

Cambridge IGCSE™

ADDITIONAL MATHEMATICS 0606/11 Paper 1 October/November 2024 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Guidance
1	$\pm 3(x+4)(2x-1)(x-2)$	3	B1 for \pm B1 for 3, may be implied by a linear factor B1 for $(x+4)(2x-1)(x-2)$ and no extra terms; may be implied if 3 is included
2(a)	$2^{8(x+y)} \times 2^{4(-2x)} = 2^{3(-x+3y)}$	M1	For attempt at a common factor, must have at least one correct
	y = 3x	A1	Must show sufficient detail
2(b)	$x^{2} + 3(9x^{2}) = 56$ or $\frac{y^{2}}{9} + 3y^{2} = 56$	M1	For obtaining an equation in terms of one variable using <i>their</i> $y = 3x$ with attempt to solve to obtain $x = $, or $y =$
	$x = \sqrt{2}$, $y = 3\sqrt{2}$ or exact equivalent $x = -\sqrt{2}$, $y = -3\sqrt{2}$ or exact equivalent	2	A1 for a correct pair
3	$b = \frac{3}{8}$	B1	
	$6 = a + c \text{ or } 0 = -\frac{a}{2} + c$	M1	For using either intercept with their b
	c=2	A1	
	a=4	A1	
4	$\ln(4x+3)$	B1	
	$2\ln(8a+7)-2\ln(3) \ (=\ln 16)$	M1	Dep for correct application of limits in <i>their</i> $k \ln(4x+3)$
	$(2)\ln\frac{8a+7}{3}$ oe	M1	Dep for use of division rule
	ln16=2ln4 oe	B1	
	$a = \frac{5}{8}$ only	A1	
5(a)	15 C ₃ $k^3 = -29120$ oe	M1	
	k = -4	A1	

Question	Answer	Marks	Guidance
5(b)	$\frac{12}{C_8(8y^2)^4(-1)^8}$	M1	
	or ${}^{12}C_8 (8y^2)^4 \left(-\frac{1}{2y}\right)^8$		
	7920	A1	
6	b=12	2	M1 for attempt at differentiation
	-27a + 99 - 3b + c = 0	2	M1 for attempt at $p(-3) = 0$ or
	a+11+b+c=16		p(1) = 16
	a=2 $c=-9$	2	M1 for attempt to solve <i>their</i> equations
7(a)	$e^{5y} = mx^3 + c \text{ soi}$	B1	
	4.38 = -2.56m + c $9.84 = 6.54m + c$	M1	Must be using the coordinates correctly
	m = 0.6, c = 5.92	2	M1 dep for solution of their equations
	$y = \frac{1}{5} \ln \left(0.6x^3 + 5.92 \right)$	A1	
	Alternative		/ / /
	$e^{5y} = mx^3 + c \text{ soi}$	B1	Ş
	Gradient = $\frac{5.46}{9.1}$ (= m)	M1	Must be using the coordinates correctly
	4.38 = -2.56m + c or $9.84 = 6.54m + c$	M1	Must be using the coordinates correctly
	m = 0.6, c = 5.92	A1	
	$y = \frac{1}{5} \ln \left(0.6x^3 + 5.92 \right)$	A1	
7(b)	$0.6x^3 + 5.92 > 0$	M1	Allow use of their $\frac{1}{5}\ln(0.6x^3 + 5.916)$
	x>-2.14	2	M1 dep for a correct method of solution to obtain $x >$

Question	Answer	Marks	Guidance
8	$(f'(x) =) k(3x+5)^{\frac{1}{3}} (+c)$	M1	
	$(f'(x)=) (3x+5)^{\frac{1}{3}} (+c)$	A1	Allow unsimplified
	$(f'(1) =) 6 = (3+5)^{\frac{1}{3}} + c$	M1	Dep M1 for use of given condition
	$f'(x) = (3x+5)^{\frac{1}{3}} + 4$ soi	A1	
	$m(3x+5)^{\frac{4}{3}}$	M1	
	$(f(x)=) m(3x+5)^{\frac{4}{3}} + cx + d$	M1	Dep M1, FT on their c
	$(f(1) =) 20 = m(8)^{\frac{4}{3}} + c + d$	M1	Dep M1, FT on their c
	$(f(x)=)$ $\frac{1}{4}(3x+5)^{\frac{4}{3}}+4x+12$	A1	
9(a)	$\frac{dy}{dx} = \frac{(x+1)(-3e^{-3x+2}) - e^{-3x+2}}{(x+1)^2}$	3	B1 for $-3e^{-3x+2}$ M1 for correct attempt at differentiation of a quotient A1 all terms apart from $-3e^{-3x+2}$ correct
	$\frac{e^{-3x+2}(-3x-4)}{(x+1)^2}$	2	M1 dep for attempt to obtain the given form, allow sign errors
9(b)	$e^{-3x+2} \neq 0$	B1	
	$x = -\frac{4}{3}$	B1	FT on their $-3x-4$ $\frac{dy}{dx}$ must be in the correct form
	$y = -3e^6$	B1	
10(a)	$ar^2 = 6$ $ar^7 = 1458 \text{ soi}$	B1	
	$r^5 = 243$	B1	
	r=3	B1	
	$a = \frac{2}{3}$	B1	

Question	Answer	Marks	Guidance
10(b)	$r = 2\cos\theta$	B1	
	$-\frac{1}{2} < \cos \theta < \frac{1}{2}$ $-1 < 2\cos \theta < 1$	B1	
	$ 2\cos\theta < 1$		
	$-90^{\circ} < \theta < -60^{\circ}$	B1	
	$60^{\circ} < \theta < 90^{\circ}$	B1	
11	$4x + k\cos 3x$	M1	
	$4x - \frac{2}{3}\cos 3x$	A1	
	$\left(\frac{4\pi}{3} - k\cos\pi\right) - \left(\frac{4\pi}{18} - k\cos\frac{\pi}{6}\right)$	M1	M1 dep for correct application of limits
	Area under the curve $\frac{10\pi}{9} + \frac{2}{3} + \frac{\sqrt{3}}{3}$	A2	A1 for one correct term
	When $x = \frac{\pi}{18}, y = 5$	B1	May be seen on the diagram
	When $x = \frac{\pi}{3}$, $y = 4$	B1	May be seen on the diagram
	Area of trapezium = $\frac{5\pi}{4}$	B1	For area of trapezium
	Shaded area = $\frac{2}{3} + \frac{\sqrt{3}}{3} - \frac{5\pi}{36}$	A1	

Question	Answer	Marks	Guidance
12(a)	$2(\cot^2\theta + 1) - 5 = 5\cot\theta \text{ soi}$	B1	
	$2\cot^2\theta - 5\cot\theta - 3 = 0$	M1	For attempt to obtain a 3-term quadratic in terms of $\cot \theta$, equated to zero
	$(2\cot\theta+1)(\cot\theta-3)=0$	M1	M1 dep for attempt to factorise, or use of quadratic formula oe
	$\tan \theta = -2, \ \tan \theta = \frac{1}{3}$	M1	M1 dep for obtaining in terms of $\tan \theta$, using <i>their</i> factors
	-161.6°, -63.4°, 18.4°, 116.6°	3	M1 for a correct solution A1 for another correct solution A1 for a further 2 correct solutions and no extras in the range
	Alternative		
	$2(\cot^2\theta + 1) - 5 = 5\cot\theta \text{ soi}$	B1	
	$2\cot^2\theta - 5\cot\theta - 3 = 0$	M1	For attempt to obtain a 3-term quadratic in terms of $\cot \theta$, equated to zero
	$3\tan^2\theta + 5\tan\theta - 2 = 0$	M1	M1 dep for attempt to obtain a 3-term quadratic in terms of $\tan \theta$, equated to zero
	$(3\tan\theta - 1)(\tan\theta + 2) = 0$ $\tan\theta = -2, \ \tan\theta = \frac{1}{3}$	M1	M1 dep for attempt to factorise, or use of quadratic formula oe and obtaining $\tan \theta =$
	-161.6°, -63.4°, 18.4°, 116.6°	3	M1 for a correct solution A1 for another correct solution A1 for a further 2 correct solutions and no extras in the range
10(b)	$\sin(2\phi + 1.5) = \frac{2}{3}$ $2\phi + 1.5 = 0.7297 \text{ soi}$	M1	
	$2\phi + 1.5 = 2.4119$ or 7.0129 or 8.6591	A1	
	0.456, 2.76, 3.6[0]	3	M1 for correct order of operations A1 for one correct solution A1 for a further 2 correct solutions and no extras in the range.

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Guidance
1(a)	b = 3	B1	
	Use of $y = a \cos bx + c$, with <i>their b</i> and either set of given coordinates	M1	their $b \neq \frac{2\pi}{3}$
	c = -2	A1	
	a=5	A1	
1(b)	Minimum when $\cos bx = -1$ soi	B1	Allow for their b, $b \neq \frac{2\pi}{3}$
	$x = \frac{\pi}{3}$	B1	Allow if b is correct
	y = -7	B1	FT on their c – their a
	Alternative		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -15\sin 3x$	(B1)	FT on their a, b and c, $b \neq \frac{2\pi}{3}$
	When $\frac{dy}{dx} = 0$, $x = \frac{\pi}{3}$	(B1)	Allow if <i>b</i> is correct
	y = -7	(B1)	FT on their c – their a
2(a)	$(f'(x)) = 2(x-1)(2x-5) + 2(x-1)^2$ oe or $6x^2 - 18x + 12$	M1	For use of product rule or expansion and differentiation
	$2(x+1)(2x-5) + 2(x-1)^2 = 0 \text{ oe}$ or $6x^2 - 18x + 12 = 0$ oe	M1	Dep for equating <i>their</i> quadratic $f'(x)$ to zero and attempt to solve to obtain $x = \dots$
	x=1, y=0 x=2, y=-1	2	A1 for any correct pair, must be from correct working only
2(b)	0 1 45 x	3	 B1 for a correct cubic shape in the correct position, touching the <i>x</i>-axis once in the 4th quadrant and intersecting once with the positive <i>x</i>-axis B1 for all intercepts and no extras
2(c)	k < -1	B1	
	k > 0	B1	

Question	Answer	Marks	Guidance
3(a)	$ACB = 2 \tan^{-1} \left(\frac{12}{5}\right) \text{ oe}$	M1	
	$ACB = (2 \times 1.176)$ = 2.35 to 2 dp	A1	Must see justification to 2 dp
3(b)	Arc length = $5 \times ACB$	B1	
	Perimeter = 35.8	B1	Allow awrt 35.8
3(c)	Area = $(12 \times 5) - \left(\frac{1}{2} \times 5^2 \times 2.35\right)$	M2	M1 for area of kite or area of sector M1 dep for kite area – sector area
	30.6	A1	Allow greater accuracy Any use of fractions gets A0
4(a)(i)	$\frac{2}{3}$	B1	Allow $x > \frac{2}{3}$, $a = \frac{2}{3}$, but not $x = \frac{2}{3}$ unless it is replaced with a correct answer
4(a)(ii)	R oe	B1	Must be using correct notation
4(a)(iii)	$3y-2 = e^{\frac{x}{4}}$ or $3x-2 = e^{\frac{y}{4}}$	M1	For valid attempt to reach this stage
	$f^{-1}(x) = \frac{1}{3} \left(e^{\frac{x}{4}} + 2 \right)$	A1	Must be using correct notation
	Domain $x \in \mathbb{R}$ Range $f^{-1} > \frac{2}{3}$	B2	B1 for each, must be using the correct notation.
4(a)(iv)		4	B1 for the shape of $y = f(x)$ in the first and fourth quadrants only B1 dep on previous B1 for $(1, 0)$ B1 for a correct shape for $f^{-1}(x)$, or FT on their $y = f(x)$ with correct shape in first quadrant for symmetry about $y = x$ soi B1 dep on previous B1 , for $(0, 1)$ and at least one point of intersection with $y = f(x)$ correct in the first quadrant

Question	Answer	Marks	Guidance
4(b)	$\left(2\left((2x+1)^{\frac{1}{2}}+4\right)+1\right)^{\frac{1}{2}}+4$	B1	
	$(2x+1)^{\frac{1}{2}} = 8$	B1	Dep
	x = 31.5 oe	B1	Dep on both previous B marks
	Alternative		
	g(x) = 9, x = 12	(B1)	
	g(x) = 12	(B1)	Dep
	x = 31.5 oe	(B1)	Dep on both previous B marks
5(a)	$\frac{\cos \sec^2 \theta}{\cot^2 \theta} = \frac{1}{\sin^2 \theta} \times \frac{\sin^2 \theta}{\cos^2 \theta}$ $= \frac{1}{\cos^2 \theta} = \sec^2 \theta$	B1	Sufficient detail is needed Do not award if θ is consistently omitted
	Alternative 1		
	$\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta}$ $\frac{\cos^2 \theta}{\sin^2 \theta}$ $= \frac{1}{\cos^2 \theta} = \sec^2 \theta$	(B1)	Sufficient detail is needed Do not award if θ is consistently omitted
	Alternative 2	0	
	$\frac{1}{\cot^2 \theta} + 1$ $\tan^2 \theta + 1$	(B1)	Sufficient detail is needed Do not award if θ is consistently omitted
5(b)	$\sec^2 \theta$	B1	
5(c)	$\int (\sec^2 \theta - \sin \theta) d\theta \ \text{soi}$	B1	
	$\tan \theta + \cos \theta$	B2	B1 for each
	$\sqrt{3} - \frac{1}{2}$ or exact equivalent	B1	Dep on 3 previous B marks
6(a)	$x^{10} + 20x^7 + 180x^4$	3	B1 for each correct term

Question	Answer	Marks	Guidance
6(b)	${}^{8}C_{4}\left(4x^{2}\right)^{4}\left(\frac{1}{2x^{2}}\right)^{4}$	M1	May be implied by working to obtain $r = 4$
	1120	A1	From correct working
7	$\left(\frac{dy}{dx} = \right) \frac{(x+2)\left(\frac{6x}{3x^2 - 1}\right) - \ln\left(3x^2 - 1\right)}{(x+2)^2}$ or $\frac{6x}{\left(3x^2 - 1\right)}(x+2)^{-1} - (x+2)^{-2}\ln\left(3x^2 - 1\right)$ oe	3	B1 for $\frac{6x}{3x^2-1}$ M1 for correct attempt at differentiation of a quotient or a correct product A1 for all terms apart from $\frac{6x}{3x^2-1}$ correct.
	When $x = 1$, $\frac{dy}{dx} = \frac{9 - \ln 2}{9}$	M1	For use of $x = 1$ in their $\frac{dy}{dx}$, must see a substitution if in decimal form unless 0.923 obtained from a correct derivative
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{9h}{9 - \ln 2}$ or exact equivalent	2	M1 for $\frac{h}{their\left(\frac{9-\ln 2}{9}\right)}$, with $x=1$ substituted in A0 if using small changes
8	$\frac{dy}{dx} = e^x k (2x+5)^{-\frac{1}{2}} + e^x (2x+5)^{\frac{1}{2}}$	M1	
	$\frac{dy}{dx} = e^{x} (2x+5)^{-\frac{1}{2}} + e^{x} (2x+5)^{\frac{1}{2}}$	A1	o. . <u>\$</u>
	When $x = 2$, $\frac{dy}{dx} = \frac{10e^2}{3}$	M1	Dep allow unsimplified Allow for using <i>their</i> $\frac{dy}{dx}$
	When $x = 2$, $y = 3e^2$	B1	
	Tangent: $y - 3e^2 = \frac{10e^2}{3}(x - 2)$	M1	Allow for using their $\frac{dy}{dx}$ and their y
	When $y = 0$, $x = \frac{11}{10}$	A1	Must be simplified Must be from correct work
	When $x = 0$, $y = -\frac{11e^2}{3}$	A1	
	$\left(\frac{11}{20}, -\frac{11e^2}{6}\right)$	A1	FT on <i>their</i> coordinates for x and y, but must be exact and simplified

Question	Answer	Marks	Guidance
9	$\frac{8}{2x+1} = 6x+1$ $12x^2 + 8x - 7 = 0$	M1	Attempt to obtain a 3-term quadratic in one variable equated to zero.
	$x = \frac{1}{2}$	2	M1 dep for solution, see guidance
	$k \ln(2x+1)$	M1	
	Area under curve = $\left[k \ln(2x+1)\right]_0^{their\frac{1}{2}}$ = $k \ln(2(their\ x)+1)(-0)$	M1	Dep on previous M1 for correct application of limits using <i>their x, k</i> and zero Allow unsimplified
	Area under curve = 2ln 2	A1	Not from incorrect work
	Area under straight line = $\frac{5}{8}$ or 0.625 oe	B1	
	Shaded area = $\ln 4 - \frac{5}{8}$	A1	Not from incorrect work

Question	Answer	Marks	Guidance
9	Alternative		
	Either $\frac{8}{2x+1} = 6x+1$ $12x^2 + 8x - 7 = 0$	(M1)	Attempt to obtain a 3-term quadratic in one variable equated to zero.
	$x = \frac{1}{2}$	(2)	M1 dep for solution, see guidance
	y=2	(A1)	Award only if attempt at integration with respect to <i>y</i> is subsequently seen
	Or $x = \frac{2}{y} - \frac{1}{2}$ and $x = \frac{2y - 1}{6}$ oe	(M1)	For rearranging both equations to obtain x or $2x$ in terms of y
	$2y^2 + 2y - 12 = 0$	(M1)	Dep for attempt to obtain a 3-term quadratic in one variable equated to zero.
	y=2	(2)	M1 dep for solution, see guidance
	Then area enclosed between curve, y-axis and the line $y = 2 = \left[k \ln y - \frac{1}{2}y\right]_{their 2}^4$ = $k \ln 4 - 2 - k \ln 2 + 1$	(M1)	For correct application of limits using their $y = 2$, k and 4 Allow unsimplified
	2ln2 – 1	(A1)	Not from incorrect work
	Area enclosed by straight line, the <i>y</i> axis and the line $y = 2$, $= \frac{3}{8}$	(B1)	0.5
	Shaded area = $\ln 4 - \frac{5}{8}$	(A1)	Not from incorrect work
10(a)	$\frac{30}{2}(4\tan 2x + (29 \times 3\tan 2x)) = 455\sqrt{3}$	M1	For attempt to use sum formula with correct a and d
	$\tan 2x = \frac{\sqrt{3}}{3}, \frac{455\sqrt{3}}{1365}$	A1	
	$x = -165^{\circ}, -75^{\circ}, 15^{\circ}, 105^{\circ}$	3	M1 for 1 correct solution (allow if in radians or from use of $\tan 2x = 0.577$ or $\tan 2x = 0.58$ e.g. 14.99° , 15.06° .) A1 for a second correct solution A1 for 2 further correct solutions and no extras in the range

Question	Answer	Marks	Guidance
10(b)	$r = 4\cos^2\left(\theta - \frac{\pi}{2}\right)$	B1	
	$4\cos^2\left(\theta - \frac{\pi}{2}\right) < 1$	M1	For use of sum to infinity condition
	or $-1 < 4\cos^2\left(\theta - \frac{\pi}{2}\right) < 1$ or $0 \le 4\cos^2\left(\theta - \frac{\pi}{2}\right) < 1$		
	$\theta = -\frac{\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}$	2	M1 dep for one correct critical value A1 for all critical values and no extras in the range $-\frac{\pi}{6} \leqslant \theta \leqslant \frac{7\pi}{6}$
	$-\frac{\pi}{6} < \theta < \frac{\pi}{6} \text{ (excluding 0)}$ $\frac{5\pi}{6} < \theta < \frac{7\pi}{6} \text{ (excluding } \pi)$	2	A1 for each correct set of values

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Guidance
1(a)	$y = x^{2} - x - 12$ $\frac{dy}{dx} = 2x - 1 \text{ or } (x+3) + (x-4)$ or $y = \left(x - \frac{1}{2}\right)^{2} - \frac{49}{4}$ or using symmetry $x = \frac{4 - 3}{2}$	M1	For expanding the brackets and differentiate with at least one correct term or for using the product rule or for completing the square or for using symmetry
	$x = \frac{1}{2}$	A1	
	$y = -\frac{49}{4} \text{ oe}$	A1	
1(b)	3 0 4 **	2	B1 for the correct shape. Must have the parabola part of the curve with maximum in the first quadrant and cusps on the <i>x</i> -axis. Ignore labelling of their maximum point if incorrect coordinates B1 for correct intercepts. Must be correct shape
1(c)	$k > \frac{49}{4}$ oe	B1	FT on $\left their - \frac{49}{4} \right $ excluding $k > 12$
2	-380 -180 0 180 M0 g	4	B1 for correct shape must be a curve with one min in 3 rd quadrant and one max in first quadrant and correct endpoints (-360,4) and (360,4) Ignore labelling of their maximum point if incorrect coordinates. depB1 for intercept of 4 on y-axis. Must have the correct shape depB1 for max in correct position of (180°, 9). Must have the correct shape depB1 for min in correct position of (-180°, -1). Must have the correct shape
3	$4x^2 - 4kx - k + 2[=0]$	B1	soi
	$k^2 + k - 2$ Critical values -2 , 1	2	M1 for use of discriminant on <i>their</i> threeterm quadratic equation to obtain two critical values
	-2 < k < 1	A1	Strict inequality

Question			Ans	wer			Marks	Guidance							
4(a)	$3 = \log_2$	28					B1								
	$\log_2 \frac{8a}{b}$	$\log_2 \frac{8a^4}{b}$					2	M1 for correct use of two operations from multiplication, division or power rule for logs to the base of 2. A1 for log to the base of 2 only							
4(b)	$\lg x = \frac{1}{\lg x}$	$\frac{4}{gx}$ or $\frac{1}{\log x}$	$\frac{1}{\log_x 10} =$	$4\log_x 10$)		B1	Change of base							
	$(\lg x)^2 =$	=4 or ($\log_x 10)^2$	$\frac{1}{2} = \frac{1}{4}$			B1	Dep on correct change of base Must work with $(\lg x)^2$ or $(\log_x 10)^2$ not $\log x^2$ or $(\log_x 100)$							
	x = 100					Б	B1	Dep on correct change of base							
	$x = \frac{1}{100}$	or 0.01		SF		B1	Dep on correct change of base								
5(a)	p(-2):	-8a + 4a	b + 38 + 6	c = 0	For substitution of -2 in $p(x)$ and equating to zero. Allow one sign error in evaluating										
	p(-1):-a+b+19+c=20							p(-1):-a+b+19+c=20						M1	For substitution of -1 in $p(x)$ and equating to 20. Allow one sign error in evaluating
	7a-3b	=39				A1	AG – must be from correct work								
5(b)	p'(1):3	p'(1): 3a + 2b - 19 = 1					M1	For substitution of 1 in $p'(x)$ and equating to 1 Allow one sign error in evaluating. Can be unsimplified							
	a = 6, t	b=1, c	=6				2	M1 dep for solution of <i>their</i> equation with that from (a) to find at least one unknown.							
6(a)	x^2	1	2.25	4	6.25	9	2	M1 for plotting points with one error							
	ln y	2.64	3.51	4.72	6.28	8.18									
	900 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	. ,	А ,		7 8										

Question	Answer	Marks	Guidance
6(b)	$ \ln y = x^2 \ln b + \ln A $	B1	May be seen in part (a)
	Gradient = $\ln b$ $(\ln b = 0.7)$ b = 2	2	M1 for attempt to find the gradient and equate to $\ln b$ Gradient must be from linear graph of $\ln y$ vs x^2
	Intercept = $\ln A$ $(\ln A = 1.95)$ A = 7	2	M1 for attempt to use intercept
6(c)	When $y = 200$, $\ln y = 5.3$ $x^2 = 4.85$ x = 2.2 (allow 2.1 or 2.3)	2	M1 for using <i>their</i> linear graph with $\ln y = 5.3$ to obtain a value for x^2 A0 for $x = \pm 2.2$ if -2.2 is not rejected
7(a)	$x^2 + 3x^2 \ln x$	2	M1 for attempt to differentiate a product Allow unsimplified for 2 marks
7(b)	$\int 3x^2 \ln x dx = x^3 \ln x - \int x^2 dx$	B1	
	$\left[x^{3} \ln x - \frac{x^{3}}{3} \right]_{1}^{2}$ $8 \ln 2 - \frac{8}{3} + \frac{1}{3}$	M1	Dep on B1 M1 for correct use of limits
	$\ln 256 - \frac{7}{3}$	2	A1 for one correct term
8(a)	$5x^2 + 3x - 14 = 0$ or $5y^2 - 4y - 57 = 0$	M1	soi
	$x = \frac{7}{5}, \ y = \frac{19}{5}$ $x = -2, \ y = -3$	3	M1 for attempt to solve <i>their</i> quadratic to obtain either $x =$ or $y =$ A1 for one correct pair both x or both y or one correct (x, y) point
	Midpoint $\left(-\frac{3}{10}, \frac{2}{5}\right)$	B1	Must be correct midpoint
	Gradient of perpendicular $-\frac{1}{2}$	B1	Must be correct
	Perp bisector: $y - \frac{2}{5} = -\frac{1}{2} \left(x + \frac{3}{10} \right)$	M1	Must be using <i>their</i> midpoint and a gradient = $-\frac{1}{2}$
	$k = -\frac{4}{5}$	A1	

Question	Answer	Marks	Guidance
8(b)	$\left(\frac{9}{2}, -2\right)$	2	B1 for one correct FT on $2 \times (their \ k) - their \frac{2}{5}$
	$\left(-\frac{51}{10},\frac{14}{5}\right)$	2	B1 for one correct FT on $\left[\left(3 \times their \ \frac{2}{5} \right) - \left(2 \times their \ k \right) \right]$
9(a)	c-2a	B1	
9(b)	$4\mathbf{a} + \frac{2}{3} \left(their \left(\mathbf{c} - 2\mathbf{a}\right)\right)$ oe	M1	Alternative route: $OC + CB + BD = \mathbf{c} + 2\mathbf{a} - \frac{1}{3} \text{ their } AB$
	$\frac{8}{3}\mathbf{a} + \frac{2}{3}\mathbf{c}$	A1	Allow unsimplified
9(c)	$\mu\left(their\left(\frac{8}{3}\mathbf{a}+\frac{2}{3}\mathbf{c}\right)\right)$	B1	Must be in terms of a and c in a valid vector form. Allow unsimplified
9(d)	$\overrightarrow{AC} = \mathbf{c} - 4\mathbf{a}$	B1	
	$\lambda (their (c-4a))$	B1	Must be in terms of a and c in a valid vector form
9(e)	$4\mathbf{a} = their(\mathbf{c}) - their(\mathbf{d})$ oe	M1	Must be in terms of a and c in a valid vector form
	$\lambda = \frac{1}{2}, \ \mu = \frac{3}{4}$	3	M1 dep on first M1 for equating like vectors once M1 dep on first M1 for attempt to solve 2 simultaneous equations in λ and μ . leading to $\lambda = \dots$ or $\mu = \dots$ A1 for both
10(a)	$\tan \theta = \frac{2}{7}, \tan \theta = -1$	2	M1 for attempt to factorise or use formula to obtain $\tan \theta =$
	15.9°, -164.1°, -45°, 135°	2	A1 for two correct solutions A1 for a further 2 correct solutions and no extras in the range

Question	Answer	Marks	Guidance
10(b)	$\sin(3\phi - 1.5) = \frac{2}{3}$ $3\phi - 1.5 = 0.7297$	M1	Correct order of the operation Do not accept in degrees
	$3\phi - 1.5 = 2.41[12], 7.01[3]$	A1	soi by correct answers with no extras within the range
	0.743, 1.30, 2.84	3	M1 dep on first M1 for correct order of operations or one correct solution A1 for one solution A1 for a further 2 correct solutions and no extras in the range Do not accept in degrees
11(a)	$d = 3\log_x 3$ or $\log_x 3^3$ nfww	B1	Must be exact Allow $d = \log_x 27 \text{ nfww}$
	$\frac{n}{2} \left(2\log_x 3 + 3(n-1)\log_x 3 \right) \text{nfww}$	M1	For use of sum formula with <i>their d</i> must be in the form of $\log_x 3$
	$\frac{n}{2}(3n-1)\log_x 3 \text{ or } \left(\frac{3n^2}{2} - \frac{n}{2}\right)\log_x 3$	A1	Must be in the form of $k \log_x 3$
11(b)	$r = 3\tan^2\theta$	B1	soi
	$\left 3\tan^2 \theta \right < 1 \text{ or } \left[-1 < \right] 3\tan^2 \theta < 1$ or $\left[-\frac{1}{3} < \right] \tan^2 \theta < \frac{1}{3}$ or $\left[0 < \right] \tan^2 \theta < \frac{1}{3}$	B1	·
	$\tan \theta < \frac{1}{\sqrt{3}}$ or $0 < \tan \theta < \frac{1}{\sqrt{3}}$	B1	
	$0 < \theta < \frac{\pi}{6}$	B1	

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

8 8 8 7 5 1 2 3 8

ADDITIONAL MATHEMATICS

0606/11

Paper 1 May/June 2024

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Theorem

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!}$

Arithmetic series $u_n = a + (n-1)d$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n\left\{2a + (n-1)d\right\}$$

Geometric series

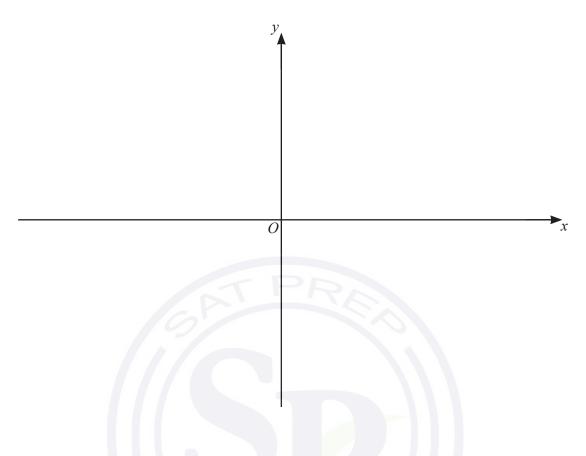
$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r} \quad (r \neq 1)$$

$$S_{\infty} = \frac{a}{1-r} \quad (|r| < 1)$$

2. TRIGONOMETRY

Identities


$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

© UCLES 2024 0606/11/M/J/24

1 (a) On the axes, sketch the graph of $y = -\frac{1}{5}(x+2)(2x-1)(x+5)$, stating the intercepts with the axes. [3]

(b) Hence solve the inequality $-\frac{1}{5}(x+2)(2x-1)(x+5) \ge 0$. [2]

2 DO NOT USE A CALCULATOR IN THIS QUESTION.

The polynomial p is such that $p(x) = 6x^3 - 35x^2 + 34x + 45$.

(a) Find p(x) in the form (2x-5)q(x)+r, where q(x) is a polynomial and r is a constant. [3]

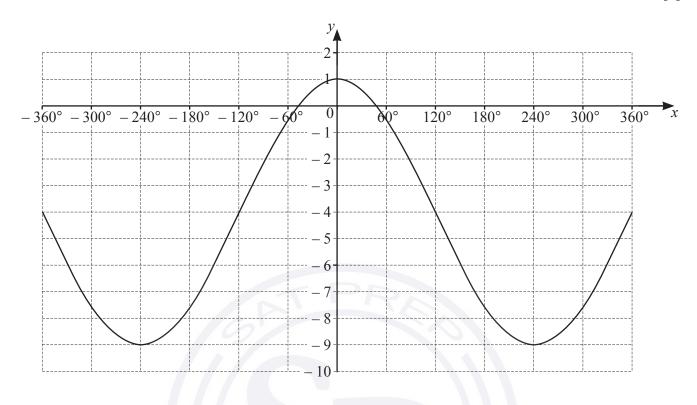
(b) Hence write the expression p(x) - 5 as a product of linear factors. [2]

(c) Hence write down the solutions of the equation p(x) = 5. [1]

© UCLES 2024 0606/11/M/J/24

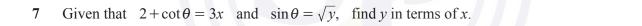
3 (a) Write $1 + \lg(x^2 - 1) - 2\lg(x - 1)$, where x > 1, as a single logarithm to base 10. Give your answer in its simplest form. [4]

(b) Solve the equation $4\log_5(x+1) = 9\log_{(x+1)} 5$, giving your answers in the form $a+b\sqrt{c}$, where a, b and c are constants. [5]


4 (a) The first three terms, in ascending powers of x, in the expansion of $(3+px)^n$ are $243+810x+qx^2$, where n, p and q are constants. Find the values of n, p and q.

[5]

(b) Find the term independent of y in the expansion of $\left(2y - \frac{1}{3y^2}\right)^6$. Give your answer in exact form. [2]


© UCLES 2024 0606/11/M/J/24

5 (a) The diagram shows the graph of $y = a\cos bx + c$, for $-360^{\circ} \le x \le 360^{\circ}$, where a, b and c are constants. Find the values of a, b and c. [3]

(b) The line y = p is a tangent to the curve $y = 3 - 2\sin 6\theta$. Write down the possible values of p. [2]

6 Find
$$\int_{2}^{4} \left(\frac{2}{2x-3} - \frac{3}{(3x-5)^2} \right) dx$$
, giving your answer in exact form. [4]

[3]

© UCLES 2024 0606/11/M/J/24

8 Solve the equation $4\sin^2(2\alpha - \frac{\pi}{3}) = 1$ for $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$. Give your answers in terms of π . [5]

9 (a) Solve the following simultaneous equations.

$$e^{x+y} \times e^{3x-2y} = 1$$

$$x^2y = 256$$
[5]

© UCLES 2024 0606/11/M/J/24

(b) Solve the equation $10e^{(2x-1)} - 11 = 6e^{(1-2x)}$, giving your answer in exact form. [4]

10 In this question, all distances are in metres and time, t, is in seconds.

A particle *P* is at a fixed point *O* at time t = 0. The velocity, v, of *P* is given by $v = 3 \sin 2t$ for $t \ge 0$.

(a) Find the exact value of t for which the velocity is zero for the first time after P leaves O. [2]

(b) Find an expression, in terms of t, for the displacement of P from O at time t.

[4]

© UCLES 2024 0606/11/M/J/24

(c) Find the distance travelled by P for $0 \le t \le \pi$.

[3]

11 The tangent to the curve $y = (3x-1)^{\frac{1}{3}}$ at the point where x = 3 meets the coordinate axes at the points A and B. The point with coordinates (a, a) lies on the perpendicular bisector of the line AB. Find the exact value of a.

© UCLES 2024 0606/11/M/J/24

Continuation of working space for Question 11.

Question 12 is printed on the next page.

12 (a) It is given that $y = \frac{\ln 3x}{x^2}$ for x > 0.

Find
$$\frac{dy}{dx}$$
. Give your answer in the form $\frac{A+B\ln 3x}{x^3}$, where A and B are integers. [4]

(b) Hence find
$$\int \frac{\ln 3x}{x^3} dx$$
. [4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2024 0606/11/M/J/24

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

* 7 0 5 8 4 4 3 8 6 1

ADDITIONAL MATHEMATICS

0606/12

Paper 1 May/June 2024

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages.

Mathematical Formulae

2

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Theorem

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!}$

Arithmetic series $u_n = a + (n-1)d$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n\left\{2a + (n-1)d\right\}$$

Geometric series $u_n = ar^{n-1}$

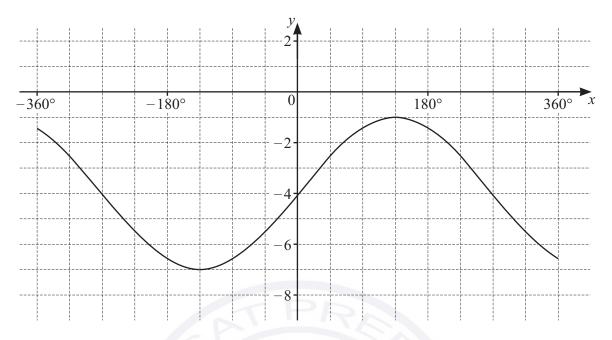
$$S_n = \frac{a(1-r^n)}{1-r} \ (r \neq 1)$$

$$S_{\infty} = \frac{a}{1 - r} \ (|r| < 1)$$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$


Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

* 0019655405203 *

3

1

The diagram shows the graph of $y = a \sin bx + c$ for $-360^{\circ} \le x \le 360^{\circ}$, where a, b and c are constants. Find the values of a, b and c. [3]

2 Given that $\log_3 r + 2\log_9 s = 8$, find the value of rs.

[3]

3 Given that $y = \tan \frac{x}{2}$, find the exact value of $\frac{dy}{dx}$ when $x = \frac{\pi}{3}$.

[4]

DO NOT WRITE IN THIS MARGIN

* 0019655405205 *

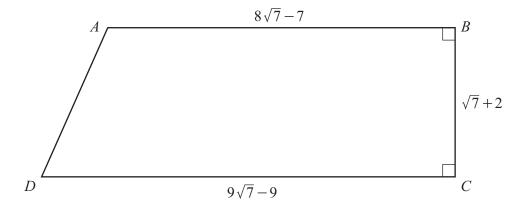
5

- 4 A team of 8 people is to be formed from 6 teachers, 5 doctors and 4 police officers.
 - (a) Find the number of teams that can be formed.

[1]

(b) Find the number of teams that can be formed without any teachers.

[1]


[4]

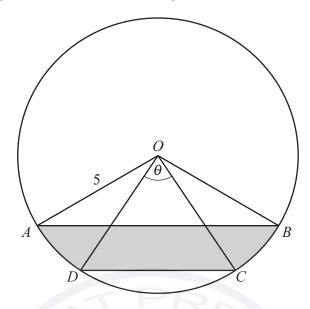
(c) Find the number of teams that can be formed with the same number of doctors as teachers.

USE A CALCULATOR IN THIS QUESTION.

In this question, all lengths are in centimetres.

The diagram shows the trapezium *ABCD*. The lengths of *AB*, *BC* and *CD* are $8\sqrt{7} - 7$, $\sqrt{7} + 2$ and $9\sqrt{7} - 9$ respectively. The line *BC* is perpendicular to the lines *AB* and *CD*.

(a) Find the perimeter of the trapezium, giving your answer in its simplest form. [3]


(b) Find the area of the trapezium, giving your answer in the form $p\sqrt{7} + q$, where p and q are rational numbers. [3]

(c) Find $\cot DBC$, giving your answer in the form $r\sqrt{7} + s$, where r and s are simplified rational numbers. [3]

7

In this question, all lengths are in metres and all angles are in radians.

8

The diagram shows a circle with centre O and radius 5. The points A, B, C and D lie on the circumference of the circle. Angle $DOC = \theta$. Angle AOD = angle COB = 0.5. The length of the minor arc DC is 3.75.

(a) Show that
$$\theta = 0.75$$
. [1]

[5]

(c) Find the area of the shaded region.

9

7 (a) The line y = 3x - 2 intersects the curve $2x^2 - xy + y^2 = 2$ at the points A and B. The point C with coordinates $\left(k, \frac{7}{8}\right)$ lies on the perpendicular bisector of the line AB. Find the exact value of k.

[9

DO NOT WRITE IN THIS MARGIN

(b) The point *D* lies on the perpendicular bisector of *AB* such that *D* is a reflection of *C* in the line *AB*. Find the coordinates of *D*.

- 8 A curve has equation $y = \frac{(3x^2 5)^{\frac{1}{3}}}{x+4}$.
 - (a) Show that $\frac{dy}{dx}$ can be written in the form $\frac{Ax^2 + Bx + C}{(3x^2 5)^{\frac{2}{3}}(x + 4)^2}$, where A, B and C are integers.

DO NOT WRITE IN THIS MARGIN

(b) Hence find the *x*-coordinates of the stationary points on the curve. Give your answers in their simplest exact form. [3]

In this question, all distances are in metres and time, t, is in seconds.

A particle *P* moves with a speed of 14.5 parallel to the vector $\begin{pmatrix} -20\\21 \end{pmatrix}$.

13

(a) Find the velocity vector of P.

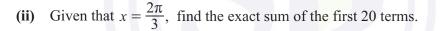
[2]

Initially, P has position vector $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$.

(b) Write down the position vector of P at time t.

[2]

A second particle *Q* has position vector $\begin{pmatrix} -1\\ 3 \end{pmatrix} + \begin{pmatrix} -5\\ 7.5 \end{pmatrix} t$ at time *t*.


(c) Find, in terms of t, the distance between P and Q at time t. Simplify your answer.

[4]

(d) Hence show that P and Q never collide.

[2]

- 10 (a) The first 3 terms of an arithmetic progression are $3\sin 2x$, $5\sin 2x$, $7\sin 2x$.
 - (i) Show that the sum to n terms of this arithmetic progression can be written in the form $n(n+a)\sin 2x$, where a is a constant. [3]

[2]

DO NOT WRITE IN THIS MARGIN

- **(b)** The first 3 terms of a geometric progression are $\ln 2y$, $\ln 4y^2$, $\ln 16y^4$.
 - (i) Find the nth term of this geometric progression.

[2]

(ii) Find the sum to n terms of this geometric progression, giving your answer in its simplest form. [2]

(c) The first 3 terms of a different geometric progression are $\left(2w - \frac{1}{4}\right)$, $\left(2w - \frac{1}{4}\right)^2$, $\left(2w - \frac{1}{4}\right)^3$.

Find the values of w for which this geometric progression has a sum to infinity. [3]

11 (a) Given that $y = x^2 \ln x$, find $\frac{dy}{dx}$.

[2]

(b) Hence find $\int x \ln x \, dx$.

[3]

16

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

917924276

ADDITIONAL MATHEMATICS

0606/13

Paper 1 May/June 2024

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Theorem

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n\{2a + (n-1)d\}$$

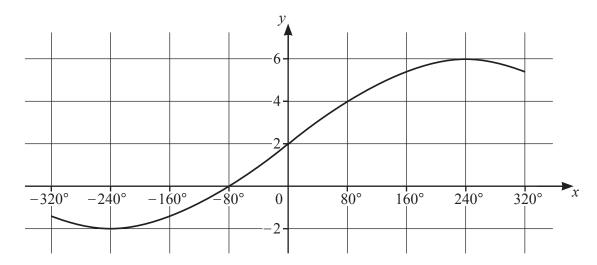
Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r} \ (r \neq 1)$$

$$S_{\infty} = \frac{a}{1-r} \ (|r| < 1)$$

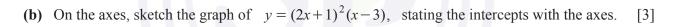
2 TRIGONOMETRY

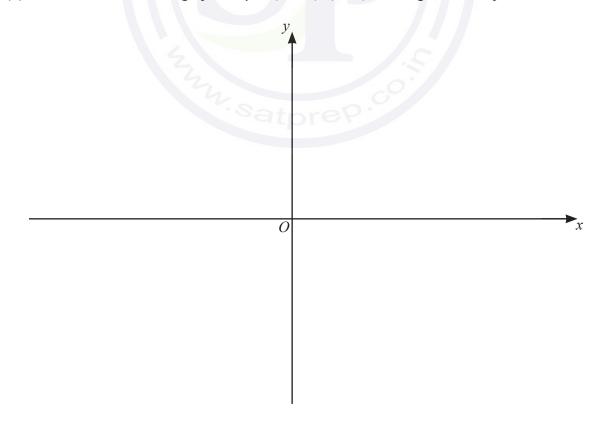

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$


© UCLES 2024 0606/13/M/J/24



The diagram shows the graph of $y = a \sin bx + c$, for $-320^{\circ} \le x \le 320^{\circ}$, where a, b and c are constants. Find the values of a, b and c. [3]

2 Solve the equation $3(2^{2x+1})-11(2^x)+3=0$, giving your answers correct to 2 decimal places. [4]

3 (a) Find the coordinates of the stationary points on the curve $y = (2x+1)^2(x-3)$. [4]

© UCLES 2024 0606/13/M/J/24

(c) Write down the values of k for which the equation $(2x+1)^2(x-3) = k$ has exactly one solution.

4 Find
$$\int_0^2 (1 + e^{2x})^2 dx$$
, giving your answer in exact form. [5]

When e^{2y} is plotted against x^3 , a straight line graph that passes through the points (2, 5) and (6.4, 7.2) is obtained.

(a) Find y in terms of x. [4]

(b) Find the values of x for which y exists.

[2]

© UCLES 2024 0606/13/M/J/24

- 6 It is given that $y = \frac{\ln(2x^2 + 1)}{x + 2}$, $x \neq -2$.
 - (a) Find $\frac{dy}{dx}$. [3]

(b) Given that x increases from 1 to 1+h, where h is small, find the approximate corresponding change in y. [2]

(c) When x = 1, the rate of change in y is 3 units per second. Find the corresponding rate of change in x. [2]

7 (a) A 6-digit number is to be formed using the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The 6-digit number cannot start with 0. Each digit can be used at most once in any 6-digit number. Find how many of these 6-digit numbers are divisible by 5.

(b) The number of combinations of (n+1) objects taken 13 at a time is equal to 16 times the number of combinations of n objects taken 12 at a time. Find the value of n. [3]

© UCLES 2024 0606/13/M/J/24

8 The line L is the normal to the curve $y = 3(5x+6)^{\frac{1}{2}}$ at the point where x = 2. The point (-2, k), where k is a constant, lies on L. Find the exact value of k. [7]

9 In this question, all lengths are in metres, and time, t, is in seconds.

A particle P moves in a straight line such that, t seconds after leaving a fixed point O, its displacement, s, is given by $s = 4t - 4\cos 2t + 4$.

(a) Find the velocity, v, of P at time t.

[2]

(b) On the axes, sketch the velocity-time graph for P for $0 \le t \le \pi$, stating the intercepts with the axes in exact form. [5]

© UCLES 2024 0606/13/M/J/24

(c) Find the acceleration of P at time t.

[1]

(d) Find the times when the acceleration of *P* is zero for $0 \le t \le \pi$. Give your answers in terms of π .

[2]

10 (a) In an arithmetic progression, the first term is a and the common difference is d. The sum of the first three terms of this arithmetic progression is 42. The product of the first three terms of this arithmetic progression is -6720.

(i) Show that
$$a(a+2d) = -480$$
. [3]

(ii) Hence, given that a is positive, find the values of a and d.

[4]

© UCLES 2024 0606/13/M/J/24

(b) In a geometric progression, the 3rd term is $\frac{e^{4x}}{4}$ and the 10th term is $\frac{e^{11x}}{512}$. Find the first term and the common ratio. [5]

11 Solve the following simultaneous equations, giving your answers in exact form.

$$8\log_3 x + 12\log_{81} y = 5$$

$$4\log_9 x + 3\log_3 y = 2$$
[6]

© UCLES 2024 0606/13/M/J/24

12 Solve the equation $\sec\left(3\theta - \frac{\pi}{2}\right) = 2$ for $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. Give your answers in exact form. [5]

© UCLES 2024 0606/13/M/J/24

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2024 0606/13/M/J/24

Cambridge IGCSE™

ADDITIONAL MATHEMATICS 0606/12 Paper 1 February/March 2024

MARK SCHEME Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Guidance
1(a)	4	B1	
1(b)	120°	B1	
1(c)	-du -do -g	3	To score marks, must have minimum points in the correct quadrants and symmetry about the <i>y</i> -axis. B1 for correct θ intercepts ±40°, ±80° and no others B1 for <i>y</i> -intercept of 6 B1 for a completely correct shape with no errors.
2(a)	$\log_p \frac{12a}{6} = \log_p 4^3 \text{ soi}$	2	B1 for correct use of addition and subtraction rule B1 for correct use of power rule
	a=32	B1	
2(b)	$4\log_3 x = \frac{9}{\log_3 x}$ or $\frac{4}{\log_x 3} = 9\log_x 3$ soi	B1	For change of base
	$(\log_3 x)^2 = \frac{9}{4} \text{ or } (\log_x 3)^2 = \frac{4}{9} \text{ soi}$	B1	-111
	$x = 3^{\pm 1.5}$ or exact equivalents	2	B1 for each solution
3	$\frac{3x^2}{x^3+3}$	B1	5
	When $x=1$, $\frac{dy}{dx} = \frac{3}{4}$ oe	M1	For finding the value of <i>their</i> $\frac{dy}{dx}$
	$y = \ln 4$	B1	
	$y - \ln 4 = -\frac{4}{3}(x - 1)$	2	M1 for attempt at normal equation using their $\frac{dy}{dx}$ and their y
			Allow A1 if $c = \frac{4}{3} + \ln 4$ seen
	$\left(\frac{4+3\ln 4}{7}, \ \frac{4+3\ln 4}{7}\right)$	2	M1 dep for attempt to use $y = x$ and obtain at least one solution
4(a)	f > 2	B1	
4(b)	$f^{-1}(x) = -\frac{1}{3}\ln(x-2) \text{ or } \frac{1}{3}\ln(\frac{1}{x-2}) \text{ isw}$	2	M1 for a complete attempt at inverse, allow sign slip but brackets must be used correctly.

Question	Answer	Marks	Guidance
4(c)	y y y y y y y y y y y y y y y y y y y	4	B1 for correct $y = f(x)$ with y -intercept of 3. Must have correct asymptotic behaviour and be in the first and second quadrant. B1dep for correct reflection of $y = f(x)$ to obtain $y = f^{-1}(x)$ with x -intercept of 3. Must have correct asymptotic behaviour and be in the first and fourth quadrant. B1 for asymptote of $y = 2$ stated or drawn through $y = 2$, must have a correctly shaped $y = f(x)$ B1 for asymptote of $x = 2$ stated or drawn or drawn through $x = 2$, must have a correctly shaped $y = f^{-1}(x)$
4(d)	$(2+e^{-3x})^{\frac{3}{2}}+4$ soi	B1	For correct order
	$2 + e^{-3x} = 4$	M1	For forming an equation, must be correct order
	$x = -\frac{1}{3}\ln 2$	2	M1 dep for correct attempt to solve for <i>x</i> .
5(a)	$p'(x) = 15x^2 + 2ax + 39$ soi	B1	///
	p'(-3): $135 - 6a + 39 = 0$ oe	B1	5
	p(-3): $-135 + 9a - 117 + b = 0$ oe	B1	
	a = 29	B1	
	b=-9	B1	
5(b)	$[(x+3)](5x^2+14x-3)$	2	M1 for attempt by any valid method, to obtain a quadratic with 2 correct terms or correct follow through on <i>their a</i> and <i>b</i> .
	$x = -3, \frac{1}{5}$	A1	For both

Question	Answer	Marks	Guidance
5(c)	$\csc 2\theta = -3 \text{ soi}$	B1	
	$\sin 2\theta = -\frac{1}{3}$ $2\theta = -19.47^{\circ}, 199.47^{\circ}, 340.53^{\circ}, 559.47^{\circ},$ 700.53° $\theta = 99.7^{\circ}, 170.3^{\circ}, 279.7^{\circ}, 350.3^{\circ}$	4	M1 a correct double angle M1 for correct order of operations to obtain one correct solution. May be implied by e.g. a correct solution or $\theta = -9.7^{\circ}$ or a correct angle in radians A1 for 2 correct solutions A1 for a further 2 correct solutions and no extra solutions within the range
6(a)(i)	$300 + \frac{1}{2}(10 + V)40 + \frac{1}{2}50V = 2750$ or $700 + \frac{1}{2}(40 \times (V - 10)) + \frac{1}{2}50V = 2750$ oe	M1	Allow one slip, but must be considering complete area
	V = 50	A1	
6(a)(ii)	-1 nfww	2	M1 FT <i>their V</i> for a correct gradient calculation
6(b)(i)	$\left(\frac{\mathrm{d}v}{\mathrm{d}t}\right) t \left(\frac{1}{2} \times 2t \times \left(t^2 + 5\right)^{-\frac{1}{2}}\right) + \left(t^2 + 5\right)^{\frac{1}{2}} \text{ soi}$	3	B1 for $\frac{1}{2} \times 2t \times (t^2 + 5)^{-\frac{1}{2}}$ M1 for a correct attempt at a product A1 for all correct apart from $\frac{1}{2} \times 2t \times (t^2 + 5)^{-\frac{1}{2}}$
	$\frac{13}{3}$	A1	
6(b)(ii)	There is no change of sign for v as v is always positive, so no change in direction. oe	B1	
7(a)	$a(5x-2)^{\frac{1}{3}}$	M1	
	$\frac{3}{5}(5x-2)^{\frac{1}{3}}$ oe	A1	
	$\frac{3}{5} \left(18^{\frac{1}{3}} - 2 \right)$ or exact equivalent	2	Dependent M1 for correct use of limits

Question	Answer	Marks	Guidance
7(b)	$2\ln(2x+1)$ oe	B1	
	$-\frac{4}{2x+1}$ oe	B1	
	$\left(2\ln 2 - \frac{4}{2}\right) - \left(-4\right)$	M1	For correct substitution of limits, must be using the form $a \ln(2x+1) + \frac{b}{2x+1}$
	ln4+2	2	A1 for each term
8(a)(i)	15 120	B1	
8(a)(ii)	Total: 3780	3	B1 : Starts with 5, 7 or 9: 2520 soi B1 : Starts with 6 or 8: 1260 soi
	Alternative	2/2	
	Total: 3780	(3)	B1 : Ends with 2 or 4: 2100 soi B1 : Ends with 6 or 8: 1680 soi
8(b)	2 nurses, 2 dentists, 5 doctors = 36 2 nurses, 3 dentists, 4 doctors = 60 2 nurses, 4 dentists, 3 doctors = 20	2	M1 for two correct cases
	Total = 116	A1	
	Alternative		///
	1 dentist only = 4 No nurses = 10 1 nurse only = 90	(M1)	· S
	Total = 116	(2)	M1 for attempt to subtract at least 2 correct cases from 220
9(a)(i)	$d = 3 \lg \theta$	B1	
	$\frac{n}{2}(2(2\lg\theta) + (n-1)3\lg\theta) = 4732\lg\theta$	M1	For use of the sum formula to obtain an equation in $\lg \theta$ only, using their a and d and $4732 \lg \theta$
	$3n^2 + n - 9464 = 0$	A1	
	n=56 only	2	M1 for attempt to solve <i>their</i> quadratic equation in n
9(a)(ii)	0.001 oe	B1	

Question	Answer	Marks	Guidance
9(b)(i)	$r = \frac{1}{3}$ soi	B1	
	r < 1 oe, so has a sum to infinity	B1	Dep on previous B1
9(b)(ii)	<i>n</i> th term $(\lg \phi^3) \left(\frac{1}{3}\right)^{n-1}$	B1	
	$3^{2-n} \lg \phi$	2	B1 for $(3\lg\phi)3^{1-n}$ or $\frac{3\lg\phi}{3^{n-1}}$
9(b)(iii)	10	B1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS 0606/11 Paper 1 October/November 2023 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 8

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2023 Page 3 of 8

Question	Answer	Marks	Guidance
1	a=4	B1	
	b=3	B1	
	c = -5	B1	
2(a)	c=0	B1	
	$P\left(-\frac{1}{2}\right): a+4b=-34 \text{oe}$	B1	Allow multiples but must be in terms of <i>a</i> , <i>b</i> and one numeric term.
	$P'(x) = 3ax^2 - 22x + b$ P'(2) = 12a - 44 + b soi	M1	For attempt to differentiate and substitute in $x=2$
	12a + b = 62	A1	Allow multiples but must be in terms of <i>a</i> , <i>b</i> and one numeric term.
	a = 6, b = -10	2	M1 dep for attempt to solve <i>their</i> simultaneous equations. A1 for both
2(b)	$x(6x^2-11x-10)$	M1	For $x((their\ a)x^2 - 11x + their\ b)$
	x(3x+2)(2x-5)	A1	
3(a)	$\pm \begin{pmatrix} -5 \\ 12 \end{pmatrix}$	B1	
	$\begin{pmatrix} -5 \\ 12 \end{pmatrix}$	B1	o.;
3(b)	13	B1	FT on their (a)
3(c)	$3(their \overrightarrow{AB}) = 2\overrightarrow{OX} - 2\begin{pmatrix} 2\\ -6 \end{pmatrix}$	M1	Condone $3(their \overrightarrow{AB}) = 2\begin{pmatrix} 2 \\ -6 \end{pmatrix} - 2\overrightarrow{OX}$
	$\begin{pmatrix} -\frac{11}{2} \\ 12 \end{pmatrix}$	A1	

© UCLES 2023 Page 4 of 8

Question			Ansv	wer			Marks	Guidance
4(a)	ln y = l	nA+blı	n x soi				B1	May be implied by parts (b) and (c)
	$\frac{\ln x}{\ln y}$	0 3	0.69	1.1	1.4	1.6	2	M1 for attempt to plot a correct graph, allow one point error on the graph.A1 All points correct on the graph.
		3						
4(b)	Vertical	l interce	pt = ln A	A (=3)		P	M1	Dep on a straight line graph
	20		16				A1	
	Gradier	nt = b					M1	Dep on a straight line graph
	b=1.5	(allow	1.4 to 1	.6)			A1	1111
4(c)	Reading In y or use of				25 to ol	btain	M1	Dep on a straight line graph
	120 ≤ y	ò150					A1	
5(a)(i)	5040		13				B1	`\S\
5(a)(ii)	2520			4.	Sar	t mark	B1	
5(a)(iii)	There are 504 codes less than 1000 5040 – 504 = 4536					рг	2	M1 for their (i) -504 or 9×(a product of 3 relevant numbers)
5(b)	With fa	mily: 4	62				B1	
	Withou	t family	: 55				B1	
	Total: 5	517					B1	
6(a)	$\lg 50x^3$						3	B1 for $\lg x^3$ or $\lg 2$ or $\lg 100$ B1 for $\lg \frac{x^3}{2}$

© UCLES 2023 Page 5 of 8

Question	Answer	Marks	Guidance
6(b)	$\log_4 a = \frac{1}{\log_a 4}$	B1	
	$2(\log_a 4)^2 - 5\log_a 4 - 3 = 0$	M1	For attempt to obtain a 3-term quadratic equation in $\log_a 4$ and an attempt to solve to obtain $\log_a 4 =$
	$\log_a 4 = -\frac{1}{2}, \log_a 4 = 3$ $a = \frac{1}{16}, a = 4^{\frac{1}{3}} \text{ oe}$	3	M1 Dep for dealing with logarithms correctly at least once, to obtain $a =$ A1 for each correct solution nfww.
	Alternative:		
	$\log_a 4 = \frac{1}{\log_4 a}$	(B1)	
	$3(\log_4 a)^2 + 5\log_4 a - 2 = 0$	(M1)	For attempt to obtain a 3-term quadratic equation in $\log_a 4$ and an attempt to solve to obtain $\log_a 4 =$
	$\log_4 a = -2$, $3\log_4 a = 1$ $a = \frac{1}{16}$, $a = 4^{\frac{1}{3}}$ oe	(3)	M1 Dep for dealing with logarithms correctly at least once, to obtain $a = \dots$ A1 for each correct solution nfww.
7(a)	$\frac{dy}{dx} = 2 \times 3 \times (2x+1)(3x-2) + 2(3x-2)^2$	2	M1 for attempt at differentiation of a product, allow one arithmetic error. A1 all correct, allow unsimplified.
	2(3x-2)(9x+1)	A1	0,
7(b)	$\left(\frac{2}{3},0\right)$	B1	Must be from a correct derivative
	$\left(-\frac{1}{9}, \frac{343}{81}\right)$ or $\left(-\frac{1}{9}, 4.23\right)$	B1	
7(c)	45 9 23 x	3	B1 for a correct cubic shape with a maximum in the second quadrant. B1 for $-\frac{1}{2}$ and $\frac{2}{3}$, must have a cubic shape B1 for 4 must have a cubic shape

© UCLES 2023 Page 6 of 8

Question	Answer	Marks	Guidance
7(d)	$0 < k < \frac{343}{81}$ or $0 < k < 4.23$	2	B1 for critical values 0 and <i>their</i> 4.23 or $\frac{343}{81}$
8	$4x^{2} - 6x - 5 = 1 - 4x \text{ oe}$ $2x^{2} - x - 3 = 0 \text{ oe}$	2	 M1 for attempt to eliminate y and simplify to a 3-term quadratic equation = 0. A1 for a correct equation.
	Correct attempt to solve <i>their</i> quadratic equation to obtain 2 values for <i>x</i> or for <i>y</i>	M1	
	$x = -1, \frac{3}{2}$	A1	
	y = 5, -5	A1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8x - 6$	M1	For finding the value of $\frac{dy}{dx}$ using their
	When $x = \frac{3}{2}$, $\frac{dy}{dx} = 6$		$x = \frac{3}{2}$
	Equation of tangent: $y = 6x - 14$	2	Dep M1 for attempt to find the equation of the tangent using <i>their</i> $x = \frac{3}{2}$ and <i>their</i> $y = -5$. A1 allow unsimplified.
	5 = 6x - 14 oe	M1	For use of <i>their</i> $y = 5$ in <i>their</i> tangent equation
	x = 3.17	A1	
9(a)(i)	$-3\tan\frac{\theta}{2} + 11\left(2\tan\frac{\theta}{2}\right) = \frac{19\sqrt{3}}{3}$	2	M1 for use of 12th term with <i>their</i> common difference. A1 allow unsimplified.
	$\tan\frac{\theta}{2} = \frac{\sqrt{3}}{3}$ $\theta = \frac{\pi}{3}$	2	Dep M1 for correct attempt to solve <i>their</i> $\tan \frac{\theta}{2} = \frac{\sqrt{3}}{3}$
9(a)(ii)	$\frac{10}{2} \left(2 \left(-3 \times \frac{\sqrt{3}}{3} \right) + 9 \left(2 \times \frac{\sqrt{3}}{3} \right) \right) \text{ oe}$	M1	For the use of the sum to 10 terms using their $\tan \frac{\theta}{2} = \frac{\sqrt{3}}{3}$
	20√3	A1	

© UCLES 2023 Page 7 of 8

Question	Answer	Marks	Guidance
9(b)(i)	Common ratio = $4\sin^2 \phi$	B1	
	$1 + 4\sin^2\phi = 4$	M1	For use of $1+their\ r=4$
	$\sin \phi = \pm \frac{\sqrt{3}}{2}$ $\phi = \pm \frac{\pi}{3}$	2	M1 for a correct attempt to solve <i>their</i> $\sin \phi = \pm \frac{\sqrt{3}}{2}$ to obtain at least one solution.
9(b)(ii)	Common ratio = 3 soi	M1	For attempt to find numerical value of <i>their</i> common ratio.
	3>1 so no sum to infinity [as $-1 < r < 1$ to have a sum to infinity.] oe	A1	Must have correct common ratio.
10(a)	$\frac{(x-4)\left(\frac{1}{2}\times 6x(3x^2-2)^{-\frac{1}{2}}\right)-(3x^2-2)^{\frac{1}{2}}}{(x-4)^2}$	3	B1 for $\frac{1}{2} \times 6x(3x^2 - 2)^{-\frac{1}{2}}$, allow unsimplified. M1 for a correct attempt to differentiate a quotient. A1 for all other terms correct.
	$\frac{\left(3x^2-2\right)^{-\frac{1}{2}}}{\left(x-4\right)^2}\left(3x(x-4)-\left(3x^2-2\right)\right)$	M1	For a correct attempt to simplify to obtain the given form.
	$\frac{-12x+2}{\sqrt{3x^2-2}(x-4)^2}$	A1	<i>[5]</i>
10(b)	When $x=3$, $\frac{dy}{dx} = \frac{-36+2}{5}$	M1	For attempt using their $\frac{dy}{dx}$
	-6.8 <i>h</i>	2	Dep M1 for attempt at small changes using their -6.8. A1 cao

© UCLES 2023 Page 8 of 8

Cambridge IGCSE™

ADDITIONAL MATHEMATICS 0606/12 Paper 1 October/November 2023 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 9

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2023 Page 3 of 9

Question	Answer	Marks	Guidance
1(a)	(f(x) or y =) -3(3x+1)(x-1)(2x-5)	3	B1 for $k\left(x+\frac{1}{3}\right)(x-1)\left(x-\frac{5}{2}\right)$ and no other work that would gain marks. B2 for $m(3x+1)(x-1)(2x-5)$ and no other work that would gain marks.
1(b)	$-\frac{1}{3} < x < 1$	B1	Must be in terms of <i>x</i>
	$x > \frac{5}{2}$	B1	Must be in terms of <i>x</i>
2(a)	5	B 1	
2(b)	480°	B1	
2(c)	-180° -120° -60° 0 60° 120° 180° x -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	3	To obtain any marks the graph must be a curve with one min in the third quadrant and one max in the first quadrant. B1 for the shape, starting in the 3 rd quadrant and ending in the 1 st quadrant. Must cross the <i>x</i> -axis only once, between 0° and 60° . Must extend for the complete domain starting with $-6 < y < -5$ and ending with $1 < y < 2$ B1 for passing through $(0, -2)$ B1 for passing though $(120^{\circ}, 3)$ and
3			$(-120^{\circ}, -7)$ soi
3	$\ln(y+2) = mx^{2} + c \text{ soi}$ Either of: $9.37 = 2.25m + c$ $3.92 = 4.75m + c$	M1	For at least one correct equation involving m and c
	$m = -2.18$, $-\frac{109}{50}$ oe $c = 14.3$, 14.28, 14.275, $\frac{571}{40}$	2	Dep M1 for attempt to solve for at least one unknown. A1 for both.
	$y = e^{(14.3 - 2.18x^2)} - 2$ oe	A1	FT on the first M1 for <i>their m</i> and c

© UCLES 2023 Page 4 of 9

Question	Answer	Marks	Guidance
3	Alternative		
	$\ln(y+2) = mx^2 + c \text{ soi}$	(B1)	
	Gradient = -2.18 , $-\frac{109}{50}$ oe	(B1)	
	9.37 = 2.25m + c $3.92 = 4.75m + c$	(M1)	Use of a correct equation with <i>their</i> gradient and <i>c</i>
	$c = 14.3, 14.28, 14.275, \frac{571}{40}$	(A1)	
	$y = e^{(14.3 - 2.18x^2)} - 2$ oe	(A1)	FT on their m and c
4(a)	n=16	B1	
	$ + \frac{n(n-1)}{2!} \left((-)\frac{x}{2} \right)^2, {}^{n}C_{2} \left((-)\frac{x}{2} \right)^2 \text{ oe} $ $ \frac{n(n-1)}{8} = p, \ p = 30 $	2	M1 for attempt at third term allow unsimplified in terms of n or their n , but not just as part of an expansion unless used to find p A1 for p .
	$+\frac{n(n-1)(n-2)}{3!}\left((-)\frac{x}{2}\right)^{3}, {}^{n}C_{3}\left((-)\frac{x}{2}\right)^{3}$ $\frac{n(n-1)(n-2)}{48} = q, q = -70$	2	M1 for attempt at fourth term, allow unsimplified in terms of n or their n , but not just as part of an expansion unless used to find q A1 for q .
4(b)	${}^{6}C_{4}\left(\frac{2}{x^{2}}\right)^{2}\left(\frac{x}{3}\right)^{4}$	B1	For identifying the correct term and attempting to evaluate.
	$\frac{20}{27}$	B1	
5	$\cos\left(2\theta + \frac{\pi}{6}\right) = \left(\pm\right)\frac{\sqrt{3}}{2} \text{ oe}$	B1	
	$\tan\left(2\theta + \frac{\pi}{6}\right) = \left(\pm\right)\frac{1}{\sqrt{3}} \text{ oe}$		
	$\theta = -\frac{\pi}{6}, \ 0, \ \frac{\pi}{3} \text{ oe}$	4	M1 for a correct order of operations, may be implied by one correct solution. A1 for 1 correct solution. A1 for a 2nd correct solution A1 for a 3rd correct solution with no extra solutions in the range. All solutions must be from correct working.

© UCLES 2023 Page 5 of 9

Question	Answer	Marks	Guidance
6(a)	c=12	B1	
	$p\left(\frac{1}{3}\right)$: $\frac{a}{27} + \frac{b}{9} + \frac{c}{3} - 5 = 0$ soi	M1	Allow one arithmetic or sign error, may substitute in their c .
	p(2): 8a+4b+2c-5=95	M1	Allow one arithmetic or sign error, may substitute in their c .
	$a+3b=27 \text{ or } \frac{a}{27} + \frac{b}{9} = 1 \text{ oe}$	A1	Allow multiples but c needs to have been eliminated and terms with powers evaluated.
	2a+b=19 oe	A1	Allow multiples but c needs to have been eliminated
	a = 6, b = 7	2	 M1, dep on at least one previous M1, for attempt to solve <i>their</i> equations in a and b only, to find a or b. A1 for both a and b.
6(b)	$(3x-1)(2x^2+3x+5)$ cao	2	M1 for attempt at 2 terms in <i>their</i> quadratic factor. A1 for both factors.
	For $2x^2 + 3x + 5 = 0$, discriminant is less than zero, so no solutions. [Only solution is $x = \frac{1}{3}$.]	B1	Allow other valid arguments, but must be using a correct quadratic factor and an attempt to evaluate the discriminant
7(a)(i)	136080	B1	7.1
7(a)(ii)	(End in 0) 15 120 or ⁹ P ₅ or 9×8×7×6×5	B1	-9°
	(End in 5) 13 440 or 8× ⁸ P ₄ or 8×8×7×6×5	B1	
	Total: 28560	B1	
	Alternative 1		
	(Does not start with 5:) 26880 or 16^8P_4	(B1)	
	(Starts with 5:) 1680 or ⁸ P ₄	(B1)	
	Total: 28560	(B1)	

© UCLES 2023 Page 6 of 9

Question	Answer	Marks	Guidance
7(a)(ii)	Alternative 2		
	(Number not divisible by 5:) 107520 or $8\times8\times^8P_4$	(B1)	
	136080 – 107520	(B1)	FT on <i>their</i> 136 080
	Total: 28560	(B1)	
7(b)(i)	346104	B 1	
7(b)(ii)	18	B1	Do not isw subsequent work
7(b)(iii)	the number of committees with no dentists: 11 440	M1	Allow attempts at 7 options, but must have all of them: 8, 448, 6720, 39 200, 101 920, 122 304 and 64 064
	334664	A1	May come from $^{24}C_7 - ^{16}C_7$
8(a)(i)	$a = -\frac{1}{3}$ or $x \geqslant -\frac{1}{3}$	B1	Allow -0.333 or better Allow a correct recurring decimal
8(a)(ii)	f ≥ −4	B1	
8(a)(iii)		4	B1 for $y = f(x)$, must have a correct shape (right hand side from the vertex of a quadratic curve), must be a 1:1 function, intersecting each of the x and y axes once, in quadrants 1, 3 and 4. B1 , dependent on previous B for passing through $(0, -3)$ and $(\frac{1}{3}, 0)$. B1 dependent on first B1 for $y = f^{-1}(x)$, being a correct reflection of their $y = f(x)$, intersecting each of the x and y axes and $y = f(x)$ once. B1 dependent on previous B for passing through $(-3, 0)$ and $(0, \frac{1}{3})$.
8(b)	$3(\ln(2x^2+5))-2(=4)$	M1	For correct order
	$x = \sqrt{\frac{e^2 - 5}{2}}$ or exact equivalent	2	M1 dep for a correct attempt to deal with logarithms and obtain $x =$ Allow one arithmetic or sign slip.

© UCLES 2023 Page 7 of 9

Question	Answer	Marks	Guidance
9	$12\left(x^{\frac{2}{3}}\right)^{2} - 11\left(x^{\frac{2}{3}}\right) - 5 = 0$	B1	For recognition of a 3-term quadratic equation in terms of $x^{\frac{2}{3}}$ or a suitable substitution
	$ \left(3x^{\frac{2}{3}} + 1\right) \left(4x^{\frac{2}{3}} - 5\right) = 0 $ $ x^{\frac{2}{3}} = -\frac{1}{3}, x^{\frac{2}{3}} = \frac{5}{4} $	2	M1 for attempt to solve a 3-term quadratic equation in the form $12u^2 \pm 11u \pm 5 = 0$ to obtain at least one solution in the form $x^{\frac{2}{3}} = \dots$ or 'u' = A1 for at least one correct solution.
	x=1.4 only	A1	
10(a)	$27 = 12\theta$ $\theta = \frac{9}{4} \text{ oe}$	B1	$\angle AOB = \theta$
	Either $\tan(\pi - \theta) = \frac{CB}{12}$ soi $\operatorname{Or} \frac{CB}{\sin(\pi - \theta)} = \frac{12}{\sin(\theta - \frac{\pi}{2})}$	M1	Allow with their θ .
	Perimeter = 24 + 27 + 2(14.86)	M1	Allow with their CB.
	Perimeter = awrt 80.7	A1	From correct working only
10(b)	$\left(\frac{1}{2} \times 12^2 \times their \ \theta\right) + \left(12 \times their \ CB\right)$ 340 oe or 341 oe	3	M1 for each area A1 for awrt 340 or 341
11(a)	$\overrightarrow{AX} = \frac{\mathbf{b}}{2} - \mathbf{a}$	B1	Allow unsimplified
	$\overrightarrow{OZ} = \mathbf{a} + \lambda \left(\frac{\mathbf{b}}{2} - \mathbf{a}\right)$	2	M1 for $\overrightarrow{OZ} = \mathbf{a} + \lambda \times their\left(\frac{\mathbf{b}}{2} - \mathbf{a}\right)$ Allow unsimplified Mark final answer
11(b)	$\overrightarrow{OY} = \frac{1}{2}(\mathbf{a} + \mathbf{b})$ oe	B1	Allow unsimplified
	$\overrightarrow{OZ} = \frac{\mu}{2} (\mathbf{a} + \mathbf{b})$	B1	FT on <i>their</i> \overrightarrow{OY} , allow unsimplified Mark final answer

© UCLES 2023 Page 8 of 9

Question	Answer	Marks	Guidance
11(c)	$\mathbf{a} + \lambda \left(\frac{\mathbf{b}}{2} - \mathbf{a}\right) = \frac{\mu}{2} (\mathbf{a} + \mathbf{b})$	M1	For equating <i>their</i> final answer for (a) and <i>their</i> final answer for (b) and attempt to equate like vectors at least once to obtain a scalar equation
	$\lambda = \mu = \frac{2}{3}$	2	M1 dep for solving <i>their</i> simultaneous equations to obtain at least one unknown. Each equation must be in terms of λ and μ A1 for both.
11(d)	$\overrightarrow{OZ} = \frac{1}{3}(\mathbf{a} + \mathbf{b})$ oe	B1	Must be from correct work
12(a)	Cannot have the square root of a negative number. oe	B1	Must be a correct statement related to the question. Allow a numerical argument.
12(b)	$\frac{(x-3)\left(\frac{5}{2}\times(5x-2)^{-\frac{1}{2}}\right)-(5x-2)^{\frac{1}{2}}}{(x-3)^2}$ or $(x-3)^{-1}\frac{5}{2}(5x-2)^{-\frac{1}{2}}$ $+\left(-(x-3)^{-2}\right)(5x-2)^{\frac{1}{2}}$	3	B1 for $\frac{5}{2} \times (5x-2)^{-\frac{1}{2}}$ seen M1 for an attempt to differentiate a quotient or correct product A1 for all other terms correct.
	$\frac{(5x-2)^{-\frac{1}{2}}}{2(x-3)^2} (5(x-3)-2(5x-2)) \text{ oe}$	M1	Dep for an attempt to simplify to the given form, allow a sign error and an arithmetic error (e.g. Omission of a factor of 2 in the linear term).
	$\frac{-(5x+11)}{2(x-3)^2\sqrt{5x-2}} \text{ cao}$	A1	-;0

© UCLES 2023 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS 0606/13 Paper 1 October/November 2023 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 13

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2023 Page 3 of 13

Question	Answer	Marks	Guidance
1(a)	y 3 3 0 0.75	3	B1 for a V shaped graph with a vertex on the positive <i>x</i> -axis. B1 for 0.75 and 3 marked correctly and dependent on first B1 B1 for a straight line passing through -2.5 and 5 marked correctly, axis with a gradient such that there are two points of intersection. The second point of intersection may be implied.
1(b)	4x-3<2x+5 so x<4	B1	
	$2x+5 > -4x+3$ so $x > -\frac{1}{3}$	B1	nfww
	$-\frac{1}{3} < x < 4$	B1	Dependent on both B1
	10'		SC2 for the values $-\frac{1}{3}$ and 4
			without any or with wrong inequality signs nfww
	Alternative		
	$3x^2 - 11x - 4 < 0 \text{ or } = 0$	(M1)	For squaring each side of the inequality and forming a 3-term quadratic. Allow multiples.
	$-\frac{1}{3}$, 4	(A1)	Critical values
	$-\frac{1}{3} < x < 4$	(A1)	
2	Mid-point $\left(\frac{3}{2}, -\frac{5}{6}\right)$	B1	Do not allow if unsimplified
	Gradient = $-\frac{1}{3}$	B1	Allow unsimplified
	$k + \frac{5}{6} = 3 \times \left(2 - \frac{3}{2}\right) \text{ oe}$	M1	For attempt at perpendicular bisector Must be with <i>their</i> perpendicular gradient and <i>their</i> mid-point
	$k = \frac{2}{3}$	A1	

© UCLES 2023 Page 4 of 13

Question	Answer	Marks	Guidance
3	3 2 1 3 3 1 1 3 1 1 1 2 2 3 3 4	4	B1 for a correct shape, starting in approximately correct places between -2 and -3 and finishing in approximately correct places between 0 and 1, having an amplitude of 2 and crossing the <i>x</i> -axis only once, on the positive <i>x</i> -axis. B1 for a correct shape and (0, -1) B1 for a correct shape and a max and a min in approximately correct places. (270°,1) and (-270°,-3) B1 for a correct shape crosses at (90°,0)
4(a)	$P\left(-\frac{1}{2}\right): -\frac{a}{8} + \frac{b}{4} - \frac{3}{2} + 2 = 0$	M1	Allow one arithmetic error. Must be equated to 0 soi Allow unsimplified
	P(-1):-a+b-3+2=-6	M1	Allow unsimplified Must be equated to – 6 soi
	-a + 2b + 4 = 0 oe -a + b + 5 = 0 oe	A1	For both allow unsimplified
	a = 6, b = 1	2	M1 dep on at least one previous M1 for attempt to solve <i>their</i> simultaneous equations to find at least one of <i>their</i> unknowns. A1 for both.
4(b)	$(2x+1)(3x^2-x+2)$	2	M1 for correct attempt to obtain 2 terms of the quadratic for <i>their</i> $P(x)$. Must divide by $(2x + 1)$ A1 for correct quadratic $(3x^2 - x + 2)$
	For $3x^2 - x + 2$, the dicriminant is < 0	B1	Must have a valid attempt to evaluate the discriminant.
	so only one real root of $-\frac{1}{2}$ oe		
5(a)(i)	30240	B1	
5(a)(ii)	720	B1	the number of passwords with no symbols. Not part of a product
	29 520	B1	
5(a)(iii)	$(6 \times 5) \times 6 \times (4 \times 3) = 2160$ oe	2	B1 for (6×5) and (4×3) soi

© UCLES 2023 Page 5 of 13

Question	Answer	Marks	Guidance
5(b)	1 of each and 6 police officers = 20	B1	For ${}^4C_1 \times {}^5C_1 \times {}^6C_6$ must be evaluated, could be implied by a correct total
	2 of each and 4 police officers = 900	B1	For ${}^4C_2 \times {}^5C_2 \times {}^6C_4$ must be evaluated, could be implied by a correct total
	3 of each and 2 police officers = 600	B1	For ${}^4C_3 \times {}^5C_3 \times {}^6C_2$ must be evaluated, could be implied by a correct total
	4 of each and no police officers = 5	B1	For ${}^4C_4 \times {}^5C_4$ must be evaluated, could be implied by a correct total
	Total = 1525	B1	
6(a)	$q'(x) = -\frac{1}{3}(2(2x-1)(x+3) + 2(x+3)^2)$ oe	2	M1 for attempt to differentiate, allow one arithmetic slip. A1 – allow unsimplified.
	$ \left[q'(x) = -\frac{2}{3} \right] (3x^2 + 11x + 6) = 0 $ $ x = -3 \text{ and } x = -\frac{2}{3} $	2	Dep M1 for equating <i>their</i> $q'(x)$ to zero and attempt to solve <i>their</i> 3-term quadratic to get two solutions for $x =$ A1 for both x values correct nfww
6(b)	etpree	3	B1 for correct cubic shape with maximum point in correct quadrant. B1 for correct cubic shape touching at (-3, 0) and passing through (0.5,0), intercepts must be marked. B1 for correct cubic shape passing through (0, 3) intercept must be marked.
6(c)	k < 0	B1	Condone $y < 0$
	$x = -\frac{2}{3}$, $y = \frac{343}{81}$ or $y = 4.23$	M1	For finding the value of y at their max point. If incorrect must see substitution of their $x = -\frac{2}{3}$ nfww
	$k > \frac{343}{81}$ or $k > 4.23$	A1	Condone $y > \frac{343}{81}$ or $y > 4.23$

© UCLES 2023 Page 6 of 13

Question	Answer	Marks	Guidance
7	$6\left(x^{\frac{1}{3}}\right)^2 - x^{\frac{1}{3}} - 2 = 0$	B1	
	or $6m^2 - m - 2 = 0$ where $m = x^{\frac{1}{3}}$ oe		
	$x^{\frac{1}{3}} = \frac{2}{3}, \ x^{\frac{1}{3}} = -\frac{1}{2}$ oe	M1	For attempt to solve 3-term quadratic equation in the form $6m^2 \pm m \pm 2 = 0$ and obtain $x^{\frac{1}{3}} = \dots$ or $m = \dots$ from correct work only
	$x = \frac{8}{27}, \ x = -\frac{1}{8}$	2	Dep M1 for dealing with the power of $\frac{1}{3}$ correctly at least once.
	TPR		A1 for both
8	$(2x)^2 = 256x^{16} \text{soi } n = 8$	B1	
	$\binom{8}{1} (2x^2)^7 \times \left(-\frac{1}{4x}\right) = ax^{13} \text{ oe}$ leading to $a = -256$	2	M1 for attempt at 2nd term with <i>their n</i> to find <i>a</i> , need to see one step to evaluate. Allow a sign error in simplifying but not missing in $-\frac{1}{4x}$
	$\binom{8}{2} (2x^2)^6 \left(-\frac{1}{4x}\right)^2 = bx^c$ leading to $b = 112$	2	M1 for attempt at 3rd term with <i>their n</i> to find <i>b</i> , need to see one step to evaluate. Allow a sign error but not missing in $\left(-\frac{1}{4x}\right)^2$
	c=10	B1	Can be seen by observation.

© UCLES 2023 Page 7 of 13

Question	Answer	Marks	Guidance
9	$\left[\frac{dy}{dx} = \right] \frac{\frac{5}{3}(5x+2)^{-\frac{2}{3}} \times (x-1)^2 - 2(5x+2)^{\frac{1}{3}}(x-1)}{(x-1)^4}$ or $\left[\frac{dy}{dx} = \right] = \frac{5}{3}(5x+2)^{-\frac{2}{3}} \times (x-1)^{-2} + (5x+2)^{\frac{1}{3}}$ $\times -2 \times (x-1)^{-3}$	3	B1 for $\frac{5}{3}(5x+2)^{-\frac{2}{3}}$ M1 for attempt at differentiation of a quotient or product. A1 all other terms correct.
	$\frac{(5x+2)^{-\frac{2}{3}}}{3(x-1)^3}(5x-5-30x-12)$	M1	Dep M1 for attempt to simplify by factorising $(5x+2)^{-\frac{2}{3}}$ or $(x-1)$ nfww to the given form , allow one arithmetic slip and/or one sign slip.
	$\frac{-(25x+17)}{3(x-1)^3(5x+2)^{\frac{2}{3}}}$	A1	Must be in correct form.

Question	Answer	Marks	Guidance
10	$40 + 20\theta = 65$	*M1	
	$\theta = 1.25$	A1	
	$\sin\left(\frac{their \ \theta}{2}\right) = \frac{\frac{1}{2}AB}{20}$ $AB = 23.4 \text{ or } \frac{1}{2}AB = 11.7$	2	Dep M1 for an attempt to find AB or $\frac{1}{2}AB$
	Either $\tan\left(\frac{their \ \theta}{2}\right) = \frac{\text{height of triangle } ACB}{their \frac{1}{2}AB}$ Height of triangle = 8.44 Area of triangle = 98.8	3	DepM1 for a correct attempt to find the height of the triangle M1 for attempt to find the area of the triangle using <i>their</i> height and <i>their AB</i> A1 must be at least 3 significant figures.
	Or $\cos\left(\frac{their \ \theta}{2}\right) = \frac{their \frac{1}{2}AB}{AC}$ $AC = 14.4$ Area of triangle $= \frac{1}{2} \times their \ AB \times their \ AC \times \sin\left(\frac{\theta}{2}\right)$ Area of triangle $= 98.8$	(3)	DepM1 for a correct attempt to find <i>CA</i> M1 for attempt to find the area of the triangle using the sine rule with <i>their CA</i> . A1 must be at least 3 significant figures.
	Area of the segment = $\frac{1}{2} \times 20^2 \times (1.25 - \sin 1.25)$ Area of the segment = 60.2	B1	
	Area = 38.6	A1	

© UCLES 2023 Page 9 of 13

Question	Answer	Marks	Guidance
10	Alternative 1		
	$40+20\theta=65$	(*M1)	
	θ =1.25	(A1)	
	$\tan\left(\frac{their \ \theta}{2}\right) = \frac{AC}{20} \text{ oe soi}$ $AC = 14.43$	(2)	DepM1 for a correct attempt to find the <i>AC</i>
	Area of triangle $ACO = \frac{1}{2} \times 20 \times 14.43 = 144.3$	(2)	M1 for a correct attempt to find the area of the triangle using <i>their AC</i>
	Area of the sector $= 250$	(B1)	
	Area of half shaded region = $(144.3 - 125) \times 2$	(M1)	Dependent on a valid method for finding triangle <i>ACO</i> . Allow use of 144
	Area = 38.6	(A1)	
	Alternative 2		
	$40 + 20\theta = 65$	(*M1)	
	θ =1.25	(A1)	
	$\sin\left(\frac{their \ \theta}{2}\right) = \frac{\frac{1}{2}AB}{20}$ $AB = 23.4$	(2)	Dep M1 for an attempt to find AB or $\frac{1}{2}AB$
	$\tan\left(\frac{their \ \theta}{2}\right) = \frac{AC}{20} \text{ oe soi}$ $AC = 14.43$	(2)	DepM1 for a correct attempt to find <i>AC</i>
	Shaded area = $14.4 \times 20 - \frac{1}{2} \times 20^2 \times \frac{5}{4}$ Area = 38.6	(3)	M1 for area of Kite B1 for area of sector

© UCLES 2023 Page 10 of 13

Question	Answer	Marks	Guidance
10	Alternative 3		
	$40 + 20\theta = 65$	(*M1)	
	θ =1.25	(A1)	
	$\tan\left(\frac{their \ \theta}{2}\right) = \frac{AC}{20} \text{ oe soi}$ $AC = 14.43$	(2)	DepM1 for a correct attempt to find AC
	Area of triangle AOB $= \frac{1}{2} \times 20^{2} \times \sin (their \theta)$ $= 189.[7969]$	(M1)	
	Area of triangle ACB $= \frac{1}{2} \times their \ AC \times their \ AB \times \sin \frac{\theta}{2}$ $= 98.8$	(M1)	for a correct attempt to find the area of the triangle using <i>their AC</i> and <i>their AB</i>
	Area of the sector = 250	(B1)	
	Area of half shaded region = area of triangle ACB + area of triangle AOB - area of sector = $189.8 + 98.8 - 250$	(M1)	
	Area = 38.6	(A1)	

© UCLES 2023 Page 11 of 13

Question	Answer	Marks	Guidance
10	Alternative 4		
	$40 + 20\theta = 65$	(*M1)	
	θ = 1.25	(A1)	
	$\sin\left(\frac{their \ \theta}{2}\right) = \frac{\frac{1}{2}AB}{20}$ $AB = 23.4 \text{ or } \frac{1}{2}AB = 11.7$	(2)	Dep M1 for an attempt to find AB or $\frac{1}{2}AB$
	$\tan\left(\frac{their \ \theta}{2}\right) = \frac{\text{height of triangle } ACB}{their \frac{1}{2}AB}$ Height of triangle = 8.44	(M1)	DepM1 for a correct attempt to find the height of the triangle
	Height of triangle ABO $= \sqrt{20^2 - \left(\frac{1}{2}AB\right)^2}$ $= 16.22$	(M1)	for a correct attempt to find to find the height of the triangle
	Area of the sector = 250	(B1)	
	Area of kite $= \frac{1}{2} \times 23.4 \times (16.22 + 8.44)$ $= 288.5$	(M1)	
	Area = 288.5 - 250 = 38.5	(A1)	
11(a)	$\overrightarrow{XY} = -\overrightarrow{OX} + \mathbf{a} + \frac{1}{3} \overrightarrow{AB} \text{ oe soi}$ or $\overrightarrow{XY} = \overrightarrow{XB} - \frac{2}{3} \overrightarrow{AB} \text{ oe soi}$	M1	
	$\overrightarrow{XY} = -\frac{4}{5}\mathbf{b} + \mathbf{a} + \frac{1}{3}(\mathbf{b} - \mathbf{a}) \text{ oe soi}$ or $\overrightarrow{XY} = \frac{1}{5}\mathbf{b} + \frac{2}{3}(\mathbf{a} - \mathbf{b}) \text{ oe soi}$	M1	For $\pm \frac{1}{3}(\mathbf{b} - \mathbf{a})$ or $\pm \frac{4}{5}\mathbf{b}$ For $\pm \frac{1}{5}\mathbf{b}$ or $\pm \frac{2}{3}(\mathbf{a} - \mathbf{b})$
	$\overrightarrow{XY} = \frac{2}{3}\mathbf{a} - \frac{7}{15}\mathbf{b} \text{ cao}$	A1	AG
11(b)	$\overrightarrow{YZ} = \lambda \left(\frac{2}{3} \mathbf{a} - \frac{7}{15} \mathbf{b} \right) \text{ cao}$	B1	

© UCLES 2023 Page 12 of 13

Question	Answer	Marks	Guidance
11(c)	$\overrightarrow{YZ} = \mu \mathbf{a} - \frac{1}{3} \overrightarrow{AB} \text{ oe soi}$	M1	
	$\overrightarrow{YZ} = \mu \mathbf{a} - \frac{1}{3} (\mathbf{b} - \mathbf{a}) \text{ oe}$	A1	Allow unsimplified ISW from correct answer
11(d)	$\mu \mathbf{a} - \frac{1}{3}(\mathbf{b} - \mathbf{a}) = \lambda \left(\frac{2}{3}\mathbf{a} - \frac{7}{15}\mathbf{b}\right) \text{ soi}$	M1	For equating <i>their</i> (b) and <i>their</i> (c) and attempt to equate coefficients of a or b at least once.
	$\lambda = \frac{5}{7}$	A1	nfww
	$\mu = \frac{1}{7}$	A1	nfww
12	$\sin\left(\frac{2x}{3} - \frac{\pi}{3}\right) = \pm \frac{\sqrt{3}}{2}$ or $\tan\left(\frac{2x}{3} - \frac{\pi}{3}\right) = \pm \sqrt{3}$	B1	Allow if ± is missing
	$x = \pi, \frac{3\pi}{2}, \frac{5\pi}{2}, 3\pi$	4	M1dep on B1 for obtaining $\frac{2x}{3} - \frac{\pi}{3} = \frac{\pi}{3} \text{ or any valid value}$ A1 for one correct solution A1 for a 2nd correct solution A1 for a 3rd and 4th correct solutions and no extras in the range

© UCLES 2023 Page 13 of 13

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

© UCLES 2023 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features
 are specifically assessed by the question as indicated by the mark scheme. The meaning, however,
 should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 9

Ma	aths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

soi

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC

seen or implied

© UCLES 2023 Page 3 of 9

Question	Answer	Marks	Guidance
1(a)	$5\left(x-\frac{7}{5}\right)^2-\frac{9}{5}$	3	B1 for $5(x \pm b)^2$ B1 for $\left(x - \frac{7}{5}\right)^2$ B1 for $-\frac{9}{5}$
	Alternative By comparing coefficients: $a(x^2 + 2bx + b^2) + c = 5x^2 - 14x + 8.$ $2abx = -14x$ $ab^2 + c = 8$	(3)	B1 for $a = 5$ B1 for $b = \frac{-14}{10}$ oe B1 for $c = \frac{-18}{10}$ oe
1(b)	$\left(\frac{7}{5}, -\frac{9}{5}\right)$	2	FTB1 for each, follow through on <i>their</i> a and b from (a) or SC1 if differentiation is used in <i>their</i> (a) or restarted in (b) $\frac{dy}{dx} = 10x - 14 = 0 \text{ then } \left(\frac{7}{5}, -\frac{9}{5}\right)$
1(c)		3	B1 for the correct shape. Must have the parabola part of the curve with maximum in the first quadrant and cusps on the <i>x</i> -axis. Ignore labelling of their maximum point if incorrect coordinates B1 for $\left(\frac{4}{5}, 0\right)$ and $(2, 0)$, must have a correct shape in the first quadrant. B1 for $(0, 8)$ must have a correct shape.
1(d)	$0 < k < \frac{9}{5}$	2	B1FT follow through from 0 and <i>their</i> -b in part (a)
2(a)	$p'(x) = 3ax^2 + 14x + b$ p''(x) = 6ax + 14 leading to $3a + 14 = 32a = 6$	2	M1 for attempt to differentiate twice and substitute $x = \frac{1}{2}$

© UCLES 2023 Page 4 of 9

Question	Answer	Marks	Guidance
2(b)	$p\left(\frac{4}{3}\right)$: 80 + 4b + 3c = 0 oe	M1	Must have 3 terms. For use of $x = \frac{4}{3}$, at least once and equating to 0 with an attempt at simplification leading to an equation in <i>b</i> and <i>c</i> only Allow one sign error.
	p(-1): $-b + c = 6$ oe	M1	Must have 3 terms. For use of $x = -1$ and equating to 7 with an attempt at simplification leading to an equation in b and c only
	b = -14, c = -8	2	M1 dep on both previous M marks and attempt to solve simultaneously to obtain both b and c $A1$ for both
2(c)	$(3x-4)(2x^2+5x+2)$	2	B1 for two terms correct in the quadratic factor. Allow if seen as a quotient in long division. For both marks, need to see both factors together. $\left(x - \frac{4}{3}\right)(6x^2 - 15x + 6)$ from synthetic method gets 0 marks unless recovered.
2(d)	(3x-4)(2x+1)(x+2)	B1	Must be all integers
3(a)	Mid-point (6, –5)	B1	
	Gradient of $AB = -\frac{5}{2}$	B1	· · · · · · · · · · · · · · · · · · ·
	Perpendicular gradient $\frac{2}{5}$	M1	For their perp gradient
	$-9 + 5 = \frac{2}{5}(x - 6)$ oe $x = -4$	2	Dep M1 for attempt at the equation of the perpendicular bisector with <i>their</i> mid-point and <i>their</i> perpendicular gradient and use of $y = -9$
3(b)	(16, -1)	2	B1 for each, FT on 12 – <i>their a</i> for the <i>x</i> -coordinate.
4(a)	Area under graph = 800 $\frac{1}{2}(10 \times 10) + (10 \times 10) + \frac{1}{2}(10(10 + V)) + \frac{15V}{2} = 800$	M1	For attempt to find the area, allow one error and one omission.
	V = 48	A1	

© UCLES 2023 Page 5 of 9

Question	Answer	Marks	Guidance
4(b)	$(-)\frac{their\ V}{15}$	M1	Allow omission of negative sign.
	$-\frac{16}{5} \mathrm{ms}^{-2}$ oe	A1	FT on <i>their V</i> but must be negative.
5(a)	$(5\sqrt{3}-6)^2 + (5\sqrt{3}+6)^2 - 2(5\sqrt{3}-6)$ $(5\sqrt{3}+6)\cos 120^\circ$ soi	M1	For the correct use of the cosine rule Condone missing brackets if intention is clear
	$75 + 36 - 60\sqrt{3} + 75 + 36 + 60\sqrt{3} + 75 - 36$	M1	M1 Dep must see sufficient detail to be sure that a calculator is not being used. This is the minimum acceptable $75 + 36 - 60\sqrt{3} + 75 + 36 + 60\sqrt{3} + 39$
	261	A1	Maybe implied by $\sqrt{261}$
	$3\sqrt{29}$	A1	
5(b)	$\frac{2+5\sqrt{5}}{4} = \frac{1}{2}(3+2\sqrt{5}) \times QR \times \sin 30^{\circ}$ soi	M1	For the correct use of the area of the triangle. Condone missing brackets if intention is clear
	$\frac{2+5\sqrt{5}}{3+2\sqrt{5}} \times \frac{3-2\sqrt{5}}{3-2\sqrt{5}} \text{ or } \frac{2+5\sqrt{5}}{3+2\sqrt{5}} \times \frac{-3+2\sqrt{5}}{-3+2\sqrt{5}}$	M1	M1 dep for a correct attempt to rationalise <i>their QR</i> .must be the same two terms in the numerator and denominator to rationalise
	$\frac{6+15\sqrt{5}-4\sqrt{5}-50}{9-20}$ $\frac{11\sqrt{5}-44}{-11}$	M1	M1 dep, must see sufficient detail to be sure that a calculator is not being used. This is the minimum acceptable $\frac{6+15\sqrt{5}-4\sqrt{5}-50}{-11}$
	$4-\sqrt{5}$	A1	

© UCLES 2023 Page 6 of 9

Question	Answer	Marks	Guidance
6(a)	$\frac{\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}}{\frac{1}{\cos\theta}} \text{soi}$	2	B1 for tan θ and cot θ in terms of sin and cos. B1 for $\sec \theta = \frac{1}{\cos \theta}$
	$\frac{\cos^2\theta + \sin^2\theta}{\sin\theta\cos\theta} \times \cos\theta \text{soi oe}$	M1	For dealing with the fractions in the numerator.
	$\frac{1}{\sin \theta} \times \csc \theta \cos$	A1	For correct use of $\cos^2 \theta + \sin^2 \theta = 1$ to obtain the given answer.
	$\frac{\frac{1}{\tan \theta} + \tan \theta}{\frac{1}{\cos \theta}} = \frac{1 + \tan^2 \theta}{\tan \theta} \times \cos \theta \text{ soi oe}$	(2)	B1 for sec $\theta = \frac{1}{\cos \theta}$ M1 for dealing with the fractions in the numerator.
	$\frac{\sec^2\theta}{\tan\theta}\times\cos\theta$	(B1)	For correct use of $\tan^2 \theta + 1 = \sec^2 \theta$
	$\frac{1}{\sin \theta} \times \csc \theta \cos$	(A1)	For correct use of $\tan \theta$ and $\sec^2 \theta$ to obtain the given answer.
6(b)	$\left(\frac{1}{\sin\frac{\phi}{3}}\right)^2 = 2 \text{ or } \sin\frac{\phi}{3} = \pm\frac{1}{\sqrt{2}} \text{ soi or}$ $\tan\frac{\phi}{3} = \pm 1 \text{ soi}$	B2	B1 for ± missing
	-405°, -135°, 135°, 405°	4	M1 for one correct positive or negative solution of <i>their</i> $\sin \frac{\phi}{3} = k$ A1 for another correct solution M1Dep for one negative or positive solution
			A1 for another correct solution and no extras in the range.
7(a)(i)	6435	B1	Must be evaluated not just $^{15}C_8$
7(a)(ii)	With family of 4: 330	B1	Must be evaluated not just ${}^{11}C_4$ or implied by a correct answer
	Without family of 4: 165	B1	Must be evaluated not just ${}^{11}C_8$ or implied by a correct answer
	Total: 495	B1	

© UCLES 2023 Page 7 of 9

Question	Answer	Marks	Guidance
7(b)	$\frac{(n+9)\times n!}{(n-10)!} = \frac{(n^2+243)(n-1)!}{(n-1-9)!}$ $n(n+9) = n^2 + 243 \text{ oe}$	2	B1 for either ${}^{n}P_{10} = \frac{n!}{(n-10)!} \text{ or } {}^{n}P_{10} = \frac{(n-1)!}{(n-1-9)!}$ B1 dep for $n(n+9) = n^2 + 243$
	n = 27	B1	
8(a)	$\frac{(2x+1) \times \frac{1}{3} \times 3(3x-4)^{-\frac{2}{3}} - 2(3x-4)^{\frac{1}{3}}}{(2x+1)^2} \text{ oe}$ or by using the product rule $\frac{1}{3} \times 3 \times (3x-4)^{-\frac{2}{3}} \times (2x+1)^{-1} + -2 \times$ $(2x+1)^{-2} (3x-4)^{\frac{1}{3}}$	3 M1	B1 for $\frac{1}{3} \times 3 \times (3x-4)^{-\frac{2}{3}}$ oe M1 for an attempt to differentiate a quotient. A1 for all terms other than $\frac{1}{3} \times 3 \times (3x-4)^{-\frac{2}{3}}$ correct. Allow unsimplified.
	$\frac{(3x-4)^{-\frac{2}{3}}}{(2x+1)^2} ((2x+1)-2(3x-4))$	M1	M1 dep for attempt to factorise, must be in the form $\frac{(3x-4)^{-\frac{2}{3}}}{(2x+1)^2} [(ax+1) - b(3x-4)]$
	$\frac{9-4x}{(2x+1)^2(3x-4)^{\frac{2}{3}}}$	A1	
8(b)	(2.25, 0.255)	2	B1 FT for <i>their x</i> -coordinate only. Do not allow FT if they score M0 in part (a)
9(a)	n = 57 cso	3	B1 for $\frac{n}{2}(2 \ln q + 3(n-1) \ln q)$ oe soi Allow if in indices form i.e.: $\frac{n}{2}(\ln q^2 + (n-1) \ln q^3)$ B1 for $3n^2 - n - 9690 = 0$ oe soi
9(b)	Common ratio = p^{-2x}	B1	Allow unsimplified
	nth term = $p^{3x}(p^{-2x})^{n-1}$ soi	B1	Allow unsimplified
	$p^{(5-2n)x}$	B1	

© UCLES 2023 Page 8 of 9

Question	Answer	Marks	Guidance
9(c)	Common ratio = $\frac{4}{3}\cos^2 3\theta$	B1	Allow unsimplified. Must be convinced it is the common ratio not just writing the first term e.g. $r = \text{or seeing}$ $\frac{16}{9}\cos^4 3\theta$ $\frac{4}{3}\cos^2 3\theta$
	$\frac{4}{3}\cos^2 3\theta(*) - 1 \text{ or}$ $\frac{4}{3}\cos^2 3\theta(*) 1 \text{ or oe soi}$ $\frac{4}{3}\cos^2 3\theta(*) 0$	В1	
	$\cos 3\theta(*)\frac{\sqrt{3}}{2}$ or $\cos 3\theta(*)-\frac{\sqrt{3}}{2}$ or soi $\cos 3\theta(*)$ 0	B1	
	$3\theta(*)\frac{5\pi}{6}$ and $3\theta(*)\frac{\pi}{6}$ soi	B1	Seeing $\frac{5\pi}{18}$ or $\frac{\pi}{18}$ implied the first 3 marks
	$\frac{\pi}{18} < \theta < \frac{5\pi}{18}$	B1	
10(a)	$\frac{dy}{dx} = 2 \times 3(3x+1)\ln(3x+1) + \frac{3(3x+1)^2}{3x+1}$ Simplified to: $\frac{dy}{dx} = 3(3x+1)(1+2\ln(3x+1))$	3	B1 for $\frac{3}{3x+1}$ M1 for attempt to differentiate a product A1 for all terms other than $\frac{3}{3x+1}$ correct. Allow unsimplified.
10(b)	$k(3x+1)^2 \ln(3x+1)$ soi	B1	
	$\int (3x+1)dx = \frac{3x^2}{2} + x \ (+c)$	B1	May be a multiple May be seen as $\frac{1}{3} \times \frac{1}{2} \times (3x+1)^2$
	$\frac{1}{6}(3x+1)^2\ln(3x+1) - \frac{3x^2}{4} - \frac{x}{2} + c$	B2	B1 for two correct algebraic terms For B2 must have $(+c)$

© UCLES 2023 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 10

Ma	aths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2023 Page 3 of 10

Question	Answer	Marks	Guidance
1	a = 4	B1	
	$b = \frac{3}{8}$ oe	B1	
	c = -2	B1	
2	$(x=) \frac{4\pm\sqrt{16+12(2+\sqrt{5})(2-\sqrt{5})}}{2(2+\sqrt{5})} \text{ oe}$ with simplification to $\frac{4\pm\sqrt{16-k}}{2(2+\sqrt{5})}$	M1	For attempt to equate to zero and use quadratic formula, must see substitution and $\frac{4 \pm \sqrt{16 - k}}{2(2 + \sqrt{5})}$
	$\frac{4\pm 2}{2(2+\sqrt{5})}$ or exact equivalent	2	A1 for one exact solution
	$\frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$ or $\frac{1}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	M1	For evidence of rationalisation and evaluation
	$-6 + 3\sqrt{5}$ and $-2 + \sqrt{5}$	A1	
	Alternative $ \left(\left(2 + \sqrt{5} \right) x - 3 \right) \left(x + \left(2 - \sqrt{5} \right) \right) $	(B2)	
	$x = -2 + \sqrt{5}$	(B1)	Dep on previous B2
	$\frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}} \text{ leading to } x = -6+3\sqrt{5}$	(2)	M1 for attempt at rationalisation and evaluation
3(a)	$\pm 3(x+2)(x-1)(x-4)$	3	B1 for 3 soi B1 for \pm B1 for $(x+2)(x-1)(x-4)$

© UCLES 2023 Page 4 of 10

Question	Answer	Marks	Guidance
3(b)	5x-2*4x+1 leading to critical value 3	B1	* can be ≤, =, ≥
	5x-2*-4x-1 oe	M1	* can be ≤, =, ≥
	leading to critical value $\frac{1}{9}$	A1	
	$\frac{1}{9} \leqslant x \leqslant 3$	A1	Mark final answer
	Alternative $9x^2 - 28x + 3*0$	(M1)	Squaring both sides of the inequality and collecting terms, allow one sign error. * can be ≤, =, ≥
	(9x-1)(x-3)*0	(M1)	Dep for attempt to find two critical values * can be ≤, =, ≥
	Critical values $\frac{1}{9}$ and 3	(A1)	
	$\frac{1}{9} \leqslant x \leqslant 3$	(A1)	Mark final answer
4(a)	$r\theta = 12$ soi	B1	
	$\frac{1}{2}r^2\theta = 57.6 \text{ soi}$	B1	
	r = 9.6 oe nfww	B1	/ / / /
	$\theta = 1.25$ oe nfww	B1	/: <u>\$</u>
4(b)	AC = 28.89	B1	3
	Shaded area = $\left(\frac{1}{2} \times 28.89 \times 9.6\right) - 57.6$ soi	M1	Using their AC
	81.1	A1	
	Alternative OC = 30.45	(B1)	
	Shaded area = $\left(\frac{1}{2} \times 30.45 \times 9.6 \times \sin 1.25\right) - 57.6 \text{ soi}$	(M1)	Using their OC
	81.1	(A1)	

© UCLES 2023 Page 5 of 10

Question	Answer	Marks	Guidance
5(a)	$6p^{\frac{2}{3}} - 13p^{\frac{1}{3}} - 5(=0)$ soi	B1	May introduce <i>their</i> own variable e.g. x
	$\left(\left(2p^{\frac{1}{3}} - 5 \right) \left(3p^{\frac{1}{3}} + 1 \right) = 0 \text{ oe} \right)$ $p^{\frac{1}{3}} = \frac{5}{2} \qquad p^{\frac{1}{3}} = -\frac{1}{3}$	M1	For attempt to solve quadratic equation to obtain $p^{\frac{1}{3}} =$ or e.g. $x =$
	$\frac{125}{8}$ or 15.625 or $15\frac{5}{8}$	A1	Must be simplified and exact
	$-\frac{1}{27}$	A1	Must be simplified and exact
5(b)	$\lg(2x+5)^2$	B 1	
	$ \lg \frac{\left(2x+5\right)^2}{x+2} $	B1	Dep on first B1, must be a correct statement
	1 = lg10 soi	B1	
	$\frac{\left(2x+5\right)^2}{\left(x+2\right)} = k \text{oe}$	M1	Dep on second B mark For correct attempt to obtain a quadratic equation with no log terms, where $k = 1$ or 10
	$4x^{2} + 10x + 5 = 0$ $x = \frac{-5 \pm \sqrt{5}}{4} \text{ or exact equivalent}$	2	M1 for attempt to solve <i>their</i> quadratic to obtain $x =$, implied by decimals of -1.8 or -0.69 or better A1 for both, A0 if one is discarded
6(a)	A correct equation in terms of x and y only	B1	No inverse trig functions
	$y = (x-4)^2 - 3$ or $y = x^2 - 8x + 13$	B1	
6(b)	$\sin\left(2\phi + \frac{3\pi}{4}\right) = \frac{\sqrt{3}}{2} \text{soi}$	B1	May be implied by one correct solution
	$-\frac{5\pi}{24}, -\frac{\pi}{24}, \frac{19\pi}{24}, \frac{23\pi}{24}$ with no extra solutions within the range	4	M1 for explicitly correct order of operations from $their\left(2\phi + \frac{3\pi}{4}\right) = k$, or may be implied by one correct solution A1 for two correct solutions A1 for a third correct solution A1 for a further solution with no extra solutions in the range

© UCLES 2023 Page 6 of 10

Question	Answer	Marks	Guidance
7(a)	¹⁴ C ₂ × ¹² C ₃ × ⁹ C ₄ oe, soi 2 522 520	3	B1 for a product of 3 combinations (ignore combinations that are equal to 1), one of which must be in the form $^{14}C_k$ where $k = 2, 3, 4, 5, 9, 10, 11, 12$ B2 for a correct product of combinations
7(b)(i)	136 080	B1	
7(b)(ii)	15 120	B1	
7(b)(iii)	38 640	3	B1 for ${}^{8}P_{4}$ or 1680 or $(8 \times 7 \times 6 \times 5)$ B2 for $8 \times {}^{8}P_{4}$ (13 440) oe or $15 \times {}^{8}P_{4}$ (25 200) oe
8(a)	$(a=) \frac{4}{3} \text{ or } 1.\dot{3}$	B1	Allow a recurring decimal Must not be an inequality in terms of <i>a</i> Allow $x > \frac{4}{3}$
8(b)	$f \in \mathbb{R} \text{ or } -\infty < f < \infty \text{ or } \mathbb{R}$	B1	Allow y or $f(x)$ but not x .
8(c)	Satp	4	B1 for a correct shape for $y = f(x)$ in quadrants 1 and 4 B1 for $\left(\frac{5}{3}, 0\right)$, must have a correct shape in either quadrant 1 or quadrant 4 B1 for $y = f^{-1}(x)$, must be a correct shape in quadrants 1 and 2 and intersect twice. B1 for $\left(0, \frac{5}{3}\right)$, must have a reasonable shape for $y = f^{-1}(x)$ in either the first quadrant or the second quadrant
8(d)(i)	g(g(x)) = 4x - 9	B1	Must be simplified
8(d)(ii)	fg(g(x)) = 2ln(12x-31)	M1	allow unsimplified, using <i>their</i> answer to (i)
	$2\ln(12x - 31) = 4$ $x = \frac{e^2 + 31}{12}$	2	Dep M1 for correct order of operations to solve <i>their</i> equation, to get as far as $x =$ Implied by decimal answer of awrt 3.2 A1 Must be exact form.

