 9$ or $(5x - 3)^2$ as final answer	2	M1 for $g(5x-3)$			
	(c)	$\frac{x+3}{5}$	2	M1 for $5x = y + 3$ or $\frac{y}{5} = x - \frac{3}{5}$	x = 5y - 3 o	r	

MARK SCHEME for the October/November 2014 series

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2014	0580	22

cao	correct	answer	only
••••			- ing

- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Qu.	Answers	Mark	Part Marks
1	$6 + 5 \times (10 - 8) = 16$	1	One pair of brackets only
2	20	1	
3	8	1	
4		1	
		1	
5	v^3-p	2	M1 for $v^3 = p + r$
6	95.5 96.5 in correct places cao	2	B1 for 95.5 or 96.5 in correct place or for answers reversed
7 (a)	700 Sato	2	M1 for 2800 × 0.325
(b)	0.28	1	
8	$\frac{7}{6}$ oe	B1	
	their $\frac{7}{6} \times \frac{8}{7}$ oe	M1	Or M1 for $\frac{56}{\cancel{48}} \div \frac{42}{\cancel{48}}$ or equivalent division
	$\frac{4}{3}$ or $1\frac{1}{3}$ cao must see working	A1	with fractions with common denominator

	Page 3	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE – Octobe	er/Noveml	ber 2014	0580	22
r		1				
9		9.13 or 9.127 to 9.1271	3	M2 for $\sqrt[3]{\frac{1000}{440}}$ [1.3 or $\sqrt[3]{\frac{440}{1000}}$ [0.7 Or M1 for $\frac{1000}{440}$ [2 or $\frac{440}{1000}$ [2 or $\sqrt[3]{\frac{figs 440}{figs 1000}}$	1] oe (61] oe (.27] oe (.44] oe or $\sqrt[3]{\frac{figs1000}{figs440}}$	
10		97.2[0]	3	M1 for $C = kr^2$ A1 for $k = 30$ or M2 for $\frac{202.8}{2.6^2} = \frac{c}{1.8}$		
11	(a)	$\begin{pmatrix} 6 & -4 \\ -8 & 38 \end{pmatrix}$	2	M1 for a 2 by 2 material elements SC1 for $\begin{pmatrix} 16 & -14 \\ -18 & 28 \end{pmatrix}$	trix with two $\begin{pmatrix} 4 \end{pmatrix}$	correct
	(b)	14	1			
12			3	0 1 2 1 SC1 for	2	>
13		13.5 or 13.45[]	3	M2 for $\sqrt{\frac{2 \times 85}{\sin 110}}$ or M1 for $\frac{1}{2} \times a^2 \times a^2$ or $\frac{2 \times 85}{\sin 110}$ o	sin 110 = 85 e [180.9]	
14	(a)	2.47 or 2.474 to 2.4744	2	M1 for $\frac{56}{360} \times \pi \times 2$.	25^2 oe	
	(b)	0.742 or 0.7422 to 0.74232	1FT	FT <i>their</i> (a) \times 0.3[0]] correctly ev	valuated.

P	Page 4		Mark Scheme	•		Syllabus	Paper
			Cambridge IGCSE – October/	Novemb	per 2014	0580	22
15	(a)		$2 \times 3 \times 3 \times 5$	2	B1 for 2, 3, [3] and prime factors	5 identified a	as only
					or M1 for partial pr $6 \times 3 \times 5$ or 2×9 or $2 \times 3 \times 15$	ime factorisa × 5 or 3 × 3	tion × 10
	(b)		630	2	M1 for $2 \times 3^2 \times 5 \times$ or for listing multip up to 630	7 oe les of 90 and	105 at least
16	(a)		108	1			
			Angle at centre is twice angle at circumference oe	1			
	(b)	(i)	$-\frac{4}{3}$ oe	1			
	(ii)	-1	1			
17			[0.]08	4	M3 for $_{200} \times \left(1 + \frac{2}{100}\right)$	$\left(-\frac{200}{1} - \frac{200}{1} - \frac{200}{1} \right)^{2}$	$\frac{\times 2 \times 2}{00}$ oe
					or M1 for $200 \times (1+$ and M1 for $\frac{200 \times 2}{100}$	$\frac{\frac{2}{100}}{\frac{2}{2}} \left[+200\right]$	
18	(a)		56	2	B1 for 16 soi or M1 for 72 – <i>thein</i>	· 16	
	(b)	(i)	63 or 63 to 63.5	1	2.		
	(ii)	22 or 21.6 to 23 nfww	2	B1 for 49.8 to 50.2 or 71.8 to 72.8	seen	
19	(a)	(i)	c – a	1			
	(ii)	$-\frac{1}{3} \mathbf{a} + \frac{1}{3} \mathbf{c}$	3	M2 for $-a + \frac{1}{3}(c + \frac{1}{3})$	2a) oe	
					e.g. $-a + c + 2a - \frac{2}{3}$	(c + 2 a)	
					Or M1 for a correct	route from A	to X
	(b)		\overrightarrow{AC} is a multiple of \overrightarrow{AX} and	1	oe		
			they share a common point [A]	1	oe		

	Page 5	Mark Scheme				Paper	
		Cambridge IGCSE – October/November 2014			0580	22	
	·						
20	(a)	102 to 106	2	B1 for 5.1 to 5.3 see	en		
	(b)	Correct position of F with correct arcs for angle bisector	5	 B2 for Correct ruled correct arcs or B1 for correct bis and B2 for Arc centre C or B1 for arc centre or correct conversio and B1 for marking posibisector and 8cm free centre C 	I angle bisect sector with no C vith incor n to 8cm ition of F on for C or on the form the	or of <i>A</i> with b/wrong arcs rect radius their heir arc	
21	(a)	$\frac{x+7}{(2x-1)(x+2)}$	3	B1 for $3(x+2) - 1(2)$	2x-1) seen of	or better	
	(b)	Final answer $\frac{2x}{x+7}$	4	B1 for denominator SC2 for final answer M1 for $4x(x - 4)$ or factorisation of	$(2x-1)(x + \frac{x+5}{(2x-1)(x-1)(x-1)})$ r partial f numerator	2) oe seen + 2)	
		Final answer		and M2 for $[2](x + a)$ or M1 for $[2](x^2 + 3)$ or $[2](x + a)(x + b) = 3$ SC3 for answer $\frac{a}{2x}$	$7)(x - 4) \text{ oe}$ $x - 28)$ where $ab = -$ $\frac{4x}{+14}$ oe	28 or	
-	Satprep.						

MARK SCHEME for the October/November 2014 series

0580 MATHEMATICS

0580/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2014	0580	23

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

soi seen or implied

Qu.	Answers	Mark	Part Marks
1	2870	2	M1 for 350 × 8.2
2	$0.34 0.7^3 0.6^2 \sqrt{0.6}$	2	M1 for decimal conversion: 0.7 [7] or 0.8 for $\sqrt{0.6}$ and 0.36 for 0.6 ² and 0.343 for 0.7 ³ or B1 for three in the correct order
3	2.4×10^{8}	2	B1 for 240 000 000 oe or B1 for $k \times 10^8$ or 2.4×10^k
4	30	2	M1 for $2x + 3x + 4x + 90 = 360$ oe
5	48	2	M1 for 52 ÷ 65 [× 60] oe implied by 0.8
6	9.5 or $\frac{19}{2}$	3	M2 for $2x = (8 \times 3) - 5$ or better oe or M1 for $2x + 5 = 8 \times 3$ or better
7	160	3	M2 for $180 - \frac{360}{18}$ or $\frac{180 \times (18 - 2)}{18}$ oe or M1 for $180 \times (18 - 2)$ or $\frac{360}{18}$
8	$8 + (y - 2)^2$ oe final answer	3	M1 for $y - 2 = \sqrt{(x - 8)}$ M1 for squaring both sides completed correctly M1 for adding <i>their</i> 8 completed correctly on answer line
9	4	3	M2 for $6(3+5) = y(7+5)$ oe or M1 for $y = \frac{k}{x+5}$ oe A1 for $k = 48$
10	13891.5[0]	3	M2 for $12000 \times \left(1 + \frac{5}{100}\right)^3$ oe or M1 for $12000 \times \left(1 + \frac{5}{100}\right)^n$ oe $n \ge 2$

