

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/21 October/November 2024

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **9** printed pages.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1	$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$	M1	
	$\frac{\sin^2\theta + \cos^2\theta}{\cos\theta\sin\theta}$	A1	
	$\frac{1}{\cos\theta\sin\theta}$ oe	A1	
	and completion to given answer $\sec\theta\csc\theta$		
	Alternative		
	$\left[\tan\theta + \frac{1}{\tan\theta} = \right] = \frac{\tan^2 + 1}{\tan\theta}$	(M1)	
	$\frac{\sec^2\theta}{\tan\theta}$	(A1)	
	$\frac{\sec^2 \theta \cos \theta}{\sin \theta}$ oe and completion to given answer $\sec \theta \csc \theta$	(A1)	
2(a)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] \tan^2 x \mathrm{nfww}$	B2	B1 for $\sec^2 x - 1$
2(b)	$[\tan x - x]_0^{\frac{\pi}{4}}$	M1	5.
	$1 - \frac{\pi}{4}$ or exact equivalent	A1	-9
3(a)	$\left(8^{\frac{1}{x}}\right)^2 - 8^{\frac{1}{x}} - 2 \ [=0] \ \text{oe}$	B 1	
	or $\left(2^{\frac{3}{x}}\right)^2 - 2^{\frac{3}{x}} - 2$ [=0] oe		
	$(\frac{1}{8^{x}} - 2)(\frac{1}{8^{x}} + 1) = 0$ oe or $(\frac{1}{2^{x}} - 2)(\frac{1}{2^{x}} + 1) = 0$ or	M1	FT <i>their</i> 3-term quadratic in $8^{\frac{1}{x}}$ oe
	$(2^{-1} - 2)(2^{-1} + 1) = 0.06$	Δ1	
	$8^{\frac{1}{x}} = 2 \left\lfloor 8^{\frac{1}{x}} = -1 \right\rfloor$ or $2^{\frac{3}{x}} = 2 \left[2^{\frac{3}{x}} = -1 \right]$ oe	л	
	x = 3 nfww	A1	

Question	Answer	Marks	Partial Marks
3(b)	$a^2 - 2\sqrt{3}a + 3 \ [= b + (3 - b)\sqrt{3} \]$	B1	
	Equates coefficients to form two equations	M1	FT <i>their</i> ($a^2 - 2\sqrt{3}a + 3$) = $b + (3 - b)\sqrt{3}$ providing of equivalent difficulty
	$a^2 + 3 = b$ and $-2a = 3 - b$ oe	DM1	FT their $(a^2 - 2\sqrt{3}a + 3) = b + (3 - b)\sqrt{3}$
	$a^2 - 2a = 0$ or $b^2 - 10b + 21 = 0$	DM1	
	a = 2, 0 or $b = 3$ or 7	A1	
	a = 2, b = 7 and $a = 0, b = 3$	A1	
4	$\mathbf{b} - \mathbf{a} = \frac{p}{p+q} (\mathbf{c} - \mathbf{a}) \text{ oe}$ AND Correct completion to given answer $\mathbf{b} = \frac{q\mathbf{a} + p\mathbf{c}}{q+p}$		B4 for $\mathbf{b} - \mathbf{a} = \frac{p}{p+q}$ ($\mathbf{c} - \mathbf{a}$) OR B1 for $\overrightarrow{AB} = \frac{p}{p+q} \overrightarrow{AC}$ soi B1 for $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ soi B1 for $\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$ soi
	Alternative 1		
	$q(\mathbf{b} - \mathbf{a}) = p(\mathbf{c} - \mathbf{b}) \text{ oe}$ AND Correct completion to given answer $\mathbf{b} = \frac{q\mathbf{a} + p \mathbf{c}}{q + p}$	(5)	B4 for $q(\mathbf{b} - \mathbf{a}) = p(\mathbf{c} - \mathbf{b})$ OR B1 for $q \overrightarrow{AB} = p \overrightarrow{BC}$ soi B1 for $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ soi B1 for $\overrightarrow{BC} = \mathbf{c} - \mathbf{b}$ soi
	Alternative 2		
	$\mathbf{b} = \mathbf{a} + \frac{p}{p+q} (\mathbf{c} - \mathbf{a}) \text{ oe}$ or $\mathbf{b} = \mathbf{c} + \frac{q}{p+q} (\mathbf{a} - \mathbf{c}) \text{ oe}$ AND Correct completion to given answer $\mathbf{b} = \frac{q\mathbf{a} + p\mathbf{c}}{q+p}$	(5)	B4 for $\mathbf{b} = \mathbf{a} + \frac{p}{p+q}$ ($\mathbf{c} - \mathbf{a}$) oe or $\mathbf{b} = \mathbf{c} + \frac{q}{p+q}$ ($\mathbf{a} - \mathbf{c}$) oe OR B1 for $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$ or $\overrightarrow{OB} = \overrightarrow{OC} + \overrightarrow{CB}$ soi B1 for $\overrightarrow{AB} = \frac{p}{p+q} \overrightarrow{AC}$ or $\overrightarrow{CB} = \frac{q}{p+q} \overrightarrow{CA}$ soi B1 for $\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$ or $\overrightarrow{CA} = \mathbf{a} - \mathbf{c}$ soi

Question	Answer	Marks	Partial Marks
5	$\log_{a}\left(\frac{5(p+1)p}{p+2}\right) = \log_{a} 12 \text{ oe, nfww}$ or $\frac{5(p+1)p}{p+2} = 12 \text{ oe, nfww}$	M2	M1 for correct use of one log law in a correct equation e.g. $log_{a}(p+1) + log_{a} p - log_{a}(p+2) + log_{a} 5 = log_{a} 12$ or $log_{a} p(p+1) - log_{a}(p+2) = log_{a} 12 - log_{a} 5$ or $log_{a} \frac{p+1}{p+2} + \frac{1}{log_{p} a} + log_{a} 5 = log_{a} 12$
	$5p^2 - 7p - 24 = 0$	A1	
	(5p+8)(p-3) = 0 or formula	DM1	FT their 3-term quadratic
	p = 3 and no other solution nfww	A1	
6(a)	<i>OA</i> : $2\sqrt{3}$ or $\sqrt{12}$ soi	B1	
	Correct method to find angle <i>AOE</i> e.g. $2\tan() = \frac{3}{\sqrt{3}}$ oe or $36 = 12 + 12 - 2(12)\cos AOE$ oe or $\pi - 2\tan^{-1}\frac{\sqrt{3}}{3}$ oe	M1	
	Angle AOE: $\frac{2\pi}{3}$ soi, isw	A1	.5
	Arc <i>AFE</i> : their $2\sqrt{3} \times their \frac{2\pi}{3}$ soi or $\frac{4\sqrt{3}}{3}\pi$	M1	FT their $\frac{2\pi}{3}$ and their $2\sqrt{3}$
	Perimeter: $10 + 2\sqrt{3} + \frac{4\sqrt{3}}{3}\pi$ or exact equivalent, cao	A1	

Question	Answer	Marks	Partial Marks
6(b)	Sum of three correct areas $4\pi + 12 + 3\sqrt{3}$ cao	3	M2 FT their $\frac{2\pi}{3}$ and their $2\sqrt{3}$ for sector AOE: $\frac{1}{2} \times (their 2\sqrt{3})^2 \times their \frac{2\pi}{3}$ oe or 4π and $\frac{1}{2} \times 6 \times 4$ or $2 \times \frac{1}{2} \times 3 \times \sqrt{3}$ oe or M1 FT their $\frac{2\pi}{3}$ and their $2\sqrt{3}$ for sector AOE: $\frac{1}{2} \times (their 2\sqrt{3})^2 \times their \frac{2\pi}{3}$ oe or 4π
7	Attempts product rule	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{cos}x - 2x\mathrm{sin}x \text{ oe}$	A1	
	When $x = \pi$, $\frac{\mathrm{d}y}{\mathrm{d}x} = -2$	DM1	FT their $\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right _{x = \pi}$
	Gradient of normal: $\frac{1}{2}$	M1	FT $\frac{-1}{their \frac{dy}{dx}\Big _{x = \pi}}$
	$y + 2\pi = \frac{1}{2}(x - \pi)$ oe	A1	FT their normal gradient
	$(5\pi, 0)$ or $(0, -\frac{5}{2}\pi)$ oe, soi	A1	5
	Area of triangle <i>POQ</i> : $\frac{25}{4}\pi^2$ nfww	A1	
8(a)	$3t^2 + 2t - 1$	B1	
	(3t-1)(t+1)	M1	FT <i>their</i> 3-term quadratic in $t = 0$ soi
	$t = \frac{1}{3}$ and no other solutions	A1	
8(b)	At $t = 0$, $x = 8$ and $v = -1$	B2	B1 for $t = 0$, $x = 8$ or $t = 0$, $v = -1$
	Conclusion: Since x is positive and v is negative [the particle is moving towards O.]	B1	

Question	Answer	Marks	Partial Marks
8(c)	$t = \frac{1}{3} x = \frac{211}{27}$ or 7.814[814] rot to 4 or more sf	B1	
	Distance $t = 0$ to $t = \frac{1}{3} : 8 - \frac{211}{27}$	M2	M1 for distance $t = 0$ to $t = \frac{1}{3}$:
	or $\frac{5}{27}$ or 0.1851[85] rot to 4 or more sf		$8 - \frac{211}{27}$ or $\frac{5}{27}$ or 0.1851[85] rot to 4 or
	and Distance $t = \frac{1}{2}$ to $t = 2$: $18 - \frac{211}{27}$		more sf or $t = \frac{1}{3}$ to $t = 2$:
	or $\frac{275}{27}$ or 10.18[51] rot to 4 or more sf		$18 - \frac{211}{27}$ or $\frac{275}{27}$ or $10.18[51]$ rot to 4 or more sf
	Total: 10.4 or 10.37[037] rot to 4 or more sf	A1	
9(a)(i)	<i>c</i> = 12	B1	
9(a)(ii)	$\frac{dy}{dx} = 2x - 8 = 0$ or $x^2 - 8x + c = (x - 4)^2 - 16 + c$	M1	
	3 = -16 + c or $3 = 4^2 - 8 \times 4 + c$	DM1	
	<i>c</i> = 19	A1	
9(b)	<i>c</i> > 16	B2	B1 for $c * 16$ where * is = or an incorrect inequality sign
10(a)	$^{7}C_{3} \times {}^{8}C_{3} + {}^{7}C_{4} \times {}^{8}C_{2}$	M2	M1 for ${}^7C_3 \times {}^8C_3$ or ${}^7C_4 \times {}^8C_2$
	2940	A1	
10(b)	$^{6}P_{4} \times 3 \times 5$ oe	M2	M1 for ${}^{6}P_{4}[\times 1]$ or ${}^{6}P_{4} \times 3$ or ${}^{6}P_{4} \times 5$ oe
	5400	A1	
11(a)(i)	Valid explanation e.g. The line $x = k$, where $-10 \le k \le 10$ cuts the curve in one point only	B1	
11(a)(ii)	$\frac{\frac{x}{x-1}}{\frac{x}{x-1}-1}$	M1	
	Correct simplification to <i>x</i>	A1	

Question	Answer	Marks	Partial Marks
11(a)(iii)	Valid explanation e.g. f and f^{-1} are the same or f is self-inverse oe	B1	
11(a)(iv)	Valid explanation e.g. The curve is symmetrical about line $y = x$	B1	
11(b)	1 < g ≤ 2	B1	
11(c)	$x \neq -\frac{1}{3}$	B1	
12(a)	$d_A = 3$ and $d_B = -3$	B2	B1 for $d_A = 3$ or $d_B = -3$
	$a_n = 1 + (n-1) \times 3$ oe, isw	B1	
	or $a_n = 3n - 2$		
	$b_n = 298 + (n-1) \times (-3)$ oe, isw	B1	
	or $b_n = -3n + 301$		
	Solves $3n - 2 - (-3n + 301) = 45$ oe to find a value of n	M1	FT <i>their</i> $a_n - (-3n + 301)$ or $3n - 2$ <i>-their</i> b_n
	<i>n</i> = 58	A1	
12(b)	3m-2 * 2(-3m + 301) oe where * is = or any inequality sign	M1	FT <i>their</i> a_n and <i>their</i> b_n from part (a)
	m * 67.1[11] where * is = or any inequality sign	A1	.5
	68	A1	0
	·satpr	eP.	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 October/November 2024

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **12** printed pages.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial marks
1	Correct elimination of one unknown e.g. $\left(\frac{3}{2}\right)^4 \times \frac{1}{x} = \frac{27}{16} \text{ or } \left(\frac{3}{2}x\right)^4 \times \frac{1}{x^5} = \frac{27}{16}$ or $\frac{y^4}{\left(\frac{2y}{3}\right)^5} = \frac{27}{16} \text{ or } 16\left(\frac{81}{16}x^4\right) = 27x^5$ or $16y^4 = 27\left(\frac{32}{243}y^5\right)$ oe	M1	
	$x = 3$ and $y = \frac{9}{2}$ oe and no other solutions	A2	A1 for $x = 3$ or $y = \frac{9}{2}$ oe
2(a)	$\frac{d}{dx}\sqrt{1+2x} = (1+2x)^{-\frac{1}{2}} \text{ or } \frac{1}{2} \times (1+2x)^{-\frac{1}{2}} \times 2$ oe	B2	B1 for $k(1+2x)^{-\frac{1}{2}}$ where k is a positive constant, $k \neq 1$
	$x \times their\left(\frac{1}{2}(1+2x)^{-\frac{1}{2}} \times 2\right) + [1](1+2x)^{\frac{1}{2}}$ oe, isw	B1	FT their $\frac{\mathrm{d}}{\mathrm{d}x}\sqrt{1+2x}$
	Alternative		
	$\frac{1}{2} (x^2 + 2x^3)^{-\frac{1}{2}} \times (2x + 6x^2)$ or $\frac{1}{2} (x^2(1+2x))^{-\frac{1}{2}} \times (2x^2 + 2x(1+2x))$	(B3)	B2 for $\frac{1}{2}(x^2 + 2x^3)^{-\frac{1}{2}} \times (ax + bx^2)$ or $\frac{1}{2}(x^2(1+2x))^{-\frac{1}{2}} \times (ax + bx^2)$ where <i>a</i> and <i>b</i> are constants
	23. satpre	p.00	or B1 for $k(x^2 + 2x^3)^{-\frac{1}{2}}$ or $k(x^2(1+2x))^{-\frac{1}{2}}$ where <i>k</i> is a positive constant, soi
2(b)	Uses <i>their</i> 4(1+2(4)) ^{$-\frac{1}{2}$} + (1+2(4)) ^{$\frac{1}{2}$} in an attempt at a small changes relationship	M1	FT $x = 4$ substituted into <i>their</i> derivative
	$\frac{0.06}{\delta x} = their\left(4(1+2(4))^{-\frac{1}{2}} + (1+2(4))^{\frac{1}{2}}\right) oe$	M1	dep previous M1 FT their $\frac{13}{3}$
	0.0138 or 0.01384[6] or $\frac{9}{650}$ oe nfww	A1	