© UCLES 2023 Page 7 of 10

Question	Answer	Marks	Guidance
9	$\frac{(2x+6)}{3} = 3 + \frac{4}{2x+1}$ $4x^2 - 4x - 15(=0)$	2	M1 for equating the line and curve and obtaining a 3 term quadratic expression in terms of x.
	$x = \frac{5}{2}$	A1	For <i>x</i> -coordinate of the point of intersection.
	Either $\int \left(3 + \frac{4}{2x+1}\right) dx = 3x + 2\ln(2x+1)$	2	M1 for attempt to integrate with one term correct
	$\left[3x + 2\ln(2x+1)\right]_0^{\frac{5}{2}} = \frac{15}{2} + 2\ln 6$	2	Dep M1 for using <i>their x</i> -coordinate of C in <i>their</i> integral. Must have a term in $\ln(2x+1)$
	KT P	R	Allow for awrt 11.1. Al Must be exact but allow unsimplified
	Area of trapezium $ \frac{1}{2} \left(2 + \frac{11}{3} \right) \times \frac{5}{2} \text{ or } \left[\frac{x^2}{3} + 2x \right]_0^{their} \frac{5}{2} \text{ or} $ $ \left[\frac{(2x+6)^2}{12} \right]_0^{their} \frac{5}{2} = \frac{85}{12} $	2	M1 for attempt at the trapezium, must have at least one side correct. If using integration, the integral must be correct using their $\frac{5}{2}$
	Shaded area = $2 \ln 6 + \frac{5}{12}$ or $\ln 36 + \frac{5}{12}$ or $\ln 6^2 + \frac{5}{12}$	A1	1.5
	Or $\int \left 1 + \frac{4}{2x+1} - \frac{2}{3}x \right dx$	(5)	M2 for attempt to subtract and integrate with at least one term correct, allow <i>x</i> terms considered separately. If subtraction is reversed allow accuracy marks. Separate <i>x</i> terms should be
	$x + 2\ln(2x+1) - \frac{x^2}{3}$ or $-x - 2\ln(2x+1) + \frac{x^2}{3}$		considered as one term for A marks. A1 for one term only correct A2 for two terms only correct
	$\begin{bmatrix} x + 2\ln(2x+1) - \frac{x^2}{3} \end{bmatrix}_0^{\frac{5}{2}} = \frac{5}{2} + 2\ln 6 - \frac{25}{12}$ or	(M1)	Dep M1 for using <i>their x</i> -coordinate of the point of intersection in <i>their</i> integral, must have a term in $\ln(2x+1)$
	$\left[\frac{x^2}{3} - x - 2\ln(2x+1) \right]_0^{\frac{5}{2}} = \frac{25}{12} - \frac{5}{2} - 2\ln 6$		Allow for awrt ±4 as appropriate

© UCLES 2023 Page 8 of 10

Question	Answer	Marks	Guidance
9	Shaded area = $2 \ln 6 + \frac{5}{12}$ or $\ln 36 + \frac{5}{12}$ or $\ln 6^2 + \frac{5}{12}$	(A1)	
	Or $ \int \left 3 + \frac{4}{2x+1} - \frac{11}{3} \right dx $ $ 2\ln(2x+1) - \frac{2x}{3} $	(3)	M1 for attempt to subtract and integrate with at least one term correct, allow <i>x</i> terms considered separately. Separate <i>x</i> terms should be considered as one term for A marks. A1 for one term only correct
	$\left[2\ln(2x+1) - \frac{2x}{3}\right]_0^{\frac{5}{2}} = 2\ln 6 - \frac{5}{3}$	(M1)	Dep M1 for using <i>their x</i> -coordinate of the point of intersection in <i>their</i> integral, must have a term in $\ln(2x+1)$
	Area of triangle = $\frac{1}{2} \times \left(\frac{11}{3} - 2\right) \times \frac{5}{2}$ = $\frac{25}{12}$	(2)	M1 for attempt at the area of the triangle
	Shaded area = $2 \ln 6 + \frac{5}{12}$ or $\ln 36 + \frac{5}{12}$ or $\ln 6^2 + \frac{5}{12}$	(A1)	
	Alternative $3y^2 - 14y + 11 (= 0)$	(2)	M1 for a correct attempt to equate the line and curve and obtain a 3 term quadratic expression in terms of y.
	$y = \frac{11}{3}$	(A1)	
	$\int \left(\frac{2}{y-3} - \frac{1}{2}\right) dy = 2\ln(y-3) - \frac{1}{2}y$	(2)	M1 for attempt to integrate with one term correct
	$\left[2\ln(y-3) - \frac{1}{2}y\right]_{\frac{11}{3}}^{7} = 2\ln 6 - \frac{5}{3}$	(2)	Dep M1 for using <i>their y</i> -coordinate of <i>C</i> in <i>their</i> integral. Allow for awrt 1.92 A1 Must be exact
	Area of triangle $ \frac{1}{2} \left(\frac{11}{3} - 2 \right) \times \frac{5}{2} \text{or} \left[\frac{3y^2}{4} - 3y \right]_2^{\text{their } \frac{11}{3}} $ $ = \frac{25}{12} $	(2)	M1 for attempt at the triangle, must have at least one side correct. If using integration, the integral must be correct using their $\frac{11}{3}$
	Shaded area = $2 \ln 6 + \frac{5}{12}$ or $\ln 36 + \frac{5}{12}$ or $\ln 6^2 + \frac{5}{12}$	(A1)	

© UCLES 2023 Page 9 of 10

Question	Answer	Marks	Guidance
10(a)(i)	$\frac{n}{2}(2x+1)(3n-1)$	2	B1 for $\frac{n}{2}(2(2x+1)+3(n-1)(2x+1))$ or $\frac{n}{2}(2(2x+1)+(6x+3)(n-1))$ oe
10(a)(ii)	$\frac{n}{2}(2x+1)(3n-1) = (54n+37)(2x+1)$ $3n^2 - 109n - 74 = 0$	M1	For equating <i>their</i> answer to (a) to $(54n+37)(2x+1)$ and attempt to solve a 3-term quadratic equation in n to obtain $n =$
	37 only	A1	
10(a)(iii)	$1017.5 = (54(their \ n) + 37)(2x+1)$	M1	For attempt to solve to obtain a value for <i>x</i> . <i>n</i> must be a positive integer
	$x = -\frac{1}{4}$	A1	
10(b)	$(2y+1)(3(2y+1))^{n-1} =$ $4(2y+1)(3(2y+1))^{n+1}$ Or $(3(2y+1))^{n-1} = 4(3(2y+1))^{n+1}$ Or $(2y+1)r^{n-1} = 4(2y+1)r^{n+1}$ Or $ar^{n-1} = 4ar^{n+1}$	B1	Award when a correct statement is first seen
	Either $(2y+1)^2 = \frac{1}{36}$ oe or $(6y+3)^2 = \frac{1}{4}$ oe or $r^2 = \frac{1}{4}$ oe $2y+1=\pm \frac{1}{6}$ or $6y+3=\pm \frac{1}{2}$	M1	Either M1 for an equation of the form $(2y+1)^2 = k$ or $(6y+3)^2 = m$ where k and m are numerical and not zero (may be expanded) with no terms in n Or M1 for $r^2 = p$, where p is numerical and not zero
	$-\frac{5}{12}$, $-\frac{7}{12}$ and no others	A1	For both
10(c)	$-1 < 2\sin^2\theta < 1$ oe soi or $0 < 2\sin^2\theta < 1$ soi	B1	Allow $2\sin^2\theta < 1$ May be implied by $\theta < \frac{\pi}{4}$
	$\theta < \frac{\pi}{4} \text{ or } \theta < 0.785$	B1	
	$0 < \theta < \frac{\pi}{4}$ Or $0 < \theta < 0.785$ or better	B1	
	01 0 0 0 0.700 01 0etter		

 $@ \ UCLES \ 2023 \\ Page \ 10 \ of \ 10 \\$

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features
 are specifically assessed by the question as indicated by the mark scheme. The meaning, however,
 should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 9

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

© UCLES 2023 Page 3 of 9

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Guidance
1(a)	2π Sator	B1	
1(b)		3	B1 for the correct shape, must be tending correctly towards the asymptotes B1 for $(0, -3)$ B1 for $\left(\frac{\pi}{2}, 0\right)$
2(a)	$2\left(x+\frac{5}{4}\right)^2 - \frac{1}{8} \text{ oe}$	2	B1 for $2\left(x + \frac{5}{4}\right)^2$ B1 for $-\frac{1}{8}$
2(b)	$\left(-\frac{5}{4}, -\frac{1}{8}\right)$ oe	2	B1 FT for each on their (a).

© UCLES 2023 Page 4 of 9

Question	Answer	Marks	Guidance
2(c)	Use of <i>their</i> (a) or expansion to 3 term quadratic (= 0), to obtain two critical values.	M1	
	$-\frac{9}{4}$, $-\frac{1}{4}$	A1	For both critical values
	$-\frac{9}{4} < x < -\frac{1}{4}$	A1	
3(a)	$\lg \frac{500a^2}{b} \text{ oe }$	3	B1 for $\lg a^2$, $-\lg 2b$ or $\lg 1000$ B2 for $\lg \frac{a^2}{2b}$, $\lg 1000a^2$ or $\lg \frac{1000}{2b}$
3(b)	$\log_3 c = \frac{1}{\log_c 3}$	B1	
	$2(\log_c 3)^2 - 7\log_c 3 - 4 (=0)$ $(2\log_c 3 + 1)(\log_c 3 - 4) (=0)$ $\log_c 3 = -\frac{1}{2}, \log_c 3 = 4$	M1	Attempt to obtain a 3 term quadratic equation (= 0) and attempt to solve to obtain $\log_c 3 =$ Allow one sign error
	$c^{-\frac{1}{2}} = 3 c^4 = 3$	M1	Dep for attempt to solve at least one of <i>their</i> log equations
	$c = \frac{1}{9}$, $c = 3^{\frac{1}{4}}$ or exact equivalents	2	A1 for each
	Alternative Method		1.51
	$\log_c 3 = \frac{1}{\log_3 c}$	B1	O ·
	$4(\log_3 c)^2 + 7\log_3 c - 2 (=0)$ $(4\log_3 c - 1)(\log_3 c + 2) (=0)$ $\log_3 c = \frac{1}{4}, \log_3 c = -2$	M1	Attempt to obtain a 3 term quadratic equation = 0 and attempt to solve to obtain $\log_3 c =$ Allow one sign error
	$c = 3^{\frac{1}{4}}$, $c = \frac{1}{9}$ or exact equivalents	3	M1 dep for attempt to solve at least one of <i>their</i> log equations. A2 for both or A1 for either

© UCLES 2023 Page 5 of 9

Question	Answer	Marks	Guidance
4	$5x^2 - 8x - 4 \ (=0) \text{ or } 5y^2 - 36y - 305 \ (=0)$	M1	For attempt to eliminate one variable to obtain a 3 term quadratic equation (= 0). Allow one sign error.
	$x = -\frac{2}{5}, x = 2$ $y = -\frac{61}{5}, y = -5$	3	Dep M1 for attempt to solve <i>their</i> quadratic equation A1 for any correct pair A1 for a second correct pair.
	Mid-point $\left(\frac{4}{5}, -\frac{43}{5}\right)$	M1	For attempt to find mid-point using <i>their</i> coordinates
	Gradient of perpendicular = $-\frac{1}{3}$	B1	
	$y + \frac{43}{5} = -\frac{1}{3} \left(x - \frac{4}{5} \right)$	M1	For attempt to find the equation of the perpendicular bisector using <i>their</i> perpendicular gradient and <i>their</i> midpoint. Allow alternative methods
	a = -1	A1	
5(a)	$x^{20} - 40x^{16} + 720x^{12}$	3	B1 for each correct term
5(b)	$\left(x^4 + 4 + \frac{4}{x^4}\right)$	B1	Allow unsimplified
	$(4 \times their - 40) + 4 + their 720$ soi	M1	Must have 3 terms
	564	A1	1.5
6(a)	$\frac{1}{2}r^2\theta = 25$ $\theta = \frac{50}{r^2}$	B1	
	$P = 2r + \frac{50}{r}$	2	M1 for use of $P = 2r + r\theta$ with attempt to eliminate θ

© UCLES 2023 Page 6 of 9

Question	Answer	Marks	Guidance
6(b)	$\frac{\mathrm{d}P}{\mathrm{d}r} = 2 - \frac{50}{r^2}$	M1	For attempt to differentiate <i>their</i> P , must be in terms of r .
	When $\frac{dP}{dr} = 0$, $r = 5$	A1	
	$\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = \frac{100}{r^3}$	B1	Allow alternative valid methods
	When $r = 5$, $\frac{d^2 P}{dr^2}$ is positive so a minimum oe.		
	Minimum $P = 20$	A1	
7(a)	ln x 0.41 0.69 0.92 1.1 1.4 ln y 2.6 3.3 3.8 4.3 5	3	M1 for attempt to find ln values of all and plotting the graph. A1 for 4 correct points. A0 for fewer than 4 correct points.
7(b)	$\ln y = \ln A + b \ln x \text{ soi}$	B1	Allow if seen in (a)
	Gradient = $b = 2.4$ Allow 2.3 to 2.5	2	Dep M1 for attempt to find the gradient of their graph, must have M1 in part(a) Must be using points on their graph.
	ln A = 1.6 $ A = 5 $ Allow awrt 4.8 to awrt 5.5	2	Dep M1 for attempt to find the intercept on the vertical axis and equate to ln A. must have M1 in part (a).
7(c)	x = 3.42 Allow 3.2 to 3.5	2	M1 for a correct attempt to find the estimate either using <i>their</i> graph or <i>their</i> equation.
8(a)	$\mathbf{b} - \mathbf{a}$	B1	

© UCLES 2023 Page 7 of 9

Question	Answer	Marks	Guidance
8(b)	$\frac{2}{5}\mathbf{a} + \frac{1}{2}(their\ (\mathbf{b} - \mathbf{a}))$ soi oe	M1	
	$\frac{1}{2}\mathbf{b} - \frac{1}{10}\mathbf{a}$	A1	Allow unsimplified
8(c)	$(\lambda+1)\times\left(\frac{1}{2}\mathbf{b}-\frac{1}{10}\mathbf{a}\right)$ oe	2	M1 for $(\lambda + 1) \times their\left(\frac{1}{2}\mathbf{b} - \frac{1}{10}\mathbf{a}\right)$ A1 allow unsimplified
8(d)	$-\frac{3}{5}\mathbf{a} + (\mu + 1)\mathbf{b} \text{ oe}$	2	B1 for each vector, allow unsimplified.
8(e)	$(\lambda+1) \times \left(\frac{1}{2}\mathbf{b} - \frac{1}{10}\mathbf{a}\right) = -\frac{3}{5}\mathbf{a} + (\mu+1)\mathbf{b}$ $\lambda = 5$ $\mu = 2$	3	M1 for equating $(\lambda+1) \times their\left(\frac{1}{2}\mathbf{b} - \frac{1}{10}\mathbf{a}\right) \text{ and } their$ $-\frac{3}{5}\mathbf{a} + (\mu+1)\mathbf{b} \text{ and } then equating like vectors at least once.}$ A1 for each.
9(a)	v = 9t(t-4) oe	2	M1 for correct attempt to differentiate, allow one arithmetic error.
	t = 0, t = 4	2	Dep M1 for equating <i>their v</i> to zero and attempt to solve.A1 for both.
9(b)	* Satpr	3	B1 for correct cubic curve for given domain B1 for (0, 96) and no other intercept on the y-axis B1 for touching at (4, 0) and no other intercept on the x-axis
9(c)		2	B1 for a correct quadratic curve for the given domain, starting from the origin. B1 for (4, 0) and no other x- intercept
9(d)(i)	18 <i>t</i> – 36	B1	

© UCLES 2023 Page 8 of 9

Question	Answer	Marks	Guidance
9(d)(ii)	and delivers and the second se	2	B1 for a correctly positioned straight line graph for the given domain. Dep B1 for (0,-36) and (2, 0)
10(a)	$\cos^4 \theta - \sin^4 \theta = \left(\cos^2 \theta - \sin^2 \theta\right) \left(\cos^2 \theta + \sin^2 \theta\right) \text{ soi}$	B1	
	$\cos^2\theta - \sin^2\theta + 1$	M1	Must show sufficient detail to show the given result.
	$2\cos^2\theta$	A1	
	Alternative 1		
	$\cos^4\theta - \left(1 - \cos^2\theta\right)^2 + 1$	(B1)	h-111
	$\cos^4\theta - \left(\cos^4\theta - 2\cos^2\theta + 1\right) + 1$	(M1)	Must show sufficient detail to show the given result.
	$2\cos^2\theta$	(A1)	/-1/
	Alternative 2		· · · · · · · · · · · · · · · · · · ·
	$\left(1-\sin^2\theta\right)^2-\sin^2\theta+1$	(B1)	
	$(1-2\sin^2\theta+\sin^4\theta)-\sin^4\theta+1$ $2-2\sin^2\theta$	(M1)	Must show sufficient detail to show the given result.
	$2\cos^2\theta$	(A1)	
10(b)	$\cos\left(\frac{\phi}{3}\right) = (\pm)\frac{1}{2} \text{ soi}$	B1	
	$\phi = -2\pi, -\pi, \pi, 2\pi$	4	M1 for obtaining one correct solution. A1 for obtaining 2 correct solutions. A1 for obtaining a third correct solution. A1 for a fourth correct solution and no extras within the range.

© UCLES 2023 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2023 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2023 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features
 are specifically assessed by the question as indicated by the mark scheme. The meaning, however,
 should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 11

Ma	Maths-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2023 Page 3 of 11

Question	Answer	Marks	Guidance
1	$kx^2 + 2x + 3k - 1 = 0$	2	M1 for attempt to equate equations of the line and curve, re-arrange and equate to zero. Allow one sign error.
	$4 = 4k \times their(3k-1)$ oe	M1	Dep for attempt to use the discriminant of <i>their</i> quadratic equation and solve to obtain <i>k</i> .
	$k = \frac{1 \pm \sqrt{13}}{6} \text{ isw}$	A1	
	Alternative method		
	$kx^2 + 2x + 3k - 1 = 0$	2	M1 for attempt to equate equations of the line and curve, re-arrange and equate to zero. Allow one sign error.
	Grad of straight line = -1 Gradient function of curve = $2kx+1$ Substitution to obtain $3k^2 - k - 1 = 0$ oe with attempt to solve to obtain k	M1	Dep
	$k = \frac{1 \pm \sqrt{13}}{6} \text{ isw}$	A1	
2(a)	$\frac{dy}{dx} = 2(x+2)(5-x) + (-1)(x+2)^2$ or	2	M1 for attempt at differentiation of a product, or expansion and then differentiation. A1 for all correct
	$y = -x^3 + x^2 + 16x + 20$		1.5
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -3x^2 + 2x + 16$	ep.	,0
	(x+2)(8-3x)=0	M1	Dep for attempt to solve <i>their</i> quadratic $\frac{dy}{dx} = 0$
	$x = -2, \frac{8}{3}$	A1	For both.
2(b)	20	3	B1 for correctly shaped curve, with maximum point in the first quadrant B1 for (5, 0) and a stationary point at (-2, 0), must have a cubic graph. B1 for (0, 20), must have a cubic graph

© UCLES 2023 Page 4 of 11

Question	Answer	Marks	Guidance
2(c)	When $x = \frac{8}{3}$, $y = \frac{1372}{27}$ or awrt 50.8	M1	For attempt to find the value of y using their $\frac{8}{3}$.
	$k > \frac{1372}{27}$ or awrt 50.8	A1	
	k < 0	B1	
3	10 C ₂ $(2x)^8 \left(-\frac{1}{x}\right)^2$ or 10 C ₁ $(2x)^9 \left(-\frac{1}{x}\right)^1$	M1	For attempting to find terms which will give terms of x^8 or x^6 , allow coefficients. Allow as part of an expansion
	$45 \times 256 \left[x^6 \right]$ oe	A1	
	$[-] 5120 \left[x^8 \right]$	A1	
	their(-11520) + their(-5120)	M1	Dep
	-16640	A1	Condone inclusion of x^8
4(a)	$\lg \frac{x^3}{1000y^4}$ oe	3	B1 for 3=lg1000 M1 for correct use of power rule at least once and division rule at least once A1 cao
4(b)	$\log_x 3 = \frac{1}{\log_3 x} \text{ soi}$	B1	For change of base.
	$2(\log_3 x)^2 - 5(\log_3 x) + 2 = 0$	M1	For attempt to obtain a 3-term quadratic equation, equated to zero. Allow one sign error. May be using a substitution.
	$2\log_3 x = 1 \log_3 x = 2$	M1	Dep for attempt to solve <i>their</i> quadratic equation and a correct attempt to obtain at least one value of <i>x</i> .
	$x = \sqrt{3}$ oe	A1	Allow 1.73(2)
	x=9	A1	

© UCLES 2023 Page 5 of 11

Question	Answer	Marks	Guidance
4(b)	Alternative method 1		
	$\log_3 x = \frac{1}{\log_x 3} \text{ soi}$	B1	For change of base.
	$2(\log_x 3)^2 - 5(\log_x 3) + 2 = 0$	M1	For attempt to obtain a 3-term quadratic equation, equated to zero. Allow one sign error.
	$2\log_x 3 = 1 \log_x 3 = 2$	M1	Dep for attempt to solve <i>their</i> quadratic equation and a correct attempt to obtain at least one value of <i>x</i> .
	$x = \sqrt{3}$ oe	A1	Allow 1.73(2)
	x=9	A1	
	Alternative method 2		
	$\log_3 x = \frac{\lg x}{\lg 3}$ and $\log_x 3 = \frac{\lg 3}{\lg x}$ oe	B1	For a consistent change of base.
	$2(\lg x)^2 - 5(\lg x) + 2(\lg 3)^2 = 0 \text{ oe}$	M1	For attempt to obtain a 3-term quadratic equation, equated to zero. Allow one sign error.
	$2\lg x = \lg 3 \lg x = 2\lg 3 \text{ oe}$	M1	Dep for attempt to solve <i>their</i> quadratic equation and a correct attempt to obtain at least one value of <i>x</i> .
	$x = \sqrt{3}$ oe	A1	Allow 1.73(2)
	x = 9 oe	A1	,
5(a)	hy 8 7 6 5 4 3 2 1 1 2 3 4 5 6	2	B1 for 3 or 4 correctly plotted points

© UCLES 2023 Page 6 of 11

Question	Answer	Marks	Guidance
5(b)	$ ln y = mx^2 + c soi $	B1	$m \neq \ln A, \ c \neq \ln b$
	Gradient = $\ln b$	M1	For attempt to find the numerical gradient of <i>their</i> straight line graph and equate to lnb. May be implied by later work
	b=4	A1	
	Intercept on vertical axis = $\ln A$	M1	For use of <i>their</i> intercept on the vertical axis of <i>their</i> straight line graph oe.
	A = 0.5	A1	
	Alternative method		
	$ ln y = mx^2 + c soi $	B1	$m \neq \ln A, \ c \neq \ln b$
	Forming 2 equations correctly using points on <i>their</i> graph	M1	
	Solving the equations to obtain either <i>A</i> or <i>b</i>	M1	Dep
	b=4	A1	
	A = 0.5	A1	
	Special case		
	A = 0.5 not using transformed data	B1	7.11
	b=4 not using transformed data	B1	
5(c)	35 nfww Allow answers between 33 and 37	2	M1 for attempt at a complete method using <i>their</i> straight line graph or equation
5(d)	1.63 nfww Allow answers between 1.5 and 1.7	2	M1 for attempt at a complete method using <i>their</i> straight line graph or equation

© UCLES 2023 Page 7 of 11

Question	Answer	Marks	Guidance
6	$k(5x+2)^{\frac{3}{5}}$	M1	
	$f'(x) = \frac{1}{3}(5x+2)^{\frac{3}{5}}$ (+c)	A1	Condone omission of <i>c</i>
	$\frac{17}{3} = \frac{1}{3} (32)^{\frac{3}{5}} + c \text{ oe}$	M1	Dep for use of $f'(6)$ and attempt to evaluate c
	c=3	A1	
	$k(5x+2)^{\frac{8}{5}}$	M1	
	$\frac{1}{24}(5x+2)^{\frac{8}{5}} + cx$	A1	FT on their c
	$\frac{26}{3} = \frac{1}{24} (32)^{\frac{8}{5}} + d + ((3 \times 6)) \text{ oe}$	M1	Dep for use of $f(6)$ and attempt to evaluate d .
	$[f(x)] = \frac{1}{24} (5x+2)^{\frac{8}{5}} + 3x - 20$	A1	
7(a)(i)	154440	B1	
7(a)(ii)	124 200	2	B1 for ¹⁰ P ₅
	Alternative method		
	124 200	2	B1 for 1 symbol: 75 600 2 symbols: 43 200 3 symbols: 5400
7(b)	16(n-11) = 12(n+1) oe	B2	B1 for correct numbers or correct factors must be using combinations
	n = 47	B1	Dep on both previous B marks Must be the only solution

© UCLES 2023 Page 8 of 11

Question	Answer	Marks	Guidance
8	A (2.5, 0) soi	B1	
	C (4.5, 0) soi	B1	
	$2x^2 + x - 21 = 0$	M1	For a correct attempt to find the intersection of the straight line and the curve. Must have attempt to solve the resulting quadratic equation to obtain $x = $.
	$x=3, \left[-\frac{7}{2}\right]$	A1	
	$B\left(3, \frac{1}{2}\right)$ soi	A1	
	$\int \left(2 - \frac{3}{x - 1}\right) dx = 2x - 3\ln(x - 1)$	B1	
	e.g. $\left[2x - 3\ln(x - 1)\right]_{\frac{5}{2}}^{\frac{3}{2}} =$ $(6 - 3\ln 2) - \left(5 - 3\ln\frac{3}{2}\right)$	M1	Dep for application of appropriate limits e.g. $x = their \frac{5}{2}$ and $x = their 3$ $x = their \frac{5}{2}$ and $x = their \frac{9}{2}$ $x = their 3$ and $x = their \frac{9}{2}$ Integral must be in the form $ax + b\ln(x-1)$
	$1+3\ln\frac{3}{4}$ oe	A1	,0,
	Area of an appropriate triangle	B1	FT on $\frac{1}{2} \times their \frac{1}{2} \times their \frac{3}{2}$ oe $\frac{1}{2} \times their 2 \times their \frac{2}{3}$ oe Must be appropriate for <i>their</i> method
	Area = $\frac{11}{8} + \ln \frac{27}{64}$	2	B1 for each correct term
9(a)(i)	$\binom{2}{5}$	B1	
9(a)(ii)	Velocity vector = $\begin{pmatrix} 12 \\ -5 \end{pmatrix}$ soi by correct speed	B1	
	Speed = 13	B1	

© UCLES 2023 Page 9 of 11

Question	Answer	Marks	Guidance
9(a)(iii)	2+12t = 158 and $5-5t = -48t = 13$, $t = 10.6$ soi	M1	Either for finding two values of <i>t</i> or for finding one value of <i>t</i> and substitute to obtain a position vector.
	Times are different so <i>P</i> does not pass through the given point or time calculated gives an inconsistent position vector	A1	For a valid conclusion
9(b)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ and $\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$	B1	
	$4(\mathbf{b} - \mathbf{a}) = \mathbf{c} - \mathbf{a} \text{ oe}$	M1	For substitution into a valid equation from <i>their</i> ratio. FT on <i>their</i> \overrightarrow{AB} and <i>their</i> \overrightarrow{AC}
	$\mathbf{c} = 4\mathbf{b} - 3\mathbf{a}$	A1	
	Alternative method	R	
	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ and $\overrightarrow{AC} = 4\mathbf{b} - 4\mathbf{a}$ oe	B1	
	$(\overrightarrow{OC} =) \mathbf{c} = \mathbf{a} + 4\mathbf{b} - 4\mathbf{a}$	M1	FT on their \overrightarrow{AB} and their \overrightarrow{AC}
	$\mathbf{c} = 4\mathbf{b} - 3\mathbf{a}$	A1	
10(a)	$\cos \theta = x - 2$ and $\sin \theta = \frac{2}{y}$ soi	B1	
	$(x-2)^2 + \frac{4}{y^2} = 1$	M1	For a correct attempt to use $\cos^2 \theta + \sin^2 \theta = 1$ or other relevant identity
	$y^2 = \frac{4}{1 - (x - 2)^2}$ oe	M1	Dep for attempt to rearrange to obtain y^2
	$y = \frac{2}{\sqrt{1 - (x - 2)^2}}$ or $\frac{2}{\sqrt{4x - x^2 - 3}}$ oe	A1	Must be positive
	Alternative method		
	$\theta = \cos^{-1}(x-2)$ and $\theta = \sin^{-1}\left(\frac{2}{y}\right)$	B1	
	$\cos^{-1}(x-2) = \sin^{-1}\left(\frac{2}{y}\right)$	M1	
	$y = \frac{2}{\sin\left(\cos^{-1}(x-2)\right)}$	2	Dep M1 for correct attempt to rearrange to obtain $y =$

© UCLES 2023 Page 10 of 11

Question	Answer	Marks	Guidance
10(b)	$\tan\frac{\phi}{2} = \sqrt{3} \text{ or } \sin\frac{\phi}{2} = \frac{\sqrt{3}}{2} \text{ or } \cos\frac{\phi}{2} = \frac{1}{2}$	В1	
	$\frac{\phi}{2} = \frac{\pi}{3} \text{ or awrt } 1.05$	M1	Dep for a correct attempt to solve <i>their</i> equation, must be using $\frac{\phi}{2}$.
	$\phi = \frac{2\pi}{3} \text{ or awrt } 2.09$	M1	Dep for correct order of operations, may be implied by one correct solution.
	$\phi = -\frac{10\pi}{3}, -\frac{4\pi}{3}, \frac{2\pi}{3}, \frac{8\pi}{3}$ or -10.5, -4.19, 2.09, 8.38	A2	A1 for a correct pair of solutions. A1 for a second correct pair of solutions and no extra solutions within the range. Allow greater accuracy if decimals used.

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2022 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features
 are specifically assessed by the question as indicated by the mark scheme. The meaning, however,
 should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 9

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent

rot rounded or truncated SC Special Case soi seen or implied

© UCLES 2022 Page 3 of 9

Question	Answer	Marks	Guidance
1(a)	-0.5 0	3	B1 for 2 V-shaped graphs with vertices in the 1st and 2nd quadrants, intersecting twice in the first quadrant. Dep B1 for $(0,1)$ and $(0,5)$ B1 for $\left(-\frac{1}{2},0\right)$ and $\left(\frac{5}{3},0\right)$
1(b)	$x = \frac{4}{5}$	B1	
	2x+1 = -5+3x oe	M1	For considering the negative for one of the functions
1	x=6	A1	
İ	Alternative		
	$5x^2 - 34x + 24 = 0$	(2)	M1 for squaring each function and attempt to form a 3-term quadratic equation = 0. Allow one error. A1 for a correct equation
	$x = \frac{4}{5}, x = 6$	(A1)	For both
2(a)	2 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1	3	B1 for a complete cycle starting and finishing at $(-2\pi, 1)$ and $(2\pi, 1)$ B1 for intercept at $y=1$ B1 for a maximum when $y=6$ and a minimum when $y=-4$
2(b)	5	B1	
2(c)	$4\pi \text{ or } 720^{\circ}$	B1	

© UCLES 2022 Page 4 of 9

Question	Answer	Marks	Guidance
3	$y^3 = m \ln x + c$	B1	May be implied by subsequent work
	5=m+c $15=6m+c$ $m=2, c=3$	2	B1 for $m = 2$ B1 for $c = 3$
	$y = \sqrt[3]{2\ln x + 3}$	B1	
	Alternative		
	$y^3 = m \ln x + c$	(B1)	May be implied by subsequent work
	Gradient = 2	(B1)	For finding the gradient and equating to <i>m</i>
	5 = m + c $15 = 6m + c$ $c = 3$	(B1)	For at least one correct equation and finding c
	$y = \sqrt[3]{2\ln x + 3}$	(B1)	
4	$x = \frac{2 \pm \sqrt{4 + 4(\sqrt{5} - 1)(\sqrt{5} + 1)}}{2(\sqrt{5} - 1)}$	M1	For a correct use of the quadratic formula with sufficient detail
	$x = \frac{2 \pm 2\sqrt{5}}{2(\sqrt{5} - 1)}$ or $x = \frac{1 \pm \sqrt{5}}{(\sqrt{5} - 1)}$	2	Dep M1 for attempt to simplify to obtain 2 real roots A1 for either
	$x = \frac{\left(\sqrt{5+1}\right)}{\left(\sqrt{5-1}\right)} \times \frac{\left(\sqrt{5+1}\right)}{\left(\sqrt{5+1}\right)}$	M1	For attempt at rationalisation
	$x = \frac{3}{2} + \frac{\sqrt{5}}{2}$	A1	
	x = -1	B1	
5(a)	a+3d=25 $a+8d=50$	M1	For at least one correct equation and attempt to solve to find at least one unknown
	a=10	A1	
	d=5	A1	

© UCLES 2022 Page 5 of 9

Question	Answer	Marks	Guidance
5(b)	$\frac{n}{2}(20+(n-1)5) \ (=25\ 000)$	M1	For attempting the sum to <i>n</i> terms using <i>their a</i> and <i>d</i>
	$5n^2 + 15n - 50\ 000 = 0$ n = 98.5	A1	
	n=99	A1	
6	$1-4x+\frac{68}{9}x^2$	2	B1 for $1-4x$ B1 for $\frac{68}{9}x^2$ or $7.56x^2$
	$1+9x+27x^2$	B1	
	Term in x: $-4x+9x=5x$ or coefficients of x: $-4+9$	M1	For $(their -4(x))+(their 9(x))$
	a=5	A1	
	Term in x^2 : $\frac{68}{9}x^2 + 27x^2 - 36x^2$	M1	For $\left(their\frac{68}{9}(x)\right) + \left(their27(x)\right) +$
	or coefficients of x^2 : $\frac{68}{9} + 27 - 36$		$((their - 4(x)) \times (their 9(x)))$
	$b = -\frac{13}{9}$	A1	Must be exact
7(a)	$2\pi r + 4x + 2x\theta$	3	B1 for $2\pi r$ B1 for $+4x$ B1 for $2x\theta$
7(b)	$\pi r^2 - x^2 \theta$	B1	,0
7(c)	Least value when $x = r$	B1	
	Least value = $r^2(\pi - \theta)$ oe	B1	
8	$2\ln(x+1) - \ln(x+2)$	2	B1 for $2\ln(x+1)$ B1 for $-\ln(x+2)$
	$(2\ln(a+1)-\ln(a+2))+\ln 2$	M1	For attempt to apply limits correctly, dependent on having 2 log terms.
	$ \ln \frac{2(a+1)^2}{(a+2)} $	2	M1 for use of either power rule or the division rule.

© UCLES 2022 Page 6 of 9

Question	Answer	Marks	Guidance
9	$2\log_{p} y + \frac{10}{\log_{p} y} - 9 = 0$ or $\frac{2}{\log_{y} p} + 10\log_{y} p - 9 = 0$	B1	For a change of base
	$2(\log_p y)^2 - 9\log_p y + 10 = 0$ or $10(\log_y p)^2 - 9\log_y p + 2 = 0$	M1	For attempt to obtain a 3-term quadratic equation = 0, in either $\log_p y$ or $\log_y p$
	$\log_p y = \frac{5}{2}, \log_p y = 2$ or $\log_y p = \frac{2}{5}, \log_y p = \frac{1}{2}$	M1	Dep M mark for attempt to solve the quadratic to obtain 2 solutions
	$y = p^{\frac{5}{2}}$	A1	
	$y = p^2$	A1	
10	$\frac{65n!}{(n-5)!5!} = \frac{2(n-1)(n+1)!}{(n-5)!6!}$ $65 = \frac{n^2 - 1}{3}$	2	B1 for simplifying numerical factorials to 3 B1 for simplifying algebraic factorials to either $(n-1)(n+1)$ or n^2-1
	n=14	B1	
11(a)	$\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$	B1	1.5
	$\overrightarrow{AB} = \frac{2}{5}(\mathbf{c} - \mathbf{a}) \text{ or } \overrightarrow{BC} = \frac{3}{5}(\mathbf{c} - \mathbf{a})$	B1	,o ·
	$\frac{2}{5}(\mathbf{c}-\mathbf{a}) = \mathbf{b}-\mathbf{a} \text{ or } \frac{3}{5}(\mathbf{c}-\mathbf{a}) = \mathbf{c}-\mathbf{b}$	M1	For equating two different forms of \overrightarrow{AB} or 2 different forms of \overrightarrow{BC}
	$5\mathbf{b} - 3\mathbf{a} = 2\mathbf{c}$	A1	Simplification to obtain the given answer
11(b)	$\overrightarrow{XC} = \mathbf{c} - \frac{3\mathbf{a}}{4}$	B1	
	$\overrightarrow{XC} = \frac{5\mathbf{b}}{2} - \frac{9\mathbf{a}}{4}$	B1	

© UCLES 2022 Page 7 of 9

Question	Answer	Marks	Guidance
11(c)	$m\mathbf{b} - \frac{3}{4}\mathbf{a} = \lambda \left(\frac{5\mathbf{b}}{2} - \frac{9\mathbf{a}}{4}\right)$	B1	
	$\lambda = \frac{1}{3}, m = \frac{5}{6}$	3	M1 for equating like vectors at least once A1 for $\lambda = \frac{1}{3}$ A1 for $m = \frac{5}{6}$
12(a)	$\frac{\csc\theta + 1 + \csc\theta - 1}{\csc^2\theta - 1}$	B1	Allow denominator unsimplified
	$\frac{2\mathrm{cosec}\theta}{\cot^2\theta}$	B1	
	$\frac{2}{\sin \theta} \times \frac{\sin^2 \theta}{\cos^2 \theta}$ $2\sin \theta \sec^2 \theta$	B1	Sufficient detail must be seen
12(b)	$2\sin 2\phi \sec^2 2\phi = 4\sin 2\phi$ Leading to $\sin 2\phi = 0$ $\phi = \pm 90^\circ, 0^\circ$	2	M1 for attempt to solve $\sin 2\phi = 0$ obtaining at least one correct solution A1 for all solutions
	$2\sin 2\phi \sec^2 2\phi = 4\sin 2\phi$ $\cos 2\phi = (\pm)\frac{1}{\sqrt{2}}$	M1	For dealing with $\sec^2 2\phi$ to obtain $\cos 2\phi = k$, where $0 \le k \le 1$
	$\phi = \pm 67.5^{\circ}, \pm 22.5^{\circ}$	3	M1 for solution to obtain at least one correct solution A1 for a correct pair of solutions A1 for a second correct pair of solutions with no extra solutions within the range

© UCLES 2022 Page 8 of 9

Question	Answer	Marks	Guidance
13	$f'(x) = 4(3x+4)^{\frac{1}{2}} (+c)$	2	M1 for $a(3x+4)^{\frac{1}{2}}$ A1 for $4(3x+4)^{\frac{1}{2}}$
	18 = 4(4) + c	M1	Dep M mark for attempting correctly to find the value of the arbitrary constant
	c=2	A1	
	$f(x) = \frac{8}{9}(3x+4)^{\frac{3}{2}} (+2x+d)$	M1	For $b(3x+4)^{\frac{3}{2}}$
	$f(x) = \frac{8}{9}(3x+4)^{\frac{3}{2}} + 2x (+d)$	A1	Allow unsimplified
	$\frac{64}{9} = \frac{64}{9} (+8) + d$	M1	Dep M mark for attempt to find a second arbitrary constant
	$f(x) = \frac{8}{9}(3x+4)^{\frac{3}{2}} + 2x - 8$	A1	

© UCLES 2022 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 October/November 2022 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2022 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features
 are specifically assessed by the question as indicated by the mark scheme. The meaning, however,
 should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 10

Ma	nths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working

nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2022 Page 3 of 10

Question	Answer	Marks	Guidance
1	a=2	B1	
	b=3	B1	
	c = -4	B1	
2(a)	y 10	4	'construction curve' Dep B1 for (0, 10) must have correct basic shape, must be convinced that this is the vertical intercept B1 for (-5, 0) and $\left(\frac{2}{3}, 0\right)$ or (0.667, 0) or better Dep B1 on all previous B marks for all
	ET PA		correct with cusps and the correct shape for $x < -5$ and $x > \frac{2}{3}$
2(b)	Stationary point when $x = -\frac{13}{6}$ soi	M1	For differentiation or completing the square or use of symmetry
	$(-)\frac{289}{12}$ or $(-)24.1$ or better	A1	For <i>y</i> -value of stationary point, allow +ve or –ve value.
	$k > \frac{289}{12}$ or $k > 24.1$ or better	A1	7]]]
	k=0	B1	/:/
	Alternative		
	$3x^2 + 13x - (10+k)$ Using discriminant, $169 + 12(10+k)$	(M1)	Allow a sign error in $3x^2 + 13x - (10+k)$, but must have a term in k not k^2
	Critical value $(-)\frac{289}{12}$ or $(-)24.1$ or better	(A1)	
	$k > \frac{289}{12}$ or $k > 24.1$ or better	(A1)	One solution only from correct work
	k = 0	(B1)	

© UCLES 2022 Page 4 of 10

Question	Answer	Marks	Guidance
3	$\frac{3}{8}p^{-2}q^{\frac{3}{2}}r^{-\frac{16}{5}}$	4	B1 for $k = \frac{3}{8}$ or 0.375 B1 for $a = -2$ B1 for $b = \frac{3}{2}$ oe B1 for $c = -\frac{16}{5}$, -3.23 $\frac{1}{5}$
4	$\tan\left(2x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$ or $\sin^2\left(2x + \frac{\pi}{4}\right) = \frac{1}{4}$ or $\cos^2\left(2x + \frac{\pi}{4}\right) = \frac{3}{4}$	B1	Must be from correct working Allow if $\theta = 2x + \frac{\pi}{4}$ oe
	$2x + \frac{\pi}{4} = \frac{\pi}{6}, \ \frac{7\pi}{6}, \frac{13\pi}{6}$ $x = -\frac{\pi}{24}$	M1	Dep on previous B1 For attempt at the correct order of operations, may be implied by a correct solution or $x = -\frac{\pi}{24}$.
	$x = \frac{11\pi}{24} \text{ or } \frac{23\pi}{24} \text{ oe}$ $0.458\pi \text{ or } 0.958\pi$ $1.44 \text{ or } 3.01$	2	Dep M1 for an attempt to find a solution within the given range. Must be working with $\frac{7\pi}{6}$ or $\frac{13\pi}{6}$ A1 for either
	$x = \frac{11\pi}{24} \text{ or } \frac{23\pi}{24} \text{ oe}$ $0.458\pi \text{ or } 0.958\pi$ $1.44 \text{ or } 3.01$	A1	For a second solution within the given range with no extra solutions within the range.
5(a)	25	B1	soi
		B1	
5(b)	$\overrightarrow{AC} = \frac{1}{3}(\mathbf{b} - \mathbf{a}) \text{ or } \overrightarrow{CB} = \frac{2}{3}(\mathbf{b} - \mathbf{a}) \text{ oe}$	B1	
	$\overrightarrow{OC} = \mathbf{a} + \frac{1}{3}(\mathbf{b} - \mathbf{a}) \text{ or } \mathbf{b} - \frac{2}{3}(\mathbf{b} - \mathbf{a}) \text{ oe}$	M1	For using $\overrightarrow{OA} + their\overrightarrow{AC}$ or $\overrightarrow{OB} + their\overrightarrow{BC}$ oe
	$\frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$	A1	

© UCLES 2022 Page 5 of 10

Question	Answer	Marks	Guidance
5(c)	2p+2q = -5p+5 or $p+4q = 5p+5q$	M1	For equating like vectors to obtain at least one equation
	$p = -5, \ q = 20$	2	Dep M mark for attempt to solve <i>their</i> equations to obtain both p and q A1 for both
6	1144	3	B1 With the brothers: 220 or ${}^{12}C_3$ B1 Without the brothers: 924 or ${}^{12}C_6$
7(a)	2.8 oe	B1	
7(b)	$(BC = AC =) 10 \tan 1.4 \text{ or } \frac{10 \sin 1.4}{\sin 0.1708}$	M1	
	Perimeter = $10(their \ 2.8) + 2(their \ AC \ or \ BC)$	M1	
	144	A1	
7(c)	Area of triangle AOC or $BOC = \frac{1}{2}their(AC \text{ or } BC) \times 10$ or $\frac{1}{2}their OC \times 10\sin 1.4 \text{ soi}$	M1	Allow premature approximation for OC
	Area of minor sector $AOB = 140$	B1	FT on $50 \times their 2.8$
	Shaded area = 439 to 440	A1	Must have 579 ≤ kite area ≤ 580
8(a)	-1.5	B1	0.
8(b)	$f \in \mathbb{R}$	B1	Allow $y \in \mathbb{R}$, \mathbb{R} , $-\infty < f(x) < \infty$ oe, $f(x) \in \mathbb{R}$

© UCLES 2022 Page 6 of 10

Question	Answer	Marks	Guidance
8(c)	$\ln(8x+12) \text{ or } \ln(4(2x+3))$	B1	May be implied
	$f^{-1}(x) = \frac{e^x - 12}{8}$ oe	2	M1 for attempt to find the inverse, allow one sign error A1 allow $y =$
	Range: $f^{-1} > their(-1.5)$	В1	Must be correct notation, follow through on <i>their</i> (a) $f^{-1}(x) > their(-1.5)$, $y > their(-1.5)$
	Alternative		
	$f^{-1}(x) = \frac{e^{x-\ln 4} - 3}{2}$ oe	(3)	B1 for $e^{x-\ln 4}$ or $e^{y-\ln 4}$ M1 for attempt to find the inverse, allow one sign error A1 allow $y = \dots$
	Range: $f^{-1} > their(-1.5)$	(B1)	Must be correct notation, follow through on <i>their</i> (a) $f^{-1}(x) > their(-1.5)$, $y > their(-1.5)$
8(d)	$ \begin{array}{c c} & y \\ & \ln 12 \\ \hline & -\frac{11}{8} \\ \hline & 0 \\ \hline & -\frac{11}{8} \end{array} $	4	B1 for correct shape of $f(x)$ in quadrants 1, 2 and 3, with asymptotic behaviour B1 for $\ln 12$ and $-\frac{11}{8}$ or -1.375 in correct position, must have a correct shape. B1 for correct shape of $f^{-1}(x)$ in quadrants 1, 3 and 4, with asymptotic behaviour B1 for $\ln 12$ and $-\frac{11}{8}$ or -1.375 in correct position, must have a correct shape and intersect at least once with $y = f(x)$
9(a)	$\frac{(4x-1)(2x+1)-(4x-1)+4(2x+1)^2}{(2x+1)^2(4x-1)}$	M1	For attempt to obtain a single fraction An extra term of $(2x+1)$ throughout must be dealt with correctly before awarding M1
	$\frac{24x^2 + 14x + 4}{(2x+1)^2(4x-1)}$	A1	Must see sufficient detail of expansion and collecting terms cso as AG

© UCLES 2022 Page 7 of 10

Question	Answer	Marks	Guidance
9(b)	$\frac{1}{2}\ln(2x+1)$	B1	
	$\frac{1}{2(2x+1)}$	B1	Allow $\frac{-(2x+1)^{-1}}{-1\times 2}$ oe
	$\ln(4x-1)$	B1	
	$\left(\frac{1}{2}\ln 3 + \frac{1}{6} + \ln 3\right) - \left(\frac{1}{2}\ln 2 + \frac{1}{4}\right)$	M1	For correct application of limits, must have at least one log term. Must be using individual fractions from (a) Fractions and log terms must be bracketed correctly and manipulated correctly
	$\frac{1}{2} \ln \frac{27}{2} - \frac{1}{12}$	3	M1 for application of log laws using $\frac{1}{2}\ln 3 + \ln 3 - \frac{1}{2}\ln 2$ to obtain the correct form A1 for $\frac{1}{2}\ln \frac{27}{2}$ B1 for $-\frac{1}{12}$
10(a)	Common difference = $4 \lg x$	B1	
	Sum to n terms = $\frac{n}{2} \left(2\lg x + (n-1)(4\lg x) \right)$	M1	For use of the sum formula with <i>their</i> common difference
	$n(2n-1)\lg x$	2	Dep M1 for a correct attempt to rearrange to the required form A1 cao
10(b)	n(2n-1) = 4950	M1	For $n((their \ p)n-1)=4950$ together with an attempt to solve to obtain n
	50	A1	cao
10(c)	$50(99)\lg x = -14850$	M1	For use of <i>their n</i> and <i>p</i> in a complete method to find <i>x</i> or use of part (b)
	10 ⁻³ or equivalent	A1	

© UCLES 2022 Page 8 of 10

Question	Answer	Marks	Guidance
11(a)	$\frac{\left((t+1) \times \frac{3}{2} \times 2 \times (2t+1)^{\frac{1}{2}}\right) - (2t+1)^{\frac{3}{2}}}{(t+1)^2}$	3	B1 for $\frac{3}{2} \times 2 \times (2t+1)^{\frac{1}{2}}$ M1 for a correct attempt at a quotient or a product A1 for all terms apart from $\frac{3}{2} \times 2 \times (2t+1)^{\frac{1}{2}}$ correct
	$\frac{(2t+1)^{\frac{1}{2}}}{(t+1)^2}(t+2)$	2	M1 dep on previous M mark for attempt to obtain in the required form
	Alternative		
	$s = \frac{(2t+1)^{\frac{3}{2}} - t - 1}{(t+1)}$ $\frac{\left((t+1) \times \left(3 \times (2t+1)^{\frac{1}{2}} - 1\right)\right) - \left((2t+1)^{\frac{3}{2}} - t - 1\right)}{(t+1)^2}$	(3)	B1 for $\frac{3}{2} \times 2 \times (2t+1)^{\frac{1}{2}}$ M1 for a correct attempt at a quotient or a product A1 for all terms apart from $\frac{3}{2} \times 2 \times (2t+1)^{\frac{1}{2}}$ correct
	$\frac{(2t+1)^{\frac{1}{2}}}{(t+1)^2}(t+2)$	(2)	M1 dep on previous M mark for attempt to obtain in the required form
11(b)	$(2t+1)^{\frac{1}{2}}(t+2)=0$ oe has no real positive solutions so velocity is never zero	B1	FT on <i>their</i> positive linear factor Reference needs to be made to both factors.

© UCLES 2022 Page 9 of 10

Question	Answer	Marks	Guidance
12	$a^5x^5 + 2a^4x^4 + \frac{8}{5}a^3x^3$	3	B1 for each correct term, allow when first seen
	$1 - \frac{2b}{x} + \frac{b^2}{x^2}$	B1	
	a=2	B1	
	32 - 64b = -160	M1	For using <i>their</i> expansions and <i>their</i> value for a to obtain two terms involving x^4
	b=3	A1	
	$\frac{64}{5} - 192 + 288 = c$	M1	For using <i>their</i> expansions and <i>their</i> value for a to obtain three terms involving x^3
	$c = \frac{544}{5}$ oe	A1	
	Alternative		
	$a^{5}(=32)$	(B1)	
	a=2	(B1)	7]]]
	$-2ba^5 + 2a^4 = -160 \text{ soi}$ $32 - 64b = -160$	(2)	B1 for $2a^4$ soi M1 For using <i>their</i> expansions and <i>their</i> value for <i>a</i> to obtain two terms involving x^4
	b=3 Satpre	(A1)	
	$\frac{8}{5}a^3 - 4a^4b + a^5b^2 = c$ $\frac{64}{5} - 192 + 288 = c$	(3)	B2 for both $\frac{8}{5}a^3$ and a^5b^2 B1 for either $\frac{8}{5}a^3$ or a^5b^2 if only one correct M1 for using <i>their</i> expansions and <i>their</i> value for a to obtain three terms involving x^3
	$c = \frac{544}{5}$ oe	(A1)	

© UCLES 2022 Page 10 of 10

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2022 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 10

Ma	nths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SCsoi seen or implied

© UCLES 2022 Page 3 of 10

Question	Answer	Marks	Guidance
1	4 2 2 4 4 5	3	B1 for a curve starting at $\left(-\frac{\pi}{3}, -2\right)$ and finishing at $\left(\frac{\pi}{3}, -2\right)$ B1 for a curve, must have implied symmetry about $\frac{\pi}{6}$ and $-\frac{\pi}{6}$, one complete cycle only. B1 for a curve passing through $(0, -2)$ and distinct maximum at $\left(\frac{\pi}{6}, 2\right)$ and distinct minimum at only $\left(-\frac{\pi}{6}, -6\right)$
2(a)	$2\left(x+\frac{1}{4}\right)^2-\frac{121}{8}$	2	B1 for $a = \frac{1}{4}$ B1 for $b = -\frac{121}{8}$
2(b)	$\left(-\frac{1}{4}, -\frac{121}{8}\right)$	2	FTB1 for each, follow through on their a and b from (a) or SC1 if differentiation is used ie $\frac{dy}{dx} = 4x + 1 = 0 \text{ then } \left(-\frac{1}{4}, -\frac{121}{8}\right)$
2(c)		3	B1 for a correct shape. Must have the parabola part of the curve in the first and second quadrant with cusps and correct curvature and a max in the 2^{nd} quadrant. Ignore labelling of their maximum point if incorrect coordinates B1 for a curve $\left(\frac{5}{2},0\right)$ and $(-3,0)$ B1 for a curve $(0,15)$
2(d)	$k = \frac{121}{8}$	B1	FT Follow through on <i>their</i> – <i>b</i>

© UCLES 2022 Page 4 of 10

Question	Answer	Marks	Guidance
3(a)	$3y^2 + 2y - 1 = 0$ oe or $4x^2 - 4x - 3 = 0$ oe	M1	M1 for obtaining a 3 term quadratic equation in y or x and an attempt to solve
	$x = \frac{3}{2}, \ x = -\frac{1}{2}$ oe	A1	
	$y = \frac{1}{3}$, $y = -1$ oe	A1	Allow A1 for the one correct pair e.g. $\left(\frac{3}{2}, \frac{1}{3}\right)$ or $\left(-\frac{1}{2}, -1\right)$
3(b)	$[\log_3 x + 3 =] \frac{10}{\log_3 x} \text{ oe}$ or $\frac{1}{\log_x 3} [+3 = 10 \log_x 3] \text{ oe}$	B1	For change of base
	$(\log_3 x)^2 + 3\log_3 x - 10 = 0$ or $10(\log_x 3)^2 - 3\log_x 3 - 1 = 0$ $\log_3 x = -5 \log_3 x = 2$ or $\log_x 3 = -\frac{1}{5} \log_x 3 = \frac{1}{2}$	M1	Dep on previous B mark, for attempt to obtain a 3-term quadratic equation and attempt to solve to obtain 2 solutions of the form $\log_3 x = p$ or $\log_x 3 = q$
	3^{-5} 3^2 isw	2	A1 for each
4(a)	$p'(x) = 3ax^2 + 26x + b$ p'(0) = b	B1	Must see at least $p'(x) = 3ax^2 + 26x + b$ to award the mark
4(b)	$p\left(-\frac{2}{3}\right):8a-27c=318$ oe	M1	For use of $x = -\frac{2}{3}$, at least once and attempt at simplification leading to an equation in a and c only Allow one sign error.
	p(-1): a-c=16 oe	M1	For use of $x = -1$ and attempt at simplification leading to an equation in a and c only
	a = 6, c = -10	2	M1 dep on both previous M marks and attempt to solve simultaneously to obtain both a and c A1 for both
4(c)	$2x^2 + 3x - 5$	B1	Allow if seen embedded i.e.: $(3x+2)(2x^2+3x-5)$ or as a quotient in long division

© UCLES 2022 Page 5 of 10

Question	Answer	Marks	Guidance
4(d)	(3x+2)(x-1)(2x+5)	B1	
5(a)	$r^3 = \frac{1}{8}$ soi	M1	Allow unsimplified $ar^{14} = \frac{1}{8}ar^{11}$ or $\frac{5r^{11} - 5r^{12}}{5r^{14} - 5r^{15}} = 8$ oe
	$r = \frac{1}{2}$	A1	
	$5 = \frac{a}{1 - r}$	M1	For use of sum to infinity with <i>their</i> r , must be $-1 < r < 1$
	$a = \frac{5}{2}$	A1	
5(b)	their $(\mathbf{a}) \times \frac{\left(1 - \left(their\ r\right)^n\right)}{\left(1 - their\ r\right)}$	M1	For use of the sum to <i>n</i> terms
	$(their \ r)^n = 0.0002$ (12.29)	M1	M1 dep For simplification and attempt to obtain the critical value using either an equation or an inequality leading to $n = \text{or } n >$
	13	A1	Accept $n \ge 13$
6(a)	f>-4	B1	Allow $y > -4$ or $-4 < f < \infty$ or $f \in (-4, \infty)$
6(b)	$\left[f^{-1}(x) = \right] \frac{1}{3} \ln(x+4)$	2	M1 for a correct method to find the inverse, allow one sign error Must be in the form of $3x = \ln(y \pm 4)$ or $3y = \ln(x \pm 4)$ A1 allow $y =$

© UCLES 2022 Page 6 of 10

Question	Answer	Marks	Guidance
6(c)	-1 in 4	4	B1 for $f(x)$ with correct shape in quadrant 1, 3 and 4 and appropriate asymptotic behaviour
			B1 for -3 on the y-axis and $\frac{1}{3}\ln 4$ on the x-axis for $f(x)$ must have the correct shape B1 for $f^{-1}(x)$ with correct shape in quadrant 1, 2 and 3 and appropriate asymptotic behaviour
			B1 for -3 on the x-axis and $\frac{1}{3} \ln 4$ on the y-axis for f ⁻¹ (x) must have correct shape and intersect at least once
7	$\frac{1}{3}\sin 3x - 2\cos 2x + x$	2	M1 for $a \sin 3x + b \cos 2x + x$, $a \neq \pm 3$ and $b \neq \pm 8$ A1 all correct
	$\left(\frac{1}{3}\sin\frac{3\pi}{2} - 2\cos\pi + \frac{\pi}{2}\right) - \left(-2\right)$	M1	Dep on previous M mark for correct substitution (seen or implied) of both limits in <i>x</i>
	$\frac{11}{3}$	A1	
	$\frac{\pi}{2}$	B1	From correct substitution (seen or implied) of both limits in <i>x</i>
8(a)	1.75	B1	
8(b)	$\cos BOC = \frac{7}{25}$, $\tan BOC = \frac{24}{7}$, $\sin BOC = \frac{24}{25}$ BOC = 1.287 soi	B1	
	Arc length = $r \times their 1.287$	B1	Follow through on their BOC
	Perimeter = 12.25 + their 9.009 + 14	M1	For a complete method
	35.3	A1	
8(c)	$\left(\frac{1}{2} \times 7^2 \times 1.75\right) + \left(\frac{1}{2} \times 7^2 \times their \ BOC\right) \text{ oe}$ or $\pi \times 7^2 - \frac{1}{2} \times 7^2 \times (2\pi - 1.75 - their 1.287)$	M1	For a complete method
	2		
04.50	74.4	A1	
9(a)(i)	665 280	B1	
9(a)(ii)	221 760	B1	

© UCLES 2022 Page 7 of 10

Question	Answer	Marks	Guidance
9(b)	$8 \times 4 \times 3 \times 2 \times 1 \times 7$	M1	For either 8×7 or 4! or 24 as part of a product
	1344	A1	
10	$\tan(3x + 1.2) \left[= \frac{1}{\sqrt{2}} \right]$ or $\cos^2(3x + 1.2) \left[= \frac{2}{3} \right]$ or $\sin^2(3x + 1.2) \left[= \frac{1}{3} \right]$	M1	For an attempt to obtain an equation in $\sin(3x + 1.2)$, $\cos(3x + 1.2)$ or $\tan(3x + 1.2)$
	x = -1.24, -0.195, 0.852 or better	4	M1 dep for a correct attempt to obtain one correct solution A1 for one correct solution in the range M1 dep for an attempt to obtain another solution within the range A1 for 2 more correct solutions within the range and no extra solutions within the range
11	$\ln(3x+2) - \ln(2x+1) - \ln x$	2	B1 for 1 correct term B1 for the other two terms correct
	$ \ln\frac{(3a+2)}{a(2a+1)} - \ln\frac{5}{3} $	2	M1 for application of limits correctly, dep on at least one B mark
	$\ln \frac{3(3a+2)}{5a(2a+1)} = \left[\ln \frac{1}{5}\right]$ or $\ln \frac{(3a+2)}{a(2a+1)} = \ln \frac{1}{3}$.00.5	M1 for application of log laws to obtain a single logarithm, dep on at least one B mark
	$a^2 - 4a - 3 = 0$ $a = 2 + \sqrt{7}$	2	M1 for equating to $\ln \frac{1}{5}$ and attempt to solve resulting 3-term quadratic equation, dep on at least one B mark A1 for $2 + \sqrt{7}$ must reject $2 - \sqrt{7}$

© UCLES 2022 Page 8 of 10

Question	Answer	Marks	Guidance
12(a)	$ \frac{\left(\frac{dy}{dx} = \right)}{\frac{(x-1) \times \frac{2}{3} \times 6x(3x^2 - 2)^{-\frac{1}{3}} - (3x^2 - 2)^{\frac{2}{3}}}{(x-1)^2}} $ or $\left(\frac{dy}{dx} = \right)$ $(x-1)^{-1} \times \frac{2}{3} \times 6x(3x^2 - 2)^{-\frac{1}{3}} - (x-1)^{-2}(3x^2 - 2)^{\frac{2}{3}}$	3	B1 for $\frac{2}{3} \times 6x(3x^2 - 2)^{-\frac{1}{3}}$ M1 for differentiation of a quotient or product A1 for all terms other than $\frac{2}{3} \times 6x(3x^2 - 2)^{-\frac{1}{3}} \text{ correct}$
	$\frac{\left(3x^2 - 2\right)^{-\frac{1}{3}}}{\left(x - 1\right)^2} \left(x^2 - 4x + 2\right)$	2	M1 dep for attempt to factorise, must be in the form $\frac{\left(3x^2-2\right)^{-\frac{1}{3}}}{\left(x-1\right)^2} \left[ax(x-1)-\left(3x^2-2\right)\right]$ A1 all correct
12(b)	When $x = 2$, $\frac{dy}{dx} = -\frac{2}{\sqrt[3]{10}}$ oe	M1	Dep on the differentiation M mark from part (a) For attempt to find the value of their $\frac{dy}{dx}$ when $x = 2$
	$-\frac{2}{\sqrt[3]{10}} p \text{ or } -0.928 p$	A1	
13(a)	Midpoint (10, –9)	B1	
	Gradient of $l = -\frac{5}{3}$	B1	
	Equation of <i>l</i> : $y + 9 = -\frac{5}{3}(x - 10)$ oe	M1	Must be using <i>their</i> perpendicular gradient and <i>their</i> mid-point
	y = -4	A1	

© UCLES 2022 Page 9 of 10

Question	Answer	Marks	Guidance
13(b)	Attempt to use their R and displacement vectors or Pythagoras to find S	M1	May be implied by one correct coordinate If Pythagoras is used: M1 for an attempt to reach to a 3-term quadratic with one variable using <i>their</i> equation and <i>their</i> midpoint from (a) e.g. $34x^2 - 680x + 646 = 0$
	(1, 6)	A1	
	(19, –24)	A1	

© UCLES 2022 Page 10 of 10

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 May/June 2022 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 9

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2022 Page 3 of 9

Question	Answer	Marks	Guidance
1	$p^{-\frac{3}{2}}q^{\frac{8}{3}}r^{-2}$	3	B1 for $a = -\frac{3}{2}$
			B1 for $b = \frac{8}{3}$ B1 for $c = -2$
2(a)	$\frac{ds}{dt} = -\frac{3}{2}(1+3t)^{-\frac{3}{2}}$	2	M1 for $a(1+3t)^{-\frac{3}{2}}$ A1 all correct
	When $t = 1$, $\frac{ds}{dt} = -\frac{3}{16}$	A1	
	Speed = $\frac{3}{16}$		
2(b)	Acceleration = $\frac{27}{4} (1+3t)^{-\frac{5}{2}}$	B1	Allow unsimplified
	$(1+3t)^{-\frac{5}{2}}$ is always positive (so acceleration can never be zero.)	B1	Any valid explanation.
3(a)	$f(x) \in \mathbb{R}$ oe	B1	Must be using correct notation, allow $y \in$
3(b)	$5(\ln(3x+1)) - 7 = 13$	M1	For correct order
	$x = \frac{e^4 - 1}{2}$	2	M1 for a correct attempt to solve to get x =, allow one sign error Dep on previous M mark A1 all correct must be exact
3(c)	$(f'(x) =) \frac{2}{2x+1}$	eP.	M1 for $\frac{a}{2x+1}$ A1 all correct
	$(g^{-1}(x) =) \frac{x+7}{5}$	B1	soi
	$2x^2 + 15x - 3 = 0$	M1	for equating and forming a 3-term quadratic equation = 0
	x = 0.195, -7.69	M1	For solution of <i>their</i> 3-term quadratic
	x = 0.195	A1	For discounting negative root.
4(a)	$[f(x) =] \pm 4(x+2)(x-1)(x-3)$	3	B1 for \pm B1 for 4 B1 for $(x+2)(x-1)(x-3)$

© UCLES 2022 Page 4 of 9

Question	Answer	Marks	Guidance
4(b)(i)	-0.5 0 1 x	3	B1 for 2 V shapes which intersect twice in the first quadrant, with vertices on the <i>x</i> -axis, must be straight lines, not curves. B1 for -0.5 and 1 on the <i>x</i> -axis B1 for 1 and 4 on the <i>y</i> -axis
4(b)(ii)	2x + 1 = 4(x - 1)	M1	For attempt to solve to get $x =$
	x = 2.5	A1	
	2x + 1 = -4(x - 1) oe	M1	For attempt to solve to get $x =$
	x = 0.5	A1	
	Alternative	(M1)	
	$4x^2 + 4x + 1 = 16x^2 - 32x + 16$		For attempt to square each equation and equate
	$12x^2 - 36x + 15 = 0 \text{ oe}$	(M1)	Dep on previous M mark for attempt to simplify to a 3-term quadratic equation, equated to zero and attempt to solve
	x = 2.5 $x = 0.5$	(A2)	A1 for each
5(a)		2	B1 for $\begin{pmatrix} 7.5 \\ -4 \end{pmatrix}$ oe or B1 for $\begin{pmatrix} -15 \\ 8 \end{pmatrix}$
5(b)	15a + 2a + 1 = 6b + 6a $5b + 2 = 2$	M1	For equating like vectors in order to obtain at least one equation
	a = 1, b = 2	2	Dep M1 for attempt to solve both equations A1 for both
6(a)	k = 14	B1	
	k=6	B1	

© UCLES 2022 Page 5 of 9

0606/11	•	Cambridge IGCSE – Mark Scheme PUBLISHED			
Question	Answer	Marks			
6(b)(i)	$(1 + \tan \theta)(1 + \cos \theta) + (1 - \tan \theta)(1 - \cos \theta)$	M1	Allow		

Question	Answer	Marks	Guidance
6(b)(i)	$\frac{(1+\tan\theta)(1+\cos\theta)+(1-\tan\theta)(1-\cos\theta)}{1-\cos^2\theta}$	M1	Allow $(1 + \cos \theta)(1 - \cos \theta)$ in the denominator
	Expansion of numerator and simplification of denominator	M1	Dep on previous M mark
	Use of $\tan \theta \cos \theta = \sin \theta$	B1	soi
	$\frac{2(1+\sin\theta)}{\sin^2\theta}$	A1	Sufficient simplification to justify obtaining the given answer
6(b)(ii)	$2(1 + \sin \theta) = 3\sin^2 \theta$ $3\sin^2 \theta - 2\sin \theta - 2 = 0$	M1	For use of part (a) and attempt to simplify to a 3-term quadratic equation equated to zero.
	$\sin \theta = \frac{1 - \sqrt{7}}{3}$ or -0.5485	M1	M1 for attempt to solve and obtain a value for θ , may be implied by one correct solution
	213.3° and 326.7°	A2	A1 for one solution If 0 scored SC1 for awrt 213 and 327 Penalise excess solutions in the range
7(a)	Common difference = 2 lg 3	B1	Must be exact
	$\frac{n}{2}(2 \lg 3 + (n-1)2 \lg 3) = 256 \lg 81$ or $\frac{n}{2}(\lg 9 + (n-1)\lg 9) = 512\lg 9$	M1	For use of the sum formula
	lg 81 = 41g3 soi or lg 81 = 21g9 soi	B1	Allow when working with decimal
	$n^2 = 1024$ oe	MI	Dep on first M mark, for attempt to simplify the sum equation by dividing through by lg 3 oe to obtain an equation in <i>n</i> only
	n=32 cao	A1	Must have exact working through out
7(b)	$\ln 256 = 4 \ln 4, \ln 16 = 2 \ln 4$ oe	M1	For use of power rule to obtain the common ratio
	Common ratio = 0.5	A1	
	$S_{\infty} = \frac{4\ln 4}{1 - their \ r} \text{oe}$	M1	Allow ln 256 for first term and <i>their r</i> provided it is positive and < 1
	16ln2	A1	

© UCLES 2022 Page 6 of 9

Question	Answer	Marks	Guidance
8(a)	$x^{2} + 2\sqrt{5}x - 20 = 3\sqrt{5}x + 10$ $x^{2} - \sqrt{5}x - 30 = 0$	M1	For equating <i>x</i> terms and simplifying to a 3-term quadratic equation equated to zero.
	$x = \frac{\sqrt{5} \pm \sqrt{5 - (4 \times -30)}}{2}$ oe	M1	Dep on previous M mark for attempt to solve to obtain $x =$, sufficient detail must be shown
	$x = 3\sqrt{5} \qquad x = -2\sqrt{5}$	A1	For both
	y = 55, y = -20	A1	For both
8(b)	Use of $\csc^2 \theta = 1 + \cot^2 \theta$	B1	May be implied by later work
	$\csc^2\theta = 1 + \frac{\left(2 + \sqrt{3}\right)^2}{\left(\sqrt{3} - 1\right)^2}$	M1	For attempting to deal with tan correctly, forming a single fraction and simplifying, with sufficient detail – at least 4 terms in the numerator
	$\csc^2\theta = \frac{11 + 2\sqrt{3}}{4 - 2\sqrt{3}}$	A1	
	$\csc^2\theta = \frac{11 + 2\sqrt{3}}{4 - 2\sqrt{3}} \times \frac{4 + 2\sqrt{3}}{4 + 2\sqrt{3}}$	M1	For attempt to rationalise <i>their</i> expression, with sufficient detail in the simplification of the numerator – at least 3 terms
	$14 + \frac{15\sqrt{3}}{2}$	A1	///
	Alternative 1	(B1)	1.5
	Use of $\csc^2 \theta = 1 + \cot^2 \theta$	-00.	May be implied by later work
	$\cot \theta = \frac{2 + \sqrt{3}}{\sqrt{3} - 1}$ $= \frac{3\sqrt{3} + 5}{2}$	(2)	M1 for attempting to rationalise $\cot \theta$ or $\tan \theta$ with sufficient detail in the simplification of the numerator – at least 3 terms
	$\csc^2 \theta = 1 + \left(\frac{3\sqrt{3} + 5}{2}\right)^2$ $= 14 + \frac{15\sqrt{3}}{2}$	(2)	M1 for expressing as a single fraction and attempt to simplify to required form.

© UCLES 2022 Page 7 of 9

Question	Answer	Marks	Guidance
8(b)	Alternative 2	(B1)	
	Use of $\csc^2 \theta = 1 + \cot^2 \theta$ and $\cot^2 \theta = \frac{1}{\tan^2 \theta}$		May be implied by later work
	$\tan^2 \theta = \frac{4 - \sqrt{3}}{7 + 4\sqrt{3}}$ $= 52 - 30\sqrt{3}$	(2)	M1 for attempting to rationalise $\tan^2 \theta$ with sufficient detail in the simplification of the numerator – at least 3 terms
	$\csc^{2} \theta = 1 + \left(\frac{1}{52 - 30\sqrt{3}}\right)^{2}$ $= 14 + \frac{15\sqrt{3}}{2}$	(2)	M1 for attempting to rationalise $\cot^2 \theta$ with sufficient detail in the simplification of the numerator – at least 3 terms and expressing as a single fraction and attempt to simplify to required form.
	Alternative 3	(2)	
	Use of right-angled triangle $Hyp^2 = 11 + 2\sqrt{3}$		M1 For attempt to calculate the square of hypotenuse
	$\csc^2\theta = \frac{11 + 2\sqrt{3}}{4 - 2\sqrt{3}}$	(B1)	for correct use of $\csc^2 \theta$ with <i>their</i> squared hypotenuse
	$\csc^2 \theta = \frac{11 + 2\sqrt{3}}{4 - 2\sqrt{3}} \times \frac{4 + 2\sqrt{3}}{4 + 2\sqrt{3}}$	(M1)	For attempt to rationalise <i>their</i> expression, with sufficient detail in the simplification of the numerator – at least 3 terms
	$14 + \frac{15\sqrt{3}}{2}$	A1	5°.
9(a)	$\frac{1}{2}r^2\theta = 10, \ \theta = \frac{20}{r^2}$	B1	
	$[P =] 2r + r\theta$	M1	For substituting <i>their</i> θ in P
	$[P=] 2r + \frac{20}{r^2}$	A1	
9(b)	$\frac{\mathrm{d}P}{\mathrm{d}r} = 2 - \frac{20}{r^2}$	M1	For attempt to differentiate <i>their</i> answer to part (a) to obtain the form of $\left[\frac{dP}{dr} = \right] 2 + \frac{a}{r^2}$
	When $\frac{dP}{dr} = 0$, $r = \sqrt{10}$	2	Dep M1 for equating <i>their</i> $\frac{dP}{dr}$ to zero and attempt to solve A1 cao

© UCLES 2022 Page 8 of 9

Question	Answer	Marks	Guidance
9(c)	$\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = \frac{40}{r^3}$	2	M1 for a complete method, allow valid alternatives, if differentiated, must be in
	As r is positive, $\frac{d^2P}{dr^2}$ is also positive so minimum		the form of $\left[\frac{d^2P}{dr^2} = \right]\frac{k}{r^3}$ A1 for a correct conclusion
9(d)	θ = 2	B1	
10	$-1 = \tan\left(3p + \frac{\pi}{2}\right)$ $p = \frac{\pi}{12}$	2	M1 for a complete method to find the value of p
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sec^2\left(3x + \frac{\pi}{2}\right)$		M1 for $a \sec^2 \left(3x + \frac{\pi}{2} \right)$ A1 all correct
	When $x = \frac{\pi}{12}$, $\frac{dy}{dx} = 6$	M1	For attempt to find the gradient using <i>their p</i> from differentiation
	Equation of normal: $y+1 = -\frac{1}{6} \left(x - \frac{\pi}{12} \right)$	M1	For attempt at normal equation using their p and $-\frac{1}{their}$ value for $\frac{dy}{dx}$
	When $x = 0$, $y = \frac{\pi}{72} - 1$	M1	For attempt to find <i>B</i> using <i>their</i> normal equation (must be from differentiation)
	When $y = 0$, $x = \frac{\pi}{12} - 6$	M1	For attempt to find A using their normal equation (must be from differentiation)
	Mid-point $\left(\frac{\pi}{24} - 3, \frac{\pi}{144} - \frac{1}{2}\right)$		A1 for x value (must be exact) A1 for y value (must be exact)

© UCLES 2022 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 10

Ma	Maths-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

soi

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot SC Special Case

seen or implied

© UCLES 2022 Page 3 of 10

Question	Answer	Marks	Guidance
1	<i>a</i> = 5	B1	
	b=4	B1	
	c = -3	B1	
2	$\tan^2 \theta = \frac{1}{y+2}$ soi or $x = 1 + \tan^2 \theta$ soi	B1	Must be in terms of $\tan^2 \theta$
	Use of $\tan^2 \theta + 1 = \sec^2 \theta$ $\frac{1}{y+2} + 1 = x \text{ oe}$	M1	For a valid attempt to eliminate θ
	$y = \frac{1}{x-1} - 2$ or $y = \frac{3-2x}{x-1}$ oe	2	Dep M1 for attempt to rearrange to obtain in the required form A1 for a correct form
	Alternative		
	$x = \frac{1}{\cos^2 \theta}$ and $y + 2 = \frac{\cos^2 \theta}{\sin^2 \theta}$ soi	(B1)	
	$y+2 = \frac{\frac{1}{x}}{1-\frac{1}{x}}$ oe	(M1)	For a valid attempt to eliminate θ , making use of $\sin^2 \theta + \cos^2 \theta = 1$
	$y = \frac{1}{x-1} - 2$ or $y = \frac{3-2x}{x-1}$ oe	(2)	Dep M1 for attempt to rearrange to obtain in the required form A1 for a correct form
3(a)	Gradient = 4 soi	B1	
	Intercept = -3 soi	B1	
	$\lg(2y+1) = 4x^2 - 3$ oe	M1	For $\lg(2y+1) = their \ m(x^2) + their \ c$
	$y = \frac{1}{2} \left(10^{4x^2 - 3} - 1 \right) \text{ or } y = \frac{10^{4x^2}}{2} - 1$	A1	
3(b)	y = 0	B1	Must have at least 3 marks from part (a)

© UCLES 2022 Page 4 of 10

Question	Answer	Marks	Guidance
3(c)	$2 = \frac{1}{2} \left(10^{4x^2 - 3} - 1 \right) \text{ oe}$ and attempt to obtain $x = \dots$	M1	Dep on M mark in part (a) for use of $y = 2$ in their $y = \frac{1}{2} (10^{4x^2 - 3} - 1)$, $y = \frac{10^{4x^2}}{2} - 1$ or $y = \frac{1000}{2} - 1$ or $y = \frac{10(2y + 1)}{2} = 4x^2 - 3$ and attempt to obtain $y = \dots$
	$x = (\pm) 0.962$ or better	A1	
4(a)	$\frac{1}{17} \binom{-15}{8} \text{ oe }$	2	B1 for 17 seen
4(b)	2a + 4b - 12 = 4b - 4a $-5 + 3 = 4a + 8b$	M1	For equating like vectors to obtain at least one equation
	$a = 2, b = -\frac{5}{4}$ oe	2	Dep M mark for solving <i>their</i> 2 equations to obtain both <i>a</i> and <i>b</i>
5	$\left(1 + \frac{x}{6}\right)^{12} = 1 + 2x + \frac{11x^2}{6}$	2	B2 for 3 correct terms B1 for 2 correct terms
	$(2-3x)^3 = 8-36x+54x^2$	2	B2 for 3 correct terms B1 for 2 correct terms
	Term in x : $-36x + 16x$	M1	A correct method using <i>their</i> terms or coefficients, must be considering 2 terms
	p = -20 soi	A1	
	Term in x^2 : $\frac{88}{6}x^2 + 54x^2 - 72x^2$	M1	A correct method using <i>their</i> terms or coefficients, must be considering 3 terms
	$q = -\frac{10}{3} \operatorname{soi}$	A1	
6(a)	$p\left(\frac{1}{2}\right)$: $a + 4b + 15 = 0$ oe	B1	For $p\left(\frac{1}{2}\right)$ equated to zero
	p(2): $4a + b = 60$ oe	B1	For p(2) equated to 120
	a = 17, b = -8	2	Dep M1 on both previous B marks, for solving <i>their</i> equations to obtain <i>a</i> and <i>b</i> A1 for both

© UCLES 2022 Page 5 of 10

Question	Answer	Marks	Guidance
6(b)	-8	B1	FT on their integer b
6(c)	$p'(x) = 18x^{2} + 34x + 6$ $p''(x) = 36x + 34$	M1	For attempt to differentiate <i>their</i> $p(x)$, may be implied by correct FT answer
	p''(0) = 34	A1	FT on $2 \times$ their integer a
7(a)	$\frac{2(x-1)^2 - (x-1)(2x+3) + (2x+3)}{(x-1)^2(2x+3)}$	M1	Attempt at a fraction, allow with an extra $(x-1)$ term in each term of the numerator and the denominator
	$= \frac{8-3x}{(x-1)^2(2x+3)}$	A1	AG – must see sufficient detail to justify the given result, if an extra $(x-1)$ term involved, it must be dealt with correctly
7(b)	$\left[\ln(2x+3) - \ln(x-1) - \frac{1}{(x-1)}\right]_{2}^{a}$	3	B1 for each correct term
	$\left(\ln(2a+3)-\ln(a-1)-\frac{1}{a-1}\right)-(\ln 7-1)$	M1	Dep on at least one ln term from integration, for applying limits correctly in <i>their</i> integral
	$\frac{a-2}{a-1} + \ln\left(\frac{2a+3}{7(a-1)}\right) \text{ oe}$	2	A1 for $\frac{a-2}{a-1}$ or $1-\frac{1}{a-1}$ A1 for $\ln\left(\frac{2a+3}{7(a-1)}\right)$
	Alternative 1 final 2 marks	- cc	
	$\frac{-1}{a-1} + \ln\left(\frac{e(2a+3)}{7(a-1)}\right) \text{ oe}$	(2)	A1 for $\frac{-1}{a-1}$ A1 for $\ln\left(\frac{e(2a+3)}{7(a-1)}\right)$
			(/(u-1))
	Alternative 2 final 2 marks $\frac{a-2}{a-1} - \ln 7 + \ln \left(\frac{2a+3}{(a-1)}\right) \text{ oe}$	(2)	A1 for $\frac{a-2}{a-1} - \ln 7$ or $1 - \frac{1}{a-1} - \ln 7$ Allow 1.946 or better for $\ln 7$ A1 for $\ln \left(\frac{2a+3}{(a-1)} \right)$

© UCLES 2022 Page 6 of 10

Question	Answer	Marks	Guidance
7(b)	Alternative 3 final 2 marks		
	$\frac{-1}{a-1} - \ln 7 + \ln \left(\frac{e(2a+3)}{(a-1)} \right) \text{ oe}$	2	A1 for $\frac{-1}{a-1} - \ln 7$ Allow 1.946 or better for $\ln 7$ A1 for $\ln \left(\frac{e(2a+3)}{(a-1)} \right)$
8(a)	With the sisters: 70 or ${}^{8}C_{4}$ oe	B1	
	Without the sisters: 28 or ${}^{8}C_{6}$ oe	B1	
	Total: 98	B1	
8(b)(i)	60480	B1	
8(b)(ii)	The start of the password and the end of the password can each be chosen 6 ways	B1	6 or ³ P ₂ oe seen twice
	The remaining characters can be chosen in 20 ways	B1	20 or ⁵ P ₂ oe seen
	Total number of ways: 720	B1	1111

Question	Answer	Marks	Guidance
9	When $x = 0$, $y = \ln 2$ soi	B1	May be implied in later work
	$\frac{dy}{dx} = \frac{(x+1)\frac{6x}{(3x^2+2)} - \ln(3x^2+2)}{(x+1)^2}$	3	B1 for $\frac{6x}{(3x^2+2)}$ allow when seen M1 for attempt at a quotient or product A1 for all other terms apart from $\frac{6x}{(3x^2+2)}$ correct
	When $x = 0$, $\frac{dy}{dx} = -\ln 2$	M1	Dep on previous M mark for attempt to find the gradient using <i>their</i> $\frac{dy}{dx}$
	Equation of normal: $y - \ln 2 = \frac{1}{\ln 2}x$	M1	For attempt at a normal equation using <i>their</i> y (not 3 ln2) and $-\frac{1}{their(-\ln 2)}$, must be from an attempt at differentiation
	When $y = 0$, $x = -(\ln 2)^2$	M1	For attempt to find the value of x when $y = 0$ using <i>their</i> normal equation
	Gradient $BC = \frac{3 \ln 2}{(\ln 2)^2}$	M1	Dep on both previous M marks
	$\frac{3}{\ln 2}$ or $3(\ln 2)^{-1}$	A1	Must have correct exact working throughout

© UCLES 2022 Page 8 of 10

Question	Answer	Marks	Guidance
10(a)(i)	xy^2 soi	B1	Simplification of the left-hand side of the first equation
	$1 = \lg 10$ soi	B1	Simplification of right-hand side of equation
	$x - 3\left(\frac{10}{x}\right) = 13$	M1	For substitution of y^2 into linear equation oe and attempt to simplify
	$x^2 - 13x - 30 = 0$	A1	AG – must see sufficient detail to justify the given answer
	Alternative		
	$y^2 = \frac{\left(x - 13\right)}{3}$	(B1)	
	$\lg x + \lg \frac{\left(x - 13\right)}{3} = 1$	(M1)	For attempt at substitution in the log equation
	$\frac{x(x-13)}{3} = 10 \text{ oe}$	(B1)	
	$x^2 - 13x - 30 = 0$	(A1)	AG – must see sufficient detail to justify the given answer
10(a)(ii)	x = 15 only	B1	
	$y = \sqrt{\frac{2}{3}}$ or $\frac{\sqrt{6}}{3}$ or exact equivalent only	B1	isw once exact value seen
10(b)	$\log_a x + \frac{3}{\log_a x} \text{ or } \frac{1}{\log_x a} + 3\log_x a$	B1	For an appropriate change of base
	$(\log_a x)^2 - 4\log_a x + 3 = 0$ or $3(\log_x a)^2 - 4\log_x a + 1 = 0$	M1	For an attempt to obtain a 3-term quadratic equation in terms of $\log_a x$ or $\log_x a$, equated to zero.
	$\log_a x = 3 \log_a x = 1$ or $\log_x a = \frac{1}{3}, \log_x a = 1$	M1	Dep on previous M mark for correct solution of <i>their</i> quadratic equation
	x = a	A1	Must be from completely correct work
	$x = a^3$	A1	Must be from completely correct work

© UCLES 2022 Page 9 of 10

Question	Answer	Marks	Guidance
11(a)	$\frac{\mathrm{d}s}{\mathrm{d}t} = 3t^2 - 16t + 5 \text{ oe}$	2	M1 for attempt at differentiation of a product or expansion and differentiation with at least two out of three terms of their expansion differentiated correctly A1 all correct, allow factorised
	$t = \frac{1}{3}, t = 5$	2	Dep M1 for attempt to solve <i>their</i> $\frac{ds}{dt} = 0$, must be in quadratic form A1 for both
11(b)	50	2	B1 for a correct curve in the first quadrant only. There must be an indication of a max point in the correct position and a min point at (5, 0) B1 for (0, 50) provided basic curve shape is correct
11(c)	velocity 5 0 j i 2 3 4 5 6	2	B1 for a quadratic curve in the first and fourth quadrants B1 for $(0, 5)$, $(\frac{1}{3}, 0)$ or $(0.333, 0)$ marked and passing through $(5, 0)$ on the <i>x</i> -axis
11(d)(i)	Acceleration = $6t - 16$	B1	
11(d)(ii)	acceleration 1 2 1 3 4 5 6	2	B1 for a straight line with a positive gradient in the first and fourth quadrants, meeting the vertical axis Dep B1 for $ \left(\frac{8}{3}, 0 \right) \text{ or } (2.67, 0) \text{ and } (0,-16) $

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 May/June 2022 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

© UCLES 2022 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 9

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

soi

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working iswnfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC

seen or implied

© UCLES 2022 Page 3 of 9

Question	Answer	Marks	Guidance
1(a)	$243x^{10} - 45x^7 + \frac{10}{3}x^4$	3	B1 for $243x^{10}$ B1 for $-45x^{7}$ B1 for $\frac{10}{3}x^{4}$
1(b)	$\left(1 + \frac{1}{x^3}\right)^2 = 1 + \frac{2}{x^3} + \frac{1}{x^6}$ oe	B1	
	Coefficient of term in x^4 = $243 - (2 \times 45) + \frac{10}{3}$	M1	For their $243 + 2 \times their(-45) + their \frac{10}{3}$ Must have 3 terms
	$\frac{469}{3}$ oe	A1	
2(a)	$\cos BOA = \frac{7}{32}$ or $\sin \frac{BOA}{2} = \frac{5}{8}$	M1	
	BOA = 1.350(263) BOA = 1.35 (correct to 2 dp)	A1	Must see detail of extra decimal places to justify 2 dp answer
2(b)	$8\theta = 18$	M1	///
	$\theta = 2.25$	A1	5/
2(c)	$\angle AOC = 2\pi - 2.25 - 1.35$ (2.683)	M1	For use of 2π – their (b) – 1.35
	Area = $\frac{1}{2}$ 64(<i>their</i> 2.683)	M1	For use of sector area formula
	85.9 or 85.8	A1	Allow awrt 85.9
	Alternative Area = $64\pi - \left(\frac{1}{2} \times 64 \times 1.35\right) - \left(\frac{1}{2} \times 64 \times 2.683\right)$	(2)	M1 for a correct plan M1 for one correct use of sector area formula
	85.9 or 85.8	(A1)	Allow awrt 85.9 or 85.8

© UCLES 2022 Page 4 of 9

Question	Answer	Marks	Guidance
3(a)	$(2e^{3x}-5)(e^{3x}+1)=0$	M1	For attempt to solve a 3-term quadratic equation in e^{3x} , or using an appropriate substitution. May also be implied by correct use of quadratic formula
	$x = \frac{1}{3} \ln \frac{5}{2}$	2	 Dep M1 for a correct attempt to obtain x = A1 cao with negative root discounted.
3(b)	$e^{-x-7-7y} = e^{-2}$	M1	For correct attempt to deal with powers of e
	x + 7y = -5	A1	
	$x^{2} + 5x - 126 = 0$ or $7y^{2} + 5y - 18 = 0$	M1	Dep for attempt to obtain a 3-term quadratic equation equated to zero in either <i>x</i> or <i>y</i>
	x = -14, x = 9	A1	For both
	$y = \frac{9}{7}, \ y = -2$	A1	For both
4(a)	Intercept = -2 soi	B1	
	$e^{4y} = \frac{2}{5}x - 2$	M1	For attempt at straight line equation with <i>their</i> intercept
	$y = \frac{1}{4} \ln \left(\frac{2}{5} x - 2 \right) $ oe	A1	
4(b)	$y = \frac{1}{4} \ln 16$	M1	Dep on M1 in part (a)
	$y = \ln 2$	A1	
4(c)	x > 5	1	
5(a)	Acceleration = $18\cos 3t$	2	B1 for $k \cos 3t$, $k \ne 2$, $k > 0$
	$\cos 3t = -\frac{1}{2} \text{ oe}$	M1	For attempt to solve <i>their</i> $\cos 3t = -\frac{1}{2}$ to obtain a value for t
	$t = \frac{2\pi}{9}$ or 0.698	A1	

© UCLES 2022 Page 5 of 9

Question	Answer	Marks	Guidance
5(b)	$-2\cos 3t \ (+c)$	2	B1 for $k \cos 3t$, $k \ne 18$, $k < 0$
	$Displacement = 2 - 2\cos 3t$	M1	For attempt to find value of <i>c</i>
	2.92	A1	
	Alternative		
	$-2\cos 3t$	(2)	B1 for $k \cos 3t$, $k \ne 18$, $k < 0$
		(M1)	For correct application of limits using their $k \cos 3t$, $k \ne 18$, $k < 0$
	2.92	(A1)	
6(a)	Expression Function notation	5	B1 for each one correct
	0 g"		
	4 <i>x</i> f'		111
	$8x^2 + 8x + 2 \qquad \text{fg}$		-111
	$4x+3$ g^2		///
	$\frac{x-1}{2}$ g^{-1}		S.
6(b)(i)	a = 1	B1	
6(b)(ii)	$h(x) \geqslant 3$	B1	
6(b)(iii)	$x = \left(y - 1\right)^2 + 3$	M1	For a correct attempt to find the inverse, allow one sign error
	$x = (y-1)^2 + 3$ $y = 1 + \sqrt{x-3}$		mverse, and wone sign entor
	$h^{-1}(x) = 1 + \sqrt{x-3}$	A1	Must be using correct notation
	$x \geqslant 3$	B1	Must be using correct notation

© UCLES 2022 Page 6 of 9

Question	Answer	Marks	Guidance
7(a)	$\frac{dy}{dx} = \frac{\left((x+5) \times \frac{3}{2} \times 2(2x+1)^{\frac{1}{2}} - (2x+1)^{\frac{3}{2}}\right)}{(x+5)^2}$	3	B1 for $\frac{3}{2} \times 2(2x+1)^{\frac{1}{2}}$ oe M1 for attempt to differentiate a quotient or product A1 for all terms other than $\frac{3}{2} \times 2(2x+1)^{\frac{1}{2}} \text{ correct}$
	$\frac{(2x+1)^{\frac{1}{2}}}{(x+5)^2}(x+14)$	A1	
7(b)	When $\frac{dy}{dx} = 0$, $x = -14$ and $x = -0.5$ but $x \ge 0$ so no stationary point	B1	FT on their $(x+14)$
7(c)	$\frac{5\sqrt{3}p}{12}$, $\frac{15\sqrt{3}p}{36}$ or $0.722p$	2	M1 for calculation of $\frac{dy}{dx}$ when $x = 1$ and multiplication by p
7(d)	$\frac{25\sqrt{3}}{24}$ or 1.80 oe	2	M1 for multiplication of their $\frac{dy}{dx}$ calculated in (c) by 2.5, must be numeric
8(a)(i)	17640	B1	
8(a)(ii)	Ends in a 5: 2160 or ${}^{6}P_{1} \times {}^{6}P_{4}$	B1	5
	Ends in a 0 : 2520 or ${}^{7}P_{1} \times {}^{6}P_{4}$	B1	
	4680	B1	
8(a)(iii)	Starts with 85 : 360 Starts with 86 : 360 Starts with 87 : 360 Starts with 89: 360 oe 1440 or 4× ⁶ P ₄	B1	
	Starts with 9 : 2520 or ⁷ P ₅	B1	
	3960	B 1	

© UCLES 2022 Page 7 of 9

Question	Answer	Marks	Guidance
8(b)	With brothers: 126 or ${}^9\mathrm{C}_5$	B1	
	Without brothers: 9 or 9C_8	B1	
	135	B1	
9(a)	$\sin^2\left(2\phi - \frac{\pi}{3}\right) = \frac{3}{4} \text{ soi}$	B1	
	$\phi = \frac{\pi}{3}, \ \frac{\pi}{2}, \ \frac{5\pi}{6}$	3	 M1 for a correct method of solution, may be implied by one correct solution. A1 for a second correct solution A1 for a third correct solution and no extra solutions within the range
9(b)	$\cot^2 \theta = \frac{1}{y+1}$	B1	
	Attempt to use $\cot^2 \theta + 1 = \csc^2 \theta$	M1	For attempt to eliminate θ
	$y = \frac{1}{2x - 2} - 1$ oe	2	Dep M1 for attempt to rearrange to obtain the required form
	Alternative		///
	$\frac{1}{\sin^2 \theta} = 2x - 1 \text{ and } y + 1 = \frac{\sin^2 \theta}{\cos^2 \theta}$	(B1)	
	$y+1 = \frac{\frac{1}{2x-1}}{1-\frac{1}{2x-1}} \text{ oe}$	(M1)	For attempt to eliminate θ
	$y = \frac{1}{2x - 2} - 1$ oe	(2)	Dep M1 for attempt to rearrange to obtain the required form
10(a)	$\frac{6(x+1)^2 + 4(2+3x) - 2(2+3x)(x+1)}{(2+3x)(x+1)^2}$	M1	For dealing with the fractions, allow an extra $(x+1)$ in each of the terms in the numerator and in the denominator Allow one sign error
	$\frac{(14x+10)}{(2x+3)(x+1)^2}$	A1	AG - Must have sufficient evidence of expansion and simplification to obtain the given answer

© UCLES 2022 Page 8 of 9

Question	Answer	Marks	Guidance
10(b)	$\left[2\ln(2x+3) - \frac{4}{(x+1)} - 2\ln(x+1)\right]$	3	B1 for each term, must have the correct signs with each term Must be using part (a)
	$\left(2\ln 8 - \frac{4}{3} - 2\ln 3\right) - \left(2\ln 2 - 4\right)$	M1	Dep on at least one log term in <i>their</i> integral, for use of limits
	$\frac{8}{3} + \ln \frac{16}{9}$	2	A1 for $\ln \frac{16}{9}$ A1 for $\frac{8}{3}$

© UCLES 2022 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 9

Ma	nths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Page 3 of 9

Abbreviations

soi

© UCLES 2022

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working iswnfww not from wrong working or equivalent oe rounded or truncated rot SC Special Case

seen or implied

Question	Answer	Marks	Guidance
1	$9kx + 1 = kx^2 + 3(2k+1)x + 4$, leading to $kx^2 + x(3-3k) + 3$ [=0]	M1	For equating the two equations and attempt to obtain a 3 term quadratic equation equated to zero.
	$(3-3k)^2 - (4\times 3k)$ oe	M1	Dep on previous M mark for attempt to use the discriminant in any form
	$3k^2 - 10k + 3$ oe	M1	Dep on previous M mark for simplification to a 3 term quadratic expression in terms of <i>k</i>
	Critical values 3 and $\frac{1}{3}$	A1	For both
	$\frac{1}{3} < k < 3$	A1	Mark the final answer
2	$x = \frac{-(2\sqrt{3}+5) \pm \sqrt{(2\sqrt{3}+5)^2 - 4(3-5\sqrt{3})(-1)}}{2(3-5\sqrt{3})}$	M1	For the use of the quadratic formula
	$x = \frac{-(2\sqrt{3}+5) \pm \sqrt{12+20\sqrt{3}+25+12-20\sqrt{3}}}{2(3-5\sqrt{3})}$	M1	For expansion of the square root, must see at least 4 terms
	$x = \frac{-12 - 2\sqrt{3}}{2(3 - 5\sqrt{3})}$ oe, $x = \frac{2 - 2\sqrt{3}}{2(3 - 5\sqrt{3})}$ oe	A1	For both
	$x = \frac{-12 - 2\sqrt{3}}{2(3 - 5\sqrt{3})} \times \frac{3 + 5\sqrt{3}}{3 + 5\sqrt{3}} \text{ oe}$ or $x = \frac{2 - 2\sqrt{3}}{2(3 - 5\sqrt{3})} \times \frac{3 + 5\sqrt{3}}{3 + 5\sqrt{3}} \text{ oe}$ with an attempt to simplify	M1	For attempt to rationalise at least one of <i>their</i> solutions (must be similar structure) Sufficient detail must be seen, at least 3 terms in the numerator
	$\frac{1}{2} + \frac{\sqrt{3}}{2}$	A1	Must have sufficient detail shown
	$\frac{2}{11} - \frac{\sqrt{3}}{33}$	A1	Must have sufficient detail shown

© UCLES 2022 Page 4 of 9

Question	Answer	Marks	Guidance
3(a)	$b = \frac{1}{8}$	B1	
	$11 = a\sin\frac{4\pi}{8} + c$ $5 = a\sin\left(\frac{-4\pi}{3\times8}\right) + c$	M1	For attempt to form two simultaneous equations using given points, together with an attempt to obtain at least one unknown. Allow use of <i>their b</i> .
	a = 4	A1	
	c = 7	A1	
3(b)	Using symmetry	M1	For e.g. period is 16π , symmetrical about the line $x = 8\pi$
	For obtaining max at 4π and min at 12π	M1	
	$x = 12\pi$	A1	
	y=3	A1	
	Alternative method 1		
	Minimum value when $y = 3$	(B2)	FT on their $-a+c$
	When $y = 3$, $x = 12\pi$.	(2)	M1 for attempt to solve their $3 = a \sin bx + c$ using their values of a, b and c to get $x =$
	Alternative method 2		
	Min occurs $\frac{3}{4}$ through sine cycle so $x = 12\pi$	(B2)	
	When $x = 12\pi, y = 3$	(2)	M1 for attempt to solve $y = a \sin b (12\pi) + c$ using their values of a, b and c
	Alternative method 3		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = ab\cos bx$	(M1)	
	$(ab)\cos bx = 0$		
	$x = 4\pi$, 12π	(M1)	Dep for attempt to solve to obtain $x =$
	$x = 12\pi$	(A1)	
	y=3	(A1)	cao

© UCLES 2022 Page 5 of 9

Question	Answer	Marks	Guidance
4(a)	$\frac{(2x-1)+4}{(2x-1)^2} = \frac{2x+3}{(2x-1)^2}$	B1	
	Alternative method		
	$\frac{(2x-1)^2 + 4(2x-1)}{(2x-1)^3} = \frac{4x^2 + 4x - 3}{(2x-1)^3}$ $= \frac{(2x-1)(2x+3)}{(2x-1)^3} = \frac{2x+3}{(2x-1)^2}$	(B1)	
4(b)	Use of $\int \frac{1}{2x-1} + \frac{4}{(2x-1)^2} dx$ to obtain $\frac{1}{2} \ln(2x-1) - \frac{2}{(2x-1)}$	2	B1 for $\frac{1}{2}\ln(2x-1)$ or equivalent B1 for $-\frac{2}{(2x-1)}$, allow unsimplified
	$\left[\frac{1}{2}\ln(2x-1) - \frac{2}{(2x-1)}\right]_{2}^{5}$ $\left(\frac{1}{2}\ln 9 - \frac{2}{9}\right) - \left(\frac{1}{2}\ln 3 - \frac{2}{3}\right)$	M1	For application of limits, must be in the form $a \ln(2x-1) + \frac{b}{(2x-1)}$
	$=\frac{4}{9} + \ln \sqrt{3}$	2	A1 for $\ln \sqrt{3}$ A1 for $\frac{4}{9}$
5(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\left(3x \times \frac{4x}{\left(2x^2 - 3\right)}\right) - 3\ln\left(2x^2 - 3\right)}{9x^2} \text{oe}$. 3	B1 for $\frac{4x}{(2x^2-3)}$ M1 for attempt to differentiate a quotient or product A1 for all terms other than $\frac{4x}{(2x^2-3)}$ correct.
5(b)	When $x = 2$, $\frac{dy}{dx} = 0.133$	M1	For substitution of $x = 2$ into their $\frac{dy}{dx}$ and use of h
	0.133 <i>h</i>	A1	
5(c)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{4}{0.133}$	M1	For $\frac{4}{their}$ value of $\frac{dy}{dx}$ from (b)
	30.2	A1	

© UCLES 2022 Page 6 of 9

Question	Answer	Marks	Guidance
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sec^2 3x$	2	M1 for $a \sec^2 3x$
	When $x = \frac{\pi}{12}, y = 2$	B1	
	When $x = \frac{\pi}{12}$, $\frac{dy}{dx} = 6$	M1	
	Gradient of perpendicular is $-\frac{1}{6}$	M1	For $-\frac{1}{their} \frac{dy}{dx}$, must be numeric
	Equation of normal $y-2 = -\frac{1}{6}\left(x - \frac{\pi}{12}\right)$	M1	For attempt at a normal equation using <i>their</i> $-\frac{1}{6}$ and 2
	Area of triangle = 12	2	M1 dep for attempt at correct area using <i>their</i> 2 and <i>their</i> $12 + \frac{\pi}{12}$
7	$-\frac{1}{2}(2-3x)^{\frac{2}{3}}$	2	M1 for $a(2-3x)^{\frac{2}{3}}$, $a \neq -\frac{1}{2}$ Allow unsimplified
	When $x = -2$, $\frac{dy}{dx} = -6$ leading to $c = -4$	2	M1 Dep for correct attempt to find the value of the arbitrary constant
	$\frac{1}{10}(2-3x)^{\frac{5}{3}}$ nfww	2	M1 for $b(2-3x)^{\frac{5}{3}}$, $b \neq \frac{1}{10}$ Allow unsimplified
	When $x = -2$, $y = 10.2$ leading to $d = -1$	M1	Dep on previous M mark for attempt to find the value of a second arbitrary constant
	$y = \frac{1}{10} (2 - 3x)^{\frac{5}{3}} - 4x - 1$	A1	
8(a)	$\begin{pmatrix} -40 \\ 42 \end{pmatrix}$	B1	Allow $2 \binom{-20}{21}$

© UCLES 2022 Page 7 of 9

Question	Answer	Marks	Guidance
8(b)		B1	FT on <i>their</i> answer to (a), must be numeric but not $\begin{pmatrix} -20 \\ 21 \end{pmatrix}$
8(c)	$ \begin{pmatrix} -35t + 4 \\ 44t - 2 \end{pmatrix} - \begin{pmatrix} 5 - 40t \\ -3 + 42t \end{pmatrix} $	M1	Allow if in the incorrect order, FT on <i>their</i> (b), must have correct structure
		A1	
8(d)	$AB = \sqrt{(5t-1)^2 + (2t+1)^2}$	M1	For attempt at modulus and square root using <i>their</i> answer to (c)
	$\sqrt{29t^2 - 6t + 2}$	A1	
8(e)	$29t^2 - 6t - 4 = 0$	M1	For attempt to solve the square of <i>their</i> answer to (d) $-6 = 0$
	0.49 only	A1	
9(a)(i)	-0.4	B1	
9(a)(ii)	$f(x) \in \mathbb{R}$ oe	B1	
9(a)(iii)	$x = \ln(5y+2) \text{ oe}$ $e^x = 5y+2 \text{ oe}$	M1	For a correct attempt to find the inverse
	$f^{-1}(x) = \frac{e^x - 2}{5}$	A1	Must be in the correct form
	$x \in \mathbb{R}$	B1	
9(a)(iv)	y = f(x) $y = f(x)$ $y = f(x)$ 0 0 0 0 0 0 0	4	B1 for two correctly shaped graphs in the correct quadrants B1 for a correct graph for $y = f(x)$ with correct intercepts B1 for a correct graph for $y = f^{-1}(x)$ with correct intercepts B1 all correct with symmetry implied, exact intercepts and two points of intersection

© UCLES 2022 Page 8 of 9

Question	Answer	Marks	Guidance
9(b)	$g^{2}(x) = \left(\left(x^{\frac{1}{2}} - 4\right)^{\frac{1}{2}} - 4\right)$	M1	For a correct order of operations
	$\left(\left(x^{\frac{1}{2}} - 4 \right)^{\frac{1}{2}} - 4 \right) = -2$ leading to $x^{\frac{1}{2}} = 8$,	M1	Dep on previous M mark for a correct attempt at a solution. Must deal with $x^{\frac{1}{2}}$ correctly to obtain the final solution
	x = 64	A1	
10(a)	Common difference = $4 \sin 3x$ soi	B1	
	$390 = \frac{20}{2} (2\sin 3x + 19(4\sin 3x))$	M1	M1 for attempt at sum to 20 terms using <i>their</i> common difference, equating to 390 and attempt to solve to obtain $\sin 3x =$
	$\sin 3x = 0.5$	A1	
	$x = \frac{\pi}{18}, \ \frac{5\pi}{18}$	3	M1 for a correct attempt to solve, may be implied by one correct solution, allow if not exact A1 for 1 correct solution A1 for a second correct solution and no others in the range
10(b)(i)	Common ratio = $0.5 \cos y$	B1	
	$-0.5 < 0.5 \cos y < 0.5$	B1	Correct use of common ratio < 1
10(b)(ii)	$9 = \frac{20\cos y}{1 - 0.5\cos y}$	B1	For attempt to use sum to infinity equation correctly and solve
	$\cos y = \frac{18}{49}$ or 0.367	2	M1 for solution of <i>their</i> equation, must have r as a multiple of $\cos y$, to obtain $\cos y =$
	1.19	A1	

© UCLES 2022 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 8

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

soi

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working iswnfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC

seen or implied

© UCLES 2021 Page 3 of 8

Question	Answer	Marks	Guidance
1(a)	1080°	B1	
1(b)	a = 4	B1	
	b = 3	B1	
	c = -2	B1	
2(a)	(0, 14)	2	B1 for x-coordinate B1 for y-coordinate
2(b)	$y-14=-\frac{1}{2}x$	2	M1 for finding the gradient of a perpendicular line and attempt at the straight line equation using <i>their B</i> A1 Allow unsimplified
2(c)	$Area = \frac{1}{2} \times 14 \times 28$	M1	Must be a complete method making use of <i>their</i> answer to (b)
	196	A1	
3(a)	13 soi	B1	For finding the magnitude of $\begin{pmatrix} 12 \\ -5 \end{pmatrix}$
	$\begin{pmatrix} 36 \\ -15 \end{pmatrix}$	B1	
3(b)	$10 + 4\lambda = -4\mu$ or $-5 + 6\lambda = 5\mu$	2	M1 for equating like vectors Dep M1 for attempt to solve <i>their</i> simultaneous equations to obtain 2 solutions
	$\mu = -\frac{20}{11}$	A1	
	$\lambda = -\frac{15}{22}$	A1	
4(a)	$a = \frac{7}{2}$	B1	
	b=1	B1	
	$c = \frac{1}{6}$	B1	

© UCLES 2021 Page 4 of 8

Question	Answer	Marks	Guidance
4(b)	$\left(3x^{\frac{2}{5}} - 5\right)\left(x^{\frac{2}{5}} - 1\right) = 0$	2	M1 for recognition of a quadratic in $x^{\frac{2}{5}}$ Dep M1 for solution and a correct attempt to get at least one solution for x
	3.59	A1	
	1	A1	
5(a)	0 = 8a + 4b + 12 + 4	B1	For p(2)
	$p'(x) = 3ax^2 + 2bx + 6$	M1	For an attempt to obtain $p'(x)$
	3a - 2b + 6 = -7	M1	Dep for p'(-1)
	0 = 2a + b + 4 -13 = 3a - 2b	M1	Dep on both previous M marks for solution of equations to obtain both <i>a</i> and <i>b</i>
	a=-3 $b=2$	A1	
5(b)	p''(x) = -18x + 4	M1	For differentiation of their $p'(x)$ to obtain $p''(x)$
	4	A1	FT on twice their b.
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = m\mathrm{e}^{3x} + 2x^2 \left(+c\right)$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{3x} + 2x^2(+c)$	A1	-0.5
	5 = 2 + c c = 3	M1	Dep on previous M mark
	$f(x) = pe^{3x} + qx^3 \dots$	M1	
	$y = \frac{2}{3}e^{3x} + \frac{2}{3}x^3 \dots$	A1	
	$\frac{5}{3} = \frac{2}{3} + d$ $d = 1$	M1	Dep on previous M mark
	$(f(x)=)$ $\frac{2}{3}e^{3x} + \frac{2}{3}x^3 + 3x + 1$	A1	
7(a)	6	B1	

© UCLES 2021 Page 5 of 8

Question	Answer	Marks	Guidance
7(b)	b = 192a	B1	May be implied by the term in x
	$c = 240a^2$	B1	May be implied by the term in x^2
	$\frac{c}{240} = \frac{b^2}{192^2}$	M1	For elimination of <i>a</i>
	$5b^2 = 768c$	A1	For correct manipulation to verify the given answer
7(c)	$a = \frac{1}{16}$	B1	
	$c = \frac{15}{16}$	B1	
8(a)	$\sin \frac{AOC}{2} = \frac{3}{5}$ or $6^2 = 5^2 + 5^2 - (2 \times 5 \times 5)\cos AOC$	M1	For a complete method to find AOC
	AOC = 1.2870 AOC = 1.287	A1	AG Must see AOC = 1.2870 or better before rounding for A1
8(b)	Arc length = 1.287×5	B 1	
	Perimeter = 32.4	B1	
8(c)	Sector area = $\frac{1}{2} \times 5^2 \times 1.287$	B1	-0.5
	Area of triangle = $\frac{1}{2} \times 5^2 \times \sin 1.287$	B1	
	Total area = 28.1	B1	
9(a)	$\frac{dy}{dx} = 2(2x+1)(x-3) + 2(x-3)^{2}$ or $\frac{dy}{dx} = 6x^{2} - 22x + 12$	M1	For differentiation of a quotient, or expansion and subsequent differentiation
	0 = 2(x-3)(3x-2)	M1	Dep for simplification, equating to zero and attempt to solve
	(3, 0)	A1	
	$\left(\frac{2}{3}, \frac{343}{27}\right)$	A1	

© UCLES 2021 Page 6 of 8

Question	Answer	Marks	Guidance
9(b)		4	B1 for correct shape with maximum in the first quadrant B1 for $\left(-\frac{1}{2}, 0\right)$ and $(3, 0)$ with a cubic curve with one max only B1 for $(0, 9)$ with a cubic curve with one max only B1 All correct with a cusp at $x = -\frac{1}{2}$ and a minimum at $x = 3$
9(c)	$\frac{343}{27}$	B1	FT on their answer from (a)
10(a)(i)	2 + (n-1)0.5 = 16 oe	M1	For use of $a + (n-1)d$
	n = 29	A1	
10(a)(ii)	$\frac{8}{2}(2(2)+7(0.5))$	M1	For use of sum formula, may be implied if distances have been multiplied by 5 first.
	$\frac{8}{2}(2(2)+7(0.5))\times 5$	M1	For multiplication by 5
	150 (km)	A1	
10(b)(i)	r=1.25 oe	B1	
10(b)(ii)	$2(1.25)^{n-1} > 16 \text{ or } 2(1.25)^{n-1} = 16$	M1	For use of ar^{n-1}
	$n-1 > \frac{\ln 8}{\ln 1.25}$ or $n-1 = \frac{\ln 8}{\ln 1.25}$	M1	Dep for correct method of solution to obtain $n-1$
	11	A1	
10(b)(iii)	$\frac{2(1.25^8 - 1)}{1.25 - 1}$	M1	For use of sum formula may be implied by multiplication by 5
	$\frac{2(1.25^8 - 1)}{1.25 - 1} \times 5$	M1	For multiplication by 5
	198 (km)	A1	Allow greater accuracy

© UCLES 2021 Page 7 of 8

Question	Answer	Marks	Guidance
11(a)	$3\cot^2\theta - 5\cot\theta - 2 = 0$	M1	For use of correct identity and simplification to a 3 term quadratic equated to zero.
	$\tan \theta = -3, \ \tan \theta = \frac{1}{2}$	M1	Dep for solution of quadratic and dealing with cot
	108.4°	A1	
	26.6°	A1	
11(b)	$\phi + \frac{\pi}{3} = -\frac{\pi}{6}$	M1	For a correct order of operations
	$\phi = -\frac{\pi}{2}$	A1	
	$\phi + \frac{\pi}{3} = \frac{7\pi}{6}$	M1	For a correct order of operations
	$\phi = \frac{5\pi}{6}$	A1	

© UCLES 2021 Page 8 of 8

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 10

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working iswnfww not from wrong working or equivalent oe rounded or truncated rot

SC Special Case soi seen or implied

© UCLES 2021 Page 3 of 10

Question	Answer	Marks	Guidance
1(a)	-3 < x < 1 $x > 5$	B1	
1(b)	$-\frac{1}{3}(x+3)(x-1)(x-5)$	3	B1 for a negative cubic function B1 for a cubic function multiplied by $\frac{1}{3}$
			B1 for $(x+3)(x-1)(x-5)$
2(a)	$a = \frac{10}{3}$ or $3\frac{1}{3}$	B1	
	$b = \frac{7}{3}$ or $2\frac{1}{3}$	B1	
	$c = \frac{9}{2}$ or $4\frac{1}{2}$ or 4.5	B1	
2(b)	$10(2^{p})^{2} - 17(2^{p}) + 3 = 0$ $(5(2^{p}) - 1)(2(2^{p}) - 3) = 0$ $2^{p} = \frac{1}{5}, 2^{p} = \frac{3}{2}$	M1	For recognition of a quadratic in 2^p , attempt to factorise and solve for 2^p
	$p = \frac{\ln\frac{1}{5}}{\ln 2} \text{ or } p = \frac{\ln 1.5}{\ln 2} \text{ oe}$	M1	For correct attempt to deal with $2^p = k$
	-2.32	A1	
	0.585	A1	
3(a)	$\lg \frac{1000a^2}{b^4}$	4	B1 for 3 = lg1000
	$\frac{19}{b^4}$		B1 for use of power rule once
			B1 for use of addition or subtraction rule once
			B1 All correct

© UCLES 2021 Page 4 of 10

Question	Answer	Marks	Guidance
3(b)	Either $3\log_a 4 = \frac{3}{\log_4 a}$	B1	
	$2(\log_4 a)^2 - 7\log_4 a + 3 = 0$ $(2\log_4 a - 1)(\log_4 a - 3) = 0$ $\log_4 a = \frac{1}{2} \text{ or } \log_4 a = 3$	M1	For obtaining a quadratic equation and solution
	$a = 4^{\frac{1}{2}}$ or $a = 4^3$	M1	Dep For dealing with the logarithm correctly once, may be implied by a correct solution
	64	A1	
	2	A1	
	$\mathbf{Or} \ 2\log_4 a = \frac{2}{\log_a 4}$	(B1)	
	$3(\log_a 4)^2 - 7\log_a 4 + 2 = 0$ $(3\log_a 4 - 1)(\log_a 4 - 2) = 0$ $\log_a 4 = \frac{1}{3} \text{ or } \log_a 4 = 2$	(M1)	For obtaining a quadratic equation and solution
	$a^{\frac{1}{3}} = 4$ or $a^2 = 4$	(M1)	Dep For dealing with the logarithm correctly once, may be implied by a correct solution
	64	(A1)	
	2 W.Satorel	(A1)	
4	$\tan\left(2x + \frac{\pi}{3}\right) = \frac{1}{\sqrt{3}}$	B1	
	$x = -\frac{7\pi}{12}, -\frac{\pi}{12}, \frac{5\pi}{12}, \frac{11\pi}{12}$	3	M1 for using correct order of operations A1 for two correct solutions A1 for two further correct solutions and no other solutions in range