Page 3		Mark	Syllabus	Paper		
		Cambridge IGCSE –	Octobe	r/November 2014	0580	23
			1			
11	(a)	608 400 cao	2	M1 for $\frac{1}{4} \times 39^2 \times (39+1)^2$		
	(b)	$2n^2(n+1)^2$ oe	1			
12	(a)	Complete circle centre <i>E</i> radius 3cm	1			
	(b)	Correct ruled bisector with two pairs of correct arcs	2	B1 for correct bisector with no	/wrong arcs	
	(c)		1	dep on attempt at bisector of <i>C</i>	and enclosed	d region
13		$\frac{16x^2 + 18x + 9}{6x}$ final answer	4	M2 for 9 [+] $4x^2$ [+] $18x$ [+] 12 or M1 for 2 of these and M1FT for adding their fou together correctly and B1 for denominator $6x$ to a maximum of 3 marks	$2x^2$ or better ur 'numerator	s'
14	(a)	$\frac{1}{2}\mathbf{b} - \frac{1}{2}\mathbf{a}$ oe	2	M1 for $\frac{1}{2}(\overrightarrow{AO} + \overrightarrow{OB})$ oe or co route e.g. $\overrightarrow{AO} + \overrightarrow{OB} + \overrightarrow{BP}$ or $-\mathbf{a} + \mathbf{b} + \frac{1}{2} \overrightarrow{BA} = -\mathbf{a} + \mathbf{b} + \mathbf{b}$	prrect unsimp $\frac{1}{2}(\mathbf{a} - \mathbf{b})$	lified
	(b)	$\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$ oe	2	M1 for $\overrightarrow{OA} + \overrightarrow{AQ}$ oe or correct	ct unsimplifi	ed route
15	(a)	19 2 1 8	2	B1 for any two correct		
	(b)	1 8 19 2	2FT	B2FT for a correct ft from (a) or B1FT for any two correct or from (a)	for any corr	ect two ft
16	(a)	64	2	B1 for $[f(1) =] 4$ or M1 for $((x - 3)^2)^3$ or better		
	(b)	4x + 1 oe	2	M1 for $x = \frac{y-1}{4}$ or $4y = x - \frac{y-1}{4}$	1	
	(c)	$\frac{x^3-1}{4}$ oe final answer	1			
	(d)	3 nfww	1			

Pa	ge 4	Mark	Syllabus	Paper		
		Cambridge IGCSE –	Octobe	er/November 2014	0580	23
17	(a)	3.08 to 3.22 nfww	2	B1 for 502.5 to 502.62 or 505.	7 to 505.8	
	(b)	$\frac{16}{200}$ oe	2	B1 for 16 soi or M1 for $\frac{their 16}{200}$		
	(c)	18.5 26 3	2	B1 for 18.5 and 26 B1 for 3		
18	(a)	3	4	B3 for 3.536 to 3.54 as an answor M2 for $2000 \div \frac{1}{3}\pi \times 6^2 \times 15$ or M1 for $\frac{1}{3}\pi \times 6^2 \times 15$ and SC1 for truncating <i>their</i> 3.	ver 54 to a whole	e number
	(b)	303 to 304	3	M2 for 2000 – <i>their</i> 3 × <i>their</i> v or M1 for <i>their</i> 3 × <i>their</i> volume	volume ne	
19	(a)	rotation 90 clockwise [about] origin oe	3	B1 for each		
	(b)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	2	M1 for any one column or row	correct	
	(c)	Triangle at (3, 3), (6, 3) and (3, 5)	2	M1 for any two vertices correct translated horizontally	et or correct a	nswer

MARK SCHEME for the May/June 2014 series

0580 MATHEMATICS

0580/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0580	21

cao corre	ect answer only
-----------	-----------------

- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Qu	estion	Answers	Mark	Part Marks
1		1.37	2	B1 for 0.866 or $\frac{\sqrt{3}}{2}$ or 0.5 or $\frac{1}{2}$
2		$18\frac{1}{18}$	2	M1 for $\frac{2}{36} + \frac{36}{2}$ or better
3		30	2	M1 for $n - 8 = 22$ or $\frac{n}{2} = 15$
4	(a)	$\frac{5\times 2}{2}$	1	
	(b)	20 0.5 or $\frac{1}{2}$ cao	1	
5		$0.5^3 \ 0.5^2 \ 0.5 \ \sqrt[3]{0.5}$	2	B1 for 0.25, 0.125 and 0.793 seen or for three in correct order
6		1.6[0]	3	M1 for 800 × 1.5 and M1 for <i>their</i> 1200 ÷ 750
7		$4 \pm \sqrt{y-6}$	3	M1 for <i>their</i> 6 moved correctly M1 for <i>their</i> $$ taken correctly M1 for <i>their</i> 4 moved correctly
8		$\frac{2}{x(x+1)}$	3	B1 for common denominator $x(x+1)$ seen M1 for $2(x+1) - 2x$ oe or better
9	(a)	119 Pat	030	M2 for $18 \times 6 + 11$ oe
	(b)	[0] 1 [00] pm cao	1	
10	(a)	(a+b)(x+y)	2	B1 for $a(x+y) + b(x+y)$
	(b)	(x-1)(3x-2)	2	or $x(a+b) + y(a+b)$ B1 for $(x-1)(3(x-1)+1)$ If B0 then SC1 for $(x+a)(3x+b)$ where $3a+b=-5$ or $ab = 2$ or $3(x-1)(x-2/3)$