Question	Answer	Marks	Partial marks
2(c)	$\frac{x}{\sqrt{1+2x}} + \sqrt{1+2x} = 0 \text{ oe}$ and solves as far as $x = \dots$	M1	FT a derivative of the form $\frac{ax}{\sqrt{1+2x}} + b\sqrt{1+2x}$ or $\frac{a}{\sqrt{1+2x}} + b\sqrt{1+2x}$ or $\frac{ax+b}{\sqrt{1+2x}}$ oe
	$x = -\frac{1}{3}$ oe	A1	
3(a)	8a - 12 - 6 + b = 0 oe and $-a - 3 + 3 + b = 0$ oe and $a = 2, b = 2$	B 3	B1 for $8a - 12 - 6 + b = 0$ oe B1 for $-a - 3 + 3 + b = 0$ oe
3(b)	$[2x^{3}-3x^{2}-3x+2=] (x-2), (x+1), (2x-1) or (x^{2}-x-2), (2x-1) and x = 2, \frac{1}{2}, -1OR[2x^{3}-3x^{2}-3x+2=] (x+1), (2x^{2}-5x+2) or (x-2), (2x^{2}+x-1) and correct factorisation or method of solution of the quadratic and x = 2, \frac{1}{2}, -1$	B2	B1 for $[2x^{3}-3x^{2}-3x+2=]$ (x - 2) and (x + 1) seen or (x ² -x-2) seen or (x + 1), (2x ² -5x+2) or (x - 2), (2x ² + x - 1)
	OR $2-1+x = -\left(\frac{-3}{2}\right)$ or $2-1+x = \frac{3}{2}$ or for $2 \times -1 \times x = \frac{-2}{2}$ or $2 \times -1 \times x = -1$ and $x = 2, \frac{1}{2}, -1$	P.00	B1 for $2 - 1 + x = -\left(\frac{-3}{2}\right)$ or $\frac{3}{2}$ or for $2 \times -1 \times x = \frac{-2}{2}$ or -1

Question	Answer	Marks	Partial marks
4	Correct intersecting graphs	3	y = 2x - 8 : M1 for an attempt to draw the sections from (0, 8) to (2, 4) and (6, 4) to (8, 8) with at least one side accurate or for \lor shape with vertex at (4, 0) A1 for correct graph B1 for $y = 4$ drawn
	critical values: 2, 6	M1	dep on 3 marks awarded for intersecting graphs
	x < 2, x > 6 mark final answer	A1	-
5(a)	Correctly derives correct equation free of logarithms e.g. $x^9 = 16^{18}$ or $x = 16^2$ oe or $x^9 = 2^{72}$ or $x = 2^8$ oe or $x^{\frac{9}{4}} = 2^{18}$ oe	М3	M2 for correctly changing to consistent bases and correct use of one other log law or correct use of $\log_a a = 1$ in a correct equation e.g. $\frac{\log_{16} x^2}{\frac{1}{4}} + \log_{16} x = 18$ oe or $\log_2 x^2 + \frac{\log_2 x}{4} = 18$ oe or $\frac{\log_x x^2}{\log_x 2} + \frac{\log_x x}{4\log_x 2} = 18$ or M1 for correctly changing to consistent bases or correct use of one other log law or correct use of $\log_a a = 1$ in a correct equation
	x = 256 nfww	A1	

Question	Answer	Marks	Partial marks
5(b)	$e^{4x+2} - 3e^{2x+1} - 10 [=0]$ or $(e^{2x+1})^2 - 3e^{2x+1} - 10 [=0]$	B1	
	Solves or factorises <i>their</i> 3-term quadratic in e^{2x+1}	M1	FT <i>their</i> 3-term quadratic in e^{2x+1}
	$e^{2x+1} = 5$ nfww	A1	
	$x = \frac{-1 + \ln 5}{2}$ oe, isw or 0.305 or 0.3047[18] isw	A1	and no other solution
	Alternative		
	$e(e^{2x})^2 - 3e^{2x} - 10e^{-1} [=0]$ oe	(B1)	
	or $e^{2}(e^{2x})^{2} - 3e(e^{2x}) - 10 = 0$ oe or $e^{2}(e^{x})^{4} - 3e(e^{x})^{2} - 10 = 0$ oe		
	Solves or factorises <i>their</i> 3-term quadratic in e^{2x} oe	(M1)	FT <i>their</i> 3-term quadratic in e^{2x}
	$e^{2x} = \frac{5}{e}$ or 1.839[] or $e^{x} = \sqrt{\frac{5}{e}}$ or 1.356[] nfww	(A1)	
	$x = \frac{1}{2} \ln \frac{5}{e}$ oe, isw or 0.305 or 0.3047[18] isw	(A1)	and no other solution
6	$\frac{5-\sqrt{3}}{\left(\sqrt{6}+\sqrt{2}\right)^2}$ soi	B1	
	$\left(\sqrt{6} + \sqrt{2}\right)^2 = 6 + 2 + 2\sqrt{12} \text{ or } 8 + 2\sqrt{12}$	B1	
	$\frac{5-\sqrt{3}}{8+4\sqrt{3}} \times \frac{8-4\sqrt{3}}{8-4\sqrt{3}} \text{ or } \frac{5-\sqrt{3}}{4(2+\sqrt{3})} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} \text{ oe}$	M1	FT $\frac{a(5-\sqrt{3})}{b+c\sqrt{d}}$ where <i>a</i> , <i>b</i> , and <i>c</i> are non-zero constants and <i>d</i> is an integer
	$\frac{40 - 20\sqrt{3} - 8\sqrt{3} + 12}{8^2 - (4\sqrt{3})^2} \text{ or } \frac{40 - 20\sqrt{3} - 8\sqrt{3} + 12}{64 - 48}$ or $\frac{10 - 5\sqrt{3} - 2\sqrt{3} + 3}{4(2^2 - (\sqrt{3})^2)} \text{ or } \frac{10 - 5\sqrt{3} - 2\sqrt{3} + 3}{4}$	A1	
	$\frac{13}{4} - \frac{7}{4}\sqrt{3}$ oe, nfww	A1	dep on all previous marks awarded

Question	Answer	Marks	Partial marks
7(a)(i)	252	B 1	
7(a)(ii)	56	B2	B1 for ${}^{8}C_{3}$ or $\frac{8!}{5! \times 3!}$ oe
7(a)(iii)	140	B2	B1 for ${}^{8}C_{4} \times 2$ oe or ${}^{10}C_{5} - {}^{8}C_{5} - {}^{8}C_{3}$ oe
7(b)	483 840	B3	B2 for 8! × 6 [× 2] or 241 920 oe
			or B1 for 8! or 40 320 or 8! × 2 or 80 640
8	$\csc^{2} 2\theta + 3\csc 2\theta - 10 [= 0]$ or $10\sin^{2} 2\theta - 3\sin 2\theta - 1 [= 0]$	B2	B1 for correctly writing the equation in terms of one trigonometric function e.g. $\csc^2 2\theta - 1 + 3 \csc 2\theta = 9$ or $\frac{1 - \sin^2 2\theta}{\sin^2 2\theta} + \frac{3}{\sin 2\theta} = 9$
	Solves or factorises <i>their</i> 3-term quadratic in $\csc 2\theta$ or $\sin 2\theta$ e.g. $(\csc 2\theta - 2) (\csc 2\theta + 5) [= 0]$ or $(2\sin 2\theta - 1)(5\sin 2\theta + 1) [= 0]$	M1	FT <i>their</i> 3-term quadratic in $\csc 2\theta$ or $\sin 2\theta$
	$[\sin 2\theta = \frac{1}{2} \\ \sin 2\theta = -\frac{1}{5} \\ \theta =]$ 15 75 -5.8 or -5.76 to -5.77 -84.2 or -84.23 to -84.232 and no other angles in range; nfww	A3	A2 for any 2 correct, ignoring extras in range; nfww or A1 for one correct angle or one correct double angle; nfww

Question	Answer	Marks	Partial marks
9(a)	Horizontal line, $v = 6$ for $0 \le t \le 5$	B1	
	Horizontal line, $v = -3$ for $5 \le t \le 15$	B2	B1 for horizontal line for $5 \le t \le 15$ with v = k where $k < 0or v = 3 for 5 \le t \le 15or v = -3 for t > 5 and at least7 \le t \le 13$
			If 0 scored, award: SC2 for Horizontal line, $v = -6$ for $0 \le t \le 5$ and Horizontal line, $v = 3$ for $5 \le t \le 15$
	SATPA		OR SC1 for Horizontal line, $v = -6$ for $0 \le t \le 5$ and Horizontal line for $5 \le t \le 15$ with v = k where $k > 0$
9(b)	Single line with positive gradient passing through $(0, -8)$, $(10, 0)$ and $(20, 8)$	B3	 B2 for a single line with positive gradient passing through a point indicated as (0, -8) or (20, 8) and the point (10, 0) or passing through points indicated as (0, -8) and (20, 8) which does not pass through (10, 0) or B1 for a single line with positive gradient passing through a point indicated as (0, -8) or (20, 8) to or through any point on the <i>t</i>-axis or passing through (10, 0) but with the point of the statement of th
			If 0 scored, award SC1 for a single line with negative gradient passing through (0, 8), (10, 0) and (20, -8)

Question	Answer	Marks	Partial marks
10(a)	Maximum point at (2, 1) oe, nfww	B4	B3 for maximum point at (2, 1) oe
	and $h = 5$ nfww		or B2 for maximum point when $x = 2$
			or B1 for a correct method which could be used to find the maximum point $\left[x\left(1-\frac{x}{4}\right)=0 \text{ when } x=0 \text{ and }\right] x=4$ or [differentiating and equating to 0:] $1-\frac{2x}{4}=0$ or [completing the square to find:] $1-\frac{1}{4}(x-2)^2$ If 0 scored, SC1 for $h = 5$ with
			incorrect or no method shown
10(b)	$x^{2} - 4x - 16 = 0$ oe or $-\frac{1}{4}(x-2)^{2} = -4 - 1$ oe	B1	FT <i>their</i> attempt to complete the square, if already seen and of the form $a+b(x+c)^2$ where a, b and c are constants and b is negative
	Solves <i>their</i> 3-term quadratic using the formula or completing the square	M1	FT <i>their</i> rearrangement of $-4 = x - \frac{x^2}{4}$ oe
	$x = 2 + 2\sqrt{5}$ oe	A1	S
10(c)	First derivative $1 - \frac{x}{2}$ and substitution of their $2 + 2\sqrt{5}$ or 6.47	M1	FT <i>their</i> attempt to differentiate $x - \frac{x^2}{4}$, if already seen, and <i>their</i> $2 + 2\sqrt{5}$
	$1-2\times\frac{2+2\sqrt{5}}{4}$ or $-\sqrt{5}$ or awrt -2.24 soi	A1	dep on correct derivative and correct <i>x</i> -coordinate of <i>A</i>
	Correct method to find the angle e.g.	M1	dep on previous M1 A1
	$-\tan^{-1}\left(1 - 2 \times \frac{2 + 2\sqrt{5}}{4}\right) \text{ soi}$ or $\tan^{-1}\sqrt{5}$ or $-\tan^{-1}(-\sqrt{5})$ soi		
	Degrees: awrt 65.9 or Radians: awrt 1.15	A1	
11(a)	$x = 5 \ y = 5\sqrt{3}$	B2	B1 for either component correct

Question	Answer	Marks	Partial marks
11(b)	$\begin{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \end{bmatrix} t \begin{pmatrix} 5 \\ 5\sqrt{3} \end{pmatrix} \text{ oe, isw}$	B1	FT <i>their</i> $\begin{pmatrix} 5\\ 5\sqrt{3} \end{pmatrix}$, which must be a vector with at least one non-zero component
11(c)	$\binom{2\sqrt{3}}{9} + t \binom{5}{3}_{0}$ oe, isw	B2	B1 for <i>x</i> component $2\sqrt{3} + \frac{5}{3}t$ seen or <i>y</i> component 9 seen or $\begin{pmatrix} 2\sqrt{3} \\ 9 \end{pmatrix} + t \begin{pmatrix} \frac{5}{3} \\ 0 \end{pmatrix}$ with at most one error but must include <i>t</i>
11(d)	$5t\sqrt{3} = 9 \text{ or } 5t = 2\sqrt{3} + \frac{5}{3}t$	M1	FT <i>their</i> position vector of <i>A</i> and <i>their</i> position vector of <i>B</i> providing • both are in terms of <i>t</i> and • at least one is of form $\begin{pmatrix} a \\ b \end{pmatrix} + t \begin{pmatrix} c \\ d \end{pmatrix}$ where <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> are constants
	$(5\sqrt{3})t = 9$ and $5t = 2\sqrt{3} + \frac{5}{3}t$ oe	A1	
	Shows the exact times to be the same e.g. $t = \frac{9}{5\sqrt{3}} = \frac{3\sqrt{3}}{5}$ oe <u>and</u> $\frac{10}{3}t = 2\sqrt{3} \rightarrow t = \frac{3\sqrt{3}}{5}$ or $t = \frac{6\sqrt{3}}{10} \rightarrow t = \frac{3\sqrt{3}}{5}$ or $\frac{5}{3}t = \sqrt{3} \rightarrow t = \frac{3\sqrt{3}}{5}$ oe OR Finds a correct value for <i>t</i> , as above, and shows this satisfies the other equation OR Finds a correct value for <i>t</i> , as above, and shows both particles are at $\left(\frac{9}{\sqrt{3}}\right)$ oe at this time	A2	A1 for $t = \frac{9}{5\sqrt{3}}$ and $t = \frac{2\sqrt{3}}{\frac{10}{3}}$ oe

Question	Answer	Marks	Partial marks
12	Correct use of $x^2h = 5$ to find an expression that can be used to eliminate <i>h</i>	M2	M1 for $x^2h = 5$ soi
	Surface area: $x^2 + 4x\left(\frac{5}{x^2}\right)$ oe	B 1	
	Derivative of the surface area: $2x - 20x^{-2}$ oe	B 1	FT <i>their</i> surface area of form $ax^2 + \frac{b}{x}$
	Equates <i>their</i> $2x - 20x^{-2}$ to 0 and solves to find a value of <i>x</i>	M1	FT <i>their</i> derivative of form $ax + \frac{b}{x^2}$ oe
	x = 2.15 or 2.154[] h = 1.08 or 1.077[] nfww	A1	dep on all previous marks awarded
	Alternative		
	Correct use of $x^2h = 5$ to find an expression that can be used to eliminate x	(M2)	M1 for $x^2h = 5$ soi
	Surface area: $\left(\sqrt{\frac{5}{h}}\right)^2 + 4h \times \sqrt{\frac{5}{h}}$ oe	(B 1)	
	Derivative of the surface area: $4\sqrt{5} \times \frac{1}{2}h^{-\frac{1}{2}} - \frac{5}{h^2}$ oe	(B1)	FT <i>their</i> surface area of form $\frac{a}{h} + b\sqrt{h}$
	Equates their $4\sqrt{5} \times \frac{1}{2}h^{-\frac{1}{2}} - \frac{5}{h^2}$ to 0 and solves to find a value of h	(M1)	FT <i>their</i> derivative of form $\frac{a}{\sqrt{h}} + \frac{b}{h^2}$ oe
	h = 1.08 or 1.077[] x = 2.15 or 2.154[] nfww	(A1)	dep on all previous marks awarded