© UCLES 2021 Page 5 of 10

Question	Answer	Marks	Guidance
5	Either Maximum when $\sin \frac{x}{3} = 1$	M1	For recognition that value of maximum or minimum is necessary
	or minimum when $\sin \frac{x}{3} = -1$		
	c = 9	A1	
	c = -1	A1	
	or	(M1)	For differentiation, equating to
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5}{3}\cos\frac{x}{3}$		zero to obtain values for $\sin \frac{x}{3}$
	When $\frac{dy}{dx} = 0$, $\sin \frac{x}{3} = +1$ or -1		
	c = 9	(A1)	
	c = -1	(A1)	
6(a)	$0 = -\frac{5}{4} + \frac{a}{4} + 5 + b$	M1	For use of the factor theorem
	-24 = -10 + a + 10 + b	M1	For use of the remainder theorem
	a+4b=-15 $a+b=-24$ leading to	M1	Dep on both previous M marks for solution of <i>their</i> equations without using a calculator
	a = -27, $b = 3$	A1	
6(b)	$(2x+1)(5x^2+their b)$	M1	Allow for observation or algebraic long division. <i>Their a</i> and <i>b</i> must be integers.
	$(2x+1)(5x^2-16x+3)$	A1	
	(2x+1)(5x-1)(x-3)	2	M1 for attempt to factorise their 3-term quadratic A1 all correct from fully correct working
6(c)	3	B1	FT on their (integer) b
7(a)(i)	b – a	B1	
7(a)(ii)	c – b	B1	

© UCLES 2021 Page 6 of 10

Question	Answer	Marks	Guidance
7(a)(iii)	$n\overrightarrow{AB} = m\overrightarrow{BC}$	M1	For substitution of <i>their</i> (i) and (ii) into $n\overrightarrow{AB} = m\overrightarrow{BC}$
	$n\mathbf{a} + m\mathbf{c} = (m+n)\mathbf{b}$	A1	For correct manipulation to obtain the given answer
7(b)	$2\lambda - 4\mu + 4 = 4\lambda + 4$ or $\lambda + 7\mu - 7 = -2\lambda - 2$	M1	For equating like components at least once, allow unsimplified
		M1	Dep for solving <i>their</i> equations to obtain both λ and μ
	$\mu = 5$	A1	
	$\lambda = -10$	A1	
8(a)	Either Starting with a 6: 120 ways	B1	May be implied by final answer
	Starting with 5, 7 or 9: 540 ways	B1	May be implied by final answer
	Total 660	B 1	
	Or Alternative 1 Ending with a 6: 180 ways	(B1)	May be implied by final answer
	Ending with 0 or 4: 480ways	(B1)	May be implied by final answer
	Total 660	(B1)	
	Or Alternative 2 11 ways of obtaining even 5-digit numbers which start with 5, 6, 7, 9	(B1)	For $11 \times k$ May be implied by final answer
	⁵ P ₃ ways of arranging remaining 3 digits: 60	(B1)	For $m \times 60$ where m is from an attempt to list all cases for first and last digits May be implied by final answer
	11×60 = 660	(B1)	
	Or Alternative 3 Total arrangements ⁷ P ₅ minus (all odds + evens starting with 1 + evens starting with 0 or 4) = 2520 - (1440 + 180 + 240)	(B2)	For 2520 – (1440 + 180 + 240)
	660	(B1)	

© UCLES 2021 Page 7 of 10

Question	Answer	Marks	Guidance
8(b)	$\frac{n!}{(n-4)!4!} = \frac{6n!}{(n-2)!2!}$	B1	
	(n-2)(n-3) = 72	2	B1 for $(n-2)(n-3)$
			B1 for 72
	n = 11 only	2	M1 for correct attempt to form and solve a quadratic equation A1 for $n = 11$ only
9(a)	$AOD = 2 \times \tan^{-1} \left(\frac{2}{3}\right)$	M1	For correct method to find AOD
	AOD = 1.1760 AOD = 1.176 [to 3dp]	A1	Need to see 4 dp or more to justify 3 dp answer
9(b)	Major arc $MN = (2\pi - 1.176)12$	B1	
	$ND \text{ or } MA = 12 - \sqrt{13}$	B1	
	Perimeter = major arc $MN + MA + ND + 16$ oe	B1	For <i>their</i> values in a correct plan, may be implied by a correct answer
	Perimeter = 94.1	B1	
9(c)	Minor sector area = $\frac{1}{2} \times 1.176 \times 12^2$ or Major sector area = $\frac{1}{2} \times (2\pi - 1.176) \times 12^2$	B1	
	Area = major sector area – remainder of rectangle or Area = area of circle – minor sector area – remainder of rectangle or Area = circle – rectangle – minor sector + triangle AOD	B1	For <i>their</i> values in a correct plan, may be implied by a correct answer
	Area = 350	B1	Allow greater accuracy
10(a)	At A y = 4	B1	
	At $B \ y = \frac{13}{16}$ or 0.8125	B1	

© UCLES 2021 Page 8 of 10

Question	Answer	Marks	Guidance
10(b)	Either Area of trapezium = $\frac{231}{32}$	B1	Allow unsimplified
	$\int_{-1}^{2} \frac{1}{(x+2)^2} + \frac{3}{x+2} dx$	2	B1 for $-\frac{1}{x+2}$
	$= \left[-\frac{1}{x+2} + 3\ln(x+2) \right]_{-1}^{2}$		B1 for $3\ln(x+2)$
	$\left[\left(-\frac{1}{4} + 3\ln 4\right) - (-1)\right]$	M1	For correct use of limits in <i>their</i> integral, but must have at least one of the two preceding B marks
	Area = $\frac{207}{32} - \ln 64$	2	A1 for $\frac{207}{32}$ A1 for $-\ln 64$
	Or $\int_{-1}^{2} -\frac{17}{16}x + \frac{47}{16} - \frac{1}{(x+2)^{2}} - \frac{3}{x+2} dx$	(3)	B1 for $-\frac{17}{32}x^2 + \frac{47}{16}x$
	$\left[\left(-\frac{17}{32}x^2 + \frac{47}{16}x + \frac{1}{x+2} - 3\ln(x+2) \right) \right]_{-1}^{2}$		B1 for $\int \frac{1}{(x+2)^2} dx = -\frac{1}{(x+2)}$
			B1 for $\int \frac{3}{x+2} dx = 3\ln(x+2)$
	$\left(-\frac{17}{8} + \frac{47}{8} + \frac{1}{4} - 3\ln 4\right) - \left(-\frac{17}{32} - \frac{47}{16} + 1\right)$	(M1)	For correct use of limits in <i>their</i> integral, but must have at least one of the two preceding B marks
	Area = $\frac{207}{32} - \ln 64$	(2)	A1 for $\frac{207}{32}$ A1 for $-\ln 64$
11(a)(i)	0	B1	
11(a)(ii)	-3	B1	
11(a)(iii)	$\left(\frac{1}{2}(25+15)\times30\right)+\left(\frac{1}{2}(30+60)\times10\right)+\left(\frac{1}{2}\times20\times60\right)$	M1	For an unsimplified expression for the required area allowing at most one incorrect length
	Total distance = 1650	A1	
11(b)(i)	$v = 4\cos\frac{5\pi}{3} - 4$	M1	
	=-2		
	Speed = 2	A1	

© UCLES 2021 Page 9 of 10

Question	Answer	Marks	Guidance
11(b)(ii)	$a = -12\sin 3t$	B1	
	$\sin 3t = 0$ $3t = \pi$ Leading to	M1	For equating to zero and attempt to solve to obtain <i>t</i> , allow if in degrees
	$t = \frac{\pi}{3}$	A1	
11(b)(iii)	$s = k\sin 3t - 4t(+c)$	M1	
	$s = \frac{4}{3}\sin 3t - 4t$	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2021 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 11

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

soi

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working iswnfww not from wrong working or equivalent oe rounded or truncated rot SC Special Case

seen or implied

© UCLES 2021 Page 3 of 11

Question	Answer	Marks	Guidance
1		3	B1 for a cubic shape with a maximum in the first quadrant, a minimum in the third quadrant, extending into the second and 4 th quadrants. The extensions must not curve incorrectly and not lead to a complete stationary point. B1 for <i>x</i> -intercepts -4 , $-\frac{1}{2}$, 3 either on diagram or stated but must be with a cubic graph. B1 for <i>y</i> -intercept 3 either on diagram or stated but must be with a cubic graph.
2	v=-4.91 soi	B1	
	Speed = 4.91	B1	
3	$\tan\left(2x - \frac{\pi}{3}\right) = \pm\sqrt{3} \text{soi}$ or $\sin\left(2x - \frac{\pi}{3}\right) = \pm\frac{\sqrt{3}}{2} \text{soi}$ $2x - \frac{\pi}{3} = -\frac{\pi}{3}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}$	B1 4	B0 if negative root is rejected Allow truncated decimals May be implied by subsequent work From use of $\csc^2\left(2x - \frac{\pi}{3}\right) - 1 = \cot^2\left(2x - \frac{\pi}{3}\right)$ M1 for correct order of operations to obtain one solution in the range using
	$2x = 0, \frac{2\pi}{3}, \pi, \frac{5\pi}{3}$ $x = 0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{5\pi}{6}$ or 0, 1.05, 1.57, 2.62 or greater accuracy	eP	$\tan\left(2x - \frac{\pi}{3}\right) = k$ or $\sin\left(2x - \frac{\pi}{3}\right) = m$, $ m < 1$ Dep M1 for correct order of operations to obtain a second solution in the range using $\left(2x - \frac{\pi}{3}\right) = \tan^{-1}(k) \pm \pi$ or $\left(2x - \frac{\pi}{3}\right) = \pi - \sin^{-1}(m)$, $ m < 1$ oe $\left(2x - \frac{\pi}{3}\right) = -\sin^{-1}(m)$, $ m < 1$ oe A1 for any pair of correct solutions A1 for remaining pair of solutions, with no extra solutions within the range
4(a)	$\frac{1}{256} - \frac{x^2}{24} + \frac{7x^4}{36}$	3	B1 for $\frac{1}{256}$ B1 for $-\frac{x^2}{24}$ B1 for $\frac{7x^4}{36}$

© UCLES 2021 Page 4 of 11

Question	Answer	Marks	Guidance
4(b)	$4x^2 + 4 + \frac{1}{x^2}$ soi	B1	
	Coefficient of x^2 $\left(their4 \times their \frac{1}{256}\right)$ $+\left(their4 \times their - \frac{1}{24}\right)$ $+\left(their \frac{7}{36}\right)$	M1	Allow one sign error, but must have 3 terms in x^2 only, with an attempt at addition.
	25 576	A1	
5(a)	$\frac{a(r^4 - 1)}{r - 1} = 17 \frac{a(r^2 - 1)}{r - 1}$	M1	Allow equivalents Allow if 'a' terms missing (assume to have been cancelled)
	$(r^2-1)(r^2+1)=17(r^2-1)$ or better $r^4-17r^2+16=0$ oe $r^3+r^2-16r-16=0$ oe	M1	Dep M1 for a correct simplified equation in r only
	r = 4 only, from correct working	A1	
5(b)	$ar^5 = 64$	M1	For use of ar^5 with <i>their</i> positive r
	$a = 0.0625$ or $\frac{1}{16}$	A1	Must be exact A0 if $r=4$ not from correct working in (a)
5(c)	Because $r>1$ oe	B1	FT on their $r > 1$ Must have a value for r

© UCLES 2021 Page 5 of 11

Question	Answer	Marks	Guidance
6(a)	Either Starts with 8: 1680	B1	1680 must not be part of a product. May be implied by final answer
	Starts with 7 or 9: 2688	B1	May be implied by final answer
	Total: 4368	B1	
	Or Alternative 1 Starts with 7, 8 or 9 and ends in 1, 3 or 5: 3024	(B1)	Allow for 1008 three times May be implied by final answer
	Starts with 8 or 9 and ends in 7: 672 Starts with 7 or 8 and ends in 9: 672	(B1)	For both May be implied by final answer
	Total: 4368	(B1)	
	Or Alternative 2 13 ways of obtaining odd 5-digit numbers which start with 7, 8 or 9	(B1)	Needs to be part of a product. May be implied by final answer
	⁸ P ₃ ways of arranging the remaining 3 digits: 336	(B1)	Needs to be part of a product. May be implied by final answer
	Total = $13 \times 336 = 4368$	(B1)	h 111
	Or Alternative 3 Last digit is 7 or 9: 1344	B1	May be implied by final answer
	Last digit is 1, 3 or 5: 3024	B1	May be implied by final answer
	Total: 4368	B1	1.51
	Or Alternative 4 ${}^{10}P_5 - ({}^{9}P_4 \times 7) - ({}^{8}P_3 \times 5) - ({}^{8}P_3 \times 4)$ $-({}^{8}P_3 \times 5)$	B2	Must be complete
	Total: 4368	B1	
6(b)	$\frac{n!}{(n-3)!3!} = \frac{2n!}{(n-2)!2!}$ soi	B1	
	(n-2)=6 soi	B2	Dep B1 on first B for $(n-2)$ soi Dep B1 on first B for 6 soi
	n=8	B1	Dep on previous B marks

© UCLES 2021 Page 6 of 11

Question	Answer	Marks	Guidance
7(a)	$\sin AOQ = \frac{7}{10}$ $POA = \pi - AOQ$ or $14^{2} = 10^{2} + 10^{2} - 200\cos AOB \text{ oe}$ $POA = \frac{2\pi - AOB}{2}$	M1	Allow alternatives, but must be a complete method to find <i>POA</i>
	POA = 2.366195157 = 2.366 to 3 dp	A1	Must see an angle correct to more than 3dp used in order to justify 3 dp
7(b)	Area of sector = $\frac{1}{2}10^2$ (2.366) (118.3)	B1	Allow unsimplified. Also allow use of 2.37
	Area of triangle = $\frac{1}{2}10^2 \sin 2.366$ (35)	B1	Allow unsimplified. Also allow use of 2.37
	Total area = awrt 153	B1	Allow greater accuracy
7(c)	Major arc $PB = 10 \times 2.366$	B1	Allow unsimplified. Also allow use of 2.37
	$\sin \frac{POA}{2} = \frac{AP/2}{10}$ or $AP^2 = 10^2 + 10^2 - 200\cos POA$	M1	For a valid attempt to find AP – may be seen in (a) or (b) but AP must be stated in this part.
	AP = 18.5	A1	Allow awrt 18.5
	Perimeter: major arc $PB + 20 + their AP$	B1	For plan, may be implied, but must have an attempt to calculate <i>AP</i>
	Total perimeter = 62.2	A1	Allow awrt 62.2
8(a)	$2x^2 + 2x - 2 = x^2 + 6x - 2$	M1	For obtaining an equation in one variable
	$x^{2}-4x = 0$ $x(x-4) = 0$ $x = 0, x = 4$	M1	Dep for a correct attempt to obtain at least one solution
	(0, -1)	A1	nfww
	(4, 19)	A1	nfww
	Mid-point (2, 9) with sufficient detail	B1	AG

© UCLES 2021 Page 7 of 11

Question	Answer	Marks	Guidance
8(b)	Either	M1	
	Gradient of perpendicular = $-\frac{1}{5}$		
	$y - 9 = -\frac{1}{5}(x - 2)$	M1	Dep on previous M mark for perpendicular bisector using <i>their</i> midpoint and <i>their</i> perpendicular gradient
	$7 - 9 = -\frac{1}{5}(12 - 2)$ oe	A 1	For checking by substitution, must see evidence.
	Or Alternative 1	(M1)	
	Gradient of perpendicular = $-\frac{1}{5}$		
	$y - 7 = -\frac{1}{5}(x - 12)$	(M1)	Dep on previous M mark for perpendicular bisector using (12, 7) and <i>their</i> perpendicular gradient
	$9-7=-\frac{1}{5}(2-12)$ oe	(A1)	For checking by substitution, must see evidence
	Or Alternative 2 Gradient of perpendicular = $-\frac{1}{5}$	(M1)	
	Gradient of line joining their $(2, 9)$ to $(12, 7) = -\frac{1}{5}$	(M1)	.5
	(2, 9) is a common point and gradients of perpendicular bisector and <i>l</i> are the same so <i>C</i> lies on <i>l</i> .	(A1)	0
8(c)	(22, 5)	2	B1 for 22 B1 for 5
	(-18, 13)	2	B1 for -18 B1 for 13

© UCLES 2021 Page 8 of 11

Question	Answer	Marks	Guidance
9(a)	$e^{2y} = mx^2 + c$	B1	May be implied by later work
	Either $7.96 = 4m + c$ $3.76 = 2m + c$	M1	
	m=2.1 oe	A1	
	c = -0.44 oe	A1	
	$y = \frac{1}{2} \ln(2.1x^2 - 0.44)$ oe	A1	Do not isw
	Or gradient = 21 oe	(B1)	
	Use of either $7.96 = 4m + c$ or $3.76 = 2m + c$	(M1)	For use with <i>their m</i>
	c = -0.44 oe	(A1)	
	$y = \frac{1}{2} \ln(2.1x^2 - 0.44)$ oe	(A1)	Must be bracketed correctly
9(b)	$y = \frac{1}{2} \ln \left(their 2.1x^2 - their 0.44 \right) $ oe	M1	Must use the form $y = k \ln(px^2 \pm q)$ $p \ne 1$ and $q \ne 0$ or $e^{2y} = mx^2 + c$
	0.253	A1	1.5
9(c)	their $2.1x^2$ – their $0.44 > 0$ or $= 0$ or ≥ 0 soi	B1	S.
	Correct attempt to obtain the critical value using $their 2.1x^2 - 0.44 = 0$	M1	Must be from the form $y = k \ln(px^2 - q)$, $p \ne 1$ and $q > 0$
	$x > 0.458 \text{ or } x > \sqrt{\frac{22}{105}} \text{ oe}$	A1	

© UCLES 2021 Page 9 of 11

Question	Answer	Marks	Guidance
10(a)	$\frac{dy}{dx} = (2x+3)^{\frac{1}{2}} + 5x(+c)$	B1	For $(2x+3)^{\frac{1}{2}}$, allow unsimplified
		M1	For $k(2x+3)^{\frac{1}{2}} + 5x$
	10=3+15+c	M1	Dep for use of 10 and $x=3$ in their $\frac{dy}{dx}$ to obtain c
	$\frac{dy}{dx} = (2x+3)^{\frac{1}{2}} + 5x - 8$ soi	A1	
	When $x = 11$, $\frac{dy}{dx} = 5 + 55 - 8$ oe $= 52$	A1	AG – need to see sufficient detail
10(b)	$f(x) = \frac{1}{3}(2x+3)^{\frac{3}{2}} + \frac{5x^2}{2}(-8x+d)$	B1	For $\frac{1}{3}(2x+3)^{\frac{3}{2}}$, must be $\int (2x+3)^{\frac{1}{2}} dx$
		M1	For $k(2x+3)^{\frac{3}{2}} + \frac{5x^2}{2}$
	$\frac{19}{2} = \frac{27}{3} + \frac{45}{2} - 24 + d$ $d = 2$	M1	For use of $y = \frac{19}{2}$ and $x = 3$ in their y
	$(f(x)=) \frac{1}{3}(2x+3)^{\frac{3}{2}} + \frac{5x^2}{2} - 8x + 2$	A1	Allow -8 if obtained from using $\frac{dy}{dx} = 52$ in (a) rather than $\frac{dy}{dx} = 10$
11(a)	$\frac{dy}{dx} =$	e 3	B1 for $\frac{1}{3} \times 2x \times (x^2 - 5)^{-\frac{2}{3}}$
	$\frac{(x+1)\left(\frac{1}{3}\times 2x\times (x^2-5)^{-\frac{2}{3}}\right)-(x^2-5)^{\frac{1}{3}}}{(x+1)^2}$		M1 for an attempt at a quotient or a correct product A1 for all other terms correct
	or $(x+1)^{-1} \left(\frac{1}{3} \times 2x \times (x^2 - 5)^{-\frac{2}{3}}\right)$		
	$+(x^2-5)^{\frac{1}{3}}(-(x+1)^{-2})$		
	$\frac{-x^2 + 2x + 15}{3(x+1)^2 (x^2 - 5)^{\frac{2}{3}}}$	3	Dep on first 3 marks A1 for $-x^2$ in a quadratic numerator A1 for $2x$ in a quadratic numerator A1 for 15 in a quadratic numerator

© UCLES 2021 Page 10 of 11

Question	Answer	Marks	Guidance
11(b)	$-x^2 + 2x + 15 = 0$	M1	For attempt to solve <i>their</i> $-x^2 + 2x + 15 = 0$ to obtain $x =$ Must be a quadratic equation.
	x = 5 only	A1	
11(c)	Either Find the gradient either side of the stationary point	B1	
	If gradient changes from +ve to -ve: max If gradient changes from -ve to +ve: min	B1	Dep on previous B1
	Or Alternative 1 Take the second derivative and substitute in the value of x obtained in (b)	(B1)	Allow alternative valid methods Allow a general method as this is not dependent on (a) or (b)
	If second derivative is + ve, then a min If second derivative is - ve, then a max	(B1)	Dep on previous B1
	Or Alternative 2 Consider a y-value to one side of the stationary point	(B1)	Allow alternative valid methods Allow a general method as this is not dependent on (a) or (b)
	If y value of stationary point is greater, then a max. If y value of stationary point is less, then a min.	(B1)	Dep on previous B1

© UCLES 2021 Page 11 of 11

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2021 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions). GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features
 are specifically assessed by the question as indicated by the mark scheme. The meaning, however,
 should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 9

Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2021 Page 3 of 9

Question	Answer	Marks	Guidance
1(a)		3	B1 for a well-drawn cubic graph in the correct orientation with both arms extending beyond x-axis B1 for $x = -1$, $x = 2$ and $x = \frac{2}{3}$ either on the graph or stated with a cubic graph
			B1 for $y = 20$ either on the graph or stated with a cubic graph
1(b)	$-1 < x < \frac{2}{3}$	B1	Must be found from a cubic graph
	x > 2	B1	
2	$\left[\ln\left(x-1\right) + \frac{1}{x-1}\right]_3^5$	2	B1 for $\ln(x-1)$ B1 for $+\frac{1}{x-1}$
	$\left(\ln 4 + \frac{1}{4}\right) - \left(\ln 2 + \frac{1}{2}\right)$	M1	Dep on at least one B mark, for correct use of limits
	$\ln 2 - \frac{1}{4}$	2	A1 for $\ln 2$ A1 for $-\frac{1}{4}$ oe
3(a)	p(2): 8a-36+2b-6=0	B1	.5
	p(3): 27a-81+3b-6=66	B1	0.
	Salpi	M1	Dep on at least one of the previous B marks, for attempt to solve <i>their</i> equations and obtain a solution for both <i>a</i> and <i>b</i>
	a = 6, b = -3	A1	For both
3(b)	$(x-2)\big(6x^2+3x+3\big)$	2	M1 for attempt at quadratic factor either by observation to obtain $6x^2 + px + 3$ or by algebraic long division to obtain at least $6x^2 + 3x$ A1 all correct

© UCLES 2021 Page 4 of 9

Question	Answer	Marks	Guidance
3(c)	Discriminant of $q(x) = 3^2 - 4 \times 6 \times 3$ = -63 which is < 0	M1	For calculation of discriminant and confirmation that it is < 0
	q(x) = 0 has no real solutions hence $p(x) = 0$ has only one real solution	A1	For a correct conclusion from correct work.
4	$(a+x)^3 = a^3 + 3a^2x + 3ax^2[+x^3]$	B1	
	$\left(1 - \frac{x}{3}\right)^5 = 1 - \frac{5}{3}x + \frac{10}{9}x^2 \dots$	2	M1 allow one sign error or one arithmetic slip
	$a^3 = 27, a = 3$	B1	
	Term in x: $3a^2 - \frac{5}{3}a^3 = b$	M1	For multiplying <i>their</i> terms, must have sum of 2 relevant products = b
	b=-18	A1	
	Term in x^2 : $3a - \frac{5}{3}(3a^2) + \frac{10}{9}a^3 = c$	M1	For multiplying <i>their</i> terms, must have sum of 3 relevant products = c
	c = -6	A1	
5(a)	f ≥ -4	2	M1 for a valid method to find the least value of $x^2 + 4x$ A1 for $f \ge -4$, $y \ge -4$ or $f(x) \ge -4$
5(b)	g>1	B1	Allow $y > 1$ or $g(x) > 1$
5(c)	$(1+e^{2x})^2 + 4(1+e^{2x})[=21]$	M1	
	$e^{4x} + 6e^{2x} - 16 = 0$ $(e^{2x} + 8)(e^{2x} - 2) = 0$	M1	Dep for quadratic in terms of e^{2x} and attempt to solve to obtain $e^{2x} = k$
	$e^{2x} = 2$ $x = \frac{1}{2} \ln k$	M1	Dep on both previous M marks, for attempt to solve $e^{2x} = k$
	$x = \ln \sqrt{2} \text{ or } \ln 2^{\frac{1}{2}}$	A1	
6(a)(i)	720	B1	
6(a)(ii)	480	B1	

© UCLES 2021 Page 5 of 9

Question	Answer	Marks	Guidance
6(a)(iii)	[Starts with 6 or 8]: 192	B1	
	[Starts with 9]: 72	B1	
	Total = 264	B1	
	Alternative [Ends with 9]:48	(B1)	
	[Ends with 1,3 or 5]:216	(B1)	
	Total = 264	(B1)	
6(b)	$\frac{45n!}{(n-4)!4!} = \frac{(n+1)(n+1)!}{((n+1)-5)!5!}$	B1	
	$45 = \frac{(n+1)^2}{5}$ leading to $15 = n+1 \text{ or } n^2 + 2n - 224 = 0$	M2	M1 for 15 M1 for $n + 1$ OR M1 for $n^2 + 2n - 224 = 0$ oe M1 for $(n-14)(n+16) = 0$
	n=14 only	A1	
7(a)(i)	110 (m)	B1	
7(a)(ii)	vad Sato	B2	B1 for a line joining (0,5) and (10,5) B1 for a line joining (10,-2) and (40,-2)
7(b)(i)	$v = \left(2t + 4\right)^{\frac{1}{2}} \left(+c\right)$	M1	For $k(2t+4)^{\frac{1}{2}}$
	9 = 4 + c	M1	Dep for attempt to find c using $v = 9$ and $t = 6$ in <i>their</i> v
	$(2t+4)^{\frac{1}{2}}+5$	A1	

© UCLES 2021 Page 6 of 9

Question	Answer	Marks	Guidance
7(b)(ii)	$s = \frac{1}{3}(2t+4)^{\frac{3}{2}} \qquad (+5t+d)$	M1	For $k(2t+4)^{\frac{3}{2}}$
	$\frac{1}{3} = \frac{64}{3} + 30 + d$	M1	Dep for attempt to find <i>d</i> using $s = \frac{1}{3}$ and $t = 6$ in <i>their s</i>
	$\frac{1}{3}(2t+4)^{\frac{3}{2}}+5t-51$	A1	
8(a)	$x = \frac{\sqrt{3} + 1}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}}$ leading to $x = \frac{5 + 3\sqrt{3}}{1}$	M1	For attempt to rationalise and simplify showing all working
	$x = 5 + 3\sqrt{3}$	A1	
	Either: Using $x = 5 + 3\sqrt{3}$ $y = (2 - \sqrt{3})(52 + 30\sqrt{3}) + 5 + 3\sqrt{3} - 1$ $= 14 + 8\sqrt{3} + 4 + 3\sqrt{3}$ Or: Using $x = \frac{\sqrt{3} + 1}{2 - \sqrt{3}}$ $y = (2 - \sqrt{3})\frac{(\sqrt{3} + 1)^2}{(2 - \sqrt{3})^2} + \frac{\sqrt{3} + 1}{2 - \sqrt{3}} - 1$ $= \frac{4 + 2\sqrt{3} + \sqrt{3} + 1 - 2 + \sqrt{3}}{2 - \sqrt{3}}$ $= \frac{(4\sqrt{3} + 3)}{2 - \sqrt{3}} \times \frac{(2 + \sqrt{3})}{(2 + \sqrt{3})}$ $= \frac{8\sqrt{3} + 6 + 12 + 3\sqrt{3}}{1}$	M1	For complete method, showing all steps. Allow one slip in arithmetic
	$11\sqrt{3} + 18$	2	A1 for 18 A1 for $11\sqrt{3}$

© UCLES 2021 Page 7 of 9

Question	Answer	Marks	Guidance
8(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\left(2 - \sqrt{3}\right) + 1$	M1	For attempt at differentiation to obtain form of $\frac{dy}{dx} = kx + 1$
	$0 = 2x(2 - \sqrt{3}) + 1$ $x = -\frac{1}{2(2 - \sqrt{3})} \times \frac{(2 + \sqrt{3})}{(2 + \sqrt{3})}$ leading to $x = -\frac{1}{2} \frac{(2 + \sqrt{3})}{1}$	M1	Dep on previous M for equating to zero, rationalisation and attempt to simplify
	$x = -1 - \frac{\sqrt{3}}{2}$	A1	
9(a)(i)	(3y+2)(2x+1)	B1	
9(a)(ii)	$(3\cos\theta + 2)(2\sin\theta + 1) = 0$ $\cos\theta = -\frac{2}{3}, \sin\theta = -\frac{1}{2}$	M1	For relating to part (i) and a correct attempt to obtain $\cos \theta =$ or $\sin \theta =$
	$\theta = 131.8^{\circ}, 228.2^{\circ}$ $\theta = 210^{\circ}, 330^{\circ}$	3	M1 for solving one of the equations to obtain one correct solution A1 for any two correct solutions A1 for a further two correct solutions with no extra solutions within the range
9(b)	$\cos\left(2\phi + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2} \text{ oe}$	B1	o.÷
	$\phi = -\frac{5\pi}{24}, -\frac{\pi}{24}, \frac{19\pi}{24}, \frac{23\pi}{24}$	4	M1 for solving to obtain one correct positive solution M1 for solving to obtain one correct negative solution A1 for any two correct solutions A1 for a further two correct solutions with no extra solutions within the range
10(a)	$\sin\frac{AOB}{2} = \frac{7.5}{10}$	M1	For a valid method
	AOB = 1.696 = 1.70 to 2 dp	A1	Must see greater accuracy to justify given answer

© UCLES 2021 Page 8 of 9

Question	Answer	Marks	Guidance
10(b)	$AC^{2} = 10^{2} + 25^{2} - \left(2 \times 10 \times 25 \cos\left(\frac{AOB}{2}\right)\right)$	M1	For a complete and valid method to find AC
	AC = awrt 19.9	A1	
	Major arc $AB =$ awrt 45.9 or awrt 45.8	B1	
	Perimeter = awrt 85.5 or awrt 85.6	A1	
10(c)	Area of major sector $AOB = \frac{1}{2} \times 10^2 (2\pi - AOB)$	M1	
	awrt 229	A 1	
	Area of kite $OACB = \frac{1}{2} \times 15 \times 25$	B1	Allow working with 2 separate triangles
	Area of <i>their</i> major sector plus area of <i>their</i> kite	M1	
	Total area = awrt 417	A1	

© UCLES 2021 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 11

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2021 Page 3 of 11

Question	Answer	Marks	Guidance
1	$p^0q^{-5}r^{-\frac{2}{3}}$	3	B1 for $a = 0$ B1 for $b = -5$ B1 for $c = -\frac{2}{3}$
2(a)		2	B1 for symmetrical V shape in the correct quadrant, touching the <i>x</i> -axis. Must have straight lines. B1 for $x = \frac{4}{3}$ and $y = 4$ only, either seen or stated on a modulus graph.
2(b)	$x \le -1, \ x \ge \frac{11}{3} \text{ or } 3.67 \text{ or better}$	3	B1 for -1 from a correct method. B1 for $\frac{11}{3}$ or 3.67 or better, from a correct method.
3(a)	$\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$	B1	May be implied
	$\overrightarrow{OP} = \mathbf{a} + \frac{3}{5}\overrightarrow{AC} \text{ or } \mathbf{c} - \frac{2}{5}\overrightarrow{AC}$	M1	Maybe implied, for correct use of ratio $\overrightarrow{OP} = \mathbf{a} + \frac{3}{5} \left(their \overrightarrow{AC} \right)$ or $\mathbf{c} - \frac{2}{5} \left(their \overrightarrow{AC} \right)$
	$\overrightarrow{OP} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{c}$	A1	Allow unsimplified
3(b)	$\overrightarrow{OP} = \frac{2}{5}\mathbf{b}$ oe	B1	
	$\frac{2}{5}\mathbf{b} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{c}$ $2\mathbf{b} = 2\mathbf{a} + 3\mathbf{c}$	B1	Dep on previous B mark for equating vectors and rearrangement to obtain AG
	Alternative $\mathbf{b} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{c} + \frac{3}{5}\mathbf{b}$	(B1)	Need a clear indication of the method used, in the form of a correct unsimplified statement.
	$2\mathbf{b} = 2\mathbf{a} + 3\mathbf{c}$	(B1)	Dep for simplification to obtain AG

© UCLES 2021 Page 4 of 11

Question	Answer	Marks	Guidance
4	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{1}{2} (3x+2)^{\frac{2}{3}} (+c)$	M1	For $k_1(3x+2)^{\frac{2}{3}}$ where k_1 a constant.
	4 = 2 + <i>c</i>	M1	Dep for use of 4 and $x = 2$ in their $\frac{dy}{dx}$ to obtain c
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{1}{2}(3x+2)^{\frac{2}{3}} + 2$	A1	May be implied by subsequent integration or by $c = 2$
	$y = \frac{1}{10} (3x+2)^{\frac{5}{3}} (+2x+d)$	M1	For $k_2(3x+2)^{\frac{5}{3}}$ where k_2 is a constant.
	$6.2 = \frac{1}{10}(32) + 4 + d$	M1	Dep on previous M1 for use of $x = 2$ and $y = 6.2$ in <i>their y</i>
	$y = \frac{1}{10} (3x+2)^{\frac{5}{3}} + 2x - 1$	A1	Must be an equation
5(a)	p=16	2	B1 for $\log_a \frac{5p}{4} = \log_a 20$ oe B1 for 16, nfww
5(b)	$(3(3^x)-1)(3^x+3)=0$	M1	For recognition of a correct quadratic in 3^x and attempt to factorise or use quadratic formula
	$3^{x} = \frac{1}{3}$ $x = -1$	2	M1 dep for a correct attempt to solve $3^x = k$, $k > 0$ A1 for one solution only, must be from a correct solution.

© UCLES 2021 Page 5 of 11

Question	Answer	Marks	Guidance
5(c)	$\log_{y} 2 = \frac{1}{\log_{2} y}$ or $\log_{2} y = \frac{1}{\log_{y} 2}$ or $\log_{y} 2 = \frac{\log_{a} 2}{\log_{a} y}$ and $\log_{2} y = \frac{\log_{a} y}{\log_{a} 2}$	B1	May be implied
	$4(\log_{y} 2)^{2} - 4(\log_{y} 2) + 1 = 0$ $(2\log_{y} 2 - 1)^{2} = 0, \log_{y} 2 = \frac{1}{2}$ or $(\log_{2} y)^{2} - 4(\log_{2} y) + 4 = 0$ $(\log_{2} y - 2)^{2} = 0, \log_{2} y = 2$ or $(\log_{a} y)^{2} - 4(\log_{a} 2)(\log_{a} 4)\log_{a} y + 4(\log_{a} 2)^{2} = 0$ $(\log_{a} y - 2\log_{a} 2)^{2} = 0$ $\log_{a} y = 2\log_{a} 2$	M1	For obtaining a 3 term quadratic equation in either $\log_y 2$ or $\log_2 y$ and solving to obtain $\log_y 2 = k$ or $\log_2 y = k$, may be implied or equivalent using an alternative base.
	y = 4	A1	nfww
6(a)	$\frac{dy}{dx} = 2(3+\sqrt{5})x - 8\sqrt{5}$ or $x = \frac{8\sqrt{5}}{2(3+\sqrt{5})}$	M1	Either For differentiation must have one correct term. or for use of ' $b^2 - 4ac = 0$ ', so $x = -\frac{b}{2a}$ at the stationary point.
	$x = \frac{4\sqrt{5}}{3 + \sqrt{5}} \times \frac{\left(3 - \sqrt{5}\right)}{\left(3 - \sqrt{5}\right)}$ oe leading to $\frac{12\sqrt{5} - 20}{4}$ oe, this is the minimum acceptable working for this method.	M1	Dep for equating their $\frac{dy}{dx}$ to zero with attempt to solve and rationalisation using a two term factor, or rationalisation of $x = -\frac{b}{2a}$, using a two term factor with sufficient detail to imply no use of a calculator. Allow multiple equivalents. Allow one numerical slip or sign error.
	$x = -5 + 3\sqrt{5}$	2	A1 for -5 A1 for $3\sqrt{5}$

© UCLES 2021 Page 6 of 11

Question	Answer	Marks	Guidance
6(b)	$y = (3+\sqrt{5})(3\sqrt{5}-5)^{2}$ $-8\sqrt{5}(3\sqrt{5}-5)+60$ $= (3+\sqrt{5})(45+25-30\sqrt{5})$ $-120+40\sqrt{5}+60$ $= 210+70\sqrt{5}-90\sqrt{5}-150$ $-120+40\sqrt{5}+60$	M1	For substitution of <i>their x</i> and simplification with sufficient detail to imply no use of a calculator. Allow one numerical slip or sign error in the expansion of $(3+\sqrt{5})(3\sqrt{5}-5)^2$ or one sign error in the other terms.
	$=20\sqrt{5}$	2	A1 for all non surd terms = 0 A1 for $20\sqrt{5}$
7(a)(i)	20160	B1	
7(a)(ii)	7200	2	B1 for 6P_4 or $6\times5\times4\times3(=360)$ for 'inner' characters or 5P_2 or $4\times5(=20)$ for 'outer' characters Must be part of a product
7(a)(iii)	360	2	B1 for 3P_3 or 3! or 6 for arrangements of symbols or 5P_3 or $5\times4\times3$ (= 60) for the digits Must be part of a product
7(b)	$\frac{n!}{(n-5)!5!} = \frac{6(n-1)!}{((n-1)-4)!4!}$	B1	May be implied by simplification e.g. $ \frac{n!}{5!} = 6 \frac{(n-1)!}{4!} $ or $ \frac{n(n-1)(n-2)(n-3)(n-4)}{5!} $ $ = \frac{6(n-1)(n-2)(n-3)(n-4)}{4!} $
	Simplification of either the numerical factorials or the algebraic factorials	M1	
	n=30	A1	

© UCLES 2021 Page 7 of 11

Question	Answer	Marks	Guidance
8(a)	$\lg y = b \lg x + \lg A$	B1	May be implied by subsequent work
	$4.37 = 5.36b + \lg A$ $0.57 = 0.61b + \lg A$	M1	For at least one correct equation
	b = 0.8	A1	
	$ \lg A = k \qquad (0.082) $ $ A = 10^k $	M1	Dep for substitution to obtain $\lg A = k$ and hence A
	A = 1.21	A1	
	Alternative 1	(B1)	
	$\lg y = b \lg x + \lg A$		May be implied by subsequent work
	Gradient = $\frac{4.37 - 0.57}{5.36 - 0.61}$	(M1)	
	b = 0.8	(A1)	
	$ \lg A = k \qquad (0.082) $ $ A = 10^k $	(M1)	Dep for substitution into a correct equation to obtain $\lg A = k$ and hence A
	A=1.21	(A1)	
	Alternative 2	(B1)	
	$10^{4.37} = A \times 10^{5.36b}$ or $10^{0.57} = A \times 10^{0.61b}$		· <u>\$</u>
	3.8 = 4.75 <i>b</i>	(M1)	For eliminating <i>A</i> correctly Must have B1.
	b = 0.8	(A1)	
	$A = 10^{4.37 - (5.36 \times (theirb))}$ oe	(M1)	For a correct attempt to find <i>A</i> . Must have B1
	A = 1.21	(A1)	
8(b)	$y = 1.21(3)^{0.8}$ or $\lg y = 0.8 \lg 3 + 0.082$	B1	FT for substitution into <i>their</i> equation
	y = awrt 2.9	B1	
8(c)	$3 = 1.21x^{0.8}$ or $\lg 3 = 0.8\lg x + 0.082$	B1	FT for substitution into <i>their</i> equation
	x = awrt 3.1	B1	

© UCLES 2021 Page 8 of 11

Question	Answer	Marks	Guidance
9(a)	d=12	B1	
	$\frac{n}{2}(-8 + (n-1)12) > 2000$ $3n^2 - 5n - 1000 > 0$	M1	For use of sum formula to obtain a three term quadratic inequality or equation
	$n = \frac{5 \pm \sqrt{25 + 12000}}{6}$ $n = 19.1$	M1	Dep for attempt at critical value(s) using <i>their</i> quadratic, may be using a calculator, so may be implied by a correct answer of 20.
	n = 20	A1	
9(b)(i)	r = 3	2	M1 For $ar^6 = 27$ and $ar^8 = 243$ with an attempt to eliminate a to obtain r^2 . Allow other valid methods.
9(b)(ii)	3 ²⁶	2	B1 for $a = \frac{1}{27}$ or 3^{-3} nfww
9(c)	Common ratio or $r = \sin \theta$	B1	May be implied by e.g. $\frac{1}{1-\sin\theta}$ or $\frac{1-\sin^n\theta}{1-\sin\theta}$
	$-1 < \sin \theta < 1$ or $ \sin \theta < 1$ or $-1 < r < 1$ or $ r < 1$ with no incorrect statements seen.	B1	Dep on previous B1
10(a)	$\frac{1}{\sin \alpha} + \frac{1}{\cos \alpha} (=0)$	B1	For dealing correctly with $\csc^2 \alpha$ and $\sec^2 \alpha$ to obtain an expression in $\sin \alpha$ and $\cos \alpha$ only
	$\tan \alpha = -1$ or $\sin \alpha = -\cos \alpha$	B1	For an equation in $\tan \alpha$, may be implied by a correct solution.
	$\alpha = -\frac{\pi}{4} \text{ or } -0.785$ $\alpha = \frac{3\pi}{4} \text{ or } 2.36$	2	B1 for one correct solution B1 for a second correct solution and no extra solutions in the range.

© UCLES 2021 Page 9 of 11

Question	Answer	Marks	Guidance
10(b)(i)	$\frac{\cos^2\theta + 1 - 2\sin\theta + \sin^2\theta}{\cos\theta(1 - \sin\theta)}$	M1	For dealing with the fractions correctly and expansion of $(1-\sin\theta)^2$
	$\frac{1+1-2\sin\theta}{\cos\theta(1-\sin\theta)} \text{ or better}$	M1	Dep for use of identity, may be implied by $\frac{2(1-\sin\theta)}{\cos\theta(1-\sin\theta)}$
	$\frac{2(1-\sin\theta)}{\cos\theta(1-\sin\theta)}$	M1	Dep on previous M mark for simplification
	$\frac{2}{\cos\theta} = 2\sec\theta$	A1	Need to see this detail for A1 Need to have had θ in every trigonometric ratio.
	Alternative 1	(M1)	
	$\left(\frac{\cos\theta}{1-\sin\theta} \times \frac{1+\sin\theta}{1+\sin\theta}\right) + \frac{1-\sin\theta}{\cos\theta}$		
	$\frac{\cos\theta(1+\sin\theta)}{\cos^2\theta} + \frac{1-\sin\theta}{\cos\theta}$	(M1)	Dep for use of identity
	$\frac{1+\sin\theta}{\cos\theta} + \frac{1-\sin\theta}{\cos\theta}$	(M1)	Dep on previous M mark for simplification
	$\frac{2}{\cos \theta} = 2\sec \theta$	(A1)	Need to see this detail for A1 Need to have had θ in every trigonometric ratio.
	Alternative 2	(M1)	0.
	$\frac{\left(1-\sin^2\theta\right)+\left(1-\sin\theta\right)^2}{\cos\theta\left(1-\sin\theta\right)}$	eP.	For dealing with the fractions and using $\cos^2 \theta = 1 - \sin^2 \theta$.
	$\frac{(1-\sin\theta)(1+\sin\theta)+(1-\sin\theta)^2}{\cos\theta(1-\sin\theta)}$	(M1)	Dep for factorising $1-\sin^2\theta$
	$\frac{1+\sin\theta+1-\sin\theta}{\cos\theta}$	(M1)	Dep for simplification
	$\frac{2}{\cos\theta} = 2\sec\theta$	(A1)	Need to see this detail for A1 Need to have had θ in every trigonometric ratio.

© UCLES 2021 Page 10 of 11

Question	Answer	Marks	Guidance
10(b)(ii)	$\cos 3\phi = \frac{1}{2}$	B1	
	$\phi = 20^{\circ}, 100^{\circ}, 140^{\circ}$	3	M1 for one correct solution of <i>their</i> $\cos 3\phi = k$ using a correct order of operations A1 for 2 correct solutions A1 for a third correct solution with no extra solutions in the range
11	$\frac{dy}{dx} = \frac{(2x-3)\frac{2x}{x^2+2} - 2\ln(x^2+2)}{(2x-3)^2}$	3	B1 for $\frac{2x}{x^2 + 2}$ M1 for differentiation of a quotient
	When $x = 2$, $\frac{dy}{dx} = \frac{4}{6} - 2 \ln 6$, -2.92 Gradient of normal = 0.3428	M1	For $-\frac{1}{their} \frac{dy}{dx}$
	When $x = 2$, $y = \ln 6$ or $1.79(176)$	B1	
	Equation of normal: $y - \ln 6 = -\frac{1}{their} \frac{dy}{dx} (x - 2)$ or $\ln 6 = -\frac{1}{their} \frac{dy}{dx} \times (2) + c$	M1	Dep for equation of normal using $-\frac{1}{their} \frac{dy}{dx}$ and their y with $x = 2$.
	When $x = 0$, $y = \text{awrt } 1.11$	A1	Must be evaluated.

© UCLES 2021 Page 11 of 11

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2021 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 9

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

SC soi

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working iswnfww not from wrong working or equivalent oe rounded or truncated rot

Special Case

seen or implied

© UCLES 2021 Page 3 of 9

Question	Answer	Marks	Guidance
1	$\left(4k\right)^2 - 4k\left(3k+1\right)$	M1	For use of the discriminant to obtain a two term quadratic expression.
	$4k^2 - 4k = 0$	M1	Dep to find critical values, allow if only one is found
	$k = 0, \ k = 1$	A1	For both critical values
	k < 0 k > 1	A1	
2(a)	$x^2\left(3e^{3x}\right) + 2xe^{3x}$	3	M1 for differentiation of a product A1 for $x^2(3e^{3x})$
			A1 for $+2xe^{3x}$
2(b)(i)	$2x(3x^2+4)^{-\frac{2}{3}}$	2	M1 for $kx(3x^2+4)^{-\frac{2}{3}}$
2(b)(ii)	$\left[\frac{1}{2}(3x^2+4)^{\frac{1}{3}}\right]_0^2$	M1	For $k(3x^2+4)^{\frac{1}{3}}$
	$\left[\frac{1}{2}\left(16^{\frac{1}{3}}\right) - \frac{1}{2}\left(4^{\frac{1}{3}}\right)\right]$	M1	Dep for correct substitution of limits into <i>their</i> integral
	0.466	A1	
3	$(\cot^2 \theta + 1) + 2\cot^2 \theta = 2\cot \theta + 9$	B1	For use of correct identity
	$(3\cot\theta + 4)(\cot\theta - 2) = 0$ $\cot\theta = -\frac{4}{3}, \cot\theta = 2$	M1	For attempt to solve <i>their</i> quadratic in $\cot \theta$ to obtain $\cot \theta = k$
	$\tan \theta = -\frac{3}{4}, \tan \theta = \frac{1}{2}$	M1	For dealing with $\cot \theta = k$ correctly to get $\tan \theta = \frac{1}{k}$
	$\theta = -0.644$	A1	
	$\theta = 0.464$	A1	
4(a)	$64 - 48x^2 + 15x^4$	3	B1 for 64 B1 for $-48x^2$ B1 for $15x^4$

© UCLES 2021 Page 4 of 9

Question	Answer	Marks	Guidance
4(b)	$9 - \frac{6}{x^2} + \frac{1}{x^4}$	B1	
	$(their 64 \times 9) + (their - 48 \times -6) + (their 15)$	M1	For considering terms independent of <i>x</i> , must have 3 terms
	879	A1	
5	$e^y = mx^2 + c$	B1	May be implied by later work
	10 = 4.74m + c $5 = 2.24m + c$	M1	For at least one correct equation
	5 = 2.5m	M1	Dep for attempt to solve for <i>m</i>
	m=2, c=0.52	A1	For both
	$y = \ln\left(2x^2 + 0.52\right)$	A1	
	Alternative	(B1)	
	$e^y = mx^2 + c$		May be implied by later work
	Gradient = $m = \frac{10-5}{4.74-2.24}$	(M1)	
	$10 = 4.74(their \ m) + c$ or $5 = 2.24(their \ m) + c$	(M1)	
	m=2, c=0.52	(A1)	For both
	$y = \ln\left(2x^2 + 0.52\right)$	(A1)	CO
6(a)	$\frac{\pi}{3}$	B1	
6(b)	$\frac{\pi a}{3} + 4a$	2	B2 FT for $\left(their\frac{\pi}{3} \times a\right) + 4a$ or B1 FT for their $\frac{\pi}{3} \times a$

© UCLES 2021 Page 5 of 9

Question	Answer	Marks	Guidance
6(c)	$\frac{1}{2}(2a)^2\sin\frac{\pi}{3}$	B1	FT their $\frac{\pi}{3}$
	$\frac{1}{2}a^2\frac{\pi}{3}$	B1	FT their $\frac{\pi}{3}$
	$\sqrt{3}a^2 - \frac{\pi a^2}{6}$	B1	FT their $\frac{\pi}{3}$
7(a)(i)	8C_4	M1	For realisation that there are 4 places left and 8 people available to fill them
	70	A1	
7(a)(ii)	1 teacher on committee: 5 ways	B1	
	$^{12}C_8$ -5	M1	
	490	A1	
	Alternative	(2)	
	2 teachers: 70 3 teachers: 210 4 teachers: 175 5 teachers: 35		B1 for 2 correct cases
	490	(B1)	
7(b)	$\frac{n!}{(n-5)!} = 6 \frac{(n-1)!}{(n-1-4)!}$	B1	, <u>S</u>
	$\frac{n}{(n-5)!} = \frac{6}{(n-5)!}$	M1	For simplification of either $n!$ and $(n-1)!$ or 'cancelling out' of the terms of $(n-5)!$
	n=6	A1	nfww
8(a)	b=2	B1	
	At $(0,3)$: $3 = a + c$	B1	
	$At\left(\frac{5\pi}{6},0\right): 0 = a\cos\frac{5\pi}{3} + c$	M1	For use of <i>their b</i> and $\left(\frac{5\pi}{6}, 0\right)$
	$0 = \frac{a}{2} + c$		
	a = 6 $c = -3$	A1	For both

© UCLES 2021 Page 6 of 9

Question	Answer	Marks	Guidance
8(b)	$\left(\frac{\pi}{6},0\right)$	B1	Allow for $x = \frac{\pi}{6}$
8(c)	$\left(\frac{\pi}{2}, -9\right)$	2	B1 for $\frac{\pi}{2}$ B1 for -9
9(a)	$y = x^3 - 2x^2 - 4x + 8$	B1	
	$\frac{dy}{dx} = 3x^2 - 4x - 4$ $(3x+2)(x-2) = 0$	M1	For attempt to differentiate, allow one slip and for equating <i>their</i> $\frac{dy}{dx}$ to zero and attempt to solve to obtain $x = k$
	$\left(-\frac{2}{3},\frac{256}{27}\right)$	A1	
	(2,0)	A1	
9(b)		4	B1 for curve with maximum in the second quadrant B1 for $y = 8$ either on the curve or stated B1 for $x = \pm 2$ either on the curve or stated B1 for a cusp at $x = -2$ and a min at $x = 2$
9(c)	$0 < k < \frac{256}{27}$	2	FT on their $\frac{256}{27}$ B1 for either $0 < k$ or $k < \frac{256}{27}$
10(a)	$\overrightarrow{CD} = \frac{3}{4}\mathbf{a}$	B1	
	$\overrightarrow{OD} = \mathbf{c} + \frac{3}{4}\mathbf{a}$	B1	
	$\overrightarrow{OE} = h\left(\mathbf{c} + \frac{3}{4}\mathbf{a}\right)$	B1	
	$\overrightarrow{DE} = h\left(\mathbf{c} + \frac{3}{4}\mathbf{a}\right) - \left(\mathbf{c} + \frac{3}{4}\mathbf{a}\right) \text{ oe cao}$	B1	
10(b)	$\overrightarrow{DE} = \frac{1}{4}\mathbf{a} + k\mathbf{c}$	B1	

© UCLES 2021 Page 7 of 9

Question	Answer	Marks	Guidance
10(c)	$\mathbf{c}(h-1) + \mathbf{a}\left(\frac{3h}{4} + \frac{3}{4}\right) = \frac{1}{4}\mathbf{a} + k\mathbf{c}$	M1	For equating <i>their</i> answer to (a) to <i>their</i> answer to (b)
	$\mathbf{c}(h-1) + \mathbf{a}\left(\frac{3h}{4} + \frac{3}{4}\right) = \frac{1}{4}\mathbf{a} + k\mathbf{c}$ $h-1 = k$	M1	For attempt to equate like vectors once.
	$h = \frac{4}{3}$	A1	
	$k = \frac{1}{3}$	A1	
11(a)	x + 2y = 10 $x + y = 2$	M1	For attempt to solve simultaneously
	(-6, 8)	A1	
	x + 2y = 10 $x + y = -2$	M1	For attempt to solve simultaneously
	(-14, 12)	A1	
	Alternative	(M1)	
	$x^{2} + x(10 - x) + \frac{(10 - x)^{2}}{4} = 4$ or $(10 - 2y)^{2} + 2y(10 - 2y) + y^{2} = 4$		For attempt to eliminate one of the variables using $(x + y)^2 = 4$
	$x^2 + 20x + 84 = 0$ or $y^2 - 20y + 96 = 0$	(M1)	Dep for attempt to obtain a 3 term quadratic equation = 0 and solve to obtain at least one solution, allow 1 arithmetic error
	(-14, 12)	(A1)	
	(-6, 8)	(A1)	
	Mid-point of <i>AB</i> : (-10, 10)	M1	For attempt to obtain the mid-point using <i>their</i> coordinates for <i>A</i> and <i>B</i> .
	Gradient of line perpendicular to $AB = 2$	M1	For attempt to obtain the perpendicular gradient using <i>their</i> coordinates for <i>A</i> and <i>B</i> .
	$y-their\ 10 = their\ 2(x-their(-10))$	M1	
	20-10=2(-5+10) oe	A1	For verification

© UCLES 2021 Page 8 of 9

Question	Answer	Marks	Guidance
11(b)	(10, 50)	2	FT on their midpoint B1 for each coordinate
	(-20, -10)	2	FT on their midpoint B1 for each coordinate

© UCLES 2021 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 10

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent

ET follow through after error

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2021 Page 3 of 10

Question	Answer	Marks	Guidance
1	$(3\ln 5x - 1)(\ln 5x + 1) = 0$ $\ln 5x = \frac{1}{3}, \ \ln 5x = -1$	M1	For recognition of a quadratic in $\ln 5x$ and attempt to solve to obtain $\ln 5x = k$
	$x = \frac{1}{5}e^{\frac{1}{3}}, \frac{\sqrt[3]{e}}{5}, e^{\frac{1}{3}-\ln 5} \text{ oe}$ $x = \frac{1}{5e}, \frac{e^{-1}}{5}, e^{-1-\ln 5} \text{ oe}$	3	Dep M1 for dealing with <i>their</i> $\ln 5x = k$ correctly once A1 for $x = \frac{1}{5}e^{\frac{1}{3}}$ oe isw A1 for $x = \frac{1}{5}e^{\frac{1}{3}}$ oe isw
2	a = 3	B1	
	$b = \frac{1}{2}$	B1	
	c=4	B1	
3(a)	Gradient of line perp to $AB = -\frac{3}{4}$	B1	
	Mid-point of AB $(-1, 10)$ soi	B1	
	$y-10 = -\frac{3}{4}(x+1)$ soi	M1	For attempt at straight line using <i>their</i> perp gradient and <i>their</i> mid-point
	$a-10 = -\frac{3}{4}(7+1)$ $a = 4$	A1	Allow $y = 4$
3(b)	(-9, 16)	e P · 2	B1 for $x = -9$ B1 FT on <i>their a</i> , dep on M1 from (a) for $y = 16$ or $20 - their a$ B1 for $-9,16$
4(a)	$2\left(x+\frac{5}{4}\right)^2-\frac{49}{8}$	3	B1 for $b = \left(x + \frac{5}{4}\right)^2$ or $(x+1.25)^2$ B1 for $c = -\frac{49}{8}$ or -6.125

© UCLES 2021 Page 4 of 10

Question	Answer	Marks	Guidance
4(b)	$\left(-\frac{5}{4}, -\frac{49}{8}\right) \text{ oe }$	2	B1 for $-\frac{5}{4}$ as part of a set of coordinates or $x = -\frac{5}{4}$, FT on $-$ their b B1 for $-\frac{49}{8}$ as part of a set of coordinates or $y = -\frac{49}{8}$ FT on their c Need to be using their answer to (a) and not using differentiation as 'Hence'. B1 for $-\frac{5}{4}$, $-\frac{49}{8}$
4(c)		3	B1 for correct shape, with maximum in the second quadrant and cusps on the x -axes and reasonable curvature for $x < -3$ and $x > 0.5$. B1 for $(-3, 0)$ and $(0.5, 0)$ either seen on the graph or stated, must have attempted a correct shape B1 for $(0, 3)$ either seen on the graph or stated, must have attempted a correct shape
4(d)	$\frac{49}{8}$ oe	B1	FT on their $ c $ from (a) Allow $\frac{49}{8}$ from other methods
5(a)	$\begin{pmatrix} -4 \\ 3 \end{pmatrix} t$ or $\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -4 \\ 3 \end{pmatrix} t$ oe	B1	
5(b)		B1	

© UCLES 2021 Page 5 of 10

Question	Answer	Marks	Guidance
5(c)	$\overrightarrow{PQ} = \begin{pmatrix} 12\\6 \end{pmatrix} + \begin{pmatrix} -5\\8 \end{pmatrix} t - \begin{pmatrix} -4\\3 \end{pmatrix} t$	M1	For $their(b)-their(a)$, or $their(a)-their(b)$ Allow unsimplified. Both vectors must be in terms of t
		B1	
	$\left \left(\overrightarrow{PQ} \right)^2 \right = (12 - t)^2 + (6 + 5t)^2$ $\left \left(\overrightarrow{PQ} \right)^2 \right = 26t^2 + 36t + 180$	A1	Allow FT for use of modulus with $\begin{pmatrix} t-12 \\ -6-5t \end{pmatrix}$ and simplification to obtain the given result.
5(d)	Attempt to solve or consider the discriminant of $26t^2 + 36t + 180 = 0$	M1	Must be using the equation from part (c) as 'Hence'.
	Conclusion from either $36^2 - 4(26)(180) < 0$ or $t > 0$	A1	Must have stated somewhere that $\left \left(\overrightarrow{PQ} \right)^2 \right = 0$ oe has been considered not just $\left \left(\overrightarrow{PQ} \right)^2 \right $.
6(a)(i)	$a = 10, \ 6 = \frac{a}{1 - r}$ $10 = 6 - 6r$	M1	For use of first term and sum to infinity to obtain an equation in <i>r</i> only
	$r = -\frac{2}{3}$	A1	.5
6(a)(ii)	$S_7 = 10 \frac{\left(1 - \left(their\ r\right)^7\right)}{1 - their\ r}$	M1	For sum formula with $ their r < 1$.
	$S_7 = 6.35$	A1	
6(b)(i)	$\log_x 3$	B1	
6(b)(ii)	$S_n = \frac{n}{2} (2\log_x 3 + (n-1)\log_x 3)$	M1	For use of sum formula with their (i)
	$\frac{n}{2}(n+1)\log_x 3, \ \frac{n}{2}\log_x 3^{n+1}, \ \frac{n+1}{2}\log_x 3^n$	A1	Allow other similar equivalents
6(b)(iii)	$\frac{n}{2}(n+1) = 3081$	M1	For a correct attempt to solve their (ii) = $3081\log_x 3$ to obtain an answer for n . Must be a 3 term quadratic in n only.
	n = 78	A1	

© UCLES 2021 Page 6 of 10

Question	Answer	Marks	Guidance
6(b)(iv)	$1027 = \frac{78}{2} (79) \log_x 3 \text{ or } 3081 \log_x 3$	M1	For using <i>their</i> 78 in a sum equation or using 3081 to obtain <i>x</i>
	x = 27	A1	
7(a)	$AE^{2} = (\sqrt{17} - 1)^{2} + (\sqrt{17} + 1)^{2}$ $= 18 + 2\sqrt{17} + 18 - 2\sqrt{17}$	M1	For attempt to find AE. Must see at least 3 terms in an expansion that is not the difference of two squares to be convinced a calculator is not being used.
	AE = 6	A1	
	Perimeter = $4\sqrt{17} + 8 + their AE$ = $4\sqrt{17} + 14$	B1	FT on their AE
7(b)	Area = $\frac{1}{2} (3\sqrt{17} + 7)(\sqrt{17} + 1)$ oe = $\frac{1}{2} (51 + 3\sqrt{17} + 7\sqrt{17} + 7)$ oe	MI	For attempt at a trapezium or triangle and rectangle. Must see at least 3 terms in an expansion that is not the difference of two squares to be convinced a calculator is not being used. Allow one arithmetic slip.
	Area = $29 + 5\sqrt{17}$	A1	
7(c)	$\tan AED = \frac{\sqrt{17} + 1}{\sqrt{17} - 1} \times \frac{\sqrt{17} + 1}{\sqrt{17} + 1}$	M1	For attempt at rationalisation.
	$\frac{9+\sqrt{17}}{8}$	A1	Must come from $\frac{18+2\sqrt{17}}{16}$ to be convinced a calculator is not being used.
7(d)	$\sec^2 AED = \tan^2 AED + 1$ $= \frac{\left(9 + \sqrt{17}\right)^2}{64} + 1$ $\frac{81 + 17 + 18\sqrt{17} + 64}{64} \text{ oe}$ $\text{if } \frac{\left(9 + \sqrt{17}\right)^2}{64} \text{ and } 1 \text{ are considered}$ separately.	M1	For use of <i>their</i> (c) in the correct identity and attempt to simplify to obtain a single fraction. Must see at least 3 terms in an expansion that is not the difference of two squares to be convinced a calculator is not being used. Allow one arithmetic slip
	$\frac{81+9\sqrt{17}}{32}$ oe	A1	cao

© UCLES 2021 Page 7 of 10

Question	Answer	Marks	Guidance
8(a)(i)	$\sin x \frac{\sin x}{\cos x} + \cos x$	B1	
	$\frac{\sin^2 x + \cos^2 x}{\cos x}$ oe	B1	
	$\frac{1}{\cos x} = \sec x$	B1	Poor notation is B0
8(a)(ii)	$\sec\frac{\theta}{2} = 4$ $\cos\frac{\theta}{2} = \frac{1}{4}$	M1	For use of (i) and dealing with sec to obtain $\cos \frac{\theta}{2} = \frac{1}{4}$
	$\frac{\theta}{2}$ = 1.3181, 4.9651 θ = 2.64 or 0.839 π θ = 9.93 or 3.16 π	3	Dep M1 for a correct attempt to solve to obtain at least one solution for θ A1 for one correct solution A1 for a second correct solution and no extra solutions
8(b)	$\tan(y+38^{\circ}) = \frac{1}{\sqrt{3}}$ $y = 172^{\circ}$ $y = 352^{\circ}$	3	M1 for dealing with cot and a correct attempt to obtain at least one correct solution, allow for -8° A1 for one correct solution A1 for a second correct solution and no extra solutions
9(a)	$(2x-1)(x^2-x-1)$	M1	For attempt at factorisation by observation or by algebraic long division
	$(2x-1)(x^2-x-1)$	A1	cao
9(b)	$At A x = \frac{1}{2}$	B1	
	$x^2 - x - 1 = 0$	M1	For a valid attempt to solve <i>their</i> quadratic equation, allow for decimal solutions
	$x = \frac{1 \pm \sqrt{5}}{2} \text{ soi}$	A1	
	$At B x = \frac{1+\sqrt{5}}{2}$	A1	

© UCLES 2021 Page 8 of 10

Question	Answer	Marks	Guidance
9(c)	$\int \frac{1}{x} \mathrm{d}x = \ln x$	B1	
	$\left[\ln x\right]_{\frac{1}{2}}^{\frac{1+\sqrt{5}}{2}} = \ln\left(1+\sqrt{5}\right)$	B1	Allow $\ln\left(\frac{1+\sqrt{5}}{2}\right) - \ln\frac{1}{2}$
	$\left(\int -2x^2 + 3x + 1\right) dx = -\frac{2}{3}x^3 + \frac{3x^2}{2} + x$	M1	M1 for attempt at $-\frac{2}{3}x^3 + \frac{3x^2}{2} + x$, must have 2 correct terms.
	$\left[-\frac{2}{3}x^3 + \frac{3x^2}{2} + x \right]_0^{\frac{1}{2}}$	M1	Dep for correct application of the limits 0 and $\frac{1}{2}$ and attempt to evaluate
	$= \left(-\frac{2}{3} \times \frac{1}{8}\right) + \left(\frac{3}{2} \times \frac{1}{4}\right) + \frac{1}{2} \text{ oe}$		- may be implied by 0.792 or $\frac{19}{24}$.
	<u>19</u> 24	A1	
	$\ln\left(1+\sqrt{5}\right)+\frac{19}{24}$	A1	isw
10(a)	$\frac{(x-1)(6x)(2x^2+10)^{\frac{1}{2}}-(2x^2+10)^{\frac{3}{2}}}{(x-1)^2}$	3	B1 for $\frac{3}{2} \times 4x \times (2x^2 + 10)^{\frac{1}{2}}$ oe M1 for correct attempt at differentiation of a quotient A1 for all the other terms correct
	$\left(\frac{\left(2x^2+10\right)^{\frac{1}{2}}}{\left(x-1\right)^2}\right) \left(4x^2-6x-10\right)$	2	A2 for all 3 terms correct in the quadratic A1 for 2 terms correct and 1 incorrect term in the quadratic A0 for 1 term correct or no terms correct in the quadratic

© UCLES 2021 Page 9 of 10

Question	Answer	Marks	Guidance
10(b)	$4x^{2} - 6x - 10 = 0$ $(2x - 5)(x + 1) = 0$	M1	For attempt to solve <i>their</i> quadratic = 0 and obtain at least one solution or state that <i>their</i> quadratic equation has no real roots.
	$x = \frac{5}{2}$	A1	
	Rejecting $x = -1$ correctly	A1	May be implied by the statement $x > 1$.
	Discounting $\left(2x^2 + 10\right)^{\frac{1}{2}} = 0$	B1	

© UCLES 2021 Page 10 of 10

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

© UCLES 2020 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 9

Maths-	Maths-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2020 Page 3 of 9

Question	Answer	Marks	Guidance
1	$y = \pm 3(x+2)(x+1)(x-4)$	3	B1 for 3 B1 for $(x+2)(x+1)(x-4)$ B1 for \pm
2(a)	4	B1	
2(b)	1080° or 6π	B1	
2(c)		3	B1 for shape, it must be symmetrical about the <i>y</i> -axis. B1 for <i>y</i> -intercept of 5 B1 for $(\pm 180^{\circ}, 3)$
	-88 -49 -49 -8 -9 -19 7	PR	
3(a)	$a = \frac{3}{2} \text{ or } p^{\frac{3}{2}}$	B1	
	$b = \frac{10}{3}$ or $q^{\frac{10}{3}}$	B1	
	$c = -\frac{7}{3}$ or $r^{-\frac{7}{3}}$	B1	
3(b)	$\left(3x^{\frac{1}{3}} - 1\right)\left(2x^{\frac{1}{3}} - 1\right) = 0$	M1	For recognising as a quadratic in $x^{\frac{1}{3}}$ and attempt to solve to obtain $x^{\frac{1}{3}} = k$
	$x^{\frac{1}{3}} = \frac{1}{3}, x^{\frac{1}{3}} = \frac{1}{2}$ leading to $x = \frac{1}{27}$ or 0.0370 $x = \frac{1}{8} \text{ or } 0.125$		Dep M1 for a valid method of solving $x^{\frac{1}{3}} = k$ where $k > 0$ A1 for both
4(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin x \times 3\sec^2 3x - \tan 3x \cos x}{\sin^2 x}$	3	B1 for $3\sec^2 3x$ M1 for differentiation of a quotient or equivalent product A1 for all other terms apart from $3\sec^2 3x$ correct
	When $x = \frac{\pi}{3} \frac{\mathrm{d}y}{\mathrm{d}x} = 2\sqrt{3}$	A1	
4(b)	$2\sqrt{3}h$	B1	FT on their answer to (a)

© UCLES 2020 Page 4 of 9

Question	Answer	Marks	Guidance
4(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}t}$ $2\sqrt{3} \times 3 = \frac{\mathrm{d}y}{\mathrm{d}t}$	M1	For correct use of rates of change using their answer to (a)
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 6\sqrt{3}$	A1	
5(a)(i)	360	B1	
5(a)(ii)	Starts with 6: $1 \times 4 \times 3 \times 1 = 12$	B1	
	Starts with 7 or 9 : $=2\times4\times3\times2$ = 48	B1	
	Total = 60	B1	
	Alternative		
	Ending in 4: $\frac{1}{6} \times 360 \times \frac{3}{5} = 36$	(B1)	Allow unsimplified
	Ending in 6: $\frac{1}{6} \times 360 \times \frac{2}{5} = 24$	(B1)	Allow unsimplified
	Total = 60	(B1)	
5(b)(i)	1287	B1	
5(b)(ii)	$1287 - {}^{7}C_{5}$ or 1 doctor: 210 2 doctors: 525 3 doctors: 420 4 doctors: 105 5 doctors: 1	M1	For their (b)(i) $-{}^{7}C_{5}$ or listing all the other separate cases which must be evaluated, allow 1 error
	1266	A1	
5(b)(iii)	45	B1	
6(a)	Velocity vector = $\begin{pmatrix} -8 \\ 6 \end{pmatrix}$	2	M1 for obtaining 5
		B1	FT for $\binom{30}{10}$ + (their velocity vector)t
6(b)	13	B1	

© UCLES 2020 Page 5 of 9

Question	Answer	Marks	Guidance
6(c)	$P: \begin{pmatrix} -50\\70 \end{pmatrix}$ $Q: \begin{pmatrix} -30\\210 \end{pmatrix}$	M1	Using $t = 10$ to find position vector of each particle
	$\sqrt{20^2 + 140^2}$	M1	Dep on previous M mark, for use of Pythagoras on difference of the 2 position vectors
	$100\sqrt{2}$	A1	
7(a)	$f \in \mathbb{R}$	B1	Allow <i>y</i> but not <i>x</i>
7(b)	$x = 5\ln(2y + 3)$	M1	For a complete attempt to obtain inverse
	$e^{\frac{x}{5}} = 2y + 3$	PR	
	$f^{-1}(x) = \frac{e^{\frac{x}{5}} - 3}{2}$	A1	Must be using correct notation
	Domain $x \in \mathbb{R}$	B1	FT on their (a). Must be using correct notation
7(c)	24 pHts	5	B1 for shape of $y = f(x)$ B1 for shape of $y = f^{-1}(x)$ B1 for $5 \ln 3$ or 5.5 and -1 on both axes for $y = f(x)$ B1 for $5 \ln 3$ or 5.5 and -1 on both axes for $y = f^{-1}(x)$ B1 All correct, with apparent symmetry
		0101	which may be implied be previous 2 B marks or by inclusion of $y = x$, and implied asymptotes, may have one or two points of intersection
8(a)(i)	$\frac{1}{\left(1+\frac{1}{\sin\theta}\right)\left(\sin\theta-\sin^2\theta\right)}$	B1	For use of $\csc \theta = \frac{1}{\sin \theta}$, may be implied
	$\frac{1}{\sin\theta + 1 - \sin\theta - \sin^2\theta}$	M1	For expansion of brackets
	$\frac{1}{\cos^2 \theta}$	M1	For simplification and use of identity
	$\sec^2 \theta$	A1	For final result, must see $\frac{1}{\cos^2 \theta}$

© UCLES 2020 Page 6 of 9

Question	Answer	Marks	Guidance
8(a)(ii)	$\cos^2\theta = \frac{3}{4}$	B1	For relating to and making use of (a)
	$\cos\theta = \pm \frac{\sqrt{3}}{2}$	M1	For attempt to solve, may be implied by one correct solution
	$\theta = -150^{\circ}, -30^{\circ}, 30^{\circ}, 150^{\circ}$	2	A1 for any correct pair A1 for a second correct pair and no extra solutions within the range
8(b)	$\tan\left(3\phi + \frac{2\pi}{3}\right) = 1$	B1	
	$3\phi + \frac{2\pi}{3} = \frac{\pi}{4}, \ \frac{5\pi}{4}, \ \frac{9\pi}{4}$	M1	For correct order of operations
	$3\phi = \frac{7\pi}{12}, \frac{19\pi}{12}$	PR	
	$\phi = \frac{7\pi}{36}$	A1	
	$\phi = \frac{19\pi}{36}$	A1	
9(a)	$\left[\ln x - \frac{1}{2} \ln (2x+3) \right]_a^a$	2	B1 for ln <i>x</i>
	$\begin{bmatrix} 1 & 2 & 2 & 1 & 2 $		B1 for $\frac{1}{2}\ln(2x+3)$
	$\ln a - \frac{1}{2} \ln (2a+3) + \frac{1}{2} \ln 5$	M1	For correct application of limits, must have at least one B1
	$ \ln a \sqrt{\frac{5}{2a+3}} $	M1	Dep on previous M mark, for application of log laws
	$5a^2 - 18a - 27 = 0$	M1	Dep on previous M mark for equating to ln 3 and simplification to a 3 term quadratic = 0
	$a = \frac{9 + 6\sqrt{6}}{5}$	A1	Must have one solution only

© UCLES 2020 Page 7 of 9

Question	Answer	Marks	Guidance
9(b)	$-\frac{1}{2}\cos\left(2x+\frac{\pi}{3}\right)+\frac{1}{2}\sin 2x-x$	3	$\mathbf{B1} \text{ for } -\frac{1}{2}\cos\left(2x + \frac{\pi}{3}\right)$
			B1 for $+\frac{1}{2}\sin 2x$
			B1 for - <i>x</i>
	$\left(-\frac{1}{2}\cos\pi + \frac{1}{2}\sin\frac{2\pi}{3} - \frac{\pi}{3}\right)$	M1	For correct use of limits in <i>their</i> integral, must have at least one B1 term
	$-\left(-\frac{1}{2}\cos\frac{\pi}{3}\right)$		
	$\frac{3}{4} + \frac{\sqrt{3}}{4} - \frac{\pi}{3}$	A1	
10(a)	a+d=8 $a+3d=18$	2	B1 for both equations M1 for attempt to solve <i>their</i> equations
	a=3, d=5	A1	For both
	$\frac{n}{2}(6+(n-1)5)>1560$	M1	For correct use of sum formula with <i>their a</i> and <i>d</i> , allow equality
	$5n^2 + n - 3120 > 0$	M1	For attempt to solve, allow equality, to obtain at least one critical value
	Positive critical value 24.9 25terms	A1	
10(b)(i)	$\frac{a}{1-r} = 72$ and either	B1	For both
	$a + ar + ar^2 = \frac{333}{8}$	pref	
	or $\frac{a(1-r^3)}{1-r} = \frac{333}{8}$		
	a = 72(1-r)	M1	For attempt to obtain an equation in terms of <i>r</i> only
	and $a(1+r+r^2) = \frac{333}{8}$ oe		
	$72(1-r)(1+r+r^2) = \frac{333}{8}$		
	or $72(1-r^3) = \frac{333}{8}$		
	$1 - r^3 = \frac{333}{576}$	A1	
	r = 0.75	2	M1 for attempt to solve <i>their</i> equation in r

© UCLES 2020 Page 8 of 9

Question	Answer	Marks	Guidance
10(b)(ii)	a = 18	B1	FT on their r provided $ r < 1$

© UCLES 2020 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 October/November 2020 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 9

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent FT follow through after error

FT follow through after error isw ignore subsequent working not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2020 Page 3 of 9

Question	Answer	Marks	Guidance
1	$2x^{2} - (k+4)x + (k+4) (=0)$	B1	
	$2x^{2} + (-k-4)x + (k+4) (=0)$		
	Discriminant: $(k+4)^2 - (4 \times 2 \times (k+4))$	M1	Use of discriminant to obtain 2 critical values using <i>their</i> 3 term quadratic
	±4	A1	For critical values
	k < -4 $k > 4$	A1	
2(a)	$y = -\frac{1}{2}(x+5)(x+1)(x-2)$	3	B1 for negative soi
			B1 for $\frac{1}{2}$ soi
	TPR		B1 for $(x+5)(x+1)(x-2)$
			or $x^3 + 4x^2 - 7x - 10$
2(b)	-5 < x < -1	B1	
	x > 2	B1	
3(a)	2	B1	111
3(b)	6π or 1080°	B1	
3(c)		3	B1 for passing through $(-\pi, 0)$ and $(3\pi, -3)$ – must be a curve B1 for correct shape with max on y-axis and a min at $x = 3\pi$ B1 for passing through $(0, 1)$ and $(\pi, 0)$ only on the positive x-axis
4(a)	a + 6d = 158 $a + 9d = 149$	B1	For both equations, may be implied by a correct <i>a</i> and <i>d</i>
	d = -3,	B1	
	a = 176	B1	

© UCLES 2020 Page 4 of 9

Question	Answer	Marks	Guidance
4(b)	$\frac{n}{2}(352 + (n-1)(-3)) \qquad (<0)$	M1	For correct attempt at sum formula with <i>their a</i> and <i>their d</i> ,
	$\frac{355}{3}$ or 118.3 oe	A1	
	119	A1	
5	$x^5 + 10x^3 + 40x + \dots$	3	M1 for attempt to expand $\left(x + \frac{2}{x}\right)^5$, with at least 2 correct terms A1 for $10x^3$ A1 for $40x$
	Term in x^2 : $(1 \times 40) - (3 \times 10)$	M1	For $(1 \times their\ 40) \pm (3 \times their\ 10)$
	10	A1	
6(a)	It is a one-one function because of the given restricted domain or because $x \ge -1$	B1	
6(b)	3 1 satpre	4	B1 for $y = f(x)$ for $x > -1$ only B1 for 1 on x-axis and -3 on y-axis for $y = f(x)$ B1 for $y = f^{-1}(x)$ as a reflection of $y = f(x)$ in the line $y = x$, maybe implied by intercepts with axes B1 for 1 on y-axis and -3 on x-axis for $y = f^{-1}(x)$

© UCLES 2020 Page 5 of 9

Question	Answer	Marks	Guidance
7(a)	$\frac{dy}{dx} = \frac{(2x+1)\frac{6x}{3x^2 - 5} - 2\ln(3x^2 - 5)}{(2x+1)^2} \text{ or}$ $\frac{dy}{dx} = (2x+1)^{-1} \frac{6x}{3x^2 - 5} - 2(2x+1)^{-2} \ln(3x^2 - 5)$	3	B1 for $\frac{6x}{3x^2-5}$ M1 for attempt at a quotient or equivalent product A1 for all terms other than $\frac{6x}{3x^2-5}$ correct
	When $x = \sqrt{2}$, $y = 0$	B1	May be implied
	When $x = \sqrt{2}$, $\frac{dy}{dx} = \frac{6\sqrt{2}}{2\sqrt{2} + 1}$ or $\frac{24 - 6\sqrt{2}}{7}$ or 2.22 oe $(2\sqrt{2} + 1)$	2	M1 for attempt at normal using theiry and their perp gradientA1 Allow equivalent surd forms
	Normal: $y = -\frac{(2\sqrt{2}+1)}{6\sqrt{2}}(x-\sqrt{2})$ oe or $y = -\frac{7}{24-6\sqrt{2}}(x-\sqrt{2})$ oe		
	or $y = -\frac{1}{2.22} (x - \sqrt{2})$ oe		
	or $y = -\frac{4+\sqrt{2}}{12}(x-\sqrt{2})$ oe or $y = -\frac{9+4\sqrt{2}}{24+6\sqrt{2}}(x-\sqrt{2})$ oe		
	y = -0.451x + 0.638		
7(b)	$\left(\frac{6\sqrt{2}}{2\sqrt{2}+1}\right)h$ or $\frac{24-6\sqrt{2}}{7}h$ or other equivalent surd forms, or $2.22h$	B1	FT on their $\frac{dy}{dx}$ from (a)
8(a)	$^{12}C_3 \times ^9C_4 = 220 \times 126$ or $^{12}C_5 \times ^7C_4 = 792 \times 35$ or $^{12}C_4 \times ^8C_5 = 495 \times 56$ or other equivalents 27720	3	B1 for one correct combination in a product of 2 or 3 combinations Must be numeric B1 for a second appropriate combination in the same product Must be numeric
8(b)(i)	120	B1	
8(b)(ii)	48	B1	

© UCLES 2020 Page 6 of 9

Question	Answer	Marks	Guidance
8(b)(iii)	Starts with 7 or 9 24	B1	May be implied by 12 and 12
	Starts with 8 18	B1	
	42	B1	
	Alternative Ends with 3 18	(B1)	
	Ends with 7 or 9 24	(B1)	May be implied by 12 and 12
	42	(B1)	
9(a)	$\frac{dy}{dx} = (2x-1) \times \frac{1}{2} \times 4(4x+3)^{-\frac{1}{2}} + 2(4x+3)^{\frac{1}{2}}$	3	B1 for $\frac{1}{2} \times 4(4x+3)^{-\frac{1}{2}}$ oe M1 for a correct attempt at a product A1 for all other terms correct
	$\frac{dy}{dx} = 2(4x+3)^{-\frac{1}{2}}(2x-1+4x+3)$ or equivalent	M1	For attempt to simplify to the given form
	$\frac{dy}{dx} = \frac{4(3x+1)}{(4x+3)^{\frac{1}{2}}}$	A1	
9(b)	$-\frac{1}{3}$	B1	FT on their $3x+1=0$
9(c)	For a complete method using 2^{nd} derivative, or gradient or y values either side or one side of their stationary point e.g. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	Must be using values of $x > -\frac{3}{4}$
	Minimum	A1	Must be from correct work

© UCLES 2020 Page 7 of 9

Question	Answer	Marks	Guidance
10(a)	p(2): 48+4a+2b+2=0 $2a+b+25=0$	B1	For $2a+b+25=0$ or multiple
	p(1) = -2p(0) $a + b + 12 = 0$	B1	For $a+b+12=0$
	a = -13, b = 1	2	M1 for attempt to solve <i>their</i> equations in <i>a</i> and <i>b</i> leading to 2 values A1 for both
10(b)(i)	$p\left(\frac{1}{2}\right) = \frac{6}{8} - \frac{13}{4} + \frac{1}{2} + 2$	M1	For attempt to find $p\left(\frac{1}{2}\right)$ using <i>their a</i> and <i>b</i>
	0	A1	
10(b)(ii)	(x-2)(2x-1)(3x+1)	2	M1 for realising that 2 factors are known and 3^{rd} factor can be got by observation or algebraic long division, or for making use of $x-2$ or $2x-1$ in order to obtain a quadratic factor A1 Must see all factors together
11(a)	$\angle BOC = 1.5 \text{ rad}$	B1	
	$\sin 0.75 = \frac{BC/2}{r}$	M1	For a complete attempt to find BC – must be using a right-angled triangle to get required result – Given answer
	$BC = 2r\sin 0.75$	A1	
	Perimeter = $2r + 2r \sin 0.75 + 4r + 1.5r$	M1	Dep on first M mark for attempt at perimeter
	$r(7.5 + 2\sin 0.75)$	A1	Given answer
11(b)	Area = $(2r + 2r\sin 0.75)r - \frac{1}{2}r^2(1.5 - \sin 1.5)$ Area = $3.36r^2 - 0.75r^2 + 0.4987r^2$	3	M1 for a correct plan M1 for $(2r + 2r\sin 0.75)r$, using their $2r\sin 0.75$ B1 for segment $\frac{1}{2}r^2(1.5 - \sin 1.5) = 0.251r^2$
	Area = $3.11r^2$	A1	

© UCLES 2020 Page 8 of 9

Question	Answer	Marks	Guidance
12(a)(i)	Area under graph: $ \frac{1}{2}(60+40)\times 30 + \frac{1}{2}(30+V)\times 30 (=2775) $ or $ \frac{1}{2}(20\times 30) + (40+30) + \frac{1}{2}(30+V)\times 30 $	2	M1 for attempt to find the area under the graph Dep M1 on previous M mark for attempt to equate to 2775 and simplify in order to find V or $V-30$
	55	A1	
12(a)(ii)	0	B1	
12(b)(i)	$v = 3\sin 2t (+c)$	M1	Must have $\pm 3\sin 2t$
	10 = c	M1	Dep for attempt to find $+c$,
	$v = 3\sin 2t + 10$	A1	
12(b)(ii)	$s = -\frac{3}{2}\cos 2t + 10t + d$	M1	For attempt to integrate <i>their v</i> , must have $\pm \frac{3}{2} \cos 2t$
	$d = \frac{3}{2}$	M1	Dep on previous M mark for attempt to find d .
	$s = -\frac{3}{2}\cos 2t + 10t + \frac{3}{2}$	A1	

© UCLES 2020 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

© UCLES 2020 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 10

Ma	aths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2020 Page 3 of 10

Question	Answer	Marks	Guidance
1(a)	-5 2 5 x	3	B1 for a well-drawn cubic graph in correct orientation Both arms extending beyond x-axis Maximum above x-axis B1 for x-intercepts B1 for y-intercept
1(b)	<i>x</i> < -1	B1	Dep on a cubic curve in the correct orientation and –1 correct on <i>x</i> -axis
	2 < x < 3 or $3 > x > 2$	B1	Dep on a cubic curve in the correct orientation and 2 and 3 correct on <i>x</i> -axis
2(a)	$\frac{dy}{dx} = \frac{\left(x^2 + 1\right)2e^{2x - 3} - 2xe^{2x - 3}}{\left(x^2 + 1\right)^2} \text{oe}$ or $\frac{dy}{dx} = \frac{2e^{2x - 3}}{\left(x^2 + 1\right)} - \frac{2xe^{2x - 3}}{\left(x^2 + 1\right)^2} \text{oe}$	3	B1 for $\frac{d}{dx}(e^{2x-3}) = 2e^{2x-3}$ seen in a quotient rule or product rule expression M1 for correct method for differentiating a quotient or equivalent product A1 FT from <i>their</i> $2e^{2x-3}$
2(b)	When $x = 2$, $\frac{dy}{dx} = \frac{6e}{25}$	M1	For evaluation of <i>their</i> $\frac{dy}{dx}$ when $x = 2$
	$\frac{6e}{25} \times \frac{dx}{dt} = 2$ oe	M1	For correct substitution of <i>their</i> evaluated $\frac{dy}{dx}$ and $\frac{dy}{dt} = 2$ in a correct rates of change equation
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{25}{3\mathrm{e}}, \frac{50}{6\mathrm{e}}$	A1	
3(a)(i)	$x > \frac{1}{2}$	B1	Must be using <i>x</i>

© UCLES 2020 Page 4 of 10

Question	Answer	Marks	Guidance
3(a)(ii)	$x = 4\ln(2y - 1)$ $e^{\frac{x}{4}} = 2y - 1$ $y = \frac{1}{2} \left(1 + e^{\frac{x}{4}} \right)$	M1	For full method for inverse using correct order of operations
	$f^{-1}(x) = \frac{1}{2} \left(1 + e^{\frac{x}{4}} \right) \text{ or } f^{-1}(x) = \frac{1}{2} \left(1 + \sqrt[4]{e^x} \right)$	A1	Must be using correct notation
	$x \in \mathbb{R}$	B1	
3(b)	$\sqrt{2x-3}+5=7$	M1	For correct order
	$x = \frac{2^2 + 3}{2}$	M1	Dep on previous M mark, for obtaining x by simplifying and solving using correct order of operations, including squaring
	$x = \frac{7}{2}$ or 3.5	A1	
4(a)(i)	1	3	B1 For $v = 2$ for $0 \le t \le 50$ B1 For $v = 2.5$ for $65 \le t \le 85$ B1 For $v = 3.75$ for $85 \le t \le 125$ and $v = 0$ for $50 \le t \le 65$
4(a)(ii)	300	B1	
4(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = -18\sin\left(3t + \frac{\pi}{3}\right)$	M1	$\pm 18\sin\left(3t + \frac{\pi}{3}\right)$
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -54\cos\left(3t + \frac{\pi}{3}\right)$	M1	$\pm 54\cos\left(3t + \frac{\pi}{3}\right)$
	–27 nfww	A1	

© UCLES 2020 Page 5 of 10

Question	Answer	Marks	Guidance
5	$(1+x)\left(1+n\left(-\frac{x}{2}\right)+\frac{n(n-1)}{2}\left(\frac{x^2}{4}\right)\right)$	2	B1 For $\binom{n}{1} \left(-\frac{x}{2} \right)$ B1 For $\binom{n}{2} \left(\frac{x^2}{4} \right)$
	$\frac{1}{4} \binom{n}{2} x^2 - \frac{1}{2} \binom{n}{1} x^2 = \frac{25}{4} x^2$	M1	Correctly using two terms in n to obtain an x^2 term and equating to $\frac{25}{4}x^2$ Dep on one B1
	$\frac{n(n-1)}{8} - \frac{n}{2} = \frac{25}{4}$ oe	A1	
	n=10 only	A1	
6(a)	$\lg y = \lg A + bx^2$	B1	Stated or may be implied by later work
	If using $\lg y = \lg A + bx^2$ as a starting point $5.25 = \lg A + 3.63b$ and $6.88 = \lg A + 4.83b$ or $5.25 = \lg A + 1.358(3.63)$ or $6.88 = \lg A + 1.358(4.83)$	M1	For correctly finding required equation(s)
	OR If finding the equation of the straight line and then finding $\lg A$ and b by inspection $\lg y - 6.88 = 1.358(x^2 - 4.83)$ or $\lg y - 5.25 = 1.358(x^2 - 3.63)$ or $\lg y = 1.358x^2 + 0.31$ (or 0.32)	.00	
	$b = 1.36$, $\frac{163}{120}$ or $1\frac{43}{120}$	B1	Must be $b = $ and from correct working
	A in range 2.05 to 2.09	A1	
6(b)	$\lg y = 0.3132 + (4 \times 1.36)$ $y = 2.09 \times 10^{4 \times 1.36}$	M1	For $\lg y = (their \lg A) + 4(their b)$ or $y = (their A)(10^{4(their b)})$
	Allow 553 000 to 576 000	A1	
6 (c)	$4 = 2.09(10^{1.36x^2})$ or $\lg 4 = 0.3132 + 1.36x^2$	М1	$4 = (their A)(10^{their bx^2}) \text{ or}$ $\lg 4 = (their \lg A) + (their b)x^2$
	awrt 0.46	A1	

© UCLES 2020 Page 6 of 10

Question	Answer	Marks	Guidance
7(a)	-4a+b+5=0 oe	B1	Allow multiples of equation
	a+b-25=0 oe	B1	Allow multiples of equation
	a = 6, b = 19	2	M1 for solving <i>their</i> 2 equations and obtaining two solutions A1 for both $a = 6$, $b = 19$
	$(x+4)(6x^2-5x+1)$ $A=6, B=-5, C=1$	2	M1 for attempt to obtain quadratic factor by inspection or by algebraic long division A1 $(6x^2 - 5x + 1)$ or $A = 6, B = -5, C = 1$
	Alternative $a+b-25=0$ oe	(B1)	Allow multiples of equation
	Comparing coefficients $C = 1$ and $A = a$	(B1)	
	4A + B = b	(B1)	
	Leading to $5A + B = 25$	(M1)	For use of <i>their</i> $a+b-25=0$ to obtain an equation in A and B
	4B+1=-19	(B1)	
	$(x+4)(6x^2-5x+1)$ $A=6, B=-5, C=1$	(A1)	5
7(b)	(x+4)(3x-1)(2x-1)	B1	Must follow from a correct solution to (a)
7(c)	-19	B1	
8(a)	$\angle AOB = 1.45$ (radians)	B1	
8(b)	Sector area = $\frac{1}{2} (r^2) (1.45)$	B1	For correct sector area. Allow unsimplified
	Area of triangle $= \frac{1}{2} \times 0.5r \times r \times \sin(\pi - their \ 1.45)$	B1	For correct area of triangle Allow unsimplified
	Total area = $0.973r^2$	B1	

© UCLES 2020 Page 7 of 10

Question	Answer	Marks	Guidance
8(c)	$(AC^{2}) = r^{2} + 0.25r^{2} - (2 \times r \times 0.5r \cos(\pi - 1.45))$	M1	For correct substitution in cosine rule using $(\pi - their 1.45)$
	AC = 1.17r	A1	
	Perimeter = $2.95r + 1.17r$	B1	FT on their AC
	r = 2.91	A1	
9(a)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} \text{ or } \overrightarrow{BA} = \mathbf{a} - \mathbf{b}$	B1	
	$\overrightarrow{OX} = \mathbf{a} + \frac{3}{4} \overrightarrow{AB} \text{ or } \overrightarrow{OX} = \mathbf{b} + \frac{1}{4} \overrightarrow{BA}$ $\overrightarrow{OX} = \mathbf{a} + \frac{3}{4} (\mathbf{b} - \mathbf{a}) \text{ or } \overrightarrow{OX} = \mathbf{b} + \frac{1}{4} (\mathbf{a} - \mathbf{b})$	M1	For correct use of ratio, using their \overrightarrow{AB} or \overrightarrow{BA}
	$OX = \mathbf{a} + \frac{1}{4}(\mathbf{b} - \mathbf{a}) \text{ or } OX = \mathbf{b} + \frac{1}{4}(\mathbf{a} - \mathbf{b})$		
	$\overrightarrow{OX} = \frac{\mathbf{a}}{4} + \frac{3}{4}\mathbf{b}$	A1	
9(b)	$\overrightarrow{AC} = 2\mathbf{b} - \mathbf{a}$	B1	
9(c)	$\overrightarrow{AY} = -\mathbf{a} + h\left(\frac{\mathbf{a}}{4} + \frac{3}{4}\mathbf{b}\right)$	B1	FT on their \overrightarrow{OX}
9(d)	$-\mathbf{a} + h\left(\frac{\mathbf{a}}{4} + \frac{3}{4}\mathbf{b}\right) = m(2\mathbf{b} - \mathbf{a})$	M1	For equating appropriate vectors and attempt to equate like vectors
	$-1 + \frac{h}{4} = -m$	A1	FT from their \overrightarrow{AY} and \overrightarrow{AC}
	$\frac{3h}{4} = 2m$	A1	FT from their \overrightarrow{AY} and \overrightarrow{AC}
	$h = \frac{8}{5}, m = \frac{3}{5}$	A1	For both
10(a)	$\frac{3x+10+2(x+1)}{(x+1)(3x+10)} = \frac{3x+10+2x+2}{(x+1)(3x+10)}$ $= \frac{5x+12}{3x^2+13x+10}$	B1	For expansion and simplification to obtain given answer

© UCLES 2020 Page 8 of 10

Question	Answer	Marks	Guidance
10(b)	$P\left(0, \frac{6}{5}\right)$ and $Q\left(-\frac{6}{5}, 0\right)$ oe	B1	
	Area of triangle = $\frac{18}{25}$ or 0.72	B1	
	Area under curve = $\int_0^2 \frac{1}{x+1} + \frac{2}{3x+10} dx$	M1	For use of part (a) and attempt to integrate to obtain at least one ln term.
	$= \left[\ln(x+1) + \frac{2}{3}\ln(3x+10)\right]_0^2$	2	B1 For $\ln(x+1)$ B1 For $\frac{2}{3}\ln(3x+10)$
	$= \ln 3 + \frac{2}{3} \ln 16 - \frac{2}{3} \ln 10$	M1	For correct use of limits. Dep on previous M mark.
	$= \frac{2}{3}\ln 3\sqrt{3} + \frac{2}{3}\ln 16 - \frac{2}{3}\ln 10$	M1	For use of $\ln 3 = \frac{2}{3} \ln 3\sqrt{3}$
	$= \frac{2}{3}\ln 3\sqrt{3} + \frac{2}{3}\ln\left(\frac{16}{10}\right) = \frac{2}{3}\ln\left(\frac{48\sqrt{3}}{10}\right)$	M1	For use of multiplication and division rule
	Total area = $\frac{18}{25} + \frac{2}{3} \ln \left(\frac{24\sqrt{3}}{5} \right)$ oe	A1	For correct answer in the required form dep on the three preceding M marks Must not be obtained using a calculator
11(a)	$2\cos x = 3\frac{\sin x}{\cos x} \implies 2\cos^2 x = 3\sin x$	M1	For use of $\tan x = \frac{\sin x}{\cos x}$ and multiplying by $\cos x$
	$2(1-\sin^2 x) = 3\sin x$	M1	For use of correct identity
	$2\sin^2 x + 3\sin x - 2 = 0$	A1	For correct rearrangement to obtain the given answer
	Alternative $2\sin^2 x + 3\sin x - 2$ $= 2(1 - \cos^2 x) + 3\sin x - 2$	(M1)	For use of correct identity
	$= -2\cos x \cos x + 3\sin x$ $= -3\tan x \cos x + 3\sin x$	(M1)	For use of $2\cos x = 3\tan x$
	$-3\sin x + 3\sin x = 0$	(A1)	For use of $\tan x \cos x = \sin x$ and answer 0

© UCLES 2020 Page 9 of 10

Question	Answer	Marks	Guidance
11(b)	$\sin\left(2\alpha + \frac{\pi}{4}\right) = \frac{1}{2} \text{ only}$	B1	For solution of quadratic from (a) to obtain $\sin\left(2\alpha + \frac{\pi}{4}\right) = \frac{1}{2}$ only
	$2\alpha + \frac{\pi}{4} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}$ $2\alpha = \frac{7\pi}{12}, \frac{23\pi}{12}$	M1	For correct order of operations in attempt to solve $\sin\left(2\alpha + \frac{\pi}{4}\right) = \frac{1}{2}$, may be implied by one correct solution
	$\alpha = \frac{7\pi}{24}$	A1	
	$\alpha = \frac{23\pi}{24}$	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS		0606/1
Paper 1		May/June 202
MARK SCHEME		
Maximum Mark: 80		
	Published	

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE™ and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6.

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 9

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2020 Page 3 of 9

Question	Answer	Marks	Partial Marks
1(a)	$y = -\frac{1}{2}(x+2)(x+1)(x-5)$	B1	For $-\frac{1}{2}$
		B1	For $(x+2)(x+1)(x-5)$
1(b)	$-2 \leqslant x \leqslant -1$	B1	
	x ≥ 5	B1	
2(a)	1080°	B1	
2(b)	2(b)		For correct shape and symmetry about the <i>y</i> -axis
		B1	For correct <i>x</i> -intercepts
			For correct <i>y</i> -intercept
3	$\frac{\mathrm{d}r}{\mathrm{d}t} = 5$	B1	
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r$	B1	
	$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$ leading to $\frac{dA}{dt} = 10\pi r$	M1	Use of the chain rule, may be implied by $5 \times 6\pi$
	$\frac{\mathrm{d}A}{\mathrm{d}t} = 30\pi$	- A1	

© UCLES 2020 Page 4 of 9

Question	Answer	Marks	Partial Marks
4	$x = \frac{-(4 - 2\sqrt{7}) + \sqrt{(4 - 2\sqrt{7})^2 - 4(5 + 4\sqrt{7})(-1)}}{2(5 + 4\sqrt{7})}$	M1	For correct use of quadratic formula, allow inclusion of ± until final answer
	$x = \frac{-(4 - 2\sqrt{7}) + \sqrt{16 + 28 - 16\sqrt{7} + 20 + 16\sqrt{7}}}{2(5 + 4\sqrt{7})}$ $x = \frac{-(4 - 2\sqrt{7}) + 8}{2(5 + 4\sqrt{7})}$	M1	For attempt to simplify discriminant, must see attempt at expansion and subsequent simplification
	$x = \frac{4 + 2\sqrt{7}}{2(5 + 4\sqrt{7})}$ or $x = \frac{2 + \sqrt{7}}{(5 + 4\sqrt{7})}$	A1	For either
	$x = \frac{2 + \sqrt{7}}{\left(5 + 4\sqrt{7}\right)} \times \frac{5 - 4\sqrt{7}}{5 - 4\sqrt{7}}$ $x = \frac{10 + 5\sqrt{7} - 8\sqrt{7} - 28}{25 - 112}$	M1	For attempt to rationalise, must see attempt at expansion and subsequent simplification
	$x = \frac{6}{29} + \frac{\sqrt{7}}{29}$	A1	
5	$\frac{dy}{dx} = \frac{(x+2)\frac{6x}{3x^2 - 1} - \ln(3x^2 - 1)}{(x+2)^2}$	B1	B1 for $\frac{6x}{3x^2 - 1}$
	$(x+2)^2$	M1	For attempt to differentiate a quotient or an equivalent product, must have correct order of terms and correct sign
	134	A1	,0 '
	When $x = 1$, $y = \frac{\ln 2}{3}$ or $0.231(0)$	B1	
	When $x = 1$, $\frac{dy}{dx} = 0.92298$, allow 0.923	B1	
	y = 0.923x - 0.692	B1	
6(a)	x(5x+6) = 8 $5x^2 + 6x - 8 = 0$	M1	For attempt to equate and obtain a 3-term quadratic in either <i>x</i> or <i>y</i>
	$\left(\frac{4}{5}, 10\right)$	A1	Allow A1 if only <i>x</i> -coordinates or only <i>y</i> -coordinates are given
	(-2, -4)	A1	

© UCLES 2020 Page 5 of 9

Question	Answer	Marks	Partial Marks
6(b)	Midpoint $\left(-\frac{3}{5}, 3\right)$	B1	
	Gradient 5	B1	
	$y-3=-\frac{1}{5}\left(x+\frac{3}{5}\right)$	M1	Attempt at perp bisector using <i>their</i> midpoint and perp gradient
	$x-3=-\frac{1}{5}\left(x+\frac{3}{5}\right)$	M1	For use of $y = x$ and attempt to solve
	$\left(\frac{12}{5},\frac{12}{5}\right)$	A1	
7(a)	0.8	B1	
7(b)	Sector area = $\frac{1}{2}12^2 (0.8)$ 57.6	B1	Allow unsimplified
	$\tan 0.4 = \frac{AM}{12}$	M1	Attempt at AM using their $\frac{\theta}{2}$
	$AM = 12 \tan 0.4 5.074$		Allow unsimplified
	Area of triangle $= \frac{1}{2} (5.074 \times 2) \times 2 \times 12$ 60.88	M1	Area of triangle using <i>their AM</i> , allow unsimplified
	Shaded area 3.28	A1	0.
7(c)	$\sin 0.4 = \frac{AM}{OA}$ $OA = \frac{5.074}{\sin 0.4}$ 13.03	M1	Attempt to find OA using their $\frac{\theta}{2}$ and their AM
	Perimeter = $2(1.03) + 9.6 + 2(5.074)$	M1	Allow if using their $\frac{\theta}{2}$ and their CM
	Perimeter = 21.8	A1	
8(a)	$\frac{3(2x+3)+3(2x-3)}{4x^2-9}$	M1	Must see for M1
	$\frac{12x}{4x^2-9}$	A1	

© UCLES 2020 Page 6 of 9

Question	Answer	Marks	Partial Marks
8(b)	$\int \frac{3}{2x-3} + \frac{3}{2x+3} \mathrm{d}x$	B2	
	$= \frac{3}{2}\ln(2x-3) + \frac{3}{2}\ln(2x+3)$		B1 for each correct term, having made use of (a)
	$\frac{3}{2}\ln(4x^2-9)+c \text{ or } $ $\frac{3}{2}\ln((2x-3)(2x+3))+c \text{ or } $	B1	
	$\ln\left(4x^2-9\right)^{\frac{3}{2}}+c$		
8(c)	$\ln\left(4a^2 - 9\right)^{\frac{3}{2}} - \ln 7^{\frac{3}{2}} = \ln 5^{\frac{3}{2}}$	M1	For correct application of limits, allow equivalent forms
	$4a^2 - 9 = 35$	A1	For a correct method of dealing with logarithms and eliminating them
	$a = \sqrt{11}$	M1	For solving a quadratic equation, dep on first M mark
		A1	
9(a)	Second term: $a+d=-14$	B1	
	Sum: $4 = a + 10d$	B1	7 / / /
	d=2	B1	
	a = -16	B1	1.5
	Last term = 24	B1	Ft on their d and their a
9(b)(i)	$ar = 27 p^2$ $ar^4 = p^5$	B1	For both equations
	$r = \frac{p}{3}$	B1	
9(b)(ii)	a = 81p	M1	M1 for attempt to find a in terms of p
		A1	
	$S_{\infty} = \frac{81p}{1 - \frac{p}{3}} \text{ or } \frac{243p}{3 - p}$	B1	Follow through on their a and their r

© UCLES 2020 Page 7 of 9

Question	Answer	Marks	Partial Marks
9(b)(iii)	$81 = \frac{81p}{1 - \frac{p}{3}} \text{ or } 81 = \frac{243p}{3 - p}$	M1	For attempt to solve using <i>their</i> answer to (ii) as far as $p =$
	$p = \frac{3}{4}$	A1	
10(a)(i)	$\frac{(\sec\theta+1)-(\sec\theta-1)}{\sec^2\theta-1}$	M1	For dealing with the fractions
	$\frac{2}{\tan^2 \theta}$	M1	For use of the correct identity
	$2\cot^2\theta$	A1	A1 for given answer, must see $\frac{8}{\tan^2 \theta}$
		776	first
10(a)(ii)	$2\cot^2 2x = 6$ $\tan 2x = \pm \frac{1}{\sqrt{3}}$	M1	M1 for use of (i) and attempt to simplify
		A1	
		M1	M1 for attempt to solve, may be implied by one correct solution
	$2x = -150^{\circ}, -30^{\circ}, 30^{\circ}, 150^{\circ}$ $x = -75^{\circ}, -15^{\circ}, 15^{\circ}, 75^{\circ}$	A2	A1 for each pair of correct solutions
10(b)	$\sin\left(y + \frac{\pi}{3}\right) = \frac{1}{2}$	M1	For dealing with cosec and an attempt to solve
	$y + \frac{\pi}{3} = \frac{5\pi}{6}, \frac{13\pi}{6}$	MI	M1 for a complete method of solution, may be implied by a correct solution
	$y = \frac{\pi}{2}$	A1	
	$y = \frac{11\pi}{6}$	A1	

© UCLES 2020 Page 8 of 9

Question	Answer	Marks	Partial Marks
11	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5}{2}\sin 2x(+c)$	M1	M1 for $k \sin 2x$
		A1	Condone omission of <i>c</i>
	$\frac{3}{4} = \frac{5}{2}\sin\left(-\frac{\pi}{6}\right) + c$	M1	Dep on first M1 for attempt to find c
	c = 2	A1	
	$y = -\frac{5}{4}\cos 2x + 2x(+d)$	M1	M1 for attempt to integrate their $\frac{dy}{dx}$
		A1	Condone omission of d
	$\frac{5\pi}{4} = -\frac{5}{4}\cos\left(-\frac{\pi}{6}\right) - \frac{\pi}{6} + d$	M1	Dep on previous M1 for attempt to find <i>d</i>
	$d = \frac{17\pi}{12} + \frac{5\sqrt{3}}{8}$	A1	Must have the equation for A1
	$y = -\frac{5}{4}\cos 2x + 2x + \frac{17\pi}{12} + \frac{5\sqrt{3}}{8} \text{or}$		
	$y = -\frac{5}{4}\cos 2x + 2x + 5.53$		

© UCLES 2020 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS		0606/12		
Paper 1		May/June 2020		
MARK SCHEME				
Maximum Mark: 80				
	Published			

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE™ and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6.

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 9

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2020 Page 3 of 9

Question	Answer	Marks	Partial Marks
1 \ "	\ 1	B1	Shape
		B1	Correct <i>x</i> -coordinates
	3 3 9	B1	Correct y-coordinate and max in first quadrant
2	$\frac{\mathrm{d}r}{\mathrm{d}t} = 0.5$	B1	
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	B1	
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$ $\frac{\mathrm{d}V}{\mathrm{d}t} = \pi r^2$	M1	For attempt to use a correct form of the chain rule
	When $r = \frac{1}{4}$, $\frac{dV}{dt} = 0.125\pi$	A1	HIII
3(a)	$4096 - 384x + 15x^2$	B1	For 4096
		B1	For –384 <i>x</i>
	3	B1	$For 15x^2$
3(b)	$(4096 - 384x + 15x^2) \left(x^2 - 2 + \frac{1}{x^2}\right)$	B1	For $\left(x^2 - 2 + \frac{1}{x^2}\right)$
	Term independent of x : $-2(4096)+15$	M1	For use of 2 appropriate terms
	-8177	A1	
4(a)(i)	720	B1	
4(a)(ii)	600	B1	FT on their (i) $\times \frac{5}{6}$

© UCLES 2020 Page 4 of 9

Question	Answer	Marks	Partial Marks
4(a)(iii)	Starting with 8: $1 \times 4 \times 3 \times 2 \times 1 = 24$	B1	
	Starting with 3, 5 or 7: $3 \times 4 \times 3 \times 2 \times 2 = 144$	M1	May be considering each case separately, need all three cases for M1
		A1	
	Total = 168	A1	
4(a)(iii)	Alternative		
	Plan for adding numbers ending in 2 and numbers ending in 8	M1	
	Ending in 2: $\left(\frac{1}{6} \times 720\right) \times \frac{4}{5} = 96$	B1	Allow unsimplified
	Ending in 8: $\left(\frac{1}{6} \times 720\right) \times \frac{3}{5} = 72$	B1	Allow unsimplified
	Total = 168	A1	
4(b)	${}^{n}C_{3}=6{}^{n}C_{2}$	B1	$\frac{n(n-1)(n-2)}{3!}$
	$\frac{n(n-1)(n-2)}{3!} = \frac{6n(n-1)}{2!}$	B1	$\frac{6n(n-1)}{2!}$
	n(n-1)[(n-2)-18]=0	M1	Valid attempt to solve, must have at least one previous B mark
	n = 20	A1	°0.
4(b)	Alternative	reP	
	${}^{n}C_{3}=6{}^{n}C_{2}$	B1	For dealing with $(n-2)!$ and $(n-3)!$
	${}^{n}C_{3} = 6{}^{n}C_{2}$ $(n-2)!2! = (n-3)!3!$		to obtain $(n-2)$
	$(n-2) = 6 \times 3$	B1	For dealing with 2! and 3! To obtain 6
	n = 20	M1	Valid attempt to solve, must have at least one previous B mark
		A1	
5(a)	f>9	B1	Allow <i>y</i> but not <i>x</i>
5(b)	It is a one-one function because of the restricted domain	B1	

© UCLES 2020 Page 5 of 9

Question	Answer	Marks	Partial Marks
5(c)	$x = (2y + 3)^2$ or equivalent	M1	For a correct attempt to find the inverse
	$y = \frac{\sqrt{x} - 3}{2}$	M1	For correct rearrangement
	$f^{-1} = \frac{\sqrt{x} - 3}{2}$	A1	Must have correct notation
5(d)	x > 9	B1	FT on their (a)
5(e)	$f\left(\ln\left(x+4\right)\right) = 49$	M1	For correct order
	$(2\ln(x+4)+3)^2 = 49$ $\ln(x+4) = 2$	M1	For correct attempt to solve, dep on previous M mark, as far as $x =$
	$x = e^2 - 4$	A1	
6(a)	$A\left(-\frac{5}{2},\ 0\right)$	B1	
	$x(-5-2x)+3=0$ $2x^{2}+5x-3=0$ $(2x-1)(x+3)=0$	M1	For attempt to eliminate one variable, obtain a 3-term quadratic equation = 0 and attempt to solve
	$B\left(\frac{1}{2}, -6\right)$	A1	Allow A1 if just the x-coordinates or just the y-coordinates are given
6(b)	Area of triangle $=\frac{1}{2}\left(\frac{5}{2} + \frac{1}{2}\right) \times 6$, $= 9$	M1	For attempt at triangle using <i>their</i> values
	$\int_{\frac{1}{2}}^{1} -\frac{3}{x} dx = \left[-3 \ln x \right]_{\frac{1}{2}}^{1}$	M1	For attempt to integrate, must have ln
	$=3\ln\frac{1}{2}$	M1	correct application of limits, dep on previous M mark
	$=-3\ln 2$	M1	realisation that value of integral is negative and making the adjustment
		M1	application of log law, dep on previous M mark
	$Area = 9 + \ln 8$	A1	

© UCLES 2020 Page 6 of 9

Question	Answer	Marks	Partial Marks
7(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(x^2 - 1\right)\frac{5}{2}\left(5x + 2\right)^{-\frac{1}{2}} + 2x\left(5x + 2\right)^{\frac{1}{2}}$	B1	For $\frac{5}{2}(5x+2)^{-\frac{1}{2}}$
		M1	For differentiation of a product
		A1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\left(5x+2\right)^{-\frac{1}{2}}}{2} \left(5\left(x^2-1\right) + 4x\left(5x+2\right)\right)$ or equivalent	M1	Dep on previous M mark for attempt to simplify
	$\frac{dy}{dx} = \frac{25x^2 + 8x - 5}{2\sqrt{5x + 2}}$	A1	
7(b)	$25x^2 + 8x - 5 = 0$	M1	Equating their numerator in (a) to zero and attempt to solve
	x = 0.315	A 1	
	y = -1.70	A1	
7(c)	Consideration of gradient or y values either side of stationary point, remembering that $x > 0$.	M1	Must be a complete method making use of <i>their</i> (a). Allow consideration of $25x^2 + 8x - 5$ as a 'minimum curve'. Accept 2nd derivative method.
	Minimum	A1	///
8(a)	b-a	B1	151
8(b)	$\frac{1}{4}\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) \text{ or } -\frac{3}{4}\mathbf{a} + \frac{1}{2}(\mathbf{a} + \mathbf{b})$	B1	For $\frac{1}{4}$ a or $-\frac{3}{4}$ a
	Satp	B1	For $\frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\frac{1}{2}(\mathbf{a} + \mathbf{b})$
	$\frac{1}{2}\mathbf{b} - \frac{1}{4}\mathbf{a}$	B1	Correct and simplified
8(c)	$n\left(\frac{1}{2}\mathbf{b} - \frac{1}{4}\mathbf{a}\right)$	B1	FT on their answer to (b)
8(d)	$\frac{1}{2}(\mathbf{b} - \mathbf{a}) + k\mathbf{b}$	M1	For use of their (a) and kb
	2 2 ,	A1	

© UCLES 2020 Page 7 of 9

Question	Answer	Marks	Partial Marks
8(e)	$\frac{1}{2}(\mathbf{b} - \mathbf{a}) + k\mathbf{b} = n\left(\frac{1}{2}\mathbf{b} - \frac{1}{4}\mathbf{a}\right)$ $-\frac{1}{2} = -\frac{n}{4}$ $\frac{1}{2} + k = \frac{n}{2}$	M1	For equating <i>their</i> (c) and (d) and then equating like vectors to obtain 2 equations
	n=2	A1	
	$k = \frac{1}{2}$	A1	
9(a)(i)	$v = 20\cos 2t$ when $t = \pi$, $v = 20$	B1	
9(a)(ii)	$20\cos 2t = 0$	M1	Equating <i>their</i> (i) to zero, must be a cosine and attempt to solve
	$t = \frac{\pi}{4}$	A1	
9(a)(iii)	$a = -40\sin 2t$	M1	Attempt to differentiate <i>their v</i> , dep on previous M mark, and use <i>their</i> value for (ii)
	-40	A1	
9(b)(i)	35	B1	
9(b)(ii)	$112.5 = \frac{1}{2}(35 + x) \times 5$	M1	Use of area under appropriate part of the graph
	12	A1	-0:
	x=10	ore A1	
9(b)(iii)	$\frac{25}{5} = \frac{10}{t'}$	M1	Using a ratio method or otherwise, find extra time to stop = 2s or equivalent
	t'=2	A1	
	27	A1	

© UCLES 2020 Page 8 of 9

Question	Answer	Marks	Partial Marks
10(a)	$3x = -\frac{5\pi}{4} - \frac{\pi}{4}, \frac{3\pi}{4}$	M1	For a correct attempt to solve, may be implied by one correct solution
	$x = -\frac{\pi}{12}$	A1	
	$x = \frac{\pi}{4}$	A1	
	$x = -\frac{5\pi}{12}$	A1	
10(b)		B1	Shape – must have three 'parts' with asymptotes
		B1	For correct <i>x</i> -coordinates
	1 to 1 to 1	B1	For correct y-coordinate

© UCLES 2020 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE™ and Cambridge International A & AS Level components, and some Cambridge O Level components.