	Page	3 Mark Scheme			Syllabus	Paper		
			IGCSE – May/Jur	ne 2014		0580	21	
		1			1			
11		1130	9 to 114 0	4	M2 for [cos	$=1 \frac{8^2 + 2^2 - 9^2}{2}$		
		110.5		-		$2 \times 8 \times 2$		
					or M1 for 9 [•]	$2^{2} = 8^{2} + 2^{2} - 2 \times 8 \times 8^{2}$	$x 2 \times \cos x$	
					A1 for -0.40	06 or -0.4063 to -	0.4062 or $-\frac{13}{13}$	
					100 10	CO (CA 251 1	32	
					If U scored S 11.72	C_2 for 54.3[1] c	or 11./ or 11./1 to	
					11./2	$0^2 + 2^2 = 8^2$		
					SC1 for [cos	$s = \frac{9 + 2 - 8}{2 - 2}$	or	
					- 2	2×9×2		
					$[\cos =]\frac{9^2 + 1}{2}$	$8^2 - 2^2$		
			- 10		2>	×9×8		
12	(a)	2×1	010	2	B1 for 20×1	10° or 20 000 000 0	00	
	(h)	1.25	$\times 10^{-1}$	2	B1 for 0.124	5.00		
	(0)	1.23	^ 10	2	DI 101 0.12.			
13	(a)	32		2	B1 for AOC	/= 116		
				PF				
	(b)	35		2	B1 for CDA	= 122		
			10					
14		v = -	$\frac{2}{x-2}$ or $x-2$	4	B1 for $(9, 4)$)		
			3 2 00		and		2	
					M2 for $y = i$	$kx - 2 \ (k \neq 0) \text{ or } y =$	$=\frac{2}{2}x+k(k\neq 0)$ o	r
					2		3	
					$\frac{2}{2}x-2$			
					3	2 2		
					or M1 for y	$=\frac{2}{2}x \text{ or } \frac{2}{2}x+k$ (4)	$k \neq 0$)	
						3 3		
15		[0] 1	2 3	4	M1 for movi	ing the 5 correctly		
15		[0], 1	., 2, 5	-	M1 for colle	cting <i>their</i> terms		
			2		A1 for a corr	ect inequality for x	$eg [0 \le] x < 4$	
16	(a)	8	24.	2	B1 for 2^{12} or	r 4096		
			·Sat	nre	· Q ·			
	(h)	$2 a^{\frac{3}{2}}$			D ? for $ka^{\frac{3}{2}}$	a the ensurer		
	(0)	29-		3	B ₂ 101 kg ⁻ a	s the allswei		
					or	1		
					B1 for $2q^2$ a	and B1 for $q^{\frac{1}{2}}$ or n	fww	
17	(a)	corre	ct working	2	M1 for 1 hol	$iday = 5 \text{ or } 360 \div 7$	72 = 5	
			C		and B1 for 2	24 × 5 [= 120]		
					or			
					M2 for $\frac{24}{3}$	x 360[=120] oe		
					72			
	(b)	6 nfv	VW	3	M1 for $150 + 120 + x + 2x = 360$ oe			
					A1 for 30 ide	entified as the requi	red angle	
18	(a)	corre	ct working	2	B2 for $3 \frac{1}{2} =$	$\frac{1}{\sqrt{8}} = 2$ ANI	$\frac{10}{10} = 5 \text{ of and } \frac{4}{10}$	+ - = 2
	()		0	-	101 18	2	2 2 2	2 -
					oe			
					or			
					B1 for $\frac{3}{1}$	or $\sqrt[3]{8}$ or $8 = 2^3$ or	$\frac{1}{1} = (\frac{1}{1})^3$	
					101 √8	51 y 5 61 6 2 01	8 `2'	

Page 4		Mark Scheme		Syllabus	Paper		
		IGCSE – May/Jur	ne 2014		0580	21	
				•			-
(b)	147 c	or 146.5 to 146.6	4	M3 for $\frac{7}{8} \times \frac{1}{3}$ or	$\frac{1}{3} \times \pi \times 4^2 \times 10$		
				M1 for $\frac{1}{3} \times \pi$ and M1 for $\frac{1}{3} \times \pi$ and	$x \times 4^2 \times 10$ $x \times 2^2 \times 5$		
				M1 for subtr	acting <i>their</i> volume	es	
19	1.38	or 1.39 or 1.384 to 1.389	7	M3 [Area Δ or M1 for [λ and M1 for Area and M1 for Area M1 for their	$= \frac{1}{2} \times 8 \cos 60 \times 8$ $AE = \frac{1}{2} \cos 60 \text{ and } \frac{1}{2}$ $AE = \frac{1}{2} \cos 60 \text{ and } \frac{1}{2}$ $AE = \frac{1}{2} \cos 60 \text{ and } \frac{1}{2}$ $AE = \frac{1}{2} \cos 60 \text{ and } \frac{1}{2}$ $AE = \frac{1}{2} \cos 60 \text{ and } \frac{1}{2}$ $AE = \frac{1}{2} \cos 60 \text{ and } \frac{1}{2}$	$E \sin 60$ M1 for [<i>ED</i>] = 8s 2 $\cos 60 \text{ or } 8 \times 4$ = their 16.76) or b	sin 60

MARK SCHEME for the May/June 2014 series

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	e 2 Mark Scheme		Paper
	IGCSE – May/June 2014	0580	22

- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Qu		Answers	Mark	Part Marks
1		1.49 or 1.491	1	
2	(a)	570 000	1	
	(b)	5.69×10^5	1	
3		[x =] 2, [y =] - 3	2	B1 B1 or SC1 for reversed answers
4		7.06 or 7.063 to 7.064	2	M1 for $\frac{\left[\right]}{8} = \cos 28$ or better
5	(a)	(0, 5)	1	
	(b)	- 1	1	
6		101.4, 102.6	2	M1 for 8.45 and 8.55 seen If 0 scored, SC1 for one correct value in correct position on answer line or for two correct reversed answers
7		$2\frac{1}{2}\%$, 0.2, $\frac{43}{201}$, $\sqrt{0.1}$	2	B1 for 0.3, 0.21 and 0.025 s een or for three in correct order
8		$\left[\frac{1}{2} \times 1\frac{1}{2} = \right]\frac{3}{4}$ oe	B 1	
		$\frac{5\times2}{6\times2}$ and $\frac{3\times3}{4\times3}$ oe or better	M1FT	
		$\frac{1}{12}$ oe working must be shown	A1	

Page 3			Mark Scheme	Syllabus	Paper	
			IGCSE – May/June 2014		0580	22
	1					
9		3.1	7 or 3.174 to 3.175	3	M2 for $\frac{63-61}{63} \times 100$ $100 - \frac{61}{63} \times 100$ oe	oe or
					or M1 for $\frac{63-61}{63}$ or	e or $\frac{61}{63} \times 100$
10	(a)	35		1		
		3V			M1 for multiplying b	y 3 or for
	(b)	A	- or $3VA^{-1}$	2	dividing by $\frac{1}{-}$	-
					or 3	
					WII for dividing by A	
11		460		3	M2 for $\frac{391 \times 100}{(100 - 15)}$ of	e
					or M1 for recognisin, 15)% soi	g 391 as (100 –
12			e oe	3	B2 for $5x + 3 = 0$ oe	
					or B1 for a numerator $3(x+1)+2x[=0]$ seen	r of
13		1.6	oe	3	M1 for $w = \frac{k}{\sqrt{x}}$	
			satpre	P.	A1 for $k = 8$	
					Alternative method:	
					M2 for $w\sqrt{25} = 4\sqrt{4}$	oe
14	(a)	p +	r	1		
	(b)	$\frac{3}{2}$	$\mathbf{p} + \frac{1}{2} \mathbf{r}$	2	M1 for correct route	from O to M
			-		or	
					M1 for $\mathbf{p} + \frac{1}{2}$ their (a))
		1-			•	
15	(a)	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	$\begin{pmatrix} 2 & 18 \\ 7 & 31 \end{pmatrix}$	2	B1 for any correct co	lumn or row
	(b)	14		1		
Page 4			Mark Scheme	Syllabus	Paper	
--------	-----	--------------	-----------------------	----------	--	----------------------------
			IGCSE – May/June 2014		0580	22
		[/ \
16	(a)	2 <i>p</i>	q(2p-3q)	2	B1 for $pq(4p-6q)$	or $2q(2p^2 - 3pq)$
					or $2p(2pq-3q^2)$	
				•		
	(b)	(<i>u</i> -	(1+x)(1+x)	2	BI for $1(u + 4t) + x(1 + t)$	(u+4t)
					or $u(1+x) + 4i(1+x)$)
17	(a)	$5t^{25}$;	2	B1 for $5t^k$ or mt^{25}	$(m \neq 0)$
	(h)	2		1		
	(0)	-2		1		
	(c)	64		1		
18	1	576	5	4	M1 for $\frac{1458}{1458}$ or $\frac{3456}{1458}$	
10		570	,	т	3456 01 1458	
					M1 dep for $\sqrt[3]{their}$	fraction
			- Dr			
			FF		MI for (<i>their</i> cube r	oot) ⁻
19		<i>x</i> –	-1 final answer	4	B2 for $(x-1)(x+7)$	
		3	iniai answei		or SC1 for $(x+a)(x+a)$	(+b) where $ab = -$
					7	
					or $a + b = 6$	
					B1 for $3(r + 7)$	
					BI IOI $J(x + 7)$	
20	(a)	-3		1		
	(b)	39 -	– 7 <i>n</i> oe	2	M1 for – 7 <i>n</i> [+ <i>k</i>]	
	(c)	53	4	2	M1 for <i>their</i> (b) = $-$	332 shown
			2	-	provided	
			22	0	<i>their</i> (b) is linear and	their answer for
			· Satpre	9.	(c) is a positive integ	ger
21	(a)	4.4	7 or 4.472[]	3	M2 for $\sqrt{6^2 - 4^2}$	
					or M1 for $[PM]^2 + 4$	$4^2 = 6^2$ or $6^2 - 4^2$
	(b)	48.	2 or 48.18 to 48.19	3	M2 for cos[correct a	$ngle] = \frac{4}{6}$ oe
					or M1 for recognisi	ng a correct angle
	1				of the for recognish	-5 a conteet angle