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/23 October/November 2024

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **9** printed pages.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial marks
1	-0.8, 0.55, 2.25	B1	
	$ x < -0.8 \\ 0.55 < x < 2.25 $	B2	B1 for either inequality correct
2(a)	$5 - (x + 2)^2$	B2	B1 for $-(x + 2)^2$ or $(x + 2)^2$ or $a = 5$ and $b = 2$
2(b)	$f \leq 5 \text{ or } f(x) \leq 5$	B 1	FT their 5
2(c)	-2	B1	\mathbf{FT} – their 2
2(d)	Complete method to find inverse function: Swaps the variables and rearranges or rearranges and swaps the variables at some point in their solution	M1	For M1 FT <i>their</i> part (a) provided it is in the form $a - (x+b)^2$
	$[g^{-1}(x) =] - 2 + \sqrt{5 - x}$ or $[g^{-1}(x) =] \frac{-4 + \sqrt{4^2 - 4[1](x - 1)}}{2}$ or $[g^{-1}(x) =] \frac{-(-4) - \sqrt{(-4)^2 - 4(-1)(1 - x)}}{-2}$ oe, isw	A2	A1 for $[g^{-1}(x) =] - 2 \pm \sqrt{5 - x}$ or $[g^{-1}(x) =] = \frac{-4 \pm \sqrt{4^2 - 4[1](x - 1)}}{2(1)}$ or $[g^{-1}(x) =] = \frac{-(-4) \pm \sqrt{4^2 - 4(-1)(1 - x)}}{2(-1)}$
	[Domain:] $x \leq 5$	B 1	FT <i>their</i> part (b) provided it is in form $f(x) \leq a$ where <i>a</i> is a constant
	[Range:] $g^{-1} \ge their -2$	B1	FT <i>their</i> value of <i>k</i> in part (c)
3(a)	$4\tan^2\theta - \sec^2\theta$	M1	e.g. $4\frac{\sin^2\theta}{\cos^2\theta} - \frac{1}{\cos^2\theta}$
	Justified completion to given answer e.g. $4\tan^2 \theta - (1 + \tan^2 \theta)$ $= 3\tan^2 \theta - 1$ or $3\tan^2 \theta - (\sec^2 \theta - \tan^2 \theta)$ $= 3\tan^2 \theta - 1$	A1	e.g. $4\frac{\sin^2\theta}{\cos^2\theta} - \frac{\sin^2\theta + \cos^2\theta}{\cos^2\theta}$ = $4\tan^2\theta - \tan^2\theta - 1$ = $3\tan^2\theta - 1$
3(b)	$\tan \theta = [\pm] \sqrt{\frac{2}{3}}$ oe	M2	M1 for $\tan^2 \theta = \frac{2}{3}$ oe
	$[\theta =] 39.2 \text{ or } 39.23 \text{ to } 39.232$	A2	A1 for either one correct, ignoring extras
	$[\theta =] 140.8 \text{ or } 140.76 \text{ to } 140.77$ and no extras in range		

Question	Answer	Marks	Partial marks
4(a)	Correct statement for area e.g. $\frac{1}{2}r^2\alpha = 9 \text{ or } \frac{1}{2}rs = 9$	B1	
	Finds an equation that can be used to eliminate α or <i>s</i> e.g. $\alpha = \frac{18}{r^2}$ or $r\alpha = \frac{18}{r}$ or $s = \frac{18}{r}$	M1	
	Correct substitution and completion to given answer e.g. $P = 2r + r \times \frac{18}{r^2} = 2r + \frac{18}{r}$	A1	
4(b)	Correct derivative: $2 - \frac{18}{r^2}$ oe isw	B1	
	$2 - \frac{18}{r^2} = 0$ and solves for r	M1	FT their $\frac{dP}{dr} = 0$ providing of the form 2 + $\frac{n}{r^k}$ where <i>n</i> and <i>k</i> are non-zero integers
	r = 3 only soi	A1	
	P = 12 only soi	A1	
	[2nd derivative =] $\frac{36}{r^3}$ oe and which is positive for $r = 3$ \rightarrow minimum or as $r > 0$ [2nd derivative =] $> 0 \rightarrow$ minimum or [2nd derivative =] $\frac{36}{3^3}$ oe \rightarrow minimum OR correctly finds the values of the first derivative at $3 \pm h$ where h is small \rightarrow minimum	A1	dep on <i>r</i> = 3 and no other value

0606/23

Question	Answer	Marks	Partial marks
5	[When $x = 3$] $y = \frac{2}{3}$ soi	B 1	
	Correct derivative: $\frac{x \times \frac{1}{2} (x+1)^{-\frac{1}{2}} - \sqrt{x+1}}{x^2}$	M2	M1 for an attempt to differentiate using the quotient rule oe
	or $-x^{-2}(x+1)^{\frac{1}{2}} + x^{-1} \times \frac{1}{2}(x+1)^{-\frac{1}{2}}$		
	Gradient of tangent: $\frac{3 \times \frac{1}{2} (4)^{-\frac{1}{2}} - \sqrt{4}}{3^2}$	M1	dep on attempt at a derivative which includes $(x+1)^{-\frac{1}{2}}$
	$-\frac{5}{36}$ isw	A1	dep on having a correct derivative
	$y = -\frac{5}{36}x + \frac{13}{12}$ oe	A1	FT their non-zero $\frac{2}{3}$ and
	or $y - \frac{2}{3} = \left(-\frac{5}{36}\right)(x - 3)$ oe soi		their non- zero $-\frac{5}{36}$
	A(15, -1)	B 2	B2 dep on all previous marks awarded B1 dep for $x = 15$ or $y = -1$
6(a)	$\frac{2}{3}(3x+2)^{\frac{1}{2}}(+c)$ oe	2	B1 for $k(3x+2)^{\frac{1}{2}}$ oe, so where k is a constant and $k \neq 0$
6(b)	$-\frac{e^{1-2a}}{2} + \frac{1}{2}$ oe, isw	3	B2 for $-\frac{1}{2}e^{(1-2x)}$ oe
	2 2 Satpr	ap.c	or B1 for $ke^{(1-2x)}$ or $ke^{(1-2a)}$ where k is a constant, $k \neq 0$
7(a)	$x = \sqrt[3]{\frac{28}{56}}$ oe, nfww, isw	3	B2 for $28x^{10}$ and $56x^{13}$ OR $[x^8](28x^2)$ and $[x^8](56x^5)$
			or B1 for $28x^{10}$ or $56x^{13}$ OR [x^{8}]($28x^{2}$) or [x^{8}]($56x^{5}$)
7(b)(i)	n = 10	2	B1 for the correct term in any form e.g. ${}^{n}C_{5}x^{n-5}\left(\frac{2}{x}\right)^{5} \text{ or for } n-5=5 \text{ oe, soi}$
7(b)(ii)	8064	2	B1 for ${}^{10}C_5 \times 2^5$ oe e.g. 252×32

Question	Answer	Marks	Partial marks
8(a)	$[x=]$ $\frac{\pi}{24}$, $\frac{5\pi}{24}$ and no extras in range	2	B1 for $[x =] \frac{\pi}{24}$ or $\frac{5\pi}{24}$ ignoring extras or for $4x = \frac{\pi}{6}$ and $\frac{5\pi}{6}$ soi
8(b)	Correct and complete plan soi e.g. $\int_{their}^{their\frac{5\pi}{24}} \left(\sin(4x) - \frac{1}{2} \right) dx$ or $2 \int_{their}^{\frac{\pi}{8}} \frac{\pi}{24} \left(\sin(4x) - \frac{1}{2} \right) dx$	M1	FT their limits in radians from part (a) or $\int_{their\frac{\pi}{24}}^{their\frac{5\pi}{24}} \sin 4x dx - \frac{1}{2} \left(their \frac{5\pi}{24} - their \frac{\pi}{24} \right)$
	Integrates $\sin 4x$: $-\frac{1}{4}\cos 4x$	B2	B1 for $k \cos 4x$ where $k < 0$ or $k = \frac{1}{4}$
	Substitutes exact limits in correct order: $-\frac{1}{4}\cos 4\left(\frac{5\pi}{24}\right) - \left[-\frac{1}{4}\cos 4\left(\frac{\pi}{24}\right)\right]$ oe soi	M1	FT <i>their</i> exact limits and <i>their</i> $-\frac{1}{4}\cos 4x$ providing at least B1 awarded
	$\frac{\sqrt{3}}{4} - \frac{\pi}{12}$ or exact equivalent	A1	
9	$\frac{18 + 12\sqrt{10}}{2 + \sqrt{10}}$	B 1	
	$\frac{their18 + (their12)\sqrt{10}}{2 + \sqrt{10}} \times \frac{2 - \sqrt{10}}{2 - \sqrt{10}}$	M1	FT $\frac{a+b\sqrt{10}}{2+\sqrt{10}}$ where <i>a</i> and <i>b</i> are integers
	$\frac{36-18\sqrt{10}+24\sqrt{10}-120}{-6}$	A1	0
	$14 - \sqrt{10}$ nfww	A1	dep on all previous marks awarded
	Alternative		
	$\frac{16+11\sqrt{10}}{2+\sqrt{10}} \times \frac{2-\sqrt{10}}{2-\sqrt{10}} [+1]$	(M1)	
	$\frac{32 - 16\sqrt{10} + 22\sqrt{20} - 110}{-6} [+1]$	(A1)	
	$\frac{-78 + 6\sqrt{10} [-6]}{-6}$ oe	(A1)	e.g. $13 - \sqrt{10}$ [+1]
	$14 - \sqrt{10}$ nfww	(A1)	dep on all previous marks awarded

Question	Answer	Marks	Partial marks
10(a)	1.1 ⁿ *3	B2	where * is any inequality sign or =
			B1 for $\frac{10(1.1^n - 1)}{1.1 - 1} * 200$ or $\frac{10(1 - 1.1^n)}{1 - 1.1} * 200$ or for $r = 1.1$ soi
	<i>n</i> log1.1 * log3 oe or log _{1.1} 3 [* <i>n</i>]	M1	FT $1.1^n * their 3$ providing B1 has been awarded for a correct sum to <i>n</i> terms and (<i>their</i> 3) > 0
	[<i>n</i> =]12	A1	dep on all previous marks awarded
10(b)	r = 2 only nfww	B4	B3 for a correct equation or equations which can be solved directly for r e.g. $[d =] \frac{[a](r-1)}{2} = \frac{[a]r(r-1)}{4}$ or $[d =] \frac{[a](r-1)}{2} = \frac{[a](r^2 - 1)}{6}$ or $[a](r^2 - 3r + 2)$ [= 0] oe or $\frac{2(r+1)(r-1)}{(r-1)} = 6$ or $r = \frac{4d}{2d}$ or $[r =] \frac{a+2d}{a}$ or $[r =] \frac{a+6d}{a+2d}$ and $a = 2d$ or B2 for a correct equation or equations which need to be rearranged to find r e.g. $[d =] \frac{ar-a}{2} = \frac{ar^2 - ar}{4}$ or $[d =] \frac{ar-a}{2} = \frac{ar^2 - a}{6}$ or $[a =] \frac{6[d]}{r^2 - 1} = \frac{2[d]}{r-1}$ or $a(r-1) = 2d$ and $ar(r-1) = 4d$ or either $[r =] \frac{a+2d}{a}$ or $[r =] \frac{a+6d}{a+2d}$ and $4d^2 - 2ad$ [= 0] or B1 for $ar = a + 2d$ oe and B1 for $ar^2 = a + 6d$ oe

Question	Answer	Marks	Partial marks
11(a)(i)	12	2	B1 for $3! \times 2!$ or ${}^{2}P_{2} \times {}^{3}P_{3}$ oe
11(a)(ii)	72	2	B1 for $5! - 4! \times 2!$ oe or $6 \times 2! \times 3!$ oe
11(b)	4200	2	B1 for ${}^{10}C_3 \times {}^7C_3 [\times {}^4C_4]$ oe
			or ${}^{10}C_4 \times {}^{6}C_3 \lfloor \times {}^{5}C_3 \rfloor$ oe
12(a)	Correct derivative: $-\sin t - \cos t$	M1	
	$-\frac{1+\sqrt{3}}{2}$ oe or -1.37	A1	Mark final answer
	or -1.366[02] rot to 3 or more dp		
12(b)	$[v=0 \Rightarrow] \cos t - \sin t = 0$	B2	B1 for $\cos t - \sin t = 0$
	$t = \frac{\pi}{4}$	1	
	Correct integral: $\sin t + \cos t (+ c)$	M1	
	$0 = \sin 0 + \cos 0 + c$	M1	FT <i>their</i> attempt to integrate
	$s = \sin t + \cos t - 1$	A1	
	$\sqrt{2}$ - 1 oe, isw or 0.414[21]	A1	dep on all previous marks awarded
	Alternative		
	$[v=0 \Rightarrow] \cos t - \sin t = 0$	(B2)	B1 for $\cos t - \sin t = 0$
	$\rightarrow t = \frac{\pi}{4}$		\circ
	Correct integral: $\sin t + \cos t$	(M1)	
	with limits $t = \frac{\pi}{4}$ and $t = 0$	(A1)	Must be in radians
	Substitutes limits into correct integral	(M1)	FT their $t = \frac{\pi}{4}$ from attempt
			at solving $v = 0$
	$\sqrt{2}$ - 1 oe, isw or 0.414[21]	(A1)	dep on all previous marks awarded
12(c)	-s-1 oe isw	B 1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/21 May/June 2024

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FŤ	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	Fully correct graph with intercepts marked $ \begin{array}{c} $	B2	B1 for a graph of correct shape with vertex on <i>x</i> -axis