Cambridge IGCSE – Mark Scheme PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6.

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 8

Cambridge IGCSE – Mark Scheme PUBLISHED

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2020 Page 3 of 8

Question	Answer	Marks	Partial Marks
1(a)	f > 3	B1	Allow y but not x
	$g \in \mathbb{R}$	B1	Allow y but not x
1(b)	$\ln(x-3)$	B1	
	$\ln(x-3) = 9$ $x-3 = e^9$	M1	For attempt to equate to 9 and solve, must get rid of ln
	$x = e^9 + 3$	A1	
1(c)	9(9x-5)-5=112	M1	For correct order of operation
	x = 2	A1	
2(a)	Either $2\log_4 y = \log_2 y$ Or $\log_2 x = 2\log_4 x$	B1	
	Either $\log_2 x + \log_2 y = 8$ leading to $\log_2 xy = 8$ Or $2\log_4 x + 2\log_4 y = 8$ leading to $\log_4 xy = 4$	M1	For use of log law
	xy = 256	A1	111
2(b)	$2y^2 - 3y + 1 = 0$	B1	1-1
	$y = \frac{1}{2}, 1$	M1	For attempt to solve for <i>y</i>
	x = -1	A1	
	x = 0	A1	
3(a)	$v = \left(2t+1\right)^{\frac{1}{2}} \left(+c\right)$	B1	For $v = (2t+1)^{\frac{1}{2}}$ condone absence of c
	8 = 1 + c, c = 7	M1	For attempt to find c must have $k(2t+1)^{\frac{1}{2}}$
	$v = (2t+1)^{\frac{1}{2}} + 7$	A1	

© UCLES 2020 Page 4 of 8

Question	Answer	Marks	Partial Marks
3(b)	$s = \frac{1}{3} (2t+1)^{\frac{3}{2}} + 7t(+d)$	B1	For $\frac{1}{3}(2t+1)^{\frac{3}{2}}$
		M1	For attempt to integrate <i>their</i> answer to (a), must have $k(2t+1)^{\frac{1}{2}}$ in (a)
	$4 = \frac{1}{3} + d$, $d = \frac{11}{3}$	M1	Attempt to find d
	$s = \frac{1}{3} (2t+1)^{\frac{3}{2}} + 7t + \frac{11}{3}$	A1	
4(a)	$2\left(x+\frac{3}{4}\right)^2-\frac{41}{8}$	В3	B1 for 2 B1 for $\frac{3}{4}$
			B1 for $-\frac{41}{8}$
4(b)	$\left(-\frac{3}{4}, -\frac{41}{8}\right)$	B2	B1 for $-\frac{3}{4}$ or FT on their $-b$ B1 for $-\frac{41}{8}$ or FT on their c
4(c)		B1	For shape with max in 2 nd quadrant
	Jan 2 - Styll	B1	For x-intercepts $\frac{-3 \pm \sqrt{41}}{4}$
	Tr. satni	B1	For <i>y</i> -intercept of 4 and cusps
4(d)	41 8	B1	FT on their c

© UCLES 2020 Page 5 of 8

Question	Answer	Marks	Partial Marks
5(a)	p(3): $162+9a+36+b=11$ p(-1): $-6+a-12+b=-21$	M1	For attempt at $p(3)$ and $p(-1)$
	9a + b + 187 = 0 $a + b + 3 = 0$	A1	for both, may be implied by correct work later
	$a = -23, \qquad b = 20$	M1	attempt to solve simultaneous equations
		A1	For both
	$p(x) = (x-2)(6x^2-11x-10)$	M1	For attempt to factorise or use algebraic long division
		A1	For $(6x^2 - 11x - 10)$
5(b)	p(x) = (x-2)(3x+2)(2x-5)	M1	For attempt to factorise or use quadratic formula – must be seen
	$2, -\frac{2}{3}, \frac{5}{2}$	A1	For all three solutions
6(a)	$\frac{1}{13} \binom{5}{-12}$	B1	-111
6(b)	4 - 2k = -10r $1 + 3k = 5r$	M1	equating like vectors to obtain 2 equations
	$r = -\frac{7}{10}, \ k = -\frac{3}{2}$	M1	Dep on previous M mark, for attempt to solve simultaneously
	The sale	A1	.,0
6(c)(i)	3q-2p	B1	
6(c)(ii)	9 q – 6 p	B1	
6(c)(iii)	A common point of <i>A</i> and the same direction vector	B1	
6(c)(iv)	1:2	B1	
7(a)	$\frac{1}{2} \times 10^2 \times \theta = 35 \text{ so } \theta = 0.7$	B1	

© UCLES 2020 Page 6 of 8

Question	Answer	Marks	Partial Marks
7(b)	Arc length CD: 7	B1	
	$\sin(0.35) = \frac{AB/2}{12}$	M1	For a complete method to find <i>AB</i> , could be using cosine rule
	AB = 8.23(0)	A1	
	Perimeter = $7 + 4 + 8.23 = 19.2$	A1	
7(c)	Area of triangle = $\frac{1}{2}12^2 \sin 0.7$	M1	For complete attempt at triangle area, may use equivalent method
	Area of triangle = 46.4	A1	
	Shaded area =11.4	A1	Follow through on <i>their</i> area of the triangle
8(a)	$\frac{n}{2}(14+(n-1)0.4)$	B1	
	$\frac{n}{2}(14 + (n-1)0.4) > 300$ $0.4n^2 + 13.6n - 600 > 0$	M1	Attempt to form a 3 term inequality and find the positive critical value
	Positive critical value 25.29	A1	
	26 terms	A1	777
8(b)	a+ar=9	B1	7.1
	$\frac{a}{1-r} = 36$	B1	.0
	36(1+r)(1-r)=9	M1	attempt at solution of simultaneous equations
	$r = \frac{\sqrt{3}}{2}$	A1	

© UCLES 2020 Page 7 of 8

Question	Answer	Marks	Partial Marks
9	x(5x-3) = 2 5x ² - 3x - 2 = 0	M1	attempt at a 3-term quadratic equation in one variable with solution
	$x=1, x=-\frac{2}{5}$	A1	Allow if $x = -\frac{2}{5}$ not seen
	A (1, 2)	A1	
	$B\left(\frac{3}{5}, 0\right)$	B1	
	Area of triangle = $\frac{2}{5}$	M1	Using their A and B
	Area under curve: $\int_{1}^{3} \frac{2}{x} dx = \left[2 \ln x\right]_{1}^{3}$	B1	For $\left[2\ln x\right]_1^3$
	$=2\ln 3$	M1	For use of limits
	Total area = $\frac{2}{5} + \ln 9$	A1	
10(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}x(x+2)^{-\frac{1}{2}} + (x+2)^{\frac{1}{2}}$	B1	For $\frac{1}{2}(x+2)^{-\frac{1}{2}}$
		M1	For differentiation of a product
		A1	/:/
	$\frac{dy}{dx} = \frac{1}{2}(x+2)^{-\frac{1}{2}} \left[x + 2(x+2) \right]$	M1	For attempt to simplify
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x+4}{2\sqrt{x+2}}$	A1	
10(b)	3x + 4 = 0	M1	For setting <i>their</i> numerator in (a) to zero and attempt to solve
	$x = -\frac{4}{3}$	A1	
	$y = -\frac{4\sqrt{6}}{9} \text{ oe}$	A1	
10(c)	Using the gradient method or inspection of <i>y</i> -coordinates either side of stationary point. Allow use of second derivative	M1	complete method
	Minimum	A1	Must be from correct work

© UCLES 2020 Page 8 of 8

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 12 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Cambridge IGCSE – Mark Scheme PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6.

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 10

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Cambridge IGCSE – Mark Scheme PUBLISHED

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Guidance
1(a)	Satpre	3	B1 For correct shape with minimum point in the fourth quadrant and the maximum point in the first quadrant. Ends of the curve must be in the 2nd and 4th quadrants B1 for correct <i>x</i> - intercepts (-1,0), (2,0), (4,0) B1 for correct <i>y</i> -intercept (0,-24)
1(b)	x < -1	B 1	
	2 < x < 4	B1	

© UCLES 2020 Page 4 of 10

Question	Answer	Marks	Guidance
2	$2x^{2} + 4x + k - 1 = kx + 3$ $2x^{2} + (4 - k)x + (k - 4) = 0$	2	M1 for attempt to equate the line and curve and simplify to a 3 term quadratic equation = 0 A1 for a correct equation, allow equivalent form
	$(4-k)^2 = 4 \times 2 \times (k-4)$	M1	Use of discriminant in any form
	$k^{2}-16k+48=0$ k=12, $k=4Do not isw$	2	Dep M1 on previous M mark, for attempt to solve a quadratic equation in <i>k</i> A1 for both
	Alternative 1		
	$2x^{2} + 4x + k - 1 = kx + 3$ $2x^{2} + (4 - k)x + (k - 4) = 0$	(2	M1 for attempt to equate the line and curve and simplify A1 for a correct equation, allow equivalent form
	$k = 4x + 4$ $2\left(\frac{k-4}{4}\right)^{2} + (4-k)\left(\frac{k-4}{4}\right) + (k-4) = 0$	M1	Equating gradients and substitution to obtain a quadratic equation in terms of <i>k</i>
	$k^{2}-16k+48=0$ k=12 and $k=4Do not isw$	2)	Dep M1 on previous M mark, for attempt to solve a quadratic equation in <i>k</i> A1 for both
	Alternative 2		
	$2x^2 + 4x + k - 1 = kx + 3$	(2	M1 for attempt to equate the line and curve and simplify
	$2x^{2} + (4-k)x + (k-4) = 0$		A1 for a correct equation, allow equivalent form
	$k = 4x + 4$ $2x^{2} - 4x = 0$ $x = 0, 2$	M1	Equating gradients and substitution to obtain a quadratic equation in terms of <i>x</i> and solution of this equation to obtain 2 <i>x</i> values
	k = 4x + 4 $k = 12 and k = 4$ Do not isw	2)	Dep M1 on previous M mark, for substitution of their x values to obtain k values A1 for both

© UCLES 2020 Page 5 of 10

Question	Answer	Marks	Guidance
3	b = 243	B1	Must be evaluated
	$^{5}C_{1} \times 3^{4} \times (-a) = -81$	M1	Allow equivalent with no negative signs, allow sign error
	$a = \frac{1}{5}$ oe	A1	
		M1	Allow with their a^2
	$c = \frac{54}{5}$ or 10.8 oe	A1	Must be from correct working
4	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6x}{3x^2 - 4} - \frac{x^2}{2}$	2	M1 for attempt to differentiate, must have at least one term correct A1 All correct
	When $x = 2$, $\frac{dy}{dx} = -\frac{1}{2}$	B1	
	When $x = 2$, $y = \ln 8 - \frac{4}{3}$, or exact equivalent	B1	Allow $\ln 8 - \frac{8}{6}$
	Equation of tangent $y - \left(\ln 8 - \frac{4}{3}\right) = -\frac{1}{2}(x - 2) \text{ oe}$	M1	Dep on first M mark, allow unsimplified, allow use of decimals
	$\left(0, \ln 8 - \frac{1}{3}\right)$, or exact equivalent	A1	Allow $x = 0, y = \ln 8 - \frac{1}{3}$
5(a)	$\frac{1}{2} \left(5 - \sqrt{3} \right) \left(2 + 4\sqrt{3} \right)$ $\frac{1}{2} \left(10 - 2\sqrt{3} + 20\sqrt{3} - 12 \right)$	M1	Need to see $\frac{1}{2} (10 - 18\sqrt{3} - 12)$ or
	$\frac{1}{2} \left(10 - 2\sqrt{3} + 20\sqrt{3} - 12 \right)$		$(5-9\sqrt{3}-6)$ minimum for M1
	$9\sqrt{3}-1$	A1	
5(b)	$\tan ABC = \frac{5 - \sqrt{3}}{1 + 2\sqrt{3}} \times \frac{1 - 2\sqrt{3}}{1 - 2\sqrt{3}}$ $= \frac{5 - \sqrt{3} - 10\sqrt{3} + 6}{1 - 12}$	M1	Attempt at trig ratio and attempt to rationalise. Need to see $5-11\sqrt{3}+6$ in the numerator as a minimum for M1 Allow one error only
	$=\sqrt{3}-1$	2	A1 for $\sqrt{3}$, A1 for -1

© UCLES 2020 Page 6 of 10

Question	Answer	Marks	Guidance
5(c)	$\sec^2 ABC = \tan^2 ABC + 1$ $= \left(\sqrt{3} - 1\right)^2 + 1 \text{ oe}$	M1	Allow use of correct identity with their (b)
	$=5-2\sqrt{3}$	A1	
	Alternative		
	$\sec^2 ABC = \left(\frac{\sqrt{(5-\sqrt{3})^2 + (1+2\sqrt{3})^2}}{1+2\sqrt{3}}\right)^2$	(M1	For a complete method using triangle <i>ABD</i> , with sufficient detail in the expansions and rationalisation
	leads to $\frac{41-6\sqrt{3}}{13+4\sqrt{3}}$ leads to		
	$\frac{533 + 72 - 242\sqrt{3}}{121}$	RA	
	$=5-2\sqrt{3}$	A1)	
6(a)	Midpoint = (2,7)	B1	
	Gradient of $AB = \frac{6}{8}$ oe	B1	-111
	Perp bisector: $y-7 = -\frac{4}{3}(x-2)$	M1	Must be using a perp gradient and a mid-point
	4x + 3y - 29 = 0	A1	Allow in any order but must be equated to zero.
6(b)	3 Sature	B1	FT on their (a)
6(c)	Displacement vector $\overrightarrow{CM} = \begin{pmatrix} -3\\4 \end{pmatrix}$	M1	Allow equivalent vectors or other methods. May be implied by one correct coordinate.
	(-1,11)	A1	Allow $x = -1, y = 11$

© UCLES 2020 Page 7 of 10

Question	Answer	Marks	Guidance
7(a)	$p\left(-\frac{1}{2}\right): -\frac{a}{8} + \frac{3}{4} - \frac{b}{2} - 12 = 0$ $p(3): 27a + 27 + 3b - 12 = 105$	M1	For attempt at an equation using either $p\left(-\frac{1}{2}\right)$ or $p(3)$
	a+4b=-90	A1	Allow equivalent with constants collected
	9a + b = 30	A1	Allow equivalent with constants collected
	a = 6, b = -24	2	M1 for attempt to solve <i>their</i> equations, dep on first M mark A1 for both
7(b)	$(2x+1)(3x^2-12)$	2	B1 for $3x^2$ B1 for -12 and no extra term in x
7(c)	$x = -\frac{1}{2}$	B1	
	$x = \pm 2$	B1	Dep on both B marks in part (b)
8(a)	$\begin{pmatrix} -20 \\ 48 \end{pmatrix}$	B1	-111
8(b)	$\binom{-20}{48}t$	B1	Follow through on their (a)
8(c)		B1	
8(d)		B1	
8(e)	$\left \overrightarrow{PQ} \right ^2 = (12 - 5t)^2 + (8 - 3t)^2$	M1	Attempt to find modulus of <i>their</i> (d) which must contain terms in <i>t</i>
	$\left \overrightarrow{PQ} \right = \sqrt{144 - 120t + 25t^2 + 64 - 48t + 9t^2}$ $PQ = \sqrt{34t^2 - 168t + 208}$	A1	Must see correct expansion leading to given answer.

© UCLES 2020 Page 8 of 10

Cambridge IGCSE – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
8(f)	$34t^2 - 168t + 204 = 0$	M1	For dealing with square root correctly and attempt to solve a 3 term quadratic equation
	2.15 only	A1	
9(a)(i)	360	B1	
9(a)(ii)	60	B1	FT on their (b)(i) divided by 6
9(a)(iii)	A complete plan for dealing with odd numbers and numbers greater than 7000, see below	M1	Must be considering each case
	Starts with 8 and ends with odd = 48	B1	
	Starts with 7 or 9 and ends with odd = 72	B1	
	120	A1	
	Alternative		2
	Their answer to (a)(i) –odd numbers starting with 2–odd number starting with 3 or 5–all even numbers	(M1	Must be considering each case
	All even numbers =120 Odd and starting with 2 = 48 Odd and starting with 3 or 5 = 72	2	B1 for 1 correct
	120	A1)	
9(b)	$\frac{n!}{(n-3)!3!} = 92n$	B1	; <u> </u>
	n(n-1)(n-2) = 552n	M1	Attempt to simplify factorials
	$n(n^2 - 3n - 550) = 0$	M1	Dep on previous M mark for expansion and simplification to a
	n(n-25)(n+22)=0		cubic or quadratic in <i>n</i> and attempt to solve
	n = 25	A1	For $n = 25$ only
10(a)	$\alpha + 45^{\circ} = 144.7^{\circ}, 324.7^{\circ}$	3	M1 for attempt to solve using a correct order of operations, may be implied by one correct solution A1 for 1 correct solution
	$\alpha = 99.7^{\circ}, 279.7^{\circ}$		A1 for a second correct solution and no extras

© UCLES 2020 Page 9 of 10

Question	Answer	Marks	Guidance
10(b)(i)	$\frac{(\sin\theta+1)-(\sin\theta-1)}{\sin^2\theta-1}$	M1	For dealing with fractions
	$\frac{2}{-\cos^2\theta}$	M1	For simplification of numerator and use of the correct identity
	$-2\sec^2\theta$ $a = -2$	A1	Must see previous line for A1
10(b)(ii)	$-2\sec^2 3\phi = -8 \text{ oe}$ $\sec 3\phi = \pm 2$	M1	For making use of (i) and attempt to simplify in terms of 3ϕ
	$\cos 3\phi = \pm \frac{1}{2}$	A1	
	$3\phi = -\frac{2\pi}{3}, -\frac{\pi}{3}, \frac{\pi}{3}, \frac{2\pi}{3}$ $\phi = -\frac{2\pi}{9}, -\frac{\pi}{9}, \frac{\pi}{9}, \frac{2\pi}{9}$ or $\pm 0.349, \pm 0.698,$	3	Dep M1 for attempt to solve, may be implied by one correct solution A1 for each pair of correct solutions
11	$\left[\ln(2x+3) + \ln(3x-1) - \ln x\right]_1^a$	2	B1 for 1 term correct B1 all correct
	$(\ln(2a+3) + \ln(3a-1) - \ln a)$ - $(\ln 5 + \ln 2)$	M1	Correct substitution of limits, dep on first B1, ignore equality Must have 3 terms involving <i>x</i>
	$ \ln\frac{(2a+3)(3a-1)}{10a} = \ln 2.4 $	M1	For use of both addition and subtraction rules, ignore equality Or for use of addition rule on each side of an equation.
	$6a^2 - 17a - 3 = 0$	A1	
	a = 3	2	M1 for solution of their quadratic A1 for $a = 3$ only

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/11

Paper 1

October/November 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 10

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
 cao correct answer only
 dep dependent
 FT follow through after error

FT follow through after error isw ignore subsequent working not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2019 Page 3 of 10

Question	Answer	Marks	Guidance
1	$A' \cap B$ oe	B1	
	$(X \cap Y) \cup (X \cap Z)$ or $X \cap (Y \cup Z)$	B1	
2	$2x^2 + 3x + k = kx - 3$	M1	For an attempt to equate and simplify to a 3 term quadratic equation, allow an error in one term
	$2x^{2} + (3-k)x + (k+3) = 0$	A1	
	$(3-k)^2 - 4 \times 2 \times (k+3)$	M1	For attempt to use the discriminant, allow previous error, leading to a quadratic equation in terms of k
	$k^2 - 14k - 15 = 0$ giving critical values of -1 and 15	A1	For critical values
	-1 < k < 15	A1	
3	Either $7^{x} \times 7^{2y}$ or $49^{\frac{x}{2}} \times 49^{y}$ or $5^{5x} \times 5^{2y}$ or $25^{\frac{5x}{2}} \times 25^{y}$	M1	For expressing the terms on the left hand side of either one of the 2 equations in terms of powers of 7, 49, 5 or 25
	$7^x \times 7^{2y} = 7^0 \text{ or } 49^{\frac{x}{2}} \times 49^y = 49^0$	A1	
	$5^{5x} \times 5^{2y} = 5^{-2} \text{ or } 25^{\frac{5x}{2}} \times 25^y = 25^{-1}$	A1	
	leading to $x + 2y = 0$ and $5x + 2y = -2$	M1	For attempt to solve two linear equations, with integer coefficients and constants, in terms of <i>x</i> and <i>y</i>
	$x = -\frac{1}{2}, \ y = \frac{1}{4}$	A1	
4(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\Big(\ln\Big(4x^2+1\Big)\Big) = \frac{8x}{4x^2+1}$	B1	
	$(2x-3)\frac{8x}{(2x-3)} - 2\ln(4x^2+1)$	M1	For attempt to differentiate a quotient
	$\frac{dy}{dx} = \frac{(2x-3)\frac{8x}{(4x^2+1)} - 2\ln(4x^2+1)}{(2x-3)^2}$	A1	For all other terms, not including $\frac{8x}{4x^2+1}$, correct
4(ii)	When $x = 2$, $\frac{dy}{dx} = \frac{16}{17} - 2\ln 17$ = -4.73	M1	For attempt to find value of $\frac{dy}{dx}$ when $x = 2$ and multiply by h
	Change in $y = -4.73h$	A 1	

Question	Answer	Marks	Guidance
5(i)	f > 1	B1	Must be using correct notation
	$g \in \mathbb{R}$	B1	Must be using correct notation
5(ii)	g(0)=1, $g(1)=2and attempt at f(2)$	M1	For attempt at g ² and correct order
	f(2) = 164.8 awrt 165	A1	
5(iii)	P	B3	B1 for correct f and $(0,4)$, must be in first and second quadrant B1 for correct f^1 and $(4,0)$, must be in first and fourth quadrant B1 for $y = x$ and/or symmetry implied, by 'matching intercepts'. No intersection.
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = k(8x+5)^{-\frac{1}{2}}$	M1	For attempt to differentiate, must be in the form $k(8x + 5)^{-\frac{1}{2}}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4(8x+5)^{-\frac{1}{2}}$	A1	
	When $x = \frac{1}{2}, y = 3$	B1	
	Normal: $y-3 = -\frac{3}{4}\left(x - \frac{1}{2}\right)$	M1	For attempt at the normal when $x = \frac{1}{2}$, using correct process for <i>their</i> $\frac{dy}{dx}$ and <i>their y</i> .
	6x + 8y - 27 = 0	A1	

Question	Answer	Marks	Guidance
7(i)	$\lg y = \lg A + x \lg b$	B1	For statement, may be implied by subsequent work
	Either	M1	For one correct equation
	$6 = \lg A + 3.4 \lg b$ or $3.6 = \lg A + 2.2 \lg b$	M1	For another correct equation and attempt to solve simultaneously
	$\lg b = 2, b = 100$	A1	
	$\lg A = -0.8, A = 10^{-0.8} \text{ or } 0.158$	A1	
	Or Gradient = $\lg b = 2$	M1	equating gradient to lg b and attempt to evaluate
	b = 100	A1	Must be identified as b
	$6 = \lg A + 3.4 \lg b$ or $3.6 = \lg A + 2.2 \lg b$	M1	For a correct equation and attempt to find $\lg A$
	$\lg A = -0.8, A = 10^{-0.8} \text{ or } 0.158$	A1	Must be identified as A
7(ii)	$\lg 900 = -0.8 + 2x \text{ oe}$	M1	For correct use of $y = 900$
	x = 1.88	A1	
8(i)	$BC^{2} = (7 + \sqrt{5})^{2} + (7 - \sqrt{5})^{2}$ $= 49 + 14\sqrt{5} + 5 + 49 - 14\sqrt{5} + 5$ $= 108$	M1	For use of Pythagoras' theorem and attempt to expand and simplify
	$BC = 6\sqrt{3}$	A1	.5
	Perimeter = $22 + 6\sqrt{5} + 6\sqrt{3}$	A1	

Question	Answer	Marks	Guidance
8(ii)	Either $ \frac{1}{2} \left(4 + 3\sqrt{5} + 11 + 2\sqrt{5} \right) \left(7 + \sqrt{5} \right) $ $ = \frac{1}{2} \left(15 + 5\sqrt{5} \right) \left(7 + \sqrt{5} \right) $ $ = \frac{1}{2} \left(105 + 35\sqrt{5} + 15\sqrt{5} + 25 \right) $	M1	Either For a valid method and attempt to expand out and simplify
	Or $ (4+3\sqrt{5})(7+\sqrt{5}) + \frac{1}{2}(7+\sqrt{5})(7-\sqrt{5}) $ $ = 28 + 21\sqrt{5} + 4\sqrt{5} + 15 + \frac{1}{2}(49-5) $	M1	Or For a valid method and attempt to expand out and simplify
	Area = $65 + 25\sqrt{5}$	A2	A1for each term
9(i)	Either $15^2 = 10^2 + 10^2 - 200 \cos AOB$ $\cos AOB = -0.125$	M1	For use of cosine rule
	AOB = 1.696 so 1.70 to 2 dp	A1	Must have justification to 2 dp
	Or $\sin\left(\frac{AOB}{2}\right) = \frac{7.5}{10}$ $\frac{AOB}{2} = 0.8481$	M1	For use of basic trig
	AOB = 1.696 so 1.70 to 2 dp	A1	1.5

Question	Answer	Marks	Guidance
9(ii)	Angle $DOC = \frac{\pi}{3}$	B1	
	Either $AOD = BOC = 0.5 \left(2\pi - \frac{\pi}{3} - 1.696 \right)$ $AOD = BOC = 1.77$	M1	For attempt to get AOD or BOC
	Arc lengths = 17.7	M1	For attempt at arc length using their previous answer
	Perimeter = $15 + 10 + (2 \times 17.7) = 60.4$	A1	
	Or $Arc AB = 17 \text{ or } Arc CD = \frac{10\pi}{3}$	M1	For either arc length
	$(20\pi - \operatorname{arc} AB - \operatorname{arc} CD)$	M1	
	Perimeter = 60.4	A1	
9(iii)	Either Area of each sector = $\frac{1}{2}10^2 (1.770)$	M1	For area of sector using their BOC
	Area of triangles = $\left(\frac{1}{2} \times 100 \times \sin \frac{\pi}{3}\right) + \left(\frac{1}{2} \times 100 \sin 1.70\right)$	M1	For area of one triangle using the sine rule oe
	Total area = $177 + 43.3 + 49.6$	M1	For plan
	Area = awrt 270	A1	
	Or Area of upper segment = $\frac{1}{2}10^2 (1.696 - \sin 1.696)$	M1	For area of a sector or area of a triangle using the sine rule oe
	Area of lower segment = $\frac{1}{2}10^2 \left(\frac{\pi}{3} - \sin\frac{\pi}{3}\right)$	M1	For whichever has not been obtained in previous part
	Shaded area = 100π – are of the 2 segments Area = $314.2 - 35.2 - 9.06$	M1	For plan
	Area = awrt 270	A1	

Question	Answer	Marks	Guidance
10	$1.5 = 2 + \cos 3x$ $\cos 3x = -0.5$	M1	For correct attempt to find points of intersection
	$3x = \frac{2\pi}{3}, \ \frac{4\pi}{3}$	M1	For dealing with $3x$ correctly
	$x = \frac{2\pi}{9}$ or 40°	A1	
	$x = \frac{4\pi}{9}$ or 80°	A1	
	Either $\int_{\frac{2\pi}{9}}^{\frac{4\pi}{9}} 1.5 - (2 + \cos 3x) dx$	M1	For subtraction method – condone omission of or incorrect limits
	$\left[-0.5x - k\sin 3x\right]_{\frac{2\pi}{9}}^{\frac{4\pi}{9}}$	M1	For attempt to integrate – condone omission of or incorrect limits
	$\left[-0.5x - \frac{1}{3}\sin 3x \right]_{\frac{2\pi}{9}}^{\frac{4\pi}{9}}$	A1	All correct – condone omission of or incorrect limits
	$\left(-\frac{2\pi}{9} + \frac{\sqrt{3}}{6}\right) - \left(-\frac{\pi}{9} - \frac{\sqrt{3}}{6}\right)$	M1	Dep for application of limits, must be in radians
	Area = $\frac{\sqrt{3}}{3} - \frac{\pi}{9}$	A1	į
	$ \begin{array}{ c c } \mathbf{Or} \\ \left(1.5 \times \frac{2\pi}{9}\right) \end{array} $	M1	For attempt at rectangle (must include subtraction subsequently)
	$\left[2x + k\sin 3x\right]_{\frac{2\pi}{9}}^{\frac{4\pi}{9}}$	M1	For attempt to integrate – condone omission of or incorrect limits
	$\left[2x + \frac{1}{3}\sin 3x\right]_{\frac{2\pi}{9}}^{\frac{4\pi}{9}}$	A1	All correct – condone omission of or incorrect limits
	$\left(\left(\frac{8\pi}{9} - \frac{\sqrt{3}}{6} \right) - \left(\frac{4\pi}{9} + \frac{\sqrt{3}}{6} \right) \right)$	M1	Dep for application of limits, must be in radians
	$Area = \frac{\sqrt{3}}{3} - \frac{\pi}{9}$	A1	

© UCLES 2019 Page 9 of 10

Question	Answer	Marks	Guidance
11(a)(i)	362 880	B1	
11(a)(ii)	7! ×2	B1	For 7!
	10 080	B1	For 7! ×2 leading to 10080
11(a)(iii)	Total = 4! ×4! ×3! = 3456	В3	B1 for treating as 4 separate units 4! B1 for either number of ways of arranging the maths books amongst themselves 4! or the number of ways of arranging the physics books amongst themselves 3!
11(b)(i)	18 5 6 4	B1	
11(b)(ii)	Total 3738	B4	B1 4 boys 3150 B1 5 boys 560 B1 6 boys 28
12	$\frac{\mathrm{d}y}{\mathrm{d}x} = k\cos\left(x + \frac{\pi}{3}\right) + c$	M1	For attempt to integrate
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\cos\left(x + \frac{\pi}{3}\right) + c$	A1	All correct, condone omission of +c
	$5 = -2\cos\frac{2\pi}{3} + c$	M1	Dep for attempt to find c
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\cos\left(x + \frac{\pi}{3}\right) + 4$	A1	,5
	$y = p\sin\left(x + \frac{\pi}{3}\right) \left(+qx + d\right)$	M1	attempt to integrate a second time to obtain $y = p \sin\left(x + \frac{\pi}{3}\right)$
	$y = -2\sin\left(x + \frac{\pi}{3}\right) + 4x + d$	A1	All correct, condone omission of +d
	$\frac{5\pi}{3} = -2\sin\frac{2\pi}{3} + \frac{4\pi}{3} + d$	M1	Dep for attempt to find a second arbitrary constant
	$y = -2\sin\left(x + \frac{\pi}{3}\right) + 4x + \frac{\pi}{3} + \sqrt{3}$ or $y = -2\sin\left(x + \frac{\pi}{3}\right) + 4x + 2.78$	A1	

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12

Paper 1

October/November 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 10

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2019 Page 3 of 10

Question	Answer	Marks	Guidance
1(i)		В3	B1 for y intercept $(0,1)$, must have a graph B1 for starting and finishing at $(\pm 90,-1)$ B1 for all correct, must be attempt at a curve passing through $(\pm 30,-1)$ and $(\pm 60,-3)$
1(ii)	2	B1	
1(iii)	$120^{\circ} \text{ or } \frac{2\pi}{3}$	B1	
2	$\lg y^2 = mx + c$	B1	May be implied by subsequent work
	Gradient = -4 (= m)	B1	
	c = 32	B1	
	$y = 10^{\frac{c}{2} + their} \frac{mx}{2}$	M1	Dep on first B1 Use of $\lg y^2 = 2\lg y$ and $10^{their} \frac{c}{2} + their \frac{mx}{2}$ Or use of $y^2 = 10^{(their\ c + their\ mx)}$ and $10^{their} \frac{c}{2} + their \frac{mx}{2}$
	$y = 10^{16-2x}$	A1	
3	$\left(1 - \frac{x}{7}\right)^{14} = 1 - 2x + \frac{13}{7}x^2$	B2	All terms correct or B1 for 2 correct terms
	$(1-2x)^4 = 1 - 8x + 24x^2 \dots$	B2	First three terms correct or B1 for one incorrect term
	Product = $1 - 10x + \frac{293}{7}x^2$	M1	For attempt to multiply out to obtain $(1)-10x + mx^2$, $m \ne 16$
	$a = -10, \ b = \frac{293}{7}$	A1	For both, need to identify a and b
4(i)	3 3 3 5	B4	B1 for shape, with max in first quadrant B1 for $(-0.5,0)$ and $(5,0)$ B1 for $(0,5)$ B1 all correct, with cusps and correct curvature for $x < 0.5$ and $x > 5$

Question	Answer	Marks	Guidance
4(ii)	k = 0	B1	Not from incorrect work
	Stationary point when $y = \pm \frac{121}{8}$ or ± 15.125	M1	For attempt to find y-coordinate of stationary point, must be a complete method i.e. Use of calculus Use of discriminant, Use of completing the square Use of symmetry Allow if seen in part (i), but must be used in (ii)
	$k > \frac{121}{8}$	A1	cao
5a(i)	fg	B1	
5a(ii)	g^{-1}	B1	
5a(iii)	\mathbf{f}^{-1}	B1	
5a(iv)	g^2	B1	
5(b)(i)	Undefined at $x = 0$ oe	B1	
5(b)(ii)	$4 = a + b$ $h'(x) = \frac{p}{x^3} \text{ and attempt at } h'(1)$	M1	For attempt at h(1) and differentiation to obtain h'(1), must have the form $h'(x) = \frac{p}{x^3}$ oe
	b = -8 $a = 12$	A1	For both
6(a)	$p^{\frac{7}{2}}q^{\frac{5}{3}}r^{-\frac{7}{3}}$	В3	B1 for each term or for each of $a = \frac{7}{2}$, $b = \frac{5}{3}$, $c = -\frac{7}{3}$

Question	Answer	Marks	Guidance
6(b)	Either $\log_7 x + \frac{2}{\log_7 x} = 3$	M1	For change of base.
	$(\log_7 x)^2 - 3\log_7 x + 2 = 0$ $\log_7 x = 1$, $\log_7 x = 2$	M1	Dep for forming a 3 term quadratic equation in $\log_7 x$ and a correct attempt to solve
	x = 7, x = 49	M1	Dep on both previous M marks for dealing with a base 7 logarithm correctly
		A1	For both
	$\mathbf{Or} \ \frac{1}{\log_x 7} + 2\log_x 7 = 3$	M1	For change of base
	$2(\log_x 7)^2 - 3\log_x 7 + 1 = 0$ $\log_x 7 = 1, \log_x 7 = 0.5$	M1	Dep for forming a 3 term quadratic equation in $\log_x 7$ and a correct attempt to solve
	x = 7, x = 49	M1	Dep on both previous M marks for dealing with a base <i>x</i> logarithm correctly
		A1	For both
	Or $\frac{\lg x}{\lg 7} + 2\frac{\lg 7}{\lg x} = 3 \text{ or } \lg 1000$	M1	For change of base
	$(\lg x)^{2} - 3\lg 7(\lg x) + 2(\lg 7)^{2} = 0$ $\lg x = 2\lg 7 \qquad \lg x = \lg 7$	M1	Dep for forming a 3 term quadratic equation in lg x and a correct attempt to solve
	x = 7, x = 49	M1	Dep on both previous M marks for dealing with a base 10 logarithm correctly
		A1	For both, must be exact
7(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(e^{x^2} + 1\right) + 2xe^{x^2}\left(x + 5\right)$	B1	For $2xe^{x^2}$
		M1	For attempt at differentiating a product or expanding brackets and differentiating a product
		A1	For all other terms, apart from $2xe^{x^2}$, correct

Question	Answer	Marks	Guidance
7(ii)	When $x = 0.5$, $\frac{dy}{dx} = 9.35$	M1	For attempt to find <i>their</i> $\frac{dy}{dx}$ when $x = 0.5$ and multiplication by p
	Approximate change = $9.35p$	A1	
7(iii)	$\frac{dy}{dx} \times \frac{dx}{dt} = \frac{dy}{dt}$ $9.346 \times \frac{dx}{dt} = 2$	M1	For use of correct rates of change equation using their $\frac{dy}{dx}$ when $x = 0.5$ and $\frac{dy}{dt} = 2$
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.214$	A1	FT on $\frac{2}{their \ 9.346}$ Must be correct to at least 3 sf
8(a)(i)	Either $ \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & 3 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} \text{ or } \begin{pmatrix} 2 & 1 \\ 1 & 3 \\ 1 & 1 \\ 0 & 1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} $	B2	For correct matrices in correct order or B1 if one correct matrix and a slip in one element of the other matrix
	Or $ (4 \ 2 \ 0) \begin{pmatrix} 2 & 1 & 1 & 0 & 3 \\ 1 & 3 & 1 & 1 & 0 \\ 1 & 0 & 2 & 3 & 1 \end{pmatrix} $ or $(4 \ 2) \begin{pmatrix} 2 & 1 & 1 & 0 & 3 \\ 1 & 3 & 1 & 1 & 0 \end{pmatrix} $	B2	For correct matrices in correct order or B1 if one correct matrix and a slip in one element of the other matrix
8(a)(ii)	(10) 10 6 or (10 10 6 2 12)	M1	For matrix multiplication of <i>their</i> (i), with at least 2 elements correct, must be in correct form , may be unsimplified
	2	A1	All correct and identifying team E
8(b)(i)	$\frac{1}{6} \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix}$	B2	B1 for $\frac{1}{6}$ and B1 for $\begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix}$

© UCLES 2019 Page 7 of 10

Question	Answer	Marks	Guidance
8(b)(ii)	$\mathbf{C} = \mathbf{A}^{-1}\mathbf{B}$	M1	For pre-multiplication by <i>their</i> inverse from (i)
	$\mathbf{C} = \frac{1}{6} \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 1 & -2 \end{pmatrix}$	M1	Dep for matrix multiplication, using <i>their</i> inverse from (i), at least 2 elements correct
	$=\frac{1}{6}\begin{pmatrix} 21 & -2\\ -9 & -2 \end{pmatrix} \text{ oe }$	A1	
9(i)	$\pi r^2 h = 1200\pi$	B1	
	$h = \frac{1200}{r^2} \text{ or } \pi r h = \frac{1200\pi}{r} \text{ and substitution}$ into their S	B1	Must have attempt to use in an equation for S
	$S = 2\pi r^2 + \left(2\pi r \times \frac{1200}{r^2}\right)$ leading to given answer	B1	
9(ii)	$\frac{\mathrm{d}S}{\mathrm{d}r} = 4\pi r - \frac{2400\pi}{r^2}$	M1	Must obtain the form $Ar + \frac{B}{r^2}$
	When $\frac{dS}{dr} = 0$, $r = \sqrt[3]{600}$, 8.43	M1	Dep for equating to zero and attempt to solve to obtain $r = \dots$
		A1	For correct r
	$S_{\min} = 1340 \text{ or } 1341$	A1	:5
	Either $\frac{d^2S}{dr^2} = 4\pi + \frac{4800\pi}{r^3}$ $\frac{d^2S}{dr^2} > 0 \text{so minimum}$	B1	For a correct method to reach a correct conclusion If r is not calculated, then must state that $r > 0$
	Or Consideration of gradient e.g.	B1	Must be making a correct and convincing argument with sufficient detail

Question	Answer	Marks	Guidance
10(i)	Either $18^2 = 10^2 + 10^2 - 200\cos AOB$	M1	Attempt to use cosine rule
	$\cos AOB = -0.62$	A1	Allow unsimplified
	AOB = 2.2395 or greater accuracy, so 2.24 (to 2 dp) or $AOB = 2.239$ so 2.24 (to 2 dp) $AOB = 2.240$ so 2.24 (to 2 dp)	A1	Must justify 2 dp
10(i)	Or $\sin \frac{AOB}{2} = \frac{9}{10}$ or $\tan \frac{AOB}{2} = \frac{9}{\sqrt{19}}$ or $\cos \frac{AOB}{2} = \frac{\sqrt{19}}{10}$	M1	Attempt at trig using a right angled triangle
	$\frac{AOB}{2}$ = awrt 1.12	A1	
	AOB = 2.2395 or greater accuracy, so 2.24 (to 2 dp) or $AOB = 2.239$ so 2.24 (to 2 dp) $AOB = 2.240$ so 2.24 (to 2 dp)	A1	Must justify 2 dp
10(ii)	$AOC = 2\pi - 2(2.2395)$ or $\frac{AOC}{2}$ or $ABC = \pi - (2.2395)$ oe	M1	For attempt to find angle AOC or ABC $AOC = 2\pi - 2$ (their AOB) $ABC = \pi - $ (their AOB) oe
	AOC = 1.804 or 1.803	A1	Condone 1.8 or 1.80
	Arc length = 18.04 or 18.03	M1	For attempt at arc length using 10×their AOC
	$AC = 20\sin\frac{AOC}{2} \text{ or } 36\sin\frac{ABC}{2}$ or $\sqrt{10^2 + 10^2 - 200\cos AOC}$ or $\sqrt{18^2 + 18^2 - 648\cos ABC}$ = 15.69 or 15.7	M1	For attempt at AC using their AOC, or ABC but $AOC \neq 2.24$ or $\frac{2\pi}{3}$
	Perimeter = 33.7	A1	Allow awrt 33.7

Question	Answer	Marks	Guidance
10(iii)	Area of sector = 50×1.804 = 90.2 or 90.15	M1	For attempt at sector area $\frac{1}{2} \times 10^2 \times their \ AOC$ $AOC \text{ must be in radians}$
	Area of triangle = 50 sin 1.804 = 48.6 or 48.66	M1	For attempt at area of triangle $\frac{1}{2} \times 10^2 \times \sin their \ AOC$ AOC must be in radians
	Shaded area = 41.6 or 41.5	A1	Lack of accuracy is penalised here
11	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(3x-1)^{\frac{1}{3}} + c$	M1	For $\left(\frac{dy}{dx}\right) = a(3x-1)^{\frac{1}{3}}$, condone omission of + c
	AT P	A1	All correct, condone omission of <i>c</i>
	6 = 4 + c	M1	Dep for attempt to find c
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}=\right) 2(3x-1)^{\frac{1}{3}}+2$	A1	All correct, may be implied by $c = 2$
	$y = \frac{1}{2}(3x-1)^{\frac{4}{3}} + 2x + d$	M1	For attempt to integrate <i>their</i> $\frac{dy}{dx}$ to obtain the form $y = b(3x-1)^{\frac{4}{3}} (+mx+d)$
		A1	All correct, condone omission of d
	11=14+d	M1	Dep for attempt to find d , a second arbitrary constant, having used an arbitrary constant for $\frac{dy}{dx}$
	$y = \frac{1}{2}(3x-1)^{\frac{4}{3}} + 2x - 3$	A1	

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/13

Paper 1

October/November 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 9

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2019 Page 3 of 9

Question	Answer	Marks	Guidance
1(i)	28+x 24+x	M1	for a Venn diagram showing at least 4 correct 'parts' in terms of x
	24-x 23-x 3+x	A1	for all 7 'parts' correct in terms of <i>x</i> on a Venn diagram or in working. May be implied by a correct equation.
	80+24+x+23-x+3+x=145 $50+28+x+28-x+24+x=145$ $75+28+x+24-x+3+x=145$ $50+80+75-(23+28+24)+x=145$ or equivalents	M1	for forming an equation in x using sum of 'parts' = 145 or $50+80+75-(23+28+24)+x=145$ Equations must be seen
	x=15	A1	from correct working only
1(ii)	43	B1ft	for their x plus 28
2(i)	4 4 25 40 45 00 45 90 24 4 46 46	B4	B1 for a maximum at $(0, 2)$ B1 for minimums at $y = -8$ and no other minimums B1 for starting at $(-90^{\circ}, 2)$ and finishing at $(90^{\circ}, 2)$ B1 for a fully correct curve with correct shape, particularly at end points, that has earned all three previous B marks.
2(ii)	5	B1	·§
2(iii)	90°	B1	
3(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = kx\left(3x^2 - 1\right)^{-\frac{4}{3}}$	M1	
	$\frac{dy}{dx} = -\frac{1}{3} \times 6x (3x^2 - 1)^{-\frac{4}{3}}$	A1	
3(ii)	When $x = \sqrt{3}$, $\frac{dy}{dx} = -\frac{\sqrt{3}}{8}$ $-\frac{\sqrt{3}}{8}p$ or $-0.217p$	B1	FT on their $\frac{dy}{dx}$ of the form $kx(3x^2-1)^{-\frac{4}{3}}$

Question	Answer	Marks	Guidance
3(iii)	When $x = \sqrt{3}$, $y = \frac{1}{2}$	B1	for $y = \frac{1}{2}$
	Normal: $y - \frac{1}{2} = \frac{8}{\sqrt{3}} (x - \sqrt{3})$	M1	Dep on M1in part(i). An equation of the normal using <i>their</i> normal gradient, $\sqrt{3}$ and <i>their</i> y
		A1	allow unsimplified
4(i)	$-\frac{1}{13}\begin{pmatrix} -1 & -2\\ -4 & 5 \end{pmatrix} \text{ oe }$	B2	B1 for $-\frac{1}{13}$ B1 for $\begin{pmatrix} -1 & -2 \\ -4 & 5 \end{pmatrix}$
4(ii)	$\frac{1}{13}\begin{pmatrix} 1 & 2\\ 4 & -5 \end{pmatrix}\begin{pmatrix} 12\\ 7 \end{pmatrix}$	M1	for pre-multiplication by <i>their</i> inverse from (i)
	$=\frac{1}{13}\binom{26}{13}$	M1	for correct method for matrix multiplication
	$=\begin{pmatrix} 2\\1 \end{pmatrix}$	A1	
	x=1.11	B1	
	$y = \frac{\pi}{4}$ or 0.785	B1	
5(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\Big(\ln\Big(x^2+3\Big)\Big) = \frac{2x}{\Big(x^2+3\Big)}$	B1	
	$\frac{dy}{dx} = (x^2 + 3) \frac{2x}{(x^2 + 3)} + 2x \ln(x^2 + 3)$	M1	for product rule
		A1	FT their $\frac{2x}{(x^2+3)}$
5(ii)	$(x^2+3)\ln(x^2+3) = \int 2x + 2x\ln(x^2+3) dx$	M1	for using <i>their</i> result from (i) for $2x + kx \ln(x^2 + 3)$
	$\int x \ln\left(x^2 + 3\right) \mathrm{d}x$	A1	
	$\int x \ln(x^2 + 3) dx$ $= \frac{1}{2} (x^2 + 3) \ln(x^2 + 3) - \frac{x^2}{2} (+c)$		

Page 5 of 9

Question	Answer	Marks	Guidance
6(i)	$\ln y = \ln A + x^2 \ln b \text{ or}$ $\lg y = \lg A + x^2 \lg b$	B1	May be implied by a table of values for x^2 and $\ln y$ or $\lg y$ or axes labelled $\ln y$ or $\lg y$ and x^2
	- fat	M1	for attempt to plot either $\ln y$ or $\lg y$ against x^2 using an evenly spaced scale on each axis.
		A2	A2 All points on a correct line (for $1 \le x^2 \le 9$) with axes correctly labelled A1 One point not on the correct line or a correct line with axes not correctly labelled. A0 Two or more points not on the correct line or one point not on the line and axes incorrect
6(ii)	Gradient = $\ln b$ or $\lg b$ $\ln b \approx 0.7$ or $\lg b \approx 0.3$ leading to	M1	for a complete method using the gradient of <i>their</i> straight-line graph of $\lg y$ or
	b=2 (allow 1.6 – 2.4)	A1	from correct working
	Intercept = $\ln A$ or $\lg A$ $\ln A \approx 1.1$ $\lg A \approx 0.5$ leading to	M1	for a complete method using intercept of their straight-line graph of lgy or lny against x^2 to find A
	A=3 (allow 2.5 – 3.6)	A1	from correct working
6(iii)	$100 = 3(2^{x^{2}})$ or $\ln 100 = their1.1 + their0.7x^{2}$ or $\lg 100 = their0.5 + their0.3x^{2}$	M1	for a valid method to find x^2 Substitution methods should be using values of A and b in range
	or reading from $\lg y = 2$ to obtain x^2 or from $\ln y = 4.6$ to obtain x^2		
	leading to $x = 2.25$ (allow $2.0 - 2.7$)	A1	for an answer in range from correct working
7(a)(i)	15120	B1	
7(a)(ii)	1680	B1	
7(a)(iii) Method 1	Total = 2310	В3	B1 1st digit is 7 or 9 1680 or 210×8 B1 1st digit is 8 630 or 210×3
7(a)(iii) Method 2	Total = 2310	В3	B1 for 5th digit is 2,4 or 6 1890 or 210×9 B1 for 5 th digit is 8 420 or 210×2

© UCLES 2019 Page 6 of 9

$7(b)(ii)$ 3003 BI $7(b)(iii)$ 28 BI $7(b)(iii)$ Total 1419 $B3$ $B1$ Including husband and wife B1 Excluding husband and wife 924 $8(a)(ii)$ $\log_a a + 2\log_a y + \log_a x$ MI for $\log_a a + \log_a x + \log_a y^2$ and $\log_a y^2 = 2\log_a y$ $1 + 2q + p$ AI $8(a)(iii)$ $3\log_a x - \log_a y - \log_a a$ MI for $\log_a x^3 - (\log_a a + \log_a y)$ and $\log_a x^3 - 3\log_a x$ $3p - q - 1$ or $3p - (q + 1)$ AI $8(a)(iii)$ $\frac{1}{p} + \frac{1}{q}$ BI $8(b)$ $m - 3m^2 + 4 = 0$ MI for obtaining a quadratic in m or 3^x $m - 3m^2 + 4 = 0$ $m - \frac{18\frac{1}{3}}{2}, x - \frac{\ln \frac{4}{3}}{\ln 3}$ or $\log_a \frac{4}{3}$ $m - 3m^2 + 4 = 0$ <tr< th=""><th>Question</th><th>Answer</th><th>Marks</th><th>Guidance</th></tr<>	Question	Answer	Marks	Guidance
$7(b)(iii) \text{Total 1419} \qquad \qquad \textbf{B3} \text{B1 Including husband and wife} 495 \\ 8(a)(i) \log_{\alpha} a + 2\log_{\alpha} y + \log_{\alpha} x \qquad \qquad \textbf{M1} \text{for } \log_{\alpha} a + \log_{\alpha} x + \log_{\alpha} y^2 \text{ and} \\ \log_{\alpha} y^2 - 2\log_{\alpha} y \qquad \qquad \textbf{M2} \text{M3} \text{for } \log_{\alpha} x + \log_{\alpha} y	7(b)(i)	3003	B1	
8(a)(i) $\log_a a + 2\log_a y + \log_a x$ M1 for $\log_a a + \log_a x + \log_a y^2$ and $\log_a y^2 = 2\log_a y$ 1+2q+p A1 8(a)(ii) $3\log_a x - \log_a y - \log_a a$ M1 for $\log_a x^3 - (\log_a a + \log_a y)$ and $\log_a x^3 = 3\log_a x$ 3p-q-1 or 3p-(q+1) A1 8(a)(iii) $\frac{1}{p} + \frac{1}{q}$ B1 8(b) $m - 3m^2 + 4 = 0$ $m = \frac{4}{3}$, (-1) $x = \frac{\lg \frac{4}{3}}{\lg 3}$, $x = \frac{\ln \frac{4}{3}}{\ln 3}$ or $\lg \frac{4}{3}$ M1 for obtaining a quadratic in m or 3^x M1 Dep for attempt to solve quadratic and deal with 3^x correctly 9(ii) $100 = 2r + 2r\theta + 3r\theta$ M1 for addition of $2r$ and two are lengths with at least one correct are length 9(iii) $\frac{1}{2}9r^2\theta - \frac{1}{2}4r^2\theta$ M1 for subtraction of two sector areas with at least one sector area correct. A1 Must expand and simplify to obtain given answer $50r - r^2$ 9(iii) $\frac{dA}{dr} = 50 - 2r$ $0 = 50 - 2r$ $10 = 50 - 2r$ $10 = 50 - 2r$ $10 = 60 - 2r$	7(b)(ii)	28	B1	
	7(b)(iii)	Total 1419	В3	
8(a)(ii) $3\log_a x - \log_a y - \log_a a$ MI for $\log_a x^3 - (\log_a a + \log_a y)$ and $\log_a x^3 = 3\log_a x$ 8(a)(iii) $\frac{1}{p} + \frac{1}{q}$ BI 8(b) $m - 3m^2 + 4 = 0$ MI for obtaining a quadratic in m or 3^x MI Dep for attempt to solve quadratic and deal with 3^x correctly 9(i) $100 = 2r + 2r\theta + 3r\theta$ MI for addition of $2r$ and two arc lengths with at least one correct arc length 9(ii) $\frac{1}{2}9r^2\theta - \frac{1}{2}4r^2\theta$ MI for subtraction of two sector areas with at least one sector area correct. 9(iii) $\frac{1}{2}9r^2\theta - \frac{1}{2}4r^2\theta$ MI for subtraction of two sector areas with at least one sector area correct. 9(iii) $\frac{d^4}{dr} = 50 - 2r$ One of the formula of the square of the square of the square of results of the square of the square of results of the square o	8(a)(i)	$\log_a a + 2\log_a y + \log_a x$	M1	
$8(a)(iii) \frac{1}{p} + \frac{1}{q}$ $8(b) m - 3m^2 + 4 = 0$ $m = \frac{4}{3}, (-1)$ $x = \frac{\lg \frac{4}{3}}{\lg 3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$ $x = 0.262 \text{ only}$ $9(i) 100 = 2r + 2r\theta + 3r\theta$ $\theta = \frac{100 - 2r}{5r} \text{ or } \frac{20}{r} - \frac{2}{5} \text{ oe}$ $9(ii) \frac{1}{2}9r^2\theta - \frac{1}{2}4r^2\theta$ $9(iii) \frac{d}{dr} = 50 - 2r$ $0 = 50 - 2r$ $10 = 2t + 2t + 3t + 3t + 3t + 3t + 3t + 3t +$		1+2q+p	A1	
8(a)(iii) $\frac{1}{p} + \frac{1}{q}$ 8(b) $m - 3m^2 + 4 = 0$ $m = \frac{4}{3}$, (-1) $x = \frac{\lg \frac{4}{3}}{\lg 3}$, $x = \frac{\ln \frac{4}{3}}{\ln 3}$ or $\lg_3 \frac{4}{3}$ 81 Dep for attempt to solve quadratic and deal with 3^x correctly 81 $x = 0.262$ only 81 A1 9(i) $100 = 2r + 2r\theta + 3r\theta$ 9(ii) $\frac{1}{2}9r^2\theta - \frac{1}{2}4r^2\theta$ 81 for addition of $2r$ and two arc lengths with at least one correct arc length 82 $\frac{1}{3}9r^2\theta - \frac{1}{2}4r^2\theta$ 83 $\frac{1}{3}9r^2\theta - \frac{1}{2}4r^2\theta$ 84 Must expand and simplify to obtain given answer $50r - r^2$ 9(iii) $\frac{d^4}{d^4} = 50 - 2r$ $0 = 50 - 2r$ $10 = 50 - 2r$ $10 = 20$ $10 = $	8(a)(ii)	$3\log_a x - \log_a y - \log_a a$	M1	
8(b) $m-3m^2+4=0$ M1 for obtaining a quadratic in m or 3^x $m=\frac{4}{3}$, (-1) Dep for attempt to solve quadratic and deal with 3^x correctly $x=\frac{\lg\frac{4}{3}}{\lg 3}$, $x=\frac{\ln\frac{4}{3}}{\ln 3}$ or $\lg_3\frac{4}{3}$ $x=0.262$ only A1 9(i) $100=2r+2r\theta+3r\theta$ M1 for addition of $2r$ and two arc lengths with at least one correct arc length $\theta=\frac{100-2r}{5r}$ or $\frac{20}{r}-\frac{2}{5}$ oe M1 for subtraction of two sector areas with at least one sector area correct. $\frac{5r^2}{2}\left(\frac{100-2r}{5r}\right)$ A1 Must expand and simplify to obtain given answer $50r-r^2$ 9(ii) $\frac{dA}{dr}=50-2r$ M1 for differentiation and equating to zero and obtaining r or for using completing the square $-(25-r)^2+25^2$		3p-q-1 or 3p-(q+1)	A1	
$m = \frac{4}{3}, (-1)$ $x = \frac{\lg \frac{4}{3}}{\lg 3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$ $m = \frac{4}{3}, (-1)$ $x = \frac{\lg \frac{4}{3}}{\lg 3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$ $m = \frac{100}{3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$ $m = \frac{100}{3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$ $m = \frac{100}{3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$ $m = \frac{100}{3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$ $m = \frac{100}{3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$ $m = \frac{100}{3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$ $m = \frac{100}{3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$ $m = \frac{100}{3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$ $m = \frac{100}{3}, x = \frac{10}{3}, x = \frac{10}{3}, x = \frac{10}{3}$ $m = \frac{100}{3}, x = \frac{10}{3}, x = \frac{10}{3}, x = \frac{10}{3}$ $m = \frac{100}{3}, x = \frac{10}{3}, x = \frac{10}{3}, x = \frac{10}{3}$ $m = \frac{100}{3}, x = \frac{10}{3}, x = \frac{10}{3}, x = \frac{10}{3}$ $m = \frac{100}{3}, x = \frac{10}{3}, x = \frac{10}{3}, x = \frac{10}{3}, x = \frac{10}{3}$ $m = \frac{100}{3}, x = \frac{10}{3}, x = \frac{10}{3},$	8(a)(iii)	$\frac{1}{p} + \frac{1}{q}$	B1	
$x = \frac{\lg \frac{4}{3}}{\lg 3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$ $x = 0.262 \text{ only}$ $9(i)$ $100 = 2r + 2r\theta + 3r\theta$ $\theta = \frac{100 - 2r}{5r} \text{ or } \frac{20}{r} - \frac{2}{5} \text{ oe}$ $9(ii)$ $\frac{1}{2}9r^2\theta - \frac{1}{2}4r^2\theta$ $\frac{1}{2}9r^2\theta - \frac{1}{2}4r^2\theta$ $\frac{5r^2}{2}\left(\frac{100 - 2r}{5r}\right)$ $\frac{dA}{dr} = 50 - 2r$ $0 = 50 - 2r$ $1 = \frac{100}{5} = \frac{100}{r} = $	8(b)	$m-3m^2+4=0$	M1	for obtaining a quadratic in m or 3^x
9(i) $\frac{100 = 2r + 2r\theta + 3r\theta}{\theta}$ M1 for addition of $2r$ and two arc lengths with at least one correct arc length $\theta = \frac{100 - 2r}{5r} \text{ or } \frac{20}{r} - \frac{2}{5} \text{ oe}$ M1 for subtraction of two sector areas with at least one sector area correct. $\frac{5r^2}{2} \left(\frac{100 - 2r}{5r} \right)$ A1 Must expand and simplify to obtain given answer $50r - r^2$ 9(iii) $\frac{dA}{dr} = 50 - 2r$ $0 = 50 - 2r$ leading to $r = 25$ M1 for differentiation and equating to zero and obtaining r or for using completing the square $-(25 - r)^2 + 25^2$		3	M1	
with at least one correct arc length $\theta = \frac{100 - 2r}{5r} \text{ or } \frac{20}{r} - \frac{2}{5} \text{ oe}$ $9(ii) \qquad \frac{1}{2}9r^2\theta - \frac{1}{2}4r^2\theta$ $\frac{5r^2}{2}\left(\frac{100 - 2r}{5r}\right)$ $9(iii) \qquad \frac{dA}{dr} = 50 - 2r$ $0 = 50 - 2r$ $1 = 100 - 2r$ $0 = 50 - 2r$ $1 = 100		x = 0.262 only	A1	/3/
9(ii) $\frac{1}{2}9r^{2}\theta - \frac{1}{2}4r^{2}\theta$ $\frac{5r^{2}}{2}\left(\frac{100 - 2r}{5r}\right)$ M1 for subtraction of two sector areas with at least one sector area correct. A1 Must expand and simplify to obtain given answer $50r - r^{2}$ 9(iii) $\frac{dA}{dr} = 50 - 2r$ $0 = 50 - 2r$ $10 = 50 - 2r$	9(i)	$100 = 2r + 2r\theta + 3r\theta$	M1	
$\frac{5r^2}{2}\left(\frac{100-2r}{5r}\right)$ least one sector area correct. A1 Must expand and simplify to obtain given answer $50r-r^2$ 9(iii) $\frac{dA}{dr} = 50-2r$ or for using completing the square $-(25-r)^2 + 25^2$		$\theta = \frac{100 - 2r}{5r}$ or $\frac{20}{r} - \frac{2}{5}$ oe	A1	
9(iii) $\frac{dA}{dr} = 50 - 2r$ $0 = 50 - 2r$ $0 = 4 = 4 = 50$ $0 = 50 - 2r$ $0 = 4 = 4 = 50$ $0 = 50 - 2r$ $0 = 50 - 2r$ $0 = 4 = 4 = 50$ $0 = 50 - 2r$ $0 = 50 - 2r$ $0 = 6 = 50$ $0 = 7 = 25$ $0 = 7 = 7 = 7$ $0 = 7 = 7$ $0 = 7 = 7$ $0 = 7 = 7$ $0 = 7 = 7$ $0 = 7 = 7$ $0 = 7 = 7$ $0 = 7 $	9(ii)	$\frac{1}{2}9r^2\theta - \frac{1}{2}4r^2\theta$	M1	
$\frac{dr}{dr} = 50 - 2r$ $0 = 50 - 2r$ leading to $r = 25$ and obtaining r or for using completing the square $-(25 - r)^2 + 25^2$		$\frac{5r^2}{2} \left(\frac{100 - 2r}{5r} \right)$	A1	
Max when $A = 625$ A1	9(iii)	0 = 50 - 2r	M1	and obtaining r or for using completing the square
		Max when $A = 625$	A1	

Question	Answer	Marks	Guidance
9(iv)	When $r = 10$, $\frac{dA}{dr} = 30$	B1	
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{3}{30}$	M1	for $\frac{dr}{dt} = \frac{3}{their30}$ where their 30 has been
			obtained from an evaluation of $\frac{dA}{dr}$ at $r = 10$
	$\frac{\mathrm{d}r}{\mathrm{d}t} = 0.1 \mathrm{or} \frac{1}{10}$	A1	
9(v)	$\frac{\mathrm{d}\theta}{\mathrm{d}r} = -\frac{20}{r^2} \text{ oe}$	B1	
	$\frac{\mathrm{d}\theta}{\mathrm{d}r} = -\frac{1}{5}\mathrm{oe}$	M1	for their $\frac{dr}{dt} \times their \frac{d\theta}{dr}$ with both
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{1}{10} \times -\frac{1}{5} \text{ oe}$		evaluated at $r = 10$
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{1}{50} \text{ or } -0.02$	A1	
10(a)(i)	$\pm \frac{2020}{5}$	M1	for finding the gradient of the relevant part
	8	A1	///
10(a)(ii)	7.5	B1	
10(a)(iii)	$\begin{vmatrix} \frac{1}{2}(5+7.5)20 + (\frac{1}{2} \times 2.5 \times 20) \\ \text{or} \end{vmatrix}$	M1	for a correct expression for total area using <i>their</i> 7.5
	or $20 \times 5 + \left(\frac{1}{2} \times 2.5 \times 20\right) + \left(\frac{1}{2} \times 2.5 \times 20\right)$		
	oe		
	150	A1	
10(b)(i)	$x = 3e^{2t} + t + c$	M1	for $ke^{2t} + t$ Condone omission of c
	$0 = 3e^{0} + 0 + c$ When $t = 0$, $x = 0$ so $c = -3$	M1	Dep for substitution to find c
	$x = 3e^{2t} + t - 3$	A1	

Question	Answer	Marks	Guidance
10(b)(ii)	$\frac{dv}{dt} = 12e^{2t}$ so $12e^{2t} = 24$	M1	for ke^{2t} equated to 24
	$2t = \ln 2$	M1	Dep for correct order of operations to obtain 2 <i>t</i>
	$t = \frac{1}{2} \ln 2$, $\ln \sqrt{2}$ or 0.347	A1	

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/11

Paper 1 May/June 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 12

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working

nfww not from wrong working oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2019 Page 3 of 12

Question	Answer	Marks	Guidance
1(a)	£	B1	
	£	B1	
1(b)		B2	B1 for $P \subset R$ and $Q \subset R$ B1 for $P \cap Q = \emptyset$
2(i)	4	B1	7 111
2(ii)	$120^{\circ} \text{ or } \frac{2\pi}{3}$	B1	
2(iii)	2 Satp	B3	B1 for a complete curve starting at $\left(-90^{\circ}, 3\right)$ and finishing at $\left(90^{\circ}, -5\right)$ B1 for $-5 \le y \le 3$ for a complete curve Minimum point(s) at $y = -5$ Maximum point(s) at $y = 3$ DepB1 for a fully correct sine curve satisfying both the above and passing through $\left(-60^{\circ}, -1\right), \left(0^{\circ}, -1\right)$ and $\left(60^{\circ}, -1\right)$
3(i)	-12	B1	
3(ii)	$(2 \times -3 - 1)(k - 3) - 12 = 23$ oe or $2(-3)^2 + (2k - 1)(-3) - k - 12 = 23$	M1	
	k = -2	A1	

© UCLES 2019 Page 4 of 12

Question	Answer	Marks	Guidance
3(iii)	$(2x-1)(x-2)-12 = -25$ $2x^2 - 5x + 15 = 0$	M1	expansion and simplification to a 3 term quadratic equation equated to zero, using <i>their k</i> .
	Discriminant: $25 - (4 \times 2 \times 15)$ = -95	M1	using discriminant for their three term quadratic equation
	which is < 0 so no real solutions	A1	cao for correct discriminant and correct conclusion
4(i)	a = 256	B1	
	$8 \times 2^7 \times bx [= 256x] \text{ oe}$ or $\frac{8 \times 7 \times 2^6 \times (bx)^2}{2} [= cx^2] \text{ oe}$	M1	
	$b = \frac{1}{4}$ oe, $c = 112$	A2	A1 for each
4(ii)	$\left(256 + 256x + 112x^{2}\right)\left(4x^{2} - 12 + \frac{9}{x^{2}}\right)$	B1	$\int \operatorname{for}\left(4x^2 - 12 + \frac{9}{x^2}\right)$
	Terms independent of x are $(256 \times (-12)) + (112 \times 9)$ $= -3072 + 1008$	M1	adding and selecting $(their256 \times their(-12)) + (their112 \times their9)$
	=-2064	A1	
5(i)	$v = 20 \times \frac{1}{\sqrt{3^2 + 4^2}} \binom{3}{4}$ oe	M1	finding and using the magnitude of $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$
	$v = \begin{pmatrix} 12 \\ 16 \end{pmatrix}$	AI	
5(ii)	$\mathbf{r}_p = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 12 \\ 16 \end{pmatrix} t$	M1	correct use of position vector and <i>their</i> velocity vector
		A1	

© UCLES 2019 Page 5 of 12

Question	Answer	Marks	Guidance
5(iii)		M1	equating position vectors of both particles at time <i>t</i> and solve either equation for <i>t</i>
	t=4	A1	
	Position vector of collision $\begin{pmatrix} 49 \\ 66 \end{pmatrix}$	A1	
6	Method 1		
	$3x^2 - 2x + 1 = 2x + 5$	M1	equating the equations of the line and the curve and rearranging to obtain a three
	leading to	PRA	term quadratic equated to zero
	$3x^2 - 4x - 4 = 0$	A1	
	$x = -\frac{2}{3} \text{ and } x = 2$	A1	
	$\int_{-\frac{2}{3}}^{2} \left(2x + 5 - \left(3x^2 - 2x + 1\right)\right) dx$	M1	subtraction (either way round)
	$\int_{-\frac{2}{3}}^{2} \left(4 + 4x - 3x^2\right) \mathrm{d}x$	M1	integration to $Ax + Bx^2 + Cx^3$
	$\left[4x + 2x^2 - x^3\right]_{-\frac{2}{3}}^2$	A1	for $4x + 2x^2 - x^3$ oe
	$(8+8-8) - \left(-\frac{8}{3} + \frac{8}{9} + \frac{8}{27}\right)$ $= 8 - \frac{40}{27}$	M1	Dep on preceding M1 correct use of limits
	$= \frac{256}{27} \text{ or } 9.48 \text{ or } 9\frac{13}{27}$	A1	

© UCLES 2019 Page 6 of 12

Question	Answer	Marks	Guidance
6	$\frac{\text{Method } 2}{3x^2 - 2x + 1} = 2x + 5$ leading to	М1	equating the line and the curve and rearranging to obtain a three term quadratic equated to zero
	$3x^2 - 4x - 4 = 0$	A1	
	$x = -\frac{2}{3} \text{ and } x = 2$	A1	
	Area of trapezium = $\frac{1}{2} \left(\frac{11}{3} + 9 \right) \times \frac{8}{3}$	B1	area of the trapezium, allow unsimplified
	Area under curve = $\int_{-\frac{2}{3}}^{2} 3x^2 - 2x + 1 dx$	M1	integration to $Ax + Bx^2 + Cx^3$
	$= \left[x^3 - x^2 + x \right]_{\frac{2}{3}}^2$	A1	for $x^3 - x^2 + x$
	$= \left((8-4+2) - \left(-\frac{8}{27} - \frac{4}{9} - \frac{2}{3} \right) \right)$ $6\frac{38}{27}$	M1	DepM1 for correct use of limits.
	Shaded Area = $\frac{152}{9} - \frac{200}{27}$ = $\frac{256}{27}$ or 9.48 or $9\frac{13}{27}$	A1	
7(a)	Method 1	reP	
	$\log_3 x + \frac{\log_3 x}{\log_3 9} = 12$	B1	change to base 3 logarithm
	$\frac{3\log_3 x}{2} = 12$ $x = 3^8 \text{ or } \sqrt[3]{3^{24}}$	M1	simplification and dealing with base 3 logarithms to obtain a power of 3
	x = 6561	A1	

© UCLES 2019 Page 7 of 12

Question	Answer	Marks	Guidance
7(a)	$\frac{\text{Method 2}}{\log_9 x} + \log_9 x = 12$	B1	change to base 9
	$3\log_9 x = 12$ $x = 9^4 \text{ or } \sqrt[3]{9^{12}}$	M1	simplification and dealing with base 9 logarithms to obtain a power of 9
	x = 6561	A1	
7(b)	Method 1 $\log_4 (3y^2 - 10) = \log_4 (y - 1)^2 + \frac{1}{2}$	B1	use of power rule
	$\log_4 \frac{3y^2 - 10}{\left(y - 1\right)^2} = \frac{1}{2}$	B1	DepB1 for use of division rule
	$\frac{3y^2 - 10}{(y - 1)^2} = 2$	B1	for $\frac{1}{2} = \log_4 2$
	$y^2 + 4y - 12 = 0$	M1	Dep on first two B marks simplification to a three term quadratic.
	y = 2 only	A1	_ ///
7(b)	Method 2 $\log_4 (3y^2 - 10) = \log_4 (y - 1)^2 + \frac{1}{2}$	B1	use of power rule
	$\log_4(3y^2 - 10) = \log_4(y - 1)^2 + \log_4 2$	B1	for log ₄ 2
	$3y^2 - 10 = 2(y - 1)^2$	B1	Dep on first B1 use of the multiplication rule
	$y^2 + 4y - 12 = 0$	M1	Dep on first and third B marks. simplification to a 3 term quadratic
	y = 2 only	A1	

© UCLES 2019 Page 8 of 12

Question	Answer	Marks	Guidance
8(i)	f>-1	B1	or $f(x) > -1$, $y > -1$, $(-1, \infty)$, $\{y: y > -1\}$
8(ii)	$e^{y} = \frac{x+1}{5} \text{ oe}$	M1	a complete valid method to obtain the inverse function
	$y = \ln\left(\frac{x+1}{5}\right)$ or $f^{-1}(x) = \ln\left(\frac{x+1}{5}\right)$ oe	A1	
	Domain $x > -1$ or $(-1, \infty)$	B1	FT their (i) or correct
8(iii)	g(1) = 5 so fg(1) = f(5)	M1	evaluation using correct order of operations
	$5e^5 - 1 = 741$	A1	awrt 741 or 5e ⁵ –1
8(iv)	$g^{2}(x) = (x^{2} + 4)^{2} + 4$	M1	correct use of g ²
	$ x^4 + 8x^2 + 16 + 4 = 40 $ $ (x^2 + 4)^2 = 36 $	M1	DepM1 for forming and solving a quadratic in x^2
	or $x^4 + 8x^2 - 20 = 0$ $(x^2 + 10)(x^2 - 2) = 0$		
	$x = \pm \sqrt{2}$ only	A1	
9(i)	Method 1		13/
	$600\pi = 2\pi r^2 + 2\pi rh$	B1	-0.
	$h = \frac{600\pi - 2\pi r^2}{2\pi r}$	M1	making <i>h</i> subject from a two term expression for SA.
	$V = \pi r^2 h$ $V = \pi r^2 \left(\frac{600\pi - 2\pi r^2}{2\pi r}\right)$ $V = \pi r^2 \left(\frac{300}{r} - r\right)$	A1	correct substitution and manipulation to obtain given answer
	$V = 300\pi r - \pi r^3$		

© UCLES 2019 Page 9 of 12

Question	Answer	Marks	Guidance
9(i)	Method 2		
	$600\pi = 2\pi r^2 + 2\pi rh$	B1	
	$600\pi r = 2\pi r^3 + 2\pi r^2 h$	M1	multiplying both sides by r
	$\frac{600\pi r - 2\pi r^3}{2} = \pi r^2 h$	A1	correct manipulation to obtain $\pi r^2 h$
	$V = \pi r^2 h$ $V = 300\pi r - \pi r^3$		
9(ii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 300\pi - 3\pi r^2$	M1	differentiation of given formula to $A+Br^2$
	When $\frac{\mathrm{d}V}{\mathrm{d}r} = 300\pi - 3\pi r^2 = 0$	M1	equating to zero and attempt to solve
	r = 10	A1	
	$V = 2000\pi$ or 6280 or 6283	A1	
	$\frac{d^2V}{dr^2} = -6\pi r , \frac{d^2V}{dr^2} < 0$ so maximum	B1	cao for $\frac{d^2V}{dr^2} = -6\pi r$, $\frac{d^2V}{dr^2} = -60\pi$ or other correct method leading to maximum
10(i)	Method 1		7 / / / /
	$\lg y = A + Bx^2$	B1	statement soi
	16 = A + 6B $4 = A + 2B$	M1	one correct equation
	leading to $A = -2$ and $B = 3$	A2	A1 for each
10(i)	Method 2		
	$\lg y = A + Bx^2$	B1	statement soi
	Gradient = B B = 3	B1	
	16 = A + 6B or $4 = A + 2B$	M1	a correct equation
	A = -2	A1	

Question	Answer	Marks	Guidance
10(i)	Method 3 $\lg y - 4 = 3(x^2 - 2)$ or $\lg y - 16 = 3(x^2 - 6)$	M1	correct equation or for correct method for finding constant.
	OR $4 = 3(2) + c$ or $16 = 3(6) + c$		
	$\lg y = A + Bx^2$	B1	statement soi by their A and B
	Hence $y = 10^{3x^2 - 2}$ B = 3	B1	
	A = -2	A1	
10(ii)	$y = 10^{-2+3\left(\frac{1}{\sqrt{3}}\right)^2}$	M1	correct use of their A and B
	y = 0.1 oe	A1	
10(iii)	$2 = 10^{3x^2 - 2}$	M1	correct use of their A and B
	$ \lg 2 = 3x^2 - 2 \\ x = \sqrt{\frac{\lg 2 + 2}{3}} $	M1	complete correct method to solve for x
	x = 0.876	A1	-0.

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = (x^2 + 1)(2x - 3)^{-\frac{1}{2}} + 2x(2x - 3)^{\frac{1}{2}}$	M1	differentiation of a product
		B1	for $\frac{d}{dx}(2x-3)^{\frac{1}{2}} = \frac{1}{2} \times 2(2x-3)^{-\frac{1}{2}}$ oe
		A1	
			$\frac{dy}{dx} = (x^2 + 1)f(x) + 2x(2x - 3)^{\frac{1}{2}}$
	$= (2x-3)^{-\frac{1}{2}} (x^2+1+2x(2x-3))$	M1	correctly taking out a factor of $(2x-3)^{-\frac{1}{2}}$
			or correctly using $(2x-3)^{\frac{1}{2}}$ as
			denominator
	$=\frac{5x^2-6x+1}{}$	A1	
	$=\frac{5x^2-6x+1}{(2x-3)^{\frac{1}{2}}}$		
11(ii)	When $x = 2$, $y = 5$	B1	
	$\frac{dy}{dx} = 9$, so gradient of normal = $-\frac{1}{9}$	M1	substitution to obtain gradient and correct method for gradient of normal
	Equation of normal $y-5=-\frac{1}{9}(x-2)$	M1	DepM1 for equation of normal
	x+9y-47=0 or $-x-9y+47=0$	A1	Must be in this form

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12

Paper 1 May/June 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 11

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated

SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(a)	Satpre	B1	
		B1	

© UCLES 2019 Page 3 of 11

Question	Answer	Marks	Guidance
1(b)	$P = \{30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}\}$	B1	May be seen or implied in a Venn diagram Allow without set notation
	$Q = \{30^{\circ}, 150^{\circ}\}$	B1	May be seen or implied in a Venn diagram Allow without set notation
	$P \cap Q = \{30^{\circ}, 150^{\circ}\}$	B1	Dep on both previous B marks Must be in set notation
2	Either: $(2x+3)^2(x-1) = 3(2x+3)$ $(2x+3)(2x^2+x-6)(=0)$	M1	For attempt to equate line and curve and attempt to simplify to $2x+3 \times a$ quadratic factor or cancelling $2x+3$ and obtaining a quadratic factor
	$(2x+3)(2x^2+x-6) = 0$ $(2x+3)(2x-3)(x+2) = 0$	M1	Dep for attempt at 3 linear factors from a linear term and a quadratic term
	$\left(-\frac{3}{2},0\right)$	B1	
	$\left(\frac{3}{2},18\right)$	A1	Dep on first M mark only
	(-2, -3)	A1	Dep on first M mark only
	Or: $(2x+3)^2(x-1) = 3(2x+3)$ $4x^3 + 8x^2 - 9x - 18(=0)$	M1	For attempt to equate line and curve and attempt to simplify to a cubic equation, by collecting like terms
	$(x+2)(4x^{2}-9)$ $(2x-3)(2x^{2}+7x+6)$ $(2x+3)(2x^{2}+x-6)$ $(2x+3)(2x-3)(x+2)(=0)$	M1	Dep For attempt to find a factor from a 4 term cubic equation (usually $x+2$), do long division oe to obtain a quadratic factor and factorise this quadratic factor
	$\left(-\frac{3}{2},0\right)$	A1	
	$\left(\frac{3}{2},18\right)$	A1	
	(-2, -3)	A1	
3(i)	1000	B1	

© UCLES 2019 Page 4 of 11

Question	Answer	Marks	Guidance
3(ii)	$\frac{dB}{dt} = 400e^{2t} - 1600e^{-2t}$	B1	
	$3 = e^{2t} - 4e^{-2t} \text{ oe}$	M1	For equating an equation of the form $ae^{2t} + be^{-2t}$ to 1200 and dividing by 400
	$e^{4t} - 3e^{2t} - 4 = 0$	A1	
3(iii)	$(e^{2t} + 1)(e^{2t} - 4) = 0$	M1	For attempt to factorise and solve, dealing with exponential correctly, to obtain $e^{2t} =$
	$t = \ln 2$, $\frac{1}{2} \ln 4$ or awrt 0.693 only isw if appropriate	A1	
4(a)	$a = \frac{5}{2}$	B1	
	$b = -\frac{3}{2}$	B1	
	$c = \frac{11}{2}$	B1	
4(b)	$9x^{\frac{1}{2}} - 3y^{\frac{1}{2}} = 12$	M1	For attempt to solve simultaneous
	$9x^{\frac{1}{2}} - 3y^{-\frac{1}{2}} = 12$ $4x^{\frac{1}{2}} + 3y^{-\frac{1}{2}} = 14$		equations. Must reach $kx^{\frac{1}{2}} =$ or $ky^{-\frac{1}{2}} =$ oe
	x=4 Setore	A1	
	$y = \frac{1}{4}$	A1	
5(i)	$9.6 = 12\theta$	M1	For use of arc length
	$\theta = 0.8$	A1	

© UCLES 2019 Page 5 of 11

Question	Answer	Marks	Guidance
5(ii)	Either $\tan \theta = \frac{AB}{12}, (AB = 12.36)$ Or $OB = \frac{12}{\cos \theta} (OB = 17.22)$	M1	For attempt to find AB or OB using their θ May be implied by a correct triangle area Allow if using degrees consistently
	Either $Area \Delta OAB = \frac{1}{2} \times 12 \times their \ 12.36$ Or $Area \Delta OAB = \frac{1}{2} \times 12 \times their \ 17.22 \times sin\theta$ $(= 74.1 \text{ or } 74.2)$	M1	Allow if using degrees consistently
	Area of sector $OAC = \frac{1}{2} \times 12^2 \times 0.8$ = 57.6	B1	Allow unsimplified
	Area of shaded region = 16.5 or 16.6	A1	
6(a)(i)	40320	B1	
6(a)(ii)	No. of ways with maths books as 1 unit = 5! or $5 \times 4!$ or 5P_5 or 120	B1	
	No. of ways maths books can be arranged amongst themselves = $4!$ or 4P_4 or 24	B1	
	$Total = (5! \times 4! \text{ oe}) = 2880$	B1	
6(a)(iii)	No. of ways with maths books as 1 unit and geography books as 1 unit = $3!$ or 3P_3 or $3 \times 2!$ or 6	B1	
	No. of ways maths books can be arranged amongst themselves and geography books can be arranged amongst themselves $= 4! \times 3!$ or ${}^4P_4 \times {}^3P_3$ or 144	B1	
	Total = $(3! \times 4! \times 3! \text{ oe})$ = 864	B1	
6(b)(i)	$^{12}C_6 = 924$	B1	

© UCLES 2019 Page 6 of 11

Question	Answer	Marks	Guidance
6(b)(ii)	Either: 924 – ⁸ C ₆	M1	For <i>their</i> (i) – the number of teams of just men
	Total = 896	A1	
	Or: 5M 1W: ${}^{8}C_{5} \times {}^{4}C_{1}$ (= 224) 4M 2W: ${}^{8}C_{4} \times {}^{4}C_{2}$ (= 420) 3M 3W: ${}^{8}C_{3} \times {}^{4}C_{3}$ (= 224) 2M 4W: ${}^{8}C_{2} \times {}^{4}C_{4}$ (= 28)	M1	For a complete method
	Total = 896	A1	
7(i)	$\frac{120}{\beta 35}$ 650	B1	For correct triangle, may be implied by a correct sine rule or cosine rule.
	$\frac{120}{\sin \alpha}$ or $\frac{120}{\sin (55 - \theta)} = \frac{650}{\sin 35}$ or $\frac{650}{\sin 145}$	M1	For use of a correct sine rule to obtain $\alpha =$ or $\theta =$ Or for a correct cosine rule leading to a value for v , followed by a correct sine rule leading to one of the other angles
	$\alpha = 6.08^{\circ} \text{ or } \beta = 138.9$	A1	May be implied by a correct $\theta = \text{awrt } 49^{\circ}$
	Bearing is 048.9° or 049°	A1	
7(ii)	Either $\frac{v_r}{\sin(145 - their\alpha)} = \frac{650}{\sin 35} \text{ or } \frac{120}{\sin(their\alpha)}$ Or $v_r^2 = 650^2 + 120^2 - (2 \times 650 \times 120)\cos(145 - their\alpha)$	M1	For use of sine rule or cosine rule to find resultant velocity Do not allow for a right-angled triangle May be seen in (i)
	$v_r = 745$	A1	For correct resultant velocity, allow awrt 745
	Time taken = $\frac{1250}{their \ 744.7}$	M1	For correct attempt at finding time using <i>their</i> v , \neq 650, 120, 770 or 530
	=1.68 hours or I hour 41 mins or 101 mins	A1	

© UCLES 2019 Page 7 of 11

Question	Answer	Marks	Guidance
8(i)	$e^y = \frac{m}{x} + c$	B1	May be implied by subsequent work
	Either $20 = 2m + c$ 8 = 4m + c	M1	For at least 1 correct equation
		M1	Dep For attempt to solve <i>their</i> 2 equations simultaneously to obtain at least one unknown
	leading to $m = -6$, $c = 32$	A1	For both
	$y = \ln\left(32 - \frac{6}{x}\right)$	A1	Must have correct brackets Mark the final answer given
	Or: Gradient = $m = (-6)$	M1	For attempt to find gradient and equate it to <i>m</i>
	$20 = 2m + c \text{ or } 8 = 4m + c$ or $e^y - 8 = m\left(\frac{1}{x} - 4\right)$ or $e^y - 20 = m\left(\frac{1}{x} - 2\right)$	M1	For at least 1 correct equation, m be using <i>their m</i>
	leading to $c = 32$ and $m = -6$	A1	For both $m = -6$, $c = 32$
	$y = \ln\left(32 - \frac{6}{x}\right)$	A1	ξ
8(ii)	$x>\frac{3}{16}$ oe	B1	
8(iii)	$y = \ln 30$ isw	B1	
8(iv)	$2 = \ln\left(32 - \frac{6}{x}\right)$	M1	For a correct substitution and attempt to re-arrange using 2, <i>the</i> 32 and <i>their</i> – 6, keeping exactne to obtain $x =$
	$x = \frac{6}{32 - e^2}$ oe	A1	Must be exact

© UCLES 2019 Page 8 of 11

Question	Answer	Marks	Guidance
9(i)	$5 = 4 + 2\cos 3x$	M1	For attempt to solve trig equation to obtain one correct solution
	$\frac{\pi}{9}$	A1	
	$-\frac{\pi}{9}$	A1	
9(ii)	Either: $\int_{-\frac{\pi}{9}}^{\frac{\pi}{9}} 4 + 2\cos 3x - 5 dx$	M1	For use of subtraction method
	$\left[\frac{2}{3}\sin 3x - x\right]_{-\frac{\pi}{9}}^{\frac{\pi}{9}}$	M1	For attempt to integrate to obtain the form $a \sin 3x + bx$
	6	B1	For $\frac{2}{3}\sin 3x$
		B1	For $-x$, may be implied by $4x-5x$
	$\left(\frac{\sqrt{3}}{3} - \frac{\pi}{9}\right) - \left(-\frac{\sqrt{3}}{3} + \frac{\pi}{9}\right)$	M1	Dep on previous M mark for correct application of <i>their</i> limits in radians from (i) retaining exactness
	Shaded area = $\frac{2\sqrt{3}}{3} - \frac{2\pi}{9}$ oe isw	A1	

© UCLES 2019 Page 9 of 11

Question	Answer	Marks	Guidance
9(ii)	Or: Area of rectangle = $5 \times \frac{2\pi}{9}$	M1	5× the difference of <i>their</i> limits in exact radians
	Area under curve = $\left[4x + \frac{2}{3}\sin 3x\right]_{-\frac{\pi}{9}}^{\frac{\pi}{9}}$	M1	For attempt to integrate to obtain the form $a \sin 3x + bx$
		B1	For $\frac{2}{3}\sin 3x$
		B1	For 4x
	$\left(\frac{\sqrt{3}}{3} + \frac{4\pi}{9}\right) - \left(-\frac{\sqrt{3}}{3} - \frac{4\pi}{9}\right)$ $\left(=\frac{2\sqrt{3}}{3} + \frac{8\pi}{9}\right)$	M1	Dep on previous M mark for correct application of <i>their</i> limits in exact radians from (i) retaining exactness
	Shaded area = $\frac{2\sqrt{3}}{3} - \frac{2\pi}{9}$ oe isw	A1	
10(i)	$800 = 4x^2h$	B1	-111
	$h = \frac{800}{4x^2}$ oe or $xh = \frac{800}{4x}$ oe	B1	///
	$(S=)2hx + 8xh + 4x^2 \text{oe}$	M1	Allow if <i>h</i> is substituted at this point
	$S = 4x^2 + \left(\frac{2000}{x}\right)$	A1	Leading to AG, must have $S = \text{or}$ surface area = at some point and no errors

Question	Answer	Marks	Guidance
10(ii)	$\left(\frac{\mathrm{d}S}{\mathrm{d}x} = \right)8x - \frac{2000}{x^2}$	B1	For correct differentiation
	When $\frac{dS}{dx} = 0$, $x = \sqrt[3]{250}$ oe (6.30)	M1	For equating to zero and attempt to solve, must get as far as $x =$, must be using the form $ax + \frac{b}{x^2}$
		A1	For correct positive <i>x</i>
	S = 476 only	A1	
	$\frac{d^2S}{dx^2} = 8 + \frac{4000}{x^3}$ $\frac{d^2S}{dx^2} > 0 \text{ or } 24 \text{ so minimum}$	B1	For a correct convincing method, with enough detail to reach a correct conclusion of a minimum. Must be using $x = \sqrt[3]{250}$ oe
11	(9)	M1	For attempt at differentiating a product
		B1	For $\frac{2}{3} \times 3(3x+1)^{-\frac{1}{3}}$
	$\left(\frac{dy}{dx} = \right)(x-2) \times \frac{2}{3} \times 3(3x+1)^{-\frac{1}{3}} + (3x+1)^{\frac{2}{3}}$	A1	For all other terms correct
	$y = \frac{4}{3}$	B1	27
	When $x = \frac{7}{3}$, $\frac{dy}{dx} = \frac{13}{3}$	M1	For attempt at normal equation using $-\frac{1}{their\ m}$ and their y when $x = \frac{7}{3}$
	Equation of normal: $y - \frac{4}{3} = -\frac{3}{13} \left(x - \frac{7}{3} \right)$	A1	For correct normal equation, may be implied by a correct final answer
	At y-axis, $y = \frac{73}{39}$	A1	
	$\left(0, \frac{73}{39}\right)$ isw		

© UCLES 2019 Page 11 of 11

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/13

Paper 1 May/June 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 8

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

ET follow through after error

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2019 Page 3 of 8

Question	Answer	Marks	Guidance
1	$A \cap B = \emptyset$	B1	
	$Z \subset (X \cap Y)$	B2	B1 for identifying $X \cap Y$
2	$a = \frac{3}{2}$	B1	
	$b = \frac{7}{3}$	B1	
	c = 3	B 1	
3	$x^2 + (3-m)x + m - 4 = 0$	M1	For equating line and curve and attempting to obtain a quadratic equation equated to zero
	Discriminant: $(3-m)^2 - 4(m-4)$	M1	Dep For use of $b^2 - 4ac$, could be implied by use of quadratic formula
	$(m-5)^2$	A1	
	Always positive or zero for any <i>m</i> , so line and curve will always touch or intersect	A1	For a suitable comment/conclusion
4(i)		B1	For $\frac{6x^3}{\left(2x^3+5\right)}$
	2	M1	For attempt to differentiate a quotient
	$\frac{dy}{dx} = \frac{(x-1)\frac{6x^2}{(2x^3+5)} - \ln(2x^3+5)}{(x-1)^2}$	Al preP	For all other terms correct
	When $x = 2$, $\frac{dy}{dx} = \frac{24}{21} - \ln 21$ or $\frac{8}{7} - \ln 21$, or -1.90	A1	
4(ii)	-1.90 <i>p</i> oe	B1	

© UCLES 2019 Page 4 of 8

Question	Answer	Marks	Guidance
5(i)		B1	For shape with maximum in 1st quadrant
	11/	B1	For $\left(-\frac{1}{3},0\right)$ and $(5,0)$
		B1	For (0, 5)
	-18	B1	All correct with cusps and correct shape for $x < -\frac{1}{3}$ and $x > 5$
5(ii)		M1	For attempt to find maximum point
	Maximum point when $x = \frac{7}{3}$	A1	For $x = \frac{7}{3}$
	$y = \frac{64}{3}$ so $k = \frac{64}{3}$	A1	
6(i)	$\frac{1}{\cos\theta} - \frac{\sin\theta}{\cos\theta} \times \sin\theta \text{oe}$	M1	For dealing with sec, tan and cosec in terms of sin and cos
	$\frac{1-\sin^2\theta}{\cos\theta}$	M1	For simplification and use of identity
	$\frac{\cos^2\theta}{\cos\theta}$	A1	For simplification to AG
6(ii)	$\cos 2\theta = \frac{\sqrt{3}}{2}$	M1	For use of part (i) and attempt to solve to get as far as $2\theta =$
	$2\theta = 30^{\circ}, 330^{\circ}$	DIEM1	For dealing with double angle correctly, may be implied by one correct solution
	$\theta = 15^{\circ}, 165^{\circ}$	A1	For both
6(iii)	$\sin\left(\phi + \frac{\pi}{3}\right) = \pm \frac{1}{\sqrt{2}}$ $\phi + \frac{\pi}{3} = \frac{\pi}{4}, \ \frac{3\pi}{4}, \ \frac{5\pi}{4}, \ \frac{7\pi}{4}, \ \frac{9\pi}{4}$	M1	For correct attempt to solve, may be implied by $\phi + \frac{\pi}{3} = \frac{\pi}{4}$
		M1	Dep For dealing with compound angle correctly
	$\phi = \frac{5\pi}{12}, \ \frac{11\pi}{12}, \ \frac{17\pi}{12}, \ \frac{23\pi}{12}$	A2	A1 for one correct pair, A1 for a second correct pair with no extra solutions in the range.