F	age 5	Mark Scheme IGCSE – May/June 2014	Mark Scheme IGCSE – May/June 2014		Paper 22
22	(a)	i,j	1		
		i, j, k, m, n	1		
		2	1		
	(b)	$\frac{2}{3}$	1		
	(c)	P	1		
	(d)	\subset or \subseteq	1		

MARK SCHEME for the May/June 2014 series

0580 MATHEMATICS

0580/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0580	23

- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Qu.	Part	Answers	Mark	Part Marks
1		- 16	1	
2		84	2	M1 for $\frac{7}{6+8+9+7}$ or $\frac{360}{6+8+9+7}$
3		1030	2	M1 for 1350 ÷ 1.313
4		$5a(3a^2-b)$	2	B1 for $a(15a^2 - 5b)$ or $5(3a^3 - ab)$
5	(a)	0.059161	1	
	(b)	5.9161×10 ⁻²	1FT	ft <i>their</i> part (a)
6		$3x^{\circ}y^{4}$	2	B1 for x^6 or y^4 in a product on answer line
7	(a)	74	1	
	(b)	8.69	1	
8		48	2	M1 for 15^2 or $\left(\frac{1}{15}\right)^2$ or $\frac{1}{15^2}$
				or $\sqrt{10800}$ or $\frac{1}{\sqrt{10800}}$
9		$t < -\frac{6}{7}$	2	M1 for $5t + 2t < 17 - 23$ If zero scored SC1 for $-\frac{6}{7}$ with incorrect inequality sign or equals sign

Page 3			Mark Scheme			Syllabus	Paper
			IGCSE – May/Ju	une 2014	1	0580	23
10		$\frac{\frac{5}{4}}{\frac{5\times}{4\times}}$	$\frac{9}{9} \text{ and } \frac{7 \times 4}{9 \times 4} \text{ oe or better}$	B1 M1 FT	Do not allow e.g. $\frac{45}{36}$ and	decimals for the B $\frac{28}{36}$	1, M1, or A1
	$\frac{17}{36}$ oe working must be shown			A1	Follow throug Alt method 1 M1 for $\frac{1 \times 9}{4 \times 9}$ Alt method 2 M1 for oe e.g ISW converti	gh <i>their</i> $\frac{5}{4}$ for the 1 B1 for $\frac{1}{4} + \frac{2}{9}$ and $\frac{2 \times 4}{4 \times 9}$ or e.g. B1 for $\frac{1}{4} - \frac{7}{9} + 1$ g. $\frac{9}{36}$ and $\frac{8}{36}$ ng fraction answer	M1 mark. $\frac{9}{36}$ and $\frac{8}{36}$ to a decimal.
11		3.5		3	M1 for $y = k$ A1 for $k = \frac{1}{2}$ Alternative m M2 for $\frac{y}{\sqrt[3]{340}}$	$\frac{\sqrt{3}}{\sqrt{x+3}}$ method: $\frac{1}{\sqrt{3}+3} = \frac{1}{\sqrt[3]{5+3}}$ oe	
12	(a) (b)	(3x) $1\frac{1}{3}$	4)(x+2)	2 1FT	M1 for $(3x + where a + 3b)$ if M0 then S0 dep on M1	a)(x+b) = 2 or $ab = -8$ C1 for $3\left(x - \frac{4}{3}\right)(x - \frac{4}{3})$	+ 2)
13		<i>y</i> =	x = -0.5x + 11.5 oe	3	B2 for $y = -0$ or $y = kx$ or -0.5 . or B1 for g and B1 f If zero scored SC1 for or $13 = t$	0.5x + k oe $x + 11.5, k \neq 0 \text{ oe}$ x + 11.5 oe x + 11.5 oe radient = -0.5 oe for y-intercept = 11. 1 then, $9 = their \ m \times 5 + c$ $heir \ m \times - 3 + c$	5 oe

Page 4			Mark Scheme			Syllabus	Paper
			IGCSE – May/Ju	une 2014	ļ.	23	
14		8.23	3 or 8.234 to 8.235	3	M2 for [<i>PR</i> = or M1 for $\frac{h}{\sin \theta}$	$\frac{12.5 \times \sin 37}{\sin 66}$ $\frac{PR}{37} = \frac{12.5}{\sin 66}$ oe	
15		427 427	.8 .4	3	M2 for $2 \times (1)$	27.35 + 86.55) or (127.35 + 86.45)	
					or B1 for two 127.35, 86.55 If zero scored lower bound	o of these figures: 5, 127.25, 86.45 see d, SC2 for upper bo 427.4 provided nfw	n ound 427.8 or w
16		65.4	4 or 65.37 to 65.4		M3 for $\cos =$ or M1 for $\sqrt{3}$ and M1 for c	$\frac{5}{12} \text{ or } \frac{\sqrt{3^2 + 4^2}}{12} \text{ or }$ $\frac{3^2 + 4^2}{3^2 + 4^2}$ learly identifying an	e ngle <i>GAC</i>
17	(a)		9 1 2 3 7 4 5 6 10	2	B1 for 2 of th	ne 4 regions correct	
	(b)	78	8 10	1FT			
	(c)	1	ź	1FT	- / .		
18	(a)	$ \begin{pmatrix} 33\\ 32 \end{pmatrix} $	8 16 2 17)	2 1019	B1 for one co	olumn or row correct	t
	(b)	$\frac{1}{7}\left(-\frac{1}{7}\right)$	$\begin{pmatrix} 3 & -2 \\ -4 & 5 \end{pmatrix}$ oe	2	B1 for $\frac{1}{7} \begin{pmatrix} a \\ c \end{pmatrix}$	$\binom{b}{d}$ seen or $\binom{3}{-4}$	$\binom{-2}{5}$ seen
19		3x - 5x -	+4y = 10.8 + 2y = 14.50	1 1			
		2.6[0.7	[0] 5	3	M1 FT for co Al for 2.6 A1 for 0.75 If M0 then and correct er	orrectly eliminating or SC1 for correct valuation to find the	one variable t substitution e other value