0606/21

Question	Answer	Marks	Partial Marks
1(b)	4x - 6 = 2x and $4x - 6 = -2x$ oe	M1	
	x = 3 x = 1	A2	A1 for either correct
	Alternative method		
	$12x^2 - 48x + 36 = 0 \text{ oe}$	(B1)	
	Factorises or solves	(M1)	
	x = 1, x = 3	(A1)	
2(a)	$5-2(x-1)^2$	B3	Mark final expression
	ATP	R	B2 for $-2(x-1)^2$ or B1 for $(x-1)^2$ or $b = -2$, $c = -1$ and B1 for $5 + b(x+c)^2$ oe with numerical values of <i>b</i> and <i>c</i> or $a = 5$
2(b)	$f \le their 5$	B 1	STRICT FT of <i>their</i> 5 from (a)
3	$5x^2 - 20x + 26 \ [= 0]$	M1	Condone one slip in expansion of brackets or collection of terms
	Correctly finds $b^2 - 4ac$ for <i>their</i> $5x^2 - 20x + 26 = 0$ e.g. $(-20)^2 - 4(5)(26)$	M1	FT <i>their</i> $5x^2 - 20x + 26 = 0$ providing the discriminant is negative for <i>their</i> equation
	400 – 520 < 0 or –120	A1	
	Alternative method		S.
	$5x^2 - 20x + 26 = 0$	(M1)	Condone one slip in expansion of brackets or collection of terms
	Completes the square $5(x - 2)^2 + 6$ and states the correct minimum point (2, 6)	(M1)	FT <i>their</i> $5x^2 - 20x + 26 = 0$ providing the minimum point has positive <i>y</i> -coordinate
	Correct conclusion e.g. Minimum point at $y = 6$ therefore does not intersect <i>x</i> -axis oe	(A1)	

0606/21

Question	Answer	Marks	Partial Marks
4(a)	$4(y-3)^2 = 36-9$ or $4y^2 - 24y + 9[=0]$	M1	
	$y = 3 \pm \sqrt{\frac{27}{4}}$ or exact equivalent, soi	A1	
	$3 + \sqrt{\frac{27}{4}} - \left(3 - \sqrt{\frac{27}{4}}\right) \text{oe}$	M1	FT <i>their</i> $a \pm \sqrt{b}$ providing <i>b</i> is not a square number
	$\sqrt{27}$ or $3\sqrt{3}$ or exact equivalent, nfww	A1	
4(b)	Eliminates one unknown and simplifies terms: $2x^2 + 83 = x^2 - 20x$ oe, soi	M1	
	$x^2 + 20x + 83 = 0$	A1	
	Applies quadratic formula or completes the square: $x = \frac{-20 \pm \sqrt{20^2 - 4[1](83)}}{2}$	M1	FT their 3-term quadratic
	$x = -10 \pm \sqrt{17}$	A1	
	$y = \frac{1}{-10 \pm \sqrt{17}} \times \frac{-10 \mp \sqrt{17}}{-10 \mp \sqrt{17}}$	M1	FT <i>their</i> $x = a \pm \sqrt{b}$ providing previous M1 awarded
	$x = -10 \pm \sqrt{17}$, $y = -\frac{10}{83} \mp \frac{\sqrt{17}}{83}$	A1	dep on all marks previously awarded
5(a)(i)	30 240	2	M1 for $3 \times 7! \times 2$ or ${}^{3}P_{1} \times {}^{7}P_{7} \times {}^{2}P_{1}$ oe
5(a)(ii)	17 280	2	M1 for $4! \times 6!$ oe or ${}^4P_4 \times {}^6P_5$ oe
5(b)(i)	35	2	M1 for ${}^{7}C_{4}$ or $1 + 4 + 18 + 12$
5(b)(ii)	51	2	M1 for ${}^{3}C_{2} \times {}^{6}C_{2} + {}^{3}C_{3} \times {}^{6}C_{1}$ oe or $18 + 4 + 3 + 2 + 24$
Question	Answer	Marks	Partial Marks
----------	--	-------	--
6	$\frac{\mathrm{d}}{\mathrm{d}x}(\sin^2 x) = 2\sin x \cos x \mathrm{soi}$	B1	
	$\cos x \times their(2\sin x \cos x) + (their - \sin x) \times \sin^2 x$	M1	FT their $\frac{d}{dx}(\sin^2 x)$
	$\cos x \times their(2\sin x \cos x) + (-\sin x) \times \sin^2 x$ isw	A1	FT their $\frac{d}{dx}(\sin^2 x)$
	$\frac{\delta y}{h} = their(2\sin 3\cos^2 3 - \sin^3 3) \text{ or better}$	M1	FT their derivative
	0.274 <i>h</i> or	A1	dep on correct derivative seen
	0.2738[08]h where the coefficient of h is rot to 4 or more sf		
7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2mx + \frac{1}{2}$	B1	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2m$	B1	
	$m = \frac{1}{4}$ and $n = -\frac{5}{4}$ and no other values	2	M1 for $3(2m) = \left(2mx + \frac{1}{2}\right)^2 - \left(mx^2 + \frac{x}{2} + n\right)$ soi
Satprep.			

Question	Answer	Marks	Partial Marks
8(a)	$S_{30} = \frac{30}{2} \{2a + 29d\} = -1065$	B1	
	$S_{50} - S_{30} =$ $\frac{50}{2} \{2a + 49d\} - \left(\frac{30}{2} \{2a + 29d\}\right) = -2210$ or $S_{50} = \frac{50}{2} \{2a + 49d\} = -2210 - 1065$	B1	
	Solves <i>their</i> linear equations in <i>a</i> and <i>d</i> as far as $a =$ or $d =$ Some correct pairs are e.g. 150a + 2175d = -5325 150a + 3675d = -9825 or 30a + 435d = -1065 50a + 1225d = -3275 or 2a + 49d = -131 2a + 29d = -71	M1	dep on an attempt to form <i>their</i> equations using at least one sum formula
	a = 8, d = -3	A2	A1 for each
8(b)	$4 + 4r + 4r^2 = 7 \text{ or } \frac{4(1 - r^3)}{1 - r} = 7 \text{ oe}$	B 1	
	$4r^2 + 4r - 3[=0]$ oe	B1	
	Solves or factorises <i>their</i> 3-term quadratic oe	M1	0. 1
	e.g. $(2r-1)(2r+3) = 0$	36.	
	r = 0.5, -1.5	A1	
	$\left[\frac{4}{1-0.5}\right] $ 8 only, nfww	A1	
9(a)	Valid explanation: Range of g is $g > 0$ oe	B1	
9(b)	$\frac{1}{\left(\frac{3x^2}{4x-1}\right)^2}$	M1	
	$\frac{(4x-1)^2}{9x^4}$ or simplified equivalent, isw	A1	

Question	Answer	Marks	Partial Marks
9(c)	$3x^2 - 4xy + y[=0]$ or $3y^2 - 4xy + x[=0]$	B1	
	$[x=]\frac{-(-4y)\pm\sqrt{(-4y)^2-4(3)(y)}}{2(3)}$ oe	M1	FT <i>their</i> expression providing it has at most one sign error
	$[y=]\frac{-(-4x)\pm\sqrt{(-4x)^2-4(3)(x)}}{2(3)} \text{ oe}$		
	Justifies the negative square root	B 1	
	$f^{-1}(x) = \frac{2x - \sqrt{x(4x - 3)}}{3}$	A1	
10(a)	$\tan^2 x + 2\tan x \sec x + \sec^2 x$	M1	
	or $\left(\frac{\sin x}{\cos x} + \frac{1}{\cos x}\right)^2$	N.	
	$\frac{\sin^2 x}{\cos^2 x} + 2 \times \frac{\sin x}{\cos x} \times \frac{1}{\cos x} + \frac{1}{\cos^2 x}$	A1	
	or factorises $\frac{1}{\cos^2 x} (\sin x + 1)^2$ oe		
	$\frac{(1+\sin x)^2}{1-\sin^2 x}$	A1	
	$\frac{(1+\sin x)(1+\sin x)}{(1-\sin x)(1+\sin x)} = \frac{1+\sin x}{1-\sin x}$	A1	must be fully justified
	or $\frac{(1+\sin x)^2}{(1-\sin x)(1+\sin x)} = \frac{1+\sin x}{1-\sin x}$	ep.e	
10(b)	$7\sin 3\theta = 5$	B1	
	One correct value for 3θ soi e.g. 45.58 134.4 405.5 494.4	M1	
	15.2or15.19 to 15.19544.8or44.80 to 44.81135.2or135.19 to 135.195164.8or164.80 to 164.81	A2	with no extras in range A1 for any 2 correct, ignoring extras

Question	Answer	Marks	Partial Marks
11	$P = 2\left(\frac{\pi x}{4}\right) + x + 2\left(\frac{400}{x} - \frac{x}{2}\right) \text{ oe}$	B2	B1 for rectangle length = $\frac{400}{x}$ soi
	Correct first derivative $\frac{\pi}{2} - \frac{800}{x^2}$	B1	FT <i>their P</i> providing it is of the form $\frac{a}{x} + bx$ oe with <i>a</i> an integer and <i>b</i> a constant
	Equates <i>their</i> $\frac{dP}{dx}$ to 0 and solves for x	M1	FT provided one term of <i>their</i> derivative is correct
	$x = \frac{40}{\sqrt{\pi}}$ or 22.6 or 22.56[75]	A1	
	$P = \frac{\pi}{2} \left(\frac{40}{\sqrt{\pi}} \right) + \frac{800}{\frac{40}{\sqrt{\pi}}}$	M1	FT <i>their</i> value of <i>x</i> provided it is greater than 0
	<i>P</i> = 70.9 or 70.89[81]	A1	
12(a)	$\overrightarrow{OP} = \frac{4}{7}\mathbf{b} + \lambda\left(\mathbf{c} - \frac{4}{7}\mathbf{b}\right) \text{ and}$ $\overrightarrow{OP} = \mathbf{b} + \mu\left(\frac{4}{7}\mathbf{c} - \mathbf{b}\right)$	B3	B2 for $\overrightarrow{OP} = \frac{4}{7}\mathbf{b} + \lambda\left(\mathbf{c} - \frac{4}{7}\mathbf{b}\right)$ or $\overrightarrow{OP} = \mathbf{b} + \mu\left(\frac{4}{7}\mathbf{c} - \mathbf{b}\right)$ oe or B1 for $\overrightarrow{OP} = \left(their\frac{4}{7}\right)\mathbf{b} + \lambda\left(\mathbf{c} - \left(their\frac{4}{7}\right)\mathbf{b}\right)$ or $\overrightarrow{OP} = \mathbf{b} + \mu\left(\left(their\frac{4}{7}\right)\mathbf{c} - \mathbf{b}\right)$ or
	Equates components e.g.: $\left(their\frac{4}{7}\right)(1-\lambda) = (1-\mu) \text{ or } \lambda = their\frac{4}{7}\mu$	M1	FT providing at least B1 awarded and two expressions for \overrightarrow{OP} in terms of b , c , λ and μ found
	$\frac{4}{7}(1-\lambda) = (1-\mu) \lambda = \frac{4}{7}\mu \text{ oe}$	A1	
	$\lambda = \frac{4}{11}$ and $\mu = \frac{7}{11}$ oe	A2	A1 for $\lambda = \frac{4}{11}$ or $\mu = \frac{7}{11}$ oe
	and conclusion AP: AC = 4: 11 therefore $AP: PC = 4: 7BP: BD = 7: 11$ therefore $DP: PB = 4: 7oe$		

Question	Answer	Marks	Partial Marks
12(b)	$\overrightarrow{OP} = \frac{4}{11}(\mathbf{b} + \mathbf{c}) \text{ or } \overrightarrow{OP} = \frac{4}{11}\mathbf{b} + \frac{4}{11}\mathbf{c}$ and \overrightarrow{OP} and \overrightarrow{OQ} are scalar multiples of each other and have a point in common oe	2	M1 for $\overrightarrow{OP} = \frac{4}{11}(\mathbf{b} + \mathbf{c}) \text{ or } \overrightarrow{OP} = \frac{4}{11}\mathbf{b} + \frac{4}{11}\mathbf{c}$

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 May/June 2024

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)	Correct graph and intercepts -3 0 1 2.5 x -15	B3	 B1 for correct shape; the ends must extend above and below the <i>x</i>-axis B1 for correct roots indicated; must have attempted a cubic shape B1 for correct <i>y</i>-intercept indicated; must have attempted a cubic shape

Question	Answer	Marks	Partial Marks
1(b)(i)	$-3 \le x \le 1$, $x \ge 2.5$ mark final answer	B2	FT <i>their</i> (a) providing it is an equivalent cubic shape and has 3 stated or indicated roots for B2, B1 or SC1 B1 for one correct inequality out of two If 0 scored then SC1 for -3 < x < 1, $x > 2.5$ or -3 < x < 1, $x > 2.5$ or $-3 \le x < 1$, $x > 2.5$
1(b)(ii)	Graph of correct shape, with cusps, positive y-intercept and x-intercepts which match (a)	B1	FT <i>their</i> (a) providing it is an equivalent cubic shape
2(a)	$\left[4\sin\frac{x}{4}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$	B2	B1 for $k \sin \frac{x}{4}$ where $k > 0$ or $k = -4$
	$4\sin\frac{\pi}{8} - 4\sin\frac{\pi}{12}$	M1	FT provided at least B1 awarded
	0.495 or 0.4954[57] rot to 4 or more sf	A1	dep on all previous marks awarded
2(b)	$\frac{1}{4}\ln(4x-3) - \frac{x^{-2}}{2}(+c) \text{ oe, isw}$ or $\frac{1}{4}\ln(x-0.75) - \frac{x^{-2}}{2}(+c) \text{ oe, isw}$	B3	B2 for $\frac{1}{4}\ln(4x-3)$ or $\frac{1}{4}\ln(x-0.75)$ or B1 for $\frac{1}{4}\ln 4x - 3$ or $\frac{1}{4}\ln x - 0.75$ or $k\ln(4x-3)$ or $k\ln(x-0.75)$ where $k \neq \frac{1}{4}$ and B1 for $\frac{x^{-2}}{-2}$ oe

Question	Answer	Marks	Partial Marks
3(a)	$7x^{2} + 9x + 5[=0]$ or $-7x^{2} - 9x - 5[=0]$	B2	B1 for two terms correct in $7x^2 + 9x + 5 = 0$ or at most one term incorrect in $12x^2 + 11x + 2 = 5x^2 + 2x - 3$ oe
	$9^2 - 4(7)(5)$ or	M1	FT their 3-term quadratic
	$(-9)^2 - 4(-7)(-5)$ oe		
	-59 and no real roots or 81 - 140 < 0 and no real roots oe	A1	
3(b)	$\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} - 12 = 0$ oe soi	B1	
	or $y = \sqrt[3]{x}$ and $y^2 + 4y - 12 = 0$ oe soi	RA	
	Factorises or solves <i>their</i> 3-term quadratic in $\sqrt[3]{x}$	M1	FT <i>their</i> 3-term quadratic in $\sqrt[3]{x}$ or a stated substituted unknown
	x = 8 $x = -216$	A2	A1 for $\sqrt[3]{x} = 2$ $\sqrt[3]{x} = -6$
4(a)	33	B1	
4(b)(i)	$6\left(\frac{1}{2}\right)^{3} + \left(\frac{1}{2}\right)^{2} - 12\left(\frac{1}{2}\right) + 5 = 0 \text{ oe}$ or $6\left(\frac{1}{8}\right) + \frac{1}{4} - \frac{12}{2} + 5 = 0 \text{ oe}$ or $\frac{3}{4} + \frac{1}{4} - 6 + 5 = 0 \text{ oe}$	B1	
4(b)(ii)	Finds the quadratic factor $3x^2 + 2x - 5$	M2	M1 for any two terms correct in $3x^2 + 2x - 5$
	(2x-1)(3x+5)(x-1) oe	A1	If 0 scored then SC2 for justifying $x - 1$ as a factor and writing down $(2x - 1)(3x + 5)(x - 1)$ without any incorrect work seen
4(b)(iii)	$[\sin\theta = 0.5] \theta = 30$ nfww	B2	B1 for $\sin\theta = 0.5$ or $\theta = 30$
	$[\sin\theta = 1] \theta = 90$ nfww		B1 for $\sin\theta = 1$ nfww or $\theta = 90$ nfww
	and no value of θ from $3\sin\theta + 5 = 0$		