© UCLES 2019 Page 5 of 8

0606/13

Question	Answer	Marks	Guidance
7(i)	$AC^{2} = \left(2\sqrt{5} - 1\right)^{2} + \left(2 + \sqrt{5}\right)^{2}$	M1	For use of Pythagoras' theorem and attempt to expand brackets
	$=20-4\sqrt{5}+1+4+4\sqrt{5}+5$	A1	For correct unsimplified, must be convinced of non-calculator use
	$AC = \sqrt{30}$	A1	
7(ii)	$\tan ACB = \frac{2\sqrt{5} - 1}{2 + \sqrt{5}} \times \frac{2 - \sqrt{5}}{2 - \sqrt{5}}$	M1	For attempt at tan ACB and rationalisation
	$= \frac{4\sqrt{5} - 2 - 10 + \sqrt{5}}{4 - 5} \text{ oe}$	M1	Dep For seeing at least 3 terms in the numerator
	$=12-5\sqrt{5}$	A1	
7(iii)	$\sec^2 ACB = \tan^2 ACB + 1$ $= 144 - 120\sqrt{5} + 125 + 1$	M1	For use of identity using their (ii)
	$=270-120\sqrt{5}$	A1	
8(i)	g ≥ 1	B1	Must be using correct notation
8(ii)	$g\left(\sqrt{62}\right) = 125$	B1	
	$f^{-1}(x) = \frac{1}{3} \ln x$	B1	
	$\frac{1}{3}\ln 125 = \ln 5$	B1 preP	For correct order and manipulation to obtain the given answer, need to see $\frac{1}{3} \ln 125$
8(iii)	$3e^{3x} = 24$	M1	For dealing with derivatives correctly
	$x = \frac{1}{3} \ln 8$	A1	
	$x = \ln 2$	A1	
8(iv)		В3	B1 for correct g with intercept B1 for $y = x$ and/or implication of symmetry B1 for correct g^{-1} with intercept
9(a)(i)	7!=5040	B1	

© UCLES 2019 Page 6 of 8

May/June 2019

Question	Answer	Marks	Guidance
9(a)(ii)	Treating the 4 trophies as 1 unit so there are 4! ways	B1	Maybe implied by a correct answer
	There are also 4! ways of arranging the football trophies amongst themselves	B1	
	Total = $4! \times 4! = 576$	B1	
9(a)(iii)	Treating the 4 football trophies as 1 unit and the 2 cricket trophies as 1 unit so there are 3! ways	B1	Maybe implied by a correct answer
	There are also 4! ways of arranging the football trophies amongst themselves and 2 ways of arranging the cricket trophies	B1	Maybe implied by a correct answer
	Total = $3! \times 4! \times 2 = 288$	B1	
9(b)(i)	3003	B1	
9(b)(ii)	28	B1	
9(b)(iii)	3003 – 1	M1	For <i>their</i> (i) – 1
	3002	A1	FT
10(i)		M1	Attempt to integrate to obtain $k(2x+3)^{\frac{1}{2}}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x+3)^{\frac{1}{2}} (+c)$	A1	All correct, condone omission of $+c$
	5 = 3 + c	M1	Dep For attempt at <i>c</i>
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x+3)^{\frac{1}{2}} + 2$	M1	For a further attempt to integrate
	$y = \frac{1}{3}(2x+3)^{\frac{3}{2}} + 2x(+d)$	A1	All correct, condone omission of +d
	$-\frac{1}{3} = \frac{8}{3} + 1 + d$	M1	For attempt at <i>d</i>
	$y = \frac{1}{3}(2x+3)^{\frac{3}{2}} + 2x - 4$	A1	Must have $y =$

© UCLES 2019 Page 7 of 8

Question	Answer	Marks	Guidance
10(ii)	When $x = 3$, $y = 11$	M1	For attempt to find y using their (i)
		M1	Dep For attempt at normal
	Normal: $y-11 = -\frac{1}{5}(x-3)$	A1	All correct unsimplified
	x + 5y - 58 = 0	A1	For correct form
11(i)	120	B1	For correct triangle, may be implied by subsequent work
	600 130	PR	
	$\frac{120}{\sin\alpha} = \frac{600}{\sin 130}$	M1	For use of the correct sine rule
	$\alpha = 8.81^{\circ}$	A1	Allow greater accuracy
	Bearing 041.2° or 041°	A1	Allow greater accuracy
11(ii)	$\frac{v_r}{\sin 41.19} = \frac{600}{\sin 130} = \frac{120}{\sin \alpha}$	M1	For use of sine rule using <i>their</i> α or cosine rule
	$v_r = 515.8 \text{ awrt } 516$	O CAI	
	$Time taken = \frac{2500}{515.8}$	M1	For attempt to find time using <i>their</i> v_r , not 600, 720 or 480
	= 4.85 or 4.84	A1	

© UCLES 2019 Page 8 of 8

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12

Paper 12 March 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 8

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot

SC Special Case soi seen or implied

© UCLES 2019 Page 3 of 8

Question	Answer	Marks	Partial Marks
1(a)(i)	6	B1	
1(a)(ii)	1	B1	
1(b)	$Q \qquad \qquad P \qquad \qquad R$	2	B1 for P contained within Q B1 for Q and R separate
1(c)	$S' \cap T'$ or $(S \cup T)'$ oe	B1	
	$(X \cap Y) \cup (X \cap Z)$ or $X \cap (Y \cup Z)$ oe	B1	
2		4	B1 for general shape with maximum point in 1st quadrant B1 for $\left(-\frac{1}{2},0\right)$ and $(3,0)$ soi B1 for $(0,3)$ soi B1 dep on first B1, with cusps and correct shape for $x < -\frac{1}{2}$ and $x > 3$
3(i)	$729 - 162x + 15x^2$	3 ore?	B1 for 729 B1 for $-162x$ B1 for $15x^2$ Mark final answer
3(ii)	$\left(729 - 162x + 15x^2\right)\left(x^2 - 4 + \frac{4}{x^2}\right)$	B1	for expansion of $\left(x - \frac{2}{x}\right)^2$
	Term independent of $x = -2916 + 60$	M1	for attempt to find independent term, must be considering 2 products using <i>their</i> answer to part (i)
	=-2856	A1	
4(i)	$p'(x) = 6x^2 + 2ax + b$	B1	for $p'(x) = 6x^2 + 2ax + b$
	p'(-3) = 54 - 6a + b, = -24 leading to $6a - b = 78$	B1	must be convinced of correct substitution and simplification AG

© UCLES 2019 Page 4 of 8

Question	Answer	Marks	Partial Marks
4(ii)	$p\left(\frac{1}{2}\right): \frac{2}{8} + \frac{a}{4} + \frac{b}{2} - 49 = 0$	M1	for attempt at $p\left(\frac{1}{2}\right)$ equated to 0
	6a - b = 78 a + 2b = 195 oe	M1	M Dep on previous M for attempt to solve both equations
	leading to $a = 27$	A1	
	b = 84	A1	
4(iii)	$(2x-1)(x^2+14x+49)$	2	M1 for factorisation by observation or by long division
4(iv)	$(2x-1)(x+7)^2$	B1	
5(i)	$\log_4 16 + \log_4 p$	M1	for dealing with product correctly
	2+p	A1	
5(ii)	$7\log_4 x - \log_4 256$	M1	for dealing with power and division correctly
	7 p - 4	A1	
5(iii)	2 + p - (7p - 4) = 5 leading to $p = \frac{1}{6}$	M1	for use of parts (i) and (ii) to obtain a value for p
	so $x = 4^{\frac{1}{6}}$	M1	for correct attempt to deal with log_4 in order to obtain x
	x = 1.26	A1	3.
6(a)	BA and CB	ore ₂	B1 for one correct product of 2 matrices B1 for a second correct product of 2 matrices, with no other incorrect products
6(b)(i)	$\frac{1}{16} \begin{pmatrix} 3 & 2 \\ -5 & 2 \end{pmatrix} \text{ oe }$	2	B1 for $\frac{1}{16}$ soi B1 for $\begin{pmatrix} 3 & 2 \\ -5 & 2 \end{pmatrix}$

© UCLES 2019 Page 5 of 8

Question	Answer	Marks	Partial Marks
6(b)(ii)	$\mathbf{X}^{-1}\mathbf{X}\mathbf{Z} = \mathbf{X}^{-1}\mathbf{Y}$ $\mathbf{Z} = \frac{1}{16} \begin{pmatrix} 3 & 2 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 2 & 0 \end{pmatrix}$	M1	for pre-multiplication by <i>their</i> inverse matrix
	attempt at matrix multiplication	M1	M1 Dep on previous M mark, must have at least 2 correct elements
	$\mathbf{Z} = \frac{1}{16} \begin{pmatrix} 16 & 3 \\ -16 & -5 \end{pmatrix} \text{ oe}$	A1	
7(i)	Area = $\frac{1}{2} (8 + 6\sqrt{5}) (10 - 2\sqrt{5})$	M1	for a correct method of finding the area of the trapezium
	$=10+22\sqrt{5}$	A2	A1 for 10 with sufficient working seen A1 for $22\sqrt{5}$ with sufficient working seen
7(ii)	$\cot \theta = \frac{4}{10 - 2\sqrt{5}}$	B1	
	$= \frac{4(10+2\sqrt{5})}{(10-2\sqrt{5})(10+2\sqrt{5})}$	M1	for attempt to rationalise an expression for $\cot \theta$, some evidence of expansion must be seen
	$=\frac{1}{2}+\frac{\sqrt{5}}{10}$	A1	
8(a)(i)	0	B1	/ / / /
8(a)(ii)	Area under curve = $\frac{1}{2}(2 \times 10) + (4 \times 10) + \frac{1}{2}(10 + 20) \times 4$	M1	for attempt to find the total area under the graph
	= 110	A1	
8(b)(i)	When $t = \frac{7\pi}{12}$, $v = -2.5$	M1	for substitution of $t = \frac{7\pi}{12}$ and correct attempt to evaluate
	Speed = 2.5	A1	must be positive
8(b)(ii)	$a = 6\cos 2t$	M1	for differentiation to get acceleration, must be of the form $m\cos 2t$
	When acceleration = 0 , $\cos 2t = 0$	M1	M Dep on previous M mark for equating to zero and correct attempt to solve to get a solution in radians.
	$t = \frac{\pi}{4} \text{ or } 0.785$	A1	

© UCLES 2019 Page 6 of 8

Question	Answer	Marks	Partial Marks
9(i)	$\frac{1}{2}r^2\theta = 36$ $\theta = \frac{72}{r^2}$	M1	for use of the area of the sector
	$P = 2r + r\theta$	M1	for attempt to find P making use of the area
	$P = 2r + \frac{72}{r}$	A1	for attempt to simplify to obtain AG
9(ii)	$\frac{\mathrm{d}P}{\mathrm{d}r} = 2 - \frac{72}{r^2}$	M1	for attempt to differentiate to obtain the form $a + \frac{b}{r^2}$ and equate to zero
	When $\frac{dP}{dr} = 0$, $r = 6$	A1	
	P = 24	A1	
	$\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = \frac{144}{r^3}$ positive so minimum	B1	FT on <i>their</i> positive r , for a correct method to determine the nature of the stationary point leading to a correct conclusion. If the second derivative is evaluated, it must be correct for <i>their</i> r .
10(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x} + 3x \ (+c)$	2	M1 for attempt to integrate to obtain the form $me^{2x} + nx$ A1 all correct
	c=8	M1	M1 Dep on previous M mark for attempt to get <i>c</i>
	$y = e^{2x} + \frac{3x^2}{2} + 8x \ (+d)$	bre 2	M1 for attempt to integrate again to obtain the form $pe^{2x} + qx^2(+rx)$ A1 all correct, FT on their ke^{2x} and their c
	d = -6	M1	M1 Dep on previous M mark for attempt to get <i>d</i>
	$y = e^{2x} + \frac{3x^2}{2} + 8x - 6$	A1	

© UCLES 2019 Page 7 of 8

Question	Answer	Marks	Partial Marks
10(ii)	When $x = \frac{1}{4}$, $y = -2.26$ $\frac{dy}{dx} = 12.0$	M1	for attempt to obtain both y and $\frac{dy}{dx}$ using their work from (i)
	$y + 2.26 = -\frac{1}{12} \left(x - \frac{1}{4} \right)$	2	M1 Dep on previous M mark for attempt to obtain the equation of the normal A1 allow unsimplified, must be using correct accuracy or exact equivalents.
11(a)	$2\sin x \left(\cos^2 x - 1\right) = 0$	M1	for obtaining in terms of sin and cos to obtain one solution correctly
	$\sin x = 0$, $x = 0^{\circ}$, 180°	B1	for $x = 0^{\circ}$, 180° and no other in the given range for the solution of this equation
	$\cos x = \pm \frac{1}{\sqrt{2}}, \ x = 45^{\circ}, \ 135^{\circ}$	A1	for $x = 45^{\circ}$, 135° and no other in the given range for the solution of this equation
11(b)(i)	$\frac{1}{\cos\theta} - \frac{\sin^2\theta}{\cos\theta}$	M1	for dealing with cot and sec
	$\frac{\cos^2 \theta}{\cos \theta}$	M1	for correct use of identity
	$\cos \theta$	A1	for all correct working to gain AG
11(b)(ii)	$\cos 3\theta = \frac{1}{2}$ $\theta = \frac{5\pi}{9} \text{ or } \frac{\pi}{9}$	M1	for use of part (i) and attempt to solve correctly to obtain a positive angle, may be implied by one correct solution
	$\theta = -\frac{5\pi}{9} \text{ or } -\frac{\pi}{9}$	M1	for use of part (i) and attempt to solve correctly to obtain a negative angle, may be implied by one correct solution
	$\theta = \pm \frac{\pi}{9}, \ \pm \frac{5\pi}{9}$	A2	A1 for one correct pair of solutions A1 for a second pair of solutions with no extra solutions within the range

© UCLES 2019 Page 8 of 8

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/11

Paper 1

October/November 2018

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 9

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 9

Question	Answer	Marks	Guidance
1(a)		В3	B1 for 2 cycles, one max and 2 min points in the correct places and up to a max at each end B1 for going between 2 and -4 B1 for starting at (0,2) and finishing at (360,2)
1(b)(i)	4	B1	
1(b)(ii)	60° or $\frac{\pi}{3}$	B1	
2(i)	$\left(p\left(-\frac{1}{2}\right) = \right) - \frac{1}{4} + \frac{5}{4} - 2 + a = 2$	M1	For either $p\left(-\frac{1}{2}\right) = 2$ or $q\left(-2\right) = 0$
	(q(-2)=) 16-6a+b=0	P	
	a = 3	A1	
	b = 2	A1	
2(ii)	$r(x) = 2x^3 + x^2 - 5x + 1$	M1	For $r(x)$ using their $p(x)$ and $q(x)$
	$r\left(\frac{2}{3}\right) = \frac{16}{27} + \frac{4}{9} - \frac{10}{3} + 1$	M1	For $r\left(\frac{2}{3}\right)$
	$=-\frac{35}{27}$	A1	Must be exact

Question	Answer	Marks	Guidance
3	$(3+kx)^6 = $ $729+1458kx+1215k^2x^2$	B2	B1 for $1458kx$ or $1215k^2x^2$
	Terms in x^2 for $(2-x)(3+kx)^6$ = $-1458k + 2430k^2$ $2430k^2 - 1458k = 972$	M1	For attempt at further expansion to obtain 2 terms in x^2 and equating to 972
	$5k^{2} - 3k - 2 = 0$ $(5k + 2)(k - 1) = 0$	M1	Dep for solution of resulting 3 term quadratic
	$k = -\frac{2}{5}$	A1	
	k = 1	A1	
4(i)	$\left(x-\frac{9}{2}\right)^2-\frac{49}{4}$	B2	B1 for $\frac{9}{2}$ or $\frac{49}{4}$
4(ii)	$\left(\frac{9}{2}, -\frac{49}{4}\right)$	B1	FT their p and q
4(iii)		В3	B1 for shape B1 for cusps at (1, 0) and (8, 0) B1 for all correct, passing through (0, 8) with maximum in correct position
4(iv)	49 4	B1	FT their q
5(i)	$\frac{1}{2}r^2\theta = 48$	B1	
	$\theta = \frac{96}{r^2}$	B1	Dep Must have previous B1
5(ii)	$r\theta = 12$	B1	For statement of arc length
	$r \times \frac{96}{r^2} = 12$	M1	For attempt to use part (i) to find either r or θ
	$r = 8$ and $\theta = 1.5$	A1	For both

Question	Answer	Marks	Guidance
5(iii)	Area = $48 - \left(\frac{1}{2}r^2\sin\theta\right)$	M1	For a complete method including a correct attempt for the area of the triangle using their r and θ
	=16.1	A1	
6(i)	For $\frac{4x}{2x^2 + 3}$	B1	
		M1	For attempt to differentiate a quotient or appropriate product
	$\frac{\frac{dy}{dx}}{\frac{(5x+2)\frac{4x}{2x^2+3} - 5\ln(2x^2+3)}{(5x+2)^2}}$	A1	All other terms correct
	When $x = 0$ $\frac{dy}{dx} = \frac{-5 \ln 3}{4}$	A1	For given answer
6(ii)	$y = \frac{1}{2} \ln 3$ or 0.549	B1	May be implied by tangent equation, allow 0.55
	Equation of tangent $y = \left(-\frac{5}{4}\ln 3\right)x + \frac{1}{2}\ln 3$ or	B1	
	y = -1.37x + 0.549		<u> </u>
7(a)	lg100 = 2	B1	60.
	$3\lg x = \lg x^3$	B1	≥P.
	$ \lg \frac{100x^3}{y} $	B1	
7(b)(i)	$6x^{2} + 7x - 3 = 0$ $(2x+3)(3x-1) = 0$	M1	For obtaining in suitable quadratic form and attempt to solve
	$x = -\frac{3}{2} x = \frac{1}{3}$	A1	For both

Question	Answer	Marks	Guidance
7(b)(ii)	$x = \log_a 3$	M1	For realising connection with part (i) and attempt to
	$\frac{1}{3} = \log_a 3$		solve $\frac{1}{3} = \log_a 3$ or $-\frac{3}{2} = \log_a 3$
	a = 27	A1	
	$-\frac{3}{2} = \log_a 3$	M1	For realising connection with part (i) and attempt to solve $-\frac{3}{2} = \log_a 3$ or $\frac{1}{3} = \log_a 3$
	$a = \left(\frac{1}{3}\right)^{\frac{2}{3}} \text{ or } 0.481 \text{ or } \left(\frac{1}{9}\right)^{\frac{1}{3}} \text{ oe}$	A1	
8(i)		M1	For attempt to use chain rule to obtain
	AT	P	$kx(5x^2+4)^{\frac{1}{2}}$ where k is a constant
	$\frac{3}{2}(10x)(5x^2+4)^{\frac{1}{2}}$	A1	Allow unsimplified
8(ii)		M1	For attempt to use part (i) if in correct form of $m(5x^2+4)^{\frac{3}{2}}$
	$\frac{1}{15} \left(5x^2 + 4\right)^{\frac{3}{2}} \ (+c)$	A1	FT on their $\frac{1}{k}(5x^2+4)^{\frac{3}{2}}$
8(iii)	2	M1	For use of limits if their (ii)
	34		Must be in the form $m(5x^2 + 4)^{\frac{3}{2}}$
	$\boxed{\frac{1}{15} \left(\left(5a^2 + 4 \right)^{\frac{3}{2}} - 4^{\frac{3}{2}} \right) \left[= \frac{19}{15} \right]}$	A1	
	$\left(5a^2 + 4\right)^{\frac{3}{2}} = 27$	M1	Dep For complete and correct method to deal with the power of $\frac{3}{2}$
	leading to $a = 1$	A1	
9(i)	3	B1	

Question	Answer	Marks	Guidance
9(ii)		M1	For attempt to differentiate to obtain $a + be^{-t}$
	$\frac{\mathrm{d}s}{\mathrm{d}t} = 4 - 3\mathrm{e}^{-t}$	A1	All correct
	$2 = 4 - 3e^{-t}$	M1	Dep for correct attempt to solve equation involving exponential where $e^{-t} > 0$
	leading to $t = \ln \frac{3}{2}$ or $-\ln \frac{2}{3}$	A1	Must be an exact form
9(iii)	When $t = \ln 5$, $\frac{ds}{dt} = \frac{17}{5}$	M1	For attempt to find value of $\frac{ds}{dt}$ when $t = \ln 2$
		M1	Dep for attempt to use method of small changes
	$\partial s = \frac{17h}{5}$	A1	
10(i)	Velocity of $A \begin{pmatrix} 6 \\ 8 \end{pmatrix}$	B1	For velocity, may be implied by later work
	When $t = 6$, $\mathbf{r}_A = \begin{pmatrix} 2 \\ -5 \end{pmatrix} + 6 \begin{pmatrix} 6 \\ 8 \end{pmatrix}$	M1	For a complete and correct method
	$= \begin{pmatrix} 38 \\ 43 \end{pmatrix}$	A1	For 43
10(ii)	$\mathbf{r}_B = \begin{pmatrix} 16\\37 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} t$	B1	0.5
10(iii)		M1	For equating position vectors at a time t
	16 + 4t = 2 + 6t or $37 + 2t = -5 + 8t$	M1	Dep for equating like vectors at least once
	t = 7	A1	Allow from one correct equation
	Both equations lead to $t = 7$	B1	For showing that $t = 7$ satisfies both equations thus verifying collision, or equivalent
10(iv)	(44) (51)	B1	

Question	Answer	Marks	Guidance
11(a)(i)		B1	For critical values
	$2 \leqslant f \leqslant 4$	B1	Dep For correct inequality and notation
11(a)(ii)	$x = 3\cos y$ $\cos 2y = 0.5$	M1	For attempt to find f^{-1} and equate to 0.5
	$2y = \frac{\pi}{3}$	M1	Dep For correct attempt to solve, dealing with the double angle
	$y = \frac{\pi}{6}$	A1	
11(b)	$g^{2}(x) = g(3-x^{2})$ $= 3 - (3-x^{2})^{2}$	M1	For correct attempt at g ² , allow unsimplified
	$-6 + 6x^2 - x^4 = -6$ $6x^2 - x^4 = 0$	M1	Dep for equating to –6 and attempt to solve to obtain a non-zero root
	x = 0	B1	
	$x = \pm \sqrt{6}$	A1	

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12

Paper 1

October/November 2018

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 10

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 10

Question	Answer	Marks	Guidance
1	$\sin(x+50^{\circ}) = -\frac{1}{\sqrt{2}}$ $(x+50^{\circ} = -45^{\circ}, 225^{\circ})$	M1	For order of operations – subtraction of 1, division by $\pm \sqrt{2}$ and attempt at \sin^{-1}
		M1	Dep For obtaining a solution by subtracting 50°
	$x = -95^{\circ}$, 175°	A2	A1 for one correct solution A1 for a second correct solution and no others within the range
2	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5x + \frac{1}{2}e^{2x} (+c)$	M1	For attempt to integrate to get $\frac{dy}{dx}$ in the form $5x + pe^{2x}$. Condone omission of $+c$
	When $x = 0$, $\frac{dy}{dx} = 4$ so $c = \frac{7}{2}$	M1	Dep For attempt to get value of <i>c</i>
	$y = \frac{5x^2}{2} + \frac{1}{4}e^{2x} + \frac{7}{2}x (+d)$	M1	Dep on first M1 only For attempt to get y in the form including $\frac{5x^2}{2} + pe^{2x}$. Condone omission of + d.
	When $x = 0$, $y = -3$ so $d = -\frac{13}{4}$	M1	Dep on previous DepM1 For attempt to obtain <i>d</i> , allow if <i>c</i> not found
	$y = \frac{5x^2}{2} + \frac{1}{4}e^{2x} + \frac{7}{2}x - \frac{13}{4}$	A1	Must have an equation
3(i)		B2	B1 for correct shape with vertex at (2,0) Dep B1 for passing through or starting at (0,6)

Question	Answer	Marks	Guidance
3(ii)	Either $6-3x=2$ $x = \frac{4}{3}$	B1	For $x = \frac{4}{3}$
	6-3x=-2	M1	For considering – 2
	$x = \frac{8}{3}$	A1	
	$\mathbf{Or} \ 9x^2 - 36x + 32 = 0$	M1	For squaring each side and attempt to solve a 3 term quadratic = 0
	$x = \frac{4}{3}$	A1	
	$x = \frac{8}{3}$	A1	
3(iii)	$x < \frac{4}{3}, x > \frac{8}{3}$	B1	FT on <i>their</i> solutions in part (ii), must both be positive and written as 2 separate statements
4(i)		B1	For $\frac{2}{2x+1}$
		M1	For attempt to differentiate a product
	$\frac{dy}{dx} = x^3 \frac{2}{2x+1} + 3x^2 \ln(2x+1)$	A1	For all other terms correct
	When $x = 0.3$, $\frac{dy}{dx} = 0.161$	A1	For awrt 0.161
4(ii)	0.161h	B1	FT on <i>their</i> numerical answer to part (i)
5(i)	7th term: $924a^6b^6x^6 = 924x^6$ $924a^6b^6 = 924$ $924a^6(bx)^6 = 924x^6$	B1	For any correct statement
	$(ab)^6 = 1 \text{ or } ab = 1 \text{ so } b = \frac{1}{a}$	B1	Dep on first B1 Must be convinced, nfww

Question	Answer	Marks	Guidance
5(ii)	6th term: $792a^7b^5x^5 = 198x^5$ $792a^7b^5 = 198$ $792a^7(bx)^5 = 198x^5$	B1	For any correct statement
	use of $ab = 1$ to obtain $a^2 =$ or $b^2 =$	M1	For attempt to solve <i>their</i> equations simultaneously to obtain an equation in a^2 or b^5
	$a = \frac{1}{2}$	A1	
	b=2	A1	
6(i)	DI	M1	For $kx(5x-125)^{-\frac{1}{3}}$
	$\frac{2}{3} \times 10x \left(5x^2 - 125\right)^{-\frac{1}{3}}$ $\left(\frac{20}{3}x \left(5x^2 - 125\right)^{-\frac{1}{3}}\right)$	A1	Allow unsimplified
6(ii)		M1	For $m(5x^2-125)^{\frac{2}{3}}$ (+c)
	$\frac{3}{20} \left(5x^2 - 125\right)^{\frac{2}{3}} \ (+c)$	A1	FT on their k from part (i)
6(iii)	$\frac{3}{20} \left((375)^{\frac{2}{3}} - (55)^{\frac{2}{3}} \right)$	M1	Dep on previous M1 For use of limits in <i>their</i> answer to part (ii), must be in the form $m(5x^2-125)^{\frac{2}{3}}$ (+c),
	= 5.63	A1	Allow greater accuracy

Page 6 of 10

Question	Answer	Marks	Guidance
7(a)	$ \begin{vmatrix} -12 \\ 5 \end{vmatrix} = 13 $	B1	For magnitude, may be implied by a correct v
	$\mathbf{v} = \begin{pmatrix} -36 \\ 15 \end{pmatrix} \text{ or } 3 \begin{pmatrix} -12 \\ 5 \end{pmatrix}$	B1	Must be a vector
7(a) Alternative	If $t \begin{vmatrix} -12 \\ 5 \end{vmatrix} = 39$, $t = 3$	B1	For value of <i>t</i> , may be implied by a correct v
	$\mathbf{v} = \begin{pmatrix} -36 \\ 15 \end{pmatrix} \text{ or } 3 \begin{pmatrix} -12 \\ 5 \end{pmatrix}$	B1	
7(b)		M1	For equating like vectors at least once
	17r + 2s + 3 = 0 $2r + 6s + 9 = 0$	M1	Dep For solution of resulting equations to obtain 2 solutions
	r = 0	A1	
	$s = -\frac{3}{2}$ oe	A1	
8(i)	a(a+4)-12=0	M1	For correct use of $det = 0$
	$a^2 + 4a - 12 = 0$	M1	Dep For solution of resulting quadratic equation
	leading to $a = -6$, $a = 2$	A1	For both
8(ii)	$\mathbf{A}^{-1} = \frac{1}{20} \begin{pmatrix} 8 & -3 \\ -4 & 4 \end{pmatrix} \text{ oe}$	B2	B1 for $\frac{1}{20}$ B1 for $\begin{pmatrix} 8 & -3 \\ -4 & 4 \end{pmatrix}$
8(iii)	$\mathbf{B} = \mathbf{A}^{-1} \begin{pmatrix} 2 & 3 \\ 4 & -5 \end{pmatrix}$	M1	For pre-multiplication by their A ⁻¹
		M1	Dep For multiplication of 2 matrices – need to see at least 2 correct elements – may be unsimplified
	$=\frac{1}{20}\begin{pmatrix} 4 & 39\\ 8 & -32 \end{pmatrix}$	A1	For final matrix oe

Question	Answer	Marks	Guidance
9(i)	p(-3) = 0 leading to -27a + 9b - 3c - 9 = 0	M1	For substitution of $x = -3$ and equating to zero
	$p'(x) = 3ax^{2} + 2bx + c$ p'(0) = 36	M1	For differentiation in the form $rx^2 + sx + t$ and substitution of $x = 0$
	c = 36	A1	nfww
	p''(x) = 6ax + 2b $p''(0) = 2b$	M1	For further differentiation in the form $vx + w$ of their $p'(x)$ and substitution of $x = 0$
	b = 43	A1	nfww
	a = 10	A1	nfww
9(ii)	$p\left(\frac{1}{2}\right)$	M1	For use of $x = \frac{1}{2}$ in their $p(x)$ from part (i)
	21	A1	
10(i)	a = 2	B1	-111
	$\cos bx = -\frac{1}{2}$	M1	For a correct attempt to solve $\cos b \frac{\pi}{6} = \pm \frac{a}{4}$ provided $0 < a \le 4$ to get $b =$
	leading to $b = 4$	A1	5
10(ii)	$\cos 4x = -\frac{1}{2}$	M1	Dep For attempt to solve <i>their</i> $\cos bx = \pm \frac{a}{4}$ provided $0 < a \le 4$ or use of symmetry to get $x =$
	$x = \frac{\pi}{3}$ so $\left(\frac{\pi}{3}, 0\right)$	A1	
10(iii)	At M , $y = -2$	B1	
	$x = \frac{\pi}{4}$	B1	

Question	Answer	Marks	Guidance
11(i)	$2r + r\theta = 10$	M1	For use of arc length and attempt to get perimeter, must have 2 terms involving <i>r</i>
		M1	Dep For attempt to get r in terms of θ
	$r = \frac{10}{2 + \theta}$	A1	
	$A = \frac{1}{2} \left(\frac{10}{2+\theta} \right)^2 \theta$	M1	For attempt to obtain the area of the sector in terms of θ only, using <i>their r</i>
	$A = \frac{50\theta}{\left(2+\theta\right)^2}$	A1	For manipulation to get the required answer nfww AG
11(ii)	6	M1	For attempt to differentiate a quotient or an equivalent product
	$\frac{dA}{d\theta} = \frac{50(2+\theta)^2 - 100\theta(2+\theta)}{(2+\theta)^4}$ or $\frac{dA}{d\theta} = 50(2+\theta)^{-2} - 100\theta(2+\theta)^{-3}$	A1	All correct, allow unsimplified
	When $\frac{dA}{d\theta} = 0$	M1	For equating their $\frac{dA}{d\theta}$ to 0 and attempt to solve – need to see at least one line of working
	$\theta = 2$	A1	Condone inclusion of −2
	$A = \frac{25}{4}$	A1	

Question	Answer	Marks	Guidance
11(ii) Alternative	Starting again using $\theta = \frac{10 - 2r}{2}$ so $A = 5r - r^2$	M1	A complete method to obtain $\frac{dA}{dr}$
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 5 - 2r$	A1	
	When $\frac{dA}{dr} = 0$	M1	For equating to zero and attempt to solve
	r = 2.5	A1	
	$A = \frac{25}{4}$	A 1	
12	$2x^2 + 7x = 0$ or $y^2 - 3y - 10 = 0$	M1	For attempt to obtain a simplified quadratic equation in one variable equated to 0
		M1	Dep For solution of quadratic
	(0,5)	A1	1111
	$\left(-\frac{7}{2},-2\right)$	A1	
	Midpoint $\left(-\frac{7}{4}, \frac{3}{2}\right)$	B1	5
	Gradient of $AB = 2$ $\therefore \perp \text{ gradient} = -\frac{1}{2}$	M1	For attempt to obtain gradient of line perpendicular to AB using their coordinates
	$\perp \text{ bisector: } y - \frac{3}{2} = -\frac{1}{2} \left(x + \frac{7}{4} \right)$	M1	For a correct attempt to obtain equation of perpendicular bisector using their midpoint and <i>their</i> perpendicular gradient
	Consideration of when $y = x$	M1	Dep on previous M1 For attempt to find intersection with the line $y = x$
	$x = y = \frac{5}{12}$	A1	For both

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/13

Paper 1

October/November 2018

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 11

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 11

Question	Answer	Marks	Guidance
1(a)	$^{5}C_{3}\times2^{2}\times(px)^{3}$	B1	
	$40p^3 = -\frac{8}{25}$	M1	equating <i>their</i> coefficient of x^3 to
	$p^3 = -\frac{8}{1000}$		$-\frac{8}{25}$ and finding p^3
	$p = -\frac{1}{5}$ or $p = -0.2$	A1	
1(b)	${}^{8}C_{4} \times \left(2x^{2}\right)^{4} \times \left(\frac{1}{4x^{2}}\right)^{4}$	B1	
	$70\times16\times\frac{1}{256}$	M1	at least two of 70, 16, $\frac{1}{256}$ correct in
			an evaluation of a three-term product
	$\frac{35}{8}$, 4.375, $4\frac{3}{8}$	A1	cao
2(i)	$\theta = \frac{20 - 2r}{r}$	B1	
	$Area = \frac{1}{2}r^2 \left(\frac{20 - 2r}{r}\right)$	M1	use of <i>their</i> θ in terms of r in formula for sector area
	$A = 10r - r^2$	A1	simplification to get given answer
	Alternative		5/
	s = 20 - 2r	B1	
	$=\frac{1}{2}r(20-2r)$	M1	use of formula for sector area using their expression for s in terms of r
	$A = 10r - r^2$	A1	simplification to get given answer
2(ii)	$\frac{dA}{dr} = 10 - 2r$ When $\frac{dA}{dr} = 0$, $r = 5$	M1	for $\frac{dA}{dr} = 10 - kr$, equating to zero and solving for r
	$\theta = \frac{(20 - 2 \times 5)}{5}$	M1	Dep substitution of <i>their</i> value of r to get θ
	$\theta = 2$	A1	

Question	Answer	Marks	Guidance
3(i)	$AC^{2} = \left(5\sqrt{3} + 5\right)^{2} + \left(5\sqrt{3} - 5\right)^{2}$	M1	correct use of Pythagoras or correct use of cosine rule with cos90
	$= 75 + 25 + 50\sqrt{3} + 75 + 25 - 50\sqrt{3}$ $= 200$	M1	correct expansion to 6 or 8 terms
	$AC = 10\sqrt{2}$	A1	from $AC^2 = 200$
3(ii)	$\tan BCA = \frac{5\sqrt{3} + 5}{5\sqrt{3} - 5} \text{ oe}$	B1	
	$= \frac{(5\sqrt{3}+5)(5\sqrt{3}+5)}{(5\sqrt{3}-5)(5\sqrt{3}+5)} \text{ oe}$	M1	for rationalisation
	$=\frac{100+50\sqrt{3}}{50}$ oe	RE	
	$=2+\sqrt{3}$	A1	
4(i)		M1	for $10(1+\cos 3x)^9$ f(x)
		M1	for $k \sin 3x (1 + \cos 3x)^9$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -30\sin 3x \left(1 + \cos 3x\right)^9$	A1	
	When $x = \frac{\pi}{2}$, $\frac{dy}{dx} = 30$	A1	Ş
4(ii)	Use of $\frac{dy}{dx} \times \frac{dx}{dt} = \frac{dy}{dt}$ with $\frac{dy}{dt} = 6$	M1	$their \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 6$
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{5} \text{ or } 0.2$	A1	FT from their answer from part (i)

Question	Answer	Marks	Guidance
5(i)	$\log_9 4 = \frac{\log_3 4}{\log_3 9}$	B1	change of base
	$= \frac{1}{2}\log_3 4$ $= \frac{1}{2}\log_3 2^2 \text{ or } \log_3 \sqrt{4}$ $= \log_3 2$	B1	Dep must have B1 for change of base and full working
	Alternative A		
	$\log_9 4 = 2\log_9 2$	B1	use of power rule
	$= \frac{2\log_3 2}{\log_3 9}$ $= \frac{2\log_3 2}{2\log_3 3}$	B1	Dep change of base and full working
	$-\frac{2\log_3 3}{2\log_3 2}$ $=\log_3 2$		
	Alternative B		
	$x = \log_9 4 \implies 9^x = 4$ $9^x = 4 \implies 3^{2x} = 4$	B1	correct use of indices to reach $3^{2x} = 4$
	$\Rightarrow 3^{x} = 2 \Rightarrow x = \log_{3} 2$ $\therefore \log_{9} 4 = \log_{3} 2$	B1	Dep full working
	Alternative C		5
	$\log_9 4 = \frac{\log_{10} 4}{\log_{10} 9}$. B1	change of base and use of power rule
	$=\frac{2\log_{10} 2}{2\log_{10} 3}$		
	$=\log_3 2$	B1	Dep change of base and full working

Question	Answer	Marks	Guidance
5(ii)	$\log_3 2 + \log_3 x = 3$ $\log_3 2x = 3$	B1	for $\log_3 2x = 3$
	$3^3 = 2x$	B1	
	$x = 13.5, x = \frac{27}{2}$	B1	
	Alternative		
	$\log_3 x = \log_3 27 - \log_3 2$	B1	
	$=\log_3\frac{27}{2}$	B1	
	$x = 13.5, x = \frac{27}{2}$	B1	
6(i)	$\frac{\mathrm{d}s}{\mathrm{d}t} = -6\mathrm{e}^{-0.5t} + 4$	M1	for $ke^{-0.5t} + 4$
	When $\frac{ds}{dt} = 0$, $e^{-0.5t} = \frac{2}{3}$ $-0.5t = \ln \frac{2}{3}$ $t = -2 \ln \frac{2}{3}$	M1	Dep equating to zero and correct order of operations to solve for <i>t</i>
	t = 0.811	A1	5
6(ii)	34	M1	for $ke^{-0.5t}$
	$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = 3\mathrm{e}^{-0.5t}$	A1	
6(iii)	$3e^{-0.5t} = 0.3$ $e^{-0.5t} = 0.1$ $t = \frac{\ln 0.1}{-0.5}$	M1	correct order of operations and correct use of ln to solve $ke^{-0.5t} = 0.3$ for t
	$s = 12e^{-0.5 \times 4.605} + 4 \times 4.605 - 12$	M1	Dep use of t to obtain s
	s = 7.62	A1	
6(iv)	$e^{-0.5t}$ is always positive or $e^{-0.5t}$ can never be zero or negative	B1	correct comment about e ^{-0.5t}

Question	Answer	Marks	Guidance
7(i)	$\overrightarrow{AD} = m(\mathbf{c} - \mathbf{a})$	B1	
7(ii)	$\overrightarrow{AD} = \overrightarrow{OD} - \mathbf{a}$	B1	for $\overrightarrow{OD} = \frac{2}{3}\mathbf{b}$
	$=\frac{2}{3}\mathbf{b}-\mathbf{a}$	B1	FT their \overrightarrow{OD} if $\overrightarrow{OD} = k\mathbf{b}$
7(iii)	$m(\mathbf{c} - \mathbf{a}) = \frac{2}{3}\mathbf{b} - \mathbf{a}$	M1	equating parts (i) and (ii)
	$24\mathbf{a}(1-m) + 24m\mathbf{c} = 16\mathbf{b}$ Comparing with $15\mathbf{a} + 9\mathbf{c} = 16\mathbf{b}$	M1	attempt to eliminate or compare like vectors using given condition
	$m = \frac{3}{8}$	A1	
8(i)	$5 \leqslant f(x) \leqslant 6 \text{ or } [5,6] \text{ oe}$	B2	B1 for $5 \leqslant f(x) \leqslant p \ (p > 5)$ or for $q \leqslant f(x) \leqslant 6 \ (q < 6)$
8(ii)	$x = \sin\frac{y}{4} + 5$	M1	complete valid attempt to obtain the inverse with operations in correct order.
	$y = 4\sin^{-1}\left(x - 5\right)$	A1	711
	Range $0 \leqslant y \leqslant 2\pi$	B1	
8(iii)	$2\left(\sin\frac{\left(x-\frac{\pi}{3}\right)}{4}+5\right) (=11)$	B1	for $\sin \frac{\left(x - \frac{\pi}{3}\right)}{4} + 5$
	$\sin\frac{\left(x-\frac{\pi}{3}\right)}{4} = \frac{1}{2}$	M1	$for \sin \frac{\left(x - \frac{\pi}{3}\right)}{4} = k$
	$x = 4\sin^{-1}\left(\frac{1}{2}\right) + \frac{\pi}{3} \text{ oe}$	M1	Dep for use of \sin^{-1} and correct order of operations to obtain x. Allow one +/- or ×/ ÷ sign error
	$x = \pi \text{ or } 3.14$	A 1	$x = \pi$ and no other solutions in range

Question	Answer	Marks	Guidance
9	$\frac{\mathrm{d}}{\mathrm{d}x}\Big(\ln\Big(3x^2+1\Big)\Big) = \frac{6x}{3x^2+1}$	B1	for $\frac{6x}{3x^2 + 1}$
	$\frac{dy}{dx} = \frac{x^2 \frac{6x}{3x^2 + 1} - 2x \ln(3x^2 + 1)}{x^4}$	M1	differentiation of a quotient or product
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{-2}{x^3}\right) \ln\left(3x^2 + 1\right) + \left(\frac{1}{x^2}\right) \frac{6x}{\left(3x^2 + 1\right)}$		
	$\frac{x^2 \operatorname{f}(x) - 2x \ln(3x^2 + 1)}{x^4}$ or for $\left(-\frac{2}{x^3}\right) \ln(3x^2 + 1) + \left(\frac{1}{x^2}\right) \operatorname{f}(x)$	A1	
	of for $\left(-\frac{1}{x^3}\right)^{\ln\left(3x^2+1\right)+\left(\frac{1}{x^2}\right)^{\ln(x)}}$		
	When $x = 2$, $\frac{dy}{dx} = -0.410$	A1	
	Gradient of perp = 2.436	M1	use of $-\frac{1}{m}$ with a gradient obtained by differentiation
	When $x = 2$, $y = 0.641$ or $\frac{1}{4} \ln 13$	B1	
	Normal: $y - 0.641 = 2.436(x - 2)$	M1	Dep
	y = 2.44x - 4.23	A1	<u> </u>
10(i)	$x+8=12+x-x^{2}$ $x^{2}=4$, $x=\pm 2$ or $y^{2}-16y+60=0$ y=6 or $y=10$	M1	correct method of solution to obtain x or y
	x = 2, y = 10 x = -2, y = 6	A2	A1 for $x = -2$ and $x = 2$ or for $y = 6$ and $y = 10$ or for either point from a correctly solved equation.
10(ii)		M1	for $12x + px^2 + qx^3$ (+c)
	$12x + \frac{x^2}{2} - \frac{x^3}{3} (+c)$	A1	

Question	Answer	Marks	Guidance
10(iii)	$\left[12x + \frac{x^2}{2} - \frac{x^3}{3}\right]_{-2}^2 - \left(\frac{1}{2}(6+10) \times 4\right)$	B1	FT area of the trapezium unsimplified $\left(\frac{1}{2}(6+10)\times 4\right) \text{ or }$ $\left[\frac{2^2}{2}+8\times 2\right] - \left[\frac{(-2)^2}{2}+8\times (-2)\right]$ (= 32)
	$\left[12 \times 2 + \frac{2^2}{2} - \frac{2^3}{3}\right] - \left[12 \times -2 + \frac{(-2)^2}{2} - \frac{(-2)^3}{3}\right]$	M1	correct use of correct limits for area under the curve using <i>their</i> integral of the form $12x + px^2 + qx^3$
	$=\frac{128}{3}$ oe	A1	
	$=\frac{32}{3}$ oe	A1	
	Alternative		
	$\int_{-2}^{2} 12 + x - x^{2} - x - 8 dx$ $= \int_{-2}^{2} 4 - x^{2} dx$	M1	subtraction of the two equations with intent to integrate the result
	$= \left[4x - \frac{x^3}{3}\right]_{-2}^2$	A1	
	$\boxed{\left[4\times2-\frac{8}{3}\right]-\left[4\times-2+\frac{8}{3}\right]}$	M1	Dep for correct application of limits
	$=\frac{32}{3}$ oe	A1	
11(i)	$p\left(\frac{1}{2}\right) = a\left(\frac{1}{2}\right)^3 + 17\left(\frac{1}{2}\right)^2 + b\left(\frac{1}{2}\right) - 8$	M1	expression for $p\left(\frac{1}{2}\right)$
	$p(-3) = a(-3)^3 + 17(-3)^2 + b(-3) - 8$	M1	expression for $p(-3)$
	$\frac{a}{8} + \frac{17}{4} + \frac{b}{2} - 8 = 0$ $-27a + 153 - 3b - 8 = -35$	A1	both equations correct (allow equivalents and terms not collected but powers should be evaluated)
	Leading to $a = b = 6$	A1	from correct equations with evidence that both have been found correctly in order to verify that $a = b$

Question	Answer	Marks	Guidance
11(ii)	$(2x-1)(3x^2+10x+8)$	B2	B1 for $3x^2$ and +8 from factorisation or for $3x^2 + 10x$ from long division
11(iii)	(2x-1)(x+2)(3x+4)	B1	cao
11(iv)	$\sin\theta = \frac{1}{2}$	B1	
	$\theta = 30^{\circ}, 150^{\circ}$	B2	B1 for a first correct solution B1 for a second correct solution with no extras in range $0 \le \theta \le 180$ and no solution arising from other factors.

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/11

Paper 1 May/June 2018

MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE™ is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 10

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 10

Question	Answer	Marks	Partial Marks
1	Substitution and simplification to obtain a 3 term quadratic in one variable	M1	substitution of $y = x + 4$ or $x = y - 4$ and simplification to 3 terms.
	$x^{2}-2x-8=0 \text{ or } 2x^{2}-4x-16=0$ or $y^{2}-10y+16=0 \text{ or } y^{2}-10y+16=0$	A1	correct equation of the form $ax^{2} + bx + c = 0 \text{ or } ay^{2} + by + c = 0$
	Solution of quadratic equation	M1	M1 dep
	x = 4, y = 8 x = -2, y = 2	A2	A1 for each pair
2	Midpoint $\left(\frac{5}{2}, -1\right)$	B1	
	Gradient of line $=-\frac{8}{3}$	B1	
	Gradient of perp $=\frac{3}{8}$	M1	
	Equation of perp bisector: $y+1 = \frac{3}{8} \left(x - \frac{5}{2}\right)$	M1	M1 dep Using <i>their</i> perpendicular gradient and <i>their</i> midpoint
	6x-16y-31=0 or $-6x+16y+31=0$	A1	
3		9P.	B1 for either each row correct or each column correct – mark to candidate's advantage.
	✓		
4(i)	b=4	B1	
	c = 6	B1	
	$2 = a + 4\sin\frac{\pi}{2}$	M1	Evaluation of <i>a</i> using <i>their b</i> and <i>their c</i> and the given point.
	a = -2	A1	

© UCLES 2018 Page 4 of 10

Question	Answer	Marks	Partial Marks
4(ii)		3	B1 for $-6 \le y \le 2$ B1 for 3 complete cycles B1 for all correct
5(i)	The number of bacteria at the start of the experiment	B1	
5(ii)	$20000 = 800e^{kt} \text{ so } \frac{20000}{800} = e^{2k}$ or $\ln 20000 = \ln 800 + \ln(e^{2k})$	M1	use of given equation and attempt to solve for e ^{2k} or use logs correctly
	$2k = \ln 25$	M1	correct method to obtain 2k
	1.61	A1	
5(iii)	$P = 800e^{3\ln 5}$	M1	Substitution of $t = 3$ in formula using their k
	=100 000	A1	answer in range 99800 to 100200
6(a)	$\left(\frac{\log_3 p}{\log_3 2} \times \log_3 2\right) + \log_3 q$ or $\log_3 2^{\log_2 p} + \log_3 q$	B1	
	$\log_3 p + \log_3 q$ or $\log_3(2^{\log_2 p} \times q)$	B1	B1 dep
	$\log_3 pq$	B1	B1 dep
6(b)	$(\log_a 5 - 1)(\log_a 5 - 3) = 0$	M1	solution of quadratic equation
	$\log_a 5 = 1$, $a = 5$ $\log_a 5 = 3$, $a = \sqrt[3]{5}$ or 1.71 or $5^{\frac{1}{3}}$	A2	A1 for $a = 5$ A1 for $a = \sqrt[3]{5}$ or 1.71 or $5^{\frac{1}{3}}$
7(i)	$\frac{1}{2} \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix}$	2	B1 for $\frac{1}{2}$ B1 for $\begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix}$

© UCLES 2018 Page 5 of 10

Question	Answer	Marks	Partial Marks
7(ii)	$4x - 2y = \frac{5}{2}$	B1	Relating solution of these equations to matrix in (i)
	$4x - 2y = \frac{5}{2}$ $-5x + 3y = \frac{7}{2}$		B1 for adapted equation or $\begin{pmatrix} 2.5 \\ 3.5 \end{pmatrix}$ or
			$2\binom{x}{y}$
	$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} 2.5 \\ 3.5 \end{pmatrix} $	M1	Correct method for pre-multiplication by <i>their</i> inverse matrix.
	or $2 \binom{x}{y} = \frac{1}{2} \binom{3}{5} + \binom{5}{7}$		
	$ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7.25 \\ 13.25 \end{pmatrix} \text{ or } \begin{pmatrix} \frac{29}{4} \\ \frac{53}{4} \end{pmatrix} $	A2	A1 for each. Condone in matrix form.
	x = 7.25, y = 13.25		
8(a)	$3(2\mathbf{i} - 5\mathbf{j}) - 4(\mathbf{i} - 3\mathbf{j})$	M1	For expansion and collection of terms
	$3\mathbf{p} - 4\mathbf{q} = 2\mathbf{i} - 3\mathbf{j}$	A1	
	Magnitude of their $2\mathbf{i} - 3\mathbf{j}$ $\sqrt{2^2 + (-3)^2}$	M1	For method to find magnitude
	Unit vector = $\frac{2\mathbf{i} - 3\mathbf{j}}{\sqrt{13}}$	A1	o;
8(b)(i)	$v^2 = 2.73^2 + 1.25^2$	B1	Correct use of Pythagoras
	v = 3.00	B1	
8(b)(ii)	$\tan \theta = \frac{1.25}{2.73} \text{ oe}$	M1	Use of a trig funtion to obtain a relevant angle
	Angle to $AB=24.6^{\circ}$ or 0.429 radians	A1	
9(i)	$256x^8 - 64x^6 + 7x^4$	3	B1 for each term

© UCLES 2018 Page 6 of 10

Question	Answer	Marks	Partial Marks
9(ii)	$\frac{1}{x^4} + \frac{2}{x^2} + 1$	B1	
	$(256x^8 - 64x^6 + 7x^4)\left(\frac{1}{x^4} + \frac{2}{x^2} + 1\right)$	M1	M1 for three correctly obtained products leading to terms in x^4 using <i>their</i> $256x^8 - 64x^6 + 7x^4$ and <i>their</i>
	$(256 \times 1 - 64 \times 2 + 7 \times 1)x^4$		$\frac{1}{x^4} + \frac{2}{x^2} + 1$
	Coefficient of x^4 is $256-128+7$ = 135	A1	
10(a)	$\frac{5+6\sqrt{5}}{6+\sqrt{5}} \times \frac{6-\sqrt{5}}{6-\sqrt{5}}$	M1	for rationalisation
	$=\frac{30-5\sqrt{5}+36\sqrt{5}-30}{31}$	M1	M1dep for expanding the numerator to obtain four terms.
	$=\frac{31\sqrt{5}}{31}=\sqrt{5}$	A1	A1 for $\sqrt{5}$ from correct working
10(b)	$\sqrt{3} \times \left(\sqrt{2}\right)^6 \times \sqrt{2} = \sqrt{6} \times 2^3$		
	8√6	B2	B1 for $\sqrt{6}$ from $\sqrt{3} \times \sqrt{2}$ B1 for 8 from $(\sqrt{2})^6$ or 2^3

© UCLES 2018 Page 7 of 10

Question	Answer	Marks	Partial Marks
10(c)	EITHER: $x^2 + \sqrt{2}x - 4 = 0$	B1	3 term quadratic equation equated to zero
	$x = \frac{-\sqrt{2} \pm \sqrt{18}}{2}$	M1	use of the quadratic formula
	for use of $\sqrt{18} = 3\sqrt{2}$	M1	M1 dep
	$\sqrt{2}$, $-2\sqrt{2}$	A1	For both from full working
	$\mathbf{OR:}$ $x^2 + \sqrt{2}x - 4 = 0$	B1	
	$\left(x + \frac{\sqrt{2}}{2}\right)^2 = 4 + \frac{1}{2}$ $x = \pm \frac{3}{\sqrt{2}} - \frac{\sqrt{2}}{2}$	M1	Correct use of completing the square method
	$x = -\frac{4}{\sqrt{2}}, \ \frac{2}{\sqrt{2}}$	M1	M1dep for dealing with $\sqrt{2}$ in denominator
	$x = \sqrt{2}, -2\sqrt{2}$	A1	
11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 16 - \frac{54}{x^3}$	M1	for $\frac{\mathrm{d}y}{\mathrm{d}x} = 16 \pm \frac{p}{x^3}$
	Equating to zero and obtaining x^3	M1	M1dep
	$x = \frac{3}{2}, y = 36$	A2	A1 for each

© UCLES 2018 Page 8 of 10

Question	Answer	Marks	Partial Marks
11(ii)	EITHER:	B1	B1 for both
	When $x = 1$, $y = 43$ When $x = 3$, $y = 51$		
	$\left(\frac{1}{2}(43+51)\times 2\right) - \int_{1}^{3} 16x + \frac{27}{x^{2}} dx$		
	Area of trapezium = $\left(\frac{1}{2}(43+51)\times 2\right)$ oe	B1	FT from their P and their Q
	Integration to find area under curve	M1	for $\left[px^2 + \frac{q}{x}\right]$
	$= \left[8x^2 - \frac{27}{x}\right]$	A1	Integration correct
	$= \left[8 \times 3^2 - \frac{27}{3} \right] - \left[8 \times 1^2 - \frac{27}{1} \right]$	M1	M1dep for application of limits
	Required area = 94 – 82 =12	A1	
	OR: When $x = 1$, $y = 43$ When $x = 3$, $y = 51$	B1	B1 for both
	Equation of PQ : $y = 4x + 39$	B1	Equation of line FT from <i>their P</i> and <i>their Q</i>
	Integration of their $4x + 39 - 16x - \frac{27}{x^2}$	M1	for $\left[px + qx^2 + \frac{r}{x} \right]$
	$= \left[39x - 6x^2 + \frac{27}{x}\right]$	A1	All correct
	$= \left[39 \times 3 - 6 \times 3^2 + \frac{27}{3}\right]$	M1	M1dep for application of limits
	$-\left[39\times1-6\times1^2+\frac{27}{1}\right]$		
	Required area = 72 - 60 = 12	A1	

© UCLES 2018 Page 9 of 10

Question	Answer	Marks	Partial Marks
12	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x - 5)^{\frac{1}{2}} (+c)$	M1	for $k(2x-5)^{\frac{1}{2}}$,
	for $(2x-5)^{\frac{1}{2}}$	A1	
	Substitution to obtain arbitrary constant	M1	M1 dep Using $\frac{dy}{dx} = 6$ when $x = \frac{9}{2}$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \left(2x - 5\right)^{\frac{1}{2}} + 4$	A1	for correct $\frac{dy}{dx}$
	Integration of their $k(2x-5)^{\frac{1}{2}}+c$	M1	M1 dep on first M1 for integration of $k(2x-5)^{\frac{1}{2}}$ to obtain $m(2x-5)^{\frac{3}{2}}$
	$y = \frac{1}{3}(2x-5)^{\frac{3}{2}} + 4x (+d)$	A1	for $\frac{1}{3}(2x-5)^{\frac{3}{2}}+4x$ FT their (non -zero) constant
	Finding constant	M1	M1 dep for obtaining arbitrary constant for $m(2x-5)^{\frac{3}{2}} + nx + d$ using $x = \frac{9}{2}$, $y = \frac{2}{3}$
	$y = \frac{1}{3}(2x-5)^{\frac{3}{2}} + 4x - 20$	A1	for correct equation

© UCLES 2018 Page 10 of 10

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12

Paper 1 May/June 2018

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE™ is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 10

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 10

Question	Answer	Marks	Partial Marks
1(i)	$\frac{\pi}{3}$ or 60°	B1	
1(ii)		3	B1 for 3 asymptotes at $x = 30^{\circ}$, 90° and 150° ; the curve must approach but not cross all 3 of the asymptotes and be in the 1st and 4th quadrants B1 for starting at $(0,1)$ and finishing at $(180,1)$ B1 for all correct
2	For an attempt to obtain an equation in <i>x</i> only	M1	
	$9x^2 - (k+1)x + 4 = 0$	A1	correct 3 term equation
	$(k+1)^2 - (4 \times 9 \times 4)$	M1	M1dep for correct use of $b^2 - 4ac$ oe
	Critical values $k = 11$, $k = -13$	A1	
	-13 < <i>k</i> < 11	A1	For the correct range
3	$e^y = ax^2 + b$	B1	may be implied, $b \neq 0$
	either $3 = 5a + b$ 1 = 3a + b or Gradient = 1, so $a = 1$	M1	correct attempt to find a or b by use of simultaneous equations or finding the gradient and equating it to a
	Coefficient of x^2 is 1	A1	
	Intercept is -2	A1	
	$y = \ln\left(x^2 - 2\right)$	A1	For correct form
4(i)	$3 = \ln(5t + 3)$ $e^3 = 5t + 3 \text{ or better}$	B1	
	t = 3.42	B1	
4(ii)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{5}{5t+3}$	M1	for $\frac{k_1}{5t+3}$
	When $t = 0$, $\frac{dx}{dt} = \frac{5}{3}$, 1.67 or better	A1	all correct

© UCLES 2018 Page 4 of 10

Question	Answer	Marks	Partial Marks
4(iii)	If $t > 0$ each term in $\frac{k_1}{5t+3} > 0$ so never negative oe	B1	dep on M1 in (ii) FT on <i>their</i> $\frac{k_1}{5t+3}$, provided $k_1 > 0$
4(iv)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \frac{k_2}{\left(5t+3\right)^2}$	M1	
	$\frac{d^2x}{dt^2} = -\frac{25}{(5t+3)^2}$ When $t = 0$, $\frac{d^2x}{dt^2} = -\frac{25}{9}$ or -2.78	A1	all correct
5(i)	$a = 243, b = -45, c = \frac{10}{3}$	3	B1 for each coefficient, must be simplified
5(ii)	$\left(243 - \frac{45}{x} + \frac{10}{3x^2}\right)\left(4 + 36x + 81x^2\right)$	B1	For $(4+36x+81x^2)$
	for having 3 terms independent of x	M1	
	Independent term is $972 - 1620 + 270 = -378$	A1	
6	attempt to differentiate quotient or equivalent product	M1	
	$\frac{d}{dx}(2x-1)^{\frac{1}{2}} = (2x-1)^{-\frac{1}{2}} \text{ for a quotient}$ $\frac{d}{dx}(2x-1)^{-\frac{1}{2}} = -(2x-1)^{-\frac{3}{2}} \text{ for a product}$	B1	o.:5
	either $\frac{dy}{dx} = \frac{\sqrt{2x-1} - (x+2) \left[(2x-1)^{-\frac{1}{2}} \right]}{\left(\sqrt{2x-1} \right)^2}$	A1	All other terms correct
	or $\frac{dy}{dx} = (2x-1)^{-\frac{1}{2}} - (x+2) \left[(2x-1)^{-\frac{3}{2}} \right]$		
	When $\frac{dy}{dx} = 0$, $2x - 1 = x + 2$	M1	equate to zero and attempt to solve
	x = 3	A1	
	$y = \sqrt{5}$, $\frac{5}{\sqrt{5}}$, 2.24	A1	

© UCLES 2018 Page 5 of 10

Question	Answer	Marks	Partial Marks
7(i)	1000	B1	
7(ii)	$2000 = 1000e^{\frac{t}{4}}$	B1	
	$t = 4 \ln 2$, $\ln 16$	M1	For $4 \ln k$ or $\ln k^4$, $k > 0$
	2.77	A1	
7(iii)	$B = 1000e^2$ = 7389, 7390	B1	
8(a)	$3(1-\sin^2\theta)+4\sin\theta=4$	M1	use of correct identity
	$(3\sin\theta - 1)(\sin\theta - 1) = 0$	M1	For attempt to solve a 3 term quadratic equation in $\sin \theta$ to obtain $\sin \theta =$
	$\sin\theta = \frac{1}{3}, \sin\theta = 1$	RE	equation in sino to obtain sino –
	$\theta = 19.5^{\circ}, 160.5^{\circ}$	A1	
	90°	A1	
8(b)	$\tan 2\phi = \sqrt{3}$ $2\phi = \frac{\pi}{3}, -\frac{2\pi}{3}$	M1	obtaining an equation in $\tan 2\phi$ and correct attempt to solve for one solution to reach $2\phi = k$
	for one correct solution $\phi = \frac{\pi}{6}$, or 0.524	A1	· §
	for attempt at a second solution	M1	
	$\phi = -\frac{\pi}{3}$, or -1.05	A1	for a correct second solution and no other solutions within the range
9(a)(i)	1000	B1	
9(a)(ii)	for use of power rule	M1	
	for addition or subtraction rule	M1	dep on previous M1
	$\lg \frac{1000a}{b^2}$	A1	Allow $\lg \frac{10^3 a}{b^2}$
9(b)(i)	$x^2 - 5x + 6 = 0$	M1	For attempt to obtain a quadratic equation and solve
	x = 3, x = 2	A1	for both

© UCLES 2018 Page 6 of 10

0606/1
Question
9b(ii)
10(i)

Question	Answer	Marks	Partial Marks
9b(ii)	$(\log_4 a)^2 - 5\log_4 a + 6 = 0$	M1	For the connection with (i) and attempt to deal with at least one logarithm correctly, either 4 ^{their3} or 4 ^{their2}
	a = 64	A1	
	a = 16	A1	
10(i)	$AC^{2} = \left(4\sqrt{3} - 5\right)^{2} + \left(4\sqrt{3} + 5\right)^{2}$	M1	For attempt to use the cosine rule
	$-2(4\sqrt{3}-5)(4\sqrt{3}+5)\cos 60^{\circ}$	A1	For all correct unsimplified
	$AC^2 = 123$	M1	M1 dep for attempt to evaluate without use of calculator
	$AC = \sqrt{123}$	A1	
	ALTERNATIVE METHOD		
	Taking D as the foot of the perpendicular from A : Find AD , BD , DC	M1	For a complete method to get AC^2
	$AC^2 = AD^2 + DC^2$		
	$AC^{2} = \left(\frac{12 - 5\sqrt{3}}{2}\right)^{2} + \left(\frac{15 + 4\sqrt{3}}{2}\right)^{2}$	A1	For all correct unsimplified
	$AC^2 = 123$	M1	M1dep for attempt to evaluate without use of calculator
	$AC = \sqrt{123}$	A1	

© UCLES 2018 Page 7 of 10

Question	Answer	Marks	Partial Marks
10(ii)	$\frac{AC}{\sin 60^{\circ}} = \frac{4\sqrt{3} - 5}{\sin ACB} \text{ or } \sin ACB = \frac{AD}{AC}$	M1	For attempt at the sine rule or trigonometry involving right-angled triangles
	For attempt at cosec	M1	dep on first M mark $\csc ACB = \frac{2\sqrt{123}}{\sqrt{3}(4\sqrt{3}-5)} \text{ or } \frac{2\sqrt{41}}{(4\sqrt{3}-5)}$ oe
	$\csc ACB = \frac{2}{\sqrt{3}} \frac{\sqrt{123}}{(4\sqrt{3} - 5)} \times \frac{4\sqrt{3} + 5}{4\sqrt{3} + 5}$	M1	dep on previous M mark for a statement involving rationalisation using $a\sqrt{3} + b$
	$=\frac{2\sqrt{41}}{23}\left(4\sqrt{3}+5\right)$	A1	For rationalisation using $\frac{4\sqrt{3}+5}{4\sqrt{3}+5}$ oe and simplification
	ALTERNATIVE METHOD		
	$\frac{1}{2}(4\sqrt{3}-5)(4\sqrt{3}+5)\sin 60 = \frac{23\sqrt{3}}{4}$	M1	Area of ABC
	$\frac{1}{2}\sqrt{123}\left(4\sqrt{3}+5\right)\sin ACB = \frac{23\sqrt{3}}{4}$	M1	For attempt at a second area of ABC and equating to first area
	For attempt at cosec	M1	dep on first 2 M marks
	$=\frac{2\sqrt{41}}{23}\left(4\sqrt{3}+5\right)$	A1	Need to be convinced no calculator is being used in simplification

© UCLES 2018 Page 8 of 10

Question	Answer	Marks	Partial Marks
11	When $x = 0$, $y = \frac{1}{2}$	B1	For $y = \frac{1}{2}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \mathrm{e}^{4x}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$, Gradient of normal = -2	B1	FT on <i>their</i> $\frac{dy}{dx}$, must be numeric
	either: Normal $y - \frac{1}{2} = -2x$ or: Gradient of normal $= -\frac{OA}{OB}$	M1	For an attempt at a normal equation passing through <i>their</i> $\left(0, \frac{1}{2}\right)$ and a substitution of $y = 0$
	When $y = 0$, $x = \frac{1}{4}$	A1	
	EITHER: $\int_{0}^{\frac{1}{4}} \frac{1}{8} e^{4x} + \frac{3}{8} dx$	M1	For attempt to integrate to obtain $k_1 e^{4x} + \frac{3}{8}x$, $k_1 \neq \frac{1}{8}$, $k_1 \neq \frac{1}{2}$
	$\left[\frac{1}{32} e^{4x} + \frac{3x}{8} \right]_0^{\frac{1}{4}}$	A1	For correct integration
	Use of limits	M1	M1dep
	For area of triangle $=\frac{1}{16}$	B1	FT on their $x = \frac{1}{4}$
	$=\frac{\mathrm{e}}{32}$	A1	final answer in correct form
	OR: $\int_0^{\frac{1}{4}} \frac{1}{8} e^{4x} + \frac{3}{8} - \frac{1}{2} + 2x dx$	M1	For attempt at subtraction and attempt to integrate to obtain $k_1e^{4x} + \frac{3}{8}x + k_2x + k_3x^2$, $k_1 \neq \frac{1}{8}$
	$\left[\frac{1}{32}e^{4x} - \frac{1}{8}x + x^2\right]_0^{\frac{1}{4}}$	A2	-1 for each error for integration
	for use of limits	M1	M1dep
	$=\frac{\mathrm{e}}{32}$	A1	final answer in correct form

© UCLES 2018 Page 9 of 10

Question	Answer	Marks	Partial Marks
12(a)	$p = \frac{1}{4}$	B1	
	p+q-4q+6=4	B1	FT on their p
	$q = \frac{3}{4}$	B1	
12(b)	$\left(x^{\frac{1}{3}}+3\right)\left(x^{\frac{1}{3}}+1\right)=0$	M1	For attempt to factorise and solve, or solve using the quadratic formula oe, a quadratic in $x^{\frac{1}{3}}$ or u
	$x^{\frac{1}{3}} = -1 \text{ or } u = -1$ $x^{\frac{1}{3}} = -3 \text{ or } u = -3$	A1	For both
	x = -1	A1	
	x = -27	A1	

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/13

Paper 1 May/June 2018

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE™ is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 10

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 10

Question	Answer	Marks	Partial Marks
1	Substitution and simplification to obtain a 3 term quadratic in one variable	M1	substitution of $y = x + 4$ or $x = y - 4$ and simplification to 3 terms.
	$x^{2}-2x-8=0 \text{ or } 2x^{2}-4x-16=0$ or $y^{2}-10y+16=0 \text{ or } y^{2}-10y+16=0$	A1	correct equation of the form $ax^{2} + bx + c = 0 \text{ or } ay^{2} + by + c = 0$
	Solution of quadratic equation	M1	M1 dep
	x = 4, y = 8 x = -2, y = 2	A2	A1 for each pair
2	Midpoint $\left(\frac{5}{2},-1\right)$	B1	
	Gradient of line $=-\frac{8}{3}$	B1	
	Gradient of perp $=\frac{3}{8}$	M1	
	Equation of perp bisector: $y+1 = \frac{3}{8} \left(x - \frac{5}{2}\right)$	M1	M1 dep Using <i>their</i> perpendicular gradient and <i>their</i> midpoint
	6x-16y-31=0 or -6x+16y+31=0	A1	
3	A B C D ✓ ✓ ✓ ✓	4 ep.c	B1 for either each row correct or each column correct – mark to candidate's advantage.
4(i)	<i>b</i> = 4	B1	
	c = 6	B1	
	$2 = a + 4\sin\frac{\pi}{2}$	M1	Evaluation of a using their b and their c and the given point.
	a = -2	A1	

© UCLES 2018 Page 4 of 10

Question	Answer	Marks	Partial Marks
4(ii)		3	B1 for $-6 \le y \le 2$ B1 for 3 complete cycles B1 for all correct
5(i)	The number of bacteria at the start of the experiment	B1	
5(ii)	$20000 = 800e^{kt} \text{ so } \frac{20000}{800} = e^{2k}$ or $\ln 20000 = \ln 800 + \ln(e^{2k})$	M1	use of given equation and attempt to solve for e ^{2k} or use logs correctly
	$2k = \ln 25$	M1	correct method to obtain 2k
	1.61	A1	
5(iii)	$P = 800e^{3\ln 5}$	M1	Substitution of $t = 3$ in formula using their k
	=100 000	A1	answer in range 99800 to 100200
6(a)	$\left(\frac{\log_3 p}{\log_3 2} \times \log_3 2\right) + \log_3 q$ or $\log_3 2^{\log_2 p} + \log_3 q$	B1	
	$\log_3 p + \log_3 q$ or $\log_3(2^{\log_2 p} \times q)$	B1	B1 dep
	$\log_3 pq$	B1	B1 dep
6(b)	$(\log_a 5 - 1)(\log_a 5 - 3) = 0$	M1	solution of quadratic equation
	$\log_a 5 = 1, \ a = 5$ $\log_a 5 = 3, \ a = \sqrt[3]{5} \text{ or } 1.71 \text{ or } 5^{\frac{1}{3}}$	A2	A1 for $a = 5$ A1 for $a = \sqrt[3]{5}$ or 1.71 or $5^{\frac{1}{3}}$
7(i)	$\frac{1}{2} \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix}$	2	B1 for $\frac{1}{2}$ B1 for $\begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix}$

© UCLES 2018 Page 5 of 10

Question	Answer	Marks	Partial Marks
7(ii)	$4x-2y=\frac{5}{2}$	B1	Relating solution of these equations to matrix in (i)
	$4x - 2y = \frac{5}{2}$ $-5x + 3y = \frac{7}{2}$		B1 for adapted equation or $\begin{pmatrix} 2.5 \\ 3.5 \end{pmatrix}$ or
	2		$2\binom{x}{y}$
	$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} 2.5 \\ 3.5 \end{pmatrix} $	M1	Correct method for pre-multiplication by <i>their</i> inverse matrix.
	or $2 \binom{x}{y} = \frac{1}{2} \binom{3}{5} + \binom{5}{7}$		
	$ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7.25 \\ 13.25 \end{pmatrix} \text{ or } \begin{pmatrix} \frac{29}{4} \\ \frac{53}{4} \end{pmatrix} $	A2	A1 for each. Condone in matrix form.
	x = 7.25, y = 13.25		
8(a)	3(2i-5j)-4(i-3j)	M1	For expansion and collection of terms
	$3\mathbf{p} - 4\mathbf{q} = 2\mathbf{i} - 3\mathbf{j}$	A1	
	Magnitude of their $2\mathbf{i} - 3\mathbf{j}$ $\sqrt{2^2 + (-3)^2}$	M1	For method to find magnitude
	Unit vector = $\frac{2\mathbf{i} - 3\mathbf{j}}{\sqrt{13}}$	A1	o.;
8(b)(i)	$v^2 = 2.73^2 + 1.25^2$	B1	Correct use of Pythagoras
	v = 3.00	B1	
8(b)(ii)	$\tan \theta = \frac{1.25}{2.73} \text{ oe}$	M1	Use of a trig funtion to obtain a relevant angle
	Angle to $AB=24.6^{\circ}$ or 0.429 radians	A1	
9(i)	$256x^8 - 64x^6 + 7x^4$	3	B1 for each term

© UCLES 2018 Page 6 of 10

ambnage	IC	50	O	= -	IVI	air
	Pι	JB	LI	SH	E)

Question	Answer	Marks	Partial Marks
9(ii)	$\frac{1}{x^4} + \frac{2}{x^2} + 1$	B1	
	$(256x^8 - 64x^6 + 7x^4)\left(\frac{1}{x^4} + \frac{2}{x^2} + 1\right)$	M1	M1 for three correctly obtained products leading to terms in x^4 using <i>their</i> $256x^8 - 64x^6 + 7x^4$ and <i>their</i>
	$(256 \times 1 - 64 \times 2 + 7 \times 1)x^4$		$\frac{1}{x^4} + \frac{2}{x^2} + 1$
	Coefficient of x^4 is $256-128+7$ = 135	A1	
10(a)	$\frac{5+6\sqrt{5}}{6+\sqrt{5}} \times \frac{6-\sqrt{5}}{6-\sqrt{5}}$	M1	for rationalisation
	$=\frac{30-5\sqrt{5}+36\sqrt{5}-30}{31}$	M1	M1dep for expanding the numerator to obtain four terms.
	$=\frac{31\sqrt{5}}{31}=\sqrt{5}$	A1	A1 for $\sqrt{5}$ from correct working
10(b)	$\sqrt{3} \times \left(\sqrt{2}\right)^6 \times \sqrt{2} = \sqrt{6} \times 2^3$		
	$8\sqrt{6}$	B2	B1 for $\sqrt{6}$ from $\sqrt{3} \times \sqrt{2}$ B1 for 8 from $(\sqrt{2})^6$ or 2^3

© UCLES 2018 Page 7 of 10

Question	Answer	Marks	Partial Marks
10(c)	EITHER: $x^2 + \sqrt{2}x - 4 = 0$	B1	3 term quadratic equation equated to zero
	$x = \frac{-\sqrt{2} \pm \sqrt{18}}{2}$	M1	use of the quadratic formula
	for use of $\sqrt{18} = 3\sqrt{2}$	M1	M1 dep
	$\sqrt{2}$, $-2\sqrt{2}$	A1	For both from full working
	$\mathbf{OR:}$ $x^2 + \sqrt{2}x - 4 = 0$	B1	
	$\left(x + \frac{\sqrt{2}}{2}\right)^2 = 4 + \frac{1}{2}$ $x = \pm \frac{3}{\sqrt{2}} - \frac{\sqrt{2}}{2}$	M1	Correct use of completing the square method
	$x = -\frac{4}{\sqrt{2}}, \ \frac{2}{\sqrt{2}}$	M1	M1dep for dealing with $\sqrt{2}$ in denominator
	$x = \sqrt{2}, -2\sqrt{2}$	A1	
11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 16 - \frac{54}{x^3}$	M1	for $\frac{dy}{dx} = 16 \pm \frac{p}{x^3}$
	Equating to zero and obtaining x^3	M1	M1dep
	$x = \frac{3}{2}, y = 36$	A2	A1 for each

© UCLES 2018 Page 8 of 10

Question	Answer	Marks	Partial Marks
11(ii)	EITHER:	B1	B1 for both
	When $x = 1$, $y = 43$ When $x = 3$, $y = 51$		
	$\left(\frac{1}{2}(43+51)\times 2\right) - \int_{1}^{3} 16x + \frac{27}{x^{2}} dx$		
	Area of trapezium = $\left(\frac{1}{2}(43+51)\times 2\right)$ oe	B1	FT from their P and their Q
	Integration to find area under curve	M1	for $\left[px^2 + \frac{q}{x} \right]$
	$= \left[8x^2 - \frac{27}{x}\right]$	A1	Integration correct
	$= \left[8 \times 3^2 - \frac{27}{3} \right] - \left[8 \times 1^2 - \frac{27}{1} \right]$	M1	M1dep for application of limits
	Required area = 94 - 82 =12	A1	
	OR: When $x = 1$, $y = 43$ When $x = 3$, $y = 51$	B1	B1 for both
	Equation of PQ : $y = 4x + 39$	B1	Equation of line FT from <i>their P</i> and <i>their Q</i>
	Integration of their $4x + 39 - 16x - \frac{27}{x^2}$	M1	for $\left[px + qx^2 + \frac{r}{x} \right]$
	$= \left[39x - 6x^2 + \frac{27}{x}\right]$	A1	All correct
	$= \left[39 \times 3 - 6 \times 3^2 + \frac{27}{3}\right]$	M1	M1dep for application of limits
	$-\left[39\times1-6\times1^2+\frac{27}{1}\right]$		
	Required area = 72 - 60 = 12	A1	

© UCLES 2018 Page 9 of 10

Question	Answer	Marks	Partial Marks
12	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x - 5)^{\frac{1}{2}} (+c)$	M1	for $k(2x-5)^{\frac{1}{2}}$,
	for $(2x-5)^{\frac{1}{2}}$	A1	
	Substitution to obtain arbitrary constant	M1	M1 dep Using $\frac{dy}{dx} = 6$ when $x = \frac{9}{2}$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \left(2x - 5\right)^{\frac{1}{2}} + 4$	A1	for correct $\frac{dy}{dx}$
	Integration of their $k(2x-5)^{\frac{1}{2}}+c$	M1	M1 dep on first M1 for integration of $k(2x-5)^{\frac{1}{2}}$ to obtain $m(2x-5)^{\frac{3}{2}}$
	$y = \frac{1}{3}(2x-5)^{\frac{3}{2}} + 4x (+d)$	A1	for $\frac{1}{3}(2x-5)^{\frac{3}{2}}+4x$ FT their (non -zero) constant
	Finding constant	M1	M1 dep for obtaining arbitrary constant for $m(2x-5)^{\frac{3}{2}} + nx + d$ using $x = \frac{9}{2}$, $y = \frac{2}{3}$
	$y = \frac{1}{3}(2x-5)^{\frac{3}{2}} + 4x - 20$	A1	for correct equation

© UCLES 2018 Page 10 of 10

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

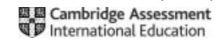
ADDITIONAL MATHEMATICS

0606/12

Paper 12 March 2018

MARK SCHEME
Maximum Mark: 80

Published


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 9

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error

isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 9

Question	Answer	Marks	Guidance
1	attempt at $p(2)$ or $p(-3)$	M1	
	2p(2) = p(-3)	M1	attempt at correct relationship
	22 = a - b	A1	may be implied, allow unsimplified
	p(-1) = 0 $a + b = -2$	B1	B1 for $a+b=-2$, allow unsimplified
	a = 10 $b = -12$	A1	A1 for both
2(i)	$k\cos 3x$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 15\cos 3x$	A1	A1 all correct
2(ii)	When $x = \frac{\pi}{3}$, $y = 4$	B1	for $y = 4$
	attempt to find the equation of the tangent	M1	
	$\frac{dy}{dx} = -15$ $y - 4 = -15\left(x - \frac{\pi}{3}\right)$	A1	A1FT for correct equation, using their $\frac{dy}{dx}$, allow unsimplified
	Equation of tangent $ \begin{pmatrix} y = -15x + 5\pi + 4 \text{ or} \\ y = -15x + 19.7 \end{pmatrix} $		
3(a)	$\frac{18 + 12\sqrt{5} - 6\sqrt{5} - 20}{4 - \sqrt{5}}$	M1	attempt to deal with the numerator
	$\frac{6\sqrt{5} - 2}{4 - \sqrt{5}} \times \frac{4 + \sqrt{5}}{4 + \sqrt{5}}$ $\frac{22\sqrt{5} + 22}{11}$	M1	attempt to rationalise
	$2\sqrt{5}+2$	A1	must be convinced a calculator has not been used
3(b)	$AC^{2} = (6 - 2\sqrt{3})^{2} + (6 + 2\sqrt{3})^{2}$ $-2(6 - 2\sqrt{3})(6 + 2\sqrt{3})(-\frac{1}{2})$	M1	application of the cosine rule
	$-2(6-2\sqrt{3})(6+2\sqrt{3})(-\frac{1}{2})$		
	simplification of surds	M1	M1Dep
	$AC = 2\sqrt{30}$	A1	

© UCLES 2018 Page 4 of 9

Question	Answer	Marks	Guidance
4(i)	-2	B1	
	$-\frac{1}{2} \leqslant x \leqslant \frac{1}{2}$	B1	
4(ii)	attempt to differentiate a quotient	M1	
	for $\frac{8x}{4x^2-1}$	B1	
	$\frac{dy}{dx} = \frac{(x+2)\frac{8x}{(4x^2-1)} - \ln(4x^2-1)}{(x+2)^2}$	A1	everything else correct
4(iii)	When $x = 2$ $\frac{dy}{dx} = \frac{4}{15} - \frac{\ln 15}{16} \text{ or } 0.0974$	M1	attempt to evaluate $\frac{dy}{dx}$ when $x = 2$ and attempt to use method of small changes
	$\partial y = 0.0974h$	A1	cao
5(i)	n = 10	B1	1111
	$10\times2^9\times a = -1280$	M1	attempt to equate second terms
	$a=-\frac{1}{4}$	A1	///
	${}^{10}C_2 \times 2^8 \times \left(-\frac{1}{4}\right)^2 = 720$	M1	attempt to equate third terms
	b = 720	A1	
5(ii)	$\left[\left(1024 - 1280x + 720x^2 \right) \right] \left(\frac{1}{x^2} - 2 + x^2 \right)$	B1	expansion of $\left(x - \frac{1}{x}\right)^2$
	Independent term = 720 – 2048	M1	attempt to find independent term, must be considering 2 terms
	= -1328	A1	Must be identified

© UCLES 2018 Page 5 of 9

Question	Answer	Marks	Guidance
6(i)	c – a	B1	
6(ii)	attempt to use the ratio	M1	
	$\overrightarrow{OM} = \mathbf{a} + \frac{2}{3}(\mathbf{c} - \mathbf{a})$	A1	allow unsimplified
	or $\mathbf{c} - \frac{1}{3}(\mathbf{c} - \mathbf{a})$		
	$\left(=\frac{2}{3}\mathbf{c}+\frac{1}{3}\mathbf{a}\right)$		
6(iii)	$\overrightarrow{OM} = \frac{3}{5}\mathbf{b}$	B1	
6(iv)	$\frac{3}{5}\mathbf{b} = \frac{2}{3}\mathbf{c} + \frac{1}{3}\mathbf{a}$	M1	attempt to equate their (ii) and (iii)
	$5\mathbf{a} + 10\mathbf{c} = 9\mathbf{b}$	A1	Must be convinced from simplification
6(v)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ $= \frac{5}{9}\mathbf{a} + \frac{10}{9}\mathbf{c} - \mathbf{a}$	M1	use of (iv) with $\mathbf{b} - \mathbf{a}$ or $\mathbf{a} - \mathbf{b}$
	$= -\frac{4}{9}\mathbf{a} + \frac{10}{9}\mathbf{c}$	A1	
7(a)	$2a^{2} - 4a = 6 - 3a$ $2a^{2} - a - 6 = 0$	M1	attempt to use determinant correctly, obtain a 3 term quadratic equation and attempt to solve correctly
	a=2	A1	
	$a=-\frac{3}{2}$	A 1	
7(b)(i)	$ \frac{1}{5} \begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix} $	B2	B1 for $\frac{1}{5}$
			B1 for $\begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix}$
7(b)(ii)	$\mathbf{A}^{-1}\mathbf{A}\mathbf{C} = \mathbf{A}^{-1}\mathbf{B}$	M1	for pre-multiplying
	$\mathbf{C} = \frac{1}{5} \begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -3 & 5 \end{pmatrix}$	M1	M1Dep for attempt at matrix multiplication, at least 2 terms correct, allow with <i>their</i> inverse
	$= \frac{1}{5} \begin{pmatrix} 11 & -5 \\ -12 & 10 \end{pmatrix} \text{ oe }$	A1	

© UCLES 2018 Page 6 of 9

Question	Answer	Marks	Guidance
7(c)	$ \begin{pmatrix} -\frac{3}{4} & 0 \\ 0 & -\frac{3}{4} \end{pmatrix} $	B1	
8(i)	for attempt to integrate to obtain $k_1 e^{2t} + k_2 t^2$	M1	
	$x = 6e^{2t} - 24t^2 (+c)$	A1	all correct, condone omission of $+c$
	When $t = 0$, $x = 0$: $c = -6$	M1	M1Dep for attempt to find <i>c</i>
	$x = 6e^{2t} - 24t^2 - 6$	A1	
8(ii)	$\frac{d^2x}{dt^2} = 24e^{2t} - 48$	M1	attempt to differentiate to obtain $k_1 e^{2t} + k_2$
	When acceleration = 0 , $e^{2t} = 2$ oe	M1	equating to zero and attempt to solve
	$t = \frac{1}{2} \ln 2 \text{ or } t = \ln \sqrt{2}$ or 0.347	A1	
8(iii)	substitution of <i>their</i> (ii) into given equation for <i>v</i>	M1	
	$v = 24 - 24 \ln 2$ or $24 - 48 \ln \sqrt{2}$ or 7.36	A1	///
9(i)	ln y = ln A + bx	B1	S./
9(ii)	lny	Mí	attempt to plot ln y against x Allow lg y against x Allow lg y against lg e ^x
	straight line with all points joined	A1	

© UCLES 2018 Page 7 of 9

Question	Answer	Marks	Guidance
9(iii)	Gradient = b	M1	M1Dep on (ii) for attempt to find gradient and equate to b or b lg e if lg y plotted against x
	b = -0.5, allow -0.45 to -0.55	A1	value within the given range
	Intercept = $\ln A$ (= 7.6)	M1	M1Dep on (ii) for attempt to use intercept or coordinates of a point on the curve with <i>their</i> gradient to obtain A
	A = 2000 allow $1900 - 2100$	A1	
9(iv)	use of graph or appropriate substitution	M1	
	When $y = 500$, $x = 2.77$ allow $2.2 - 3.0$	A1	
9(v)	use of graph or appropriate substitution	M1	
	When $x = 5$, $\ln y = 5.1$ y = 164 allow $155 - 175$	A1	

© UCLES 2018 Page 8 of 9

Question	Answer	Marks	Guidance
10(i)	$y = -3x^3 - 11x^2 - 8x + 4$	M1	attempt to differentiate
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -9x^2 - 22x - 8$	A1	all correct
	When $\frac{dy}{dx} = 0$, $9x^2 + 22x + 8 = 0$	M1	M1Dep for equating to zero and correct attempt to solve
	x = -2	A1	SC Allow B1 for $x = -2$ if A1 not obtained from differentiation
	$x = -\frac{4}{9}$	A1	
	10(i) Alternate scheme		
	$\frac{dy}{dx} = (x+2)^2 (-3) + (1-3x)2(x+2)$	M1	attempt to differentiate
	all correct	A1	
	When $\frac{dy}{dx} = 0$, $(x+2)(-4-9x) = 0$ oe	M1	M1Dep for equating to zero and correct attempt to solve
	x = -2	A1	SC Allow B1 for $x = -2$ if A1 not obtained from differentiation
	$x = -\frac{4}{9}$	A1	5
10(ii)	$D\left(\frac{1}{3},0\right)$	B1	Allow mismatch of letters
	C(0,4)	B1	Allow mismatch of letters
10(iii)	Area = $\int_0^{\frac{1}{3}} -3x^3 -11x^2 -8x + 4 dx$	M1	correct attempt to integrate a cubic equation
	$= \left[-\frac{3}{4}x^4 - \frac{11}{3}x^3 - 4x^2 + 4x \right]_0^{\frac{1}{3}}$	A2	A1 for 3 terms correct A1 for all correct
	$-\frac{3}{4} \left(\frac{1}{81}\right) - \frac{11}{3} \left(\frac{1}{27}\right) - \frac{4}{9} + \frac{4}{3}$	M1	M1Dep for application of limits
	$=\frac{241}{324}$ or 0.744	A1	

© UCLES 2018 Page 9 of 9

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/11

Paper 1

October/November 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 7

Question	Answer	Marks	Guidance
1(i)	$A' \cap B$	B1	
1(ii)	$A \cap B \cap C$	B1	
1(iii)	$A \cup B$	B1	
2(i)	$p\left(\frac{1}{2}\right) = \frac{a}{8} + \frac{b}{4} - \frac{13}{2} + 4$	M1	attempt at $p\left(\frac{1}{2}\right)$
	$p'(x) = 3ax^{2} + 2bx - 13$ $p'\left(\frac{1}{2}\right) = \frac{3a}{4} + b - 13$	M1	attempt at $p'\left(\frac{1}{2}\right)$
	leading to $a + 2b = 20$ and $3a + 4b - 52 = 0$	A1	at least one correct equation
	solution of simultaneous equations	DM1	
	a = 12, b = 4	A1	for both
2(ii)	p(-1) = -12 + 4 + 13 + 4	M1	
	9	A1	FT on their integer values of a and b
3(a)	$Tg^{\frac{1}{2}} = 2\pi l^{\frac{1}{2}}$ $T^2g = 4\pi^2 l$	B1	multiplication/dealing with power of $\frac{1}{2}$ or squaring
	$l = \frac{T^2 g}{4\pi^2} \text{ or } \left(\frac{Tg^{\frac{1}{2}}}{2\pi}\right)^2$	B1	for either
3(b)	$y^2 - 4y + 3 = 0$ leading to $y = 1$, $y = 3$	M1	reduction to quadratic equation and attempt to solve
	$x^{\frac{1}{3}} = 1, x^{\frac{1}{3}} = 3$	DM1	attempt to solve $x^{\frac{1}{3}} = k$ (positive k)
	x = 1, x = 27	A2	A1 for each

Question	Answer	Marks	Guidance
4(i)	$\frac{1}{2}$	B1	
4(ii)	$\lg y = mx^2 + c$ $\lg y = \frac{1}{2}x^2 + 1$	B2	-1 for each error
4(iii)	$y = 10^{\left(\frac{x^2}{2} + 1\right)}$	B1	dealing with lg on their (ii)
	$y = 10\left(10^{\frac{x^2}{2}}\right)$	B2	B1 for each, dependent on first B1
5(i)	(0, 20)	B1	
5(ii)	31.7	B1	
5(iii)	$2e^{2x} - 8e^{-2x} + (+c)$	B2	B1 for each correct term
5(iv)	Area of trapezium = $\frac{1}{2}(20 + 31.7)$ = 25.86 or 25.85	B1	
		M1	substitution of both limits, must have come from integration of the form $ae^{2x} + be^{-2x}$.
	19.7	A1	5
	Required area = 6.15, 6.16, 6.17	A1	
6(a)(i)	f≥3	B1	must be using a correct notation
6(a)(ii)	$(4x-1)^2 + 3 = 4$	M1	correct order
	solution of resulting quadratic equation	DM1	
	$x = 0, \ x = \frac{1}{2}$	A1	both required

Question	Answer	Marks	Guidance
6(b)(i)	xy - 4y = 2x + 1	M1	'multiplying out'
	x(y-2) = 4y+1	M1	collecting together like terms
	$x = \frac{4y+1}{y-2}$		
	$h^{-1}(x) = \frac{4x+1}{x-2}$	A1	correct answer with correct notation
	Range $h^{-1} \neq 4$	B1	must be using a correct notation
6(b)(ii)	$h^2(x) = h\left(\frac{2x+1}{x-4}\right)$	M1	dealing with h ² correctly
	$= \frac{2\left(\frac{2x+1}{x-4}\right)+1}{\left(\frac{2x+1}{x-4}\right)-4}$		
	$\left(\frac{2x+1}{x-4}\right)-4$		
	dealing with fractions within fractions	M1	
	$=\frac{5x-2}{17-2x}$ oe	A1	
7(i)	$\ln(2x+1) - \ln(2x-1)$	B1	
7(ii)	attempt to differentiate	M1	
	$\frac{dy}{dx} = \frac{2}{2x+1} - \frac{2}{2x-1} + 4$	A1	all correct
	attempt to obtain in required form	DM1	
	$=\frac{16x^2 - 8}{4x^2 - 1}$	A1	A1 all correct
7(iii)	When $\frac{dy}{dx} = 0$, $16x^2 - 8 = 0$	M1	setting $\frac{dy}{dx} = 0$ and attempt to solve
	$x = \frac{1}{\sqrt{2}}$ only	A1	

Question	Answer	Marks	Guidance
7(iv)	$\frac{d^2 y}{dx^2} = \frac{32x(4x^2 - 1) - 8x(16x^2 - 8)}{(4x^2 - 1)^2}$	M1	attempt at second derivative and conclusion or equivalent method
	When $x = \frac{1}{\sqrt{2}} \frac{d^2 y}{dx^2}$ is + ve, so minimum	A1	
8(a)(i)	${}^8C_6 \times {}^6C_4$	B1	either 8C_6 or 6C_4
	420	B1	
8(a)(ii)	$^{12}C_8 + ^{12}C_{10}$	B2	B1 for each
	= 561	B1	
	Alternate scheme: $1001 - (2 \times {}^{12}C_9)$	B1 B1	
	= 561	B1	
8(b)(i)	136 080	B1	
8(b)(ii)	No of ways ending with 0 - 15120	B1	-111
	No of ways ending with 5 - 13 440	B1	
	Total 28 560	B1	
8(b)(iii)	Starting with 6 or 8 - 13 440	B1	
	Starting with 7 or 9 - 16 800	B1	
	Total = 30 240	B1	
9(i)	$\tan\left(\frac{PAQ}{2}\right) = 2.4$	M1	valid method
	PAQ = 2.352(01) PAQ = 2.35 correct to 3 sf	A1	must see greater than 3 sf then rounding
9(ii)	PBQ = 0.790 or 0.792	B1	
9(iii)	$(2.352 \times 10) + (0.790 \times 24)$	M1,A1	M1 for correct attempt at an arc length A1 for one correct arc length
	= awrt 42.5	A1	

Page 6 of 7

Question	Answer	Marks	Guidance
9(iv)	$\left(\left(\frac{1}{2} \times 24^2 \times 0.790 \right) - \left(\frac{1}{2} \times 24^2 \times \sin 0.790 \right) \right)$	B1,B1	B1 for a correct sector area allow, unsimplified B1 for a correct area of a triangle, allow unsimplified
	$+ \left(\left(\frac{1}{2} \times 10^2 \times 2.352 \right) - \left(\frac{1}{2} \times 10^2 \times \sin 2.352 \right) \right)$	B1	correct plan, dependent on both previous B marks
	= 22.94 + 82.1	B1	
	= 105		
10(a)	$\frac{3}{4} = \sin^2 2x$	B1	dealing correctly with cosec
	$\sin 2x = \pm \frac{\sqrt{3}}{2}$ $2x = 60, 120, 240, 300$	M1	correct method of solution including dealing with 2x correctly, may be implied by one correct solution.
	x = 30, 60, 120, 150	A2	A1 for each correct pair
10(b)	$\tan\left(y - \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$	M1	dealing with order of operations to obtain a first solution
	$y - \frac{\pi}{4} = \frac{\pi}{6}, \ \frac{7\pi}{6}$	M1	M1 for attempt to obtain a second solution
	$y = \frac{5\pi}{12}, \ \frac{17\pi}{12}$	A2	A1 for each

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12

Paper 1

October/November 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 10

Question	Answer	Marks	Guidance
1(i)		1	
1(ii)	Either C A B Or C A B C	2	B1 for C with no intersection with either A or B (allow if C is not represented by a circle) B1 for all correct, C must be represented by a circle
2	<i>a</i> = 4	B1	
	b=6	B1	
	c=-2	M1, A1	M1 for use of $\left(\frac{\pi}{12}, 2\right)$ to obtain c , using <i>their</i> values of a and of b
3(i)	$32 - 20x^2 + 5x^4$	В3	B1 for each correct term
3(ii)	$(32-20x^2+5x^4)\left(\frac{1}{x^2}+\frac{9}{x^4}\right)$	B1	$\frac{1}{x^2}$ and $\frac{9}{x^4}$
	Independent of x : $-20+45$	M1	attempt to deal with 2 terms independent of x , must be looking at terms in x^2 and $\frac{1}{x^2}$ and terms in x^4 and $\frac{1}{x^4}$
	= 25	A1	FT their answers from (i) $(their -20 \times 1) + (their 5 \times 9)$

Question	Answer	Marks	Guidance
4	correct differentiation of $\ln(3x^2 + 2)$	B1	
	attempt to differentiate a quotient or a product	M1	
	$\frac{dy}{dx} = \frac{\left(x^2 + 1\right)\left(\frac{6x}{3x^2 + 2}\right) - 2x\ln\left(3x^2 + 2\right)}{\left(x^2 + 1\right)^2}$	A1	all other terms correct.
	When $x = 2$, $\frac{dy}{dx} = \frac{5(\frac{12}{14}) - 4\ln 14}{25}$	M1	M1dep for substitution and attempt to simplify
	$=\frac{6}{35} - \frac{4}{25} \ln 14$	A2	A1 for each correct term, must be in simplest form
5(i)	Either		
	Gradient = -0.2	B1	
	$\lg y = -0.2x + c$	B1	$\lg y = mx + c \text{ soi}$
	correct attempt to find c	M1	must have previous B1
	$\lg y = 0.42 - 0.2x \text{ or } \lg y = \frac{21}{50} - \frac{x}{5}$	A1	line in either form, allow equivalent fractions
	Or		
	0.3 = 0.6m + c	B1	
	0.2 = 1.1m + c	B1	
	attempt to solve for both m and c	M1	must have at least one of the previous B marks
	Leading to $\lg y = 0.42 - 0.2x$ or $\lg y = \frac{21}{50} - \frac{x}{5}$	A1	line in either form, allow equivalent fractions

Question	Answer	Marks	Guidance
5(ii)	Either		
	$y = 10^{(0.42 - 0.2x)}$	M1	dealing with the index, using their answer to (i)
	$y = 10^{0.42} (10^{-0.2x})$ $y = 2.63 (10^{-0.2x})$	A2	A1 for each
	Or		
	$y = A(10^{bx})$ leads to $\lg y = \lg A + bx$ Compare this form with their equation from (i)	M1	comparing their answer to (i) with $\lg y = \lg A + bx$ may be implied by one correct term from correct work
	$\lg A = 0.42$ so $A = 2.63$	A1	
	b = -0.2	A1	A1 for each
6(i)	$y \in \mathbb{R}$ oe	B1	Must have correct notation i.e. no use of x
6(ii)	y > 3 oe	B1	Must have correct notation i.e. no use of <i>x</i>
6(iii)	$f^{-1}(x) = e^x \text{ or } g(4) = 35$	B1	First B1 may be implied by correct answer or by use of 35
	$f^{-1}g(4) = e^{35}$	B1	7/
6(iv)	$\frac{y-3}{2} = x^2 \text{ or } \frac{x-3}{2} = y^2$	M1	valid attempt to obtain the inverse
	$g^{-1}(x) = \sqrt{\frac{x-3}{2}}$	A1	correct form, must be $g^{-1}(x) = or$ y =
	Domain $x > 3$	B1	Must have correct notation
7(i)	$p\left(\frac{1}{2}\right): \ \frac{a}{8} + 2 + \frac{b}{2} + 5 = 0$	M1	substitution of $x = \frac{1}{2}$ and equating to zero (allow unsimplified)
	p(-2): -8a+32-2b+5=-25	M1	substitution of $x = -2$ and equating to -25 (allow unsimplified)
	leading to $a+4b+56=0$ 4a+b-31=0 oe	M1	M1dep for solution of simultaneous equations to obtain <i>a</i> and <i>b</i>
	a = 12, b = -17	A2	A1 for each

Question	Answer	Marks	Guidance
7(ii)	$12x^3 + 8x^2 - 17x = 0$	B1	for $x = 0$
	x = 0		
	$x = -\frac{1}{3} \pm \frac{\sqrt{55}}{6}$ oe	B1	
8	$ \begin{array}{c c} A \\ \hline $		
8(i)	$\angle ABC = 67.4^{\circ}$	B1	
	$\frac{4}{\sin BAC} = \frac{5}{\sin 67.4^{\circ}}$	M1	attempt at the sine rule, using 4 and 5 (or e.g. use of cosine rule followed by sine rule on triangle shown)
	$\angle BAC = 47.6^{\circ}$	A1	may be implied by later work
	Angle required = $180^{\circ} - 47.6^{\circ} - 67.4^{\circ} = 65^{\circ}$	A1	Answer Given
8(ii)	$V^2 = 5^2 + 4^2 - (2 \times 5 \times 4 \times \cos 65^{\circ})$	M1	attempt at the cosine rule or sine rule to obtain V – allow if seen in (i)
	$V = 4.91$ or $\frac{4}{\sin BAC} = \frac{V}{\sin 65}$	A1	
	Distance to travel: $\frac{120}{\sin 67.4^{\circ}}$	M1	distance to travel – allow if seen in (i)
	130 or $\sqrt{120^2 + 50^2}$	A1	
	Time taken: $\frac{130}{4.91}$	M1	M1dep for correct method to find the time, must have both of the previous M marks
	26.5	A1	

Question	Answer	Marks	Guidance
	Alternative method $AC = \frac{120}{\cos 25} \text{ oe}$	M1	correct attempt at AC
	=132.4	A1	Allow 132
	Speed for this distance = 5	M1A1	M1dep A1 for speed, it must be 5 exactly for A1, must have first M mark
	Time taken = $\frac{132.4}{5}$	M1	M1dep for a correct method to find the time, must have both of the previous M marks
	= 26.5	A1	
9(a)		B3	B1 for line joining (0,5) and (10,5) B1 for a line joining (10,0.5) and (30,0.5) B1 all correct with no solid line joining (10,5) to (10,0.5)
9(b)(i)	3	B1	
9(b)(ii)	$\frac{\mathrm{d}v}{\mathrm{d}t} = -15\mathrm{e}^{-5t} + \frac{3}{2}$	M1	attempt to differentiate, must be in the form $ae^{-5t} + b$
	When $\frac{\mathrm{d}v}{\mathrm{d}t} = 0$, $e^{-5t} = 0.1$	M1	M1dep for equating to zero and attempt to solve, must be of the form $ae^{-5t} = b$, $b > 0$ to obtain an equation in the form $-5t = k$ where k is a logarithm or < 0
	t = 0.461	A1	

Question	Answer	Marks	Guidance
9(b)(iii)	Either		
	attempt to integrate, must be in the form $ce^{-5t} + dt^2$	M1	
	$s = -\frac{3}{5}e^{-5t} + \frac{3}{4}t^2 (+c)$	A1	
	When $t = 0$, $s = 0$ so $c = \frac{3}{5}$	M1	M1dep for attempt to find c and substitute $t = 0.5$
	s = 0.738	A1	
	Or		
	attempt to integrate, must be in the form $ce^{-5t} + dt^2$	M1	
	$\left[-\frac{3}{5}e^{-5t} + \frac{3}{4}t^2 \right]_0^{0.5}$	A1	
	correct use of limits	M1	M1dep
	leading to $s = 0.738$	A1	
10(i)	$5\angle BAC = 6.2$, $\angle BAC = 1.24$	B1	
10(ii)	$\sin 0.62 = \frac{BD}{5}$, $BD = 2.905, 2.91$	B1	valid method to find BD
	Arc BFC: $\pi \times BD$ (= 9.13)	M1	attempt to find arc length <i>BFC</i> , using <i>their BD</i>
	Perimeter: 9.13+6.2=15.3	A1	
10(iii)	Area: $\left(\frac{1}{2} \times \pi \times 2.91^2\right) -$	В3	B1 for area of semi circle (= 13.3) B1 for area of sector (= 15.5) B1 for area of triangle (= 11.8)
	$\left(\left(\frac{1}{2} \times 5^2 \times 1.24 \right) - \left(\frac{1}{2} \times 5^2 \times \sin 1.24 \right) \right)$		
	9.58≤ Area ≤ 9.62	B1	final answer

Question	Answer	Marks	Guidance
11(a)	$\tan\left(\phi + 35^{\circ}\right) = \frac{2}{5}$	M1	dealing correctly with cot and an attempt at solution of $\tan(\phi + 35) = c$, order must be correct, to obtain a value for $\phi + 35$
	$\phi + 35^{\circ} = 21.8^{\circ}, \ 201.8^{\circ}, \ 381.8^{\circ}$	M1	M1dep for an attempt at a second solution in the range, (180° + their first solution in the range oe)
	$\phi = 166.8^{\circ}, 346.8^{\circ}$	A2	A1 for each
11(b)(i)	Either $ \frac{\frac{1}{\cos \theta}}{\frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta}} $	M1	expressing all terms in terms of $\sin \theta$ and $\cos \theta$ where necessary
	$= \frac{1}{\cos \theta} \left(\frac{\sin \theta \cos \theta}{\cos^2 \theta + \sin^2 \theta} \right)$	M1	dealing with the fractions correctly to get $\frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$ in denominator or as in left hand column
	$=\frac{\sin\theta}{(1)}$	A1	use of identity, together with a complete and correct solution, withhold A1 for incorrect use of brackets
	Or $ \frac{\sec \theta}{\frac{1}{\tan \theta} + \tan \theta} $ $ = \frac{\sec \theta}{\frac{1 + \tan^2 \theta}{\tan \theta}} $	M1	dealing with fractions in the denominator correctly to get $\frac{1+\tan^2\theta}{\tan\theta}$ in the denominator, allow $\tan\theta$ taken to the numerator
	$=\frac{\sec\theta\tan\theta}{\sec^2\theta}$	M1	use of the identity to get $\sec^2 \theta$
	$= \frac{\tan \theta}{\sec \theta} = \frac{\sin \theta}{\cos \theta} \times \cos \theta = \sin \theta$	A1	expressing all terms in terms of $\sin \theta$ and $\cos \theta$ and simplification to the given answer, withhold A1 for incorrect use of brackets

Question	Answer	Marks	Guidance
11(b)(ii)	$\sin 3\theta = -\frac{\sqrt{3}}{2}$	M1	correct attempt to solve for θ , order must be correct, may be implied by one correct solution
	$3\theta = -\frac{2\pi}{3}, -\frac{\pi}{3}, \frac{4\pi}{3}$ $\theta = -\frac{2\pi}{9}, -\frac{\pi}{9}, \frac{4\pi}{9}$	A3	A1 for each

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/13

Paper 1

October/November 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
 cao correct answer only
 dep dependent
 FT follow through after error

FT follow through after error isw ignore subsequent working not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 10

Question	Answer	Marks	Guidance
1	Using $\tan^2 \theta + 1 = \sec^2 \theta$ to obtain $y = 2(\tan^2 \theta + 1)$ or $(x+5)^2 = \sec^2 \theta - 1$ $(x+5)^2 + 1 = \frac{y}{2}$	M1	use of correct identity
	$y = 2((x+5)^2 + 1)$ oe	A1	
2	$\frac{dy}{dx} = 10e^{5x} + 3$ an attempt at integration in form $ae^{5x} + bx$	M1	
	$y = \frac{10}{5}e^{5x} + 3x \ (+c)$	A1	condone omission of c
	attempt to find c using $x = 0, y = 9$	M1	M1dep
	$y = 2e^{5x} + 3x + 7$	A1	
3	$9 < 4k(k-4)$ $4k^2 - 16k - 9$	M1	use of the discriminant with correct values
	(2k-9)(2k+1)	M1	M1dep for solution of <i>their</i> quadratic to obtain critical values
	Critical values $\frac{9}{2}$, $-\frac{1}{2}$	A1	///
	$k < -\frac{1}{2}, \ k > \frac{9}{2}$	A1	Ş.
4	a = 3	B1	
	b = 8	B1	
	$\frac{5}{2} = 3\cos\left(8 \times \frac{\pi}{12}\right) + c$	M1	substitution of $x = \frac{\pi}{12}$ and $y = \frac{5}{2}$ to find c
	c = 4	A1	
5(i)	$\frac{5}{14}(7x-10)^{\frac{2}{5}}$	B2	B1 for $k(7x-10)^{\frac{2}{5}}$

Question	Answer	Marks	Guidance
5(ii)	$\frac{5}{14} \left[(7x - 10)^{\frac{2}{5}} \right]_{6}^{a} = \frac{25}{14}$ $\frac{5}{14} (7a - 10)^{\frac{2}{5}} - \frac{5}{14} (7 \times 6 - 10)^{\frac{2}{5}} = \frac{25}{14}$ $(7a - 10)^{\frac{2}{5}} - 4 = 5$	M1	correct application of limits for $k(7x-10)^{\frac{2}{5}}$
	$a = \frac{9^{\frac{5}{2}} + 10}{7}$	M1	M1dep for evaluation of $(7 \times 6 - 10)^{\frac{2}{5}}$ and correct order of operations to find a , including dealing with power.
	$a = \frac{253}{7}$ or $36\frac{1}{7}$	A1	
6(i)	Gradient = $\frac{2.4 - 0.9}{0.2 - 0.8}$ (= -2.5)	B1	
	$ \ln y = -\frac{5}{2}x^2 + c $	M1	straight line form and correct substitutions to find c
	$\ln y = -\frac{5}{2}x^2 + 2.9 \text{ oe}$	A1	
	Alternative method		
	2.4 = p(0.2) + q 0.9 = p(0.8) + q	B1	
	Correct method of solution to find <i>p</i> and <i>q</i> from two correct equations	M1	M1dep
	$\ln y = -\frac{5}{2}x^2 + 2.9$	A1	
6(ii)	$y = e^{\left(-\frac{5}{2}x^2 + 2.9\right)}$	M1	dealing with In
	$y = e^{-\frac{5}{2}x^2} \times e^{2.9}$	M1	M1dep for dealing with the index
	$y = 18.2z^{-\frac{5}{2}}$	A1	

Question	Answer	Marks	Guidance
7(i)	$64 - 48x^2 + 15x^4$	В3	B1 for each correct term in final line of response
7(ii)	$\left(64 - 48x^2 + 15x^4\right) \left(\frac{1}{x^2} + 2 + x^2\right)$	B1	B1 for $\frac{1}{x^2} + 2 + x^2$ oe
	at least two correctly obtained products leading to terms in x^2	M1	
	Term in x^2 : 64+15-96	A1	FT for correct evaluation of their $64 + (2 \times their - 48) + their 15$
	=-17	A1	
8(i)	attempt to differentiate a product	M1	
	$\frac{dy}{dx} = \left((x-4) \times \frac{5}{3} \times 3(3x-1)^{\frac{2}{3}} \right) + (3x-1)^{\frac{5}{3}}$	A2	A1 for $(+)$ $\left((x-4) \times \frac{5}{3} \times 3(3x-1)^{\frac{2}{3}} \right)$
			A1 for $(+)(3x-1)^{\frac{3}{3}}$
	$= (3x-1)^{\frac{2}{3}} \left((5x-20) + (3x-1) \right)$	M1	use of $(3x-1)^{\frac{5}{3}} = (3x-1)^{\frac{2}{3}}(3x-1)$
	$= (3x-1)^{\frac{2}{3}} (8x-21)$	A1	
8(ii)	When $x = 3$, $\frac{dy}{dx} = 8^{\frac{2}{3}} \times 3$	M1	$(3\times3-1)^{\frac{2}{3}}\times k$ or $(9-1)^{\frac{2}{3}}\times k$ or $4\times k$ (where k is any number)
	$\partial y = 8^{\frac{2}{3}} \times 3 \times h$	M1	M1dep for their $((9-1)^{\frac{2}{3}} \times k) \times h$
	$\partial y = 12h$	A1	
9(a)(i)	720	B1	
9(a)(ii)	240	B1	
9(a)(iii)	$k \times 4! \times 2$ or $240 - k \times 4! \times 2$ or correct equivalents with no extra terms added or subtracted	B1	
	$4 \times 4! \times p$ or correct equivalents with no extra terms added or subtracted	B1	
	192	B1	

Question	Answer	Marks	Guidance
9(b)(i)	6435	B1	
9(b)(ii)	With twins: ${}^{13}C_6$ or 1716 Without twins: ${}^{13}C_8$ or 1287	B2	B1 for ${}^{13}C_6$ or 1716 or ${}^{13}C_8$ or 1287 B1 for $({}^{13}C_6$ and ${}^{13}C_8)$ or (1716 and 1287) with no multiples and no extra terms
	Total: 1716 + 1287 = 3003	B1	3003 from a correct method
10(a)	matrix multiplication, must have at least 2 correct elements	M1	
	$\mathbf{AB} = \begin{pmatrix} 13 & 8 \\ 2a - 5b & 3a + 4b \end{pmatrix}$	A1	
	2a - 5b = 18 $3a + 4b = 4$	M1	formation and solution of simultaneous equations
	leading to $a = 4$, $b = -2$	A1	
	Alternate scheme		
	$\mathbf{AB} = \begin{pmatrix} 13 & 8 \\ 18 & 4 \end{pmatrix}$	M1	Correct plan
	$\mathbf{ABB}^{-1} = \begin{pmatrix} 13 & 8 \\ 18 & 4 \end{pmatrix} \mathbf{B}^{-1}$		
	Correct inverse	B1	/
	$\mathbf{A} = \begin{pmatrix} 4 & -1 \\ a & b \end{pmatrix} = \frac{1}{23} \begin{pmatrix} 13 & 8 \\ 18 & 4 \end{pmatrix} \begin{pmatrix} 4 & -3 \\ 5 & 2 \end{pmatrix}$	M1	Correct order and method of multiplication with at least two correct elements
	leading to $a = 4$, $b = -2$	A1	
10(b)(i)	$-\frac{1}{17}\begin{pmatrix} 1 & 5 \\ 4 & 3 \end{pmatrix} \text{ oe }$	B2	B1 for $-\frac{1}{17}$ B1 for $\begin{pmatrix} 1 & 5 \\ 4 & 3 \end{pmatrix}$
10(b)(ii)	$\mathbf{Z} = -\frac{1}{17} \begin{pmatrix} 1 & 5 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 4 & 0 \end{pmatrix}$	M1	pre-multiplication with two elements correct
	$= -\frac{1}{17} \begin{pmatrix} 19 & 2 \\ 8 & 8 \end{pmatrix} $ oe	A2	A1 for four correct of $-\frac{1}{17}$, 19, 2, 8, 8

Question	Answer	Marks	Guidance
11(i)	1.48	B1	
11(ii)	$\frac{1}{2} \times 10^2 \times \theta = 21.8$	M1	correct use of sector area
	$\theta = 0.436$	A1	
11(iii)	$\angle BOC = \frac{2\pi - 1.48 - 0.436}{2} (= 2.18(4))$	B1	2.18(4) or unsimplified
	$BC = 20\sin\left(\frac{1}{2} \angle BOC\right) \text{ or}$ $BC = \frac{10 \times \sin BOC}{\sin\left(\frac{\pi - BOC}{2}\right)} \text{ or}$ $BC = \sqrt{(200 - 200\cos BOC)}$ $BC = 17.7(5)$	M2	M1 for a complete correct method to find BC using their angle BOC M1 for a correct plan using 14.8, their BC and 10 × their answer to (ii)
	Perimeter = $14.8 + (2 \times 17.7(5)) + 4.36$ = 54.7 or 54.6	A1	awrt 54.7 or awrt 54.6

Question	Answer	Marks	Guidance
11(iv)	Area =	B2	B1 for $\left(\frac{1}{2} \times 10^2 \times 1.48\right) + 21.8$
	$\left(\frac{1}{2} \times 10^2 \times 1.48\right) + 21.8 + 2\left(\frac{1}{2} \times 10^2 \sin 2.18(4)\right)$		B1 for $2\left(\frac{1}{2} \times 10^2 \sin 2.18(4)\right)$
	= 178	B1	awrt 178 from correct working
	Alternative method 1		
	Segment area = $\frac{1}{2} (10^2 (2.18 - \sin 2.18))$	B1	B1 for $2 \times \frac{1}{2} (10^2 (2.18(4) - \sin 2.18(4)))$
	Area required =	B1	
	$100\pi - 2 \times \frac{1}{2} \left(10^2 \left(2.18(4) - \sin 2.18(4) \right) \right)$		
	= 178	B1	awrt 178 from correct working
	Alternative method 2		
	Area of trapezium = $\frac{1}{2}$ ((13.5 + 4.33)(17.1))	B1	correct area of trapezium ABCD (allow unsimplified)
	Area of segments = $\frac{1}{2} (10^2 (1.48 - \sin 1.48)) +$	B1	correct area of both segments (allow unsimplified)
	$\frac{1}{2} \left(10^2 \left(0.436 - \sin 0.436 \right) \right)$		
	= 178	B1	awrt 178 from correct working

Question	Answer	Marks	Guidance
12(i)	$2x^2 + 5x - 12 = 0$ or $y^2 + 3y - 28 = 0$	M1	attempt to get in terms of one variable
	(2x-3)(x+4)=0 or $(y+7)(y-4)=0$	M1	M1dep for solution of a three term quadratic
	leading to $x = -4$, $y = -7$ and $x = \frac{3}{2}$, $y = 4$	A2	A1 for each 'pair'
	Midpoint $M\left(\frac{\frac{3}{2}-4}{2}, \frac{4+(-7)}{2}\right) \left(=\left(-\frac{5}{4}, -\frac{3}{2}\right)\right)$	A1	correctly obtained midpoint
	Gradient of $PQ = 2$	B1	may be implied
	Perp gradient = $-\frac{1}{2}$	M1	$\frac{-1}{their \text{ gradient of } PQ}$
	Perp bisector: $y + \frac{3}{2} = -\frac{1}{2} \left(x + \frac{5}{4} \right)$	M1	M1dep for equation of perp bisector using <i>their</i> perp gradient and <i>their</i> midpoint. (unsimplified)
	$y = -\frac{1}{2}(-10) - \frac{17}{8} = \frac{23}{8}$	A1	all correct so far and for verification using a correct equation
	or $\frac{23}{8} = -\frac{1}{2}x - \frac{17}{8} \to x = -10$		

Question	Answer	Marks	Guidance
12(ii)	$Area = \frac{1}{2} \times \left(\frac{17}{8} + 1\right) \times \frac{5}{4}$	M1	finding R, S and RS
	correct method for finding area	M1	M1dep
	$= \frac{125}{64} \text{ or } 1.95 \text{ or } 1\frac{61}{64}$	A1	
	Alternative method 1 $Area = \frac{1}{2} \times \frac{\sqrt{125}}{4} \times \frac{\sqrt{125}}{8}$	M1	finding R, S, RM and MS
	correct method for finding area	M1	M1dep
	$= \frac{125}{64} \text{ or } 1.95 \text{ or } 1\frac{61}{64}$	A1	
	Area = $\frac{1}{2} \begin{vmatrix} 0 & 0 & \frac{-5}{4} & 0 \\ 1 & \frac{-17}{8} & \frac{-3}{2} & 1 \end{vmatrix}$	M1	finding <i>R</i> and <i>S</i> to obtain their $\frac{1}{2} \begin{vmatrix} 0 & 0 & \frac{-5}{4} & 0 \\ 1 & \frac{-17}{8} & \frac{-3}{2} & 1 \end{vmatrix}$
	$= \frac{1}{2} \left -\frac{5}{4} - \frac{85}{32} \right \text{ oe}$	M1	M1dep for correct method of evaluation
	$= \frac{125}{64} \text{ or } 1.95 \text{ or } 1\frac{61}{64}$	A1	

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/11

Paper 1 May/June 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
ignore subsequent workin

isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 8

Question	Answer	Marks	Guidance
1(i)	$kx - 5 = x^{2} + 4x$ $x^{2} + (4 - k)x + 5 = 0$	M1	equating line and curve equation and collecting terms to form an equation of the form $ax^2 + bx + c = 0$ x terms must be gathered together, maybe implied by later work
	For a tangent $(4-k)^2 = 20$	DM1	correct use of discriminant
	$k = 4 + 2\sqrt{5}$	A1	Accept $k = 4 + \sqrt{20}$
	Alternative		
	Gradient of line = k	M1	
	Gradient of curve = $\frac{dy}{dx} = 2x + 4$		
	Equating: $k = 2x + 4$		
	substitution of $k = 2x + 4$ or $x = \frac{k - 4}{2}$ in	DM1	
	$kx-5=x^2+4$ and simplify to a quadratic equation in k or x		
	$k = 4 + 2\sqrt{5}$	A1	Accept $k = 4 + \sqrt{20}$
1(ii)	Normal gradient = $-\frac{1}{4+2\sqrt{5}} \times \frac{4-2\sqrt{5}}{4-2\sqrt{5}}$	M1	use of negative reciprocal and attempt to rationalise using a form of $a - b\sqrt{5}$ or $a - \sqrt{20}$ or <i>their</i> equivalent from (i)
	$= -\frac{4 - 2\sqrt{5}}{-4} \text{ oe}$ $= 1 - \frac{\sqrt{5}}{2}$	A1	$-\frac{4-2\sqrt{5}}{-4}$ oe leading to $1-\frac{\sqrt{5}}{2}$
2	p(3) = 27 + 9a + 3b - 48	M1	attempt to find p(3)
	3a+b=9 oe	A1	
	$p'(x) = 3x^2 + 2ax + b$	M1	attempt to differentiate and find $p'(1)$
	p'(1) = 3 + 2a + b		must have 2 terms correct
	2a + b = -3 oe	A1	
	a = 12, b = -27	A1	for both
3(a)	x^3y^7	B2	B1 for each term

© UCLES 2017 Page 3 of 8

Question	Answer	Marks	Guidance
3(b)(i)	for $(t-2)^{\frac{3}{2}} = (t-2)^{\frac{1}{2}}(t-2)$ soi	M1	
	$(t-2)^{\frac{1}{2}}(4+5(t-2))$	A1	
	$(t-2)^{\frac{1}{2}}(5t-6)$	A1	
3(b)(ii)	2 and $\frac{6}{5}$	B1	FT on their $(t-2)^{\frac{1}{2}}(5t-6)$, must have 2
4(a)(i)	f > 5, f(x) > 5	B1	
4(a)(ii)	$\frac{y-5}{3} = e^{-4x}$ or $\frac{x-5}{3} = e^{-4y}$	B1	
	$-4x = \ln\left(\frac{y-5}{3}\right) \text{ or } -4y = \ln\left(\frac{x-5}{3}\right)$	B1	
	leading to $f^{-1}(x) = -\frac{1}{4} \ln\left(\frac{x-5}{3}\right)$ or $f^{-1}(x) = \frac{1}{4} \ln\left(\frac{3}{x-5}\right)$ or $f^{-1}(x) = \frac{1}{4} (\ln 3 - \ln(x-5))$ or $f^{-1}(x) = -\frac{1}{4} (\ln(x-5) - \ln 3)$	B1	
	Domain $x > 5$	B1	
4(b)	$\ln\left(x^2+5\right)=2$	B1	
	$x^2 + 5 = e^2$	B1	
	$x = 1.55$ or better or $\sqrt{e^2 - 5}$	B1	
5(a)(i)	$\overline{OM} = \overline{OC} + \frac{1}{2} \left(\overline{OA} - \overline{OC} \right)$ oe	M1	may be implied by correct answer.
	$\frac{1}{2}(\mathbf{a}+\mathbf{c})$	A1	

© UCLES 2017 Page 4 of 8

Question	Answer	Marks	Guidance
5(a)(ii)	$\mathbf{b} = \frac{5}{2} \overline{OM} \text{ oe }, \frac{5}{2} \text{ (their (i))}$ or $\overline{OM} = \frac{2}{3} (\mathbf{b} - \overline{OM})$	M1	dealing with ratio correctly to relate \mathbf{b} or \overrightarrow{OB} to \overrightarrow{OM}
	$=\frac{5}{4}(\mathbf{a}+\mathbf{c})$	A1	
5(b)(i)	$\begin{vmatrix} -10\mathbf{i} + 24\mathbf{j} = 26 \\ \mathbf{p} = \frac{39}{26} (-10\mathbf{i} + 24\mathbf{j}) \end{vmatrix}$	M1	magnitude of $-10\mathbf{i} + 24\mathbf{j}$ and use with 39
	$\mathbf{p} = -15\mathbf{i} + 36\mathbf{j}$	A1	
5(b)(ii)	If parallel to the y-axis, i component is zero	M1	realising i component is zero
	so $2\mathbf{p} + \mathbf{q} = 12\mathbf{j}$	DM1	use of 12
	$\mathbf{q} = 30\mathbf{i} - 60\mathbf{j}$	A1	
5(b)(iii)	$ \mathbf{q} = 30\sqrt{1^2 + (-2)^2} \text{ or } \sqrt{900} \times \sqrt{5}$	M1	attempt at magnitude of their q
	$ \mathbf{q} = 30\sqrt{5}$	A1	Answer Given: must have full and correct working
6(i)	$\frac{1}{2} \times 12^2 \times \theta = 150$	M1	use of sector area
	$\theta = 2.083$, so $\theta = 2.08$ to 2dp	A1	12
6(ii)	Area of triangle $AOB = \frac{1}{2} \times 12^2 \sin 2.08$	M1	correct method for area of triangle
	Area of segment = $150 - \frac{1}{2} \times 12^2 \times \sin 2.08$	A1	allow unsimplified, using $\theta = 2.08$, 2.083 or $\frac{150}{72}$
	$\sin 1.04 = \frac{AB}{2}$	M1	correct trigonometric statement using $\theta = 2.08$, 2.083 or $\frac{150}{72}$ with attempt to obtain AB
	AB = awrt 20.7	A1	
	Shaded area = $their AB \times 8 - their$ segment area	M1	execution of a correct 'plan' (rectangle – segment)
	awrt 78.4 or 78.5	A1	

© UCLES 2017 Page 5 of 8

Question	Answer	Marks	Guidance
6(iii)	Arc $AB = 25$ or 24.96	B1	
	Perimeter= $25 + their AB + 16$	M1	correct 'plan' (arc + their $AB + 2 \times 8$)
	awrt 61.7	A1	
7	differentiation to obtain answer in the form $p(3x^2 + 8)^{\frac{2}{3}}$ or $qx(3x^2 + 8)^{\frac{2}{3}}$	M1	
	$6x\left(3x^2+8\right)^{\frac{2}{3}}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5}{3} \times 6x \left(3x^2 + 8\right)^{\frac{2}{3}}$	A1	all correct
	When $\frac{dy}{dx} = 0$ only solution is $x = 0$	DM1	$qx(3x^2+8)^{\frac{2}{3}} = 0$ and attempt to solve
	$x = 0$ and $3x^2 + 8 = 0$ has no solutions	A1	
	Stationary point at (0,32)	A1	
	correct gradient method with substitution of x values either side of zero or equivalent valid method	M1	
	correct conclusion from correct work using a correct $\frac{dy}{dx}$	A1	ξ
8(i)		B5	B1 for shape of modulus function B1 for y intercept = 5 (for modulus graph only) B1 for x intercept = 2.5 at the V of a modulus graph B1 for shape of quadratic function for $-1 \le x \le 6$ B1 for intercepts at $x = 0$ and $x = 5$ for a quadratic graph
8(ii)	$2x - 5 = \pm 4$	B1	one correct answer
	$x = \frac{9}{2}$	M1	solution of two different correct linear equations or solution of an equation obtained from squaring both sides or use of symmetry from first solution.
	$x = \frac{1}{2}$	A1	second correct solution

© UCLES 2017 Page 6 of 8

Question	Answer	Marks	Guidance
8(iii)	$16\left(\frac{1}{2}\right)^2 - 80\left(\frac{1}{2}\right) + 36 = 4$	B1	verification using both x values or for forming and solving $16x^2 - 80x + 36 = 0$
	and $16\left(\frac{9}{2}\right)^2 - 80\left(\frac{9}{2}\right) + 36 = 4$		
8(iv)	using <i>their</i> values from (ii) in an equality of the form $a \le x \le b$ or $a < x < b$	M1	
	$\frac{1}{2} \leqslant x \leqslant \frac{9}{2} \text{cao}$	A1	
9(i)	$5+4\left(\sec^2\left(\frac{x}{3}\right)-1\right)$ leading to given answer	B1	use of correct identity
9(ii)	$3\tan\left(\frac{x}{3}\right) \ (+c)$	B1	
9(iii)	attempt to integrate using (i) and/or (ii)	M1	
	Area = $\int_{\frac{\pi}{2}}^{\pi} 4 \sec^2\left(\frac{x}{3}\right) + 1 dx$	A1	all correct
	$\left[12\tan\left(\frac{x}{3}\right) + x\right]_{\frac{\pi}{2}}^{\pi}$	DM1	correct method for evaluation using limits in correct order
	$= \left(12\tan\frac{\pi}{3} + \pi\right) - \left(12\tan\frac{\pi}{6} + \frac{\pi}{2}\right)$	A1	<i>Ş</i> ,
	$=8\sqrt{3}+\frac{\pi}{2}$	A1	
10(a)	differentiation of a quotient or equivalent product	M1	
	correct differentiation of e^{3x}	B1	
	$\frac{dy}{dx} = \frac{3e^{3x} (4x^2 + 1) - 8xe^{3x}}{(4x^2 + 1)^2}$	A1	everything else correct including brackets where needed, allow unsimplified
	or $\frac{dy}{dx} = \frac{3e^{3x}}{4x^2 + 1} - \frac{8xe^{3x}}{(4x^2 + 1)^2}$		

© UCLES 2017 Page 7 of 8

Question	Answer	Marks	Guidance
10(b)(i)	one term differentiated correctly	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4\sin\left(x + \frac{\pi}{3}\right) + 2\sqrt{3}\cos\left(x + \frac{\pi}{3}\right)$	A1	all correct
	When $x = \frac{\pi}{2}$, $\frac{dy}{dx} = -5$	A1	
10(b)(ii)	$\frac{dy}{dx} \times \frac{dx}{dt} = \frac{dy}{dt}$ $-5 \times \frac{dx}{dt} = 10 \text{ oe}$	M1	correct use of rates of change
	$\frac{\mathrm{d}y}{\mathrm{d}t} = -2$	A1	FT answer to (i)