Page 5			Mark Scheme			Syllabus	Paper
			IGCSE – May/Ju	une 2014	1	0580	23
	-			r	1		
20	(a)	34		1			
	(b)	16		2	B1 for 24 or	40 seen	
	(c)	30		1			
	(d)	120		1			
21		62.3	3 or 62.26 to 62.272	5	M1 for $\frac{2}{3} \times 2$	$\pi \times 6$	
					and M2 for ($(\frac{2}{3} + \frac{1}{3}) \times 2\pi \times 4$ oe	
					or M1 for	$\frac{2}{2} \times 2\pi \times 4$ or $\frac{1}{2} \times 2\pi$	$\tau \times 4$
					and M1 for 2	$2 \times (2+4) + k\pi, k \neq 0$)
22	(a)	Tria	angle at (2,-1) (2,1) (1,-2)	2	B1 for transla	ation by $\begin{pmatrix} k \\ -4 \end{pmatrix}$ or $\begin{pmatrix} 2 \\ k \\ k \end{pmatrix}$	3
	(b)	Rot	ation	1	OR enla	argement	
		[cer	ntre] (1,0)	1	[cer	ntre] (1,0)	
		180	° or half turn	1	[sca	ale factor] –1	
	(c)	Tria	angle at (2,3) (4,2) (2,5)	3	B2 for 2 corr	ect vertices plotted	
					or If no/w correct coord for any 2 c triangle of th wrong positio	wrong plots allow inates shown in wor orrect coordinates e correct size and or on	SC2 for 3 king or SC1 shown or a ientation but
			Zy.sa	tpre	or M1 for shown	$ \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 3 & 5 \end{pmatrix} $	$\begin{pmatrix} 1 & -2 \\ 5 & 2 \end{pmatrix}$ oe
		1					

MARK SCHEME for the October/November 2013 series

0580 MATHEMATICS

0580/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0580	21

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case

www without wrong working

Qu.	Answers	Mark	Part Marks
1	86.7 or 86.74 to 86.75	1	
2	5.293 cao	2	B1 for 5.29 or 5.292 to 5.2927
3	125	2	B1 for 55 or 125 in any other correct position on diagram or M1 for 180–55
4	7.7	2	M1 for $44 \times \frac{17.5}{100}$ oe
5	4.8 oe	2	M1 for $5 + 19 = 3x + 2x$ oe or better or B1 for $24 - 2x = 3x$ oe or $5 = 5x - 19$ oe
6	(a) $\frac{2}{6}$ oe	1	
	(b) 200	1FT	FT 600 × <i>their</i> (a) providing <i>their</i> (a) is a probability
7	435, 445 cao	2	B1 for one value in the correct place or SC1 for both values correct but reversed
8	134	3	M2 for $\frac{20.1 \times 100}{3 \times 5}$ oe or M1 for $\frac{x \times 3 \times 5}{100} = 20.1$ or 3% = 4.02 oe If 0 scored SC1 for answer of figs 134
9	(a) $\frac{n}{n+2}$ of final answer	1	
	(b) $n^2 - 1$ of final answer	2	B1 for any quadratic in final answer
10	$[\pm]\sqrt{c^2-a^2}$ oe final answer	3	M1 for correct square M1 for correct re-arrangement M1 for correct square root

Page 3		Mark Scheme		Syllabus	Paper		
		IGCSE – October/Novem	ber/November 2013		0580	21	
11	150		3	M1 for m^3 to cm^3 or cm^3 to m^3			
12	(a) 110		1				
	(b) 79		2	B1 for <i>I</i>	DAC = 42 or ACB =	79 or <i>ACD</i> = 28	
13	(a) $\frac{5}{4}$ o	e	1				
	(b) $4y^6$		2	B1 for k	y^6 or y^6 or $4y^k$ or $4x^k$	as final answer	
14	$\frac{2t-5}{t-1} f$	inal answer	3	B1 for $\frac{3(t-1)}{t-1}$ or better B1 for $3(t-1) - (t+2)$ oe or better			
15	(a) $\frac{9}{12}$ -	$-\frac{1}{12}$ oe	M1	Must be shown			
	$[=]\frac{8}{12}$	$\frac{3}{2}$ oe $[=]\frac{2}{3}$	M1	Both fra	ctions must be show	wn	
	(b) $\frac{5}{2} \times$	$\frac{4}{25}$ oe	M1	Must be shown			
	Can	celling shown or $\frac{20}{50}$ oe $[=]\frac{2}{5}$	M1	Dependent and cancelling shown or a fraction and then $\frac{2}{5}$ must be shown			
16	(a) $\begin{pmatrix} 9 \\ 6 \end{pmatrix}$		1				
	(b) 10.8	or 10.81 to 10.82	2FT	M1 for A1 for 1	$\sqrt{(their 9)^2 + (their 0.8 \text{ or FT correctly})^2}$	$(-6)^2$ evaluated	
	(c) (17,	13)	1FT	FT their (8 + the	• 9 and 6. ir 9, 7 + <i>their</i> 6) con	rrectly evaluated	
17	(a) (<i>a</i> +	b)(1+t)	2	B1 for 1 or <i>a</i> (1 +	(a + b) + t(a + b) t) + b(1 + t)		
	(b) $(x-6)(x+4)$ 2			SC1 for $ab = -2a$	answer of $(x + a)(x + a) = -2$	(x + b) where	
18	486 cao		4	M1 for A1 for [M1 for	$\frac{1}{2} \times 4\pi r^2 + \pi r^2 = 24$ r = 9 $\frac{1}{2} \times \frac{4}{3} [\pi] (\text{their } r)^3$	3π or better	

Page 4		Mark Scheme			Syllabus	Paper
		IGCSE – October/Novem	ber 201	· 2013 0580 21		
19	(a) 40		2	M1 for	$\frac{144 \times 1000}{60 \times 60}$ oe	
	(b) 3.5		2FT	FT 140 - M1 for c	÷ their (a) list ÷ their (a)	
				or dist \div	$\frac{40}{60 \times 60}$	
				or B1 fo	144×1000 r 140 seen	
20	(a) (i)	Accurate bisector of angle <i>B</i> with correct arcs	2	B1 for c	orrect line or correc	et arcs
	(ii)	Accurate perpendicular bisector of <i>BC</i> with correct arcs	2	B1 for correct line or correct arcs		
	(b) corr	ect region shaded	1			
21	(a) 73.7	or 73.73 to 73.74	3	M1 for	$\frac{20}{3+2} \times 2 \text{ or } \mathbf{B1} \text{ for } \mathbf{B1}$	3X = 8
				M1 for t	$\tan\left[\right] = \frac{6}{their \ 8}$ or	better
	(b) 120		2	M1 for	$\frac{1}{2} \times 20 \times 12$ oe	
22	(a) (i)	$\frac{5}{50}$ oe	1			
	(ii)	$\frac{11}{50}$ oe	1			
	(b) $\frac{11}{16}$	oe	1	.00'		
	(c) $\frac{380}{245}$	$\frac{0}{0}$ oe	2	M1 for	$\frac{20}{50} \times \frac{19}{49}$	
	(d)		1			

MARK SCHEME for the October/November 2013 series

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0580	22

	Page 3	Mark Scheme			Syllabus	Paper	
L		IGCSE – October/N	lovemb	er 2013	0580	22	
12	p = 71.4025 cm q = 73.1025 cm	ao ao	3	B1 for 8.45 and M1 for <i>their</i> LI If 0 scored, SC	18.55 seen $B^{2}[\pi]$ or <i>their</i> UB ² 1 for one correct.	[π]	
13	10[.00]		3	M2 for 1.90 and 2.90 and 5.20 only or M1 for two of 1.90, 2.90, 5.20 in a list of three or two values from the table or SC1 FOR 1.90, 2.90, 4.30 $\left[\text{from } \frac{3.40 + 5.20}{2} \right]$			
14	52		3	B2 for $AOB = 1$ or B1 for OAB	104 or <i>OBA</i> = 38		
15	(8, 2)	GAT	3	M1 for correctly eliminating one variable A1 for $x = 8$ A1 for $y = 2$ If 0 scored, SC2 for correct substitution and correct evaluation to find the other value.			
16	x <6.8		4	 B3 for 6.8 with wrong inequality or equal as answer. Or M1 for first move completed correctly and M1 for second move completed correctly and M1 for third move completed correctly 			
17	(a) $\begin{pmatrix} 11 & 5 \\ 26 & 30 \end{pmatrix}$		2	SC1 for one co	rrect row or column	1	
	(b) $\frac{1}{8} \begin{pmatrix} 6 \\ -4 \end{pmatrix}$	$\begin{pmatrix} -1\\2 \end{pmatrix}$ oe	2 tpr	B1 for $k \begin{pmatrix} 6 & -1 \\ -4 & 2 \end{pmatrix}$ or B1 for $\frac{1}{8} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$			
18	(a) (1.5, 12.5	i) oe	2	B1 for either co	ordinate		
	(b) $y = 3x + 3$	8 oe	3	B2 for $y = mx + dx + dx$ or B1 for gradie If 0 scored, SC or	- 8 or $y = 3x + c$ or $y = 3x + c$ or $y = 1$ for $23 = their m > 0$ for $2 = their m > 0$ for $12.5 = their m > 0$	3x + 8 31 for $c = 8$ 5 + c -2 + c $\times 1.5 + c$	
	(c) Most con Correctly y = 3x + 3 Showing Other me	mmon methods: y substituting $P(3, 17)$ into the gradient of AP or $BP = 3$ thods possible.	1				