Question	Answer	Marks	Partial Marks
5	$\frac{\mathrm{d}y}{\mathrm{d}x} = 10\mathrm{e}^{2x-1} \left[+0 \right] \mathrm{oe}$	M2	M1 for $\frac{dy}{dx} = ke^{2x-1}$, $k \neq 10$ or SCM1 for $\frac{dy}{dx} = 10e^{2x-1} + c$ where c is algebraic or numerical
	$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right _{x=1} = 10\mathrm{e} \text{ and } y = 6\mathrm{e}$	A1	FT <i>their</i> $\frac{dy}{dx}$ provided M1 or SCM1 awarded and a value is found
	y-6e = 10e(x-1) oe or y = 10ex + c and $6e = 10e + c$	M1	FT their $\frac{dy}{dx}\Big _{x=1}$ and their y
	y = 10ex - 4e isw	A1	
	[x-coordinate of $P =] 0.4$ oe, isw	A1	dep on correct equation of tangent with exact values
6(a)	Convincing correct statement from which the answer can be easily determined e.g. $\sin^{3} x \left(\frac{1}{\sin x} \times \frac{\sin x}{\cos x}\right) \text{ oe}$ or $\sin^{2} x \left(\sin x \times \frac{1}{\sin x} \times \frac{1}{\cot x}\right) \text{ oe}$ or $\sin^{3} x \left(\frac{1}{\sin x} \div \frac{\cos x}{\sin x}\right) = \sin^{3} x \left(\frac{1}{\cos x}\right) \text{ oe}$ or $\sin^{3} x \left(\frac{1}{\sin x} \div \frac{1}{\tan x}\right) = \sin^{3} x \left(\frac{1}{\sin x} \times \tan x\right)$ oe	2	M1 for either $\operatorname{cosecx} \operatorname{correctly} \operatorname{written} \operatorname{as} \frac{1}{\sin x}$ oe seen in a correct expression or for $\operatorname{cotx} \operatorname{correctly} \operatorname{written} \operatorname{as} \frac{\cos x}{\sin x}$ or $\frac{1}{\tan x}$ oe seen in a correct expression e.g. $\sin^3 x (\operatorname{cosec} x \times \tan x) \operatorname{or}$ $\sin^3 x (\operatorname{cosec} x \div \frac{\cos x}{\sin x}) \operatorname{or}$ $\sin^3 x (\frac{1}{\sin x} \div \frac{\cos x}{\sin x}) \operatorname{or}$ $\sin^3 x (\frac{1}{\sin x} \div \frac{1}{\tan x})$
	Correct completion to given answer: $\sin^2 x \tan x$	A1	

Question	Answer	Marks	Partial Marks
6(b)	Factorises: $\tan x \left(\cos^2 x - \frac{1}{2} \right) = 0 \text{ oe or}$ $\tan x \left(\frac{1}{2} - \sin^2 x \right) = 0 \text{ oe or}$	M1	Note: division by tanx is M0
	correctly rewrites and then factorises: $\sin x \left(\cos^2 x - \frac{1}{2} \right) = 0 \text{ oe or}$ $\sin x \left(\frac{1}{2} - \sin^2 x \right) = 0 \text{ oe or}$ $\tan x \left(1 - \tan^2 x \right) = 0 \text{ oe}$		Note: division by sinx is M0
	$[\tan x = 0 \text{ or } \sin x = 0] [x =] 0$	A1	
	$\cos x = [\pm] \sqrt{\frac{1}{2}} \text{ oe or}$ $\sin x = [\pm] \sqrt{\frac{1}{2}} \text{ oe or}$ $\tan x = [\pm]1$	M1	nfww
	[x =] $\pm \frac{\pi}{4}$ or ± 0.785 or ± 0.7853 to ± 0.7854 , $\pm \frac{3\pi}{4}$ or ± 2.36 or ± 2.356 to ± 2.3562	A2	with no extras in range; nfww A1 for any two out of four correct, ignoring extras
7(a)	282 240	2	M1 for 9! – 2! × 8! oe
7(b)	120	2	M1 for 5! or 5P_5 oe
8(a)	Points plotted at	B2	B1 for at least 4 correctly plotted points
	x 15 30 45 60 75		
	Iny 2.3 2.5 3.1 3.5 3.9 or 2.6 3.6 3.6 3.6		
	soi		
	and		
	single, ruled, straight line of best fit drawn		

Question	Answer	Marks	Partial Marks
8(b)	$\ln y = 0.03x + 1.8$	2	M1 for $m = $ awrt 0.02 to awrt 0.03
			or $c = awrt 1.7$ to awrt 2.0
			or for the straight line form in terms of $\ln A$ and k: $\ln y = \ln A + kx[\ln e]$
	A = 6 or $A = 7$	B 3	Must have been found using linear points <u>or</u> linear equation
	and		B2 for $A = 6$ or $A = 7$
	k = 0.03 or $k = 0.02$		or A in range: awrt 6 or awrt 7
	SATPA		or B1 FT for $\ln A = their 1.8$ or $A = e^{their 1.8}$ and
			B1 FT for $k = 0.03$ or 0.02 or k in range: awrt 0.02 or awrt 0.03
			Maximum of 2 marks if one or both values not rounded to 1 sf
			If B0 scored, award SC1 for $4 = 6$ or $4 = 7$
	5	- /	and SC1 for $k = 0.03$ or $k = 0.02$ found not using transformed data
	3		

Question	Answer	Marks	Partial Marks
8(c)	A value of x in range $33 \le x \le 37.5$ nfww, isw	2	M1 for $\ln y = 2.8$ or $2.83[32]$
			OR
			A value of x in range $29.5 \le x < 33$ or $37.5 < x \le 45$ nfww
			OR M1 STRICT FT for
			$x = \frac{\ln 17 - their \ln A}{their k}$
			STRICT FT <i>their</i> stated $\ln A$ and <i>their</i> stated k or <i>their</i> stated linear equation in (b)
	ATPR	RA	OR
	2		$x = \frac{1}{their k} \ln\left(\frac{17}{theirA}\right)$
			STRICT FT <i>their</i> stated <i>A</i> and <i>their</i> stated <i>k</i> or <i>their</i> stated exponential equation in (b)

Question	Answer	Marks	Partial Marks
9	A(2, 0) or $x = 2 [x = 6]$	2	M1 for factorising or solving $32x - 4x^2 - 48 = 0$
	Finds equation <i>CD</i> / <i>x</i> -coordinate of <i>C</i> or <i>D</i> or maximum point : $x = 4$	2	M1 for $\frac{2+6}{2}$ or $32-8x=0$
	D(4, 8) or [equation AB is $y =]4x - 8$	2	M1 for $y = \frac{2}{3} \times 12$ or $m_{AB} = \frac{12 - 0}{5 - 2}$ soi
	$\left[\frac{32}{2}x^2 - \frac{4}{3}x^3 - 48x\right]_2^4$ or $\left[\frac{28}{2}x^2 - \frac{4}{3}x^3 - 40x\right]_2^4$	B1	must be seen
	Correct plan including correct substitution of upper and lower limits at some point e.g. $\begin{bmatrix} 4 \\ 7^{their4} \end{bmatrix}$	M1	dep on attempt to integrate FT <i>their</i> 4 and <i>their</i> 8 if needed
	$\begin{bmatrix} 16x^2 - \frac{4}{3}x^3 - 48x \end{bmatrix}_2 - \frac{1}{2} \times (their4 - 2) \times their8$ or $\begin{bmatrix} 16x^2 - \frac{4}{3}x^3 - 48x \end{bmatrix}_2^{their4} - \begin{bmatrix} 2x^2 - 8x \end{bmatrix}_2^{their4}$ or $\begin{bmatrix} 14x^2 - \frac{4}{3}x^3 - 40x \end{bmatrix}_2^{their4}$		or FT <i>their</i> 4 and <i>their</i> $4x - 8$ of the form $mx + c$ if needed or FT <i>their</i> 4 and $(32 - their(4)x - 4x^2 + (-48 - their(-8)))$ providing clear evidence of the derivation of this has been seen
	$\frac{40}{3}$ isw or 13.3[33] nfww	A1	dep on all previous marks awarded
10(a)	Valid explanation using f: f is one-one oe	B1	
10(b)	Complete method to find inverse function: Swaps the variables and rearranges or rearranges and swaps the variables	M1	Condone one sign or arithmetic error but must have the correct order of operations
	$\left[\mathbf{f}^{-1}(x)=\right] - \sqrt{\ln x - 3} \text{ isw or}$	A2	A1 for $\left[f^{-1}(x)=\right]$ $\left[\pm\right]\sqrt{\ln x - 3}$ or
	$\left[f^{-1}(x)=\right] - \sqrt{\ln\frac{x}{e^3}}$ oe isw		$\left[f^{-1}(x)=\right]\left[\pm\right]\sqrt{\ln\frac{x}{e^3}} \text{ oe }$
	Domain f^{-1} : $x > e^3$	B 1	
	Range f^{-1} : $f^{-1} < 0$	B1	

Question	Answer	Marks	Partial Marks
10(c)	$g(x) = f^{-1}(e^{2x})$ soi or $g(x) = -\sqrt{\ln e^{2x} - 3}$	M1	FT <i>their</i> expression for f ⁻¹
	$-\sqrt{2x-3}$	A1	If 0 scored, allow SCB1 for $-\sqrt{2x-3}$ found from solving $(g(x))^2$ + 3 = 2x and using existence of composite functions to deduce that the square root must be negative
11	$2^{n} + n \times 2^{n-1} \times \frac{x}{2} + \frac{n(n-1)}{2[!]} \times 2^{n-2} \times \left(\frac{x}{2}\right)^{2}$ soi	B1	implied by three correct equations or e.g. $2^{n} + {}^{n}C_{1} \times 2^{n-1} \times \frac{x}{2} + {}^{n}C_{2} \times 2^{n-2} \times \left(\frac{x}{2}\right)^{2}$ and sight of ${}^{n}C_{1} = n$ and ${}^{n}C_{2} = \frac{n(n-1)}{2[!]}$ clearly in the working
	Forms three correct equations e.g. $b = 2^{n}$ $ab = n(2^{n-2})$ or $ab = n\frac{(2^{n-1})}{2}$ $\frac{9}{8}ab = n(n-1)(2^{n-5})$ or $\frac{9}{8}ab = \frac{n(n-1)}{2}\frac{(2^{n-2})}{2^{2}}$ OR finds e.g. $a = \frac{n}{4}$ and $\frac{9}{8}a = \frac{n(n-1)}{32}$ OR finds e.g. $ab = n \times \frac{b}{2} \times \frac{1}{2}$ and $\frac{9}{8}ab = \frac{n(n-1)}{2} \times \frac{b}{4} \times \frac{1}{4}$	B3	B2 for any two of three correct equations or B1 for any one of three correct equations OR B2 for $a = \frac{n}{4}$ or $\frac{9}{8}a = \frac{n(n-1)}{32}$ oe or $ab = n \times \frac{b}{2} \times \frac{1}{2}$ or $\frac{9}{8}ab = \frac{n(n-1)}{2} \times \frac{b}{4} \times \frac{1}{4}$ oe
	Finds a correct equation in <i>n</i> soi e.g. $n^2 - 10n = 0$ or $n - 1 = 9$ or $10n = n^2$ or $\frac{n}{4} = \frac{n(n-1)}{36}$ OR Finds a correct equation in <i>a</i> soi e.g. $16a^2 - 40a = 0$	B1	
	$n = 10 \ a = \frac{5}{2}$ or $b = 1024$	B3	B1 for each

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/23 May/June 2024

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FŤ	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1	y-5 = -2(x-3) oe	ep ³	M1 for midpoint $\left(\frac{5+1}{2}, \frac{6+4}{2}\right)$ or $(3, 5)$ M1 for $m_{\perp} = \frac{-1}{\frac{1}{2}}$ or (-2)
	$\frac{121}{4}$ or 30.25 oe cao	2	B1 FT for <i>x</i> -intercept (5.5, 0) and <i>y</i> -intercept (0, 11) soi; FT <i>their</i> perpendicular bisector providing M1 M1 awarded

Question	Answer	Marks	Partial Marks
2	Uses $b^2 - 4ac$ correctly: $(2k-1)^2 - 4(k)(k+1)$ [*0 where * is any inequality sign or =]	M1	
	Simplifies to $-8k + 1[*0]$	A1	
	Critical Value: $k = \frac{1}{8}$ soi	M 1	FT <i>their</i> $ak + b$ where a and b are constants
	$k > \frac{1}{8}$ mark final answer	A1	
3(a)	Accurate, ruled graphs drawn $ \begin{array}{c} 10^{\frac{1}{9}} \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 2 \\ -2 \\ -1 \\ 2 \\ -2 \\ -1 \\ 2 \\ -2 \\ -1 \\ 2 \\ -2 \\ -1 \\ 2 \\ -2 \\ -1 \\ -2 \\ -2 \\ -1 \\ -2 \\ -2 \\ -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$		M1 for $y = 4 - x $: \lor shape with vertex at (4, 0) A1 Correct graph with <i>y</i> -intercept at (0, 4) M1 for $y = 2x - 5 $: \lor shape with vertex at (2.5, 0) A1 Correct graph with <i>y</i> -intercept at (0, 5)
3(b)	$x \le 1, x \ge 3$ final answer	2	 FT <i>their</i> (a) providing at least M1 awarded and a pair of V-shaped graphs attempted B1 for exactly two correct critical values or B1 FT for exactly two correct FT critical values soi, FT <i>their</i> (a) providing at least M1 awarded and a pair of V-shaped graphs attempted
4(a)	$\frac{105}{8}$ isw or 13.125 oe	2	B1 for ${}^{10}C_4(x^2)^6 \left(-\frac{1}{2x^3}\right)^4$ oe