© UCLES 2017 Page 8 of 8

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12

Paper 1 May/June 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent workin

isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 11

Question	Answer	Marks	Partial Marks
1	$(A \cup B) \cap C \qquad (A \cap B) \cup C$ $(A' \cap B') \cap C$	B3	B1 for each
2	attempt at differentiating a quotient, must have minus sign and $(x+1)^2$ in the denominator	M1	
	for $(5x^2+4)^{-\frac{1}{2}}$	B1	
	for $\frac{1}{2}(10x)(5x^2+4)^{-\frac{1}{2}}$	DB1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x+1)\frac{1}{2}(10x)(5x^2+4)^{-\frac{1}{2}} - (5x^2+4)^{\frac{1}{2}}}{(x+1)^2}$	A1	all else correct
	When $x = 3$, $\frac{dy}{dx} = \frac{11}{112}$	A1	must be exact
	Alternative	P .	
	$y = \left(5x^2 + 4\right)^{\frac{1}{2}} \left(x + 1\right)^{-1}$	M1	attempt to differentiate a product
	for $(5x^2+4)^{-\frac{1}{2}}$	B1	
	for $\frac{1}{2}(10x)(5x^2+4)^{-\frac{1}{2}}$	DB1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}10x(5x^2 + 4)^{-\frac{1}{2}}(x+1)^{-1} + (5x^2 + 4)^{\frac{1}{2}}(-(x+1)^{-2})$	A1	all else correct
	When $x = 3$, $\frac{dy}{dx} = \frac{11}{112}$	A1	A1 must be exact

© UCLES 2017 Page 3 of 11

Question	Answer	Marks	Partial Marks
3(a)	$\mathbf{v} = 3\sqrt{5} \times \frac{1}{\sqrt{5}} (\mathbf{i} - 2\mathbf{j})$	M1	attempt to find the magnitude of $(i-2j)$ and use
	$=3\mathbf{i}-6\mathbf{j}$	A1	for $3\mathbf{i} - 6\mathbf{j}$ only
3(b)	$\mathbf{w} = 2\cos 30^{\circ} \mathbf{i} + 2\sin 30^{\circ} \mathbf{j}$	M1	attempt to use trigonometry correctly to obtain components
	$=\sqrt{3}\mathbf{i}+\mathbf{j}$	A1	
4	$3^{n} - n3^{n-1} \left(\frac{x}{6}\right) + n(n-1)3^{n-2} \left(\frac{x}{6}\right)^{2}$	B1	
	$3^n = 81$, so $n = 4$	Mi	
	$4 \times 3^3 \times -\frac{1}{6} = a$	M1	for $-n3^{n-1} \left(\frac{x}{6} \right)$, ${}^{n}C_{1}3^{n-1} \left(-\frac{x}{6} \right)$ or
			$\binom{n}{1} 3^{n-1} \left(-\frac{x}{6} \right)$, with/without their n
	a = -18	A1	using <i>their n</i> and equating to <i>a</i> to obtain $a = -18$
	$\frac{4\times3}{2}\times3^2\times\frac{1}{36}=b$	M1	for $n(n-1)3^{n-2} \left(\frac{x}{6}\right)^2$, ${}^nC_2 3^{n-2} \left(\frac{x}{6}\right)^2$ or $\binom{n}{2} 3^{n-2} \left(\frac{x}{6}\right)^2$, with/without their n
	$b=\frac{3}{2}$	A1	using <i>their n</i> and equating to <i>b</i> to obtain $b = \frac{3}{2}$
5(i)	$v = -12\sin 3t$	B1	
5(ii)	12	B1	FT on <i>their</i> (i) of the form $k \sin 3t$, must be $ k $
5(iii)	$a = -36\cos 3t$	B1	allow unsimplified
	$3t = \frac{\pi}{2}, 1.57 \text{ or better}$	B1	
	$t = \frac{\pi}{6}$ or 0.524	B1	
5(iv)	4 cao	B1	may be obtained from knowledge of cosine curve

© UCLES 2017 Page 4 of 11

Question	Answer	Marks	Partial Marks
6(i)	$\frac{1}{\sin\theta} \times \frac{1}{\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}}$	M1	for $\cot \theta = \frac{\cos \theta}{\sin \theta}$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\csc \theta = \frac{1}{\sin \theta}$
	dealing with the fractions correctly	M1	
	$\frac{1}{\sin\theta} \times \frac{\sin\theta\cos\theta}{\cos^2\theta + \sin^2\theta}$	M1	use of identity
	$=\cos\theta$	A1	correct simplification, with all correct
	Alternative 1 $\frac{\csc \theta}{\frac{1}{\tan \theta} (1 + \tan^2 \theta)}$	M1	dealing with fractions
	$=\frac{\tan\theta \csc\theta}{\sec^2\theta}$	M1	use of appropriate identity
	$= \frac{\sin \theta}{\cos \theta} \times \frac{1}{\sin \theta} \times \cos^2 \theta$	M1	for $\cot \theta = \frac{1}{\tan \theta}$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\sec \theta = \frac{1}{\cos \theta}$, $\csc \theta = \frac{1}{\sin \theta}$
	$=\cos\theta$	A 1	correct simplification, with all correct
	Alternative 2 $\frac{\csc \theta}{\frac{1}{\cot \theta} \left(\cot^2 \theta + 1\right)}$	M1	dealing with fractions
	$=\frac{\cot\theta\csc\theta}{\csc^2\theta}$	M1	use of appropriate identity
	$=\frac{\cot\theta}{\csc\theta}$	M1	for $\cot \theta = \frac{\cos \theta}{\sin \theta}$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$,
	$= \frac{\cos \theta}{\sin \theta} \times \sin \theta$		$\csc\theta = \frac{1}{\sin\theta}$
	$=\cos\theta$	A1	correct simplification, with all correct

© UCLES 2017 Page 5 of 11

Question	Answer	Marks	Partial Marks
6(ii)	$\int_0^a \cos 2\theta d\theta = \left[\frac{1}{2} \sin 2\theta \right]_0^a$	B1	
	$\frac{1}{2}\sin 2a = \frac{\sqrt{3}}{4}$	М1	use of $[k \sin 2\theta]_0^a = \frac{\sqrt{3}}{4}$ to obtain $k \sin 2a = \frac{\sqrt{3}}{4}$
	$2a = \frac{\pi}{3}$	DM1	attempt to solve equation of the form $k \sin 2a = \frac{\sqrt{3}}{4}$, with $-1 \le \frac{\sqrt{3}}{4k} \le 1$, must have a correct order of operations dealing with the double angle
	$a = \frac{\pi}{6}$, 0.167π or better	A1	
7(i)	$\lg y = \lg A + bx$	B1	straight line form, may be implied by correct values of both <i>A</i> and <i>b</i> later
	Gradient = b ,	M1	equating gradient to b
	b=3	A1	
	Use of substitution into one of the following $2.2 = \lg A + 0.5b$ $3.7 = \lg A + b$	M1	
	$158.489 = A \times 10^{0.5b}$ $5011.872 = A \times 10^{b}$		
	or equivalent valid method leads to $\lg A = 0.7$	P. C	
	$A = 5$, 5.01 or $10^{0.7}$	A1	
	Alternative 1		
	$\lg y = \lg A + bx$	B1	straight line form, may be implied by correct work later
	$2.2 = \lg A + 0.5b$	M1	one correct equation
	$3.7 = \lg A + b$	A1	both equations correct
	attempt to solve 2 correct equations	M1	
	leading to $b = 3$ and $A = 5$, 5.01 or $10^{0.7}$	A1	

© UCLES 2017 Page 6 of 11

Question	Answer	Marks	Partial Marks
7(i)	Alternative 2		
	$y = A(10^{bx})$	M1	one correct equation
	$158.489 = A \times 10^{0.5b}$		
	$5011.872 = A \times 10^b$	A1	both correct
	$\frac{5011.872}{158.489} = 10^{0.5b}$	M1	attempt to solve 2 correct equations
	leading to $b = 3$	A1	correct b
	Use of substitution leads to $A = 5$, 5.01 or $10^{0.7}$	A1	correct A
7(ii)	Substitute A and b correctly into either	M1	correct statement using <i>their A</i> and <i>b</i> correctly in either equation or using
	$y = A(10^{0.6b})$, $\lg y = \lg A + 0.6b$ or $\lg y = \lg A + 0.6 \lg 10^b$		$\lg y = 3x + 0.7$
	or using $\lg y = 1.8 + 0.7$		
	$y = 316$, 315 or $10^{2.5}$	A1	
7(iii)	Substitute A and b correctly into either $(a_1, b_2) = (a_1, b_2)$	M1	correct statement using <i>their A</i> and <i>b</i> correctly in either equation or using
	$600 = A(10^{bx})$, $\lg 600 = \lg A + bx$ or		$\lg y = 3x + 0.7$
	$ \lg 600 = \lg A + x \lg 10^b or using \lg 600 = 3x + 0.7 $		///
	x = 0.693	A1	
8(a)(i)	2520	B1	
8(a)(ii)	360	B1	
8(a)(iii)	1080	B1	
8(a)(iv)	6 or 8 to start with No of ways = $2 \times 5 \times 4 \times 3 \times 2$	B1	
	= 240		
	9 to start with No of ways = $1 \times 5 \times 4 \times 3 \times 3$ = 180	B1	
	Total number of ways = 420	DB1	Dependent on both previous B marks

© UCLES 2017 Page 7 of 11

Question	Answer	Marks	Partial Marks
8(a)(iv)	Alternative 1		
	All numbers > 6000 - all odd numbers > 6000	B1	plan and attempt to use, must be using 1080
	1080 - 180 - 480	B1	for 180 and 480
	Total number of ways = 420	DB1	Dependent on both previous B marks
	Alternative 2		
	Even numbers > 60000 : Odd numbers > 60000 7 : 11	B1	correct ratio
	Total number of ways = $\frac{7}{18} \times 1080$	B1	
	= 420	DB1	Dependent on both previous B marks
8(b)(i)	480700	B1	
8(b)(ii)	26460	B1	
8(b)(iii)	With brother and sister $^{23}C_5 = 33649$	B1	for $^{23}C_5$ or $^{23}C_5 \times {}^kC_k$
	Without brother and sister $^{23}C_7 = 245157$	B1	for $^{23}C_7$ or $^{23}C_7 \times {}^kC_k$
	Total number of ways = 278806	B1	for $^{23}C_5 + ^{23}C_7$ and evaluation
9(a)(i)	3×2	B1	~ /
9(a)(ii)	correct attempt to multiply the 2 matrices	M1	
	$\mathbf{C} = \begin{pmatrix} 6 & -6 \\ 5 & 2 \\ 19 & -8 \end{pmatrix}$	A2	-1 for each incorrect element
9(b)(i)	$\mathbf{X}^{-1} = \frac{1}{13} \begin{pmatrix} -7 & 12 \\ -4 & 5 \end{pmatrix}$	B2	B1 for correct use of determinant B1 for correct matrix
9(b)(ii)	$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{13} \begin{pmatrix} -7 & 12 \\ -4 & 5 \end{pmatrix} \begin{pmatrix} 26 \\ 52 \end{pmatrix} $	B1	
	attempt to evaluate using inverse from (i) together with pre-multiplication to obtain a 2×1 matrix	M1	
	x = 34, y = 12	A2	A1 for each
10(i)	0.5	B1	for 0.5 from correct work only

© UCLES 2017 Page 8 of 11

Question	Answer	Marks	Partial Marks
10(ii)	$15^{2} = 8^{2} + 8^{2} - (2 \times 8 \times 8 \times \cos AOB)$ $AOB = 2.43075 \text{ rads}$	M1	use of cosine rule (or equivalent) to obtain angle <i>AOB</i> .
	$DOC = AOB - 2(their\ AOD)$	M1	use of angle AOD and symmetry
	DOC = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better in previous calculations
	Alternative 1		
	$15 = 2 \times 8 \times \sin\left(\frac{1 + DOC}{2}\right)$	M1	use of basic trigonometry
	use of $\frac{1+0.5DOC}{2}$	M1	may be implied
	DOC = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better or 1.215 or better in previous calculations
	Alternative 2		
	$15^{2} = 8^{2} + 8^{2} - (2 \times 8 \times 8 \times \cos AOB)$ $AOB = 2.43075 \text{ rads}$ $\angle AOB \times 8 = \text{arc } AB$	M1	use of cosine rule (or equivalent) to obtain angle AOB.
	$\frac{\operatorname{arc} AB - 8}{8} = \angle DOC$	M1	attempt at <i>DOC</i> , must be a complete method with <i>AOB</i> found
	DOC = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better or 1.215 or better in previous calculations
	Alternative 3		
	Equating 2 different forms for the area of triangle AOB $\frac{15\sqrt{31}}{4} = \frac{1}{2} \times 8^2 \sin AOB, \ AOB = 2.43075 \text{ rads}$	M1	using both different forms of the area of triangle AOB
	DOC = AOB - 2 (their AOD)	M1	use of angle AOD and symmetry
	DOC = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better in previous calculations

© UCLES 2017 Page 9 of 11

Question	Answer	Marks	Partial Marks
10(iii)	$\sin\left(\frac{1.43}{2}\right) = \frac{DC}{2}$ or $DC^2 = 8^2 + 8^2 - (2 \times 8 \times 8 \times \cos 1.43)$	M1	use of cosine rule or basic trigomoetry to obtain DC
	DC = 10.49	A1	awrt 10.5, may be implied
	Perimeter = 10.49 + 4 + 4 + 15 = 33.5	A1	awrt 33.5
10(iv)	$\frac{1}{2} \times 8^2 (2.43 - \sin 2.43) - \frac{1}{2} \times 8^2 (1.431 - \sin 1.431)$	B1	area of one appropriate sector; allow unsimplified; may be implied by a correct segment
	area of one appropriate triangle, allow unsimplified	B1	
	an appropriate segment, allow unsimplified	B1	
	= 42.8 (allow awrt 42.8)	B1	final answer
	Alternative 1		
	Area of a trapezium + 2 small segments	B1	one appropriate small sector, allow unsimplified (could be doubled)
	Each small segment = $\frac{1}{2} \times 8^2 (0.5 - \sin 0.5)$	B1	an appropriate triangle, allow unsimplfied (could be doubled)
	Area of trapezium = $\frac{1}{2}(15+10.5)\times(6.041-2.784)$	B1	attempt at trapezium, must have a correct attempt at finding the distance between the parallel sides – allow unsimplified
	Total area = 42.8 (allow awrt 42.8)	B1	final answer
	Alternative 2 Area of 2 small sectors + area of triangle ODC – the area of triangle OAB Area of a small sector = $\frac{1}{2} \times 8^2 \times \frac{1}{2}$	B 1	area of small sector, allow unsimplified, (could be doubled)
	Area of triangle $ODC = \frac{1}{2} \times 8^2 \times \sin 1.43$	B1	area of triangle ODC, allow unsimplified
	Area of triangle $OAB = \frac{1}{2} \times 8^2 \times \sin 2.43$	B1	area of triangle <i>OAB</i> , allow unsimplified
	Total area = 42.8 (allow awrt 42.8)	B1	final answer

© UCLES 2017 Page 10 of 11

Question	Answer	Marks	Partial Marks
10(iv)	Alternative 3 Area of rectangle + 2 small triangles + 2 small segments Each small segment = $\frac{1}{2} \times 8^2 (0.5 - \sin 0.5)$	B1	area of a small segment, allow unsimplified, could be doubled
	$\frac{1}{2} \times \frac{\left(15 - 10.49\right)}{2} \left(6.041 - 2.784\right)$	B1	area of a small triangle, allow unsimplified, could be doubled
	Area of rectangle = $10.49 \times (6.041 - 2.784)$	B1	allow unsimplified, could be doubled
	Total area = 42.8 (allow awrt 42.8)	B1	final answer
	Alternative 4 Sector AOB – sector AOD – sector COB – triangle DOC	B1	area of one appropriate sector; allow unsimplified; may be implied by a correct segment
	$\left(\frac{1}{2} \times 8^2 \times 2.43\right) - 2\left(\frac{1}{2} \times 8^2 \times 0.5\right) - \left(\frac{1}{2} \times 8^2 \sin 1.43\right)$ Area = sector AOB – segment DC – triangle AOB	B1	area of one appropriate triangle, allow unsimplified
	$\left(\frac{1}{2} \times 8^2 \times 2.43\right) - \text{(their segment)} - \left(\frac{1}{2} \times 8^2 \sin 2.43\right)$	B1	an appropriate segment, allow unsimplified
	Total area = 42.8 (allow awrt 42.8)	B1	final answer
11(i)	me^{2x-1} where m is numeric constant	M1	
	$f(x) = \frac{1}{2}e^{2x-1} (+c)$	A1	condone omission of + <i>c</i>
	$\frac{7}{2} = \frac{1}{2} + c$	DM1	correct attempt to find arbitrary constant
	$f(x) = \frac{1}{2}e^{2x-1} + 3$	A1	must be an equation
11(ii)	ke^{2x-1} where k is a numeric constant	M1	
	$f''(x) = 2e^{2x-1}$	A1	
	$2x - 1 = \ln\left(\frac{4}{k}\right)$	DM1	attempt to equate to 4 and use logarithms
	$x = \frac{1}{2} + \ln\sqrt{2}$	A1	

© UCLES 2017 Page 11 of 11

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/13

Paper 1 May/June 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 ${\rm \rlap{R}}$ IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dependent dep FT follow through after error ignore subsequent working isw not from wrong working nfww oe or equivalent rounded or truncated rot SC Special Case seen or implied soi

© UCLES 2017 Page 2 of 8

Question	Answer	Marks	Partial Marks
1(a)		1	
1(b)		1	
2(i)	4	1	
2(ii)	$40^{\circ} \text{ or } \frac{2\pi}{9} \text{ or } 0.698 \text{ rad}$	1	
3(i)		3	B1 for a complete cycle starting and ending at -2 B1 for max at $y = 1$ and min at $y = -5$ B1 for a completely correct graph
3(ii)	5	1	FT their min value for y
4(i)	Area = $\frac{1}{2} (3 + 2\sqrt{5}) (4 + 6\sqrt{5})$ = $\frac{1}{2} (12 + 26\sqrt{5} + 60)$	M1	use of correct formula and attempt to expand out the brackets
	$=36+13\sqrt{5}$	A1	
4(ii)	$\frac{3+2\sqrt{5}}{2+3\sqrt{5}}$	B1	
	$= \frac{3 + 2\sqrt{5}}{2 + 3\sqrt{5}} \times \frac{2 - 3\sqrt{5}}{2 - 3\sqrt{5}}$	M1	
	$= \frac{6 - 5\sqrt{5} - 30}{4 - 45}$ $= \frac{24 + 5\sqrt{5}}{41}$	A1	for answer

© UCLES 2017 Page 3 of 8

Question	Answer	Marks	Partial Marks
5	When $x = 4$, $y = 5$	B1	for y
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \times 4(4x+9)^{-\frac{1}{2}}$	B1	for $2(4x+9)^{-\frac{1}{2}}$, allow unsimplified
	When $x = 4$, $\frac{dy}{dx} = \frac{2}{5}$, so perp grad = $-\frac{5}{2}$	M1	obtaining numerical gradient for normal
	Equation of normal $y-5 = -\frac{5}{2}(x-4)$	M1	for equation of normal
	(2y = 30 - 5x)		
	A(6, 0), B(0, 15)	A2	A1 for each
	Midpoint $\left(3, \frac{15}{2}\right)$	B1	FT on their x/y intercepts
6(a)(i)	dealing with multiplication and addition	M1	implied by 2 correct elements
	$\mathbf{A} + 3\mathbf{C} = \begin{pmatrix} -12 & 7 \\ 11 & 7 \end{pmatrix}$	A1	
6(a)(ii)	correct attempt to multiply	M1	implied by 2 correct elements
	$\mathbf{BA} = \begin{pmatrix} 17 & 9 \\ 14 & 18 \\ -3 & -1 \end{pmatrix}$	tore	3D.CO.
6(b)(i)	$\mathbf{X}^{-1} = \frac{1}{10} \begin{pmatrix} -2 & 3\\ -4 & 1 \end{pmatrix}$	B2	B1 for $\frac{1}{10}$, B1 for $\begin{pmatrix} -2 & 3 \\ -4 & 1 \end{pmatrix}$
6(b)(ii)	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{10} \begin{pmatrix} -2 & 3 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} 5 & -10 \\ 15 & 20 \end{pmatrix} $	M1	pre-multiplication using matrix from (b)(i)
	$= \begin{pmatrix} 3.5 & 8 \\ -0.5 & 6 \end{pmatrix}$	A2	−1 for each incorrect element

© UCLES 2017 Page 4 of 8

Question	Answer	Marks	Partial Marks
7(a)	LHS = $\frac{\sin^2 \theta}{\cos^2 \theta} + \sin^2 \theta$ $\cos \theta + \frac{1}{\cos \theta}$	M1	for obtaining all in terms of $\sin \theta$ and $\cos \theta$
	$= \frac{\sin^2 \theta + \sin^2 \theta \cos^2 \theta}{\cos^2 \theta}$ $\frac{\cos^2 \theta + 1}{\cos \theta}$	M1	for simplification using addition of fractions
	$= \frac{\sin^2 \theta (1 + \cos^2 \theta)}{\cos \theta (\cos^2 \theta + 1)}$ $= \frac{\sin^2 \theta}{\cos \theta}$	M1	for factorisation and subsequent cancelling of common term
	$\tan \theta \sin \theta = RHS$	A1	correct final simplification
	Alternative $\frac{\sec^2 \theta - 1 - \cos^2 \theta + 1}{\cos \theta + \sec \theta}$	M1	use of correct identities
	$= \frac{(\sec \theta - \cos \theta)(\sec \theta + \cos \theta)}{(\sec \theta - \cos \theta)}$ $= \sec \theta - \cos \theta$	M1	attempt to factorise and simplify
	$=\frac{1-\cos^2\theta}{\cos\theta}$	M1	simplification to obtain terms in $\sin \theta$ and $\cos \theta$ only
	$= \frac{\sin^2 \theta}{\cos \theta}$ $= \tan \theta \sin \theta$	A1	for final simplification
7(b)	$\sin \phi = \frac{x}{3}, \cos \phi = \frac{3}{y}$	M1	for obtaining $\sin \phi$ and $\cos \phi$ in terms of x and y and attempt to use correct identity
	Using $\sin^2 \phi + \cos^2 \phi = 1$ leads to $\frac{x^2}{9} + \frac{9}{y^2} = 1$ and hence $x^2 y^2 + 81 = 9y^2$	M1	attempt at simplification
	81	A1	

© UCLES 2017 Page 5 of 8

Question	Answer	Marks	Partial Marks
	Alternative method using substitution $ \left(9 \times \frac{9}{\cos^2 \phi}\right) - \left(\frac{9}{\cos^2 \phi} \times 9\sin^2 \phi\right) $	M1	attempt to substitute in for x and y
	$= \left(\frac{81}{\cos^2 \phi}\right) - \left(\frac{81\sin^2 \phi}{\cos^2 \phi}\right)$	M1	simplification of fractions
	$= \frac{81(1-\sin^2\phi)}{\cos^2\phi} \text{ or}$ $81(\sec^2\phi - \tan^2\phi)$ leading to 81	A1	use of correct identity to obtain 81
8(i)	$p\left(-\frac{1}{2}\right) = -\frac{2}{8} + \frac{a}{4} - 2 + b$	M1	for attempt at $p\left(-\frac{1}{2}\right)$
	leading to $a+4b=9$ oe	A1	
	p(1) = 2 + a + 4 + b leading to $a + b = -18$ oe	B1	
	solution of simultaneous equations	M1	
	a = -27, b = 9	A1	for both
8(ii)	attempt at factorisation using either long division or observation	M1	_ / _ / _ /
	$(2x+1)(x^2-14x+9)$	A1	
8(iii)	attempt to solve $q(x) = 0$	M1	
	$x = 7 \pm 2\sqrt{10}, -\frac{1}{2}$	A1	for all 3 solutions
9(i)	$\left[3e^{5x} + e^{-5x}\right]_{-k}^{k} = 6$	B2	B1 for each term integrated correctly
	$(3e^{5k} + e^{-5k}) - (3e^{-5k} + e^{5k}) = 6$	M1	for use of limits with $ae^{5x} + be^{-5x}$
	$2e^{5k} - 2e^{-5k} = 6$	A1	correct unsimplified
	$e^{5k} - e^{-5k} = 3$	A1	correct simplification to obtain given answer

© UCLES 2017 Page 6 of 8

Question	Answer	Marks	Partial Marks
9(ii)	$y^2 - 3y - 1 = 0$	M1	for correct attempt to obtain a quadratic equation in terms of y or e^{5x}
	$y = \frac{3 \pm \sqrt{9 + 4}}{2}$, $y = e^{5k} = 3.303$ only	DM1	for attempt to solve quadratic equation and solve for k
	k = 0.239	A1	A0 if more than one solution is given
10(i)	for attempt to differentiate a product	M1	
	$\frac{5}{5x+1}$	B2	B1 for $\frac{1}{5x+1}$
	$\frac{dy}{dx} = (10x + 2) \times \frac{5}{5x+1} + 10\ln(5x+1)$	A1	all else correct
10(ii)	$(10x+2) \times \frac{5}{5x+1} = 10$	B1	simplification to obtain 10, allow if seen in (i)
	$10 \int \ln(5x+1) dx$ = $(10x+2) \ln(5x+1) - 10x$	M1	use of result from part (i)
	$\int \ln(5x+1) dx$ $= \frac{(5x+1)}{5} \ln(5x+1) - x$	A1	
10(iii)	$[(x+0.2)\ln(5x+1)-x]_0^{\frac{1}{5}}$	M1	use of limits in result from (ii)
	$= -\frac{1}{5} + \frac{2}{5} \ln 2 = \frac{-1 + \ln 4}{5} $ cao	A1	
11(i)	attempt to differentiate	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6 - \frac{3}{2}x^{\frac{1}{2}}$	A1	
	When $\frac{dy}{dx} = 0$	M1	equating to zero and attempt to solve
	x = 16, y = 32	A1	both correct

© UCLES 2017 Page 7 of 8

Question	Answer	Marks	Partial Marks
11(ii)	$\frac{d^2 y}{dx^2} = -\frac{3}{4}x^{-\frac{1}{2}}$	B1	correct differentiation
	This is negative so a maximum point	DB1	correct conclusion
11(iii)	When $x = 4$, $\frac{dy}{dx} = 3$	B1	
	$\partial y \approx \frac{\mathrm{d}y}{\mathrm{d}x} \times h$	M1	use of small increases
	≈ 3 <i>h</i>	A1	FT their (iii)
12(i)	attempt to differentiate	M1	
	$6\cos 2t + 6$	A1	
12(ii)	$\cos 2t = -1$	M1	attempt to equate (i) to zero and solve
	$t = \frac{\pi}{2}$	A1	
12(iii)	attempt to integrate	M1	
	$x = -\frac{3}{2}\cos 2t + 3t^2 + 2t (+c)$	A2	−1 for each error
	When $t = 0$, $x = 0$, so $c = \frac{3}{2}$	M1	attempt to find c
	$x = \frac{3}{2} - \frac{3}{2}\cos 2t + 3t^2 + 2t$	A1	3P.0

© UCLES 2017 Page 8 of 8

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12

Paper 12 March 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FŤ	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

Questio	Question Answer		Marks	Part Marks
1 (a)	(i)	o Satpre	B1	
((ii)	10	B1	
(b)		X	B1	either $X \cap Y = Y$ or $X \cap Z = Z$
		$\left \begin{array}{c} x \\ y \end{array}\right $	B1	$Y \cap Z = \emptyset$
			B1	completely correct Venn diagram.

© UCLES 2017 Page 2 of 7

Qu	ıestion	Answer	Marks	Part Marks	
2	(i)	3	B1 2 complete cycles B1 having a maximum at $y = 4$ and a minimum at $y = -2$ B1 completely correct curve		
	(ii)	(90°, -2)	B1		
3		$a^{5} + 5a^{4} \left(\frac{x}{4}\right) + 10a^{3} \left(\frac{x}{4}\right)^{2}$ $a^{5} = 32 \text{ , so } a = 2$ $b = 5 \times \frac{1}{4} \times \left(\text{their } a\right)^{4} \text{ ,}$ leading to $b = 20$ $c = 10 \times \frac{1}{16} \times \left(\text{their } a\right)^{3}$ leading to $c = 5$	B1 M1 A1 M1 A1	correct attempt to obtain b	
4	(a) (i)		B1 B1	for $\frac{1}{\text{determinant}}$ for matrix	
	(ii)	$\mathbf{M} = \frac{1}{10} \begin{pmatrix} 4 & 3 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} -1 & -5 \\ 4 & 2 \end{pmatrix}$	M1	pre-multiplication by the matrix from part (i)	
	(b)	$\mathbf{M} = \frac{1}{10} \begin{pmatrix} 4 & 3 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} -1 & -5 \\ 4 & 2 \end{pmatrix}$ $\mathbf{M} = \frac{1}{5} \begin{pmatrix} 4 & -7 \\ 3 & 6 \end{pmatrix} \text{oe}$ $-3a + 2 = 4(6a - 4)$ $a = \frac{2}{3}$	A2,1,0 M1 A1	-1 each element error correct use of a determinant	

© UCLES 2017 Page 3 of 7

Question	Answer	Marks	Part Marks
5 (i)	LHS = $\frac{1}{\sin \theta} - \sin \theta$ = $\frac{1 - \sin^2 \theta}{\sin \theta}$ = $\frac{\cos^2 \theta}{\sin \theta}$ = $\cot \theta \cos \theta$	M1 M1 A1	dealing with $\csc\theta$ and attempt at dealing with fractions correct use of identity completely correct proof
(ii)	$\cot \theta \cos \theta = \frac{1}{3} \cos \theta$ $3 \cot \theta \cos \theta - \cos \theta = 0$ $\cos \theta (3 \cot \theta - 1) = 0$ $\cos \theta = 0 \cot \theta = \frac{1}{3}, \text{ so } \tan \theta = 3$ $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \theta = 1.25, 4.39$	M1 M1 A1,A1	use of part (i), manipulation and factorisation dealing with $\cot \theta$ and attempt to solve A1 for each pair of solutions (allow 1.57 and 4.71)
6 (a)	i) 40320	B1	
(i) 720	B1	
(i	i) 5040	B1	
(b)	35	B1	.5
(i) 1 Satpre	B1	
(i	Twins in team of 4 ${}^5C_2 = 10$ Twins in team of 3 = 5 Total = 15 www	B1 B1 B1	

© UCLES 2017 Page 4 of 7

Question	Answer	Marks	Part Marks
7 (a)	$ \frac{102}{17} \binom{8}{-15} $	M1	attempt to obtain magnitude of $\begin{pmatrix} 8 \\ -15 \end{pmatrix}$ and use it
	$\begin{pmatrix} 48 \\ -90 \end{pmatrix}$	A1	(-15) and use it
(b)	$ \begin{pmatrix} 2p - 2q + 4 \\ 10p + 2q + 3 \end{pmatrix} = \begin{pmatrix} p^2 \\ 27 \end{pmatrix} $	M1	dealing with the scalar and with addition
	$2p - 2q + 4 = p^{2}$ $10p + 2q + 3 = 27$	M1 A1	equating like vectors and simplifying both equations correct
	leading to $p^2 - 12p + 20 = 0$	M1	elimination of <i>q</i> and subsequent solution of quadratic
	p = 2, q = 2 p = 10, q = -38	A1 A1	
8 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\cos 2x \ \left(+c\right)$	M1 A1	integration to obtain the form $a \cos 2x$ correct, condone omission of c
	$5 = -2\cos\pi + c$	M1	attempt to find c
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 - 2\cos 2x$	A1	May be implied by a correct <i>c</i>
(ii)	$y = 3x - \sin 2x \ (+c)$	M1 A1	integration to obtain the form $a \sin 2x$ correct, condone omission of c
	$-\frac{1}{2} = \frac{\pi}{4} - \frac{1}{2} + c$	M1	attempt to find c
	$y = 3x - \sin 2x - \frac{\pi}{4} \text{oe}$	A1	
(iii)	When $x = \frac{\pi}{12}$, $\frac{dy}{dx} = 3 - \sqrt{3}$		
	Normal equation:		
	$y + \frac{1}{2} = \frac{1}{\sqrt{3} - 3} \left(x - \frac{\pi}{12} \right)$	M1	attempt to obtain perpendicular gradient and normal equation
		A1FT	FT on their $\frac{dy}{dx}$ from (i). Allow unsimplified
	y = -0.789x - 0.294 cao	A1	

© UCLES 2017 Page 5 of 7

Question	Answer	Marks	Part Marks
9 (i)	$\frac{1}{2} \times 10^2 \times \theta = 20\pi$	M1	use of sector area to obtain θ
	$\frac{1}{2} \times 10^2 \times \theta = 20\pi$ $\theta = \frac{2\pi}{5}$	A1	
(ii)	Arc length $AB = 4\pi$	B1FT	FT their θ
	$BC^{2} = 10^{2} + 10^{2} - (2 \times 10 \times 10 \times \cos 2\theta)$ or $\frac{BC}{\sin \frac{4\pi}{5}} = \frac{10}{\sin \frac{\pi}{10}}$ $BC = 19.02$	M1	valid attempt to obtain BC
(iii)	Perimeter = 50.6 Area =	A1	
	Either $\left(\frac{1}{2} \times 19.02^2 \sin \frac{\pi}{5}\right)$	M1	area of triangle ACB
	$+\left(20\pi - \left(\frac{1}{2} \times 10^2 \sin\frac{2\pi}{5}\right)\right)$	M1	area of relevant segment
	= 121.6 allow awrt 122	A1	
	Or		
	$20\pi + 2\left(\frac{1}{2} \times 10 \times 10\sin\frac{4\pi}{5}\right)$ = 121.6 allow awrt 122	M1,M1 A1	M1 for area of triangle AOB or AOC M1 for a complete method

© UCLES 2017 Page 6 of 7

Question	Answer	Marks	Part Marks
10	$(2x-5)^{\frac{3}{2}} = 3\sqrt{3}$ $x = 4$	M1 A1	attempt to find x -coordinate of B x -coordinate of B
	At $A = 2.5$ Either	B1	x-coordinate of A
	Area $=\frac{1}{2} \times \frac{3}{2} \times 3\sqrt{3} - \int_{2.5}^{4} (2x-5)^{\frac{3}{2}} dx$	M1	plan and attempt to find the area of the triangle. Allow unsimplified
	$= \frac{9\sqrt{3}}{4} - \left[\frac{1}{5}(2x-5)^{2.5}\right]_{2.5}^{4}$	M1	attempt at integration, must be in the form $(2x-5)^{2.5}$
		A1	correct integration
	$=\frac{9\sqrt{3}}{4} - \left(\frac{1}{5}(3)^{2.5} - 0\right)$	DM1	attempt to use limits correctly
	$=\frac{9\sqrt{3}}{20}$	A1	
	Or		
	line AB : $y = 2\sqrt{3}x - 5\sqrt{3}$	M1	equation of AB and attempt to integrate
	Area = $\int_{2.5}^{4} 2\sqrt{3}x - 5\sqrt{3} - (2x - 5)^{\frac{3}{2}} dx$	M1	attempt at integration, must contain the form $(2x-5)^{2.5}$
	$= \left[\sqrt{3}x^2 - 5\sqrt{3}x - \frac{(2x-5)^{\frac{5}{2}}}{5} \right]_{2.5}^4$	A1	correct integration
	$= \frac{9\sqrt{3}}{4} - \frac{9\sqrt{3}}{5}$	DM1	attempt to use correct limits correctly
	$=\frac{9\sqrt{3}}{20}$	A1	
11 (i)	ln y = ln A + bx	B1 M1	may be implied by later work use of either point correctly in above equation or equivalent
	$0.7 = \ln A + b 3.7 = \ln A + 2.5b$	A1	one correct equation
	leading to $b = 2$	A1	
	and $\ln A = -1.3$, so $A = 0.273$ or $e^{-1.3}$	M1,A1	M1 for dealing with ln correctly to obtain A.
(ii)	ln y = -1.3 + 2x $ ln y = 2.7$	M1	valid attempt to find <i>y</i> . Must include correct substitution and dealing with ln correctly.
	y = 14.9	A1	Concerny.

© UCLES 2017 Page 7 of 7

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/11

Paper 1

October/November 2016

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	11

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

	Question	Answer	Marks	Part Marks
1	(a) (i)	10	B1	
	(ii)	22	B1	
	(iii)	4	B 1	
	(b) (i)	$Q \subset R$	B1	
	(ii)	$P \cap Q = \emptyset$, or $\{\}$	B1	
2		a=1, b=-3, c=-1	В3	B1 for each
3		$3y^2 + 5y - 2 = 0$	B1, B1	B1 for $5y$ or $5\log_3 x$, B1 for -2
		$y = \frac{1}{3}, y = -2$	M1	for correct attempt at the solution of <i>their</i> quadratic equation
		$x=3^{\frac{1}{3}}, \ x=3^{-2}$	M1	for dealing with one base 3 logarithm
		$x = 1.44, x = \frac{1}{9}$	A1, A1	A1 for each
4	(i)	$32x^{10} - \frac{80}{3}x^7 + \frac{80}{9}x^4$	В3	B1 for each term, powers of <i>x</i> must be simplified
	(ii)	Coefficients needed:		
		$\left(3\times their - \frac{80}{3}\right) + \left(1\times their \ 32\right)$	M1	for dealing with 2 terms
		= -48	A1	Allow A1 for $-48x^7$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0606	11

Question	Answer	Marks	Part Marks
5 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2(3x+2)}$	B1	for correct derivative of log function
	When $x = -\frac{1}{3}$, $y = 0$, $\frac{dy}{dx} = \frac{3}{2}$	B1	for $y = 0$
	Equation of normal: $y = -\frac{2}{3}\left(x + \frac{1}{3}\right)$	M1 A1	M1 for attempt at a gradient of a perpendicular from differentiation and the equation of the normal
(ii)	$Q\left(0, -\frac{2}{9}\right)$ or $\left(0, 0.22\right)$ or better	B1 ft	Follow through on <i>their c</i> from part (i)
	$R\left(0,\frac{1}{2}\ln 2\right)$ or $(0,0.35)$ or better	B1	
	Area of $PQR = \frac{1}{2} \left(\frac{1}{2} \ln 2 + \frac{2}{9} \right) \times \frac{1}{3}$		
	= 0.0948	B 1	Allow 0.095
6 (a)	YX, XZ	B2	B2 for both with no extras B1 for 1 correct with or without extras B1 for both correct with extras B0 for anything else
	$ \frac{1}{18} \begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix} $	B1, B1	B1 for $\frac{1}{18}$, B1 for $\begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix}$
(ii)	$\mathbf{C} = \mathbf{A}^{-1}\mathbf{B}$		
	$= \frac{1}{18} \begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} -4 & 2 \\ 10 & 4 \end{pmatrix}$	M1	for pre-multiplication
	$= \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}$	A1, A1	A1 for any correct pair of elements, but must be from correct matrices

Page 4	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	11

Question	Answer	Marks	Part Marks
7 (i)	$(0,\sqrt{3})$ or $(0,1.73)$ or better	B1	
(ii)	$\left(\frac{\pi}{6},2\right)$ or $(0.524,2)$ or better	B1, B1	B1 for each
(iii)	$\cos\left(x-\frac{\pi}{6}\right)=0$	M1	for correct attempt to solve trigonometric equation
	$x = \frac{2\pi}{3}$ oe or 2.09 or better	A1	
(iv)	$2\sin\left(x-\frac{\pi}{6}\right) (+c)$	B1	
(v)	Area = $ \left[2\sin\left(x - \frac{\pi}{6}\right) \right]_0^{\frac{2\pi}{3}} $ $= 2 + 1$	M1	for correct use of their limits, in radians, into $k \sin\left(x - \frac{\pi}{6}\right)$.
	= 3	A1	(6)
8 (i)	$47 - 24 = 12\theta$ $\theta = \frac{23}{12}$, so $\theta = 1.917$ or better $\theta = 1.92$ to 2dp	M1 A1	for complete correct method to get θ = must have evidence of working to more than 2 dp, allow if 1.916 seen (truncated)
(ii)	$\sin\frac{\theta}{2} = \frac{CD/2}{12}$ $CD = \text{awrt } 19.6 \text{ or } 19.7$	M1	for a complete method, may use cosine rule to get CD
(iii)	Area of sector = awrt 138 Area of triangle AOB = awrt 67 or 68 Area of segment = awrt 70 or 71 $AD \times AB$ + segment area = 425 leading to AD = awrt 18.1 or 18.0	B1 M1 M1 M1	for sector area, allow unsimplified for a correct attempt at area for segment area (<i>their</i> sector area – <i>their</i> triangle area) for complete method to find <i>AD</i> Allow A1 for 18
	Alternative method: Area of sector = awrt 138 Difference in length between BC (or AD) and OM where M is the midpoint of CD = 6.88, allow awrt 6.9 Remaining area consists of two trapezia each	B1 M1	for sector area for attempt to find difference between parallel sides for area of one trapezium
	of width 9.85 and each of area 143.4 $\frac{1}{2}(2BC - 6.88) \times 9.85 = 143.4 \text{ oe}$		$\frac{1}{2}(2BC - their 6.88) \times their 9.85 oe$
	leading to $AD = \text{awrt } 18.1 \text{ or } 18.0$	M1 A1	for attempt to find either BC or AD

Page 5	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	11

Question	Answer	Marks	Part Marks
9 (i)	$p\left(\frac{3}{2}\right)$: $\frac{27a}{8} - \left(4 \times \frac{9}{4}\right) + \frac{3b}{2} + 18 (=0)$	M1	for attempt at $p\left(\frac{3}{2}\right)$
	$p'\left(\frac{3}{2}\right) = \left(3a \times \frac{9}{4}\right) - \left(8 \times \frac{3}{2}\right) + b (=0)$	M1	for differentiation and attempt at $p'\left(\frac{3}{2}\right)$
	leading to $9a + 4b + 24 = 0$ oe and $27a + 4b - 48 = 0$ oe	M1	for solution of simultaneous equations, to get either <i>a</i> or <i>b</i>
	leading to $a = 4$, $b = -15$	A1	for both
(ii)	$(x+2)(2x-3)^2$ oe	M1, A1	M1 for attempt at long division or factorisation
(iii)	$(x+2)(2x-3)^2 = x+2$		
	x+2=0, x=-2	B1	Must be using $(x+2)$ correctly using part (ii) to get $x = -2$
	$\left(2x-3\right)^2=1$	M1	for solution of the quadratic equation
	leading to $x = 1$, $x = 2$	A1	
10 (a) (i)	$20U + \frac{1}{2}\left(U + \frac{U}{2}\right)10 = 165$	M1 DM1	for realising that area under the graph is needed and attempt to find an area for equating their area to 165 and attempt to
	leading to $U = 6$	A1	solve
(ii)	Gradient of line: -0.3	M1, A1	M1 for use of the gradient, must be negative
(b) (i)	27	B1	
(ii)	$t^2 = 8 \ln 4$ $t = 3.33 \text{ or better}$	M1 A1	for a correct attempt to solve $e^{\frac{t^2}{8}} = 4$
(iii)	acceleration = $3\frac{2t}{8}e^{\frac{t^2}{8}}\left(e^{\frac{t^2}{8}}-4\right)^2$	M1, A1	M1 for a correct attempt to differentiate using the chain rule
	When $t = 1$, $a = 6.98$	M1, A1	M1 for use of $t = 1$ in their acceleration

Page 6	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	11

Question	Answer	Marks	Part Marks
11 (i)	$\ln y = \ln A + x \ln b$	B1	may be implied, if equation not seen specifically, by correct values for <i>A</i> and <i>b</i>
	Gradient: $\ln b = -\frac{0.12}{8}$, = -0.015	M1	for use of gradient to obtain ln b
	b = 0.985	A1 DM1	Allow A1 for e ^{-0.015}
	Intercept: $\ln A = 0.26$	DNH	for use of one of the given points correctly
	A = 1.30	A1	Allow A1 for $e^{0.26}$ or 1.3
	Alternative 1		
	ln y = ln A + x ln b	B 1	
	$0.2 = 4 \ln b + \ln A$	M1	for one correct equation
	$0.08 = 12 \ln b + \ln A$	DM1	for attempt to obtain either lnA or lnb from simultaneous equations
	A = 1.30 and $b = 0.985$	A1, A1	Allow A1 for $b = e^{-0.015}$ and $a = e^{0.26}$ or 1.3
	Alternative 2		
	$1.22 = Ab^4$	B1	
	$1.08 = Ab^{12}$	B 1	
		M1	for correct attempt to obtain b or A, must already have B2
	A = 1.30 and $b = 0.985$	A1, A1	Allow A1 for $b = e^{-0.015}$ and $a = e^{0.26}$ or 1.3
(ii)	When $x = 6$, $\ln y = 0.17$	M1	for $\ln y = their \ln A + 6 their \ln b$ or
			$y = their \ A \times (their \ b)^6$
	y = 1.19	A1	allow awrt 1.18 to 1.20
(iii)	When $y = 1.1$, $\ln y = 0.095$	M1	for $\ln 1.1 = their \ln A + x$ their $\ln b$ or
	4.		$1.1 = theirA \times (theirb)^x$
	x=11	A1	allow 10.5 to 11.5

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12

Paper 1

October/November 2016

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	12

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

(Question	Answer	Marks	Part Marks
1	(a) (i)	10	B1	
	(ii)	22	B1	
	(iii)	4	B1	
	(b) (i)	$Q \subset R$	B1	
	(ii)	$P \cap Q = \emptyset$, or $\{\}$	B1	
2		a=1, b=-3, c=-1	В3	B1 for each
3		$3y^2 + 5y - 2 = 0$	B1, B1	B1 for $5y$ or $5\log_3 x$, B1 for -2
		$y = \frac{1}{3}, y = -2$	M1	for correct attempt at the solution of <i>their</i> quadratic equation
		$x=3^{\frac{1}{3}}, x=3^{-2}$	M1	for dealing with one base 3 logarithm correctly
		$x = 1.44, x = \frac{1}{9}$	A1, A1	A1 for each
4	(i)	$32x^{10} - \frac{80}{3}x^7 + \frac{80}{9}x^4$	В3	B1 for each term, powers of <i>x</i> must be simplified
	(ii)	Coefficients needed:		
		$\left(3 \times their - \frac{80}{3}\right) + \left(1 \times their \ 32\right)$	M1	for dealing with 2 terms
		=-48	A 1	Allow A1 for $-48x^7$

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	12

Question	Answer	Marks	Part Marks
5 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2(3x+2)}$	B1	for correct derivative of log function
	When $x = -\frac{1}{3}$, $y = 0$, $\frac{dy}{dx} = \frac{3}{2}$	B1	for $y = 0$
	Equation of normal: $y = -\frac{2}{3}\left(x + \frac{1}{3}\right)$	M1 A1	M1 for attempt at a gradient of a perpendicular from differentiation and the equation of the normal
(ii)	$Q\left(0, -\frac{2}{9}\right)$ or $\left(0, 0.22\right)$ or better	B1 ft	Follow through on <i>their c</i> from part (i)
	$R\left(0,\frac{1}{2}\ln 2\right)$ or $(0,0.35)$ or better	B1	
	Area of $PQR = \frac{1}{2} \left(\frac{1}{2} \ln 2 + \frac{2}{9} \right) \times \frac{1}{3}$		
	= 0.0948	B 1	Allow 0.095
6 (a)	YX, XZ	B2	B2 for both with no extras B1 for 1 correct with or without extras B1 for both correct with extras B0 for anything else
	$ \frac{1}{18} \begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix} $	B1, B1	B1 for $\frac{1}{18}$, B1 for $\begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix}$
(ii)	$\mathbf{C} = \mathbf{A}^{-1}\mathbf{B}$		
	$= \frac{1}{18} \begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} -4 & 2 \\ 10 & 4 \end{pmatrix}$	M1	for pre-multiplication
	$= \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}$	A1, A1	A1 for any correct pair of elements, but must be from correct matrices

Page 4	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	12

Question	Answer	Marks	Part Marks
7 (i)	$(0,\sqrt{3})$ or $(0,1.73)$ or better	B1	
(ii)	$\left(\frac{\pi}{6},2\right)$ or $(0.524,2)$ or better	B1, B1	B1 for each
(iii)	$\cos\left(x-\frac{\pi}{6}\right)=0$	M1	for correct attempt to solve trigonometric equation
	$x = \frac{2\pi}{3}$ oe or 2.09 or better	A1	
(iv)	$2\sin\left(x-\frac{\pi}{6}\right) (+c)$	B1	
(v)	Area = $ \left[2\sin\left(x - \frac{\pi}{6}\right) \right]_0^{\frac{2\pi}{3}} $ $= 2 + 1$ $= 3$	M1	for correct use of their limits, in radians, into $k \sin\left(x - \frac{\pi}{6}\right)$.
8 (i)	-3 $47 - 24 = 12\theta$	AI	
0 (1)	$\theta = \frac{23}{12}$, so $\theta = 1.917$ or better	M1	for complete correct method to get $\theta =$
	$\theta = 1.92$ to 2dp	A1	must have evidence of working to more than 2 dp, allow if 1.916 seen (truncated)
(ii)	$\sin\frac{\theta}{2} = \frac{CD/2}{12}$	M1	for a complete method, may use cosine rule to get <i>CD</i>
	CD = awrt 19.6 or 19.7	A1	
(iii)	Area of sector = awrt 138 Area of triangle AOB = awrt 67 or 68 Area of segment = awrt 70 or 71 $AD \times AB$ + segment area = 425 leading to AD = awrt 18.1 or 18.0	B1 M1 M1 M1	for sector area, allow unsimplified for a correct attempt at area for segment area (<i>their</i> sector area – <i>their</i> triangle area) for complete method to find <i>AD</i> Allow A1 for 18
	Alternative method: Area of sector = awrt 138 Difference in length between BC (or AD) and OM where M is the midpoint of CD = 6.88, allow awrt 6.9 Remaining area consists of two trapezia each	B1 M1	for sector area for attempt to find difference between parallel sides for area of one trapezium
	of width 9.85 and each of area 143.4 $\frac{1}{2}(2BC - 6.88) \times 9.85 = 143.4$ oe		$\frac{1}{2}(2BC - their 6.88) \times their 9.85 \text{ oe}$
	leading to $AD = \text{awrt } 18.1 \text{ or } 18.0$	M1 A1	for attempt to find either BC or AD

Page 5	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	12

Question	Answer	Marks	Part Marks
9 (i)	$p\left(\frac{3}{2}\right): \frac{27a}{8} - \left(4 \times \frac{9}{4}\right) + \frac{3b}{2} + 18 \ (=0)$	M1	for attempt at $p\left(\frac{3}{2}\right)$
	$p'\left(\frac{3}{2}\right) = \left(3a \times \frac{9}{4}\right) - \left(8 \times \frac{3}{2}\right) + b (=0)$	M1	for differentiation and attempt at $p'\left(\frac{3}{2}\right)$
	leading to $9a + 4b + 24 = 0$ oe and $27a + 4b - 48 = 0$ oe	M1	for solution of simultaneous equations, to get either <i>a</i> or <i>b</i>
	leading to $a = 4$, $b = -15$	A1	for both
(ii)	$(x+2)(2x-3)^2$ oe	M1, A1	M1 for attempt at long division or factorisation
(iii)	$(x+2)(2x-3)^2 = x+2$ x+2=0, x=-2	B1	Must be using $(x+2)$ correctly using part (ii) to get $x=-2$
	$(2x-3)^2 = 1$ leading to $x = 1$, $x = 2$	M1 A1	for solution of the quadratic equation
10 (a) (i)	$20U + \frac{1}{2}\left(U + \frac{U}{2}\right)10 = 165$	M1 DM1	for realising that area under the graph is needed and attempt to find an area for equating their area to 165 and attempt to solve
	leading to $U = 6$	A1	Solve
(ii)	Gradient of line: -0.3	M1, A1	M1 for use of the gradient, must be negative
(b) (i)	27	B1	· · · ·
(ii)	$t^2 = 8 \ln 4$ $t = 3.33 \text{ or better}$	M1 A1	for a correct attempt to solve $e^{\frac{t^2}{8}} = 4$
(iii)	acceleration = $3\frac{2t}{8}e^{\frac{t^2}{8}}\left(e^{\frac{t^2}{8}}-4\right)^2$	M1, A1	M1 for a correct attempt to differentiate using the chain rule
	When $t = 1$, $a = 6.98$	M1, A1	M1 for use of $t = 1$ in their acceleration

Page 6	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	12

Question	Answer	Marks	Part Marks
11 (i)	$\ln y = \ln A + x \ln b$	B1	may be implied, if equation not seen specifically, by correct values for <i>A</i> and <i>b</i>
	Gradient: $\ln b = -\frac{0.12}{8}$, = -0.015	M1	for use of gradient to obtain ln b
	b = 0.985	A1 DM1	Allow A1 for e ^{-0.015}
	Intercept: $\ln A = 0.26$	DMII	for use of one of the given points correctly
	A = 1.30	A1	Allow A1 for $e^{0.26}$ or 1.3
	Alternative 1		
	ln y = ln A + x ln b	B 1	
	$0.2 = 4 \ln b + \ln A$	M1	for one correct equation
	$0.08 = 12 \ln b + \ln A$	DM1	for attempt to obtain either lnA or lnb from simultaneous equations
	A = 1.30 and $b = 0.985$	A1, A1	Allow A1 for $b = e^{-0.015}$ and $a = e^{0.26}$ or 1.3
	Alternative 2		
	$1.22 = Ab^4$	B1	
	$1.08 = Ab^{12}$	B 1	
		M1	for correct attempt to obtain b or A, must already have B2
	A = 1.30 and $b = 0.985$	A1, A1	Allow A1 for $b = e^{-0.015}$ and $a = e^{0.26}$ or 1.3
(ii)	When $x = 6$, $\ln y = 0.17$	M1	for $\ln y = their \ln A + 6 their \ln b$ or
			$y = their \ A \times (their \ b)^6$
	y = 1.19	A1	allow awrt 1.18 to 1.20
(iii)	When $y = 1.1$, $\ln y = 0.095$	M1	for $\ln 1.1 = their \ln A + x$ their $\ln b$ or
	4.		$1.1 = theirA \times (theirb)^x$
	x=11	A1	allow 10.5 to 11.5

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/13

Paper 1

October/November 2016

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	13

awrt answers which round to

cao correct answer only

dep dependent

FT follow through after error

isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case

soi seen or implied

Question	Answer	Marks	Part Marks
1		B1	for symmetrical shape as in the diagram with curved maxima of equal height and cusps on the <i>x</i> -axis
		B1	for a complete 'curve' with all low points on the x -axis and all high points on $y = 2$
		B1	for a complete 'curve' meeting the x-axis at $x = 30^{\circ}$, 90° , 150° only.
2	$=\frac{4m^2-9}{2m+3}$	M1	for multiplying each term by \sqrt{m} , using a common denominator of \sqrt{m} or for multiplying
	3		numerator and denominator by $2\sqrt{m} - \frac{3}{\sqrt{m}}$
	$= \frac{(2m-3)(2m+3)}{2m+3}$	A1	for a correct expression that will cancel $\frac{(2m-3)(2m+3)}{2m+3}, \frac{(4m^2-9)(2m-3)}{(4m^2-9)}$
			$\frac{(2m-3)(2m+3)(2m-3)}{(2m+3)(2m-3)}$, or equivalents
	=2m-3	A1	for $2m-3$ or $A=2$, $B=-3$
	Alternative Method $(4m\sqrt{m} - \frac{9}{\sqrt{m}})$ $= (2\sqrt{m} + \frac{3}{\sqrt{m}})(Am + B)$	M1	for correct expansion
	Comparing coefficients 2A = 4, $3A + 2B = 0$, $3B = -9$	A1 A1	for correct comparisons to obtain A and B for $2m-3$ or $A=2$, $B=-3$

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	13

Question Answer		Answer	Marks	Part Marks
3	(i)	$3x^{2} - 2xp + (p+3) = 0$ $(-2p)^{2} - 4 \times 3 \times (p+3) \ge 0 \text{ oe}$	M1	for obtaining a 3-term quadratic in the form $ax^2 + bx + c = 0$
			DM1	for correct substitution of <i>their a</i> , <i>b</i> and <i>c</i> into ' $b^2 - 4ac$ ' and use of discriminant.
		$\begin{vmatrix} p^2 \ge 3(p+3) & \text{or } 4p^2 - 12p - 36 \ge 0 \\ p^2 - 3p - 9 \ge 0 \end{vmatrix}$	A1	for full correct working, ≥ the only sign used, ≥ used before division by 4 and ≥ used in answer line and penultimate line.
	(ii)	Correct method of solution $p^2 - 3p - 9 = 0$ leading to critical values	M1	for correct substitution in the quadratic formula or for correct attempt to complete the square. (allow 1 sign error in either method)
		$p = \frac{3 \pm 3\sqrt{5}}{2}$	A1	for both correct critical values
		$p \leqslant \frac{3 - 3\sqrt{5}}{2}, \ p \geqslant \frac{3 + 3\sqrt{5}}{2}$	A1	for correct range
4	(i)	$64 - 48x + 15x^2$	В3	for each correct term
	(ii)	$(4 \times '64') + (2 \times '-48') + (3 \times '15')$	M1	for correctly obtaining three products using <i>their</i> coefficients in (i)
			A1	for two correct out of three products (unsimplified) cao
		= 205 cao	A1	for 205 selected as final answer
5	(i)	$\log_9 xy = \log_9 x + \log_9 y$	M1	for use of $\log AB = \log A + \log B$
		$= \frac{\log_3 x}{\log_3 9} + \frac{\log_3 y}{\log_3 9}$	M1	for correct method for change of base. Division by log ₃ 9 should be seen and not implied.
		$= \frac{\log_3 x}{2} + \frac{\log_3 y}{2} = \frac{5}{2}$		
		$\log_3 x + \log_3 y = 5$	A1	for dealing with 2 correctly and 'finishing off'
		Alternative method		
		$\log_9 xy = \frac{5}{2}$	M1	for obtaining xy as a power of 3
		$xy = 9^{\frac{5}{2}} = 3^5$	M1	for correct use of log ₃
		$\log_3 xy = 5$ $\log_3 x + \log_3 y = 5$	A1	for using law for logs and arriving at correct answer

Page 4	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	13

Question	Answer	Marks	Part Marks
(ii)	$\log_3 x \left(5 - \log_3 x\right) = -6$		
	$-(\log_3 x)^2 + 5\log_3 x = -6$	M1	for substitution, correct expansion of brackets and manipulation to get a 3 term quadratic
	$(\log_3 x)^2 - 5\log_3 x - 6 = 0$	A1	for a correct quadratic equation in the form $ax^2 + bx + c = 0$
	leading to $\log_3 x = 6$, $\log_3 x = -1$	A1	for both solutions
		DM1	for method of solution of $\log_3 x = k$ or $\log_3 y = k$
	$x = 729, x = \frac{1}{3}$		
	$y = \frac{1}{3}, \ y = 729$	A1	for all x and y correct
6 (i)	$\frac{6x}{3x^2 - 11}$	M1 A1	M1 for $\frac{mx}{3x^2-11}$
(ii)	$p = \frac{1}{6}$	B1	FT for $p = \frac{1}{m}$
(iii)	$\frac{1}{6}\ln(3a^2 - 11) - \frac{1}{6}\ln 1 = \ln 2$	M1	for correct use of limits in $p \ln(3x^2 - 11)$ May be implied by following equation
	$\ln\left(3a^2-11\right) = \ln 2^6$	DM1	for dealing with logs correctly
	$3a^2 - 11 = 64$	DM1	for solution of $3a^2 - 11 = k$
	a = 5 only	A1	for 5 obtained from an exact method

Page 5	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	13

Question	Answer	Marks	Part Marks
7 (i)	$\ln y = \ln A + \frac{b}{x}$ Gradient: $b = -0.8$ Intercept or use of equation: $\ln A = 4.7$ $A = 110$	B1 B1 B1 B1	for equation, may be implied, must be using ln unless recovered for $b = -0.8$ oe for ln A = 4.7 oe, allow 4.65 to 4.75 for A = 110, allow 105 to 116 Allow A in terms of e
	Alternative Method $3.5 = \ln A + 1.5b$ and $1.5 = \ln A + 4b$ leading to $b = -0.8$ $\ln A = 4.7$ and $A = 110$	B1 B1 B1 B1	for one equation for $b = -0.8$ for $\ln A = 4.7$ for $A = 110$ or $e^{4.7}$
	Alternative Method $e^{1.5} = Ae^{4b}$ $e^{3.5} = Ae^{1.5b}$ leading to $b = -0.8$ and $A = 110$	B1 B1 B1 B1	for $e^{1.5} = Ae^{4b}$ or $4.48 = Ae^{4b}$ for $e^{3.5} = Ae^{1.5b}$ or $33.1 = Ae^{1.5b}$ for $b = -0.8$ for $A = 110$ or $e^{4.7}$
(ii)	When $x = 0.32$, $\frac{1}{x} = 3.125$, $\ln y = 2.2$ $y = 9$ (allow 8.5 to 9.5) or $e^{2.2}$	M1	for a complete method to obtain y, using either the graph, using <i>their</i> values in the equation for lny or using <i>their</i> values in the equation for y.
(iii)	When $y = 20$, $\ln y = 3$, $\frac{1}{x} = 2.125$ so $x = 0.47$ (allow 0.45 to 0.49)	M1	for a complete method to obtain x , using either the graph, using <i>their</i> values in the equation for lny or using <i>their</i> values in the equation for y .

Page 6	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	13

Question	Answer	Marks	Part Marks
8 (a) (i)	$\frac{\csc\theta}{\csc\theta - \sin\theta} = \frac{\frac{1}{\sin\theta}}{\frac{1}{\sin\theta} - \sin\theta}$	M1	for using $\csc\theta = \frac{1}{\sin\theta}$ and either attempt to multiply top and bottom by $\sin\theta$ or an attempt to combine terms in denominator.
	$= \frac{1}{1 - \sin^2 \theta} \text{ or } = \frac{\frac{1}{\sin \theta}}{\frac{(1 - \sin^2 \theta)}{\sin \theta}}$	DM1	for correct use of $1-\sin^2\theta = \cos^2\theta$
	$= \frac{1}{\cos^2 \theta}$ $= \sec^2 \theta$ Alternative Method using cosec	A1	for completing the proof
	$\frac{\csc\theta}{\csc\theta - \sin\theta} = \frac{\csc\theta}{\csc\theta - \frac{1}{\csc\theta}}$	PR	
	$= \frac{\csc^2 \theta}{\csc^2 \theta - 1}$ $1 + \cot^2 \theta$	M1	for using $\sin \theta = \frac{1}{\csc \theta}$ and an attempt to combine terms in denominator.
	$=\frac{1+\cot^2\theta}{\cot^2\theta}$	DM1	for use of $1 + \cot^2 \theta = \csc^2 \theta$
	$= \tan^2 \theta + 1 = \sec^2 \theta$	A1	for completing the proof
(ii)	$\cos^2 \theta = \frac{1}{4}, \cos \theta = \pm \frac{1}{2}$ or $\tan^2 \theta = 3$, $\tan \theta = \pm \sqrt{3}$ or $\sin^2 \theta = \frac{3}{4}$, $\sin \theta = \pm \frac{\sqrt{3}}{2}$	M1	for using (i) to obtain a value for $\cos^2 \theta$, $\tan^2 \theta$ or $\sin^2 \theta$ and then taking the square root.
	$\theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$	A1 A1	for two correct values for two further correct values and no extras in range.
(b)	$\tan\left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$ $x = \frac{\pi}{6} - \frac{\pi}{4}, \ \frac{7\pi}{6} - \frac{\pi}{4}, \ \frac{13\pi}{6} - \frac{\pi}{4}$	M1	for correct order of operations, can be implied by $x = -\frac{\pi}{12}$
	$x = \left(-\frac{\pi}{12}\right), \frac{11\pi}{12}, \frac{23\pi}{12}$	A1,A1	A1 for $x = \frac{11\pi}{12}$ A1 for $x = \frac{23\pi}{12}$
			If there are extra solutions in range in addition to the two correct ones then A1A0

Page 7	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	13

Qı	uestion	Answer	Marks	Part Marks
9	(a) (i)	$^{18}C_5 = 8568 \mathrm{mmm}$	B1	
	(ii)	Either ${}^{10}C_4 \times {}^8C_1 = 1680$ ${}^{10}C_3 \times {}^8C_2 = 3360$ ${}^{10}C_2 \times {}^8C_3 = 2520$	B1 B2,1,0	for a correct plan B2 4 correct numbers with no extras B1 3 correct numbers (out of 3 or 4)
		$ \begin{array}{l} ^{10}C_1 \times {}^{8}C_4 = 700 \\ \text{Total} = 8260 \end{array} $	B1	for correct total
		Or their ${}^{18}C_5 - ({}^{10}C_5 + {}^{8}C_5)$ 8568 - (252 + 56) Total =8260	B1 B1 B1 B1	for correct plan for 252 subtracted for 56 subtracted for correct total
	(b) (i)	$^{10}P_6 = 151200$	B1	
	(ii)	$4 \times {}^{8}P_{4} \times 3$ $= 20160$	M1 A1	for correct unsimplified for correct numerical answer
	(iii)	Answer to (i) - ${}^{7}P_{6}$ =146160	M1 A1 A1	for correct plan for correct unsimplified for correct numerical answer
		Alternative: 1 symbol: 45360 2 symbols: 75600 3 symbols: 25200 Total: 146160	B2,1,0 B1	B2 for all 3 correct B1 for 2 correct (out of 2 or 3) for correct sum

Page 8	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	13

Question	Answer	Marks	Part Marks
10 (i)	$f(x) = 3x^2 - 4e^{2x} (+c)$ passing through $(0,-3)$	M1 A1 A1 DM1	for one correct term for one correct term $3x^2$ or $-4e^{2x}$ for a second correct term with no extras for correct method to find c .
	$-3 = 3 \times 0 - 4e^{0} + c$ $f(x) = 3x^{2} - 4e^{2x} + 1$	A1	for correct equation
(ii)	f'(0) = -8	B1	for $m = \frac{1}{8}$
	Normal: $y + 3 = \frac{1}{8}x$	M1	for equation of normal using $m = \frac{1}{8}$
	8y + 24 = x $y = 2 - 3x$	DM1	for solving normal equation simultaneously with $y = 2 - 3x$ to get a value of x
	leads to $x = \frac{8}{5}$ oe	A1	for $x = \frac{8}{5}$, 1.6 oe
	Area = $=\frac{1}{2} \times 3 \times \frac{8}{5} = 2.4$ oe	B1	FT for a numerical answer equal to $\left \frac{1}{2} \times 3 \times \text{their } x \right $
11 (i)	a = 8t - 8 When $t = 3$, $a = 16$	B1 B1	for 8t – 8 for 16
(ii)	0.5, 1.5	B1,B1	B1 for each
(iii)	$s = \frac{4}{3}t^3 - 4t^2 + 3t$	M1 A1	for at least two terms correct all correct
	when $t = \frac{1}{2}$, $s = \frac{2}{3}$	DM1	for calculating displacement when either $t = \frac{1}{2}$
	.sati	ore	or $t = \frac{3}{2}$
	when $t = \frac{3}{2}$, $s = 0$	DM1	for calculating displacement at $t = \frac{1}{2}$ and doubling.
	total distance travelled = $\frac{4}{3}$	A1	for $\frac{4}{3}$ oe allow 1.33
	Alternative method	M1A1 DM1	As before DM1 for calculating displacement when $t = 0.5$ or for calculating distance travelled between $t = 0.5$ and $t = 1.5$
		DM1	DM1 for doubling distance travelled between $t = 0.5$ and $t = 1.5$ or for adding that distance to displacement at $t = 0.5$
		A1	A1 for $\frac{4}{3}$ oe allow 1.33

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/11

Paper 1 May/June 2016

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $@ \ \mathsf{IGCSE} \ \mathsf{is} \ \mathsf{the} \ \mathsf{registered} \ \mathsf{trademark} \ \mathsf{of} \ \mathsf{Cambridge} \ \mathsf{International} \ \mathsf{Examinations}. \\$

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2016	0606	11

answers which round to awrt cao correct answer only dependent

dep

FTfollow through after error ignore subsequent working isw

oe or equivalent

rounded or truncated rot

SC Special Case seen or implied soi

without wrong working www

C	Question	Answer	Marks	Guidance
1	(i)	-27	B1	
	(ii)	$9 - 8k = 0$ $k = \frac{9}{8}$	M1 A1	for use of discriminant with a complete method to get to $k =$
		Or $\frac{dy}{dx} = 4x - 3$ when $\frac{dy}{dx} = 0 , x = \frac{3}{4}$ so $k = \frac{9}{8}$	M1	for a complete method to get to $k =$
		$so k = \frac{9}{8}$	A1	
		Or completing the square $y = 2\left(x - \frac{3}{4}\right)^2 + k - \frac{9}{8}$	M1	for a complete method to get to $k =$
		$k = \frac{9}{8}$	A1	
2	(a)	$2^{4(3x-1)} = 2^{3(x+2)}$ or $4^{2(3x-1)} = 4^{\frac{3}{2}(x+2)}$ or $8^{\frac{4}{3}(3x-1)} = 8^{x+2}$ or $16^{3x-1} = 16^{\frac{3}{4}(x+2)}$	В1	B1 for a correct statement
		leading to $x = \frac{10}{9}$ cao	M1 A1	for equating indices
	(b)	$p = \frac{5}{3}$ $q = -2$	B1 B1	

Page 3	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2016	0606	11

Question	Answer	Marks	Guidance
3	On x-axis, $2x^2 - 7 = 1$ x = 2	M1 A1	for equating to 1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x}{2x^2 - 7}$	B1	
	When $x = 2$, $\frac{\mathrm{d}y}{\mathrm{d}x} = 8$		
	Gradient of normal = $-\frac{1}{8}$		
	Equation of normal $y = -\frac{1}{8}(x-2)$	M1	for attempt at perpendicular through <i>their</i> $(2, 0)$, must be using $y = 0$
	Required form $x + 8y - 2 = 0$	A1	must be equated to zero with integer coefficients
4 (a)	$\mathbf{A}^2 = \begin{pmatrix} 7 & -2 \\ -3 & 6 \end{pmatrix}$	B1	
	$\mathbf{A}^2 = \begin{pmatrix} 7 & -2 \\ -3 & 6 \end{pmatrix}$ $\mathbf{A}^2 - 2\mathbf{B} = \begin{pmatrix} 1 & -2 \\ -5 & 2 \end{pmatrix}$	M1 A1	for their $A^2 - 2B$
(b)	$ \begin{pmatrix} 4 & 1 \\ 10 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} $ $ so\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 3 & -1 \\ -10 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} $		
	$ \left \operatorname{so} \begin{pmatrix} x \\ v \end{pmatrix} \right = \frac{1}{2} \begin{pmatrix} 3 & -1 \\ -10 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} $	M1	for pre-multiplication by <i>their</i> inverse matrix
	leading to $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$	DM1	DM1 for attempt at matrix multiplication
	$ \begin{array}{c} x = 1 \\ y = -3 \end{array} $	A1	Allow in matrix form
	ys sator	A1	
5 (i)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{e}^{4x}}{4} - x\mathrm{e}^{4x} \right) = \mathrm{e}^{4x} - \left(\left(x \times 4\mathrm{e}^{4x} \right) + \mathrm{e}^{4x} \right)$	B1	for $\frac{d}{dx} \left(\frac{e^{4x}}{4} \right) = e^{4x}$
		M1 A1	for attempt to differentiate a product for a correct product
	$= -4xe^{4x}$	A1	for correct final answer
(ii)	$\int_0^{\ln 2} x e^{4x} dx = -\frac{1}{4} \left[\frac{e^{4x}}{4} - x e^{4x} \right]_0^{\ln 2}$	B1FT	FT for use of their $\frac{1}{p} \times \left(\frac{e^{4x}}{4} - xe^{4x}\right)$, must be numerical p , but $\neq 0$
	$= -\frac{1}{4} \left(\left(\frac{16}{4} - 16 \ln 2 \right) - \frac{1}{4} \right)$	B1 M1	for $e^{4\ln 2} = 16$ for correct use of limits, must be an integral of the correct form
	$=4\ln 2 - \frac{15}{16}$	A1	

Page 4	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2016	0606	11

Q	uestion	Answer	Marks	Guidance
6	(i)	$2-\sqrt{5} < f(x) \le 2$	B2	B1 for ≤ 2 B1 for $2-\sqrt{5} \leq$ or awrt -0.24 Must be using f, f(x) or y, $2-\sqrt{5} \leq$, if not then B1 max
	(ii)	$f^{-1}(x) = (2-x)^{2} - 5$ Domain $2 - \sqrt{5} < x \le 2$ Range y or $-5 \le f^{-1}(x) < 0$	M1 A1 B1 B1	for a correct method to find the inverse Must be using the correct variables for the B marks
	(iii)	$fg(x) = f\left(\frac{4}{x}\right)$ $= 2 - \sqrt{\frac{4}{x} + 5}$ leading to $x = -4$	M1 DM1	for correct order of functions for solution of equation
7	(i)	Finding an angle of 68.2° or 21.8° $\frac{4.5}{\sin 68.2} = \frac{2.4}{\sin \alpha}$ leading to $\alpha = 29.7^{\circ}$ (allow ± 0.1) Direction is 82.1° to the bank, upstream(allow $\pm 0.1^{\circ}$)	B1 B1 B1 B1	for the sine rule
	(ii)	$\frac{4.5}{\sin 68.2} = \frac{2.4}{\sin 29.7} = \frac{v_r}{\sin 82.1}$ leading to $v_r = 4.8$ time taken = $\frac{80.78}{4.8} = 16.8$	B1 B1 M1	for the sine rule for resultant velocity for attempt to find AB and hence the time taken
		Alternative method: Finding an angle of 68.2° or 21.8° $4.5^2 = 2.4^2 + v_r^2 - (2 \times 2.4 \times v_r \cos 68.2)$ leading to $v_r = 4.8$ Use of sine rule to obtain angle and direction to obtain direction is 82.1° to the bank, upstream	B1 B1 B1 B1 B1 M1	for correct use of the cosine rule for resultant velocity for use of the sine rule for $\alpha = 29.7^{\circ}$ for 82.1° for attempt to find AB and hence the time taken
		Use of time taken = $\frac{80.78}{4.8} = 16.8$	A1	

Page 5	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2016	0606	11

C	uestion	Answer	Marks	Guidance
8	(i)	$y-6 = -\frac{4}{12}(x+8)$ $(3y+x=10)$ $y-7 = 3(x+1)$ $(y=3x+10)$	M1 A1	for a correct method allow unsimplified
	(ii)	y-7 = 3(x+1) (y = 3x + 10)	DM1	for attempt at a perpendicular line using $(-1, 7)$ allow unsimplified
	(iii)	point of intersection $(-2, 4)$ which is the midpoint of AB	M1 M1 A1	for attempt to find the point of intersection using simultaneous equations for attempt to find midpoint for all correct
		Alternative method: Midpoint (-2, 4) Verification that this point lies on <i>CP</i> .	M1 M1 A1	for attempt to find midpoint for full verification for all correct
	(iv)	$CP = \sqrt{10} \text{ or } 3.16$	B1	
	(v)	$Area = \frac{1}{2} \times \sqrt{10} \times 4\sqrt{10}$ $= 20$	M1	for correct method using CP
		- 20	A1	for 19.9 – 20.1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016		11

Question	Answer	Marks	Guidance
9 (i)	$2\cos x \cot x = \cot x + 2\cos x$ $2\cos x \frac{\cos x}{\sin x} + 1 = \frac{\cos x}{\sin x} + 2\cos x$	M1	for use of $\cot x = \frac{\cos x}{\sin x}$ for both terms
	$2\cos^2 x + \sin x = \cos x + 2\cos x \sin x$ $2\cos^2 x - 2\cos x \sin x = \cos x - \sin x$	DM1	for multiplication throughout by $\sin x$
	$2\cos x(\cos x - \sin x) = \cos x - \sin x$	DM1	for attempt to factorise
	$(2\cos x - 1)(\cos x - \sin x) = 0$	A1	for completely correct solution www
	Alternative method: $a\cos^2 x - a\cos x \sin x - b\cos x$	M1	for expansion of RHS
	$+b\sin x = 0$ $a\cos x \cot x - a\cos x - b\cot x + b = 0$	DM1 DM1	for division by sin x for comparing like terms to obtain both a
	a = 2, b = 1	A1	and b for both correct www
(ii)	$(2\cos x - 1)(\cos x - \sin x) = 0$		
	$\cos x = \frac{1}{2}, \tan x = 1$	M1	for either
	$x = \frac{\pi}{3}, x = \frac{\pi}{4}$	A1,A1	A1 for each, penalise extra solutions within the range by withholding the last A mark
	Alternative method: $(2\cos x - 1)(\cot x - 1) = 0$		
	Leading to $\cos x = \frac{1}{2}$, $\tan x = 1$	M1	for attempt to factorise the original equation
	$x = \frac{\pi}{3} , x = \frac{\pi}{4}$	A1,A1	and attempt to solve A1 for each, penalise extra solutions within the range by withholding the last A mark
10 (i)	f(-2) = -32 - 2k + p = 0	M1	for attempt at $f(-2)$
	$f'\left(\frac{1}{2}\right) = \frac{12}{4} + k = 0$	M1	for attempt at $f'\left(\frac{1}{2}\right)$
	leading to $k = -3$ and $p = 26$	A1,A1	A1 for each
(ii)		B1FT	ETT Count P
	$(x+2)(4x^2-8x+13)$	B1	FT for their $\frac{p}{2}$ all correct
(iii)	Showing that $4x^2 - 8x + 13 = 0$ has no real roots	M1,	M1 for a valid attempt at solution of equation leading to no solution or
	so $x = -2$ only www	A1	consideration of the discriminant

Page 7	pe 7 Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016		11

Question	Answer	Marks	Guidance
11 (i)	$AB = 2r\sin\theta$ or $\sqrt{r^2 + r^2 - 2r^2\cos 2\theta}$	B1	
	or $\frac{r\sin 2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)}$		
	or $\frac{r\sin 2\theta}{\cos \theta}$		
(ii)	$2r\sin\theta + 2r\theta = 20$	M1	for use of (i) + arc length = 20, oe
	$r = \frac{10}{\theta + \sin \theta}$	A1	must be convinced
(iii)	$\frac{\mathrm{d}r}{\mathrm{d}\theta} = -\frac{10(1+\cos\theta)}{\left(\theta+\sin\theta\right)^2}$	M1 A2,1,0	for a correct attempt to differentiate -1 each error
	When $\theta = \frac{\pi}{6}$, $\frac{dr}{d\theta} = -17.8$	A1	allow awrt -17.8
(iv)	$\frac{\mathrm{d}r}{\mathrm{d}t} = 15$	B1	may be implied
	$\frac{\mathrm{d}t}{\mathrm{d}\theta} = \frac{\mathrm{d}r}{\mathrm{d}t} \div \frac{\mathrm{d}r}{\mathrm{d}\theta}$	M1	for use of $\frac{15}{their (iii)}$
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -0.842$	A1	allow -0.84 or -0.843

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12

Paper 1 May/June 2016

MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0606	12

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

	Question	Answer	Marks	Guidance
1	(a)	$Y \subset X$ or $Y \subseteq X$ only $Y \cap Z = \emptyset$ or $\{\}$ only	B1 B1	
	(b)	(i) (ii)	B1 B1	
2	(i)	$32 - \frac{20}{x} + \frac{5}{x^2}$	В3	B1 for each correct term – must be integers
	(ii)	$(3\times32) + \left(-\frac{20}{x}\times4x\right) = 16$ Accept $16x^{\circ}$	M1	for $(3 \times their 32) + \left(\frac{their(-20)}{x} \times 4x\right)$
3	(i)	$\mathbf{b} - \mathbf{c} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$ $4 + y^2 = 36 + 4$ $y = \pm 6$	B1 M1 A1	may be implied by further correct working for one correct attempt at using the modulus
	(ii)	$\mu + 4 = 2\lambda \text{or} -4\mu + 24 = 7\lambda$ $\mu - 4 = -\lambda \text{or} 8\mu - 8 = \lambda$ leading to $\mu = \frac{4}{3}$, $\lambda = \frac{8}{3}$ oe allow 1.33 and 2.67 or better	B1 B1 DB1	for one correct equation in μ and λ for a second correct equation in μ and λ for both, must have both previous B marks

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0606	12

Question	Answer	Marks	Guidance
4	$(4+\sqrt{5})x^2+(2-\sqrt{5})x-1=0$		You must be convinced that a calculator is not being used.
	$x = \frac{-(2-\sqrt{5}) \pm \sqrt{(2-\sqrt{5})^2 - 4(4+\sqrt{5})(-1)}}{2(4+\sqrt{5})}$	M1 A1	for use of quadratic formula (allow one sign error), allow $b^2 = 9 - 4\sqrt{5}$ all correct
	$x = \frac{-(2-\sqrt{5}) \pm \sqrt{9-4\sqrt{5}+16+4\sqrt{5}}}{2(4+\sqrt{5})}$	DM1	for attempt to simplify the discriminant (minimum of 4 terms must be seen in discriminant, 2 terms involving $\sqrt{5}$ and 2 constant terms)
	$= \frac{-\left(2 - \sqrt{5}\right) + 5}{2\left(4 + \sqrt{5}\right)}$ $= \frac{3 + \sqrt{5}}{2\left(4 + \sqrt{5}\right)}$	A1	for $\frac{3+\sqrt{5}}{2(4+\sqrt{5})}$ or $\frac{3+\sqrt{5}}{8+2\sqrt{5}}$, ignore negative
	$= \frac{(3+\sqrt{5})(4-\sqrt{5})}{2(4+\sqrt{5})(4-\sqrt{5})}$	M1	solution if included for attempt to rationalise an expression of the $a + b\sqrt{5}$
	$=\frac{7+\sqrt{5}}{22}$	A1	form $\frac{a\pm b\sqrt{5}}{c\pm d\sqrt{5}}$ as part of their solution of the quadratic Must obtain an integer denominator Final A1 can only be awarded if all previous marks have been obtained
5 (i)	$(1 - \cos \theta)(1 + \sec \theta)$ $= 1 - \cos \theta + \frac{1}{\cos \theta} - \frac{\cos \theta}{\cos \theta}$ $= \sec \theta - \cos \theta$	M1	M1 for expansion and use of $\sec \theta = \frac{1}{\cos \theta}$ consistently, allow one sign error
	$= \frac{1}{\cos \theta} - \cos \theta$ $= \frac{1 - \cos^2 \theta}{\cos \theta}$	DM1	for attempt at a single fraction, dependent on first M1
	$=\frac{\sin^2\theta}{\cos\theta}$	A1	
	$= \sin \theta \tan \theta$ www	A1	

Page 4	e 4 Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0606	12

Question	Answer	Marks	Guidance
	Alternative method: $(1 - \cos \theta) \left(\frac{\cos \theta + 1}{\cos \theta} \right)$ $= \frac{1 - \cos^2 \theta}{\cos \theta}$	M1 DM1	for attempt at a single fraction for second factor and use of $\sec \theta = \frac{1}{\cos \theta}$ for expansion
	$= \frac{\sin^2 \theta}{\cos \theta}$ $= \sin \theta \tan \theta \text{www}$	A1	
(ii)	$\sin \theta \tan \theta = \sin \theta$ $\sin \theta (\tan \theta - 1) = 0$		
	$\tan \theta = 1$, $\theta = \frac{\pi}{4}$, allow 0.785 or better	B1	for $\theta = \frac{\pi}{4}$ from $\tan \theta = 1$
	$\sin \theta = 0$, $\theta = 0$, π or 3.14 or better	B1 B1	for $\theta = 0$ from $\sin \theta = 0$ for $\theta = \pi$ from $\sin \theta = 0$
6	$\frac{d}{dx} \left(e^{3x} \left(4x + 1 \right)^{\frac{1}{2}} \right)$ $= e^{3x} \frac{1}{2} \times 4 \left(4x + 1 \right)^{-\frac{1}{2}} + 3e^{3x} \left(4x + 1 \right)^{\frac{1}{2}}$	B1	for $re^{3x}(4x+1)^{-\frac{1}{2}}$ must be part of a sum,
		B1	$r = \frac{1}{2} \text{ or } 2 \text{ or } \frac{1}{2} \times 4$ for $se^{3x} (4x+1)^{\frac{1}{2}}$ must be part of a sum, s is 1 or 3
	$= \frac{2e^{3x}}{\left(4x+1\right)^{\frac{1}{2}}} + 3e^{3x}\left(4x+1\right)^{\frac{1}{2}}$	B1	for all correct, allow unsimplified
	$=\frac{e^{3x}}{(4x+1)^{\frac{1}{2}}}(2+12x+3)$	DM1	for $\frac{e^{3x}}{(4x+1)^{\frac{1}{2}}}(a+bx)$, dependent on first 2 B
	$=\frac{e^{3x}}{(4x+1)^{\frac{1}{2}}}(12x+5)$	A1	marks, must be using a correct method, collecting terms in the numerator correctly
7 (i)	$\cos 3x = \frac{1}{2}$, $x = \frac{\pi}{9}$ or 0.349, 20°, allow 0.35	M1 A1	for correct attempt to solve the trigonometric equation
(ii)	$B\left(\frac{\pi}{3}, 3\right)$ or $(1.05, 3), (60^{\circ}, 3)$	B1B1	B1 for each, must be in correct position or in terms of $x = $ and $y = $

Page 5	ge 5 Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0606	12

Question	Answer	Marks	Guidance
(iii)	$\int_{\frac{\pi}{9}}^{\frac{\pi}{3}} 1 - 2\cos 3x dx = \left[x - \frac{2}{3} \sin 3x \right]_{\frac{\pi}{9}}^{\frac{\pi}{3}}$ $= \frac{\pi}{3} - \left(\frac{\pi}{9} - \left(\frac{2}{3} \times \frac{\sqrt{3}}{2} \right) \right)$ $= \frac{2\pi}{9} + \frac{\sqrt{3}}{3} \text{ oe or } 1.28$	M1 A1 DM1 A1	for $x \pm a \sin 3x$ attempt to integrate at least one term for correct integration for correct use of limits from (i) and (ii), must be in radians
8 (i)	$\lg y = x^{2} \lg b + \lg A$ $\lg b = \pm 0.21$ $b = 0.617 \text{ allow } 0.62, 10^{-0.21}$ $\lg A = 0.94 \text{ allow } 0.93 \text{ to } 0.95$ $A = 8.71 \text{ allow awrt } 8.5 \text{ to } 8.9$	B1 B1 B1 B1	for $\lg b = \pm 0.21$ may be implied
	Alternative method $5.37 \text{ or } 10^{0.73} = Ab$ $1.259 \text{ or } 10^{0.1} = Ab^4$ $b^3 = 10^{-0.63}$ $b = 0.617 \text{ allow } 0.62, 10^{-0.21}$ A = 8.71 allow awrt 8.5 to 8.9	B1 B1 B1 B1	for both equations, allow correct to 2 sf
(ii)	$x=1.5, x^2=2.25$ y=2.93, allow awrt 2.9 or 3.0	M1	for correct use of graph $y = theirA \times theirb^{1.5^2}$ or $\lg y = \lg theirA + \left(1.5^2 \lg theirb\right)$
(iii)	$\lg y = 0.301, \text{ or } 2 = 8.71(0.617)^{x^2}$ $x = 1.74 \text{ , allow } \sqrt{3} \text{ or awrt } 1.7, 1.8$	M1	for correct use of graph to read off x^2 $2 = theirA(theirb)^{x^2}$ or $\lg 2 = (\lg theirb)x^2 + \lg(theirA)$
9 (i)	$y = \frac{2}{3}(3x+10)^{\frac{1}{2}} (+c)$ passes through $\left(2, -\frac{4}{3}\right)$, so $c = -4$	B1 B1	for $p(3x+10)^{\frac{1}{2}}$ where p is a constant for $\frac{2}{3}(3x+10)^{\frac{1}{2}}$ oe unsimplified
	passes through $(2, -\frac{1}{3})$, so $c = -4$ $y = \frac{2}{3}(3x+10)^{\frac{1}{2}} - 4$ oe	M1 A1	for attempt to find c, must have attempt to integrate, must have the first B1

Page 6	e 6 Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0606	12

Question	Answer	Marks	Guidance
(ii)	When $x = 5$,		
	$y = -\frac{2}{3}$	B1	
	perpendicular gradient = -5	B1	
		M1	for attempt at the normal using <i>their</i> perpendicular gradient and <i>their</i> y value (but not
	Equation of normal: $y + \frac{2}{3} = -5(x-5)$	A1	$y = -\frac{4}{3}$ or $-\frac{5}{3}$).
	When $y = -\frac{5}{3}$,	DM1	for use of $y = -\frac{5}{3}$ in their normal equation to
	x = 5.2 oe	A1	get as far as $x =$
10 (i)	Area: $20 = \pi x^2 + xy$	B1	
	$y = \frac{20 - \pi x^2}{x}$	B1	
	$P = 2\pi x + 2x + 2y$ $= 2\pi x + 2x + 2\left(\frac{20}{x} - \pi x\right)$	M1	for attempt to use perimeter and obtain in terms of <i>x</i> only
	$=2x+\frac{40}{x}$	A1	all steps seen, www AG
	Alternative method: $20 = \pi x^2 + xy$ $P = 2\pi x + 2y + 2x$	B1	°.'E
	$P = 2\pi x + 2y + 2x$ $= \frac{2}{x} (\pi x^2 + xy) + 2x$	M1	for attempt to use perimeter and write in $\frac{\pi x^2 + xy}{x}$
	$= \frac{2}{x}(20) + 2x$ $= 2x + \frac{40}{x}$	B1	for replacing $\pi x^2 + xy$ with 20
	$=2x+\frac{40}{x}$	A1	all steps seen, www AG

Page 7	7 Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0606	12

Question	Answer	Marks	Guidance
(ii)	$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{40}{x^2}$	M1	for attempt to differentiate
	When $\frac{\mathrm{d}P}{\mathrm{d}x} = 0$,	DM1	for equating to zero and attempt to solve at least as far as $x^2 =$
	$x = 2\sqrt{5}$ allow 4.47, $\sqrt{20}$	A1	
	leading to $P = 8\sqrt{5}$, allow 17.9	A1	
	$\frac{d^2 P}{dx^2} = \frac{80}{x^3}$, always positive so a minimum	A1	for this statement or use of gradient inspection either side of correct <i>x</i>
11 (a) (i)	Distance = area under graph	M1	for attempt to find the area, one correct area seen (triangle, rectangle or trapezium) as part of
	= 1275	A1	a sum.
(ii)	deceleration is 1.5 oe	B1	
(b)		B1	for a straight line between $(0,0)$ and $(10,60)$
		B1FT	FT a straight line between $(10, 60)$ and $(20, 90)$, a displacement vector $\begin{pmatrix} 10\\30 \end{pmatrix}$ from their $(10, their 60)$
(c) (i)	e^{2t} is always positive or oe	B 1	1.5
(ii)	$a = 8e^{2t}$ $e^{2t} = \frac{3}{2}$	M1	for attempt to differentiate, must be of the form pe^{2t} , equate to 12 and solve.
	$t = \frac{1}{2} \ln \frac{3}{2}$, $\ln \sqrt{\frac{3}{2}}$ or $\frac{1}{2} \ln 1.5$	A1	Allow fractions equivalent to $\frac{3}{2}$
(iii)	$s = \left[2e^{2t} + 6t\right]_{0.4}^{0.5}$	M1 A1	for attempt to integrate to get $qe^{2t} + 6t$ all correct
	$= (2e+3) - (2e^{0.8} + 2.4)$ $(= 8.436 - 6.851)$	DM1	for correct use of limits or considering distances separately, ignore attempts at c
	=1.59, allow 1.58	A1	

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/13

Paper 1 May/June 2016

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $@ \ \mathsf{IGCSE} \ \mathsf{is} \ \mathsf{the} \ \mathsf{registered} \ \mathsf{trademark} \ \mathsf{of} \ \mathsf{Cambridge} \ \mathsf{International} \ \mathsf{Examinations}. \\$

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2016	0606	13

answers which round to awrt cao correct answer only dependent

dep

FTfollow through after error ignore subsequent working isw

oe or equivalent

rounded or truncated rot

SC Special Case seen or implied soi

without wrong working www

C	Question	Answer	Marks	Guidance
1	(i)	-27	B1	
	(ii)	$9 - 8k = 0$ $k = \frac{9}{8}$	M1 A1	for use of discriminant with a complete method to get to $k =$
		Or $\frac{dy}{dx} = 4x - 3$ when $\frac{dy}{dx} = 0 , x = \frac{3}{4}$ so $k = \frac{9}{8}$	M1	for a complete method to get to $k =$
		$so k = \frac{9}{8}$	A1	
		Or completing the square $y = 2\left(x - \frac{3}{4}\right)^2 + k - \frac{9}{8}$	M1	for a complete method to get to $k =$
		$k = \frac{9}{8}$	A1	
2	(a)	$2^{4(3x-1)} = 2^{3(x+2)}$ or $4^{2(3x-1)} = 4^{\frac{3}{2}(x+2)}$ or $8^{\frac{4}{3}(3x-1)} = 8^{x+2}$ or $16^{3x-1} = 16^{\frac{3}{4}(x+2)}$	В1	B1 for a correct statement
		leading to $x = \frac{10}{9}$ cao	M1 A1	for equating indices
	(b)	$p = \frac{5}{3}$ $q = -2$	B1 B1	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	13

Question	Answer	Marks	Guidance
3	On x-axis, $2x^2 - 7 = 1$ x = 2	M1 A1	for equating to 1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x}{2x^2 - 7}$	B1	
	When $x = 2$, $\frac{dy}{dx} = 8$		
	Gradient of normal = $-\frac{1}{8}$		
	Equation of normal $y = -\frac{1}{8}(x-2)$	M1	for attempt at perpendicular through <i>their</i> $(2, 0)$, must be using $y = 0$
	Required form $x + 8y - 2 = 0$	A1	must be equated to zero with integer coefficients
4 (a)	$\mathbf{A}^2 = \begin{pmatrix} 7 & -2 \\ -3 & 6 \end{pmatrix}$	B1	
	$\mathbf{A}^2 - 2\mathbf{B} = \begin{pmatrix} 1 & -2 \\ -5 & 2 \end{pmatrix}$	M1 A1	for their $\mathbf{A}^2 - 2\mathbf{B}$
(b)	$ \begin{pmatrix} 4 & 1 \\ 10 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} $		
	$ so \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & -1 \\ -10 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} $	M1	for pre-multiplication by <i>their</i> inverse matrix
	leading to $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$	DM1	DM1 for attempt at matrix multiplication
	x = 1 $ y = -3$	A1 A1	Allow in matrix form
	Satpr	eP.	
5 (i)	$\frac{d}{dx} \left(\frac{e^{4x}}{4} - xe^{4x} \right) = e^{4x} - \left(\left(x \times 4e^{4x} \right) + e^{4x} \right)$	B1	$\int \text{for } \frac{d}{dx} \left(\frac{e^{4x}}{4} \right) = e^{4x}$
	$= -4xe^{4x}$	M1 A1 A1	for attempt to differentiate a product for a correct product for correct final answer
		711	
(ii)	$\int_0^{\ln 2} x e^{4x} dx = -\frac{1}{4} \left[\frac{e^{4x}}{4} - x e^{4x} \right]_0^{\ln 2}$	B1FT	FT for use of their $\frac{1}{p} \times \left(\frac{e^{4x}}{4} - xe^{4x} \right)$, must be numerical p , but $\neq 0$
	$= -\frac{1}{4} \left(\left(\frac{16}{4} - 16 \ln 2 \right) - \frac{1}{4} \right)$	B1 M1	for $e^{4\ln 2} = 16$ for correct use of limits, must be an integral of the correct form
	$=4\ln 2 - \frac{15}{16}$	A1	0.7 1.1.0 00.11000 10.111

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	13

C	uestion	Answer	Marks	Guidance
6	(i)	$2 - \sqrt{5} < f(x) \leqslant 2$	B2	B1 for ≤ 2 B1 for $2-\sqrt{5} \leq$ or awrt -0.24 Must be using f, f(x) or y, $2-\sqrt{5} \leq$, if not then B1 max
	(ii)	$f^{-1}(x) = (2-x)^{2} - 5$ Domain $2 - \sqrt{5} < x \le 2$ Range y or $-5 \le f^{-1}(x) < 0$	M1 A1 B1 B1	for a correct method to find the inverse Must be using the correct variables for the B marks
	(iii)	$fg(x) = f\left(\frac{4}{x}\right)$ $= 2 - \sqrt{\frac{4}{x} + 5}$ leading to $x = -4$	M1 DM1	for correct order of functions for solution of equation
7	(i)	Finding an angle of 68.2° or 21.8° $\frac{4.5}{\sin 68.2} = \frac{2.4}{\sin \alpha}$ leading to $\alpha = 29.7^{\circ}$ (allow ± 0.1) Direction is 82.1° to the bank, upstream(allow $\pm 0.1^{\circ}$)	B1 B1 B1 B1	for the sine rule
	(ii)	$\frac{4.5}{\sin 68.2} = \frac{2.4}{\sin 29.7} = \frac{v_r}{\sin 82.1}$ leading to $v_r = 4.8$ time taken = $\frac{80.78}{4.8} = 16.8$	B1 B1 M1	for the sine rule for resultant velocity for attempt to find AB and hence the time taken
		Alternative method: Finding an angle of 68.2° or 21.8° $4.5^2 = 2.4^2 + v_r^2 - (2 \times 2.4 \times v_r \cos 68.2)$ leading to $v_r = 4.8$ Use of sine rule to obtain angle and direction to obtain direction is 82.1° to the bank, upstream	B1 B1 B1 B1 B1	for correct use of the cosine rule for resultant velocity for use of the sine rule for $\alpha = 29.7^{\circ}$ for 82.1°
		Use of time taken = $\frac{80.78}{4.8} = 16.8$	M1 A1	for attempt to find AB and hence the time taken

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	13

C	uestion	Answer	Marks	Guidance
8	(i)	$y-6 = -\frac{4}{12}(x+8)$ $(3y+x=10)$ $y-7 = 3(x+1)$ $(y=3x+10)$	M1 A1	for a correct method allow unsimplified
	(ii)	y-7=3(x+1) $(y=3x+10)$	DM1	for attempt at a perpendicular line using $(-1, 7)$ allow unsimplified
	(iii)	point of intersection $(-2, 4)$ which is the midpoint of AB	M1 M1 A1	for attempt to find the point of intersection using simultaneous equations for attempt to find midpoint for all correct
		Alternative method: Midpoint (-2, 4) Verification that this point lies on <i>CP</i> .	M1 M1 A1	for attempt to find midpoint for full verification for all correct
	(iv)	$CP = \sqrt{10} \text{ or } 3.16$	B1	
	(v)	Area = $\frac{1}{2} \times \sqrt{10} \times 4\sqrt{10}$ = 20	M1	for correct method using CP
		- 20	A1	for 19.9 – 20.1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	13

Question	Answer	Marks	Guidance
9 (i)	$2\cos x \cot x = \cot x + 2\cos x$ $2\cos x \frac{\cos x}{\sin x} + 1 = \frac{\cos x}{\sin x} + 2\cos x$	M1	for use of $\cot x = \frac{\cos x}{\sin x}$ for both terms
	$2\cos^2 x + \sin x = \cos x + 2\cos x \sin x$	DM1	for multiplication throughout by $\sin x$
	$2\cos^2 x - 2\cos x \sin x = \cos x - \sin x$ $2\cos x (\cos x - \sin x) = \cos x - \sin x$	DM1	for attempt to factorise
	$(2\cos x - 1)(\cos x - \sin x) = 0$	A1	for completely correct solution www
	Alternative method: $a\cos^2 x - a\cos x \sin x - b\cos x$	M1	for expansion of RHS
	$+b\sin x = 0$ $a\cos x \cot x - a\cos x - b\cot x + b = 0$	DM1 DM1	for division by $\sin x$ for comparing like terms to obtain both a
	a = 2, b = 1	A1	and b for both correct www
(ii)	$(2\cos x - 1)(\cos x - \sin x) = 0$		
	$\cos x = \frac{1}{2} , \tan x = 1$ $\pi \qquad \pi$	M1 A1,A1	for either A1 for each, penalise extra solutions within
	$x = \frac{\pi}{3}, x = \frac{\pi}{4}$		the range by withholding the last A mark
	Alternative method: $(2\cos x - 1)(\cot x - 1) = 0$.5
	Leading to $\cos x = \frac{1}{2}$, $\tan x = 1$	M1	for attempt to factorise the original equation and attempt to solve
	$x = \frac{\pi}{3}, x = \frac{\pi}{4}$	A1,A1	A1 for each, penalise extra solutions within the range by withholding the last A mark
10 (i)	$f(-2) = -32 - 2k + p = 0$ $f'\left(\frac{1}{2}\right) = \frac{12}{4} + k = 0$	M1	for attempt at $f(-2)$
	$\left(\frac{1}{2}\right) = \frac{1}{4} + k = 0$ leading to $k = -3$ and $p = 26$	M1 A1,A1	for attempt at $f'\left(\frac{1}{2}\right)$ A1 for each
(ii)		B1FT	POTE C. A. P.
	$(x+2)(4x^2-8x+13)$	B1	FT for their $\frac{p}{2}$ all correct
(iii)	Showing that $4x^2 - 8x + 13 = 0$ has no real roots	M1, M1 for a valid attempt at solution equation leading to no solution or	
	so $x = -2$ only www	A1	consideration of the discriminant

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	13

Question	Answer	Marks	Guidance
11 (i)	$AB = 2r\sin\theta$ or $\sqrt{r^2 + r^2 - 2r^2\cos 2\theta}$	B1	
	or $\frac{r\sin 2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)}$		
	or $\frac{r\sin 2\theta}{\cos \theta}$		
(ii)	$2r\sin\theta + 2r\theta = 20$	M1	for use of (i) + arc length = 20, oe
	$r = \frac{10}{\theta + \sin \theta}$	A1	must be convinced
(iii)	$\frac{\mathrm{d}r}{\mathrm{d}\theta} = -\frac{10(1+\cos\theta)}{(\theta+\sin\theta)^2}$	M1 A2,1,0	for a correct attempt to differentiate -1 each error
	When $\theta = \frac{\pi}{6}$, $\frac{dr}{d\theta} = -17.8$	A1	allow awrt -17.8
(iv)	$\frac{\mathrm{d}r}{\mathrm{d}t} = 15$	B1	may be implied
	$\frac{d\theta}{dt} = \frac{dr}{dt} \div \frac{dr}{d\theta}$ $\frac{d\theta}{dt} = -0.842$	M1	for use of $\frac{15}{their (iii)}$
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -0.842$	A1	allow -0.84 or -0.843

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the March 2016 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE® and Cambridge International A and AS Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

Question	Answer	Marks	Guidance
1	$ax + 9 = -2x^{2} + 3x + 1$ $2x^{2} + (a-3)x + 8 = 0$ For 2 distinct roots, $(a-3)^{2} > 64$ Critical values -5 and 11 $a > 11$, $a < -5$	M1 M1 A1 A1	for attempt to equate the line and the curve and obtain a 3 term quadratic equation for use of the discriminant for critical values for correct range
2	$a = -\frac{13}{6}$, $b = 0$, $c = 1$	В3	B1 for each
3	$\log_{5} \sqrt{x} + \log_{25} x = 3$ $\frac{1}{2} \log_{5} x + \frac{\log_{5} x}{\log_{5} 25} = 3$ $\log_{5} x = 3$	B1,B1	B1 for $\frac{1}{2}\log_5 x$ B1 for $\frac{\log_5 x}{\log_5 25}$
	x = 125 cao	B1	for final answer
	Alternative scheme: $\frac{\log_{25} \sqrt{x}}{\log_{25} 5} + \log_{25} x = 3$	B1	for change of base
	$\frac{\frac{1}{2}\log_{25} x}{\log_{25} 5} + \log_{25} x = 3$ $\log_{25} x = \frac{3}{2}$	B1	for $\frac{1}{2}\log_{25} x$ (must be from correct work)
	x = 125 cao	B1	for final answer

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

Question	Answer	Marks	Guidance
4 (i)		B1 B1 B1	for a line in correct position for $(0, 2)$, $(2, 0)$ for correct shape for y = 3 + 2x , touching the <i>x</i> -axis for $(-1.5, 0)$, $(0, 3)$
(ii)	$2 - x = 3 + 2x$ leading to $x = -\frac{1}{3}$	B1	for $x = -\frac{1}{3}$
	2 - x = -3 - 2x leading to $x = -5$	M1 A1	for correct attempt to deal with 'negative' branch. for $x = -5$
	Alternative: $(2-x)^2 = (3+4x)^2$ leading to $15x^2 + 28x + 5 = 0$	M1	for equating and squaring to obtain a 3 term quadratic equation
	$x = -\frac{1}{3}, x = -5$	A1,A1	A1 for each.
5 (a) (i)	$^{9}P_{6} = 60480$	B1	Must be evaluated
(ii)	$^{4}P_{2} \times ^{3}P_{2} \times 2 = 144$	M1,A1	M1 for attempt a product of 3 perms
(iii)	840×2 1680	B1,B1	B1 for either 840, or realising that there are 2 possible positions for the symbols
(b) (i)	$^{10}C_6 \times ^5C_3$ 2100	M1 A1	for unsimplified form
(ii)	${}^{8}C_{4} \times {}^{4}C_{2}$ 420	M1 A1	for unsimplified form
6 (i)	f(x) > 6	B1	Allow B1 for $y > 6$
(ii)	$f^{-1}(x) = \frac{1}{4}\ln(x-6)$	M1 A1	for a complete method must be $f^{-1}(x) = \text{ or } y =$
	Domain: $x > 6$ Range: $f^{-1}(x) \in \mathbb{R}$	B1 B1	must be using the correct variable in both
(iii)	$f'(x) = 4e^{4x}$	B1	
(iv)	$6 + e^{4x} = 4e^{4x}$ leading to $x = \frac{1}{4} \ln 2$	M1 A1	for a complete, correct method

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

Question	Answer	Marks	Guidance
7 (i)	$f\left(\frac{1}{2}\right) = \frac{a}{8} + \frac{7}{4} - \frac{9}{2} + b (=0)$ $a + 8b = 22$	M1	for attempt at $f\left(\frac{1}{2}\right)$
	8a + 28 - 18 + b = 5(-a + 7 + 9 + b) $13a - 4b = 70$	M1 DM1	for attempt at $f(2) = 5f(-1)$ Allow if the 'wrong way' round for attempt to solve simultaneous equations
	leading to $a = 6$, $b = 2$	A1	A1 for both
(ii)	$(2x-1)(3x^2+5x-2)$ $(2x-1)(3x-1)(x+2)$	B2,1,0	-1 each error
(iii)	(2x-1)(3x-1)(x+2)	M1 A1FT	for attempt to factorise their quadratic factor must be 3 linear factors
8 (i)	lg y = lg A + b lg x Gradient = 1.2 so b = 1.2	B1 M1 A1	may be implied by later work for attempt at gradient for $b = 1.2$
	Intercept = 1.44 $A = 27.5$	M1 A1	for attempt to find y-intercept for, allow awrt 28
(ii)	when $x = 100$, $\lg x = 2$ $\lg y = 3.84$ (allow 3.8 to 3.9)	M1 A1	for correct use of graph or equation
(iii)	when $y = 8000$, $\lg 8000 = 3.9$, $\lg x = 2.05$ leading to $x = 113$, $10^{2.05}$ or 112	M1 A1	for correct use of graph or equation

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

Question	Answer	Marks	Guidance
9 (i)	$\frac{7}{2}r^2\theta = \frac{1}{2}r^2(2\pi - \theta)$	M1	for a valid method
	$\theta = \frac{\pi}{4}$ oe	A1	allow in degrees
(ii)	$r+r+\frac{\pi}{4}r=20$, leading to	M1	for valid method
	r = 7.180(3)	A1	Must show enough accuracy to get A1
(iii)	Perimeter $=\frac{\pi}{4}r + 2r\tan\frac{\pi}{8}$	B1,B1	B1 for arc length, B1 for twice AC
	= 5.6394 + 5.9484 = 11.6	B1	for 11.6
(iv)	Area = $(r \times AC) - \frac{1}{2}r^2 \frac{\pi}{4}$ = 21.356 - 20.246 or equivalent method using triangles	B1,B1	B1 for area of quadrilateral, allow unsimplified, B1 for sector area
	$1.08 \leqslant \text{Area} \leqslant 1.11$	B1	for area in given range
10 (i)	$x \times \frac{3}{2} \times 2(2x-1)^{\frac{1}{2}} + (2x-1)^{\frac{3}{2}}$	B1	for $\frac{3}{2} \times 2(2x-1)^{\frac{1}{2}}$
		M1 A1	for attempt at differentiation of a product for all else correct
(ii)	$\int 3 \int x (2x-1)^{\frac{1}{2}} dx = x (2x-1)^{\frac{3}{2}} - \int (2x-1)^{\frac{3}{2}} dx$	M1	for attempt to use part (i)
	$= x(2x-1)^{\frac{3}{2}} - \frac{1}{2} \times \frac{2}{5}(2x-1)^{\frac{5}{2}}$	B1,B1	B1 for $x(2x-1)^{\frac{3}{2}}$, allow if divided by 3
			B1 for $\frac{1}{2} \times \frac{2}{5} (2x-1)^{\frac{5}{2}}$, allow if divided by 3
	$\int x(2x-1)^{\frac{1}{2}} dx = \frac{1}{3}(2x-1)^{\frac{3}{2}} \left(x - \frac{1}{5}(2x-1)\right)$	M1	for taking out a common factor of $(2x-1)^{\frac{3}{2}}$
	$=\frac{(2x-1)^{\frac{3}{2}}}{15}(3x+1)$	DM1 A1	$(2x-1)^2$ for attempt to obtain a linear factor
(iii)	$\left(\frac{1}{15} \times 4\right) - 0$	M1 A1FT	for attempt to use limits correctly FT on <i>their</i> $\frac{px+q}{15}$

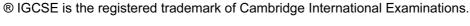
Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

Question	Answer	Marks	Guidance
11 (i)	$\frac{1}{\csc\theta - 1} - \frac{1}{\csc\theta + 1} = \frac{\csc\theta + 1 - \csc\theta + 1}{\csc^2\theta - 1}$	M1	for attempt to obtain a single fraction
		A1	all correct as shown
	$=\frac{2}{\cot^2\theta}$	M1	for use of correct identity
	$= 2 \tan^2 \theta$	A1	for 'finishing off'
	Alternative scheme: $\frac{1}{\csc\theta - 1} - \frac{1}{\csc\theta + 1} = \frac{\sin\theta}{1 - \sin\theta} - \frac{\sin\theta}{1 + \cos\theta}$	M1	for attempt to obtain a single fraction in terms of $\sin \theta$ only
	$= \frac{\left(\sin\theta + \sin^2\theta\right) - \left(\sin\theta - \sin^2\theta\right)}{1 - \sin^2\theta}$	A1	all correct as shown
	$=\frac{2\sin^2\theta}{\cos^2\theta}$	M1	for use of correct identity
	$= 2 \tan^2 \theta$	A1	for 'finishing off'
(ii)	$2\tan^2\theta = 6 + \tan\theta$ $(2\tan\theta + 3)(\tan\theta - 2) = 0$	M1	for attempt to use (i), to obtain a quadratic equation and valid attempt to solve
	$\tan \theta = -\frac{3}{2}$, $\tan \theta = 2$	DM1	for attempt to solve trig equation
	$\theta = 63.4^{\circ}, 123.7^{\circ}, 243.4^{\circ}, 303.7^{\circ}$	A1,A1	for each 'pair'

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS


0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	11

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

1	$kx^2 + (2k - 8)x + k = 0$	M1	for attempt to obtain a 3 term quadratic in the
			form $ax^2 + bx + c = 0$, where b contains a term in k and a constant
	$b^2 - 4ac > 0$ so $(2k - 8)^2 - 4k^2 (> 0)$	DM1	for use of $b^2 - 4ac$
	$4k^2 - 32k + 64 - 4k^2 (>0)$	DM1	for attempt to simplify and solve for <i>k</i>
	leading to $k < 2$ only	A1	A1 must have correct sign
2	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -5x(+c)$	M1	for attempt to integrate, do not penalise omission of arbitrary constant.
	When $x = -1$, $\frac{dy}{dx} = 2$ leading to		_111
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -5x - 3$	A1	Must have $\frac{dy}{dx} =$
	$y = -\frac{5x^2}{2} - 3x + d$	DM1	for attempt to integrate <i>their</i> $\frac{dy}{dx}$, but
	When $x = -1$, $y = 3$ leading to		penalise omission of arbitrary constant.
	$y = \frac{5}{2} - \frac{5x^2}{2} - 3x$	A1	
	Alternative scheme:	36.	
	$y = ax^2 + bx + c$ so $\frac{dy}{dx} = 2ax + b$	M1	for use of $y = ax^2 + bx + c$, differentiation and use of conditions to give an equation in a
	When $x = -1$, $\frac{dy}{dx} = 2$		and b
	so $-2a+b=2$	A1	for a correct equation
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2a$	DM1	for a second differentiation to obtain a
	so $a = -\frac{5}{2}$, $b = -3$, $c = \frac{5}{2}$	A1	for a , b and c all correct

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	11

3	$\sqrt{(\sec^2 \theta - 1)} + \sqrt{(\csc^2 \theta - 1)} = \sec \theta \csc \theta$		
	Luc	D.1	
	LHS = $\tan \theta + \cot \theta$	B1	may be implied by the next line
	$=\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta}{\sin\theta}$	B1	for dealing with $\tan \theta$ and $\cot \theta$ in terms of
	$=\frac{\sin^2\theta+\cos^2\theta}{}$		$\sin \theta$ and $\cos \theta$
	$=\frac{\sin^{2}\theta+\cos^{2}\theta}{\sin\theta\cos\theta}$	M1	for attempt to obtain as a single fraction
	1		
	$=\frac{1}{\sin\theta\cos\theta}$	M1	for the use of $\sin^2 \theta + \cos^2 \theta = 1$ in correct context
	$= \sec \theta \csc \theta$	A1	Must be convinced as AG
	Alternate scheme:		
	$LHS = \tan \theta + \cot \theta$		
	$= \tan \theta + \frac{1}{\tan \theta}$	B1	may be implied by subsequent work
	$=\frac{\tan^2\theta+1}{\tan\theta}$	M1	for attempt to obtain as a single fraction
	$=\frac{\sec^2\theta}{}$		
	$=\frac{1}{\tan\theta}$	B1	for use of the correct identity
	$=\frac{\sec\theta}{\tan\theta}\times\sec\theta$	M1	for 'splitting' $\sec^2 \theta$
		IVII	
	$= \csc\theta \sec\theta$	A1	Must be convinced as AG
4 (a) (i)	28	B1	
(ii)	20160	B1	/ 4 //
	2		.5
(***)	6 (5 4 8)	D1	
(iii)	$6 \times (5 \times 4 \times 3)$ oe to give 360	B1	for realising that the music books can be arranged amongst themselves and
	$6 \times (5 \times 4 \times 3)$ oe to give 360 $6 \times (5 \times 4 \times 3) \times 2$		consideration of the other 5 books
	= 720	B1	for the realisation that the above arrangement can be either side of the clock.
(b)	Either ${}^{10}C_6 - {}^7C_6 = 210 - 7$	B1, B1	B1 for ${}^{10}C_6$, B1 for ${}^{7}C_6$
	= 203	B1	
	Or $1 \text{W} 5 \text{M} = 63$	B1	for 1 case correct, must be considering more
	$2W \ 4M = 105$	B1	than 1 different case, allow C notation for the other 2 cases, allow C notation
	3W 3M = 35 $Total = 203$	В1 В1	for final result
	1000 200	۵.	