	Page 4	Mark Sch	eme		Syllabus	Paper	
		IGCSE – October/N	ovemb	er 2013	0580	22	
19	(a) $-2a - 2c$	0e	2	M1 for BO = $-\mathbf{a} - \mathbf{c}$ or for any correct route or correct unsimplified expression			
	(b) 2 a + c		2	M1 for any correct route or correct unsimplified expression			
	(c) −a − c oe	:	2FT	FT <i>their</i> (a) or correct answer Or M1 for a correct non direct route from O to E or f correct unsimplified expression or for correct FT unsimplified			
20	(a) 4.05 to 4.	2	1				
	(b) 2.6 to 2.7	5	2	B1 for 9.6 seen			
	(c) 2.05 to 2.	25	2	B1 for [UQ] 5.0	0 to 5.1 and [LQ] 2.	85 to 2.95 seen	
	(d) $\frac{5}{48}$	T	2	M1 for 5			
21	(a) 37.2 or 37	7.17 to 37.19	3	M2 for sin[] =	$\frac{4\times\sin 65}{6}$		
	(b) 11.7 or 11	1.72 to 11.74	3	or M1 for $\frac{4}{\sin[2]}$ M1 for $[B =] 10$ M1 for $\frac{1}{2} \times 4$	$\frac{6}{1} = \frac{6}{\sin 65}$ oe $\frac{60 - 65 - their (a)}{6 \times \sin their 77.8}$		

MARK SCHEME for the October/November 2013 series

0580 MATHEMATICS

0580/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013		23

cao	correct answer only
cso	correct solution only

dep dependent

ft follow through after error

isw ignore subsequent working

oe or equivalent

SC Special Case

www without wrong working

Qu.	Answers	Mark	Part Marks
1	39	2	M1 for $52 \times 45 \div 60$ oe
2	Any two of (20, 8) (-4, 0) (12, 24)	2	B1 for one correct
3	-8	2	M1 for $2x = -16$ or $\frac{1}{2} + x = -7.5$ oe or better
4	tan 100, cos 100, 1/100, 100 ^{-0.1}	2	B1 for decimals -0.1[[7], -5.[67], [0.01], 0.6[3] or for three in the correct order
5	(a) 600 000	1	
	(b) 79.2	2	M1 for $22 \times 60 \times 60 \div 1000$ oe
6	25[.00]	3	M2 for $30 \times \frac{100}{120}$ oe or M1 for 30 associated with 120% e.g. $1.2x = 30$
7	5	3	M2 for $(x-5)(x-1)$ or M1 for evidence of a factorisation which gives the correct coefficient of <i>x</i> or positive prime constant term e.g. $(x-7)(x+1)$, $(x-4)(x-2)$, (x-3)(x-1)
8	1.6 oe	3	M1 for $m = kx^3$ A1 for $k = 25$
9	(a) $a^2 + 2ab + b^2$	2	B1 for a^2 [+] ab [+] ab [+] b^2 or better seen
	(b) 22	1	
10	160	3	M1 for sin $15 = \frac{[]}{628}$ oe or better

	Page 3	Mark Sch	Mark Scheme		Syllabus	Paper
		IGCSE – October/N	lovembe	er 2013	0580	23
11	(a) $\begin{pmatrix} 3 & -3 \\ 4 & 2 \end{pmatrix}$	1)	1			
	(b) $\frac{1}{10} \begin{pmatrix} 2 \\ -4 \end{pmatrix}$	$\begin{pmatrix} 1\\2 \end{pmatrix}$ oe	2	B1 for $\frac{1}{10} \begin{pmatrix} a \\ c \end{pmatrix}$ $k \begin{pmatrix} 2 & 1 \\ -4 & 3 \end{pmatrix}$	$\binom{b}{d}$ or B1 for	
12	(a) 7.5 × 1	0 ⁻²	2	M1 for 0.075 o	or $\frac{3}{40}$ or $\frac{6}{80}$ or 0.75	$\times 10^{-1}$ oe
	(b) 9.3 × 1	0 ⁷	2	M1 for 93 000	000 or 93×10^{6} or (0.93×10^8 oe
13	(a) 24		2	M1 for <i>MOC</i> =	= 48	
	(b) 24		2	M1 for <i>ACM</i> = or B1 for 48 – <i>the</i>	: 66 :ir (a)	
14	(a) $8q^{-1}$ or	$\frac{8}{q}$	2	B1 for $8q^k$ or ka	q^{-1}	
	(b) 1/5 or ().2	2	M1 for 5^{-2} , $\frac{1}{5^2}$	or [0].04 seen oe	
15	(a) Circle, inside t	radius 3 cm, centre <i>A</i> , not he rectangle	2	M1 for arc or f or for an incorr rectangle	full circle centre A ra	adius 3 cm outside
	(b) One lin arcs. E.	e of symmetry with correct g.:	2 tpr	B1 for correct r sides) B1 for 2 pairs of	ruled line (must read of intersecting arcs	ch or cross two
16	(a) 8.61 or	8.609 to 8.6102	4	M1 for $\frac{1}{2} \times 3^2 \times$ M1 for $\frac{30}{360} \times 7$ M1 for area of		
	(b) 430 or	431 or 430.4 to 430.41	1FT	FT their (a) \times 5	50	

	Page 4	Mark Sch	eme		Syllabus	Paper
		IGCSE – October/N	ovembe	er 2013	0580	23
17	(a) triangle at (0, 3) (2, 3) and (2, 4)			B1 for each correct vertex If 0 scored then M1 for correct reflection in the y axis or correct translation of their first stage 3 right 2 up		
	(b) reflectio	n in <i>y</i> axis	2	B1 for reflection B1 for y axis or $x = 0$		
18	(a) 19–19.1		1			
	(b) 3		2	M1 for 47 seen		
	(c) 4.9 to 5.	7	2	B1 for [UQ] 21.7 to 22.2 and [LQ] 16.5 to 16.8		
	(d) $\frac{45}{50}$ oe		2	B1 for 45 seen or SC1 for $\frac{5}{50}$ isw		
19	(a) 75	A	2	B1 for [g(6) =]	36	
	(b) 3.5 -6.5	5	3	M1 for $(2x + 3)$ M1 for $2x + 3 =$	$(2)^{2} = 100$ = [±]10	
				If 0 scored, SC	1 for one correct va	lue as answer
	(c) $\frac{x-3}{2}$ or	e final answer	2	M1 for $x = 2y$ - or better	+ 3 or $y - 3 = 2x$ or	$\frac{y}{2} = x + \frac{3}{2}$
	(d) 5		1			

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0580 MATHEMATICS

0580/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0580	21

- correct answer only cao correct solution only cso dependent follow through after error ignore subsequent working or equivalent dep ft isw oe
- SC
- Special Case without wrong working seen or implied www
- soi