Question	Answer	Marks	Partial Marks
4(b)(i)	$1+4(2\sqrt{2})+6(2\sqrt{2})^{2}+4(2\sqrt{2})^{3}+(2\sqrt{2})^{4}$ soi or $1+4(-2\sqrt{2})+6(-2\sqrt{2})^{2}+4(-2\sqrt{2})^{3}+(-2\sqrt{2})^{4}$ soi	M1	
	$1 + 8\sqrt{2} + 48 + 64\sqrt{2} + 64 \text{ or} \\1 - 8\sqrt{2} + 48 - 64\sqrt{2} + 64$	A1	
	Correct difference stated or clearly implied $1+8\sqrt{2}+48+64\sqrt{2}+64-(1-8\sqrt{2}+48-64\sqrt{2}+64)$	M1	dep on sight of correct expansions with numerical coefficients
	$144\sqrt{2}$ nfww	A1	
4(b)(ii)	$\frac{(their k)\sqrt{2}}{1+\sqrt{2}} \times \frac{1-\sqrt{2}}{1-\sqrt{2}} =$ $\frac{(their k)\sqrt{2}-2their k}{-1} \text{ oe}$ simplified to 2(<i>their k</i>) – (<i>their k</i>) $\sqrt{2}$ mark final answer	2	STRICT FT of <i>their</i> integer value of k B1 STRICT FT of <i>their</i> integer value of k for $\frac{their k\sqrt{2}}{1+\sqrt{2}} \times \frac{1-\sqrt{2}}{1-\sqrt{2}}$
5(a)(i)	$\sec^2 x + 2\tan^2 x$ oe and correct completion to $3\tan^2 x + 1$ nfww	2	M1 for use of a relationship to form a convincing correct statement from which the answer can be easily determined e.g. $\sec^2 x + \frac{2\sin^2 x}{\cos^2 x}$ or $\frac{1}{\cos^2 x} + 2\tan^2 x$
5(a)(ii)	$\tan x = [\pm]1$ soi	M1	FT $\tan x = [\pm] \sqrt{\frac{4 - their1}{their3}}$ providing $\frac{4 - their1}{their3} > 0$
	$[x=]\frac{\pi}{4}, -\frac{\pi}{4}$ or $\pm 0.785[39]$ nfww and no other solutions	A2	A1 for each, ignoring extra solutions

Question	Answer	Marks	Partial Marks
5(a)(iii)	$f'(x) = 6 \tan x \sec^2 x$ oe	M2	FT $2(their3)\tan x \sec^2 x$
			M1 for $f'(x) = k \tan x \sec^2 x$ where $k \neq 2$ <i>their</i> 3
	$\left[f'\left(\frac{\pi}{4}\right)=\right] 12; \left[f'\left(-\frac{\pi}{4}\right)=\right] - 12 \text{ nfww}$	A2	A1 for each nfww
5(b)	Correct use of $\sin^2 \theta + \cos^2 \theta = 1$ to form a 3-term quadratic in $\sin \theta$ in solvable form $50\sin^2 \theta + 5\sin \theta - 3 = 0$ oe	M1	Condone one sign or arithmetic error in rearrangement
	Solves or factorises <i>their</i> 3-term quadratic in $\sin\theta$ e.g. $(10\sin\theta + 3)(5\sin\theta - 1) [= 0]$	M1	FT <i>their</i> 3-term quadratic in $\sin \theta$
	$\sin\theta = -0.3 \sin\theta = 0.2 \text{ soi}$	A1	
	11.5 or 11.53[69] 168.5 or 168.46[30] 197.5 or 197.45[76] 342.5 or 342.54[23]	A2	with no extras in range A1 for any two correct angles, ignoring extras
6(a)	(2x+1)(x-3)(x+1) nfww	M1	
	Correct method leading to $x = -\frac{1}{2}$, $x = 3$, $x = -1$	A1	.5
6(b)(i)	$[p'(x) =]3x^2 + 2ax + b[=0]$	B1	.0'
	$3\left(\frac{4}{3}\right)^2 + 2a\left(\frac{4}{3}\right) + b = 0$	B1	OR forms the product $(3x - 4)(x - 2) = 0$
	$3(2)^2 + 2a(2) + b = 0$	B 1	OR multiplies out to find $3x^2 - 10x + 8 = 0$
	Solves to find the value of one unknown	M1	FT <i>their</i> linear equations in <i>a</i> and <i>b</i> oe OR compares coefficients to state a value of <i>a</i> or <i>b</i>
	a = -5, b = 8	A1	
	[p(1)=] 1 + a + b + c = -5 oe, soi	M1	
	[1 - 5 + 8 + c = -5] c = -9	A1	

Question	Answer	Marks	Partial Marks
6(b)(ii)	[p''(x) =]6x + 2(their a) soi	M1	FT their a
	6(2) - 10 = 2 > 0 [therefore minimum]	A1	
7(a)	$\frac{1}{2} \times 9^2 \times \theta - \frac{1}{2} \times 5^2 \times \theta = 4\pi \text{ oe, soi}$	M2	M1 for $\frac{1}{2} \times 9^2 \times \theta$ or $\frac{1}{2} \times 5^2 \times \theta$ oe, soi
	$\theta = \frac{\pi}{7}$ oe or 0.449 or 0.4487 to 0.4488	A1	
7(b)	$[\operatorname{Arc} AD =] \frac{5\pi}{7}$	2	M1 for [Arc $AD = 15 \times their \frac{\pi}{7}$ FT any stated value of θ from (a)
	[<i>AC</i> =] 4.991[27] rot to 4 or more sf	2	M1 for $[AC^{2} =] 9^{2} + 5^{2} - 2(9)(5) \cos\left(their\frac{\pi}{7}\right)$ FT their θ providing $0 < \theta < \frac{\pi}{2}$
	11.2 or 11.23[526] rot to 4 or more sf	A1	
8	$\int \cos\left(4x - \frac{\pi}{4}\right) dx = \frac{1}{4} \sin\left(4x - \frac{\pi}{4}\right) (+c)$	B2	B1 for $k\sin\left(4x - \frac{\pi}{4}\right)$ where $k > 0$ or $k = -\frac{1}{4}$
	$\frac{3}{4} = \frac{1}{4}\sin\left(4\left(\frac{3\pi}{16}\right) - \frac{\pi}{4}\right) + c$	M1	FT their k providing B1 awarded
	$-\frac{1}{16}\cos\left(4x-\frac{\pi}{4}\right)+\frac{1}{2}x (+A)$	2	M1 FT for $m\cos\left(4x - \frac{\pi}{4}\right) + \left(their\frac{1}{2}\right)x (+A)$
			FT their $k \sin\left(4x - \frac{\pi}{4}\right) + their c$ providing at least B1 M1 awarded
	$y = -\frac{1}{16}\cos\left(4x - \frac{\pi}{4}\right) + \frac{1}{2}x + \frac{5\pi}{32}$ oe, cao	2	M1 FT for $\frac{\pi}{4} = -\frac{1}{16} \cos\left(\frac{3\pi}{4} - \frac{\pi}{4}\right) + \frac{1}{2}\left(\frac{3\pi}{16}\right) + A$
			FT $(their m)\cos\left(4x - \frac{\pi}{4}\right) + \left(their \frac{1}{2}\right)x + A$ providing previous M1 awarded

Question	Answer	Marks	Partial Marks
9	$\frac{\mathrm{d}y}{\mathrm{d}x} = -(3x-1)^{-2} \times 3$	M2	M1 for $\frac{dy}{dx} = -k(3x-1)^{-2}$ where $k > 0$
	[When $x = 1$] $\frac{dy}{dx} = -\frac{3}{4}$ and $y = \frac{9}{2}$	A1	FT <i>their</i> $\frac{dy}{dx}$ providing M1 has been awarded
	Equation of tangent: $y - \frac{9}{2} = -\frac{3}{4}(x-1)$ oe isw	M1	FT the value of <i>their</i> $\frac{dy}{dx}$ at $x = 1$ and <i>their</i> y
	<i>B</i> (7, 0) oe	A1	
	Area of triangle: $\frac{1}{2} \times \frac{9}{2} \times ((their 7) - 1) \text{ or } \frac{27}{2} \text{ nfww or}$	M1	FT <i>their</i> 7 and <i>their</i> $-0.75x + 5.25$ of the form $mx + c$ if needed
	$-\frac{3}{8}(49) + \frac{21}{4}(7) - \left(-\frac{3}{8} + \frac{21}{4}\right)$		
	[Area under curve = $F(x) = $]	B2	B1 for
	$\left[4x + \frac{1}{3}\ln(3x-1)\right]_{1}$ oe		$\int \frac{1}{3x-1} \mathrm{d}x = k \ln(3x-1) \text{ or } \frac{1}{3} \ln 3x - 1$
	Correct and actioned plan e.g. $F(9) - F(1) - their \frac{27}{2}$	M1	dep on at least previous B1 and correct plan or correct FT area of triangle oe
	$18\frac{1}{2} + \frac{1}{3}\ln 13$	A1	i'
	or 19.4 or 19.35[49]		.0'
10	$\overrightarrow{OP} = \lambda (\mathbf{a} + \mathbf{c})$ oe	B1	
	$\overrightarrow{OP} = \mathbf{a} + \mu \left(-\mathbf{a} + \frac{2}{5}\mathbf{c} \right)$ oe	B2	B1 for $\overrightarrow{OP} = \mathbf{a} + \mu \left(-\mathbf{a} + \left(their \frac{2}{5} \right) \mathbf{c} \right)$
	Equates components at least once:	M1	FT providing at least B1 awarded
	$\lambda = 1 - \mu$ or $\lambda = \frac{2}{5}\mu$		
	Equates components: 2	A1	
	$\lambda = 1 - \mu$ and $\lambda = \frac{2}{5}\mu$		
	$\mu = \frac{5}{2}$ $\lambda = \frac{2}{2}$ and	A2	A1 for $\mu = \frac{5}{2}$ or $\lambda = \frac{2}{2}$
	DP: PA = 2:5 = OP: PB oe		

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 February/March 2024

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FŤ	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	8 - 4x = 10 oe soi and 8 - 4x = -10 oe soi OR $16x^2 - 64x - 36[=0]$ oe	M1	
	$x = -\frac{1}{2}, \ x = \frac{9}{2}$	A2	mark final answer A1 for $x = -\frac{1}{2}$ or $x = \frac{9}{2}$
1(b)	$-30x^2 + 105x - 75$ [*0] oe where * is any inequality sign or =	M1	condone one sign or arithmetic error
	Critical values 2.5 and 1	2	M1 for factorises or solves a 3-term quadratic to find critical values
	$x < 1 \ x > 2.5$	A1	mark final answer

Question	Answer	Marks	Partial Marks
2	$\frac{a+b\sqrt{5}}{1+7\sqrt{5}} = \frac{20}{4+2\sqrt{5}} \text{ or } \frac{20(1+7\sqrt{5})}{4+2\sqrt{5}} \text{ oe, soi}$	B1	
	$[20\times] \frac{1+7\sqrt{5}}{4+2\sqrt{5}} \times \frac{4-2\sqrt{5}}{4-2\sqrt{5}}$ or $[10\times] \frac{1+7\sqrt{5}}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$ oe	M1	condone one slip providing it is not in the rationalisation factor
	$\frac{20(28\sqrt{5} - 70 + 4 - 2\sqrt{5})}{16 - 20}$ or $\frac{10(14\sqrt{5} - 35 + 2 - \sqrt{5})}{4 - 5}$ oe	A1	
	a = 330 and $b = -130$ oe, nfww	A1	
	Alternative method		
	$\frac{a+b\sqrt{5}}{1+7\sqrt{5}} = \frac{20}{4+2\sqrt{5}}$ oe, soi	(B1)	
	Cross multiplies and multiplies out: $20+140\sqrt{5} = 4a+4b\sqrt{5}+2a\sqrt{5}+10b$	(M1)	condone one sign or arithmetic error
	Correct pair of simultaneous equations 4a + 10b = 20 oe $2a + 4b = 140$ oe and solves for $a = 330$ or $b = -130$	(A1)	
	a = 330 and $b = -130$ oe, nfww	(A1)	5
3(a)	$\frac{3}{4}\mathbf{a} + \frac{1}{4}\mathbf{b}$ or equivalent simplified expression	B2	B1 for $\mathbf{a} + \frac{1}{4}(\mathbf{b} - \mathbf{a})$ or $\mathbf{b} + \frac{3}{4}(\mathbf{a} - \mathbf{b})$ oe or for $3(\overrightarrow{OP} - \mathbf{a}) = \mathbf{b} - \overrightarrow{OP}$ oe

Question	Answer	Marks	Partial Marks
3(b)	$\mathbf{q} = \begin{pmatrix} 24\\ -12 \end{pmatrix}$ oe	2	M1 for $12\sqrt{5} \times \frac{1}{\sqrt{6^2 + (-3)^2}} \begin{pmatrix} 6 \\ -3 \end{pmatrix}$ oe, soi
	$\mathbf{r} = \begin{pmatrix} -15\\15 \end{pmatrix}$ oe	2	M1 for $15\sqrt{2} \times \frac{1}{\sqrt{(-5)^2 + 5^2}} \begin{pmatrix} -5\\5 \end{pmatrix}$ oe, soi
			If M0 M0, then SC1 for the unit direction vectors $\frac{1}{\sqrt{45}} \begin{pmatrix} 6 \\ -3 \end{pmatrix}$ or better and $\frac{1}{\sqrt{45}} \begin{pmatrix} -5 \\ -3 \end{pmatrix}$ or better
	$\left \mathbf{q}+\mathbf{r}\right = \begin{pmatrix} 9\\ 3 \end{pmatrix} = \sqrt{9^2 + 3^2}$	M1	$\sqrt{50}$ (5) FT <i>their</i> (q + r) providing at least M1 previously awarded
	[unit vector in direction $\mathbf{q} + \mathbf{r} = \frac{1}{\sqrt{90}} \begin{pmatrix} 9\\ 3 \end{pmatrix}$ oe, isw	A1	
4(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\sin x \cos x - \sin x$ oe, isw	B2	B1 for an attempt to differentiate both terms with one term correct
	$3\sin^2 x + \cos x + \frac{\cos x}{\sin x}(6\sin x \cos x - \sin x)$	M1	FT their $\frac{dy}{dx}$ of the form $k \sin x \cos x \pm \sin x$
	Correct simplified step e.g. $3\sin^2 x + \cos x + 6\cos^2 x - \cos x$ or $3\sin^2 x + 6\cos^2 x$ or $3 + 3\cos^2 x$ leading to $3(1 + \cos^2 x)$ nfww	A 1	
4(a)(ii)	$\cos^2 x = \frac{1}{3}$	M1	FT <i>their k</i> providing $0 < k \le 4$
	$\cos x = \left[\pm\right] \sqrt{\frac{1}{3}} \text{ oe}$	M1	dep on previous M1; FT their k
	±0.955 or ±0.9553[1] rot to 4 or more sf ±2.19 or ±2.186[2] rot to 4 or more sf	A2	and no other angles in range A1 for any two correct angles, ignoring extras