Page 4	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	11

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	terms must be bracketed
(ii) $\partial y \approx \text{ (answer to (i))} \times 0.03$ M1 for attempt to use s follow through on a (i) allow to 2 sf or 1	their numerical answer to
6 (i) $A \cap B = \{3\}$ B1	
(ii) $A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$ B1	
(iii) $A' \cap C = \{1, 5, 7, 11\}$ B1	
(iv) $(D \cup B)' = \{1, 9\}$	
(v) Any set containing up to 5 positive even numbers ≤ 12	
7 (i) Gradient = $\frac{0.2}{0.8} = 0.25$ $b = 0.25$ M1 for attempt to find a	the gradient
Either $6 = 0.25(2.2) + c$ M1 for a correct substite either point and attention of the solution by simultation of the solution of the solutio	
leading to $A = 233$ or $e^{5.45}$ A1 dealing with $c = \ln c$	_
Alternative schemes:	
Either Or	
, ,	equations as shown
$5.8 = b(1.4) + c$ $e^{5.8} = A(e^{1.4})^b$	
Leading to $A = 233$ or $e^{5.45}$ and $b = 0.25$ DM1 for attempt to solve solution for one unit A1, A1 for each	
	ither equation in attempt eir value of A and of b
leading to $y = 348$ A1	

Page 5	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2015	0606	11

8	$\frac{dy}{dx} = \frac{2(x^2 + 5)^{\frac{1}{2}} - \frac{1}{2}(2x)(x^2 + 5)^{-\frac{1}{2}}(2x - 1)}{x^2 + 5}$ or $\frac{dy}{dx} = 2(x^2 + 5)^{-\frac{1}{2}} - \frac{1}{2}(2x)(x^2 + 5)^{-\frac{3}{2}}(2x - 1)$	B1 M1 A1	for $\frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}$ for a quotient or $-\frac{1}{2}(2x)(x^2+5)^{-\frac{3}{2}}$ for a product allow if either seen in separate working for attempt to differentiate a quotient or a correct product for all correct, allow unsimplified
	When $x = 2$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{9}$ (allow 0.444 or 0.44)	B1, B1	B1 for each
	Equation of tangent: $y - 1 = \frac{4}{9}(x - 2)$ (9y = 4x + 1)	M1 A1	for attempt at straight line, must be tangent using <i>their</i> gradient and <i>y</i> allow unsimplified.
9 (i)	$\frac{2}{3}(4+x)^{\frac{3}{2}}(+c)$	B1,B1	B1 for $k(4+x)^{\frac{3}{2}}$ only, B1 for $\frac{2}{3}(4+x)^{\frac{3}{2}}$ only Condone omission of c
(ii)	Area of trapezium = $\left(\frac{1}{2} \times 5 \times 5\right)$ = 12.5	M1 A1	for attempt to find the area of the trapezium
	Area = $\left[\frac{2}{3}(4+x)^{\frac{3}{2}}\right]_{0}^{5} - \left(\frac{1}{2} \times 5 \times 5\right)$ = $\left(\frac{2}{3} \times 27\right) - \frac{16}{3} - \frac{25}{2}$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0) for $18 - \frac{16}{3}$ or equivalent
	O	A1	
	Alternative scheme: Equation of AB $y = \frac{1}{5}x + 2$	M1	for a correct attempt to find the equation of AB
	Area = $\int_0^5 \sqrt{4+x} - \left(\frac{1}{5}x + 2\right) dx$ = $\left[\frac{2}{3}(4+x)^{\frac{3}{2}} - \frac{x^2}{10} - 2x\right]_0^5$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
	$= \left(\frac{2}{3} \times 27\right) - \frac{16}{3} - \frac{25}{2}$ $= \frac{1}{6} \text{ or awrt } 0.17$	A1 A1 A1	for $18 - \frac{16}{3}$ or equivalent for 12.5 or equivalent

Page 6	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2015	0606	11

10 (i)	All sides are equal to the radii of the circles which are also equal	B1	for a convincing argument
(ii)	Angle $CBE = \frac{2\pi}{3}$	В1	must be in terms of π , allow 0.667π , or better
(iii)	$DE = 10\sqrt{3}$	M1	for correct attempt to find <i>DE</i> using <i>their</i> angle <i>CBE</i>
		A1	for correct <i>DE</i> , allow 17.3 or better
	$Arc CE = 10 \times \frac{2\pi}{3}$	M1	for attempt to find arc length with <i>their</i> angle <i>CBE</i> (20.94)
	Perimeter = $20 + 10\sqrt{3} + \frac{20\pi}{3}$	M1	for $10 + 10 + DE + $ an arc length
	= 58.3 or 58.2	A1	allow unsimplified
(iv)	Area of sector: $\frac{1}{2} \times 10^2 \times \frac{2\pi}{3} = \frac{100\pi}{3}$	M1	for sector area using <i>their</i> angle <i>CBE</i> allow unsimplified, may be implied
	Area of triangle: $\frac{1}{2} \times 10^2 \times \sin \frac{2\pi}{3} = 25\sqrt{3}$	M1	for triangle area using <i>their</i> angle <i>DBE</i> which must be the same as <i>their</i> angle <i>CBE</i> , allow unsimplified, may be implied
	Area = $\frac{100\pi}{3} + 25\sqrt{3}$ or awrt 148	A1	allow in either form

Page 7	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2015	0606	11

11 (a) (i)	$\left(x+3\right)^2-5$	B1, B1	B1 for 3, B1 for -5
(ii)	$y \geqslant 4 \text{ or } f \geqslant 4$	B1	Correct notation or statement must be used
(iii)	$y = \sqrt{x+5} - 3$	M1	for a correct attempt to find the inverse function
		A1	must be in the correct form and positive root only
	Domain $x \ge 4$	B1FT	Follow through on <i>their</i> answer to (ii), must be using <i>x</i>
(b)	$h^2g(x) = h^2(e^x)$	M1	for correct order
	$=h(5e^x+2)$	M1	for dealing with h ²
	$=25e^x+12$		
	$25e^x + 12 = 37,$	DM1	for solution of equation (dependent on both previous M marks)
	leading to $x = 0$	A1	previous ivi marks)
	Alternative scheme 1:		
	$hg(x) = h^{-1}(37)$	M1	for correct order
	$h^{-1}(37) = 7$	M1	for dealing with h ⁻¹ (37)
	$5e^x + 2 = 7,$	DM1	for solution of equation (dependent on both
	leading to $x = 0$	A1	previous M marks)
	Alternative scheme 2:		.5/
	$g(x) = h^{-2}(37)$	M1	for correct order
	$h^{-2}(37) = 1$	M1	for dealing with h ⁻² (37)
	$e^x = 1$,	DM1	for solution of equation (dependent on both
	leading to $x = 0$	A1	previous M marks)

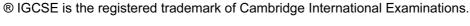
Page 8	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2015	0606	11

12	$x^2 + 6x - 16 = 0$ or $y^2 + 10y - 75 = 0$ leading to	M1	for attempt to obtain a 3 term quadratic in terms of one variable only
	(x+8)(x-2) = 0 or $(y-5)(y+15) = 0$	DM1	for attempt to solve quadratic equation
	so $x = 2$, $y = 5$ and $x = -8$, $y = -15$	A1, A1	A1 for each 'pair' of values.
	Midpoint $(-3, -5)$	B1	
	Gradient = 2, so perpendicular gradient = $-\frac{1}{2}$		
	Perpendicular bisector:		
	$y + 5 = -\frac{1}{2}(x+3)$	M1	for attempt at straight line equation, must be
	(2y + x + 13 = 0)	M1	using midpoint and perpendicular gradient for use of $y = 0$ in <i>their</i> line equation
	Point C (-13, 0)		(but not $2x - y + 1 = 0$)
	Area = $\frac{1}{2} \begin{vmatrix} -13 & 2 & -8 & -13 \\ 0 & 5 & -15 & 0 \end{vmatrix}$	M1	for correct attempt to find area, may be using <i>their</i> values for <i>A</i> , <i>B</i> and <i>C</i> (<i>C</i> must lie on the
	=125	A1	x-axis)
	Alternative method for area:		_111
	$CM^2 = 125, AB^2 = 500$	M1	for correct attempt to find area may be using <i>their</i> values for <i>A</i> , <i>B</i> and <i>C</i>
	Area = $\frac{1}{2} \times \sqrt{125} \times \sqrt{500}$		
	= 125	A1	

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS


0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2015	0606	12

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1	$kx^2 + (2k - 8)x + k = 0$	M1	for attempt to obtain a 3 term quadratic in the
			form $ax^2 + bx + c = 0$, where b contains a term in k and a constant
	$b^2 - 4ac > 0$ so $(2k - 8)^2 - 4k^2 (> 0)$	DM1	for use of $b^2 - 4ac$
	$4k^2 - 32k + 64 - 4k^2 (>0)$	DM1	for attempt to simplify and solve for <i>k</i>
	leading to $k < 2$ only	A1	A1 must have correct sign
2	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -5x(+c)$	M1	for attempt to integrate, do not penalise omission of arbitrary constant.
	When $x = -1$, $\frac{dy}{dx} = 2$ leading to		_111
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -5x - 3$	A1	Must have $\frac{dy}{dx} =$
	$y = -\frac{5x^2}{2} - 3x + d$	DM1	for attempt to integrate <i>their</i> $\frac{dy}{dx}$, but
	When $x = -1$, $y = 3$ leading to		penalise omission of arbitrary constant.
	$y = \frac{5}{2} - \frac{5x^2}{2} - 3x$	A1	
	Alternative scheme:	36.	
	$y = ax^2 + bx + c$ so $\frac{dy}{dx} = 2ax + b$	M1	for use of $y = ax^2 + bx + c$, differentiation and use of conditions to give an equation in a
	When $x = -1$, $\frac{dy}{dx} = 2$		and b
	so $-2a+b=2$	A1	for a correct equation
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2a$	DM1	for a second differentiation to obtain a
	so $a = -\frac{5}{2}$, $b = -3$, $c = \frac{5}{2}$	A1	for a , b and c all correct

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	12

3	$\sqrt{(\sec^2 \theta - 1)} + \sqrt{(\csc^2 \theta - 1)} = \sec \theta \csc \theta$		
	LHS = $\tan \theta + \cot \theta$	B1	may be implied by the next line
	$=\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta}{\sin\theta}$	B1	for dealing with $\tan \theta$ and $\cot \theta$ in terms of $\sin \theta$ and $\cos \theta$
	$=\frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta}$	M1	for attempt to obtain as a single fraction
	$=\frac{1}{\sin\theta\cos\theta}$	M1	for the use of $\sin^2 \theta + \cos^2 \theta = 1$ in correct context
	$= \sec \theta \csc \theta$	A1	Must be convinced as AG
	Alternate scheme:		
	$LHS = \tan \theta + \cot \theta$		
	$= \tan \theta + \frac{1}{\tan \theta}$	B1	may be implied by subsequent work
	$=\frac{\tan^2\theta+1}{\tan\theta}$	M1	for attempt to obtain as a single fraction
	$=\frac{\sec^2\theta}{\tan\theta}$	B1	for use of the correct identity
	$=\frac{\sec\theta}{\tan\theta}\times\sec\theta$	M1	for 'splitting' $\sec^2 \theta$
	$= \csc\theta \sec\theta$	A1	Must be convinced as AG
4 (a) (i)	28	B1	
(ii)	20160	B1	
(iii)	((542)4	B1	Commodicing that the music hashe on he
(111)	$6 \times (5 \times 4 \times 3)$ oe to give 360 $6 \times (5 \times 4 \times 3) \times 2$	3 P.	for realising that the music books can be arranged amongst themselves and consideration of the other 5 books
	= 720	B1	for the realisation that the above arrangement can be either side of the clock.
(b)	Either ${}^{10}C_6 - {}^7C_6 = 210 - 7$	B1, B1	B1 for ${}^{10}C_6$, B1 for ${}^{7}C_6$
	= 203	B1	
	Or $1W 5M = 63$ 2W 4M = 105	B1	for 1 case correct, must be considering more than 1 different case, allow <i>C</i> notation
	$3W\ 3M = 35$	B1	for the other 2 cases, allow C notation for final result
	Total = 203	B1	101 Illiai Iesuit

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	12

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	terms must be bracketed
(ii) $\partial y \approx \text{ (answer to (i))} \times 0.03$ M1 for attempt to use s follow through on a (i) allow to 2 sf or 1	their numerical answer to
6 (i) $A \cap B = \{3\}$ B1	
(ii) $A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$ B1	
(iii) $A' \cap C = \{1, 5, 7, 11\}$ B1	
(iv) $(D \cup B)' = \{1, 9\}$	
(v) Any set containing up to 5 positive even numbers ≤ 12	
7 (i) Gradient = $\frac{0.2}{0.8} = 0.25$ $b = 0.25$ M1 for attempt to find a	the gradient
Either $6 = 0.25(2.2) + c$ M1 for a correct substite either point and attention of the solution by simultation of the solution of the solutio	
leading to $A = 233$ or $e^{5.45}$ A1 dealing with $c = \ln c$	_
Alternative schemes:	
Either Or	
, ,	equations as shown
$5.8 = b(1.4) + c$ $e^{5.8} = A(e^{1.4})^b$	
Leading to $A = 233$ or $e^{5.45}$ and $b = 0.25$ DM1 for attempt to solve solution for one unit A1, A1 for each	
	ither equation in attempt eir value of A and of b
leading to $y = 348$ A1	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	12

	T		
8	$\frac{dy}{dx} = \frac{2(x^2 + 5)^{\frac{1}{2}} - \frac{1}{2}(2x)(x^2 + 5)^{-\frac{1}{2}}(2x - 1)}{x^2 + 5}$ or $\frac{dy}{dx} = 2(x^2 + 5)^{-\frac{1}{2}} - \frac{1}{2}(2x)(x^2 + 5)^{-\frac{3}{2}}(2x - 1)$	B1 M1 A1	for $\frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}$ for a quotient or $-\frac{1}{2}(2x)(x^2+5)^{-\frac{3}{2}}$ for a product allow if either seen in separate working for attempt to differentiate a quotient or a correct product for all correct, allow unsimplified
	When $x = 2$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{9}$ (allow 0.444 or 0.44)	B1, B1	B1 for each
	Equation of tangent: $y - 1 = \frac{4}{9}(x - 2)$ (9y = 4x + 1)	M1 A1	for attempt at straight line, must be tangent using <i>their</i> gradient and <i>y</i> allow unsimplified.
9 (i)	$\frac{2}{3}(4+x)^{\frac{3}{2}}(+c)$	B1,B1	B1 for $k(4+x)^{\frac{3}{2}}$ only, B1 for $\frac{2}{3}(4+x)^{\frac{3}{2}}$
			only Condone omission of <i>c</i>
(ii)	Area of trapezium = $\left(\frac{1}{2} \times 5 \times 5\right)$	M1	for attempt to find the area of the trapezium
	=12.5	A1	/ / / /
	Area = $\left[\frac{2}{3}(4+x)^{\frac{3}{2}}\right]_0^5 - \left(\frac{1}{2} \times 5 \times 5\right)$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
	$= \left(\frac{2}{3} \times 27\right) - \frac{16}{3} - \frac{25}{2}$ $= \frac{1}{6} \text{ or awrt } 0.17$	A1	for $18 - \frac{16}{3}$ or equivalent
	$= \frac{1}{6} \text{ or awrt } 0.17$	A1	
	Alternative scheme:		
	Equation of AB $y = \frac{1}{5}x + 2$	M1	for a correct attempt to find the equation of AB
	Area = $\int_0^6 \sqrt{4+x} - \left(\frac{1}{5}x + 2\right) dx$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
	$= \left[\frac{2}{3}(4+x)^{\frac{3}{2}} - \frac{x^2}{10} - 2x\right]_0^5$		(
	$= \left(\frac{2}{3} \times 27\right) - \frac{16}{3} - \frac{25}{2}$	A1	for $18 - \frac{16}{3}$ or equivalent
	$= \frac{1}{6} \text{ or awrt } 0.17$	A1 A1	for 12.5 or equivalent

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	12

10 (i)	All sides are equal to the radii of the circles which are also equal	B1	for a convincing argument
(ii)	Angle $CBE = \frac{2\pi}{3}$	В1	must be in terms of π , allow 0.667π , or better
(iii)	$DE = 10\sqrt{3}$	M1	for correct attempt to find <i>DE</i> using <i>their</i> angle <i>CBE</i>
		A1	for correct <i>DE</i> , allow 17.3 or better
	$Arc CE = 10 \times \frac{2\pi}{3}$	M1	for attempt to find arc length with <i>their</i> angle <i>CBE</i> (20.94)
	Perimeter = $20 + 10\sqrt{3} + \frac{20\pi}{3}$	M1	for $10 + 10 + DE + $ an arc length
	= 58.3 or 58.2	A1	allow unsimplified
(iv)	Area of sector: $\frac{1}{2} \times 10^2 \times \frac{2\pi}{3} = \frac{100\pi}{3}$	M1	for sector area using <i>their</i> angle <i>CBE</i> allow unsimplified, may be implied
	Area of triangle: $\frac{1}{2} \times 10^2 \times \sin \frac{2\pi}{3} = 25\sqrt{3}$	M1	for triangle area using <i>their</i> angle <i>DBE</i> which must be the same as <i>their</i> angle <i>CBE</i> , allow unsimplified, may be implied
	Area = $\frac{100\pi}{3} + 25\sqrt{3}$ or awrt 148	A1	allow in either form

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	12

11 (a) (i)	$\left(x+3\right)^2-5$	B1, B1	B1 for 3, B1 for -5
(ii)	$y \geqslant 4 \text{ or } f \geqslant 4$	B1	Correct notation or statement must be used
(iii)	$y = \sqrt{x+5} - 3$	M1	for a correct attempt to find the inverse function
		A1	must be in the correct form and positive root only
	Domain $x \ge 4$	B1FT	Follow through on <i>their</i> answer to (ii), must be using <i>x</i>
(b)	$h^2g(x) = h^2(e^x)$	M1	for correct order
	$=h(5e^x+2)$	M1	for dealing with h ²
	$=25e^x+12$		
	$25e^x + 12 = 37,$	DM1	for solution of equation (dependent on both previous M marks)
	leading to $x = 0$	A1	previous ivi marks)
	Alternative scheme 1:		
	$hg(x) = h^{-1}(37)$	M1	for correct order
	$h^{-1}(37) = 7$	M1	for dealing with h ⁻¹ (37)
	$5e^x + 2 = 7,$	DM1	for solution of equation (dependent on both
	leading to $x = 0$	A1	previous M marks)
	Alternative scheme 2:		.5/
	$g(x) = h^{-2}(37)$	M1	for correct order
	$h^{-2}(37) = 1$	M1	for dealing with h ⁻² (37)
	$e^x = 1$,	DM1	for solution of equation (dependent on both
	leading to $x = 0$	A1	previous M marks)

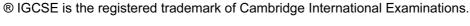
Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	12

		l	
12	$x^2 + 6x - 16 = 0$ or $y^2 + 10y - 75 = 0$ leading to	M1	for attempt to obtain a 3 term quadratic in terms of one variable only
	(x+8)(x-2) = 0 or $(y-5)(y+15) = 0$	DM1	for attempt to solve quadratic equation
	so $x = 2$, $y = 5$ and $x = -8$, $y = -15$	A1, A1	A1 for each 'pair' of values.
	Midpoint $(-3, -5)$	B1	
	Gradient = 2, so perpendicular gradient = $-\frac{1}{2}$		
	Perpendicular bisector:		
	$y + 5 = -\frac{1}{2}(x+3)$	M1	for attempt at straight line equation, must be
	(2y + x + 13 = 0)	M1	using midpoint and perpendicular gradient for use of $y = 0$ in <i>their</i> line equation
	Point C (-13, 0)		(but not $2x - y + 1 = 0$)
	Area = $\frac{1}{2} \begin{vmatrix} -13 & 2 & -8 & -13 \\ 0 & 5 & -15 & 0 \end{vmatrix}$	M1	for correct attempt to find area, may be using <i>their</i> values for <i>A</i> , <i>B</i> and <i>C</i> (<i>C</i> must lie on the
	=125	A1	x-axis)
	Alternative method for area:		_///
	$CM^2 = 125, AB^2 = 500$	M1	for correct attempt to find area may be using <i>their</i> values for <i>A</i> , <i>B</i> and <i>C</i>
	Area = $\frac{1}{2} \times \sqrt{125} \times \sqrt{500}$		ween values for 11, 12 and C
	= 125	A1	

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS


0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	13

Awrt answers which round to Cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

1 (i)		B1	
(ii)		B1	
(iii)		B1	
2	$\cos\left(3x - \frac{\pi}{4}\right) = (\pm)\frac{1}{\sqrt{2}} \text{ oe}$	M1	division by 2 and square root
	$3x - \frac{\pi}{4} = -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}$	9.0	
	$x = \left(-\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \left(\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \left(\frac{3\pi}{4} + \frac{\pi}{4}\right) \div 3 \text{ oe}$	DM1	correct order of operations in order to obtain a solution
	$x = 0 \text{ and } \frac{\pi}{6} \text{ (or 0 and 0.524)}$	A2/1/0	A2 for 3 solutions and no extras in the range A1 for 2 solutions
	$x = \frac{\pi}{3}$ (or 1.05)		A0 for one solution or no solutions

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	13

(b) $ \begin{pmatrix} 28 & -24 \\ -8 & 76 \end{pmatrix} = m \begin{pmatrix} 4 & 6 \\ 2 & -8 \end{pmatrix} + n \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $ $ -24 = 6m \text{ or } -8 = 2m \text{ giving } m = -4 $ $ 28 = 4m + n \text{ or } 76 = -8m + n $ $ n = 44 $ (c) $ a^2 - 6 = 0 $ $ so a = \pm \sqrt{6} B2, 1, 0 B2, 1, 0 B2 \text{ for } a = -4 \text{ using correct I} complete method to obtain n A1 complete method to obtain n A1 a = 2 + \sqrt{6} \text{ or } a = \pm 2.45, \text{ with no incorrect statements seen or } B1 \text{ for } a = \pm \sqrt{6} \text{ or } a = \pm 2.45, \text{ with no incorrect statements seen } or B1 \text{ for } a = \pm \sqrt{6} \text{ or } a = \pm 2.45, \text{ with no incorrect statements seen } or B1 \text{ for } a = \sqrt{6} \text{ and no incorrect working} B2 \text{ or } a = \pm \sqrt{6} \text{ or } a = \pm 2.45, \text{ with no incorrect use of the area } correct use of the area correct of use of the area correct of use of the area correct use of the area correct use of the area correct of use of the area correct of use of the area correct of use of the area correct use of the area correct of use of the area correct use of the area correct use of the area correct of use of the area correct of use of use of the area correct of use of the area correct of use of the area correct of use of u$	3	(a)	$ \begin{pmatrix} 12 & 16 & 4 \\ 30 & 32 & 10 \end{pmatrix} $	B2,1,0	B2 for 6 elements correct, B1for 5 elements correct
$28 = 4m + n \text{ or } 76 = -8m + n$ $n = 44$ (c) $a^{2} - 6 = 0$ $so a = \pm \sqrt{6} B2,1,0 B2 \text{ for } a = \pm \sqrt{6} \text{ or } a = \pm 2.45, \text{ with no incorrect statements seen or B1 for } a = \pm \sqrt{6} \text{ or } a = \pm 2.45, \text{ with no incorrect statements seen or B1 for } a = \sqrt{6} \text{ and no incorrect working} 4 (i) \frac{1}{2}(4\sqrt{3} + 1) \times BC = \frac{47}{2} BC = \frac{47}{(4\sqrt{3} + 1)} \times \frac{(4\sqrt{3} - 1)}{(4\sqrt{3} - 1)} BC = 4\sqrt{3} - 1 Alternative method \frac{1}{2}(4\sqrt{3} + 1) \times BC = \frac{47}{2} (4\sqrt{3} + 1)(a\sqrt{3} + b) = 47 Leading to 12a + b = 47 and a + 4b = 0 Solution of simultaneous equations BC = 4\sqrt{3} - 1 A1 Dependent on all method seen including solution of simultaneous equations (ii) (4\sqrt{3} + 1)^{2} + (4\sqrt{3} - 1)^{2} = (48 + 8\sqrt{3} + 1) + (48 - 8\sqrt{3} + 1) AC^{2} = 98 B1ca 98 \text{ and } 7\sqrt{2} \text{ or } 98 \text{ and } p = 7$		(b)	$ \begin{pmatrix} 28 & -24 \\ -8 & 76 \end{pmatrix} = m \begin{pmatrix} 4 & 6 \\ 2 & -8 \end{pmatrix} + n \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	B2,1,0	
(c) $a^2-6=0$ $a^2-6=0$ $a=\pm\sqrt{6}$ B2,1,0 B2 for $a=\pm\sqrt{6}$ or $a=\pm2.45$, with no incorrect statements seen or B1 for $a=\sqrt{6}$ and no incorrect working 4 (i) $\frac{1}{2}(4\sqrt{3}+1)\times BC=\frac{47}{2}$ B1 correct use of the area $\frac{4}{8C}=\frac{47}{(4\sqrt{3}+1)}\times \frac{(4\sqrt{3}-1)}{(4\sqrt{3}-1)}$ B1 correct rationalisation $\frac{1}{2}(4\sqrt{3}+1)\times BC=\frac{47}{2}$ B1 correct use of the area $\frac{1}{2}(4\sqrt{3}+1)\times BC=\frac{47}{2}$ B1 correct rationalisation Dependent on all method being seen $\frac{1}{2}(4\sqrt{3}+1)(a\sqrt{3}+b)=47$ Leading to $12a+b=47$ and $a+4b=0$ Solution of simultaneous equations $\frac{1}{2}(4\sqrt{3}+1)(a\sqrt{3}+b)=47$ A1 Dependent on all method seen including solution of simultaneous equations $\frac{1}{2}(4\sqrt{3}+1)^2+(4\sqrt{3}-1)^2$ B1 C correct FT terms seen $\frac{1}{2}(4\sqrt{3}+1)^2+(4\sqrt{3}-1)^2$ B1 C correct FT terms seen $\frac{1}{2}(4\sqrt{3}+1)^2+(4\sqrt{3}-1)^2$ B1 C correct FT terms seen			-24 = 6m or -8 = 2m giving m = -4	B1	For $m = -4$ using correct I
so $a=\pm\sqrt{6}$ incorrect statements seen or B1 for $a=\pm\sqrt{6}$ or $a=\pm2.45$ seen or B1 for $a=\sqrt{6}$ and no incorrect working 4 (i) $\frac{1}{2}(4\sqrt{3}+1)\times BC=\frac{47}{2}$ $BC=\frac{47}{(4\sqrt{3}+1)}\times \frac{(4\sqrt{3}-1)}{(4\sqrt{3}-1)}$ $BC=4\sqrt{3}-1$ Alternative method $\frac{1}{2}(4\sqrt{3}+1)\times BC=\frac{47}{2}$ $(4\sqrt{3}+1)(a\sqrt{3}+b)=47$ Leading to $12a+b=47$ and $a+4b=0$ Solution of simultaneous equations $BC=4\sqrt{3}-1$ A1 Dependent on all method seen including solution of simultaneous equations (ii) $(4\sqrt{3}+1)^2+(4\sqrt{3}-1)^2=(48+8\sqrt{3}+1)+(48-8\sqrt{3}+1)$ B1FT 6 correct FT terms seen $AC^2=98$ B1cao 98 and $7\sqrt{2}$ or 98 and $p=7$					complete method to obtain <i>n</i>
4 (i) $\frac{1}{2}(4\sqrt{3}+1)\times BC = \frac{47}{2}$ $BC = \frac{47}{(4\sqrt{3}+1)}\times \frac{(4\sqrt{3}-1)}{(4\sqrt{3}-1)}$ $BC = 4\sqrt{3}-1$ Alternative method $\frac{1}{2}(4\sqrt{3}+1)\times BC = \frac{47}{2}$ $(4\sqrt{3}+1)(a\sqrt{3}+b) = 47$ $\text{Leading to } 12a+b=47 \text{ and } a+4b=0$ Solution of simultaneous equations $BC = 4\sqrt{3}-1$ Al Dependent on all method seen including solution of simultaneous equations $BC = 4\sqrt{3}-1$ Al Dependent on all method seen including solution of simultaneous equations $BC = 4\sqrt{3}-1$ $A1 Dependent on all method seen including solution of simultaneous equations BC = 4\sqrt{3}-1 A1 Dependent on all method seen including solution of simultaneous equations BC = 4\sqrt{3}-1 A1 Dependent on all method seen including solution of simultaneous equations BC = 4\sqrt{3}-1 A1 Dependent on all method seen including solution of simultaneous equations BC = 4\sqrt{3}-1 B1FT G correct FT terms seen AC^2 = 98 B1cao 98 \text{ and } 7\sqrt{2} \text{ or } 98 \text{ and } p = 7$		(c)		B2,1,0	incorrect statements seen
4 (i) $\frac{1}{2}(4\sqrt{3}+1) \times BC = \frac{47}{2}$ $BC = \frac{47}{(4\sqrt{3}+1)} \times \frac{(4\sqrt{3}-1)}{(4\sqrt{3}-1)}$ $BC = 4\sqrt{3}-1$ Alternative method $\frac{1}{2}(4\sqrt{3}+1) \times BC = \frac{47}{2}$ $(4\sqrt{3}+1) \times BC = \frac{47}{2}$ $(4\sqrt{3}+1)(a\sqrt{3}+b) = 47$ B1 Leading to $12a + b = 47$ and $a + 4b = 0$ Solution of simultaneous equations $BC = 4\sqrt{3}-1$ A1 Dependent on all method seen including solution of simultaneous equations $BC = 4\sqrt{3}-1$ A1 Dependent on all method seen including solution of simultaneous equations $BC = 4\sqrt{3}-1$ A1 Dependent on all method seen including solution of simultaneous equations $BC = 4\sqrt{3}-1$ $B1 = 4\sqrt{3}-1$ $B1 = 4\sqrt{3}-1$ $B1 = 4\sqrt{3}-1$ $B1 = 6$ $A1 = 6$			AT PA		B1 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$ seen
Alternative method Alternative method $\frac{1}{2}(4\sqrt{3}+1) \times BC = \frac{47}{2}$ $(4\sqrt{3}+1)(a\sqrt{3}+b) = 47$ Leading to $12a+b=47$ and $a+4b=0$ Solution of simultaneous equations $BC = 4\sqrt{3}-1$ Al Dependent on all method seen including solution of simultaneous equations $BC = 4\sqrt{3}-1$ Al Dependent on all method seen including solution of simultaneous equations $(4\sqrt{3}+1)^2 + (4\sqrt{3}-1)^2$ $= (48+8\sqrt{3}+1)+(48-8\sqrt{3}+1)$ B1FT 6 correct FT terms seen $AC^2 = 98$ B1cao 98 and $7\sqrt{2}$ or 98 and $p=7$			19'		
Alternative method Alternative method $\frac{1}{2}(4\sqrt{3}+1) \times BC = \frac{47}{2}$ $(4\sqrt{3}+1)(a\sqrt{3}+b) = 47$ Leading to $12a+b=47$ and $a+4b=0$ Solution of simultaneous equations $BC = 4\sqrt{3}-1$ Al Dependent on all method seen including solution of simultaneous equations $BC = 4\sqrt{3}-1$ Al Dependent on all method seen including solution of simultaneous equations $(4\sqrt{3}+1)^2 + (4\sqrt{3}-1)^2$ $= (48+8\sqrt{3}+1)+(48-8\sqrt{3}+1)$ B1FT 6 correct FT terms seen $AC^2 = 98$ B1cao 98 and $7\sqrt{2}$ or 98 and $p=7$	4	(i)	$\frac{1}{2}\left(4\sqrt{3}+1\right) \times BC = \frac{47}{2}$	B1	correct use of the area
Alternative method Alternative method $\frac{1}{2}(4\sqrt{3}+1) \times BC = \frac{47}{2}$ $(4\sqrt{3}+1)(a\sqrt{3}+b) = 47$ Leading to $12a+b=47$ and $a+4b=0$ Solution of simultaneous equations $BC = 4\sqrt{3}-1$ Al Dependent on all method seen including solution of simultaneous equations $BC = 4\sqrt{3}-1$ Al Dependent on all method seen including solution of simultaneous equations $(4\sqrt{3}+1)^2 + (4\sqrt{3}-1)^2$ $= (48+8\sqrt{3}+1)+(48-8\sqrt{3}+1)$ B1FT 6 correct FT terms seen $AC^2 = 98$ B1cao 98 and $7\sqrt{2}$ or 98 and $p=7$			$BC = \frac{47}{(4\sqrt{3}+1)} \times \frac{(4\sqrt{3}-1)}{(4\sqrt{3}-1)}$	M1	correct rationalisation
$\frac{1}{2}(4\sqrt{3}+1) \times BC = \frac{47}{2}$ $(4\sqrt{3}+1)(a\sqrt{3}+b) = 47$ Leading to $12a+b=47$ and $a+4b=0$ Solution of simultaneous equations $BC = 4\sqrt{3}-1$ A1 Dependent on all method seen including solution of simultaneous equations $(4\sqrt{3}+1)^2 + (4\sqrt{3}-1)^2$ $= (48+8\sqrt{3}+1) + (48-8\sqrt{3}+1)$ B1FT 6 correct FT terms seen $AC^2 = 98$ B1cao 98 and $7\sqrt{2}$ or 98 and $p=7$				A1	Dependent on all method being seen
$\frac{1}{2}(4\sqrt{3}+1) \times BC = \frac{47}{2}$ $(4\sqrt{3}+1)(a\sqrt{3}+b) = 47$ Leading to $12a+b=47$ and $a+4b=0$ Solution of simultaneous equations $BC = 4\sqrt{3}-1$ A1 Dependent on all method seen including solution of simultaneous equations $(4\sqrt{3}+1)^2 + (4\sqrt{3}-1)^2$ $= (48+8\sqrt{3}+1) + (48-8\sqrt{3}+1)$ B1FT 6 correct FT terms seen $AC^2 = 98$ B1cao 98 and $7\sqrt{2}$ or 98 and $p=7$					///
Leading to $12a + b = 47$ and $a + 4b = 0$ Solution of simultaneous equations $BC = 4\sqrt{3-1}$ A1 Dependent on all method seen including solution of simultaneous equations $(4\sqrt{3} + 1)^2 + (4\sqrt{3} - 1)^2$ $= (48 + 8\sqrt{3} + 1) + (48 - 8\sqrt{3} + 1)$ $B1FT$ 6 correct FT terms seen $AC^2 = 98$ B1cao 98 and $7\sqrt{2}$ or 98 and $p = 7$			Alternative method		
Leading to $12a + b = 47$ and $a + 4b = 0$ Solution of simultaneous equations $BC = 4\sqrt{3} - 1$ A1 Dependent on all method seen including solution of simultaneous equations $(4\sqrt{3} + 1)^2 + (4\sqrt{3} - 1)^2$ $= (48 + 8\sqrt{3} + 1) + (48 - 8\sqrt{3} + 1)$ $B1FT = 6 \text{ correct FT terms seen}$ $AC^2 = 98$ $B1cao = 98 \text{ and } 7\sqrt{2} \text{ or } 98 \text{ and } p = 7$				B1	
Solution of simultaneous equations $BC = 4\sqrt{3} - 1$ Al Dependent on all method seen including solution of simultaneous equations $(4\sqrt{3} + 1)^2 + (4\sqrt{3} - 1)^2$ $= (48 + 8\sqrt{3} + 1) + (48 - 8\sqrt{3} + 1)$ B1FT 6 correct FT terms seen $AC^2 = 98$ B1cao 98 and $7\sqrt{2}$ or 98 and $p = 7$			$\left(4\sqrt{3}+1\right)\left(a\sqrt{3}+b\right) = 47$		
(ii) $ (4\sqrt{3}+1)^2 + (4\sqrt{3}-1)^2 $ solution of simultaneous equations $ = (48+8\sqrt{3}+1) + (48-8\sqrt{3}+1) $ B1FT 6 correct FT terms seen $ AC^2 = 98 $ B1cao 98 and $7\sqrt{2}$ or 98 and $p = 7$			_	M1	
$AC^2 = 98$ B1cao 98 and $7\sqrt{2}$ or 98 and $p = 7$			$BC = 4\sqrt{3-1}$	A1	
$AC^2 = 98$ B1cao 98 and $7\sqrt{2}$ or 98 and $p = 7$		(ii)	$\left(4\sqrt{3}+1\right)^2+\left(4\sqrt{3}-1\right)^2$		
Bread 30 and 742 of 30 and p			$= (48 + 8\sqrt{3} + 1) + (48 - 8\sqrt{3} + 1)$	B1FT	6 correct FT terms seen
				B1cao	98 and $7\sqrt{2}$ or 98 and $p = 7$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	13

5	When $x = \frac{\pi}{4}$, $y = 2$ $\frac{dy}{dx} = 5\sec^2 x$ When $x = \frac{\pi}{4}$, $\frac{dy}{dx} = 10$ Equation of normal $y - 2 = -\frac{1}{10} \left(x - \frac{\pi}{4} \right)$	B1 B1 B1 M1	$y = 2$ $5 \sec^{2} x$ $10 \text{ from differentiation}$ $y - their 2 = -\frac{1}{their 10} \left(x - \frac{\pi}{4} \right)$
	$10(4)$ $10y + x - 20 - \frac{\pi}{4} = 0 \text{or} 10y + x - 20.8 = 0 \text{oe}$	A1	their10 (4) allow unsimplified
6 (i)	4 -2 2 4 6 8	B1 B1 B1	shape intercepts on <i>x</i> -axis intercept on <i>y</i> -axis for a curve with a maximum and two arms
(ii)	(2,16)	M1 A1	$(2, \pm 16)$ seen or $(2, k)$ where $k > 0$ (2, 16) or $x = 2$ and $y = 16$ only
(iii)	k = 0	B1	
	k > 16	B1	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	13

7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin 3x (+c)$	B1	$2\sin 3x$
	$4\sqrt{3} = 2\frac{\sqrt{3}}{2} + c$	M1	finding constant using $\frac{dy}{dx} = k \sin 3x + c \text{ making use of}$ $\frac{dy}{dx} = 4\sqrt{3} \text{ and } x = \frac{\pi}{9}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin 3x + 3\sqrt{3}$	A1	Allow with $c = 5.20 \text{ or } \sqrt{27}$
	$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x (+d)$	B1FT	FT integration of <i>their</i> $k \sin 3x$
	$-\frac{1}{3} = -\frac{2}{3}\cos\frac{\pi}{3} + 3\sqrt{3}\left(\frac{\pi}{9}\right) + d$	M1	finding constant d for $k \cos 3x + cx + d$
	$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x - \frac{\sqrt{3}}{3}\pi$	A1	Allow $y = -0.667\cos 3x + 5.20x - 0.577\pi$ or better
8 (a)	$(2+kx)^8 = 256 + 1024kx + 1792k^2x^2 + 1792k^3x^3$		
	$k = \frac{1}{4}$	B1	-///
	p = 112 $q = 28$	B1FT B1FT	FT 1792 multiplied by <i>their</i> k^2 FT 1792 multiplied by <i>their</i> k^3
(b)	${}^{9}C_{3}x^{6}\left(-\frac{2}{x^{2}}\right)^{3}$	M1	correct term seen
	$84x^{6}\left(-\frac{8}{x^{6}}\right) \text{ leading to}$ -672	DM1 A1	Term selected and 2^3 and 9C_3 correctly evaluated

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	13

9	(a)	(i)	Number of arrangements with Maths books as one item = $4!$ or $4 \times 3!$	M1	$4!(\times 2)$ or $4 \times 3!(\times 2)$ oe
			or Maths books can be arranged 2! ways and History 3! ways = $2! \times 3!$		$2! \times 3! (\times 4)$ or $2 \times 3! (\times 4)$ oe
			$2 \times 4!$ or $2 \times 4 \times 3!$ or $4 \times 2 \times 3! = 48$	A1	A1 for 48
	((ii)	$5! - 48 \text{ or } 6 \times 2 \times 3!$	M1	5! – their answer to (i) or for $6 \times 2 \times 3$
			72	A1	0.101 0.1210
	(b)	(i)	3003	B1	
	((ii)	3003 - 6 - 135	M1	their answer to (i) $-6 - {}^6C_4 \times 9$
			2862	B1 A1	135 subtracted
			or 2M 3W = 720 3M 2W = 1260 4M 1W = 756	M1	complete correct method using 4 cases, may be implied by working. Must have at least one correct
			5M = 126 2862	B1 A1	any 3 correct

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	13

10 (i)	$10^{2} = 6^{2} + 6^{2} - 2 \times 6 \times 6 \times \cos ABC$ or $\sin\left(\frac{ABC}{2}\right) = \frac{5}{6}$ or $ABC = \pi - \sin^{-1}\frac{10\sqrt{11}}{36}$	M1	correct cosine rule statement or correct statement for $\sin \frac{ABC}{2}$ or equating areas oe
	ABC = 1.9702	A1	1.9702 or better
(ii)	XY = 2	B1	for XY (may be implied by later work, allow on diagram)
	Arc length $6\left(\frac{\pi-1.970}{2}\right)$ oe	B1	correct arc length (unsimplified)
	Perimeter = $2 + 2\left(6\left(\frac{\pi - 1.970}{2}\right)\right)$	M1	their $2 + 2 \times 6 \times$ their angle C
	= 9.03	A1	
(iii)	$\left(\frac{1}{2} \times 6^2 \left(\frac{\pi - 1.970}{2}\right) - \frac{1}{2} \times 5 \times \sqrt{11}\right) \times 2$	M1 M1	sector area using their C area of \triangle ABM where M is the midpoint of AC , or $(\triangle S ABY \text{ and } BXY)$ or $\triangle ABC$
	= 4.50 or 4.51 or better	A1	Answers to 3sf or better

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	13

	T		
11	$x^2 - 2x - 3 = 0$ or $y^2 - 6y + 5 = 0$	M1	substitution and simplification to obtain a three term quadratic equation in one variable
	leading to (3, 5) and (-1, 1)	A1,A1	A1 for each 'pair' from a correct quadratic equation, correctly obtained.
	Midpoint (1, 3)	B1cao	midpoint
	(Gradient – 1)		
	Perpendicular bisector $y = 4 - x$	M1	perpendicular bisector, must be using <i>their</i> perpendicular gradient and <i>their</i>
	Meets the curve again if		midpoint
	$x^{2} + 10x - 15 = 0$ or $y^{2} - 18y + 41 = 0$	M1	substitution and simplification to obtain a three term quadratic equation in one variable.
	leading to $x = -5 \pm 2\sqrt{10}$, $y = 9 \mp 2\sqrt{10}$	A1,A1	A1 for each 'pair'
	$CD^2 = \left(4\sqrt{10}\right)^2 + \left(4\sqrt{10}\right)^2$	M1	Pythagoras using <i>their</i> coordinates from solution of second quadratic. $(x_1 - x_2)^2 + (y_1 - y_2)^2$ must be seen if not using correct coordinates.
	$CD = 8\sqrt{5}$	A1	A1 for $8\sqrt{5}$ from $\sqrt{320}$ and all correct so far.

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	13

		1	
12 (a)	$2^{2x-1} \times 2^{2(x+y)} = 2^7$ and $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$	M1	expressing 4^{x+y} , 128 as powers of 2 and 9^{2y-x} , 27^{y-4} as powers of 3
	2x-1+2(x+y)=7 oe	A1	Correct equation from correct working
	2(2y-x)=3(y-4) oe	A1	Correct equation from correct working
	leading to $x = 4$, $y = -4$	A1	for both
	Example of Alternative method Method mark as above	M1	As before
	2x-1+2(x+y)=7	A1	One of the correct equations in x and y
	leading to $y = \frac{(8-4x)}{2}$ Correctly substituted in $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$ Leading to $2\left(\frac{2(8-4x)}{2}-x\right) = 3\left(\frac{(8-4x)}{2}-4\right)$ Leading to $x = 4$ and $y = -4$	A1 A1	Correct, unsimplified, equation in x or y only Both answers
(b)	$(2(5^z)-1)(5^z+1)=0$	M1	solution of quadratic
	leading to $2.5^z = 1$ $(5^z = -1)$		
	leading to 2.5 = 1 $(5 = -1)$	A1	correct solution
	$5^z = 0.5$	DM1	correct attempt to solve $2.5^z = k$, where k is positive
	$z = \frac{\log 0.5}{\log 5} \text{ or } z = -0.431 \text{ or better}$	A1	must have one solution only

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0606	11

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

1 (i)	180° or π radians or 3.14 radians (or better)	B1	
(ii)	2	B1	
(iii) (a)		B1	$y = \sin 2x$ all correct
(b)		B1 B1	for either $\uparrow\downarrow\uparrow$ starting at their highest value and ending at their lowest value Or a curve with highest value at $y=3$ and lowest value at $y=-1$ completely correct graph
(iv)	3	B1	
2 (i)	$\tan \theta = \frac{\left(8 + 5\sqrt{2}\right)\left(4 - 3\sqrt{2}\right)}{\left(4 + 3\sqrt{2}\right)\left(4 - 3\sqrt{2}\right)}$ $= \frac{32 - 24\sqrt{2} + 20\sqrt{2} - 30}{16 - 18}$ $= 1 + 2\sqrt{2} \text{cao}$	M1	attempt to obtain $\tan \theta$ and rationalise. Must be convinced that no calculators are being used
	$=1+2\sqrt{2} \text{cao}$	A1	are being used

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0606	11

(ii)	$\sec^{2} \theta = 1 + \tan^{2} \theta$ $= 1 + \left(-1 + 2\sqrt{2}\right)^{2}$ $= 1 + 1 - 4\sqrt{2} + 8$	M1	attempt to use $\sec^2 \theta = 1 + \tan^2 \theta$, with <i>their</i> answer to (i)
	$=1+1-4\sqrt{2}+8$	DM1	attempt to simplify, must be convinced no calculators are being used.
	$=10-4\sqrt{2}$	A1	Need to expand $\left(-1+2\sqrt{2}\right)^2$ as 3 terms
	Alternative solution: $AC^{2} = \left(4 + 3\sqrt{2}\right)^{2} + \left(8 + 5\sqrt{2}\right)^{2}$		
	$=148+104\sqrt{2}$		
	$\sec^2 \theta = \frac{148 + 104\sqrt{2}}{\left(4 + 3\sqrt{2}\right)^2}$	M1	
	$= \frac{148 + 104\sqrt{2}}{\left(4 + 3\sqrt{2}\right)^2} \times \frac{34 - 24\sqrt{2}}{34 - 24\sqrt{2}}$	DM1	
	$=10-4\sqrt{2}$	A1	
3 (i)	$64 + 192x^2 + 240x^4 + 160x^6$	B3,2,1,0	-1 each error
(ii)	$\left(64 + 192x^2 + 240x^4\right)\left(1 - \frac{6}{x^2} + \frac{9}{x^4}\right)$	B1	expansion of $\left(1 - \frac{3}{x^2}\right)^2$
	Terms needed $64 - (192 \times 6) + (240 \times 9)$	M1	attempt to obtain 2 or 3 terms using their (i)
	= 1072	A1	men (i)

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	11

4 (a)	$\mathbf{X}^2 = \begin{pmatrix} 4 - 4k & -8 \\ 2k & -4k \end{pmatrix}$	B2,1,0	-1 each incorrect element
(b)	Use of $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ $\begin{pmatrix} a & 1 \end{pmatrix} \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix}$	M1	use of $AA^{-1} = I$ and an attempt to obtain at least one equation.
	$\begin{pmatrix} a & 1 \\ b & 5 \end{pmatrix} \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Any 2 equations will give $a = 2$, $b = 4$	A1,A1	
		711,711	
	Alternative method 1: $\frac{1}{5a-b} \begin{pmatrix} 5 & -1 \\ b & a \end{pmatrix} = \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$	M1	correct attempt to obtain A ⁻¹ and comparison of at least one term.
	Compare any 2 terms to give $a = 2$, $b = 4$	A1,A1	
	Alternative method 2:		
	Inverse of $\frac{1}{6} \begin{pmatrix} 5 & -1 \\ -4 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix}$	M1 A1,A1	reasoning and attempt at inverse
5	$3x-1 = x(3x-1) + x^2 - 4$ or		
	$y = \left(\frac{y+1}{3}\right)y + \left(\frac{y+1}{3}\right)^2 - 4$		
	$4x^{2}-4x-3=0 \text{ or } 4y^{2}-4y-35=0$ $(2x-3)(2x+1)=0 \text{ or } (2y-7)(2y+5)=0$	M1	equate and attempt to obtain an equation in 1 variable
		DM1	forming a 3 term quadratic equation and attempt to solve
	leading to $x = \frac{3}{2}, x = -\frac{1}{2}$ and	A1	x values
	$y = \frac{7}{2}, y = -\frac{5}{2}$	A1	y values
	Midpoint $\left(\frac{1}{2}, \frac{1}{2}\right)$	B1	for midpoint, allow anywhere
	Perpendicular gradient = $-\frac{1}{3}$	M1	correct attempt to obtain the gradient of the perpendicular, using AB
	Perp bisector: $y - \frac{1}{2} = -\frac{1}{3} \left(x - \frac{1}{2} \right)$	M1	straight line equation through the midpoint; must be convinced it is a perpendicular gradient.
	(3y + x - 2 = 0)	A1	allow unsimplified

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	11

			T
6 (i)	$f\left(\frac{1}{2}\right) = \frac{a}{8} - \frac{15}{4} + \frac{b}{2} - 2 = 0$	M1	correct use of either $f\left(\frac{1}{2}\right)$ or $f(1)$
	leading to $a+4b=46$		paired correctly
	f(1) = a - 15 + b - 2 = 5		
	leading to $a+b=22$	A1	both equations correct (allow unsimplified)
	giving $b = 8$ (AG), $a = 14$	M1,A1	M1 for solution of equations A1 for both a and b. AG for b.
(ii)	$(2x-1)(7x^2-4x+2)$	M1,A1	M1 for valid attempt to obtain $g(x)$, by either observation or by algebraic long division.
(iii)	$7x^2 - 4x + 2 = 0$ has no real solutions as	M1	use of $b^2 - 4ac$
	$b^2 < 4ac$ $16 < 56$	A1	correct conclusion; must be from a correct $g(x)$ or $2g(x)$ www
	$(x-1)\frac{8x}{(x-1)} - \ln(4x^2+3)$	M1	differentiation of a quotient (or product)
7 (i)	$\frac{dy}{dx} = \frac{(x-1)\frac{8x}{(4x^2+2)} - \ln(4x^2+3)}{(x-1)^2}$	B1 A1	correct differentiation of $\ln(4x^2 + 3)$ all else correct
	When $x = 0$, $y = -\ln 3$ oe	B1	for y value
	$\frac{dy}{dx} = -\ln 3 \text{ so gradient of normal is } \frac{1}{\ln 3}$ (allow numerical equivalent)	M1	valid attempt to obtain gradient of the normal
	manual annation with 2 1	M1	attament at namual acception movet ha
	normal equation $y + \ln 3 = \frac{1}{\ln 3}x$	M1	attempt at normal equation must be using a perpendicular
	or $y = 0.910x - 1.10$, or $y = \frac{10}{11}x - \frac{11}{10}$ cao	A1	asing a perpendicular
	(Allow $y = 0.91x - 1.1$)		
(ii)	when $x = 0$, $y = -\ln 3$ when $y = 0$, $x = (\ln 3)^2$	M1	valid attempt at area
	Area = ± 0.66 or ± 0.67 or awrt these		
	or $\frac{1}{2}(\ln 3)^3$	A1	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	11

8 (i)	Range for f: $y \ge 3$ Range for g: $y \ge 9$	B1 B1	
(ii)	$x = -2 + \sqrt{y - 5}$	M1	attempt to obtain the inverse function
	$g^{-1}(x) = -2 + \sqrt{x - 5}$ Domain of g^{-1} : $x \ge 9$	A1 B1	Must be correct form for domain
	Alternative method: $y^2 + 4y + 9 - x = 0$ $y = \frac{-4 + \sqrt{16 - 4(9 - x)}}{2}$	M1 A1	attempt to use quadratic formula and find inverse must have \pm not \pm
(iii)	Need g $(3e^{2x})$ $(3e^{2x} + 2)^2 + 5 = 41$	M1 DM1	correct order correct attempt to solve the equation
	or $9e^{4x} + 12e^{2x} - 32 = 0$ $(3e^{2x} - 4)(3e^{2x} + 8) = 0$ leading to $3e^{2x} + 2 = \pm 6$ so $x = \frac{1}{2} \ln \frac{4}{3}$	M1	dealing with the exponential correctly
	or $e^{2x} = \frac{4}{3}$ so $x = \frac{1}{2} \ln \frac{4}{3}$	A1	in order to reach a solution for x Allow equivalent logarithmic forms
	Alternative method:		
	Using $f(x) = g^{-1}(41)$, $g^{-1}(41) = 4$ leading to $3e^{2x} = 4$, so $x = \frac{1}{2} \ln \frac{4}{3}$	M1 DM1	correct use of g^{-1} dealing with $g^{-1}(41)$ to obtain an equation in terms of e^{2x}
	3h.satpreP	M1 A1	dealing with the exponential correctly in order to reach a solution for <i>x</i> Allow equivalent logarithmic forms
(iv)	$g'(x) = 6e^{2x}$ $g'(\ln 4) = 96$	B1 B1	B1 for each

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	11

	1		
9 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 10x + 3$	M1	for differentiation
	When $x = 0$, for curve $\frac{dy}{dx} = 3$,		
	gradient of line also 3 so line is a tangent.	A1	comparing both gradients
	Alternate method:		
	$3x + 10 = x^3 - 5x^2 + 3x + 10$	M1	attempt to deal with simultaneous
	leading to $x^2 = 0$, so tangent at $x = 0$	A1	equations obtaining $x = 0$
(ii)	When $\frac{dy}{dx} = 0$, $(3x-1)(x-3) = 0$	M1	equating gradient to zero and valid attempt to solve
	$x = \frac{1}{3}, x = 3$	A1,A1	A1 for each
	. FPA		
(iii)	Area = $\frac{1}{2}(10+19)3 - \int_0^3 x^3 - 5x^2 + 3x + 10 dx$	B1	area of the trapezium
	$= \frac{87}{2} - \left[\frac{x^4}{4} - \frac{5x^3}{3} + \frac{3x^2}{2} + 10x \right]_0^3$	M1	attempt to obtain the area enclosed by the curve and the coordinate axes, by
	$=\frac{87}{2}-\left(\frac{81}{4}-45+\frac{27}{2}+30\right)$		integration
	$=\frac{1}{2}-\left(\frac{1}{4}-45+\frac{1}{2}+30\right)$	A1 DM1	integration all correct correct application of limits
	= 24.7 or 24.8	A1	(must be using their 3 from (ii) and 0)
		711	/ / /
	Alternative method:		
	Area = $\int_0^3 (3x+10) - (x^3 - 5x^2 + 3x + 10) dx$	B1 M1	correct use of 'Y-y'
	$= \int_0^3 -x^3 + 5x^2 dx$	A1	attempt to integrate integration all correct
	$= \left[-\frac{x^4}{4} + \frac{5x^3}{3} \right]_0^3 = \frac{99}{4}$	DM1 A1	correct application of limits
10 (a)	$\sin^2 x = \frac{1}{4}$		
	$\sin x = (\pm)\frac{1}{2}$	M1	using $\csc x = \frac{1}{\sin x}$ and obtaining
	$x = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$	A1,A1	$\sin x =$ A1 for one correct pair, A1 for another correct pair with no extra solutions

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	11

(b)	$(\sec^2 3y - 1) - 2\sec 3y - 2 = 0$ $\sec^2 3y - 2\sec 3y - 3 = 0$ $(\sec 3y + 1)(\sec 3y - 3) = 0$ leading to $\cos 3y = -1$, $\cos 3y = \frac{1}{3}$ $3y = 180^\circ, 540^\circ 3y = 70.5^\circ, 289.5^\circ, 430.5^\circ$	M1 M1 M1	use of the correct identity attempt to obtain a 3 term quadratic equation in sec 3y and attempt to solve dealing with sec and 3y correctly A1 for a correct pair, A1 for a second
	$y = 60^{\circ}, 180^{\circ}, 23.5^{\circ}, 96.5^{\circ}, 143.5^{\circ}$ Alternative 1: $\sec^2 3y - 2\sec 3y - 3 = 0$	A1 M1	correct pair, A1 for correct 5 th solution and no other within the range use of the correct identity
	leading to $3\cos^2 3y + 2\cos 3y - 1$	M1	attempt to obtain a quadratic equation
	$(3\cos y - 1)(\cos y + 1) = 0$	M1	in cos 3y and attempt to solve dealing with 3y correctly A marks as above
	Alternative 2: $\frac{\sin^2 y}{\cos^2 y} - \frac{2}{\cos y} - 2 = 0$ $(1 - \cos^2 x) - 2\cos x - 2\cos^2 x = 0$	M1	use of the correct identity, $\tan y = \frac{\sin y}{\cos y}$ and $\sec y = \frac{1}{\cos y}$, then as before
(c)	$z - \frac{\pi}{3} = \frac{\pi}{3}, \frac{4\pi}{3}$ $z = \frac{2\pi}{3}, \frac{5\pi}{3} \text{ or } 2.09 \text{ or } 2.1, 5.24$	M1 A1,A1	A1 for a correct solution A1 for a second correct solution and no other within the range

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

Abbreviations

awrt	answers which round to
cao	correct answer only
4	444

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

1	$k^{2} - 4(2k+5)$ (< 0) $k^{2} - 8k - 20$ (< 0) (k-10)(k+2) (< 0) critical values of 10 and -2 -2 < k < 10	M1 M1 A1 A1	use of $b^2 - 4ac$, (not as part of quadratic formula unless isolated at a later stage) with correct values for a , b and c Do not need to see < at this point attempt to obtain critical values correct critical values correct range
	Alternative 1:		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(2k+5)x+k$	M1	attempt to differentiate, equate to zero and substitute <i>x</i> value back in to obtain a <i>y</i> value
	When $\frac{dy}{dx} = 0$, $x = \frac{-k}{2(2k+5)}$, $y = \frac{8k+20-k^2}{4(2k+5)}$	M1	consider $y = 0$ in order to obtain critical values
	When $y = 0$, obtain critical values of 10 and -2 -2 < k < 10	A1 A1	correct critical values correct range
	Alternative 2:		
	$y = (2k+5)\left(\left(x + \frac{k}{2(2k+5)}\right)^2 - \frac{k^2}{4(2k+5)}\right) + 1$	M1	attempt to complete the square and consider $1 - \frac{k^2}{4(2k+5)}$
	Looking at $1 - \frac{k^2}{4(2k+5)} = 0$ leads to	M1	attempt to solve above = to 0, to obtain critical values
	critical values of 10 and -2 -2 < k < 10	A1 A1	correct critical values correct range

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

2	$\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}}{\frac{1}{\sin\theta}}$	M1	for $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\cot \theta = \frac{\cos \theta}{\sin \theta}$ and
	$\sin^2\theta + \cos^2\theta$		$\csc\theta = \frac{1}{\sin\theta}$; allow when used
	$=\frac{\frac{\sin\theta\cos\theta}{\sin\theta}}{\frac{1}{\sin\theta}}$	M1	dealing correctly with fractions in the numerator; allow when seen
	$=\frac{1}{\cos\theta}$	M1	use of the appropriate identity; allow when seen
	$= \sec \theta$	A1	must be convinced it is from completely correct work (beware missing brackets)
	Alternative:		
	$\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\tan^2\theta + 1}{\tan\theta}}{\csc\theta}$	M1	for either $\tan \theta = \frac{1}{\cot \theta}$ or
	Coscer		$\cot \theta = \frac{1}{\tan \theta}$ and
	$=\frac{\sec^2\theta}{\tan\theta\frac{1}{\sin\theta}}$	M1	$\csc\theta = \frac{1}{\sin\theta}$; allow when used dealing correctly with fractions in numerator; allow when seen
	$=\frac{\sec^2\theta}{\sec\theta}$	M1	use of the appropriate identity; allow when seen
	$= \sec \theta$	A1	must be convinced it is from completely correct work
3	$\mathbf{A}^{-1} = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix}$	B1	$\frac{1}{2}$ multiplied by a matrix
	(r) 1(3 -2)(8)	B1	for matrix
		M1	attempt to use the inverse matrix, must be pre-multiplication
	$ \binom{x}{y} = \frac{1}{2} \binom{6}{-4} $		
	x = 3, y = -2	A1, A1	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

4	(i)	Area = $ \left(\frac{1}{2} \times 12^2 \times 1.7 \right) + \left(\frac{1}{2} \times 12^2 \sin(2\pi - 1.7 - 2.4) \right) $	B1,B1	B1 for sector area, allow unsimplified B1 for correct angle <i>BOC</i> , allow
			M1	unsimplified correct attempt at area of triangle, allow unsimplified using <i>their</i> angle <i>BOC</i> (Their angle <i>BOC</i> must not be 1.7
		= awrt 181	A1	or 2.4)
	(**)		N/1	DC
	(ii)	$BC^{2} = 12^{2} + 12^{2} - (2 \times 12 \times 12 \cos 2.1832)$ $(2\pi - 4.1)$	M1	in (i), allow if used in (ii). Allow
		or $BC = 2 \times 12 \times \sin\left(\frac{2\pi - 4.1}{2}\right)$		use of <i>their</i> angle <i>BOC</i> .
		BC = 21.296	A1	
		Perimeter = $(12 \times 1.7) + 12 + 12 + 21.296$	B1	for arc length, allow unsimplified
		19	M1	for a correct 'plan' (an arc + 2 radii and BC)
		= 65.7	A1	
5	(a) (i)	20160	B1	
3				
	(ii)	$3 \times {}^{6}P_{4} \times 2$ $= 2160$	B1,B1	B1 for ${}^{6}P_{4}$ (must be seen in a product)
				B1 for all correct, with no further working
	(iii)	5×2^6P_4	B1,B1	B1 for 6P_4 (must be seen in a
		= 3600	B1	product) B1 for 5 (must be in a product) B1 for all correct, with no further
		Alternative 1:		working
		${}^{6}C_{4} \times 5! \times 2$ = 3600	B2	for ${}^6C_4 \times 5!$
			B1	for ${}^6C_4 \times 5! \times 2$
		Alternative 2: $(^{7}P_{5}-^{6}P_{5})\times 2$	B2	for $(^7P_5 - ^6P_5)$
		$ (I_5 - I_5) \times 2 $ $= 3600$	B1	for $({}^{7}P_{5} - {}^{6}P_{5}) \times 2$
		Alternative 3:		
		$2!(^{6}P_{4} + (^{6}P_{1} \times ^{5}P_{3}) + (^{6}P_{2} \times ^{4}P_{2}) + (^{6}P_{3} \times ^{3}P_{1}) + ^{6}P_{4})$	B2	4 terms correct or omission of 2! in
		= 3600		each term
			B1	all correct
			l	I .

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

	(b) (i)	$^{14}C_4 \times ^{10}C_4$ or $^{14}C_8 \times ^8C_4$ (or numerical or factorial equivalent) = 210210	B1,B1	B1 for either ${}^{14}C_4$ or ${}^{14}C_8$ as part of a product B1 for correct answer, with no further working
	(ii)	${}^{8}C_{4} \times {}^{6}C_{4}$ = 1050	B1,B1	B1 for either 8C_4 or 6C_4 as part of a product B1 for correct answer with no further working
6	(i)	10ln4 or 13.9 or better	B1	
	(ii)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \right) \frac{20t}{t^2 + 4} - 4$	M1 B1	attempt to differentiate and equate to zero $\frac{20t}{t^2 + 4}$ or equivalent seen
		When $\frac{dx}{dt} = 0$, $\frac{20t}{t^2 + 4} = 4$ leading to $t^2 - 5t + 4 = 0$ t = 1, $t = 4$	DM1	attempt to solve their $\frac{dx}{dt} = 0$, must be a 2 or 3 term quadratic equation with real roots for both

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

(iii)	$If \left(v=\right) \frac{20t}{t^2+4}-4$		
	$(a=) \frac{20(t^2+4)-20t(2t)}{(t^2+4)^2}$	M1	attempt to differentiate their $\frac{dx}{dt}$
		A1 A1	$20(t^2+4)$ $20t(2t)$
	$20(4-t^2)$ or $80-20t^2$ or $4-t^2$ or equivalent	A1	$20(4-t^2)$ or $80-20t^2$ or $4-t^2$
	expression involving $-t^2$ When acceleration is 0, $t = 2$ only	B1	t = 2, dependent on obtaining first and second A marks
	Alternative 1 for first 3 marks: $If(v =) \frac{20t - 4t^2 - 16}{t^2 + 4}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
	$(a=)\frac{(t^2+4)(20-8t)-(20t-4t^2-16)(2t)}{(t^2+4)^2}$	A1 A1	for $(t^2 + 4)(20 - 8t)$ for $(20t - 4t^2 - 16)(2t)$
	Alternative 2 for M1 mark: If $(v =) 20t(t^2 + 4)^{-1} - 4$ $(a =) 20t(-2t(t^2 + 4)^{-2}) + 20(t^2 + 4)^{-1}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
	Alternative 3 for the first 3 marks If $(v =) (20t - 4t^2 - 16)(t^2 + 4)^{-1}$ $(a =) (20t - 4t^2 - 16)(-2t(t^2 + 4)^{-2}) + (20 - 8t)(t^2 + 4)^{-1}$ Numerator = $-2t(20t - 4t^2 - 16) + (20 - 8t)(t^2 + 4)$	M1 A1 A1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$ for $2t(20t - 4t^2 - 15)$ for $(20 - 8t)(t^2 + 4)$
7 (i)	$\overrightarrow{DA} = 3\mathbf{a} - \mathbf{b}$	B1	mark final answer, allow unsimplified
(ii)	$\overrightarrow{DB} = 7\mathbf{a} - \mathbf{b}$	В1	mark final answer, allow unsimplified
(iii)	$\overrightarrow{AX} = \lambda \left(4\mathbf{a} + \mathbf{b} \right)$	В1	mark final answer, allow unsimplified
(iv)	$\overrightarrow{DX} = 3\mathbf{a} - \mathbf{b} + \lambda \left(4\mathbf{a} + \mathbf{b} \right)$	M1 A1	their (i) + their (iii) or equivalent valid method or 3a - b + their (iii) Allow unsimplified
		111	1 110 W Gilbinipiiiiou

Page 7	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2015	0606	12

(v)	$3\mathbf{a} - \mathbf{b} + \lambda (4\mathbf{a} + \mathbf{b}) = \mu (7\mathbf{a} - \mathbf{b})$ Equate like vectors: $3 + 4\lambda = 7\mu$ $-1 + \lambda = -\mu$ leads to $\lambda = \frac{4}{11}$, $\mu = \frac{7}{11}$	M1 DM1 A1,A1	equating their (iv) and $\mu \times$ their (ii) for an attempt to equate like vectors and attempt to solve 2 linear equations for λ and μ
8 (i)	$\int 5e^{2x} - \frac{1}{2}e^{-2k} (+c)$	B1, B1	B1 for each term, allow unsimplified
(ii)	$\left(5e^{2k} - \frac{1}{2}e^{-2k}\right) - \left(5e^{-2k} - \frac{1}{2}e^{2k}\right)$	M1	use of limits provided integration has taken place. Signs must be correct if brackets are not included.
		A1	allow any correct form
(iii)	$ \left(5e^{2k} - \frac{1}{2}e^{-2k}\right) \left(5e^{-2k} - \frac{1}{2}e^{2k}\right) = -60 $ or $ \frac{11}{2}e^{2k} - \frac{11}{2}e^{-2k} = -60 $	B1	correct expression from (ii) either simplified or unsimplified equated to – 60, must be first line seen.
	or equivalent $\frac{1}{2k}$ $\frac{1}{2k}$ $\frac{-2k}{2}$ $\frac{1}{20}$ $\frac{-2k}{2}$	DD1	
	leading to $11e^{2k} - 11e^{-2k} + 120 = 0$	DB1	must be convinced as AG
(iv)	$11y^{2} + 120y - 11 = 0$ $(11y - 1)(y + 11) = 0$ leading to $k = \frac{1}{2} \ln \frac{1}{11}, \ln \frac{1}{\sqrt{11}}, -\ln \sqrt{11}, -\frac{1}{2} \ln 11$	M1 DM1	attempt to obtain a quadratic equation in y or e^{2k} and solve to get y or e^{2k} (only need positive solution) attempt to deal with e to get $k = 1$.
	2 11 \sqrt{11} 2	A1	any of given answers only.

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

		I	
9	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - 6\sin 2x$	M1,A1	M1 for attempt to differentiate A1 for all correct
	When $x = \frac{\pi}{4}$, $y = \pi$	B1	for y
	$\frac{dy}{dx} = -2$ so gradient of normal = $\frac{1}{2}$	DM1	for substitution of $x = \frac{\pi}{4}$ into <i>their</i>
			$\frac{\mathrm{d}y}{\mathrm{d}x}$ and use of ' $m_1m_2 = -1$ ',
			dependent on first M1
	Normal equation $y - \pi = \frac{1}{2} \left(x - \frac{\pi}{4} \right)$	DM1	correct attempt to obtain the equation of the normal, dependent on previous DM mark
	When $x = 0$, $y = \frac{7\pi}{8}$	A1	must be terms of π
	When $y = 0, x = -\frac{7\pi}{4}$	A1	must be terms of π
	$Area = \frac{1}{2} \times \frac{7\pi}{4} \times \frac{7\pi}{8} = \frac{49\pi^2}{64}$	B1ft	Follow through on <i>their x</i> and <i>y</i> intercepts; must be exact values
10 ()	$\cos^2 3x = \frac{1}{2}, \qquad \cos 3x = (\pm)\frac{1}{\sqrt{2}}$		
10 (a)	Z VZ	M1	complete correct method, dealing
	$3x = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$ $x = 15^{\circ}, 45^{\circ}, 75^{\circ}, 105^{\circ}$	A1,A1	with sec and 3, correctly A1 for each correct pair
(b)	$3(\cot^{2} y + 1) + 5\cot y - 5 = 0$ Leading to $3\cot^{2} y + 5\cot y - 2 = 0 \text{ or}$	M1	use of a correct identity to get an equation in terms of one trig ratio only
	$2 \tan^2 y - 5 \tan y - 3 = 0$	M1	for $\cot y = \frac{1}{1}$ to obtain either a
	$(3\cot y - 1)(\cot y + 2) = 0$ or		tan y quadratic equation in tan y or
	$(\tan y - 3)(2\tan y + 1) = 0$		solutions in terms of tan y; allow where appropriate
	$\tan y = 3, \tan y = \frac{1}{2}$	M1	for solution of a quadratic equation in terms of either tan y or cot y
	$y = 71.6^{\circ}, 251.6^{\circ}$ 153.4°, 333.4°	A1,A1	A1 for each correct 'pair'
(c)	$\sin\left(z+\frac{\pi}{3}\right) = \frac{1}{2}$	M1	completely correct method of solution
	$z + \frac{\pi}{3} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}$	A1	one correct solution in range
	$z = \frac{\pi}{2}, \frac{11\pi}{6}$	M1	correct attempt to obtain a second
	(allow 1.57, 5.76)	A1	solution within the range second correct solution (and no other)
1			ı

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2015	0606	13

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

1 (i)	180° or π radians or 3.14 radians (or better)	B1	
(ii)	2	B1	
(iii) (a)		B1	$y = \sin 2x$ all correct
(b)		B1	for either $\uparrow\downarrow\uparrow$ starting at their highest value and ending at their lowest value Or a curve with highest value at $y=3$ and lowest value at $y=-1$ completely correct graph
(iv)	3	B1	-
2 (i)	$\tan \theta = \frac{\left(8 + 5\sqrt{2}\right)\left(4 - 3\sqrt{2}\right)}{\left(4 + 3\sqrt{2}\right)\left(4 - 3\sqrt{2}\right)}$ $= \frac{32 - 24\sqrt{2} + 20\sqrt{2} - 30}{16 - 18}$	M1	attempt to obtain $\tan \theta$ and rationalise. Must be convinced that no calculators are being used
	$=1+2\sqrt{2}$ cao	A1	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	13

(ii)	$\sec^2\theta = 1 + \tan^2\theta$		
, ,	$=1+\left(-1+2\sqrt{2}\right)^{2}$	M1	attempt to use $\sec^2 \theta = 1 + \tan^2 \theta$, with
	$= 1 + 1 - 4\sqrt{2} + 8$	DM1	their answer to (i) attempt to simplify, must be convinced no calculators are being used.
	$=10-4\sqrt{2}$	A1	Need to expand $\left(-1+2\sqrt{2}\right)^2$ as 3
	Alternative solution:		terms
	$AC^2 = \left(4 + 3\sqrt{2}\right)^2 + \left(8 + 5\sqrt{2}\right)^2$		
	$=148+104\sqrt{2}$		
	$\sec^2 \theta = \frac{148 + 104\sqrt{2}}{\left(4 + 3\sqrt{2}\right)^2}$	M1	
	$= \frac{148 + 104\sqrt{2}}{\left(4 + 3\sqrt{2}\right)^2} \times \frac{34 - 24\sqrt{2}}{34 - 24\sqrt{2}}$	DM1	
	$=10-4\sqrt{2}$	A1	
3 (i)	$64 + 192x^2 + 240x^4 + 160x^6$	B3,2,1,0	−1 each error
(ii)	$\left(64 + 192x^2 + 240x^4\right)\left(1 - \frac{6}{x^2} + \frac{9}{x^4}\right)$	B1	expansion of $\left(1 - \frac{3}{x^2}\right)^2$
	Terms needed $64 - (192 \times 6) + (240 \times 9)$	M1	attempt to obtain 2 or 3 terms using their (i)
	= 1072	A1	men (1)

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	13

4	(a)	$\mathbf{X}^2 = \begin{pmatrix} 4 - 4k & -8 \\ 2k & -4k \end{pmatrix}$	B2,1,0	-1 each incorrect element
	(b)	Use of $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ $\begin{pmatrix} a & 1 \\ b & 5 \end{pmatrix} \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	M1	use of $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ and an attempt to obtain at least one equation.
		Any 2 equations will give $a = 2$, $b = 4$	A1,A1	
		Alternative method 1: $ \frac{1}{5a-b} \begin{pmatrix} 5 & -1 \\ b & a \end{pmatrix} = \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix} $ Compare any 2 terms to give $a = 2$, $b = 4$	M1 A1,A1	correct attempt to obtain A ⁻¹ and comparison of at least one term.
		Alternative method 2:		
		Inverse of $\frac{1}{6} \begin{pmatrix} 5 & -1 \\ -4 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix}$	M1 A1,A1	reasoning and attempt at inverse
5		$3x-1 = x(3x-1) + x^2 - 4$ or $y = \left(\frac{y+1}{3}\right)y + \left(\frac{y+1}{3}\right)^2 - 4$		
		$4x^2 - 4x - 3 = 0$ or $4y^2 - 4y - 35 = 0$ (2x - 3)(2x + 1) = 0 or $(2y - 7)(2y + 5) = 0$	M1	equate and attempt to obtain an equation in 1 variable
		leading to $x = \frac{3}{2}, x = -\frac{1}{2}$ and	DM1	forming a 3 term quadratic equation and attempt to solve
		$y = \frac{7}{2}, y = -\frac{5}{2}$	A1 A1	x values
		$\frac{2}{2} = 2$ Midpoint $\left(\frac{1}{2}, \frac{1}{2}\right)$	B1	y values for midpoint, allow anywhere
		Perpendicular gradient = $-\frac{1}{3}$	M1	correct attempt to obtain the gradient
		Perp bisector: $y - \frac{1}{2} = -\frac{1}{3} \left(x - \frac{1}{2} \right)$	M1	of the perpendicular, using <i>AB</i> straight line equation through the midpoint; must be convinced it is a
		(3y+x-2=0)	A1	perpendicular gradient. allow unsimplified

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	13

			T
6 (i)	$f\left(\frac{1}{2}\right) = \frac{a}{8} - \frac{15}{4} + \frac{b}{2} - 2 = 0$	M1	correct use of either $f\left(\frac{1}{2}\right)$ or $f(1)$
	leading to $a+4b=46$		paired correctly
	f(1) = a - 15 + b - 2 = 5		
	leading to $a+b=22$	A1	both equations correct (allow unsimplified)
	giving $b = 8$ (AG), $a = 14$	M1,A1	M1 for solution of equations A1 for both a and b. AG for b.
(ii)	$(2x-1)(7x^2-4x+2)$	M1,A1	M1 for valid attempt to obtain $g(x)$, by either observation or by algebraic long division.
(iii)	$7x^2 - 4x + 2 = 0$ has no real solutions as	M1	use of $b^2 - 4ac$
	$b^2 < 4ac$ $16 < 56$	A1	correct conclusion; must be from a correct $g(x)$ or $2g(x)$ www
	$(x-1)\frac{8x}{(x-1)} - \ln(4x^2+3)$	M1	differentiation of a quotient (or product)
7 (i)	$\frac{dy}{dx} = \frac{(x-1)\frac{8x}{(4x^2+2)} - \ln(4x^2+3)}{(x-1)^2}$	B1 A1	correct differentiation of $\ln(4x^2 + 3)$ all else correct
	When $x = 0$, $y = -\ln 3$ oe	B1	for y value
	$\frac{dy}{dx} = -\ln 3 \text{ so gradient of normal is } \frac{1}{\ln 3}$ (allow numerical equivalent)	M1	valid attempt to obtain gradient of the normal
	manual annation with 2 1	M1	attament at namual acception movet ha
	normal equation $y + \ln 3 = \frac{1}{\ln 3}x$	M1	attempt at normal equation must be using a perpendicular
	or $y = 0.910x - 1.10$, or $y = \frac{10}{11}x - \frac{11}{10}$ cao	A1	asing a perpendicular
	(Allow $y = 0.91x - 1.1$)		
(ii)	when $x = 0$, $y = -\ln 3$ when $y = 0$, $x = (\ln 3)^2$	M1	valid attempt at area
	Area = ± 0.66 or ± 0.67 or awrt these		
	or $\frac{1}{2}(\ln 3)^3$	A1	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	13

8 (i)	Range for f: $y \ge 3$ Range for g: $y \ge 9$	B1 B1	
(ii)	$x = -2 + \sqrt{y - 5}$	M1	attempt to obtain the inverse function
	$g^{-1}(x) = -2 + \sqrt{x-5}$ Domain of g^{-1} : $x \ge 9$	A1 B1	Must be correct form for domain
	Alternative method: $y^2 + 4y + 9 - x = 0$	M1	attempt to use quadratic formula and find inverse
	$y = \frac{-4 + \sqrt{16 - 4(9 - x)}}{2}$	A1	must have + not ±
(iii)	Need $g(3e^{2x})$	M1	correct order
	$(3e^{2x} + 2)^2 + 5 = 41$	DM1	correct attempt to solve the equation
	or $9e^{4x} + 12e^{2x} - 32 = 0$ $(3e^{2x} - 4)(3e^{2x} + 8) = 0$		
	leading to $3e^{2x} + 2 = \pm 6$ so $x = \frac{1}{2} \ln \frac{4}{3}$	M1	dealing with the exponential correctly in order to reach a solution for <i>x</i>
	or $e^{2x} = \frac{4}{3}$ so $x = \frac{1}{2} \ln \frac{4}{3}$	A1	Allow equivalent logarithmic forms
	Alternative method:		/ / /
	Using $f(x) = g^{-1}(41)$, $g^{-1}(41) = 4$	M1	correct use of g ⁻¹
	leading to $3e^{2x} = 4$, so $x = \frac{1}{2} \ln \frac{4}{3}$	DM1	dealing with $g^{-1}(41)$ to obtain an equation in terms of e^{2x}
	3	M1 A1	dealing with the exponential correctly
	".satpre?	AI	in order to reach a solution for <i>x</i> Allow equivalent logarithmic forms
(iv)	$g'(x) = 6e^{2x}$	B1	B1 for each
	$g'(\ln 4) = 96$	B1	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	13

	1		
9 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 10x + 3$	M1	for differentiation
	When $x = 0$, for curve $\frac{dy}{dx} = 3$,		
	gradient of line also 3 so line is a tangent.	A1	comparing both gradients
	Alternate method:		
	$3x + 10 = x^3 - 5x^2 + 3x + 10$	M1	attempt to deal with simultaneous
	leading to $x^2 = 0$, so tangent at $x = 0$	A1	equations obtaining $x = 0$
(ii)	When $\frac{dy}{dx} = 0$, $(3x-1)(x-3) = 0$	M1	equating gradient to zero and valid attempt to solve
	$x = \frac{1}{3}, x = 3$	A1,A1	A1 for each
	. FPA		
(iii)	Area = $\frac{1}{2}(10+19)3 - \int_0^3 x^3 - 5x^2 + 3x + 10 dx$	B1	area of the trapezium
	$= \frac{87}{2} - \left[\frac{x^4}{4} - \frac{5x^3}{3} + \frac{3x^2}{2} + 10x \right]_0^3$	M1	attempt to obtain the area enclosed by the curve and the coordinate axes, by
	$=\frac{87}{2} - \left(\frac{81}{4} - 45 + \frac{27}{2} + 30\right)$		integration
	$=\frac{1}{2}-\left(\frac{1}{4}-45+\frac{1}{2}+30\right)$	A1 DM1	integration all correct correct application of limits
	= 24.7 or 24.8	A1	(must be using their 3 from (ii) and 0)
		711	/ / /
	Alternative method:		
	Area = $\int_0^3 (3x+10) - (x^3 - 5x^2 + 3x + 10) dx$	B1 M1	correct use of 'Y-y'
	$= \int_0^3 -x^3 + 5x^2 dx$	A1	attempt to integrate integration all correct
	$= \left[-\frac{x^4}{4} + \frac{5x^3}{3} \right]_0^3 = \frac{99}{4}$	DM1 A1	correct application of limits
10 (a)	$\sin^2 x = \frac{1}{4}$		
	$\sin x = (\pm)\frac{1}{2}$	M1	using $\csc x = \frac{1}{\sin x}$ and obtaining
	$x = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$	A1,A1	$\sin x =$ A1 for one correct pair, A1 for another correct pair with no extra solutions

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	13

(b)	$(\sec^2 3y - 1) - 2\sec 3y - 2 = 0$ $\sec^2 3y - 2\sec 3y - 3 = 0$ $(\sec 3y + 1)(\sec 3y - 3) = 0$ leading to $\cos 3y = -1$, $\cos 3y = \frac{1}{3}$ $3y = 180^\circ, 540^\circ 3y = 70.5^\circ, 289.5^\circ, 430.5^\circ$ $y = 60^\circ, 180^\circ, 23.5^\circ, 96.5^\circ, 143.5^\circ$	M1 M1 M1 A1,A1 A1	use of the correct identity attempt to obtain a 3 term quadratic equation in sec 3y and attempt to solve dealing with sec and 3y correctly A1 for a correct pair, A1 for a second correct pair, A1 for correct 5 th solution and no other within the range
	Alternative 1: $\sec^2 3y - 2\sec 3y - 3 = 0$ leading to $3\cos^2 3y + 2\cos 3y - 1$ $(3\cos y - 1)(\cos y + 1) = 0$ Alternative 2:	M1 M1 M1	use of the correct identity attempt to obtain a quadratic equation in cos 3y and attempt to solve dealing with 3y correctly A marks as above
	$\frac{\sin^2 y}{\cos^2 y} - \frac{2}{\cos y} - 2 = 0$ $(1 - \cos^2 x) - 2\cos x - 2\cos^2 x = 0$	M1	use of the correct identity, $\tan y = \frac{\sin y}{\cos y}$ and $\sec y = \frac{1}{\cos y}$, then as before
(c)	$z - \frac{\pi}{3} = \frac{\pi}{3}, \frac{4\pi}{3}$ $z = \frac{2\pi}{3}, \frac{5\pi}{3} \text{ or } 2.09 \text{ or } 2.1, 5.24$	M1 A1,A1	A1 for a correct solution A1 for a second correct solution and no other within the range

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the March 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE® components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

1 (i)	Members who play football or cricket, or both	B1	
(ii)	Members who do not play tennis	B1	
(iii)	There are no members who play both football and tennis	B1	
(iv)	There are 10 members who play both cricket and tennis.	B1	
2	$kx - 3 = 2x^{2} - 3x + k$ $2x^{2} - x(k+3) + (k+3) = 0$ Using $b^{2} - 4ac$,	M1	for attempt to obtain a 3 term quadratic equation in terms of <i>x</i>
	$(k+3)^2 - (4 \times 2 \times (k+3)) (<0)$	DM1	for use of $b^2 - 4ac$
	(k+3)(k-5) (< 0)	DM1	for attempt to solve quadratic equation, dependent on both previous M marks
	Critical values $k = -3, 5$ so $-3 < k < 5$	A1 A1	for both critical values for correct range
3 (i)		B1	for shape, must touch the <i>x</i> -axis in the correct quadrant
		B1 B1	for y intercept for x intercept
(ii)	$4-5x = \pm 9$ or $(4-5x)^2 = 81$	M1	for attempt to obtain 2 solutions, must be a complete method
	leading to $x = -1$, $x = \frac{13}{5}$	A1, A1	A1 for each
4 (i)	$729 + 2916x + 4860x^2$	B1,B1 B1	B1 for each correct term
(ii)	2 × their 4860 – their 2916 = 6804	M1 A1	for attempt at 2 terms, must be as shown

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

5 (i)	gradient = 4 Using either (2, 1) or (3, 5), $c = -7$ $e^y = 4x + c$	B1 M1	for gradient, seen or implied for attempt at straight line equation to obtain a value for <i>c</i>
	so $y = \ln(4x - 7)$	M1,A1	for correct method to deal with e ^y
	Alternative method:		
	$\frac{y-1}{5-1} = \frac{x-2}{3-2}$ or equivalent	M1	for attempt at straight line equation using both points
		A1	allow correct unsimplified for correct method to deal with e ^y
	$e^{y} = 4x - 7$ so $y = \ln(4x - 7)$	M1 A1	for correct method to dear with e
(ii)	$x > \frac{7}{4}$	B1ft	ft on their $4x-7$
(iii)	$\ln 6 = \ln(4x - 7)$		
	so $x = \frac{13}{4}$	B1ft	ft on their $4x - 7$
6 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x(2\sec^2 2x) - \tan 2x}{x^2}$	M1	for attempt to differentiate a quotient (or product)
	Or $\frac{dy}{dx} = x^{-1} (2 \sec^2 2x) + (-x^{-2}) \tan 2x$	A2,1,0	-1 each error
(ii)	When $x = \frac{\pi}{8}$, $y = \frac{8}{\pi}$ (2.546)	B1	for y-coordinate (allow 2.55)
	When $x = \frac{\pi}{8}$, $\frac{dy}{dx} = \frac{\frac{\pi}{2} - 1}{\frac{\pi^2}{64}}$.00	
	$= \frac{32}{\pi} - \frac{64}{\pi^2} (3.701)$		
	Equation of the normal:		
	$y - \frac{8}{\pi} = -\frac{\pi^2}{32(\pi - 2)} \left(x - \frac{\pi}{8}\right)$	M1	for an attempt at the normal, must be working with a perpendicular gradient
	y = -0.27x + 2.65 (allow 2.66)	A1	allow in unsimplified form in terms of π or simplified decimal form

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

7 (i)	$p\left(\frac{1}{2}\right): \frac{a}{8} + \frac{b}{4} - \frac{3}{2} - 4 = 0$ Simplifies to $a + 2b = 44$ $p(-2): -8a + 4b + 6 - 4 = -10$ Simplifies to $2a - b = 3$ oe Leads to $a = 10, b = 17$	M1 M1 DM1 A1	for correct use of $x = \frac{1}{2}$ for correct use of $x = -2$ for solution of equations for both, be careful as AG for a , allow verification
(ii)	$p(x) = 10x^{3} + 17x^{2} - 3x - 4$ $= (2x - 1)(5x^{2} + 11x + 4)$	B2,1,0	−1 each error
(iii)	$x = \frac{1}{2}$	B1	
	$x = \frac{-11 \pm \sqrt{41}}{10}$	B1, B1	
8 (a) (i)	Range $0 \le y \le 1$	B1	
(ii)	Any suitable domain to give a one-one function	B1	e.g. $0 \le x \le \frac{\pi}{4}$
(b) (i)	$y = 2 + 4 \ln x \text{ oe}$ $\ln x = \frac{y - 2}{4} \text{ oe}$	M1	for a complete method to find the inverse
	$g^{-1}(x) = e^{\frac{x-2}{4}}$ Domain $x \in$ Range $y > 0$	A1 B1 B1	must be in the correct form
(ii)	$g(x^2+4)=10$	M1	for correct order
	$2 + 4 \ln(x^2 + 4) = 10$ leading to $x = 1.84$ only	DM1	for attempt to solve
	Alternative method: $h(x) = x^2 + 4 = g^{-1}(10)$	A1 M1	for one solution only for correct order
	$g^{-1}(10) = e^2$, so $x^2 + 4 = e^2$	DM1	for attempt to solve
	leading to $x = 1.84$ only	A1	for one solution only
(iii)	$\frac{4}{x} = 2x$	B1	for given equation, allow in this form
	$x^2 = 2$	M1	for attempt to solve, must be using derivatives
	$x = \sqrt{2}$	A1	for one solution only, allow 1.41 or better.

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

	T		,
9 (i)	Area of triangular face = $\frac{1}{2}x^2 \frac{\sqrt{3}}{2} = \frac{\sqrt{3}x^2}{4}$	B1	for area of triangular face
	Volume of prism = $\frac{\sqrt{3}x^2}{4} \times y$	M1	for attempt at volume <i>their</i> area $\times y$
	$\frac{\sqrt{3}x^2}{4} \times y = 200\sqrt{3}$		
	so $x^2y = 800$	A1	for correct relationship between x
	$A = 2 \times \frac{\sqrt{3}x^2}{4} + 2xy$	M1	and y for a correct attempt to obtain
	leading to $A = \frac{\sqrt{3}x^2}{2} + \frac{1600}{x}$	A1	surface area using <i>their</i> area of triangular face for eliminating <i>y</i> correctly to obtain given answer
(ii)	$\frac{\mathrm{d}A}{\mathrm{d}x} = \sqrt{3}x - \frac{1600}{x^2}$	M1	for attempt to differentiate
	When $\frac{dA}{dx} = 0$, $x^3 = \frac{1600}{\sqrt{3}}$	M1	for equating $\frac{dA}{dx}$ to 0 and attempt
	x = 9.74 so $A = 246$	A1 A1	to solve for correct <i>x</i> for correct <i>A</i>
	$\frac{d^2 A}{dx} = \sqrt{3} + \frac{3200}{x^3}$ which is positive for $x = 9.74$ so the value is a minimum	M1 A1ft	for attempt at second derivative and conclusion, or alternate methods ft for a correct conclusion from completely correct work, follow through on <i>their</i> positive <i>x</i> value.
10 (i)	$\tan \theta = \frac{1 + 2\sqrt{5}}{6 + 3\sqrt{5}} \times \frac{6 - 3\sqrt{5}}{6 - 3\sqrt{5}}$	M1	for attempt at $\cot \theta$ together with rationalisation
	$=\frac{6-3\sqrt{5}+12\sqrt{5}-30}{36-45}$		Must be convinced that a calculator is not being used.
	$=\frac{8}{3}-\sqrt{5}$	A1, A1	A1 for each term
(ii)	$\tan^{2}\theta + 1 = \sec^{2}\theta$ $\frac{64}{9} - \frac{16\sqrt{5}}{3} + 5 + 1 = \csc^{2}\theta$	M1	for attempt to use the correct identity or correct use of Pythagoras' theorem together with their answer to (i) Must be convinced that a calculator is not being used.
	so $\csc^2 \theta = \frac{118}{9} - \frac{16\sqrt{5}}{3}$	A1, A1	A1 for each term
	Alternate solutions are acceptable		

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

11 (a) (i)	LHS = $\frac{\frac{1}{\sin y}}{\frac{\cos y}{\sin y} + \frac{\sin y}{\cos y}}$	M1	for dealing with cosec, cot and tan in terms of sin and cos
	$= \frac{\frac{1}{\sin y}}{\frac{\cos^2 y + \sin^2 y}{\sin y \cos y}}$	M1	for use of $\sin^2 y + \cos^2 y = 1$
	$= \frac{1}{\sin y} \times \sin y \cos y$ $= \cos y$	A1	for correct simplification to get the required result.
(ii)	$\cos 3z = 0.5$	M1	for use of (i) and correct attempt to deal with multiple angle
	$3z = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}$		dear with multiple angle
	$z = \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}$	A1, A1	A1 for each 'pair' of solutions
(b)	$2\sin x + 8(1 - \sin^2 x) = 5$	M1	for use of correct identity
	$8\sin^2 x - 2\sin x - 3 = 0$		
	$(4\sin x - 3)(2\sin x + 1) = 0$	M1	for attempt to solve quadratic equation
	$\sin x = \frac{3}{4}, \qquad \sin x = -\frac{1}{2}$		1
	$x = 48.6^{\circ}, 131.4^{\circ}$ 210°, 330°	A1, A1	A1 for each pair of solutions

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	age 2 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2014	0606	11

1		$\frac{dy}{dx} = 2x - \frac{16}{x^2}$ When $\frac{dy}{dx} = 0$, $x = 2, y = 12$	M1 A1 DM1	for attempt to differentiate all correct for equating $\frac{dy}{dx}$ to zero and an attempt to solve for x . A1 for both, but no extra solutions
2	(a)	2	B1 B1	for correct shape for max value of 2, starting at (0, 2) and finishing at (180°, 2) for min value of –4
	(b) (i)	4	B1	must be positive
	(ii)	60° or $\frac{\pi}{3}$ or 1.05 rad	B1	
3	(i)	$y = 4(x+3)^{\frac{1}{2}}(+c)$ $10 = 4\left(9^{\frac{1}{2}}\right) + c$ $c = -2$ $y = 4(x+3)^{\frac{1}{2}} - 2$ $6 = 4(x+3)^{\frac{1}{2}} - 2$	M1, A1 M1 A1	M1 for $(x+3)^{\frac{1}{2}}$, A1 for $4(x+3)^{\frac{1}{2}}$ for a correct attempt to find c , but must be from an attempt to integrate Allow A1 for $c = -2$
	(ii)	$6 = 4(x+3)^{\frac{1}{2}} - 2$ $x = 1$	A1 ft	ft for substitution into <i>their</i> equation to obtain <i>x</i> ; must have the first M1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	11

4	(i)	$5y^2 - 7y + 2 = 0$	B1, B1	B1 for 5, B1 for –7
	(ii)	(5y-2)(y-1)=0	M1	for solution of quadratic equation from (i)
		$y = \frac{2}{5}, x = \frac{\ln 0.4}{\ln 5}$	M1	for use of logarithms to solve equation of the type $5^x = k$
		x = -0.569	A1	must be evaluated to 3sf or better
		y=1, x=0	B1	
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - \frac{1}{x}$	M1	for attempt to differentiate
		When $x = 1$, $y = 1$ and $\frac{dy}{dx} = 2$	B1	for $y = 1$
		Tangent: $y - 1 = 2(x - 1)$	DM1	for attempt to find equation of tangent
		(y=2x-1)	A1	allow equation unsimplified
	(ii)	Mid-point (5, 9)	B1	for midpoint from given
		9 = 2(5) - 1	B1	coordinates for checking the mid-point lies on tangent
		Alternative Method: Tangent equation $y = 2x - 1$ Equation of line joining (-2, 16) and (12, 2)		
		y = -x + 14 Solve simultaneously $x = 5$, $y = 9$	B1	for a complete method to find the coordinates of the point of
		Mid-point (5, 9)	B1	intersection for midpoint from given coordinates
6	(i)	$(2+px)^6 = 64+192px+240p^2x^2$	B1	for $240p^2$ or $240p^2x^2$ or ${}^6C_2 \times 2^4 \times (px)^2$ or ${}^6C_2 \times 2^4 \times p^2$
		$240p^2 = 60$	M1	or ${}^{6}C_{2} \times 2^{4} \times p^{2}x^{2}$ for equating <i>their</i> term in x^{2} to 60
		$p = \frac{1}{2}$	A1	and attempt to solve
	(ii)	2	D1 &	# for 102 p. 00 - 102 p. d. :
	(II)	$(3-x)(64+192px+240p^2x^2)$	B1 ft	ft for $192p$, 96 or $192 \times their p$
		Coefficient of x^2 is $180-192p$ = 84	M1 A1	for 180 – 192 <i>p</i>

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	11

7	(i)	$\mathbf{A}^{-1} = \frac{1}{5ab} \begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$	B1, B1	B1 for $\frac{1}{5ab}$, B1 for $\begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$
	(ii)	$\mathbf{X} = \mathbf{B}\mathbf{A}^{-1}$	M1	for post-multiplication by inverse matrix
		$= \begin{pmatrix} -a & b \\ 2a & 2b \end{pmatrix} \begin{pmatrix} \frac{1}{5a} & -\frac{2}{5a} \\ \frac{1}{5b} & \frac{3}{5b} \end{pmatrix}$	DM1	for correct attempt at matrix multiplication, needs at least one term correct for their BA ⁻¹ (allow unsimplified)
		$= \begin{pmatrix} 0 & 1 \\ \frac{4}{5} & \frac{2}{5} \end{pmatrix}$	A1 A1	for each correct pair of elements, must be simplified
8	(i)	$\overline{AB} = \begin{pmatrix} 12\\16 \end{pmatrix}$, at P , $x = -2 + \frac{1}{4}(12)$	B1	for convincing argument for $x = 1$
		so at P , $x = 1$ $y = 3 + \frac{1}{4}(16)$, $y = 7$	B1	for $y = 7$
	(ii)	Gradient of $AB = \frac{16}{12}$, so perp gradient = $-\frac{3}{4}$	M1	for finding gradient of perpendicular
		Perp line: $y-7 = -\frac{3}{4}(x-1)$	M1	for equation of perpendicular through their <i>P</i>
		(3x+4y=31)	A1	Allow unsimplified
	(iii)	$Q\left(0,\frac{31}{4}\right)$	B1 ft	ft on their perpendicular line, may be implied
		, , , alpha	M1	for any valid method of finding the area of the correct triangle, allow use of <i>their Q</i> ; must be in the form
		Area $AQB = 12.5$	A1	(0,q).

Page 5	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2014	0606	11

9	(i)	$\log y = \log a + x \log b$	B1	for the statement, may be seen or
		x 2 2.5 3 3.5 4		implied in later work,
		lg y 1.27 1.47 1.67 1.87 2.07		
		2 2.5 3 3.5 4 lny 2.93 3.39 3.84 4.31 4.76		
		my 2.55 5.57 5.61 1.51 1.70		
		logy	M1	for attempt to draw graph of x against $\log y$
		χ	A2,1,0	−1 each error in points plotted
	(ii)	Gradient = $\log b$ $\lg b = 0.4$ or $\ln b = 0.92$	DM1	for attempt to find gradient and equate it to log b, dependent on M1
		b = 2.5 (allow 2.4 to 2.6)	A1	in (i)
		Intercept = $\log a$ $\log a = 0.47$ or $\ln a = 1.10$	DM1	for attempt to equate <i>y</i> -intercept to log <i>a</i> or use <i>their</i> equation with <i>their</i> gradient and a point on the
		a = 3 (allow 2.8 to 3.2)	A1	line, dependent on M1 in (i)
		Alternative method: Simultaneous equations may be used provided points that are on the plotted straight line are used.	DM1 DM1	for a pair of equations using points on the line, dependent on M1 in (i) for solution of these equations, dependent on M1 in (i)
		a = 3 (allow 2.8 to 3.2) b = 2.5 (allow 2.4 to 2.6)	A1 A1	A1 for each

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	11

10	(a) (i) (ii) (iii)	360 60 36	B1 B1 B1	
	(h) (b) (i)	${}^{8}C_{5} \times {}^{12}C_{5}$	B1, B1	B1 for each, allow unevaluated with no extra terms
		$56 \times 792 = 44352$	B1	Final answer must be evaluated and from multiplication
	(ii)	4 places are accounted for Gender no longer 'important'	M1	for realising that 4 places are accounted or that gender is no longer important
		Need ${}^{16}C_6 = 8008$	A1	for 8008
		Alternative Method $\binom{6}{6} \cdot \binom{10}{6} \cdot \binom{6}{0} + \binom{6}{6} \cdot \binom{10}{5} \cdot \binom{6}{1} \cdot 6$	M1 A1	for at least 5 of the 7 cases, allow unsimplified
11	(a)	$2\cos 3x - \frac{\cos 3x}{\sin 3x} = 0$ $\cos 3x \left(2 - \frac{1}{\sin 3x}\right) = 0$	M1	for use of $\cot 3x = \frac{\cos 3x}{\sin 3x}$, may be implied
		Leading to $\cos 3x = 0$, $3x = 90^{\circ}$, 270°	DM1	for attempt to solve $\cos 3x = 0$ correctly from correct factorisation
		$x = 30^{\circ}, 90^{\circ}$	A1	to obtain <i>x</i> A1 for both, no excess solutions in the range
		and $\sin 3x = \frac{1}{2}$, $3x = 30^{\circ}$, 150°	DM1	for attempt to solve $\sin 3x = \frac{1}{2}$
	(b)	$x = 10^{\circ}, 50^{\circ}$	A1	correctly to obtain <i>x</i> A1 for both, condone excess solutions
	(b)	$\cos\left(y + \frac{\pi}{2}\right) = -\frac{1}{2}$ $y + \frac{\pi}{2} = \frac{2\pi}{3}, \frac{4\pi}{3}$	M1	for dealing with $\sec\left(y + \frac{\pi}{2}\right)$
		2 3 3	DM1	for correct order of operations, must not mix degrees and radians
		so $y = \frac{\pi}{6}, \frac{5\pi}{6}$ (0.524, 2.62)	A1, A1	

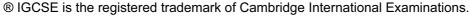
Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	11

12 (i)	$\overrightarrow{AQ} = \lambda \mathbf{b} - \mathbf{a}$	B1	
(ii)	$\overrightarrow{BP} = \mu \mathbf{a} - \mathbf{b}$	B1	
(iii)	$\overrightarrow{OR} = \mathbf{a} + \frac{1}{3}(\lambda \mathbf{b} - \mathbf{a}) \text{ or } \lambda \mathbf{b} - \frac{2}{3}(\lambda \mathbf{b} - \mathbf{a})$	M1	for $\mathbf{a} + \frac{1}{3}$ their (i)
	$=\frac{2}{3}\mathbf{a}+\frac{1}{3}\lambda\mathbf{b}$	A1	Allow unsimplified
(iv)	$\overrightarrow{OR} = \mathbf{b} + \frac{7}{8} (\mu \mathbf{a} - \mathbf{b}) \text{ or } \mu \mathbf{a} - \frac{1}{8} (\mu \mathbf{a} - \mathbf{b})$	M1	for $\mathbf{b} + \frac{7}{8}$ their (ii)
	$=\frac{1}{8}\mathbf{b}+\frac{7}{8}\mu\mathbf{a}$	A1	Allow unsimplified
(v)		M1	for equating (iii) and (iv) and then
	$\frac{2}{3} = \frac{7}{8}\mu, \mu = \frac{16}{21}$ Allow 0.762	A1	equating like vectors
	$\frac{1}{3}\lambda = \frac{1}{8}, \lambda = \frac{3}{8} \text{Allow 0.375}$	A1	

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS


0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	12

1		$\frac{dy}{dx} = 2x - \frac{16}{x^2}$ When $\frac{dy}{dx} = 0$, $x = 2, y = 12$	M1 A1 DM1	for attempt to differentiate all correct for equating $\frac{dy}{dx}$ to zero and an attempt to solve for x . A1 for both, but no extra solutions
2	(a)	2	B1 B1	for correct shape for max value of 2, starting at (0, 2) and finishing at (180°, 2) for min value of –4
	(b) (i)	4	B1	must be positive
	(ii)	60° or $\frac{\pi}{3}$ or 1.05 rad	B1	
3	(i)	$y = 4(x+3)^{\frac{1}{2}}(+c)$ $10 = 4\left(9^{\frac{1}{2}}\right) + c$ $c = -2$ $y = 4(x+3)^{\frac{1}{2}} - 2$ $6 = 4(x+3)^{\frac{1}{2}} - 2$	M1, A1 M1 A1	M1 for $(x+3)^{\frac{1}{2}}$, A1 for $4(x+3)^{\frac{1}{2}}$ for a correct attempt to find c , but must be from an attempt to integrate Allow A1 for $c = -2$
	(ii)	$6 = 4(x+3)^{\frac{1}{2}} - 2$ $x = 1$	A1 ft	ft for substitution into <i>their</i> equation to obtain <i>x</i> ; must have the first M1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	12

4	(i)	$5y^2 - 7y + 2 = 0$	B1, B1	B1 for 5, B1 for –7
	(ii)	(5y-2)(y-1)=0	M1	for solution of quadratic equation from (i)
		$y = \frac{2}{5}, x = \frac{\ln 0.4}{\ln 5}$	M1	for use of logarithms to solve equation of the type $5^x = k$
		x = -0.569	A1	must be evaluated to 3sf or better
		y=1, x=0	B1	
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - \frac{1}{x}$	M1	for attempt to differentiate
		When $x = 1$, $y = 1$ and $\frac{dy}{dx} = 2$	B1	for $y = 1$
		Tangent: $y - 1 = 2(x - 1)$	DM1	for attempt to find equation of tangent
		(y=2x-1)	A1	allow equation unsimplified
	(ii)	Mid-point (5, 9)	B1	for midpoint from given
		9 = 2(5) - 1	B1	coordinates for checking the mid-point lies on tangent
		Alternative Method: Tangent equation $y = 2x - 1$ Equation of line joining (-2, 16) and (12, 2)		
		y = -x + 14 Solve simultaneously $x = 5$, $y = 9$	B1	for a complete method to find the coordinates of the point of
		Mid-point (5, 9)	B1	intersection for midpoint from given coordinates
6	(i)	$(2+px)^6 = 64+192px+240p^2x^2$	B1	for $240p^2$ or $240p^2x^2$ or ${}^6C_2 \times 2^4 \times (px)^2$ or ${}^6C_2 \times 2^4 \times p^2$
		$240p^2 = 60$	M1	or ${}^{6}C_{2} \times 2^{4} \times p^{2}x^{2}$ for equating <i>their</i> term in x^{2} to 60
		$p = \frac{1}{2}$	A1	and attempt to solve
	(ii)	2	D1 &	# for 102 p. 00 - 102 p. d. :
	(II)	$(3-x)(64+192px+240p^2x^2)$	B1 ft	ft for $192p$, 96 or $192 \times their p$
		Coefficient of x^2 is $180-192p$ = 84	M1 A1	for 180 – 192 <i>p</i>

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	12

7 (i)	$\mathbf{A}^{-1} = \frac{1}{5ab} \begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$	B1, B1	B1 for $\frac{1}{5ab}$, B1 for $\begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$
(ii)	$\mathbf{X} = \mathbf{B}\mathbf{A}^{-1}$	M1	for post-multiplication by inverse matrix
	$= \begin{pmatrix} -a & b \\ 2a & 2b \end{pmatrix} \begin{pmatrix} \frac{1}{5a} & -\frac{2}{5a} \\ \frac{1}{5b} & \frac{3}{5b} \end{pmatrix}$	DM1	for correct attempt at matrix multiplication, needs at least one term correct for their BA ⁻¹ (allow unsimplified)
	$= \begin{pmatrix} 0 & 1 \\ \frac{4}{5} & \frac{2}{5} \end{pmatrix}$	A1 A1	for each correct pair of elements, must be simplified
8 (i)	$\overrightarrow{AB} = \begin{pmatrix} 12\\16 \end{pmatrix}$, at P , $x = -2 + \frac{1}{4}(12)$	B1	for convincing argument for $x = 1$
	so at P , $x = 1$ $y = 3 + \frac{1}{4}(16)$, $y = 7$	B1	for $y = 7$
(ii)	Gradient of $AB = \frac{16}{12}$, so perp gradient = $-\frac{3}{4}$	M1	for finding gradient of perpendicular
	Perp line: $y-7 = -\frac{3}{4}(x-1)$	M1	for equation of perpendicular through their <i>P</i>
	(3x+4y=31)	A1	Allow unsimplified
(iii	$Q\left(0,\frac{31}{4}\right)$	B1 ft M1	ft on their perpendicular line, may be implied for any valid method of finding the area of the correct triangle, allow use of <i>their Q</i> ; must be in the form
	Area $AQB = 12.5$	A1	(0,q).