Qu.	Answers	Mark	Part Marks
1	11 or –11	1	
2 (a)	1.32656	1	
(b)	1.327	1ft	RA
3	72	2	M1 for 84 ÷ 7
4	105	2	M1 for $180 - 55 - 50$ or B1 for 55 or 75 seen in the correct angle inside the triangle
5	correct working; e.g. $\frac{3k}{2k} \times \frac{16n}{3n} = 8$	2	M1 for $\frac{3k}{2k}$ and A1 for $\frac{3k}{2k} \times \frac{16n}{3n} = 8$
6	3x(4y-x) final answer	2	B1 for $3(4xy - x^2)$ or $x(12y - 3x)$
7 (a)	Equidistant from A and B (or C and D or AD and BC)	1 tpre	P.CO
(b)		1	
8	$x \ge -\frac{3}{8}$ oe	2	M1 for $-3 \le 8x$ oe If 0 then SC1 for $-\frac{3}{8}$ with incorrect inequality.
9	48.15, 48.45 cao	2	B1 B1 If 0 then M1 for 16.0 and 16.15 soi
10	(a+b)(p-2)	2	B1 $p(a + b) - 2(a + b)$ or $a(p - 2) + b(p - 2)$
11	$3x^4$	2	B1 for kx^4 or $3x^k$

	Page 3	Mark Scheme			Syllabus	Paper
		IGCSE – May	/June 2013	3	0580	21
12	(a)	$\frac{3}{11}$	1			
	(b)		1			
13		175 cao final answer	3	B2 for 175.4 or M1 for 200) ÷ 1.14	
14		454.27 cao final answer	3	M1 for 420 × and A1 for 454 or or SC2 for an or SC1 for an	$(1+\frac{4}{100})^2$ oe = 454.2 to 454.3 aswer 34.27 aswer 34.2 to 34.3	
15		2.67 or 2.672 to 2.67301	3	M2 for ³ √(80) or M1 for 80	$\frac{1}{2} \frac{4}{3} \pi$ oe $\frac{1}{2} \left(\frac{4}{3} \pi \right)$ oe	
16		35.4 or 35.36 to 35.37	3	M2 for 1000 or M1 for π > 1000 ÷ (π × 0.	$\div (\pi \times 0.75^2 \times 16)$ of $\times (0.75^2 \times 16)$ of or $(.75^2)$	2
17		y = 2x - 1	3	B2 for $y = mx$ or B1 for grad or SC1 for $\frac{6}{3}$	x - 1 or y = 2x + c or dient = 2, B1 for c = or $\frac{51}{3[-0]}$	r 2x - 1 = -1
18	(a)	(x+6)(x-5)	2	SC1 for (<i>x</i> +)	a)($x + b$) where $ab =$	= -30 or a + b
	(b)	$\frac{x+4}{x+6}$ final answer	atpre	p.c ⁰		
19	_	$\frac{6}{7}$ or 0.857[1]	3	M1 for $t = \frac{k}{\sqrt{2}}$ A1 for $k = 6$	$\frac{d}{d}$ oe	
20	(a) (i)	$\mathbf{p} + \frac{1}{2}\mathbf{r}$	1			
	(ii)	$2\mathbf{p} + \mathbf{r}$	1ft	$2 \times their$ (i)		
	(b)	Midpoint of <i>R</i> Q	1			

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0580	21

21	52.3 or 52.27 to 52.28	3	SC2 for 28.3 or 28.7 to 28.8 If 0, M2 for $\frac{135}{360} \times \pi \times 24 + 2 \times 12$ or M1 for $\frac{135}{360} \times \pi \times 24$
22	$\frac{5x+13}{(x+3)(x+2)}$ oe final answer	3	B1 for common denominator $(x + 3)(x + 2)$ seen M1 for $2(x + 2) + 3(x + 3)$ soi
23	24.8 or 24.77 to 24.78	4	M1 for recognition of angle <i>CEA</i> M1 for $\sqrt{12^2 + 5^2}$ M1 for tan = $\frac{6}{\text{their } AE}$ oe
24 (a)	$\left(\begin{array}{cc} 6 & 7\\ 16 & 17 \end{array}\right)$	2	B1 for 1 correct row or 1 correct column
(b)	$\frac{1}{5} \left(\begin{array}{cc} 2 & -3 \\ -1 & 4 \end{array} \right)$	2	B1 for $k \begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix}$ or $\frac{1}{5} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
25 (a)	2.8 oe	1	
(b)	700	3	M2 for $\frac{1}{2}(20 + 30) \times 28$ oe or M1 for a correct area statement
26	420	5	M1 for $[CB =]\sqrt{4^2 + (9-6)^2}$ M1 for <i>their CB</i> from Pythagoras × 15 M1 for $[2 \times] \frac{1}{2}(6+9) \times 4$ M1 for 4 × 15, 9 × 15, 6 × 15 with intention to add

MARK SCHEME for the May/June 2013 series

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0580	22

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working
soi	seen or implied

Qu	Answers	Mark	Part Marks
1		1	
2	(p+3)(k+m)	2	B1 for $k(p + 3) + m(p + 3)$ or $p(k + m) + 3(k + m)$
3	17 - 4n	2	B1 for $\pm 4n$ seen
4	4.55×10^{8}	2	B1 for figs 455 seen
5	10.5 www	2	M1 for $42 = \frac{1}{2} \times BC \times 8$ or better
6	2.2[0]	2	M1 for 11.99 ÷ 0.626 soi by 19.2 or 19.15
7 (a)	5.17225	1	
(b)	5.2	1FT	FT their (a)
8	6.1 final answer	2	M1 for [√37.8225=] 6.15
9	40.3 or 40.31 to 40.32	3	M2 for $4.4 \times \sqrt[3]{\frac{0.05}{65}}$ soi or M1 for $\sqrt[3]{\frac{0.05}{65}}$ soi or $\sqrt[3]{\frac{65}{0.05}}$ soi
10 (a)	95	1	
(b)	77	2	B1 for [angle] $ACD = 58^{\circ}$ or [angle] $BAC = 19^{\circ}$ or [angle] $ANB = 103^{\circ}$ or [angle] $CAE = 66^{\circ}$

Page 3	Mark Scheme	Syllabus	Paper		
	IGCSE – May/June 2013	8	0580	22	
Qu	Answers	Mark	Part Marks		
11	with 2 correct steps seen $\frac{18k}{35k}$	3	B1 for $\frac{5k}{3k}$ and M1 for $\frac{6}{7} \times the$	B1 for $\frac{5k}{3k}$ and M1 for $\frac{6}{7} \times their \frac{3}{5}$	
12	14.5 oe	3	M2 for complete co or M1 for one corre	orrect method ect step	
13	6632.55 cao final answer	3	M2 for $6250 \times (1 + \frac{2}{100})^3$ oe or M1 for $6250 \times (1 + \frac{2}{100})^2$ oe SC2 for answer 382.55 final answer		
14	0.625 oe	3	M1 for $y = \frac{k}{x^3}$ A1 for $k = 40$		
15	$\frac{-7 \pm \sqrt{7^2 - 4(2)(-3)}}{2 \times 2}$	B2	B1 for $\sqrt{7^2 - 4(2)}$ B1 for $p = -7$ and as long as in the $\frac{p - \sqrt{q}}{r}$	(-3) or better seen $r = 2 \times 2$ or better form $\frac{p + \sqrt{q}}{r}$ or	
	0.39, -3.89 cao	B1,B1	After B0B0 for SC1 for 0.4 or 0.3 and -3.9 or -3.886 or SC1 for -0.39 a	the two answers, 86[0009] [0009] nd 3.89	
16	15	4	M2 for $\frac{1}{2} \times 40 \times (20)$ or M1 for one valid Indep M1 for \div 60 SC3 for answer 90	5 + 19) oe d area calculation 0	
17 (a)	7 correct plots	2	P1 for 5 or 6 correct	ct	
(b)	Negative	1			
(c)	ruled line of best fit within tolerance	1			