Question	Answer	Marks	Partial Marks
4(b)(i)	$\left(1-\frac{1}{2}x^{-\frac{1}{2}}\right)$ sec ² $\left(x-\sqrt{x}\right)$ oe, isw	2	M1 for $f(x)\sec^2(x-\sqrt{x})$
4(b)(ii)	Correctly writes $\left(1 - \frac{1}{2}x^{-\frac{1}{2}}\right)\sec^{2}(x - \sqrt{x}) =$ $\frac{2\sqrt{x} - 1}{2\sqrt{x}}\sec^{2}(x - \sqrt{x}) \text{ or } \frac{2\sqrt{x} - 1}{2\sqrt{x}\cos^{2}(x - \sqrt{x})}$ and states an answer $k \tan(x - \sqrt{x})$ or states $\frac{1}{2}\int \frac{2\sqrt{x} - 1}{\sqrt{x}\cos^{2}(x - \sqrt{x})} dx = \tan(x - \sqrt{x})$	M1	where <i>k</i> is a non-zero constant; dependent on part (b)(i)
	$2\tan(x-\sqrt{x})+c$ nfww	A1	
5	Correct quotient rule: $\frac{dy}{dx} = \frac{(\ln 3x)[1] - x\left(\frac{1}{3x} \times 3\right)}{(\ln 3x)^2} \text{ oe}$ OR correct product rule using $y = x(\ln 3x)^{-1}$: $\frac{dy}{dx} = x\left(-(\ln 3x)^{-2} \times \frac{3}{3x}\right) + [1](\ln 3x)^{-1}$	2	M1 for $\frac{dy}{dx} = \frac{(\ln 3x)[1] - x \times their\left(\frac{1}{3x} \times 3\right)}{(\ln 3x)^2} \text{ OR}$ for $\frac{dy}{dx} = x \times their\left(-(\ln 3x)^{-2} \times \frac{3}{3x}\right)$ +[1](\ln 3x)^{-1}
	$\frac{\delta y}{h} = \frac{\ln 3 - 1}{(\ln 3)^2}$ oe, soi	M1	FT their $\frac{dy}{dx}\Big _{x=1}$ providing quotient rule or appropriate product rule attempted
	$\delta y = \frac{\ln 3 - 1}{(\ln 3)^2} h$ or $\delta y = 0.0817 h$ nfww	A1	must have evidence of correct derivative
6	$\left[-\frac{1}{4}e^{2-4x}\right]_{-0.25}^{0.5}$ oe	B2	B1 for ke^{2-4x} , $k \neq -4$
	Correct use of correct limits:	M1	FT their $-\frac{1}{2}e^{2-4x}$ providing B1
	$-\frac{1}{4}e^0 - \left(-\frac{1}{4}e^3\right) oe$		awarded
	$-\frac{1}{4} + \frac{1}{4}e^3$ or exact equivalent, isw	A1	

Question	Answer	Marks	Partial Marks
7(a)	Correctly eliminates x or y e.g. $4x^{2} - 3\left(\frac{2}{x}\right)^{2} + x\left(\frac{2}{x}\right) = 24 \text{ oe or}$ $4\left(\frac{2}{y}\right)^{2} - 3y^{2} + y\left(\frac{2}{y}\right) = 24 \text{ oe}$	M1	
	Rearranges to a 3-term quadratic in x^2 or y^2 soi e.g. $4x^4 - 22x^2 - 12[=0]$ or $2x^4 - 11x^2 - 6[=0]$ or $3y^4 + 22y^2 - 16[=0]$ oe	A1	
	Factorises or solves <i>their</i> 3-term quadratic in x^2 or y^2 soi e.g. $(2x^2 + 1)(x^2 - 6)$ or $(3y^2 - 2)(y^2 + 8)$	M1	
	$x^2 = 6$ oe, nfww or $y^2 = \frac{2}{3}$ nfww	A1	
	$\left(\pm\sqrt{6},\pm\frac{2}{\sqrt{6}}\right)$ or $\left(\pm\sqrt{6},\pm\sqrt{\frac{2}{3}}\right)$ oe, nfww	A1	and no other values; dep on at least the first M1 A1
7(b)	$\sqrt{(x_P - x_Q)^2 + (y_P - y_Q)^2}$ oe, soi	M1	FT providing <i>their</i> x_P , x_Q and <i>their</i> y_P , y_Q are non-zero
	$\frac{4}{3}\sqrt{15}$	A1	
8(a)	Points plotted at x 1351012 $\lg y$ 1.62.22.84.34.9soi and ruled, single straight line of best fit	B2	B1 for at least 4 correctly plotted points
8(b)	lgy = lgA + xlgb soi	B1	
	lgA = their 1.3 soi	M1	dep on using linear points
	$\lg b = their \frac{4.9 - 1.6}{12 - 1}$ oe or $\lg b = 0.3$ oe soi	M1	dep on using linear points
	$A = 10^{1.3}$ isw and $b = 10^{\frac{3}{10}}$ isw	A2	A1 for $A = 10^{1.3}$ isw or $b = 10^{\frac{3}{10}}$ isw
	A = 20 and $b = 2$ nfww	A1	If zero scored, award SC1 for $A = 20$ and SC1 for $b = 2$ found without using the graph in any way

Question	Answer	Marks	Partial Marks
8(c)	lg1500 = 3.2 or 3.17[60]	M1	
	OR $x = \log_{theirb} \left(\frac{1500}{theirA} \right)$		FT <i>their A</i> and <i>b</i>
	OR $x = \frac{\lg 1500 - their \lg A}{their \lg b}$		FT their lgA and lgb
	awrt 6.2 to awrt 6.4 isw	A1	
9(a)	$[A =]\frac{1}{2}x^2 \times 0.5 + \frac{1}{2}(x+2)^2 \times 2 + \frac{1}{2}y^2[\times 1] \text{ soi}$	B 1	
	[P =]x+0.5x+2+2(x+2)+(x+2-y)+y+y	M1	Attempts to form an expression in x and y for the perimeter using arc lengths and lengths of lines
	Equates <i>P</i> to 24 and rearranges: $y = 16 - \frac{9}{2}x$	A1	
	$A = \frac{5}{4}x^{2} + 4x + 4 + 128 - 72x + \frac{81}{8}x^{2} \text{ oe}$ leading to given answer $A = \frac{91}{8}x^{2} - 68x + 132$	A1	
9(b)	$\frac{\mathrm{d}A}{\mathrm{d}x} = \frac{91}{4}x - 68$	M1	
	Solves $\frac{dA}{dx} = 0$ for x	M1	FT <i>their</i> $\frac{dA}{dx}$ providing at least one term is correct
	$x = \frac{272}{91}$ or $2\frac{90}{91}$ or	A1	
	2.99 or 2.989[01] rot to 4 or more sf		
	$A = \frac{91}{8} \left(\frac{272}{91}\right)^2 - 68 \left(\frac{272}{91}\right) + 132$	M1	FT <i>their x</i>
	$A = \frac{2764}{91}$ or $30\frac{34}{91}$ or	A1	
	30.4 or 30.37[36] rot to 4 or more sf		

Question	Answer	Marks	Partial Marks
10(a)	$a^{n} = b^{4}$ and $na^{n-1}\left(\frac{1}{a}\right) = 48b^{3}$ oe	M1	
	Eliminates <i>b</i> from one equation using the other equation e.g. $\frac{a^{n-2}}{a^{\frac{3}{4}n}} = \frac{48}{n}$	M1	dep previous M1
	Simplifies <i>a</i> terms e.g. $a^{\frac{n}{4}-2} = \frac{48}{n}$ or $a^{\frac{3n}{4}-6} = \left(\frac{48}{n}\right)^3$	A1	
	Uses an appropriate power and completes to the given form e.g.	A1	
	$\left(a^{\frac{n}{4}-2}\right)^2 = \left(\frac{48}{n}\right)^2$ or $\left(a^{\frac{3n}{4}-6}\right)^{\frac{2}{3}} = \left(\frac{48}{n}\right)^{3\times\frac{2}{3}}$		
	$\Rightarrow a^{\frac{n}{2}-4} = \left(\frac{48}{n}\right)^2$		
10(b)	Correct equation in a, b, n $\frac{n(n-1)}{2} \times a^{n-2} \times \frac{1}{a^2} = 1056b^2 \text{ oe, soi}$	M1	
	Correct equation in <i>a</i> , <i>n</i> $\frac{n(n-1)}{2} \times a^{n-2} \times \frac{1}{a^2} = 1056a^{\frac{n}{2}} \text{ oe}$	A1	
	$\left[\frac{n(n-1)}{2} \times a^{\frac{n}{2}-4} = 1056 \text{ oe} \rightarrow\right]$	A1	
	Correct equation in <i>n</i> only $\frac{n(n-1)}{2} \times \left(\frac{48}{n}\right)^2 = 1056 \text{ oe}$		
	$n^2 - 12n = 0$ or $n - 12 = 0$ oe	A1	
	n = 12 only	A1	
	a = 4 only and $b = 64$ only	A1	
Question	Answer	Marks	Partial Marks
----------	---	------------	--
11	$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{\mathrm{d}S}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$ or $\frac{\mathrm{d}S}{\mathrm{d}r} = 6$ soi	B 1	
	$S = 2\pi r (4r)$ or $8\pi r^2$	B1	
	$16\pi r = 6$	M1	FT <i>their</i> $S = k\pi r^2$ with <i>k</i> a positive integer to give $2k\pi r = 6$
	$r = \frac{6}{16\pi}$ oe, isw	A1	
	$S = \frac{9}{8\pi}$ oe, isw	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/21 October/November 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial marks
1(a)	$-3(x+2)^2+31$	B4	B2 for $-3(x + 2)^2$ or B1 for $(x + 2)^2$ or $a = -3$ and $b = 2$
			B2 for $c = 31$ or B1 for $-4 \times -3 + 19$ soi
1(b)	Maximum value 31 when $x = -2$	B2	Strict FT <i>their c</i> from part (a) and <i>—their b</i> from part (a)
			B1 for either without contradiction
1(c)	$-3\left(\sqrt{u}+2\right)^2 = -31 \mathrm{oe}$	M1	FT an expression of correct form from part (a)
	Rearranges as far as $\sqrt{u} = -2 \pm \sqrt{\frac{31}{3}}$	A1	
	1.48 cao or 1.475[13] rot to 3 or more dp or $\frac{43-4\sqrt{93}}{3}$ isw	A1	
2	Correct method to eliminate <i>y</i> :	M1	
	5x - 3(1 - x) = 2 oe or adds		
	$3x + 3\ln y = 3$ $5x - 3\ln y = 2$		
	to obtain $3x + 5x = 3 + 2$ or better		
	$x = \frac{5}{8}$ oe	A1	.5
	$\ln y = \frac{3}{8} \text{ oe}$	M1	.00
	$y = e^{\frac{3}{8}}$ oe or 1.45	A1	

Question	Answer	Marks	Partial marks
2	Alternative method		
	Correct method to eliminate x: $5(1 - \ln y) - 3\ln y = 2$ oe or subtracts $5x - 3\ln y = 2$ from $5x + 5\ln y = 5$ to obtain $5\ln y - (-3\ln y) = 5 - 2$ or better	(M1)	
	$\ln y = \frac{3}{8} \text{ oe}$	(M1)	
	$y = e^{\frac{3}{8}}$ oe or 1.45	(A1)	
	$x = \frac{5}{8}$ oe	(A1)	
3(a)	$2x^2 + 5x - \frac{1}{2}\ln(2x+3) + c \text{ oe}$	B3	B2 for $2x^{2} + 5x - \frac{1}{2}\ln(2x+3)$ or $2x^{2} + 5x - \frac{1}{2}\ln 2x + 3 + c$ or $2x^{2} + 5x + k\ln(2x+3) + c$ with $k \neq 0$ or B1 for $2x^{2} + 5x + \dots + c$ or $\dots - \frac{1}{2}\ln 2x + 3$ or $\dots + k\ln(2x+3)$ with $k \neq 0$
3(b)	Substitutes limits and subtracts in correct order	M1	FT <i>their</i> part (a) providing it includes a term $k \ln(2x+3)$ with $k \neq 0$
	$\left[18+15-\frac{1}{2}\ln 9\right] - \left[2+5-\frac{1}{2}\ln 5\right]$	A1	
	$26 - \frac{1}{2}\ln\frac{9}{5}$ or $26 + \frac{1}{2}\ln\frac{5}{9}$ oe	A1	

Question	Answer	Marks	Partial marks
4	$(2+ax)^5 = 2^5 + 5 \times 2^4 ax + 10 \times 2^3 a^2 x^2 + \dots$	B1	
	$(2+ax)^{5}(1+bx) =$ 32+80ax+80a^{2}x^{2}+32bx+80abx^{2}	M1	
	80a + 32b = 112 oe, isw	A1	
	$80a^2 + 80ab = -240$ oe, isw	A1	
	$3a^2 - 7a - 6 = 0$ oe	M1	
	(3a+2)(a-3) = 0	M1	
	a = 3 and $b = -4$ and no other values	A1	
5	$[m_{\text{tangent}} =] - 2px^{-3} + 5 \text{ oe}$	B1	
	[When $x = 1$, $m_{normal} = 1$] $\frac{-1}{-2p+5}$ or gradient of tangent = 1 nfww	B1	FT $\frac{-1}{their \frac{dy}{dx}\Big _{x=1}}$ if appropriate
	$\frac{-1}{their(-2p+5)} = -1 \text{oe}$ or their(-2p+5) = 1	M1	FT $\frac{-1}{their \frac{dy}{dx}\Big _{x=1}}$ or $their \frac{dy}{dx}\Big _{x=1}$ and their evaluation of $\frac{-1}{-1}$
	p = 2 nfww	A1	.5
	[When $x = 1$] their $5 = -1 + q$ or $y = -x + 6$	M1	FT $y = (their p) + 3$ providing at least 2 of the first 3 marks awarded
	q = 6 nfww	A1	
6	$ax^2 - 5x + 2 = 2ax + x - 10$	M1	
	$ax^2 - (2a+6)x + 12[=0]$ oe	A1	
	Correct use of $b^2 - 4ac$ [*0]: (- $(2a + 6))^2 - 4(a)(12)$ [*0] oe	M1	where * is any inequality sign or =; FT <i>their</i> 3-term quadratic in x and a
	$4a^2 - 24a + 36[*0]$	A1	
	Factorises or solves <i>their</i> 3-term quadratic in <i>a</i>	M1	FT <i>their</i> 3-term quadratic in <i>a</i>
	<i>a</i> = 3	A1	