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	12

9	(i)	$\log y = \log y$	$\log a + x1$	$\log b$					B1	for the statement, may be seen or
		X	2	2.5	3	3.5	4			implied in later work,
		lg y	1.27	1.47	1.67	1.87	2.07			
			2	2.5	3	3.5	4			
		lny	2.93	3.39	3.84	4.31	4.76			
		logy	· [·							
		logy							M1	for attempt to draw graph of x against log y
									A2,1,0	−1 each error in points plotted
	(ii)	Gradient = $\log b$ $\lg b = 0.4$ or $\ln b = 0.92$							DM1	for attempt to find gradient and equate it to log <i>b</i> , dependent on M1
		b = 2.5 (allow 2.4 to 2.6)							A1	in (i)
		Intercept $\lg a = 0.4$		a = 1.10					DM1	for attempt to equate <i>y</i> -intercept to log <i>a</i> or use <i>their</i> equation with <i>their</i> gradient and a point on the
		a = 3 (all	ow 2.8 t	o 3.2)					A1	line, dependent on M1 in (i)
		Alternative Simultane points that used.	eous equ	ations		•			DM1	for a pair of equations using points on the line, dependent on M1 in (i) for solution of these equations, dependent on M1 in (i)
		a = 3 (all $b = 2.5$ (a				Sat	pre	P	A1 A1	A1 for each

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	12

10 (a) (i) (ii) (iii)	360 60 36	B1 B1 B1	
(b) (i)	${}^{8}C_{5} \times {}^{12}C_{5}$	B1, B1	B1 for each, allow unevaluated with no extra terms
	$56 \times 792 = 44352$	B1	Final answer must be evaluated and from multiplication
(ii)	4 places are accounted for Gender no longer 'important'	M1	for realising that 4 places are accounted or that gender is no longer important
	Need ${}^{16}C_6 = 8008$	A1	for 8008
	Alternative Method $ {\binom{6}{C_6} \times {}^{10}C_0} + {\binom{6}{C_5} \times {}^{10}C_1} {\binom{6}{C_0} \times {}^{10}C_6} $ $ 1 + 60 + 675 + 2400 + 3150 + 1512 + 210 = 8008 $	M1 A1	for at least 5 of the 7 cases, allow unsimplified
11 (a)	$2\cos 3x - \frac{\cos 3x}{\sin 3x} = 0$ $\cos 3x \left(2 - \frac{1}{\sin 3x}\right) = 0$	M1	for use of $\cot 3x = \frac{\cos 3x}{\sin 3x}$, may be implied
	Leading to $\cos 3x = 0$, $3x = 90^{\circ}$, 270°	DM1	for attempt to solve $\cos 3x = 0$ correctly from correct factorisation
	$x = 30^{\circ}, 90^{\circ}$	A1	to obtain <i>x</i> A1 for both, no excess solutions in the range
	and $\sin 3x = \frac{1}{2}$, $3x = 30^{\circ}$, 150°	DM1	for attempt to solve $\sin 3x = \frac{1}{2}$
	$x = 10^{\circ}, 50^{\circ}$	A1	correctly to obtain <i>x</i> A1 for both, condone excess solutions
(b)	$\cos\left(y + \frac{\pi}{2}\right) = -\frac{1}{2}$ $y + \frac{\pi}{2} = \frac{2\pi}{3}, \frac{4\pi}{3}$	M1	for dealing with $\sec\left(y + \frac{\pi}{2}\right)$ correctly
		DM1	for correct order of operations, must not mix degrees and radians
	so $y = \frac{\pi}{6}, \frac{5\pi}{6}$ (0.524, 2.62)	A1, A1	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	12

12 (i)	$\overrightarrow{AQ} = \lambda \mathbf{b} - \mathbf{a}$	B1	
(ii)	$\overrightarrow{BP} = \mu \mathbf{a} - \mathbf{b}$	B1	
(iii)	$\overrightarrow{OR} = \mathbf{a} + \frac{1}{3}(\lambda \mathbf{b} - \mathbf{a}) \text{ or } \lambda \mathbf{b} - \frac{2}{3}(\lambda \mathbf{b} - \mathbf{a})$	M1	for $\mathbf{a} + \frac{1}{3}$ their (i)
	$=\frac{2}{3}\mathbf{a}+\frac{1}{3}\lambda\mathbf{b}$	A1	Allow unsimplified
(iv)	$\overrightarrow{OR} = \mathbf{b} + \frac{7}{8} (\mu \mathbf{a} - \mathbf{b}) \text{ or } \mu \mathbf{a} - \frac{1}{8} (\mu \mathbf{a} - \mathbf{b})$	M1	for $\mathbf{b} + \frac{7}{8}$ their (ii)
	$=\frac{1}{8}\mathbf{b}+\frac{7}{8}\mu\mathbf{a}$	A1	Allow unsimplified
(v)	$\frac{2}{3}\mathbf{a} + \frac{1}{3}\lambda\mathbf{b} = \frac{1}{8}\mathbf{b} + \frac{7}{8}\mu\mathbf{a}$ $\frac{2}{3} = \frac{7}{8}\mu, \ \mu = \frac{16}{21} \text{Allow } 0.762$ $\frac{1}{3}\lambda = \frac{1}{8}, \ \lambda = \frac{3}{8} \text{Allow } 0.375$	M1 A1 A1	for equating (iii) and (iv) and then equating like vectors

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	13

1		<i>a</i> = 3	B1	
		b=2	B1	
		c=4	B1	
2		$x^2 = 16$ or $y^2 - 4y + 3 = 0$	M1	for correct elimination of one variable and attempt to form a quadratic equation in <i>x</i> or <i>y</i> .
		$x = \pm 4$ y = 1, 3 Points (-4, 1) and (4, 3)	A1 A1	1
		Line $AB = \sqrt{8^2 + 2^2}$	M1	for use of Pythagoras theorem
		$= \sqrt{68} \text{ or } 2\sqrt{17}$	A1	allow either form
3	(i)	n(A) = 2 $n(B) = 3$ $n(C) = 0$	B1 B1 B1	B0 for n(2), $\{2\},\{0\},\emptyset$, $\{\}$ etc.
	(ii)	$A \cup B = \{-1, -2, -3, 3\}$	B 1	
	(iii)	$A \cap B = \{-2\}$	B1	
	(iv)	ξ , 'the universal set', R, 'real numbers', $\{x: x \in \}$	B1	
4	(a)	$\tan x = -\frac{5}{3}$	M1	Correct statement or $\tan x = -1.67$
		$x = 121.0^{\circ}, 301.0^{\circ}$	A1 A1ft	A1 for either correct solution ft from <i>their</i> first solution
	(b)	$\sin\left(3y + \frac{\pi}{4}\right) = \frac{1}{2}$	M1	for dealing correctly with cosec and attempt to solve subsequent equation
		$3y + \frac{\pi}{4} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}$	A1	for $\frac{\pi}{6}$, $\frac{5\pi}{6}$, or $\frac{13\pi}{6}$, or $\frac{17\pi}{6}$
		$3y = -\frac{\pi}{12}, \frac{7\pi}{12}, \frac{23\pi}{12}, \frac{31\pi}{12}$	DM1	for correct order of operations
		$y = \frac{7\pi}{36}, \frac{23\pi}{36}, \frac{31\pi}{36}$ (0.611, 2.01 and 2.71)	A1, A1	A1 for one correct solution A1 for both the other correct solutions and no others in range.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	13

5 (a) (i)	$ \begin{pmatrix} 12 & 2 & 1 \\ 9 & 3 & 0 \\ 8 & 5 & 1 \\ 11 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0.4 \\ 0.45 \end{pmatrix} = \begin{pmatrix} 7.25 \\ 5.70 \\ 6.45 \\ 6.30 \end{pmatrix} $	M1	for correct compatible matrices in the correct order. Allow 1 error in each matrix. Allow if done in cents
	or $(0.5 0.4 0.45)$ $\begin{pmatrix} 12 & 9 & 8 & 11 \\ 2 & 3 & 5 & 2 \\ 1 & 0 & 1 & 0 \end{pmatrix}$	DM1	for a correct method for multiplying their matrices to obtain an appropriate 4 by 1 or 1 by 4 matrix.
	=(7.25 5.70 6.45 6.30)	A2,1,0	A2 all correct
(ii)	25.70	B1	or A1 3 correct elements. Allow 25.7
	23.70	21	1 mo w 2017
(b)	$\mathbf{Y} = \mathbf{X}^{-1} \text{ or } \mathbf{Y} = \mathbf{X}^{-1} \mathbf{I}$ $\mathbf{Y} = \frac{1}{22} \begin{pmatrix} 1 & -4 \\ 5 & 2 \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1}{22} & -\frac{4}{22} \\ \frac{5}{22} & \frac{2}{22} \end{pmatrix}$	M1 A1	for matrix algebra for $\frac{1}{22}$ for $k \begin{pmatrix} 1 & -4 \\ 5 & 2 \end{pmatrix}$
	(22 22)	Al	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$
	Alternative method: $\begin{pmatrix} 2 & 4 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $2a + 4c = 1, \ 2b + 4d = 0$	M1	for a complete method using simultaneous equations
	-5a + c = 0, -5b + d = 1	A1	$a = \frac{1}{22}$ and $c = \frac{5}{22}$
	12		or $b = -\frac{4}{22}$ and $d = \frac{2}{22}$
	leading to $=\frac{1}{22}\begin{pmatrix} 1 & -4 \\ 5 & 2 \end{pmatrix}$ oe	CA1	for correct matrix

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	13

6 (i)	$\cos 0.9 = \frac{6}{OC}$ or $\frac{OC}{\sin 0.9} = \frac{12}{\sin(\pi - 1.8)}$ $OC = \frac{6}{\cos 0.9} = 9.652$	M1	for correct use of cosine, sine rule, cosine rule or any other valid method
	or $OC = \frac{12\sin 0.9}{\sin(\pi - 1.8)} = 9.652$	A1	for manipulating correctly to $OC = 9.652(35)$ Must have 4 th figure (or more) for rounding
(ii)	Perimeter = $(0.9 \times 12) + 9.652 + (12 - 9.652)$	B1 M1	for arc length for attempt to add the correct lengths
	= 22.8	A1	
(iii)	Area = $\left(\frac{1}{2} \times 12^2 \times 0.9\right) - \left(\frac{1}{2} \times 9.652^2 \sin(\pi - 1.8)\right)$	B1 B1	for area of sector, allow unsimplified for area of isosceles triangle
			$\frac{1}{2}(9.65(2))^2 \sin(\pi - 1.8) \text{ or}$ $\frac{1}{2}(12 \times 6 \tan 0.9) \text{ or}$
	64.8 - 45.36 = 19.4 to 19.5	B1	$\frac{1}{2}(12 \times 9.65(2) \times \sin 0.9), \text{ allow}$ unsimplified. for answer in range 19.4 to 19.5
	Alternative Method:		
	$\frac{1}{2}(12 - 9.652) \times 9.652 \times \sin 1.8$	B1	for area of triangle <i>ACB</i> , unsimplified
	$\frac{1}{2}12^2(0.9-\sin 0.9)$	B1	for area of segment, unsimplified
	2 11.04 + 8.40 Area =19.4 to 19.5	B1	answer in range 19.4 to 19.5
7	$1 + 2\log_5 x = \log_5 (18x - 9)$	B1, B1	B1 for dealing with '1', B1 for dealing with '2'
	$\log_5 5 + \log_5 x^2 = \log_5 (18x - 9)$	M1	for a correct use of addition or subtraction of logarithms
	$5x^{2} = 18x - 9$ $(5x - 3)(x - 3) = 0$	DM1	for elimination of logarithms to form a 3 term quadratic and for
	$x = \frac{3}{5}, 3$	A1	solution of quadratic for both x values

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	13

	(2)		
8 (i)	$f'(x) = \left(x \times \frac{3x^2}{x^3}\right) + \left(\ln x^3\right)$	M1	for differentiation of a product
	$\begin{pmatrix} x^3 \end{pmatrix} \begin{pmatrix} x^3 \end{pmatrix}$	B 1	for differentiation of $\ln x^3$
	$= 3 + 3 \ln x, = 3(1 + \ln x)$	A1	for simplification to gain given answer
	or $f(x) = 3x \ln x$	B 1	for use of $\ln x^3 = 3 \ln x$
	$f'(x) = \left(3x \times \frac{1}{x}\right) + 3\ln x,$	М1	for differentiation of a new deat
	` /	M1	for differentiation of a product
	$=3(1+\ln x)$	A1	for simplification to gain given answer
(ii)	$\int 3(1+\ln x) dx = x \ln x^3 \text{or} 3x \ln x$	M1	for realising that differentiation is the reverse of integration and using
			(i)
	$\int 1 + \ln x dx = \frac{1}{3} x \ln x^3 \text{or} x \ln x$	A1	
	TPR		
(iii)	$x \ln x - \int 1 dx$ or $\left[\frac{1}{3} x \ln x^3 \right] - \int 1 dx$	DM1	for using answer to (ii) and
()	That of [3 min] Just		subtracting Idx dependent on M
			mark in (ii)
	$\begin{bmatrix} 1 & 1 \end{bmatrix}$	D144	
	$\left[\left[x \ln x - x \right]_1^2 \text{ or } \left[\frac{1}{3} x \ln x^3 - x \right]_1^2 \right]$	DM1	for correct application of limits
	$=2\ln 2 - 2 + 1$		
	$=-1+\ln 4$	A1	from correct working
9 (a)	$5^p = 625$, so $p = 4$	B1	
	${}^{4}C_{1}5^{p-1}(-q) = -1500$	M1	their p substituted in ${}^{p}C_{1}5^{p-1}(-q)$
	$4 \times 125(-q) = -1500$	-0'	or in ${}^{p}C_{1}5^{p-1}(-qx)$ unsimplified
	q=3 SatpreP	A1	
	${}^{4}C_{2}5^{p-2}q^{2} = r$	M1	their p and q substituted in ${}^{p}C_{2}5^{p-2}(-q)^{2} \text{ or } {}^{p}C_{2}5^{p-2}(-qx)^{2}$
			unsimplified
	r = 1350	A1	
	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$		
(b)	$^{12}C_3(2x)^9\left(\frac{1}{4x^3}\right)^3$	M1	for identifying correct term
		DM1	for attempt to evaluate correct expression
	Term is 1760	A1	must be evaluated

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	13

10 (a)	$\frac{5^x}{5^{2(3y-2)}} = 1$ or $\frac{3^x}{3^{3(y-1)}} = 3^4$ oe	M1	for obtaining one correct equation in powers of 5, 3, 25, 27 or 81
	x = 6y - 4	A1	for $x = 6y - 4$ oe linear equation
	x = 3y + 1	A1	for $x = 3y + 1$ oe linear equation
		M1	for attempt to solve linear simultaneous equations which have
	Leads to $x = 6$, $y = \frac{5}{3}$	A1	been obtained correctly for both.
(b)	Using the cosine rule:		
	$(1+2\sqrt{3})^2 = (2+\sqrt{3})^2 + 2^2 - 4(2+\sqrt{3})\cos A$	M1	for correct substitution in cosine rule, may use in form of $\cos A =$
	$\cos A = \frac{(13 + 4\sqrt{3}) - (7 + 4\sqrt{3}) - 4}{-4(2 + \sqrt{3})} \text{ oe}$	DM1	for attempt to make cosA subject and simplify
	$\cos A = \frac{-1}{2(2+\sqrt{3})} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$	DM1	for rationalisation.
	$\cos A = -1 + \frac{\sqrt{3}}{2}$	A1	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	13

11 (i)	$\frac{dy}{dx} = (x+5)2(x-1) + (x-1)^2$	M1 A1	for differentiation of a product, allow unsimplified correct
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (x-1)(3x+9)$		
	When $\frac{dy}{dx} = 0$	DM1	for equating to zero and solution of
	x = 1	A1	quadratic
	x = -3 Alternative method:	A1	
	$y = x^3 + 3x^2 - 9x + 5$	M1	for expansion of brackets and differentiation of each term of a 4 term cubic
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 6x - 9$	A1	
	When $\frac{dy}{dx} = 0$	DM1	for equating to zero and solution of 3 term quadratic
	x = 1	A1	from correct quadratic equation
	x = -3	A1	from correct quadratic equation
(ii)	$\int x^3 + 3x^2 - 9x + 5 dx$	M1	for correct attempt to obtain and integrate a 4 term cubic
	$= \frac{x^4}{4} + x^3 - \frac{9x^2}{2} + 5x \ (+c)$	A2,1,0	A2 for 4 correct terms or A1 for 3 correct terms
(iii)	$\left[\frac{x^4}{4} + x^3 - \frac{9x^2}{2} + 5x\right]_{-5}^{1}$ (1	M1	for correct substitution of limits 1 and –5 for <i>their</i> (ii)
	$= \left(\frac{1}{4} + 1 - \frac{9}{2} + 5\right) - \left(\frac{625}{4} - 125 - \frac{225}{2} - 25\right)$ $= 108$	A1	
(iv)	When $x = -3$, $y = 32$	M1	for realising that the <i>y</i> -coordinate of the maximum point is needed.
	k > 32	A1	point to needed.

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	11

1	$LHS = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta}$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$= \frac{\sin\theta(1+\sin\theta)+\cos^2\theta}{\cos\theta(1+\sin\theta)}$	M1	M1 for attempt to obtain a single fraction
	$=\frac{1+\sin\theta}{\cos\theta(1+\sin\theta)}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$
	$= \frac{1}{\cos \theta} \text{ leading to } \sec \theta$	A1	A1 for 'finishing off'
	Alternative solution: $LHS = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta (1-\sin \theta)}{(1+\sin \theta)(1-\sin \theta)}$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$= \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta (1 - \sin \theta)}{\cos^2 \theta}$	M1	M1 for multiplication by $(1 - \sin \theta)$
	$= \frac{\sin \theta}{\cos \theta} + \frac{(1 - \sin \theta)}{\cos \theta}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$
	$= \frac{1}{\cos \theta} \text{ leading to } \sec \theta$	A1	A1 for 'finishing off'
	Alternative solution: $LHS = \frac{\tan \theta (1 + \sin \theta) + \cos \theta}{1 + \sin \theta}$	M1	M1 for attempt to obtain a single fraction
	$= \frac{\frac{\sin \theta}{\cos \theta} + \frac{\sin^2}{\cos \theta} + \cos \theta}{1 + \sin \theta}$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$=\frac{\sin\theta+\sin^2\theta+\cos^2\theta}{\cos\theta(1+\sin\theta)}$		
	$=\frac{1+\sin\theta}{\cos\theta(1+\sin\theta)}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$
	$= \frac{1}{\cos \theta} \text{ leading to } \sec \theta$	A1	A1 for 'finishing off'

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	11

2	(i)	$ \mathbf{a} = \sqrt{4^2 + 3^2} = 5$ $ \mathbf{b} + \mathbf{c} = \sqrt{(-3)^2 + 4^2} = 5$	M1 A1	M1 for finding the modulus of either a or b + c A1 for completion
	(ii)	$\lambda \binom{4}{3} + \mu \binom{2}{2} = 7 \binom{-5}{2}$		AT for completion
		$4\lambda + 2\mu = -35 \text{ and } 3\lambda + 2\mu = 14$	M1	M1 for equating like vectors and obtaining 2 linear equations
		leading to $\lambda = -49$, $\mu = 80.5$	DM1 A1	DM1 for solution of simultaneous equations A1 for both

3 (a)

(ii)

- (b) (i)
 - (ii)

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	11

6	(i)	(10 19)	M1	M1 for at least 3 correct elements of a
		$\mathbf{AB} = \begin{bmatrix} 32 & 37 \\ 14 & 14 \end{bmatrix}$	A1	3×2 matrix A1 for all correct
	(ii)	$\mathbf{B}^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$	B1 B1	B1 for $\frac{1}{7}$, B1 for $\begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$
	(iii)	$2\begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ -22 \end{pmatrix}$	M1	M1 for obtaining in matrix form
		$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} -1.5 \\ -11 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 3.5 \\ -17.5 \end{pmatrix}$	M1	M1 for pre-multiplying by B ⁻¹
		x = 0.5, y = -2.5	A1	A1 for both
7	(i)	$y = 2x^2 - \frac{1}{x+1}(+c)$	B1 B1	B1 for each correct term
		when $x = \frac{1}{2}$, $y = \frac{5}{6}$ so $\frac{5}{6} = \frac{1}{2} - \frac{2}{3} + c$	M1	M1 for attempt to find $+c$, must have at least 1 of the previous B marks
		leading to $c = 1$	A1	Allow A1 for $c = 1$
		$\left(y = 2x^2 - \frac{1}{x+1} + 1\right)$		
	(ii)	When $x = 1, y = \frac{5}{2}$	M1	M1 for using $x = 1$ in their (i) to find y
		$\frac{dy}{dx} = \frac{17}{4}$ so gradient of normal $= -\frac{4}{17}$	B1	B1 for gradient of normal
		Equation of normal $y - \frac{5}{2} = -\frac{4}{17}(x-1)$	DM1	DM1 for attempt at normal equation
		(8x + 34y - 93 = 0)	A1	A1 – allow unsimplified (fractions must not contain decimals)

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	11

			T	
8	(i)	$\log p = n \log V + \log k$	B1	B1 for statement, but may be implied by later work.
		$\ln V$ 2.30 3.91 4.61 5.30		
		lnp 4.55 2.14 1.10 0.10		
		lgV 1 1.70 2 2.30		
		Igp 1.98 0.93 0.48 0.04		
		$\log P$	3.41	N/1 C 1 // ' ' 11 1
			M1 A2,1,0	M1 for plotting a suitable graph -1 for each error in points plotted
	(ii)	log V	DM1	DM1 for equating numerical gradient to
	(11)	Use of gradient = n n = -1.5 (allow -1.4 to -1.6)	A1	n
	(iii)	Allow 13 to 16	DM1	DM1 for use of their graph or
			A1	substitution into <i>their</i> equation.
9	(a)	Distance travelled = area under graph	M1	M1 for realising that area represents distance travelled and attempt to find
		$= \frac{1}{2}(60 + 20) \times 12 = 480$	A1	area
	(b)	v A		
			B1 B1	B1 for velocity of 2 ms ⁻¹ for $0 \le t \le 6$ B1 for velocity of zero for <i>their</i> '6' to
		2	B1	their '25' B1 for velocity of 1 ms ⁻¹ for $25 \le t \le 30$
		6 25 30 1		BI for velocity of 1 lifts for 25 < t < 30
		satpre		
	(c) (i)	$v = 4 - \frac{16}{t+1}$	M1	M1 for attempt at differentiation
		When $v = 0$, $t = 3$	DM1 A1	DM1 for equating velocity to zero and attempt to solve
	(ii)	$a = \frac{16}{(t+1)^2}$ $0.25(t+1)^2 = 16$	M1	M1 for attempt at differentiation and equating to 0.25 with attempt to solve
		$0.25(t+1)^2 = 16$		
		t = 7	A1	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	11

10	(a)		1 digit even numbers 2	B 1	
			2 digit even numbers $4 \times 2 = 8$	B1	
			3 digit even numbers $3 \times 3 \times 2 = 18$	B 1	
			Total = 28	B 1	
	(b)	(i)	3M 5W = 35	B 1	
	, ,		$4M \ 4W = 175$	B1	
			$5M \ 3W = 210$	B 1	
			Total = 420	B1	B1 for addition to obtain final answer, must be evaluated.
			or $^{12}C_8 - 6M \ 2W - 7M \ 1W$		or: as above, final B1 for subtraction to
			495 - 70 - 5 = 420		get final answer
	((ii)	Oldest man in, oldest woman out and vice-versa		
			$^{10}C_7 \times 2 = 240$	B1, B1	B1 for ${}^{10}C_7$, B1 for realising there are 2 identical cases
			Alternative:		Identical cases
			1 man out 1 woman in 6 men 4 women		
			6 men 4 women		/ / / /
			6M 1W: ${}^{6}C_{6} \times {}^{4}C_{1} = 4$		7 / /
			5M 2W: ${}^{6}C_{5} \times {}^{4}C_{2} = 36$		
			$4M \ 3W : {}^{6}C_{4} \times {}^{4}C_{3} = 60$		
			$3M 4W: {}^{6}C_{3} \times {}^{4}C_{4} = 20$.0	
			Total = 120	B1	All separate cases correct for B1
			There are 2 identical cases to consider, so 240 ways in all.	B1	B1 for realising there are 2 identical cases, which have integer values

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	11

11 (a)	$5\sin 2x + 3\cos 2x = 0$ $\tan 2x = -0.6$ $2x = 149^{\circ}, 329^{\circ}$ $x = 74.5^{\circ}, 164.5^{\circ}$ Alternatives: $\sin(2x + 31^{\circ}) = 0 \text{ or } \cos(2x - 59^{\circ}) = 0$	M1 DM1 A1,A1 M1	In each case the last A mark is for a second correct solution and no extra solutions within the range M1 for use of tan DM1 for dealing with 2x correctly A1 for each M1 for either, then mark as above
(b)	$2\cot^{2} y + 3\csc y = 0$ $2(\csc^{2} y - 1) + 3\csc y = 0$ $2\csc^{2} y + 3\csc y - 2 = 0$	M1	M1 for use of correct identity
	$(2\csc y - 1)(\csc y + 2) = 0$ One valid solution	M1	M1 for attempt to factorise a 3 term quadratic equation
	$\cos \operatorname{ecy} = -2, \ \sin y = -\frac{1}{2}$ $y = 210^{\circ}, \ 330^{\circ}$	A1,A1	A1 for each
	Alternative: $2\frac{\cos^2 y}{\sin^2 y} + \frac{3}{\sin y} = 0$	M1	M1 for use of $\cot y = \frac{\cos y}{\sin y}$ and
	leads to $2\sin^2 y - 3\sin y - 2 = 0$ and $\sin y = -\frac{1}{2}$ only	M1	$cosecy = \frac{1}{\sin y}$ M1 for attempt to factorise a 3 term quadratic equation
(c)	$y = 210^{\circ}, 330^{\circ}$ $3\cos(z+1.2) = 2$ $\cos(z+1.2) = \frac{2}{3}$	A1A1	
	$\cos(z+1.2) = \frac{1}{3}$ $(z+1.2) = 0.8411, 5.442, 7.124$	M1	M1 for correct order of operations to end up with 0.8411 radians or better
	z = 4.24, 5.92	A1 A1A1	A1 for one of 5.441 or 7.124 (or better) A1 for each valid solution

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	12

1	$\frac{\cos^2 A + (1 + \sin A)^2}{(1 + \sin A)\cos A}$ $\frac{\cos^2 A + 1 + 2\sin A + \sin^2 A}{(1 + \sin A)\cos A}$ $= \frac{2(1 + \sin A)}{(1 + \sin A)\cos A}$	M1 M1 DM1	M1 for obtaining a single fraction, correctly M1 for expansion of $(1 + \sin A)^2$ and use of identity DM1 for factorisation and cancelling of $(1 + \sin A)$ factor
	$= \frac{2}{\cos A} = 2 \sec A$	A1	A1 for use of $\frac{1}{\cos A} = \sec A$ and final answer
	Alternative:		
	$\frac{\cos A (1-\sin A)}{(1+\sin A)(1-\sin A)} + \frac{1+\sin A}{\cos A}$ $= \frac{\cos A (1-\sin A)}{1-\sin^2 A} + \frac{1+\sin A}{\cos A}$	M1	M1 for multiplying first term by $\frac{1-\sin A}{1-\sin A}$
	$= \frac{\cos A \left(1 - \sin A\right)}{\cos^2 A} + \frac{\cos A}{\cos A}$	M1	M1 for expansion of $(1-\sin A)(1+\sin A)$ and use of
	$= \frac{1 - \sin A}{\cos A} + \frac{1 + \sin A}{\cos A}$	M1	identity M1 for simplification of the 2 terms
	$=\frac{2}{\cos A}=2\sec A$	A1	A1 for use of $\frac{1}{\cos A} = \sec A$ and final answer
2 (a) (i)	OO	B1	
(i)		B1	
(b) (i)	6	B1	
(ii)	5	B1	
(iii)	9	B1	

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	12

3	(i) (ii)	Maximum point occurs when $y = \frac{25}{8}$	B1 B1 B1	 B1 for shape B1 for y = 2 (must have a graph) B1 for x = -0.5 and 2 (must have a graph) M1 for obtaining the value of y at the maximum point, by either completing the square, differentiation, use of discriminant or symmetry.
		so $k > \frac{25}{8}$	A1	Must have the correct sign for A1 Ignore any upper limits
4		$\int_{0}^{a} \sin 3x dx = \frac{1}{3} dx = \frac{1}{3}$ $\left[-\frac{2}{3} \cos 3x \right]_{0}^{a} = \frac{1}{3}$ $\left(-\frac{2}{3} \cos 3a \right) - \left(-\frac{2}{3} \right) = \frac{1}{3}$ $\cos 3a = 0.5$ $3a = \frac{\pi}{3}, \ a = \frac{\pi}{9}$	M1 A1 M1 A1	B1 for $k \cos 3x$ only, B1 for $-\frac{2}{3}\cos 3x$ only M1 for correct substitution of the correct limits into their result A1 for correct equation M1 for correct method of solution of equation of the form $\cos ma = k$ A1 allow 0.349, must be a radian answer
5	(i)	$2^{5x} \times 2^{2y} = 2^{-3}$ leads to $5x + 2y = -3$	B1, B1 DB1	B1 for 2 ^{2y} , B1 for 2 ⁻³ , B1 for dealing with indices correctly to obtain given answer
	(ii)	$7^x \times 49^{2y} = 1$ can be written as $x + 4y = 0$	B1 B1	B1 for either 7^{4y} or 7^0 seen B1 for $x + 4y = 0$
		Solving $5x + 2y = -3$ and $x + 4y = 0$ leads to $x = -\frac{2}{3}$, $y = \frac{1}{6}$	M1 A1	M1 for solution of their simultaneous equations, must both be linear A1 for both, allow equivalent fractions only

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	12

6	(a)	YX and ZY	B1,B1	B1 for each, must be in correct order,
	(b)	$\mathbf{B} = \mathbf{A}^{-1} \begin{pmatrix} 3 & 9 \\ -6 & -3 \end{pmatrix},$	M1	M1 for pre-multiplication by A ⁻¹
		$= -\frac{1}{3} \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 3 & 9 \\ -6 & -3 \end{pmatrix}$	B1,B1	B1 for $-\frac{1}{3}$, B1 for $\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}$
		$= -\frac{1}{3} \begin{pmatrix} -9 & 3 \\ -18 & 21 \end{pmatrix} \text{ or } \begin{pmatrix} 3 & -1 \\ 6 & -7 \end{pmatrix}$	DM1	DM1 for attempt at matrix multiplication A1 allow in either form
		Alternative method:		
		$ \begin{pmatrix} 5 & -2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & 9 \\ -6 & -3 \end{pmatrix} $	M1	M1 for a complete method to obtain 4 equations
		Leads to $5a - 2c = 3$, $5b - 2d = 9$ -4a + c = -6, $-4b + d = -3$	A2,1,0	-1 for each incorrect equation
		Solutions give matrix	M1	M1 for solution to find 4 unknowns
		$-\frac{1}{3} \begin{pmatrix} -9 & 3 \\ -18 & 21 \end{pmatrix} \text{ or } \begin{pmatrix} 3 & -1 \\ 6 & -7 \end{pmatrix}$	A1	A1 for a correct, final matrix

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	12

7	(i)	$\sin\frac{\theta}{2} = \frac{6}{8}, \frac{\theta}{2} = 0.8481 \text{ or better}$	M1	M1 for a complete method to find either θ or $\frac{\theta}{2}$
		or $12^2 = 8^2 + 8^2 - 128\cos\theta$		2
		$\theta = 1.6961$ or better	A1	Answer given.
		or using areas $\frac{1}{2} \times 12 \times 2\sqrt{7} = \frac{1}{2} 8^2 \sin \theta \text{ oe}$		
		$\sin \theta = 0.9922$, $\theta = 1.4455$ or 1.6961	M1	M1 for using the area of the
			A1	triangle in 2 different forms A1 for choosing the correct angle.
	(ii)	Arc length = $(2\pi - 1.696) \times 8$	M1	M1 for correct attempt at a minor or major arc length
		(36.697 or 36.7)	A1	A1 for correct major arc length, allow unsimplified
		Perimeter = $12 + (2\pi - 1.696) \times 8$ = 48.7	A1	A1 for 48.7 or better
	(iii)	Area = $\frac{8^2}{2} (2\pi - 1.696) + \frac{8^2}{2} \sin 1.696$	M1,M1	M1 for correct attempt to find area of major sector
		=178.5, 178.6, awrt179	A1	M1 for correct attempt to find area of triangle, using any method
		Alternative:		7/
		Area = $\pi 8^2 - \left(\frac{1}{2}8^2(1.696) - \frac{8^2}{2}\sin 1.696\right)$.00	M1 for attempt at area of circle – area of minor sector M1 for area of triangle

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	12

8 (a) (i)	720	B1	
(ii)	240	B1	
(iii)	Starts with either a 2 or a 4: 48 ways	B1	allow unevaluated
	Does not start with either a 2 or a 4: 96 ways (i.e. starts with 1 or 5)	B1	allow unevaluated
	Total = 144	B1	must be evaluated
	Alternative 1:		
	Ends with a 2, starts with a 1,4 or 5:72 ways Ends with a 4, starts with a 1,2 or 5:72 ways Total =144	B1 B1 B1	
	Alternative 2:		
	$240 - (2 \times 2 \times^{4} P_{3}) \text{ or } (4 \times^{4} P_{3} \times 2) - (2^{4} P_{3})$ = 144	B2 B1	B2 for correct expression seen, allow <i>P</i> notation
	Alternative 3:)))
	${}^{3}P_{1} \times {}^{4}P_{3} \times {}^{2}P_{1}$ or $3 \times 4 \times 2$ = 144	B2 B1	Allow <i>P</i> notation here, for B2
(b)	With twins: ${}^{16}C_4$ (=1820)	B1	
	Without twins: ${}^{16}C_6 \ (= 8008)$	B1	
	Total: 9828	B1	
	Alternative:		
	$\begin{vmatrix} {}^{18}C_6 - (2 \times {}^{16}C_5) \\ = 9828 \end{vmatrix}$	B1,B1 B1	B1 for ${}^{18}C_6$, B1 for $2 \times {}^{16}C_5$

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	12

9	(i)	$h = \frac{4000}{\pi r^2} \text{ or } \pi r^2 h = 4000$ $A = 2\pi r h + 2\pi r^2$	В1	
		$A = 2\pi r \frac{4000}{\pi r^2} + 2\pi r^2$	M1 A1	M1 for substitution of h or πrh into their equation for A A1 Answer given
	(ii)	$\frac{\mathrm{d}A}{\mathrm{d}r} = -\frac{8000}{r^2} + 4\pi r$	B1, B1	B1 for each term correct
		When $\frac{dA}{dr} = 0$, $r^3 = \frac{8000}{4\pi}$	M1	M1 for equating to zero and attempt to find r^3
		leading to $A = 1395, 1390$	M1	M1 for substitution of their r to obtain A .
		TPR	A1	A1 for 1390 or awrt 1395
		$\frac{d^2 A}{dr^2} = \frac{16000}{r^3} + 4\pi,$ which, is positive so a minimum.	√ B1	√B1 for a complete correct method and conclusion.

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	12

10 (i)	$Velocity = 26 \times \frac{1}{13} (5\mathbf{i} + 12\mathbf{j})$	M1	M1 for $\frac{1}{13}(5\mathbf{i} + 12\mathbf{j})$
	$= 10\mathbf{i} + 24\mathbf{j}$	A1	
	Alternative 1:		
	$ 10\mathbf{i} + 24\mathbf{j} = \sqrt{10^2 + 24^2}$ = 26	M1	M1 for working from given answer to obtain the given speed
	Showing that one vector is a multiple of the other, hence same direction	A1	A1 for a completely correct method
	Alternative 2:		
	$\sqrt{5^2 + 12^2} = 13$, $13k = 26$, so $k = 2$ Velocity = $2(5\mathbf{i} + 12\mathbf{j})$,	M1	M1 for attempt to obtain the 'multiple' and apply to the direction vector
	Velocity = $10\mathbf{i} + 24\mathbf{j}$	A1	A1 for a completely correct method
	Alternative 3:		
	Use of trig: $\tan \alpha = \frac{12}{5}$, $\alpha = 67.4^{\circ}$		
	Velocity $26\cos 67.4^{\circ} \mathbf{i} + 26\sin 67.4 \mathbf{j}$	M1	M1 for reaching this stage
	$Velocity = 10\mathbf{i} + 24\mathbf{j}$	A1	A1 for a completely correct method
(ii)	Position vector = $4(10\mathbf{i} + 24\mathbf{j})$ or $40\mathbf{i} + 96\mathbf{j}$	B1	Allow either form for B1
	3		
(iii)	(40i + 96j) + (10i + 24j)t oe	M1	M1 for their (ii) + $(10\mathbf{i} + 24\mathbf{j})t$ or
	*SatpreF	A1	$(10\mathbf{i} + 24\mathbf{j}) \times (t+4)$ A1 correct answer only
(iv)	(120i + 81j) + (-22i + 30j)t oe	B1	
(v)	40 + 10t = 120 - 22t or $96 + 24t = 81 + 30t$	M1	M1 for equating like vectors
	t = 2.5 or 18.30	A1	A1 Allow for $t = 2.5$
	Position vector $= 65\mathbf{i} + 156\mathbf{j}$	DM1	DM1 for use of t to obtain position vector
		A1	A1 cao

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	12

11 (a)	$\tan x(\tan x + 5) = 0$ $\tan x = 0, x = 0^{\circ}, 180^{\circ}$ $\tan x = -5, x = 101.3^{\circ}$	B1,B1 B1	B1 for each, must be from correct work
(b)	$2(1-\sin^2 y) - \sin y - 1 = 0$ $2\sin^2 y + \sin y - 1 = 0$ $(2\sin y - 1)(\sin y + 1) = 0$	M1	M1 for use of correct identity and attempt to solve resulting 3 term quadratic equation.
	$\sin y = \frac{1}{2}, y = 30^{\circ}, 150^{\circ}$ $\sin y = -1, y = 270^{\circ}$	A1,A1 A1	
(c)	$\cos\left(2z - \frac{\pi}{6}\right) = \frac{1}{2}$	M1	M1 for dealing with sec correctly and obtaining $\frac{\pi}{3}$ or 1.05
	$\left(2z - \frac{\pi}{6}\right) = \frac{\pi}{3}$ $z = \frac{\pi}{4} \text{ or } 0.785 \text{ or better}$	A1	
	$\left(2z - \frac{\pi}{6}\right) = \frac{5\pi}{3}$	M1	M1 for obtaining a second equation $\left(2z - \frac{\pi}{6}\right) = 2\pi - their \frac{\pi}{3} \text{ oe}$
	$z = \frac{11\pi}{12} \text{ or } 2.88 \text{ or better}$	A1	

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	13

1	(i)	$y = 3(x-1)^{2} + 2$ $a = 3, b = 1, c = 2$	B1,B1,B1	B1 for each, may be given in the form $y = 3(x-1)^2 + 2$
	(ii)	(1, 2)	√ B1	Follow through on their answers to (i) If using differentiation, follow through on their <i>x</i> only.
2		$2^{4x} \times 4^{y} \times 8^{x-y} = 1$ Considering powers of either 2, 4 or 8 $7x - y = 0$ $3^{x+y} = \frac{1}{3}$	M1	M1 for considering powers of either 2, 4 or 8 and forming an equation using these powers
		Considering powers of 3 $x + y = -1$	B1	B1 for equation considering powers of 3
		Solving both simultaneously gives $x = -\frac{1}{8}, \ y = -\frac{7}{8}$	M1 A1	M1 for attempt to solve their equations A1 for both
3	(i)	$f(-3) = -27 + 9p - 3p^{2} + 21$ = $9p - 3p^{2} - 6$	M1 A1	M1 for substitution of $x = -3$ A1 answer must be simplified
	(ii)	$9p - 3p^{2} - 6 < 0$ $(p-1)(p-2) > 0$	M1	M1 for attempt to factorise
		Critical values 1 and 2 $p < 1, p > 2$	A1 A1	A1 for critical values A1 for correct range
4	(i)	$V = x(24 - 2x)^{2}$ $= x(576 - 96x + 4x^{2})$ $= 4x^{3} - 96x^{2} + 576x$	M1 A1	M1 for attempt at a product of 3 lengths, 2 of which must be the same A1 for expansion to reach given answer
	(ii)	$\frac{\mathrm{d}V}{\mathrm{d}x} = 12x^2 - 192x + 576$	M1	M1 for attempt to differentiate
		When $\frac{dV}{dx} = 0$, $12x^2 - 192x + 576 = 0$	DM1	DM1 for equating $\frac{dV}{dx}$ to zero and attempt to solve
		leading to $(x-4)(x-12)=0$ with $x=4$ the only possible solution $V=1024$	A1 A1	A1 for $x = 4$ A1 for $V = 1024$

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	13

5 (i)		$64 - 960x + 6000x^2$	B1, B1, B1	B1 for each correct term
(ii)		$\left(64 - 960x + 6000x^2\right)\left(a^3 + 3a^2bx\right),$	B1	B1 for first two terms of $(a + bx)^3$
		$64a^3 = 512, a = 2$	В1	B1 for equating constant term to 512 and obtaining $a = 2$
		$-960a^3 + 3a^2b(64) = 0$	M1	M1 for attempt to equate coefficient of x to zero, must have two terms involved
		leading to $b = 10$	A1	A1 for $b = 10$
6		When $x = 2$, $y = -4$	B1	B1 for $y = -4$
		$\frac{dy}{dx} = x \left(\frac{2x}{3}\right) \left(x^2 - 12\right)^{\frac{2}{3}} + \left(x^2 - 12\right)^{\frac{1}{3}}$	M1, B1 A1	M1 for differentiation of a product B1 for $\frac{2x}{3}(x^2-12)^{-\frac{2}{3}}$
		When $y=2$ $dy=4$	M1	3
		When $x=2$, $\frac{dy}{dx} = -\frac{4}{3}$		M1 for attempt at normal equation
		Normal: $y + 4 = \frac{3}{4}(x - 2)$	A1	A1 allow unsimplified
_		(4y = 3x - 22)		
7 (a)	(i)	15120	B1	
	(ii)	$(5\times4)\times(4\times3\times2)$ 480	M1 A1	M1 for attempt to multiply number of ways of getting 4 letters by the number of ways of getting 2 digits.
(b)	(i)	5456 Satore	B1	
	(ii)	$^{18}C_2 \times 15$ 2295	M1 A1	M1 for attempt at an appropriate product, at least one term must be correct.
	(iii)	5456 – Number of ways only girls get tickets $5456 - 455 = 5001$	M1 A1	M1 for a complete correct method their (i) – number of ways only girls get tickets
		Or 1B 2G 1890 2B 1G 2295 3B 816	M1	M1 must be considering at least 2 of the cases shown
		Total 5001	A1	

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	13

8	(i)	1	B1	
	(ii)	$a = 8e^{-2t}$	M1	M1 for attempt to differentiate
		$8e^{-2t} = 6, -2t = \ln \frac{3}{4}$	DM1	DM1 for correct attempt to solve equation in the form $e^{-2t} = constant$
		t = 0.144	A1	A1 must be at least 3 sf
	(iii)	$s = 5t + 2e^{-2t} + (+c)$	M1	M1 for attempt to integrate
		When $t = 0$, $s = 0$, so $c = -2$	DM1,A1	DM1 for attempt to find <i>c</i> , A1 <i>c</i> correct
		When $t = 1.5$, $s = 5.60$	M1, A1	M1 for substitution of $t = 1.5$
		Alternative : $s = [5t + 2e^{-2t}]_0^{1.5}$	M1 DM1 A1 M1	M1 for attempt to integrate DM1 for attempt to use limits A1 all correct M1 for evaluation of square bracket notation
		Leading to $s = 5.60$	A1	\ \ \
	(iv)	Velocity is always +ve, so no change in direction	B1	Allow any valid argument.
9	(i)	$\cos x \left(3\sin x - 2 \right) = 0$		
		$\cos x = 0, \ x = 90^{\circ}$	B1	B1 for 90°
		$\sin x = \frac{2}{3},$	M1	M1 for attempt to solve $\sin x = \frac{2}{3}$
		$x = 41.8^{\circ}, 138.2^{\circ}$	A1,√A1	Follow through on their first answer
	(ii)	$10\sin^2 y + \cos y = 8$		
		$10(1-\cos^2 y) + \cos y = 8$	M1	M1 for use of correct identity
		$10\cos^2 y - \cos y - 2 = 0$	M1	M1 for attempt to reduce to a 3 term quadratic and attempt to solve quadratic
		$(2\cos y - 1)(5\cos y + 2) = 0$ $\cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$	M1	M1 for attempt to solve using factors in terms of cos
		$y = 60^{\circ}$, 300° and $y = 113.6^{\circ}$, 246.4°	A1, A1	A1 for any 'pair'

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	13

10 (i)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1	
(ii)		M1 A1, 0	M1 for plotting $\log y$ against x^2 –1 each error, poor point plotting, poor line drawing
(iii)	Gradient: $\lg b = 0.4, \ b = 2.5 \text{ (allow 2.45 to 2.55)}$	M1 A1	M1 for correct use of gradient
	Intercept: $\lg A = -0.3, A = 0.5$ (allow 0.4 to 0.6)	M1 A1	M1 for correct use intercept
(iv)	2.1 (allow 2 to 2.2)	M1, A1	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	13

11 (i	i)	at A $\sqrt{3} \sin 3x + \cos 3x = 0$	M1	M1 for equating to zero and attempt to solve using tan
		$\tan 3x = -\frac{1}{\sqrt{3}}, \ 3x = \frac{5\pi}{6} 150^{\circ}$	DM1	DM1 for dealing with $3x$
		$x = \frac{5\pi}{18} (0.873)$ (allow 50°)	A1	
(i	ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sqrt{3}\cos 3x - 3\sin 3x$	B1, B1	B1 for $\frac{dy}{dx}$
		When $\frac{dy}{dx} = 0$, $\tan 3x = \sqrt{3}$, $3x = \frac{\pi}{3}$ or $3x = 60^{\circ}$,	M1	M1 for attempt to solve $\frac{dy}{dx} = 0$
		$x = \frac{\pi}{9} \left(0.349 \right) \text{ (allow } 20^{\circ} \text{)}$	A1	
(i	iii)	Area = $\left[-\frac{\sqrt{3}}{3}\cos 3x + \frac{1}{3}x + \frac{1}{3}\sin 3x \right]_{\frac{\pi}{9}}^{\frac{5\pi}{18}}$	M1 A1, A1	M1 for attempt to integrate A1 for each term
		$= \left(-\frac{\sqrt{3}}{3}\cos\frac{5\pi}{6} + \frac{1}{3}\sin\frac{5\pi}{6}\right) - \left(-\frac{\sqrt{3}}{3}\cos\frac{\pi}{3} + \frac{1}{3}\sin\frac{\pi}{3}\right)$	DM1	DM1 for correct application of their limits
		$= \frac{2}{3} \text{ or } 0.667 \text{ or better}$	A1	

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

1	a = 3, b = 2, c = 1	B1, B1, B1 [3]	B1 for each
2	Using $b^2 - 4ac$, $9 = 4(k+1)^2$ $4k^2 + 8k - 5 = 0$	M1 DM1	M1 for any use of $b^2 - 4ac$ DM1 for solution of their quadratic in k
	$k = -\frac{5}{2}, \left(\frac{1}{2}\right)$	A1	A1 for critical value(s), $\frac{1}{2}$ not necessary
	To be below the <i>x</i> -axis $k < -\frac{5}{2}$	A1 [4]	A1 for $k < -\frac{5}{2}$ only
	dv - () -		
	Or: $\frac{dy}{dx} = 2(k+1)x - 3$ when $\frac{dy}{dx} = 0, x = \frac{3}{2(k+1)}$	PRE	
	$\therefore y = (k+1)\frac{9}{4(k+1)^2} - \frac{9}{2(k+1)} + (k+1)$		
	To lie under the x-axis, $y < 0$ $\therefore (k+1) \frac{9}{4(k+1)^2} - \frac{9}{2(k+1)} + (k+1) < 0$	M1	M1 for a complete method to this point.
	leading to $9 = 4(k+1)^2$ or equivalent then as for previous method		

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} + \frac{(1+\sin\theta)^2 + \cos^2\theta}{\cos\theta(1+\sin\theta)}$ $= \frac{1+2\sin\theta + \sin^2\theta + \cos^2\theta}{\cos\theta(1+\sin\theta)}$	M1	M1 for dealing with the fractions, denominator must be correct, be generous with numerator
$=\frac{2+2\sin\theta}{\cos\theta(1+\sin\theta)}$	DM1	M1 for expansion and use of $\cos^2 \theta + \sin^2 \theta = 1$
$=\frac{2(1+\sin\theta)}{\cos\theta(1+\sin\theta)}$	DM1	M1 for attempt to factorise
$= 2 \sec \theta$	A1 [4]	A1 for obtaining final answer correctly
Alternative solution:		
$\sec\theta + \tan\theta + \frac{1}{\sec\theta + \tan\theta}$	PRI	
$= \frac{(\sec \theta + \tan \theta)^2 + 1}{\sec \theta + \tan \theta}$	M1	M1 for dealing with the fractions
$= \frac{\sec^2 \theta + 2\sec \theta \tan \theta + \tan^2 \theta + 1}{\sec \theta + \tan \theta}$		
$= \frac{2 \sec^2 \theta + 2 \sec \theta \tan \theta}{\sec \theta + \tan \theta}$ $= \frac{2 \sec \theta (\sec \theta + \tan \theta)}{\sec \theta + \tan \theta}$	DM1	M1 for expansion and use of $\tan^2 \theta + 1 = \sec^2 \theta$ DM1 for attempt to factorise
$=2\sec\theta$	A1	A1 for obtaining final answer correctly
4 (i) n (A) = 3	B1 [1]	If elements listed for (i), then they must be correct elements to get B1 leading to $n(A) = 3$. If they are not listed and correct answer given then B1.
(ii) $n(B) = 4$	B1 [1]	If elements listed for (ii), then they must be correct elements leading to n (B) = 4 to get B1. If they are not listed and correct answer given then B1.
(iii) $A \cup B = \{60^\circ, 240^\circ, 300, 420^\circ, 600^\circ\}$	√B1 [1]	Follow through on any sets listed in (i) and (ii). Do not allow any repetitions.
(iv) $A \cap B = \{60^\circ, 420^\circ\}$	√B1 [1]	Follow through on any sets listed in (i) and (ii).

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

5	$\mathbf{(i)} \qquad 9x - \frac{1}{3}\cos 3x (+c)$	B1, B1, B1 [3]	B1 for $9x$, B1 for $\frac{1}{3}$ or $\cos 3x$ B1 for $-\frac{1}{3}\cos 3x$ Condone omission of $+c$
	$ (ii) \qquad \left[9x - \frac{1}{3}\cos 3x\right]_{\frac{\pi}{9}}^{\pi} $		
	$= \left(9\pi - \frac{1}{3}\cos 3\pi\right) - \left(\pi - \frac{1}{3}\cos \frac{\pi}{3}\right)$	M1	M1 for correct use of limits in their answer to (i)
	$=8\pi + \frac{1}{2}$	A1, A1 [3]	A1 for each term
6	$f\left(\frac{1}{2}\right) = \frac{a}{8} + 1 + \frac{b}{2} - 2$	M1	M1 for substitution of $x = \frac{1}{2}$ into f (x)
	leading to $a + 4b - 8 = 0$	A1	A1 for correct equation in any form
	f(2) = 2f(-1)	M1	M1 for attempt to substitute $x = 2$ or $x = -1$ into $f(x)$ and use $f(2) = \pm 2f(-1)$ or $2f(2) = \pm f(-1)$
	8a + 16 + 2b - 2 = 2(-a + 4 - b - 2)	A1	A1 for a correct equation in any form
	leading to $10a + 4b + 10 = 0$ or equivalent $\therefore a = -2, \ b = \frac{5}{2}$	DM1 A1 [6]	DM1 (on both previous M marks) for attempt to solve simultaneous equations to obtain either <i>a</i> or <i>b</i> A1 for both correct

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

7 (a) (i) 360	B1
(ii) 120	[1] B1
(b) (i) 924	[1] B1
(ii) 28	[1] B1
(h) 20	[1]
(0 4) (0 4)	M1 for 2 to mark 2 of orbid more than
(iii) $924 - ({}^{8}C_{3} \times {}^{4}C_{3}) - ({}^{8}C_{2} \times {}^{4}C_{4})$ (i.e. $924 - 3M 3W - 2M 4W$)	M1 M1 for 3 terms, at least 2 of which must be correct in terms of <i>C</i> notation or evaluated.
924 – 224 – 28	A1 A1 for any pair (must be evaluated)
= 672	A1 A1 for final answer [3]
Or : $4M \ 2W \ ^8C_4 \times ^4C_2 = 420$	M1 for 3 terms, at least 2 of which must be correct in terms of <i>C</i> notation or evaluated.
5M 1W ${}^{8}C_{5} \times {}^{4}C_{1} = 224$	A1 A1 for any pair (must be evaluated)
$^{8}C_{6} = 28$	
Total = 672	A1 A1 for final answer
8 (i)	D1 for correct share
	B1 B1 for correct shape
	B1 B1 for $(-3, 0)$ or -3 seen on graph
	B1 B1 for (2, 0) or 2 seen on graph
	B1 B1 for (0, 6) or 6 seen on graph or in a table
	oreP.
	[4]
(ii) $\left(-\frac{1}{2}, \frac{25}{4}\right)$	B1, B1 B1 for each
(2 4)	[2]
(iii) $k > \frac{25}{4}$ or $\frac{25}{4} < k \ (\le 14)$	
	B1

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

9	(a)	$12x^{2}\ln(2x+1) + 4x^{3}\left(\frac{2}{2x+1}\right)$	M1 A2, 1, 0 [3]	M1 for differentiation of a correct product -1 for each error
	(b)	(i) $\frac{dy}{dx} = \frac{(x+2)^{\frac{1}{2}}2 - 2x(x+2)^{-\frac{1}{2}}\frac{1}{2}}{x+2}$	M1, A1	M1 for differentiation of a quotient involving $(x+2)^{\frac{1}{2}}$
		$=\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x)$	DM1	A1 all correct unsimplified DM1 for attempt to simplify
		$=\frac{x+4}{\left(x+2\right)^{\frac{3}{2}}}$	A1 [4]	A1 for correct simplification to obtain the given answer
		Or:		
		$\frac{dy}{dx} = 2x \left(-\frac{1}{2}\right) (x+2)^{-\frac{3}{2}} + (x+2)^{-\frac{1}{2}} (2)$ $= (x+2)^{-\frac{3}{2}} (2(x+2) - x)$	M1, A1	M1 for differentiation of a product involving $(x+2)^{-\frac{1}{2}}$
				A1 all correct unsimplified
		$=\frac{x+4}{\left(x+2\right)^{\frac{3}{2}}}$	DM1 A1	DM1 for attempt to simplify A1 for correct simplification to obtain the given answer
	(ii)	$\frac{10x}{\sqrt{x+2}} \ (+c)$	M1,A1 [2]	M1 for $\frac{1}{5} \times \frac{2x}{\sqrt{x+2}}$ or $5 \times \frac{2x}{\sqrt{x+2}}$ A1 correct only, allow unsimplified. Condone omission of $+c$
	(iii)	$\left[\frac{10x}{\sqrt{x+2}}\right]_2^7 = \frac{70}{3} - \frac{20}{2}$	M1	M1 for correct application of limits in their answer to (b)(ii)
		$=\frac{40}{3}$	A1 [2]	

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

40 (0)	20 4.45	D1	
10 (i)	$\sqrt{20}$ or 4.47	B1 [1]	
	1	[1]	
(ii)	Grad $AB = \frac{1}{2}$, \perp grad = -2	M1	M1 for attempt at a perp gradient
	$\perp \text{ line } y - 4 = -2(x - 1)$	M1, A1	M1 for attempt at straight line equation, must be perpendicular and passing through <i>B</i> .
	(y = -2x + 6)	[3]	A1 allow unsimplified
(iii)	Coords of $C(x, y)$ and $BC^2 = 20$ $(x-1)^2 + (y-4)^2 = 20$ or Coords of $C(x, y)$ and $AC^2 = 40$	M1	M1 for attempt to obtain relationship using an appropriate length and the point $(1, 4)$ or $(-3, 2)$
	$(x+3)^2 + (y-2)^2 = 40$	A1	A1 for a correct equation
	Need intersection with $y = -2x + 6$,	DM1	DM1 for attempt to solve with $y = -2x + 6$ and obtain a quadratic equation in terms of one variable only
	leads to $5x^2 - 10x - 15 = 0$ or $5y^2 - 40y - = 0$	R	
	giving $x = 3, -1$ and $y = 0, 8$	DM1 A1, A1 [6]	M1 for attempt to solve quadratic A1 for each 'pair'
	Or, using vector approach:		
	$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$	B1	May be implied
	$\overrightarrow{OC} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} + \begin{pmatrix} -2 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}$	M1 A1, A1	M1 for correct approach A1 for each element correct
	$\overrightarrow{OC} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	A1,A1	A1 for each element correct

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

11 (a) (i) $\begin{pmatrix} 4 & 3 \\ 4 & 3 \end{pmatrix}$	B1 [1]	
(ii) $\mathbf{A}^2 = \begin{pmatrix} 16 & 9 \\ 12 & 13 \end{pmatrix}$	B1, B1 [2]	B1 for any 2 correct elements B1 for all correct
(iii) B is the inverse matrix of A^2 $= \frac{1}{100} \begin{pmatrix} 13 & -9 \\ -12 & 16 \end{pmatrix}$	B1, B1 [2]	Follow through on their \mathbf{A}^2
(b) det $\mathbf{C} = x(x-1) - (-1)(x^2 - x + 1)$ = $2x^2 - 2x + 1$	M1 A1	M1 for attempt to obtain det C A1 for this correct quadratic expression from a correct det C
$b^2 - 4ac < 0, 4 - 8 < 0$	DM1	DM1 for use of discriminant or attempt to solve using the formula, or attempt to complete the square in order to show there are no real roots.
No real solutions (so det $\mathbb{C} \neq 0$)	A1 [4]	A1 for correct reasoning or statement that there are no real roots.

Page 10	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

12	(a)	(i)	f(-10) = 299, $f(8) = 191Min point at (0, -1) or when y = -1∴ range -1 \le y \le 299$	M1 B1	[3]	M1 for substitution of either $x = -10$ or $x = 8$, may be seen on diagram B1 May be implied from final answer, may be seen on diagram Must have \leq for A1, do not allow x
		(ii)	$x \ge 0$ or equivalent	B1	[1]	Allow any domain which will make f a one-one function Assume upper and lower bound when necessary.
	(b)	(i)	$g^{-1}(x) = \ln\left(\frac{x+2}{4}\right)$	M1		M1 for complete method to find the form inverse function, must involve ln or lg if appropriate. May still be in terms of <i>y</i> .
			or $\frac{\lg\left(\frac{x+2}{4}\right)}{\lg e}$	A1	[2]	A1 must be in terms of x
		(ii)	gh(x) = g(1n5x) = $4e^{1n5x} - 2$	M1 A1		M1 for correct order A1 for correct expression $4e^{\ln 5x} - 2$
			$20x - 2 = 18, \ x = 1$	A1	[3]	A1 for correct solution from correct working
			Or $h(x) = g^{-1}(18)$ 1n5x = 1n5	M1 A1		M1 for correct order A1 for correct equation
			leading to $x = 1$	A1		A1 for correct solution from correct working

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	12

1	a = 3, b = 2, c = 1	B1, B1, B1 [3]	B1 for each
2	Using $b^2 - 4ac$, $9 = 4(k+1)^2$ $4k^2 + 8k - 5 = 0$	M1 DM1	M1 for any use of $b^2 - 4ac$ DM1 for solution of their quadratic in k
	$k = -\frac{5}{2}, \left(\frac{1}{2}\right)$	A1	A1 for critical value(s), $\frac{1}{2}$ not necessary
	To be below the <i>x</i> -axis $k < -\frac{5}{2}$	A1 [4]	A1 for $k < -\frac{5}{2}$ only
	dv ()		
	Or: $\frac{dy}{dx} = 2(k+1)x - 3$ when $\frac{dy}{dx} = 0, x = \frac{3}{2(k+1)}$	PR	
	$\therefore y = (k+1)\frac{9}{4(k+1)^2} - \frac{9}{2(k+1)} + (k+1)$		
	To lie under the x-axis, $y < 0$ (k+1) $y = 0$	M1	M1 for a complete method to this point.
	$\therefore (k+1)\frac{9}{4(k+1)^2} - \frac{9}{2(k+1)} + (k+1) < 0$ leading to $9 = 4(k+1)^2$ or equivalent then as for previous method	1411	111 for a complete method to this point.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	12

$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} + \frac{(1+\sin\theta)^2 + \cos^2\theta}{\cos\theta(1+\sin\theta)}$ $= \frac{1+2\sin\theta + \sin^2\theta + \cos^2\theta}{\cos\theta(1+\sin\theta)}$	M1	M1 for dealing with the fractions, denominator must be correct, be generous with numerator
$=\frac{2+2\sin\theta}{\cos\theta(1+\sin\theta)}$	DM1	M1 for expansion and use of $\cos^2 \theta + \sin^2 \theta = 1$
$=\frac{2(1+\sin\theta)}{\cos\theta(1+\sin\theta)}$	DM1	M1 for attempt to factorise
$=2\sec\theta$	A1 [4]	A1 for obtaining final answer correctly
Alternative solution:		
$\sec\theta + \tan\theta + \frac{1}{\sec\theta + \tan\theta}$	PRI	
$= \frac{\left(\sec\theta + \tan\theta\right)^2 + 1}{\sec\theta + \tan\theta}$	M1	M1 for dealing with the fractions
$= \frac{\sec^2 \theta + 2\sec \theta \tan \theta + \tan^2 \theta + 1}{\sec \theta + \tan \theta}$		
$= \frac{2 \sec^2 \theta + 2 \sec \theta \tan \theta}{\sec \theta + \tan \theta}$ $= \frac{2 \sec \theta (\sec \theta + \tan \theta)}{\sec \theta + \tan \theta}$	DM1	M1 for expansion and use of $\tan^2 \theta + 1 = \sec^2 \theta$ DM1 for attempt to factorise
$=2\sec\theta$	A1	A1 for obtaining final answer correctly
4 (i) n (A) = 3	B1 [1]	If elements listed for (i), then they must be correct elements to get B1 leading to $n(A) = 3$. If they are not listed and correct answer given then B1.
(ii) $n(B) = 4$	B1 [1]	If elements listed for (ii), then they must be correct elements leading to n (B) = 4 to get B1. If they are not listed and correct answer given then B1.
(iii) $A \cup B = \{60^\circ, 240^\circ, 300, 420^\circ, 600^\circ\}$	√B1 [1]	Follow through on any sets listed in (i) and (ii). Do not allow any repetitions.
(iv) $A \cap B = \{60^\circ, 420^\circ\}$	√B1 [1]	Follow through on any sets listed in (i) and (ii).

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	12

5	$\mathbf{(i)} \qquad 9x - \frac{1}{3}\cos 3x (+c)$	B1, B1, B1 [3]	B1 for $9x$, B1 for $\frac{1}{3}$ or $\cos 3x$ B1 for $-\frac{1}{3}\cos 3x$ Condone omission of $+c$
	$ (ii) \qquad \left[9x - \frac{1}{3}\cos 3x\right]_{\frac{\pi}{9}}^{\pi} $		
	$= \left(9\pi - \frac{1}{3}\cos 3\pi\right) - \left(\pi - \frac{1}{3}\cos \frac{\pi}{3}\right)$	M1	M1 for correct use of limits in their answer to (i)
	$=8\pi + \frac{1}{2}$	A1, A1 [3]	A1 for each term
6	$f\left(\frac{1}{2}\right) = \frac{a}{8} + 1 + \frac{b}{2} - 2$	M1	M1 for substitution of $x = \frac{1}{2}$ into f (x)
	leading to $a + 4b - 8 = 0$	A1	A1 for correct equation in any form
	f(2) = 2f(-1)	M1	M1 for attempt to substitute $x = 2$ or $x = -1$ into $f(x)$ and use $f(2) = \pm 2f(-1)$ or $2f(2) = \pm f(-1)$
	8a + 16 + 2b - 2 = 2(-a + 4 - b - 2)	A1	A1 for a correct equation in any form
	leading to $10a + 4b + 10 = 0$ or equivalent $\therefore a = -2, \ b = \frac{5}{2}$	DM1 A1 [6]	DM1 (on both previous M marks) for attempt to solve simultaneous equations to obtain either <i>a</i> or <i>b</i> A1 for both correct

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	12

7 (a)	(;)	360	B1		
7 (a)	(i)	300	DI	[1]	
	(ii)	120	B1		
(b)	(i)	924	B1	[1]	
	(ii)	28	B1	[1]	
	(11)	20	D1	[1]	
		924 $-({}^{8}C_{3}^{4}C_{3})-({}^{8}C_{2}^{4}C_{4})$ e. 924 $-$ 3M 3W $-$ 2M 4W)	M1		M1 for 3 terms, at least 2 of which must be correct in terms of <i>C</i> notation or evaluated.
		924 - 224 - 28	A1		A1 for any pair (must be evaluated)
	=	672	A1	[3]	A1 for final answer
Oı	:: 4M 2	$^{8}C_{4} \times ^{4}C_{2} = 420$	M1	RA	M1 for 3 terms, at least 2 of which must be
		4 2 1 $^{8}C_{5} \times ^{4}C_{1} = 224$			correct in terms of C notation or evaluated.
	6M	${}^{8}C_{6} = 28$	A1		A1 for any pair (must be evaluated)
	0111				
		Total $= 672$	A1		A1 for final answer
8 (i)			D1		D1 for compat there
	,		B1		B1 for correct shape
			B1		B1 for $(-3, 0)$ or -3 seen on graph
					1.51
			B1		B1 for (2, 0) or 2 seen on graph
			B1	0	B1 for (0, 6) or 6 seen on graph or in a table
			Dre		
				[4]	
(ii)	$\left(-\frac{1}{2}\right)$	$\frac{25}{4}$	B1, I	31	B1 for each
	(2	4)		[2]	
	_				
1	1 2	$\frac{25}{4}$ or $\frac{25}{4} < k \ (\le 14)$	B1		
(iii)	$\kappa > -$	$\Delta \qquad \Delta \qquad (\leq 14)$	<i>D</i> 1	[1]	

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	12

9	(a)	$12x^{2}\ln(2x+1) + 4x^{3}\left(\frac{2}{2x+1}\right)$	M1 A2, 1, 0 [3]	M1 for differentiation of a correct product -1 for each error
	(b)	(i) $\frac{dy}{dx} = \frac{(x+2)^{\frac{1}{2}}2 - 2x(x+2)^{-\frac{1}{2}}\frac{1}{2}}{x+2}$	M1, A1	M1 for differentiation of a quotient involving $(x+2)^{\frac{1}{2}}$
		$=\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x)$	DM1	A1 all correct unsimplified DM1 for attempt to simplify
		$=\frac{x+4}{\left(x+2\right)^{\frac{3}{2}}}$	A1 [4]	A1 for correct simplification to obtain the given answer
		Or:		
		$\frac{dy}{dx} = 2x \left(-\frac{1}{2}\right) (x+2)^{-\frac{3}{2}} + (x+2)^{-\frac{1}{2}} (2)$ $= (x+2)^{-\frac{3}{2}} (2(x+2) - x)$	M1, A1	M1 for differentiation of a product involving $(x+2)^{-\frac{1}{2}}$
				A1 all correct unsimplified
		$=\frac{x+4}{\left(x+2\right)^{\frac{3}{2}}}$	DM1 A1	DM1 for attempt to simplify A1 for correct simplification to obtain the given answer
	(ii)	$\frac{10x}{\sqrt{x+2}} \ (+c)$	M1,A1 [2]	M1 for $\frac{1}{5} \times \frac{2x}{\sqrt{x+2}}$ or $5 \times \frac{2x}{\sqrt{x+2}}$ A1 correct only, allow unsimplified. Condone omission of $+c$
	(iii)	$\left[\frac{10x}{\sqrt{x+2}}\right]_2^7 = \frac{70}{3} - \frac{20}{2}$	M1	M1 for correct application of limits in their answer to (b)(ii)
		$=\frac{40}{3}$	A1 [2]	

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	12

10 (i)	$\sqrt{20}$ or 4.47	B1	
10 (1)	V 20 01 4.47	[1]	
(ii)	Grad $AB = \frac{1}{2}$, \perp grad = -2	M1	M1 for attempt at a perp gradient
	\perp line $y-4=-2(x-1)$	M1, A1	M1 for attempt at straight line equation, must be perpendicular and passing through <i>B</i> .
	(y = -2x + 6)	[3]	A1 allow unsimplified
(iii)	Coords of $C(x, y)$ and $BC^2 = 20$ $(x-1)^2 + (y-4)^2 = 20$ or Coords of $C(x, y)$ and $AC^2 = 40$ $(x+3)^2 + (y-2)^2 = 40$	M1	M1 for attempt to obtain relationship using an appropriate length and the point (1, 4) or (-3, 2)
	$(x+3)^2 + (y-2)^2 = 40$	A1	A1 for a correct equation
	Need intersection with $y = -2x + 6$,	DM1	DM1 for attempt to solve with $y = -2x + 6$ and obtain a quadratic equation in terms of one variable only
	leads to $5x^2 - 10x - 15 = 0$ or $5y^2 - 40y - = 0$	R	
	giving $x = 3, -1$ and $y = 0, 8$	DM1 A1, A1 [6]	M1 for attempt to solve quadratic A1 for each 'pair'
	Or, using vector approach:		A _111
	$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$	B1	May be implied
	$\overrightarrow{OC} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} + \begin{pmatrix} -2 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}$	M1 A1, A1	M1 for correct approach A1 for each element correct
	$\overrightarrow{OC} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	A1,A1	A1 for each element correct

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	12

11 (a) (i) $\begin{pmatrix} 4 & 3 \\ 4 & 3 \end{pmatrix}$	B1 [1]	
(ii) $\mathbf{A}^2 = \begin{pmatrix} 16 & 9 \\ 12 & 13 \end{pmatrix}$	B1, B1 [2]	B1 for any 2 correct elements B1 for all correct
(iii) B is the inverse matrix of A^2 $= \frac{1}{100} \begin{pmatrix} 13 & -9 \\ -12 & 16 \end{pmatrix}$	B1, B1 [2]	Follow through on their \mathbf{A}^2
(b) det $\mathbf{C} = x(x-1) - (-1)(x^2 - x + 1)$ = $2x^2 - 2x + 1$	M1 A1	M1 for attempt to obtain det C A1 for this correct quadratic expression from a correct det C
$b^2 - 4ac < 0, 4 - 8 < 0$	DM1	DM1 for use of discriminant or attempt to solve using the formula, or attempt to complete the square in order to show there are no real roots.
No real solutions (so det $\mathbb{C} \neq 0$)	A1 [4]	A1 for correct reasoning or statement that there are no real roots.

Page 10	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	12

12	(a)	(i)	f(-10) = 299, $f(8) = 191Min point at (0, -1) or when y = -1∴ range -1 \le y \le 299$	M1 B1	[3]	M1 for substitution of either $x = -10$ or $x = 8$, may be seen on diagram B1 May be implied from final answer, may be seen on diagram Must have \leq for A1, do not allow x
		(ii)	$x \ge 0$ or equivalent	B1	[1]	Allow any domain which will make f a one-one function Assume upper and lower bound when necessary.
	(b)	(i)	$g^{-1}(x) = \ln\left(\frac{x+2}{4}\right)$	M1		M1 for complete method to find the form inverse function, must involve ln or lg if appropriate. May still be in terms of <i>y</i> .
			or $\frac{\lg\left(\frac{x+2}{4}\right)}{\lg e}$	A1	[2]	A1 must be in terms of x
		(ii)	gh(x) = g(1n5x) = $4e^{1n5x} - 2$	M1 A1		M1 for correct order A1 for correct expression $4e^{\ln 5x} - 2$
			$20x - 2 = 18, \ x = 1$	A1	[3]	A1 for correct solution from correct working
			Or $h(x) = g^{-1}(18)$ 1n5x = 1n5	M1 A1		M1 for correct order A1 for correct equation
			leading to $x = 1$	A1		A1 for correct solution from correct working

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	0606	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.

When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	0606	13

1	(i)	${}^{6}C_{2}(2^{4})(px)^{2} \text{ or } {6 \choose 2} 2^{4}(px)^{2}$ $240 p^{2} = 60$ $p = \frac{1}{2}$	B1 M1 A1	[3]	Seen or implied, unsimplified M1 for their coefficient of $x^2 = 60$ and attempt to solve
	(ii)	coefficients of the terms needed	M1		M1 for realising that 2 terms are involved
		$(-1)^{6}C_{1}(2)^{5}p+(3\times60)$	B1		B1 for $(-1)^{6}C_{1}(2)^{5}p$ or $-192p$, using their p .
		= 84	A1	[3]	
2		$\lg \frac{y^2}{5y + 60} = \lg 10$	B1 B1	PR	B1 for 2 lg $y = \lg y^2$ B1 for 1 = lg10 or equivalent, allow when seen
	Or	$\lg y^2 = \lg 10 \ (5y + 60)$	M1		M1 for use of $\log A - \log B = \log A/B$ or $\log A + \log B = \log AB$
		$y^{2}-50y-600 = 0$ leading to $y = -10$, 60 y must be positive so $y = 60$	DM A1	[5]	DM1 for forming a 3 term quadratic equation and an attempt to solve A1 for $y = 60$ only

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	0606	13

$3 \tan^2 \theta - \sin^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} - \sin^2 \theta$		Marks are awarded only if they can lead to a complete proof for the methods other than those shown below
$=\frac{\sin^2\theta-\sin^2\theta\cos^2\theta}{\cos^2\theta}$	M1	M1 for dealing with tan and a fraction
$= \frac{\sin^2\theta \left(1 - \cos^2\theta\right)}{\cos^2\theta}$	M1	M1 for factorising
$=\frac{\sin^4\theta}{\cos^2\theta}$	M1	M1 for use of identity $\cos^2 \theta + \sin^2 \theta = 1$
$=\sin^4\theta\sec^2\theta$	A1 [4]	A1 for all correct
Alt solution 1		
Using $\tan^2 \theta = \sin^2 \theta \sec^2 \theta$		
LHS = $\sin^2 \theta \sec^2 \theta - \sin^2 \theta$ = $\sin^2 \theta (\sec^2 \theta - 1)$ = $\sin^2 \theta \tan^2 \theta$ = $\sin^4 \theta \sec^2 \theta$	M1 M1 M1	M1 use of $\tan^2 x = \sin^2 x \sec^2 x$ M1 for factorising M1 for use of identity A1 for all correct
Alt solution 2		
$RHS = \sin^4 \theta \sec^2 \theta$		
$=\frac{\sin^2\theta\sin^2\theta}{\cos^2\theta}$	M1	M1 for splitting $\sin^4 \theta$ and use of identity
$=\frac{\sin^2\theta(1-\cos^2\theta)}{\cos^2\theta}$	M1	M1 for multiplication
$=\frac{\sin^2\theta-\sin^2\theta\cos^2\theta}{\cos^2\theta}$	M1	M1 for writing as two terms and cancelling
$= \frac{\sin^2 \theta}{\cos^2 \theta} - \frac{\sin^2 \theta \cos^2 \theta}{\cos^2 \theta}$ $= \tan^2 \theta - \sin^2 \theta$	Alle	A1 for all correct

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	0606	13

()2 2 2 2 ()		
4 (i) $\frac{dy}{dx} = \frac{(x+3)^2 2e^{2x} - e^{2x} 2(x+3)}{(x+3)^4}$	M1	M1 for attempt at quotient rule
	A2, 1, 0	−1 for each error
$=\frac{2e^{2x}(x+2)}{(x+3)^3}, A=2$	A1	Must be convinced of correct simplification e.g. sight of $(x + 3 - 1)$ or $(x + 2)(x + 3)$
	[4]	e.g. signt of $(x + 3 - 1)$ of $(x + 2)(x + 3)$
Alt solution		
$dv = 2x \left(-\frac{1}{2} \left(-\frac{1}{2} \right) - \frac{1}{2}		
$\frac{dy}{dx} = e^{2x} \left(-2(x+3)^{-3} \right) + 2e^{2x} (x+3)^{-2}$	M1	M1 for attempt at product rule
$2e^{2x}(n+2)$	A2,1,0	−1 for each error
$= \frac{2e^{2x}(x+2)}{(x+3)^3}, A=2$	A1	Must be convinced of correct simplification e.g. sight of $(x + 3 - 1)$ or $(x + 2)(x + 3)$
(ii) $x = -2, y = e^{-4}$	B1, B1 [2]	Accept 1/e ⁴
	[2]	
5 (i) $f^2(x) = f(2x^3)$		
$=2(2x^3)^3 \text{ or } 2\left(2\left(\frac{1}{2}\right)^3\right)^3$	M1	M1 for = $2(2x^3)^3$ or $2(2(\frac{1}{2})^3)^3$
= 2 ⁻⁵	A1	For 2 ⁻⁵ only
	[2]	
Alt method		
$f\left(\frac{1}{2}\right) = \frac{1}{4} \qquad f\left(\frac{1}{4}\right) = 2^{-5}$	M1	M1 for f of their f $\left(\frac{1}{2}\right)$
(2) 4 (4)	A1	For 2 ⁻⁵ only
4.85	711	
(ii) $f'(x) = g'(x)$ $6x^2 = 4 - 10x$	B1 B1	B1 for $6x^2$ B1 for $4 - 10x$
0.1 - 4 - 10.1	DI	D1 101 7 - 10x
Leading to $(3x - 1)(x + 2) = 0$	M1	M1 for solution of quadratic equation obtained from differentiation of both
$x = \frac{1}{3}, -2$	A1 [4]	A1 for both

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	0606	13

_		1	41	
6	Area	under	tne	curve:

$$\int_{0}^{\sqrt{2}} 4 - x^{2} dx = \left[4x - \frac{x^{3}}{3} \right]_{0}^{\sqrt{2}}$$

$$= \left(4\sqrt{2} - \frac{2\sqrt{2}}{3} \right) - (0)$$

$$= \frac{10\sqrt{2}}{3}$$

Area of trapezium =

$$\frac{1}{2}(4+2)(\sqrt{2}) = 3\sqrt{2}$$
Shaded area =
$$\frac{10\sqrt{2}}{3} - 3\sqrt{2}$$

Shaded area =
$$\frac{\sqrt{2}}{3}$$

Or:

Equation of chord:

$$y = 4 - \sqrt{2x}$$

Shaded area =
$$\int_{0}^{\sqrt{2}} 4 - x^2 - 4 + \sqrt{2}x \, dx$$

$$\left[\frac{\sqrt{2}}{2}x^2 - \frac{x^3}{3}\right]_0^{\sqrt{2}} = \frac{\sqrt{2}}{3}$$

M1 A1

M1 for attempt to integrate

DM1

[6]

DM1 for application of limits

B1 B1 for area of trapezium, allow unsimplified

M1 M1 for subtraction of the two areas

A1 Must be in this form

B1 B1 for the equation of the chord unsimplified

M1 M1 for subtraction
M1 for attempt to integrate

 $\sqrt{A1}$ $\sqrt{A1}$ for $\left[-m\frac{x^2}{2} - \frac{x^3}{3}\right]$ or equivalent, where DM1 m is the gradient of their chord

A1 DM1 for application of limits [6]

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	0606	13

7	(i)	$2t^2 - 2(t^2 - t + 1)$	B1	Correct determinant seen unsimplified
		Leading to, $t = \frac{3}{2}$	M1 A1 [3]	M1 for simplification and solution A1 for solution of det A=1 only, not 1/det A=1
	(ii)	$\mathbf{A} = \begin{pmatrix} 6 & 2 \\ 7 & 3 \end{pmatrix}, \mathbf{A}^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix}$	B1, B1	B1 for $\frac{1}{4}$, B1 for matrix
		$ \begin{pmatrix} 6 & 2 \\ 7 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 10 \\ 11 \end{pmatrix} $	B1	B1 for dealing correctly with the factor of 2
		$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix} \begin{pmatrix} 10 \\ 11 \end{pmatrix} $	M1	M1 for pre-multiplying their $\begin{pmatrix} 10\\11 \end{pmatrix}$ by their
				A^{-1} to obtain a column matrix
		$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, leading to $x = 2$, $y = -1$	A1 [5]	Allow $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ for A1
8	(i)	$\frac{1}{2}(4^2)\sin\theta = 7.5$	M1	M1 for attempt to find the area of the triangle and equate to 7.5
		$\sin \theta = \frac{15}{16}, \ \theta = 1.215$	A1 [2]	A1 for solution to obtain the given answer Solution must include 1.2153 or 1.2154
	(ii)	$\sin\frac{\theta}{2} = \frac{\frac{1}{2}CD}{4}$, $(CD = 4.567)$	M1	M1 for attempt to find <i>CD</i>
		Arc length = $6(1.215)$	B1	B1 for arc length
		Perimeter = $2 + 2 + 6(1.215) + \text{their } CD$	M1	M1 for sum of 4 appropriate lengths
		= awrt 15.9	A1 [4]	
	(iii)	Area = $\frac{1}{2}6^2 (1.215) - 7.5$	B1 M1	B1 for sector area M1 for subtraction of the 2 areas
		= 14.4 (awrt)	A1 [3]	

Page 8	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	0606	13

			Ţ
9 (a)	(i) $6(1-\cos^2 x) = 5 + \cos x$ $6\cos^2 x + \cos x - 1 = 0$ $(3\cos x - 1)(2\cos x + 1) = 0$	M1 M1	M1 for use of $\sin^2 x = (1 - \cos^2 x)$ correctly M1 for solution of a 3 term quadratic in cos and attempt at solution of a trig equation
	$x = 70.5^{\circ}$ $x = 120^{\circ}$	A1, A1 [4]	A1 for each correct solution
	(ii) $\cos x = \sin y$		
	$\sin y = \frac{1}{3} \text{ only so}$	DM1	DM1 for relating cos x and sin y or other correct method of solution
	$y = 19.5^{\circ}, 160.5^{\circ}$	$\sqrt{A1}$, $\sqrt{A1}$ [3]	
(b)	$\cot z \ (4 \cot z - 3) = 0$	M1	M1 for attempt to use a factor
	$\cot z = 0, z = \frac{\pi}{2}$	B1	B1 for $\frac{\pi}{2}$ (1.57)
	$\cot z = \frac{3}{4}$, $\tan z = \frac{4}{3}$ so $z = 0.927$	M1 A1 [4]	M1 dealing with cot and attempt at solution
10 (i)	lg s	B1 [1]	Allow in table or on graph if no contradiction
(ii)			No marks for graph unless lgt against lgs (or lnt against lns)
(11)	lgs 0.3 0.6 0.78 0.9 lgt 1.4 0.8 0.44 0.19	M1 DM1 A1 [3]	M1 for 3 or more points correct DM1 for a line through 3 or 4 correct points A1 all points correct with a straight line extending at least from first point to last point
(iii)	No marks in this part unless lgt v lgs graph is used	pref	
	Gradient : $n = -2$ (allow $-2.1 \rightarrow -1.9$)	M1A1	M1 calculates gradient A1 for $n = -2$
	Intercept : $\log k$, or other method $k = 100$ (allow $90 \rightarrow 120$)	M1, A1 [4]	M1 for use of intercept and dealing with logarithm correctly (can use another point)
Alt method Using simultaneous equations, points used must lie on the plotted line.		M2 A1, A1	Must attempt to solve 2 valid equations. $k = 100$ and $n = -2$
(iv)	When $t = 4$, $\lg t = 0.6$ so $\lg s = 0.69$ $s = 4.9$ (allow $4.8 \rightarrow 5.2$)	M1 A1 [2]	M1 for valid method using either the correct graph or using $\lg t = n \lg s + \lg k$ or $t = k s^n$ using their n and their k

Page 9	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	0606	13

11 (i) $\left[e^{2x} + \frac{5}{4}e^{-2x}\right]_0^k$	B1, B1	B1 for each term integrated correctly, allow unsimplified
$\left(e^{2k} + \frac{5}{4}e^{-2k}\right) - \left(1 + \frac{5}{4}\right) = 3$	M1	M1 for application of limits to an integral of the form $Ae^{2x} \pm Be^{-2x}$
$e^{2k} + \frac{5}{4} e^{-2k} - \frac{12}{4} = 0$	M1	M1 for equating to $\frac{3}{4}$ and attempt to rearrange to obtain a 3 term equation. Must be using an
		integral of the form $Ae^{2x} + Be^{-2x}$
$4e^{4k} - 12e^{2k} + 5 = 0$	A1 [5]	Answer given, so must be convinced
(ii) $4y^2 - 12y + 5 = 0$	M1	M1 for solution of quadratic equation
leading to $e^{2k} = \frac{5}{2}$, $e^{2k} = \frac{1}{2}$	M1	M1 for solving equations involving exponentials
k = 0.458, -0.347	A1, A1 [4]	A1 for each

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	11

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\ }$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	11

1 (i)	· · · · · · · · · · · · · · · · · · ·	B1	correct shape for $y = \cos x - 1$
(ii)		B1	all correct
		B1	correct shape for $y = \sin 2x$
		B1	all correct
			an contact
(iii)	3	B1	
2	Either gradient = 1	B1	
	intercept = 2	B1	
	$\ln b = \text{gradient or } \ln A = \text{intercept}$	M1	M1, need to equate either gradient to $\ln b$ or intercept to $\ln A$
	b = e or 2.72	A1	
	$A = e^2, A = 7.39$	A1	
	Or $e^4 = Ab^2 \text{ and } e^{10} = Ab^8$	[B1 B1	B1 for each equation
	leading to $b^6 = e^6$ or $e^4 = e^2 A$ or $e^{10} = e^8 A$	M1	M1 for attempt to solve for either A or b
	b = e or 2.72	A1	
	$A = e^2, A = 7.39$	A1]	
	$\mathbf{Or} \qquad 10 = 8 \ln b + \ln A$	[B1	
	$4 = 2 \ln b + \ln A$	B1	
	leading to $\ln b = 1$ or $6 = 3 \ln A$	M1	$\mathbf{M1}$ for attempt to solve for either A or b
	b = e or 2.72	A1	
	$A = e^2, A = 7.39$	A1]	

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	11

3	(i)	$^{14}C_6 = 3003$	B1	
	(ii)	${}^5C_3 \times {}^9C_3 = 840$	M1 A1	M1 for product of 2 combinations
	(iii)	Either $3003 - {}^{9}C_{6} = 2919$	M1 B1 A1	M1 for 3003 – number of committees containing no men B1 for 9C_6
		Or $1M + 5W: 5 \times {}^{9}C_{5} = 630$ $2M + 4W: {}^{5}C_{2} \times {}^{9}C_{4} = 1260$ $3M + 3W: 840 \text{ (part (ii))}$ $4M + 2W: {}^{5}C_{4} \times {}^{9}C_{2} = 180$	[B2 1 0	-1 each error
		$5M + 1W: 1 \times {}^{9}C_{1} = 9$ Total: 2919	B1]	B1 for correct final answer
4	(i)	2	B1	
	(ii)	$\log_4 y^2 - \log_4 (5y - 12) \ (= \log_4 2)$	B 1	B1 for power
		$\log_4\left(\frac{y^2}{5y - 12}\right) = (=\log_4 2)$	M1	correct division
		$y^2 - 10y + 24 = 0$	M1	attempt at solution of a 3 term quadratic
		y = 4, 6	A1	A1 for both
5	(i)	$x^{(1)}$	B1 B1	B1 for each term
	(ii)	$\left(3k + \frac{6}{3k}\right) - \left(k + \frac{6}{k}\right) (=2)$	M1	correct use of limits
		$2k^2 - 2k - 4 = 0$	M1	attempt to obtain a 3 term quadratic from 2 brackets equated to 2
			DM1	DM1 or solution of quadratic dependent on 2 nd M1
		leading to $k = 2$	A1	dependent on 2 1/11

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	11

6 (i)	$A^{-1} = \frac{1}{13} \begin{pmatrix} 5 & 1 \\ -3 & 2 \end{pmatrix}$	B1 B1	B1 for matrix, B1 for multiplying by a correct determinant
(ii)	Either $ \begin{pmatrix} a & b \\ c & -1 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 5 & 1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 7 & 5 \\ 17 & d \end{pmatrix} $	M1	evidence of multiplication of both sides by A ⁻¹
	$= \frac{1}{13} \begin{pmatrix} 52 & 25+d \\ 13 & -15+2d \end{pmatrix}$		
	leading to $a = 4, c = 1$	DM1	DM1 for attempt to equate like elements
	and $b = 2, d = 1$	A3,2,1,0	−1 each error
	Or $ \begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} a & b \\ c & -1 \end{pmatrix} = \begin{pmatrix} 7 & 5 \\ 17 & d \end{pmatrix} $	[M1	M1 for evidence of matrix multiplication
	2a-c=7, $3a+5c=17$, $a=4$, $c=12b+1=5$, $3b-5=d$, $b=2$, $d=1$	DM1 A3,2,1,0]	DM1 for attempt to equate like elements –1 each error
7 (i)	$\tan B = \frac{\sqrt{5+1}}{\sqrt{5-2}}$	B1	
	$= \frac{\sqrt{5+1}}{\sqrt{5-2}} \times \frac{\sqrt{5+2}}{\sqrt{5+2}}$	M1	attempt at rationalisation (Allow if inverse is used)
	$=7+3\sqrt{5}$	A1	
(ii)	$(7+3\sqrt{5})^2 + 1 = \sec^2 B$	M1 M1	M1 for attempt to use the correct identity M1 for simplification to give 3 or 4 terms
	$\sec^2 B = 95 + 42\sqrt{5}$	√A1 √A1	cao A1 for 95, A1 for $42\sqrt{5}$
	Or $\sec^2 B = \frac{1}{\cos^2 B} = \frac{(\sqrt{5+1})^2 + (\sqrt{5}-2)^2}{(\sqrt{5}-2)^2}$	[M1	M1 for attempt to use to find BC^2
	$\sec^2 B = \frac{15 - 2\sqrt{5}}{9 - 4\sqrt{5}} \times \frac{9 + 4\sqrt{5}}{9 + 4\sqrt{5}}$	M1	M1 for use of sec $B = \frac{1}{\cos B}$
	$\sec^2 B = 95 + 42 \sqrt{5}$	A1 A1]	A1 for 95, A1 for $52\sqrt{5}$

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	11

8 (i)	Either	$\tan \frac{\theta}{2} = \frac{8}{6}$	M1	M1 for use of trig to obtain half angle
		$\frac{\theta}{2} = 0.927$		Can use $\sin \frac{\theta}{2} = \frac{8}{10}$ or $\cos \frac{\theta}{2} = \frac{6}{10}$
		$\theta = 1.855$	A1	A1 Allow if done in degrees and converted
	Or	Area of triangle $MEF = 48$	[M1	M1 for a complete method to find the obtuse angle
		$\frac{1}{2} \times 10^2 \times \sin \theta = 48$		
		$\theta = 1.287, \pi - 1.287$		
		$\theta = 1.855$	A1]	
	Or	$16^2 = 10^2 + 10^2 - (2 \times 10 \times \cos \theta)$	[M1	M1 for use of the cosine rule, need to see working as answer given
		$\theta = 1.855$	A1]	
(ii)	radius =	= 10	B1	B1 for the radius, allow anywhere
	$P = (10^{\circ})$	0 × 1.855) + 10 + 10 + 16	M1 M1	M1 for use of arc length M1 for method, must be arc +3 sides
	= 54.6	6 or 54.5 or 54.55	A1	- /
(iii)	A =256	$6-2\left(\frac{1}{2}\times8\times6\right)-\frac{1}{2}10^2(1.855)$	M1 M1	M1 for area of sector M1 for a correct plan to obtain the required area
	= 11	5.25 or 115.3 or 115	A1	
	av	vrt 115		

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	11

9 (i)	$\overrightarrow{AP} = \frac{3}{4}(\mathbf{b} - \mathbf{a})$	B1	
	$\overrightarrow{OP} = \mathbf{a} + \frac{3}{4}(\mathbf{b} - \mathbf{a}), \text{ or }$	M1	M1 for attempt at vector addition
	$\overrightarrow{OP} = \mathbf{a} - \frac{1}{4} (\mathbf{b} - \mathbf{a}),$		
	$=\frac{1}{4}(\mathbf{a}+3\mathbf{b})$	A1	Answer given
(ii)	$\overrightarrow{QQ} = \frac{2}{5}\mathbf{c}$, or $\overrightarrow{QC} = \frac{3}{5}\mathbf{c}$ or $\overrightarrow{CQ} = -\frac{3}{5}\mathbf{c}$	B1	B1 for \overrightarrow{OQ} , \overrightarrow{QC} or \overrightarrow{CQ}
	$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$	M1	M1 for correct vector addition/subtraction
	$=\frac{2}{5}\mathbf{c}-\frac{\mathbf{a}}{4}-\frac{3\mathbf{b}}{4}$	A1	
(iii)	$2\mathbf{c} - \frac{5\mathbf{a}}{4} - \frac{15\mathbf{b}}{4} = 6(\mathbf{c} - \mathbf{b})$	M1	M1 for use of <i>their</i> vectors and attempt to get k c
	$\mathbf{c} = \frac{9\mathbf{b} - 5\mathbf{a}}{16}$	A1	
10 (i)	When $x = 2$, $y = -5$	B1	B1 for $y = -5$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 8x + 1$	M1	M1 for attempt to differentiate
	when $x = 2$, $\frac{dy}{dx} = -3$	DM1	DM1 for attempt at tangent equation – must be tangent with use of $x = 2$
	Tangent: $y + 5 = -3 (x - 2)$ ($y = 1 - 3x$)	A1	allow unsimplified
(ii)	$1 - 3x = x^3 - 4x^2 + x + 1$	M1	M1 for equating tangent and curve equations
	$x\left(x-2\right)^2=0$	DM1	DM1 for attempt to solve resulting cubic equation
	Meets at (0, 1)	A1 A1	A1 for each coordinate

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	11

(iii)	Grad of perp = $\frac{1}{3}$	√ B 1	$\sqrt{\mathbf{B1}}$ on <i>their</i> gradient in (i) only
	Midpoint (1, –2)	M1	M1 for attempt to find the midpoint
	Perp bisector $y+2=\frac{1}{3}(x-1)$	M1 A1	M1 for attempt at line equation – must be perp bisector A1 allow unsimplified
11 (a)	$\sin\left(x + \frac{\pi}{3}\right) = -\frac{1}{2}$	B1	
	$x + \frac{\pi}{3} = \frac{7\pi}{6}, \frac{11\pi}{6}$	B1	B1 for $\frac{7\pi}{6}$ and $\frac{11\pi}{6}$
	$x = \frac{5\pi}{6}, \frac{3\pi}{2}$	B1 B1	B1 for first correct solution B1 for a second correct solution with all solutions in radians and with no excess solutions within the range
(b)	$\tan y - 2 = \frac{1}{\tan y}$	B1	B1 for a correct equation
	$\tan^2 y - 2 \tan y - 1 = 0$	M1 A1	M1 for attempt to obtain a 3 term quadratic equation A1 for a correct equation equated to zero
	$\tan y = 1 \pm \sqrt{2}$	DM1	DM1 for solution of quadratic
	y = 67.5°, 157.5°	A1 A1	A1 for first correct solution A1 for a second correct solution with all solutions in degrees and with no excess solutions within the range.

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

Mark Scheme Notes

Marks are of the following three types:

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)		
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)		
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)		
ISW	Ignore Subsequent Working		
MR	Misread		
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)		
sos	See Other Solution (the candidate makes a better attempt at the same question)		

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\ }$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S-1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

1	(i)	$n(A \cap B) = 5$	B1	
	(ii)	n(A) = 16	В1	
	(iii)	$n(B' \cap A)$	B1	
2	(i)	$6 \times 5 \times 4 \times 3 = 360 \text{ or } {}^{6}P_{4} = 360$	B1	B1 unsimplified/evaluated
	(ii)	0 × 3 × 4 × 3 300 01 14 300	D1	DI disimpinied evaluated
	(11)			
		Position 1 2 3 4		
		Number of ways 5 4 3 1		
		or $\frac{1}{6}$ (i) or 5P_3 or ${}^5C_3 \times {}^6C_1$	M1	M1 for a correct attempt
		Number of 4 digit numbers = 60	A1	unsimplified
	(iii)			
		Position 1 2 3 4		
		Number of ways 3 4 3 1		
		or ${}^{3}P_{1} \times {}^{4}P_{2}$ Number of 4 digit numbers = 36	M1 A1	M1 for a correct attempt unsimplified
3		EITHER		1//
		$1 - 2\sin\theta - 2\cos\theta + \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta$	B1	B1 for correct expansion of $(1 - \cos\theta - \sin\theta)^2$
		Use of $\sin^2\theta + \cos^2\theta = 1$ in simplification = 0	M1	M1 for use of $\sin^2 \theta + \cos^2 \theta = 1$ in
			A1	this form A1 must be convinced as AG
		$\mathbf{OR} (1 - \cos\theta - \sin\theta)^2 = 1 - 2\sin\theta - 2\cos\theta + \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta$	[B1	B1 for correct expansion of $(1 - \cos\theta - \sin\theta)^2$
		$= 2 - 2\sin\theta - 2\cos\theta + 2\sin\theta\cos\theta$	M1	M1 for use of $\sin^2 \theta + \cos^2 \theta = 1$ in this form
		$= 2 (1 - \sin \theta) (1 - \cos \theta)$	A1]	A1 for simplification and factorising

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

			1
4	EITHER $2x^2 + kx + 2k - 6 = 0$ has no real roots $k^2 - 16k + 48 < 0$ (k-4)(k-12) < 0	M1 DM1	M1 for attempted use of $b^2 - 4ac$ DM1 for attempt to obtain critical values from a 3 term quadratic
	Critical values 4 and 12 $4 < k < 12$ or $k > 4$ and $k < 12$	A1 A1	A1 for both critical values A1 for correct final answer
	OR $\left(x + \frac{k}{4}\right)^2 - \frac{k^2}{16} + k - 3 = 0$	[M1]	M1 for attempting to complete the square and obtain a 3 term quadratic
	$-\frac{k^2}{16} + k - 3 > 0 \text{ so } k^2 - 16k + 48 < 0$		Then as EITHER
	$\mathbf{OR} \ \frac{\mathrm{d}y}{\mathrm{d}x} = 4x + k$	[M1	M1 for differentiation, equating to zero and obtaining a quadratic equation in x
	When $\frac{dy}{dx} = 0$, $k = -4x$ By substitution $x^2 + 4x + 3 < 0$ leading to $x = -1$, $k = 4$	DM1	DM1 for attempt to obtain critical values of <i>k</i> from a 3 term quadratic in <i>x</i> followed by substitution to obtain a value for <i>k</i>
	and $x = -3$, $k = 12$ 4 < k < 12 or $k > 4$ and $k < 12$	A1 A1]	A1 for both critical values A1 for correct final answer
	$\mathbf{OR} \ \frac{\mathrm{d}y}{\mathrm{d}x} = 4x + k$	[M1]	M1 for differentiation, equating to zero and obtaining a quadratic equation in k
	When $\frac{dy}{dx} = 0$, $x = -\frac{k}{4}$ leading to $k^2 - 16k + 48 < 0$	o.co.	Then as EITHER

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

5	$2\left(\frac{15-4y}{3}\right)y = 9 \text{ or } 2x\left(\frac{15-3x}{4}\right) = 9$	M1	M1 for attempt to obtain equation in one variable
	$8y^{2} - 30y + 27 = 0 \text{ or } 3x^{2} - 15x + 18 = 0$ $(4y - 9)(2y - 3) = 0 \text{ or } (x - 3)(x - 2) = 0$	DM1	DM1 for attempt to solve a 3 term quadratic in that variable
	$x = 2, y = \frac{9}{4}$ and $x = 3, y = \frac{3}{2}$	A1, A1	A1 for each 'pair', x values must be simplified to single integer form
	$AB^2 = 1^2 + (0.75)^2, AB = 1.25$	M1, A1	M1 for a correct attempt to find AB, must have non zero differences and be using points calculated previously.
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{sec}^2x$	B1	B1 for $3\sec^2 x$
	When $x = \frac{3\pi}{4}$, $\frac{dy}{dx} = 6$ $y = 5$	B1	B1 for $\frac{dy}{dx} = 6$, may be implied by later work B1 for y
	Perpendicular gradient = $-\frac{1}{6}$	M1	M1 for perpendicular gradient
	Equation of normal $y + 5 = -\frac{1}{6} \left(x - \frac{3\pi}{4} \right)$	M1	from $\frac{dy}{dx}$ M1 for attempt at the normal using <i>their y</i> value correctly and $x = \frac{3\pi}{4}$ and substitution of $x = 0$
	When $x = 0$, $y = \frac{\pi}{8} - 5$ o.e.		4
	or –4.61 or –4.6 but not –4.60	A1	A1 for obtaining y value

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

7	(i)	f (-2) leads to $68 = b - 2a$	M1	attempt at $f(-2) = 0$ allow unsimplified
		f(1) leads to $26 = a + b$	M1	attempt at $f(1) = 27$ allow unsimplified
		a = -14, $b = 40$	A1, B1	A1 for $b = 40$, B1 for $a = -14$
	(ii)	$f(x) = (x+2) (6x^2 - 17x + 20)$	B2, 1, 0	−1 each error
	(iii)	$6x^2 - 17x + 20 = 0$ has no real roots	В1	B1 for dealing with quadratic factor either by use of formula, completing the square or use of $b^2 - 4ac$ to show that there are no real solutions
		x = -2	B1	
8	(a) (i)	$ \begin{pmatrix} 22 & -2 \\ -3 & 31 \end{pmatrix} $ $ \begin{pmatrix} 16 & 6 \\ 9 & -11 \end{pmatrix} $	B2, 1, 0	-1 each element error
	(ii)	$\begin{pmatrix} 16 & 6 \\ 9 & -11 \end{pmatrix}$	B2, 1, 0	−1 each element error
	(b) (i)	$\frac{1}{18+9} \begin{pmatrix} 3 & -1 \\ 9 & 6 \end{pmatrix}$	B1, B1	B1 for determinant (allow unsimplified), B1 for matrix
	(ii)	$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{27} \begin{pmatrix} 3 & -1 \\ 9 & 6 \end{pmatrix} \begin{pmatrix} 5 \\ 1.5 \end{pmatrix}, $	M1	M1 for correct use of inverse matrix, including correct multiplication to solve equation
		$=\frac{1}{27}\binom{13.5}{54}$	0.0	
		x = 0.5, y = 2	A1, A1	A1 for each

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

9	(i)	$\left(1 + \frac{1}{2}x\right)^n = 1 + n\left(\frac{x}{2}\right) + \frac{n(n-1)}{2}\left(\frac{x}{2}\right)^2$	B1, B1	B1 for 1 + second term, B1 for 3rd term Allow unsimplified
	(ii)	$\left(1-x\right)\left(1+n\left(\frac{x}{2}\right)+\frac{n(n-1)}{2}\left(\frac{x}{2}\right)^2\right)$	M1	dealing with 2 terms involving x^2
		Multiply x and $\frac{n}{2}x$ to get $\frac{n}{2}(x^2)$	DM1	attempt to obtain one term
		Multiply 1 and $\frac{n(n-1)x^2}{8}$ or $\frac{n(n-1)x^2}{4}$	DM1	attempt to obtain a second term
		$\frac{n^2 - n}{8} - \frac{n}{2} = \frac{25}{4}$		
		$n^2 - 5n - 50 = 0$	A1	correct quadratic equation
		n = 10	A1	A1 for $n = 10$ only
10	(a) (i)	$\frac{1}{3}(2x-5)^{\frac{3}{2}}$	B1, B1	B1 for $k(2x-5)^{\frac{3}{2}}$, B1 for $\frac{1}{3}(2x-5)^{\frac{3}{2}}$
	(ii)	$\frac{125}{3} - \frac{1}{3} = \frac{124}{3}$ Allow awrt 41.3	M1, A1	M1 for correct use of limits
	(b) (i)	$x^3 \frac{1}{x} + 3x^2 \ln x$	B1, B1	B1 for each term, allow unsimplified
	(ii)	$\int 3x^2 \ln x dx = x^3 \ln x - \int x^2 dx \text{ o.e.}$	M1	for a use of answer to (i)
		$\int 3x^2 \ln x dx = x^3 \ln x - \int x^2 dx \text{ o.e.}$ $\int x^2 dx = \frac{x^3}{3} \text{ or}$ $\int x^2 \ln x dx = \frac{1}{3} \left(x^3 \ln x - \int x^2 dx \right) \text{ o.e.}$ $\int x^2 \ln x dx = \frac{1}{3} \left(x^3 \ln x - \frac{x^3}{3} \right) (+c)$	A1	A1 for intergrating x^2 or dividing by 3
		$\int x^2 \ln x dx = \frac{1}{3} \left(x^3 \ln x - \int x^2 dx \right) \text{ o.e.}$		
		$\int x^2 \ln x dx = \frac{1}{3} \left(x^3 \ln x - \frac{x^3}{3} \right) (+c)$	A1	

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

11	(a)	$\cos 2x + \frac{2}{\cos 2x} + 3 = 0$	M1	dealing with sec or cos
		leading to $\cos^2 2x + 3\cos 2x + 2 = 0$ $2\sec^2 2x + 3\sec 2x + 1 = 0$	A1	simplification to correct 3 term quadratic in sec 2x or cos 2x (does not have to be equated to zero)
		$(\cos 2x + 2) (\cos 2x + 1) = 0$ or $(2 \sec 2x + 1) (\sec 2x + 1) = 0$	M1	attempt to solve a 3 term quadratic, must obtain solutions in terms of $\cos 2x$
		leading to $\cos 2x = -1$ or $\sec 2x = -1$ only $2x = 180^{\circ}$, 540° $x = 90^{\circ}$, 270°	A1, A1	
	(b)	$\sin^2\left(y - \frac{\pi}{6}\right) = \frac{1}{2} \text{ so}$		
		$\sin\left(y - \frac{\pi}{6}\right) = \frac{1}{\sqrt{2}}$	M1	division by 2 and square root
		$\left(y - \frac{\pi}{6}\right) = \frac{\pi}{4}, \frac{3\pi}{4}$	DM1	correct order of operation and attempt to solve
		$y = \frac{5\pi}{12}, \frac{11\pi}{12}$	A1, A1	anompt to sorve
		Allow awrt 1.31, 2.88		
12	(i)	$\frac{dy}{dt} = 36 - 6t$	M1	attempt to differentiate and equate
		u 2	-0'	to zero
		When $\frac{dy}{dt} = 0$, $t = 6$	A1	
	(ii)	When $v = 0$, $t = 12$	M1, A1	M1 for equating <i>v</i> to zero and attempt to solve
	(iii)	$s = 18t^2 - t^3 \ (+c)$	M1, A1	M1 for a correct attempt to integrate at least one term, allow unsimplified A1 for all correct
		When $t = 12$, $s = 864$		A1 for $s = 864$
	(iv)	When $s = 0$, $t = 18$	M1	M1 for substitution of $s = 0$ into <i>their s</i> equation
			√ A1	$\sqrt{\mathbf{A1}}$ on their s
		v = -324	DM1	DM1 for substitution of <i>their t</i> back into <i>v</i> equation
		So speed is 324		A1 for 324 only

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	13

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\ }$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	13

1 (i)	.,	B1	correct shape for $y = \cos x - 1$
(ii)		B1	all correct
		B1	correct shape for $y = \sin 2x$
		B1	all correct
(iii)	3	B 1	
2	Either gradient = 1	B1	
	intercept = 2	B1	
	$\ln b = \text{gradient or } \ln A = \text{intercept}$	M1	M1, need to equate either gradient to $\ln b$ or intercept to $\ln A$
	b = e or 2.72	A1	
	$A = e^2, A = 7.39$	A1	
	Or $e^4 = Ab^2 \text{ and } e^{10} = Ab^8$	[B1 B1	B1 for each equation
	leading to $b^6 = e^6$ or $e^4 = e^2 A$ or $e^{10} = e^8 A$	M1	$\mathbf{M1}$ for attempt to solve for either A or b
	b = e or 2.72	A1	
	$A = e^2, A = 7.39$	A1]	//
	$\mathbf{Or} \qquad \qquad 10 = 8 \ln b + \ln A$	[B1	
	$4 = 2 \ln b + \ln A$	B1	
	leading to $\ln b = 1$ or $6 = 3 \ln A$	M1	$\mathbf{M1}$ for attempt to solve for either A or b
	b = e or 2.72	A1	
	$A = e^2, A = 7.39$	A1]	

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	13

3 (i)	$^{14}C_6 = 3003$	B1	
(ii)	${}^{5}C_{3} \times {}^{9}C_{3} = 840$	M1 A1	M1 for product of 2 combinations
(iii)	Either $3003 - {}^{9}C_{6} = 2919$	M1 B1 A1	M1 for 3003 – number of committees containing no men B1 for 9C_6
	Or $1M + 5W: 5 \times {}^{9}C_{5} = 630$ $2M + 4W: {}^{5}C_{2} \times {}^{9}C_{4} = 1260$ 3M + 3W: 840 (part (ii)) $4M + 2W: {}^{5}C_{4} \times {}^{9}C_{2} = 180$	[B2 1 0	−1 each error
	$5M + 1W: 1 \times {}^{9}C_{1} = 9$ Total: 2919	B1]	B1 for correct final answer
4 (i)	2	B1	
(ii)	$\log_4 y^2 - \log_4 (5y - 12) \ (= \log_4 2)$	B1	B1 for power
	$\log_4\left(\frac{y^2}{5y-12}\right) = (=\log_4 2)$	M1	correct division
	$y^2 - 10y + 24 = 0$	M1	attempt at solution of a 3 term quadratic
	y = 4, 6	A1	A1 for both
5 (i)	$x+\frac{6}{x}(+c)$	B1 B1	B1 for each term
(ii)	$x + \frac{6}{x}(+c)$ $\left(3k + \frac{6}{3k}\right) - \left(k + \frac{6}{k}\right) (=2)$	M1	correct use of limits
	$2k^2 - 2k - 4 = 0$	M1	attempt to obtain a 3 term quadratic from 2 brackets equated to 2
		DM1	DM1 or solution of quadratic dependent on 2 nd M1
	leading to $k = 2$	A1	dependent on 2 1111

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	13

6 (i)	$A^{-1} = \frac{1}{13} \begin{pmatrix} 5 & 1 \\ -3 & 2 \end{pmatrix}$	B1 B1	B1 for matrix, B1 for multiplying by a correct determinant
(ii)	Either $ \begin{pmatrix} a & b \\ c & -1 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 5 & 1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 7 & 5 \\ 17 & d \end{pmatrix} $	M1	evidence of multiplication of both sides by A ⁻¹
	$= \frac{1}{13} \begin{pmatrix} 52 & 25+d \\ 13 & -15+2d \end{pmatrix}$		
	leading to $a = 4, c = 1$	DM1	DM1 for attempt to equate like elements
	and $b = 2, d = 1$	A3,2,1,0	-1 each error
	Or $ \begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} a & b \\ c & -1 \end{pmatrix} = \begin{pmatrix} 7 & 5 \\ 17 & d \end{pmatrix} $	[M1	M1 for evidence of matrix multiplication
	2a-c=7, $3a+5c=17$, $a=4$, $c=12b+1=5$, $3b-5=d$, $b=2$, $d=1$	DM1 A3,2,1,0]	DM1 for attempt to equate like elements –1 each error
7 (i)			
	$\tan B = \frac{\sqrt{5+1}}{\sqrt{5-2}}$	B1	
	$= \frac{\sqrt{5+1}}{\sqrt{5-2}} \times \frac{\sqrt{5+2}}{\sqrt{5+2}}$	M1	attempt at rationalisation (Allow if inverse is used)
	$=7+3\sqrt{5}$	A1	
(ii)	$(7+3\sqrt{5})^2 + 1 = \sec^2 B$	M1 M1	M1 for attempt to use the correct identity M1 for simplification to give 3 or 4 terms
	$\sec^2 B = 95 + 42\sqrt{5}$	√A1 √A1	cao A1 for 95, A1 for $42\sqrt{5}$
	Or $\sec^2 B = \frac{1}{\cos^2 B} = \frac{\left(\sqrt{5+1}\right)^2 + \left(\sqrt{5}-2\right)^2}{\left(\sqrt{5}-2\right)^2}$	[M1	M1 for attempt to use to find BC^2
	$\sec^2 B = \frac{15 - 2\sqrt{5}}{9 - 4\sqrt{5}} \times \frac{9 + 4\sqrt{5}}{9 + 4\sqrt{5}}$	M1	M1 for use of sec $B = \frac{1}{\cos B}$
	$\sec^2 B = 95 + 42 \sqrt{5}$	A1 A1]	A1 for 95, A1 for $52\sqrt{5}$

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	13

8 (i)	Either	$\tan \frac{\theta}{2} = \frac{8}{6}$	M1	M1 for use of trig to obtain half angle
		$\frac{\theta}{2} = 0.927$		Can use $\sin \frac{\theta}{2} = \frac{8}{10}$ or $\cos \frac{\theta}{2} = \frac{6}{10}$
		$\theta = 1.855$	A1	A1 Allow if done in degrees and converted
	Or	Area of triangle $MEF = 48$	[M1	M1 for a complete method to find the obtuse angle
		$\frac{1}{2} \times 10^2 \times \sin \theta = 48$		
		$\theta = 1.287, \pi - 1.287$		
		$\theta = 1.855$	A1]	
	Or	$16^2 = 10^2 + 10^2 - (2 \times 10 \times \cos \theta)$	[M1	M1 for use of the cosine rule, need to see working as answer given
		$\theta = 1.855$	A1]	
(ii)	radius =	= 10	B1	B1 for the radius, allow anywhere
	P = (10)) × 1.855) + 10 + 10 + 16	M1 M1	M1 for use of arc length M1 for method, must be arc +3 sides
	= 54.6	5 or 54.5 or 54.55	A1	- /
(iii)	A =256	5 or 54.5 or 54.55 $6-2\left(\frac{1}{2} \times 8 \times 6\right) - \frac{1}{2}10^2(1.855)$	M1 M1	M1 for area of sector M1 for a correct plan to obtain the required area
		5.25 or 115.3 or 115	A1	
	av	vrt 115		

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	13

9 (i)	$\overrightarrow{AP} = \frac{3}{4}(\mathbf{b} - \mathbf{a})$	B1	
	$\overrightarrow{OP} = \mathbf{a} + \frac{3}{4}(\mathbf{b} - \mathbf{a}), \text{ or }$	M1	M1 for attempt at vector addition
	$\overrightarrow{OP} = \mathbf{a} - \frac{1}{4} (\mathbf{b} - \mathbf{a}),$ $= \frac{1}{4} (\mathbf{a} + 3\mathbf{b})$	A1	Answer given
(ii)	$\overrightarrow{OQ} = \frac{2}{5}\mathbf{c}$, or $\overrightarrow{QC} = \frac{3}{5}\mathbf{c}$ or $\overrightarrow{CQ} = -\frac{3}{5}\mathbf{c}$	B1	B1 for \overrightarrow{OQ} , \overrightarrow{QC} or \overrightarrow{CQ}
	$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$	M1	M1 for correct vector addition/subtraction
	$=\frac{2}{5}\mathbf{c}-\frac{\mathbf{a}}{4}-\frac{3\mathbf{b}}{4}$	A1	
(iii)	$2\mathbf{c} - \frac{5\mathbf{a}}{4} - \frac{15\mathbf{b}}{4} = 6(\mathbf{c} - \mathbf{b})$	M1	M1 for use of <i>their</i> vectors and attempt to get <i>k</i> c
	$\mathbf{c} = \frac{9\mathbf{b} - 5\mathbf{a}}{16}$	A1	
10 (i)	When $x = 2$, $y = -5$	B1	B1 for $y = -5$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 8x + 1$	M1	M1 for attempt to differentiate
	when $x = 2$, $\frac{dy}{dx} = -3$	DM1	DM1 for attempt at tangent equation – must be tangent with use of $x = 2$
	Tangent: $y + 5 = -3 (x - 2)$ ($y = 1 - 3x$)	A1	allow unsimplified
(ii)	$1 - 3x = x^3 - 4x^2 + x + 1$	M1	M1 for equating tangent and curve equations
	$x\left(x-2\right)^2=0$	DM1	DM1 for attempt to solve resulting cubic equation
	Meets at (0, 1)	A1 A1	A1 for each coordinate

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	13

(iii)	Grad of perp = $\frac{1}{3}$	√ B 1	$\sqrt{\mathbf{B1}}$ on <i>their</i> gradient in (i) only
	Midpoint (1, –2)	M1	M1 for attempt to find the midpoint
	Perp bisector $y + 2 = \frac{1}{3}(x - 1)$	M1 A1	M1 for attempt at line equation — must be perp bisector A1 allow unsimplified
11 (a)	$\sin\left(x + \frac{\pi}{3}\right) = -\frac{1}{2}$	B1	
	$x + \frac{\pi}{3} = \frac{7\pi}{6}, \frac{11\pi}{6}$	B1	B1 for $\frac{7\pi}{6}$ and $\frac{11\pi}{6}$
	$x = \frac{5\pi}{6}, \frac{3\pi}{2}$	B1 B1	B1 for first correct solution B1 for a second correct solution with all solutions in radians and with no excess solutions within the range
(b)	$\tan y - 2 = \frac{1}{\tan y}$	B1	B1 for a correct equation
	$\tan^2 y - 2 \tan y - 1 = 0$	M1 A1	M1 for attempt to obtain a 3 term quadratic equation A1 for a correct equation equated to zero
	$\tan y = 1 \pm \sqrt{2}$	DM1	DM1 for solution of quadratic
	y = 67.5°, 157.5°	A1 A1	A1 for first correct solution A1 for a second correct solution with all solutions in degrees and with no excess solutions within the range.