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0580	22

Qu		Answers	Mark	Part Marks
18		-1 -2 -3 -4	4	B3 for $x < \frac{-3}{5}$ and $x > -4.5$ oe or B2 for $x < \frac{-3}{5}$ or $x > -4.5$ oe or B1 for $5x < -3$ or $-9 < 2x$ oe Or mark on answer line -1 oe
19	(a)	arc centre A radius 5 cm	2	B1 arc with centre A
	(b)	ruled perpendicular bisector of <i>DB</i> with 2 pairs of correct arcs	2	B1 correct ruled line B1 2 pairs of correct arcs
	(c)	cao	1	
		ATPF		
20	(a)	$10 < h \le 13$	1	
	(b)	12.1[2] www	4	M1 for at least 5 correct mid-values seen
				M1 for $\sum fx$ where <i>x</i> is in the correct interval
	(c)	70, 115, 153, 185, 200	2	M1 for their $\sum fx \div 200$
		4		B1 for 3 or 4 correct
21	(a)	4.5 oe	2	B1 for $[g(5)=] 0.1$ oe
	(b)	x .Satpre	2	M1 for $\frac{1}{2(\frac{1}{2x})}$ seen oe
	(c)	$\frac{x-4}{5}$ oe	2	M1 for a correct first step
				e.g. $y - 4 = 5x$ or $\frac{y}{5} = x + \frac{4}{5}$ or
				x = 5y + 4
	(d)	- 3	2	M1 for $\left(\frac{1}{2}\right)^{-3} = 8$ or $\left(\frac{1}{2}\right)^{x} = \left(\frac{1}{2}\right)^{-3}$
				or $2^x = \frac{1}{8}$ oe or $2^{-x} = 2^3$

MARK SCHEME for the May/June 2013 series

0580 MATHEMATICS

0580/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0580	23

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working
soi	seen or implied

Qu	Answers	Mark	Part Marks
1	£ or pound[s] Correct working must be shown	2	M1 for 425 ÷ 1.14 or 365 × 1.14
2	$\frac{30}{300}$ oe www	2	M1 for 30 seen or $\frac{k}{300}$ seen
3	1500 or 3 <u>pm</u>	2	B1 for 1h50 or 2h[0]5 or SC1 for 1255 + <i>their</i> 1h50 + 15mins correctly evaluated
4 (a)	[±] 2.28 or 2.282 to 2.2822	1	
(b)	0.109 or 0.1094[3]	1	
5	$\left(\frac{2}{3}\right)^{1.5} \left(-\frac{2}{3}\right)^{\frac{2}{3}} \left(1.5\right)^{\frac{2}{3}} \left(\frac{2}{3}\right)^{-1.5}$	2	M1 for at least 2 correct decimals seen 1.3[1] 0.5[4] 1.8[3] or 1.84 0.7[6]
6	6 Sate	3	M2 for $3 \times \sqrt[3]{\frac{288\pi}{36\pi}}$ or M1 for $3 \times \sqrt[3]{\frac{288\pi}{36\pi}}$ or $3 \times \sqrt[3]{\frac{36\pi}{288\pi}}$
7	260	3	M2 for $[2 \times](4 \times 10 + 18 \times 5)$ oe or M1 for a correct area statement
8	2500	3	M1 for $m = kr^3$ A1 for $k = 20$
9 (a)	1.1×10^{5}	2	B1 for 110 000 oe e.g. 11×10^4
(b)	5×10^3	2	B1 for 5000 oe e.g. 0.5×10^4

	Page 3		Mark Scheme			Syllabus	Paper
			IGCSE – May/June 2013			0580	23
10		25		4	M1 for correct method to eliminate one variable A1 for $x = 11$ A1 for $y = 3$ B1 FT for $2 \times their x + their y$ correctly evaluated		
11	(a) (b)	77 either	r 18 or 19 or both	2 2FT	 M1 for 11,13,17,19 clearly identified, ignore numbers less than 8 with no other numbers greater than or equal to 8 besides possibly an extra 17 M1 for 11,13,17 clearly identified, ignore numbers less than 8 with no other numbers greater than or equal to 8 besides possibly an 		
12	(a)	5	De		extra 17 or f	or <i>their</i> (a) – 58 power $\frac{5}{2}$ or $\frac{k}{2}$	
	(b)	$\frac{25}{\frac{4}{25}}$	be	2	B1 for an	hower $\frac{k}{k}$ or $\frac{25}{25}$	
13		<u>(x</u> -	$\frac{8x}{3)(x+1)}$	4	B1 for common denominator $(x - 3)(x + 1)$ seen B1 for $(x + 3)(x + 1) - (x - 1)(x - 3)$ soi B1 for $x^2 + 3x + x + 3$ or $x^2 - 3x - x + 3$ soi		
14	(a)	n < 9	1222	2	M1 for 2 If 0 score inequalit	n < 18 or 2n - 18 <	0 oe ncorrect
	(b)	(<i>b</i> + <i>a</i>	d)(a+c)	2	B1 for $b(a + c) + d(a + c)$ or $a(b + d) + c (b + d)$		
15	(a)	4		2	M1 for a terms eq	ttempt at sum of all uated to 74	numeric and x
	(b)	26		1FT	=18+2	× their (a)	
	(c)	8		1			
16	(a)	1.5		2	B1 for [g	g(18) =]4	
	(b)	2(<i>x</i> +	5) or $2x + 10$	2	M1 for c $\frac{x}{2} = y + 3$	orrect first step e.g. 5 or $2y = x - 10$	$x = \frac{y}{5} - 5$ or

	Page 4 Mark Scheme			Syllabus	Paper			
			IGCSE – May/June	2013		0580	23	
17	(a)	$\begin{pmatrix} 7\\12 \end{pmatrix}$	$ \begin{array}{ccc} 23 & 16 \\ 45 & 27 \end{array} $	2	B1 for ar be in a 2	ny one row or colun by 3 matrix	nn correct, must	
	(b)	$\frac{1}{3} \begin{pmatrix} 6\\ - \end{pmatrix}$	$\begin{pmatrix} 3 & -3 \\ 3 & 2 \end{pmatrix}$	2	B1 for $k \begin{pmatrix} 6 & -3 \\ -3 & 2 \end{pmatrix}$ or $\frac{1}{3} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$			
18		15.4	or 15.35 to 15.36	4	M1 for $\frac{1}{3}$	$\frac{20}{360} \times \pi \times 5^2$ oe		
					M1 for $\frac{1}{2}$	$\frac{1}{2} \times 5^2 \times \sin 120$ oe		
					M1 for $\frac{1}{3}$	$\frac{120}{360} \times \pi \times 5^2 - \frac{1}{2} \times 5^2$	×sin120 oe	
19	(a)	hexag	gon	1				
	(b) (i)	- b +	c	1				
	(ii)	$\mathbf{b} = \frac{1}{2}$	¹ / ₂ c	2	B1 for O	B + BA or any corr	ect route	
	(iii)	- b +	c	1FT	= their (b)(i)		
20	(a)	[±]:	3.1623 cao	2	M1 for v	10 seen		
	(b)	$\frac{4}{v^2}$	$\frac{1}{8}$ oe final answer	4	M1 first	move completed co	orrectly	
		y	0		M1 seco	nd move completed	correctly	
					M1 third	move completed c	orrectly	
					M1 final answer li	move completed conne	orrectly on	
	Satorep.							