Question	Answer	Marks	Partial marks
6	Alternative method		
	$a = \frac{3}{x-1}$ or $x = \frac{a+3}{a}$	(2)	M1 for 2 <i>ax</i> – 5
	$\left(\frac{6}{x-1}+1\right)x-10 = \left(\frac{3}{x-1}\right)x^2 - 5x + 2 \text{ oe}$ or $(2a+1)\left(\frac{a+3}{a}\right) - 10 = a\left(\frac{a+3}{a}\right)^2 - 5\left(\frac{a+3}{a}\right) + 2$ oe	(M1)	FT <i>their a</i> of the form $\frac{k}{bx+c}$ where <i>k</i> , <i>b</i> , <i>c</i> are non-zero constants or <i>their x</i> of the form $\frac{da+e}{fa}$ where <i>d</i> , <i>e</i> , <i>f</i> are non-zero constants
	$3x^2 - 12x + 12 = 0$ oe or $a^2 - 6a + 9 = 0$	(A1)	
	Solves <i>their</i> 3-term quadratic in x as far as $x =$ or factorises or solves <i>their</i> 3-term quadratic in a	(M1)	
	<i>a</i> = 3	(A1)	
7(a)	$20\cos 2t + 12\sin 2t$	2	B1 for 20cos2 <i>t</i> or 12sin2 <i>t</i>
7(b)	12	B1	
7(c)	$\tan 2t = their\left(-\frac{20}{12}\right) \text{ oe}$	M1	FT $a\cos 2t + b\sin 2t$ where a and b are non-zero integers
	t = 1.06 or $1.055[60]$ rot to 3 or more dp	A2	A1 for $2t = -1.030[3]$ or $2t = 2.111[2]$
7(d)	$s = -5\cos 2t - 3\sin 2t (+c)$	B2	B1 for $-5\cos 2t$ or $-3\sin 2t$
	$-5\cos\pi - 3\sin\pi - (-5\cos\frac{\pi}{2} - 3\sin\frac{\pi}{2})$	M1	FT providing at least B1 previously awarded
	or $s = -5\cos 2t - 3\sin 2t + 5$ and $s_{\frac{\pi}{2}} - s_{\frac{\pi}{4}} = 10 - 2$		
	8	A1	

Question	Answer	Marks	Partial marks
8	$(2-\sqrt{10})(2+\sqrt{10})=-6$	B1	
	$x = \frac{-1 \pm \sqrt{1^{[2]} - 4(2 - \sqrt{10})(2 + \sqrt{10})}}{2(2 - \sqrt{10})}$	M1	
	$x = \frac{-1 \pm \sqrt{1 - 4(-6)}}{2(2 - \sqrt{10})}$	A1	
	$\frac{-6}{2(2-\sqrt{10})}$ oe, $\frac{4}{2(2-\sqrt{10})}$ oe	A1	
	$\frac{-6}{2(2-\sqrt{10})} \times \frac{(2+\sqrt{10})}{(2+\sqrt{10})}$	M1	FT $\frac{k}{2(2-\sqrt{10})}$ where <i>k</i> is a non-zero constant
	or $\frac{4}{2(2-\sqrt{10})} \times \frac{(2+\sqrt{10})}{(2+\sqrt{10})}$		
	$\frac{-6(2+\sqrt{10})}{2(-6)} \text{ oe} = 1 + \frac{1}{2}\sqrt{10}$	A1	Must have sufficient detail shown
	$\frac{4(2+\sqrt{10})}{2(-6)} \text{ oe} = -\frac{2}{3} - \frac{1}{3}\sqrt{10}$	A1	Must have sufficient detail shown
9(a)	$2(e^{x}+1)^{2}-1$ [= 8]	M1	.5
	$e^x = -1 + \sqrt{\frac{9}{2}} \text{ oe}$	A1	
	$x = \ln\left(\frac{3}{\sqrt{2}} - 1\right) \text{ isw or } 0.115$	A1	
	or 0.1145[06] rot to 4 or more dp		
9(b)	f is not one-one, hence f^{-1} does not exist oe	B1	
	$g^{-1}(x) = \ln(x-1)$	2	M1 for $x = \ln(y - 1)$ and a swop of variables at some point or $y = \ln(x + 1)$ or $e^x = y - 1$ and $y = \ln x - 1$
	<i>x</i> > 1	B1	

Question	Answer	Marks	Partial marks
10(a)	$OA = \sqrt{6^2 + 8^2}$ oe or 10	B1	
	[Angle <i>AOB</i> =] 0.9272[95] rot to 4 or more dp or [Angle <i>OAB</i> =] 0.6435[01] rot to 4 or more dp	M1	
	[Angle <i>COB</i> =] 2.214[297] rot to 3 or more dp	A1	
	[Arc <i>CB</i> =] 6(<i>their</i> 2.214)	M1	FT their COB
	[Perimeter =] 8 + (<i>their</i> 10 + 6) + 6(<i>their</i> 2.214)	M1	FT <i>their</i> arc <i>CB</i> and <i>OA</i>
	37.3 or 37.28[578] rot to 2 or more dp	A1	
10(b)	$\frac{1}{2} \times 8 \times 6 + \frac{1}{2} \times 6^2 \times 2.214 \text{ oe, soi}$	M2	FT <i>their</i> 2.21 M1 for $\frac{1}{2} \times 6^2 \times 2.214$ soi
	63.9 or 63.85[735] rot to 2 or more dp	A1	
11(a)	$\frac{\frac{1}{1-\frac{1}{\cos x} - \frac{1}{\sin x}} + \frac{1}{\frac{1}{\cos x} + \frac{1}{\sin x}}$	M1	
	Simplifies denominator $\frac{1}{\frac{\sin x - \cos x}{\sin x \cos x}} + \frac{1}{\frac{\sin x + \cos x}{\sin x \cos x}}$	A1	.0.5
	Writes as two simple algebraic fractions: $\frac{\sin x \cos x}{\sin x - \cos x} + \frac{\sin x \cos x}{\sin x + \cos x}$	A1	OR writes as a single simple algebraic fraction: $\frac{\sin x \cos x(\sin x + \cos x) + \sin x \cos x(\sin x - \cos x)}{(\sin x - \cos x)(\sin x + \cos x)}$
	Combines and simplifies: $\frac{2\sin^2 x \cos x}{\sin^2 x - \cos^2 x}$	A1	
	Correct simplification to given answer e.g. $\frac{2\sin^2 x \cos x}{\sin^2 x - \frac{\cos^2 x}{\sin^2 x}} = \frac{2\cos x}{1 - \cot^2 x}$ or $\frac{\sin^2 x (2\cos x)}{\sin^2 x (1 - \cot^2 x)} \left[= \frac{2\cos x}{1 - \cot^2 x} \right]$	A1	All steps correct nd fully justified

Question	Answer	Marks	Partial marks
11(a)	Alternative method		
	Common denominator: $\frac{\sec x + \csc x + \sec x - \csc x}{(\sec x - \csc x)(\sec x + \csc x)}$	(M1)	
	Simplifies: $\frac{2 \sec x}{\sec^2 x - \csc^2 x}$	(A1)	
	Rewrites in terms of sinx and cosx: $\frac{\frac{2}{\cos x}}{\frac{1}{\cos^2 x} - \frac{1}{\sin^2 x}}$	(A1)	OR multiplies numerator and denominator by $\cos^2 x$: $\frac{2 \sec x}{\sec^2 x - \csc^2 x} \times \frac{\cos^2 x}{\cos^2 x}$
	$\frac{\frac{2}{\cos x}}{\frac{1}{\cos^2 x} - \frac{1}{\sin^2 x}} \times \frac{\cos^2 x}{\cos^2 x}$	(A1)	
	Correct simplification to given answer e.g. $\frac{\frac{2\cos^2 x}{\cos x}}{\frac{\cos^2 x}{\cos^2 x} - \frac{\cos^2 x}{\sin^2 x}} = \frac{2\cos x}{1 - \cot^2 x}$	(A1)	
11(b)	$\tan\left(y+\frac{\pi}{4}\right) = \left[\pm\right]\frac{1}{\sqrt{3}}$	B1	.5
	$\left[y + \frac{\pi}{4}\right] = \frac{\pi}{6}, \text{ or } -\frac{\pi}{6}, \text{ or } -\frac{5\pi}{6}, \text{ or } -\frac{7\pi}{6}\text{ oe}$	M1	
	$[y=]-\frac{\pi}{12}, -\frac{5\pi}{12}, -\frac{13\pi}{12}, -\frac{17\pi}{12}$ oe	A2	No extras within range A1 for two correct, ignoring extras

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 October/November 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Guidance
1(a)	$y = -\frac{1}{2}x + 25$ isw	3	M1 for $m = \frac{29-23}{-8-4}$ oe or $-\frac{1}{2}$ and M1 FT for $\frac{y-23}{x-4} = their\left(-\frac{1}{2}\right)$ oe or $y = their\left(-\frac{1}{2}\right)x + c$ and $23 = -\frac{1}{2} \times 4 + c$ oe OR M1 for solving 23 = 4m + c 29 = -8m + c for $m = -\frac{1}{2}$ or $c = 25$ and M1 FT for correctly using <i>their m</i> or <i>their c</i> to find <i>c</i> or <i>m</i>
	Solves <i>their</i> linear equation simultaneously with $y = 2x + 5$ to find x or y	M1	FT their $y = -\frac{1}{2}x + 25$ oe
	(8, 21)	A1	
1(b)	$\sqrt{8^2 + 21^2}$ oe	M1	FT <i>their</i> (8, 21)
	$\sqrt{505}$ isw or 22.5 or 22.47[22] rot to 2 or more dp	A1	5
2	$x^2 + 2kx = -2x - 6k - 1$	M1	co'
	$x^{2} + (2k+2)x + 6k + 1[=0]$	A1	
	Correctly uses $b^2 - 4ac$ [*0] for <i>their</i> equation $(2k+2)^2 - 4(6k+1)$ [*0]	M1	where * is any inequality sign or =; FT <i>their</i> 3-term quadratic in <i>x</i> and <i>k</i>
	$4k^2 - 16k$ [*0] nfww	A1	
	<i>k</i> = 4	A1	dep on all previous marks awarded

Question	Answer	Marks	Guidance
2	Alternative method		
	2x + 2k	(M1)	
	k = -x - 1 or $x = -k - 1$ oe	(A1)	
	$-2(-k-1) - 6k - 1 = (-k-1)^2 + 2k(-k-1)$ oe or $-2x - 6(-1-x) - 1 = x (x + 2(-1-x)) oe$	(M1)	FT <i>their</i> k of the form $ax + b$ where a and b are non-zero constants or <i>their</i> x of the form $ck + d$ where c and d are non-zero constants
	$k^2 - 4k = 0$ or $x^2 + 6x + 5 = 0$ and $x = -5 = x = -1$ nfww	(A1)	
	<i>k</i> = 4	(A1)	dep on all previous marks awarded
3	$\frac{16+9\sqrt{3}}{(2+\sqrt{3})^2}$	B1	
	$\frac{(16+9\sqrt{3})(7-4\sqrt{3})}{(7+4\sqrt{3})(7-4\sqrt{3})}$ or $\frac{16+9\sqrt{3}}{7+4\sqrt{3}} \times \frac{7-4\sqrt{3}}{7-4\sqrt{3}}$	M1	FT $\frac{c(16+9\sqrt{3})}{a+b\sqrt{3}}$ where <i>a</i> , <i>b</i> and <i>c</i> are non- zero constants
	$112 - 64\sqrt{3} + 63\sqrt{3} - 108$ or $\frac{-112 + 64\sqrt{3} - 63\sqrt{3} + 108}{-1}$	A1	.5
	$4-\sqrt{3}$ or $-\sqrt{3}+4$ cao, nfww	A1	0
	Alternative method	rep	
	$\frac{16+9\sqrt{3}}{(2+\sqrt{3})^2}$	(B 1)	
	$\frac{(16+9\sqrt{3})(2-\sqrt{3})^2}{(2+\sqrt{3})^2(2-\sqrt{3})^2} \text{ or } \frac{16+9\sqrt{3}}{(2+\sqrt{3})^2} \times \frac{(2-\sqrt{3})^2}{(2-\sqrt{3})^2}$	(M1)	
	$112 - 64\sqrt{3} + 63\sqrt{3} - 108$ or $64 - 32\sqrt{3} - 32\sqrt{3} + 48 + 36\sqrt{3} - 54 - 54 + 27\sqrt{3}$	(A1)	
	$4 - \sqrt{3}$ or $-\sqrt{3} + 4$ cao, nfww	(A1)	

Question	Answer	Marks	Guidance
4(a)	$\frac{e^{2x+2}}{e^{\frac{x}{2}}} = 10 \text{ oe, soi}$	B1	
	$e^{1.5x+2} = 10$ oe	M1	FT $\frac{e^{2x+k}}{e^{\frac{x}{2}}} = 10$ oe or $\frac{e^{kx+2}}{e^{\frac{x}{2}}} = 10$ oe where k is an integer and $k > 0$ or $\frac{e^{2x+2}}{e^{\frac{x}{n}}} = 10$ oe where n is an integer and $n > 1$ or $n = -2$
	$1.5x + 2 = \ln 10$ oe	M1	FT an expression of, or equivalent to, the form $e^{ax+b} = 10$ oe where <i>a</i> and <i>b</i> are non-zero constants
	$x = \frac{2}{3}(\ln 10 - 2)$ oe, isw or 0.202 or 0.2017[23] rot to 4 or more dp isw	A1	
4(b)	$\frac{y^2}{4y-9} = 9^{\frac{1}{2}} \text{ nfww}$	M2	M1 for at least one correct log law used in a correct equation e.g.
	or $\log_9 \frac{y^2}{4y-9} = \log_9 9^{\frac{1}{2}}$ oe		$\log_9 y^2 - \log_9 (4y - 9) = \frac{1}{2}$ or $\log_9 \frac{y^2}{4y - 9} = \frac{1}{2}$ or $2\log_9 y - \log_9 (4y - 9) = \frac{1}{2}\log_9 9$
	$y^2 - 12y + 27 = 0$ nfww	A1	CO
	(y-3)(y-9)=0	DM1	dep on at least M1 previously awarded
	y = 3, y = 9 nfww	A1	
5(a)	Correct first derivative: $3x^2 - 14x + 12$	M2	M1 for two terms of $x^3 - 7x^2 + 12x - 5$ differentiated correctly
	[At $x = 1$] gradient of tangent: 1	A1	
	y - 1 = their(-1)(x - 1) oe or $y = -x + c$ and $1 = -1 + c$ soi	M1	FT $\frac{-1}{\left. \frac{-1}{their \frac{dy}{dx} \right _{x=1}}}$
	y-1 = -1(x-1) or $y = -x+2$ oe, isw	A1	

Question	Answer	Marks	Guidance
5(b)	$x^3 - 7x^2 + 12x - 5 = their(-x + 2)$	B 1	FT <i>their</i> $y = ax + b$ where <i>a</i> is a non-zero constant
	Uses the correct linear factor $x - 1$ and the correct cubic $x^3 - 7x^2 + 13x - 7[=0]$ to find a quadratic factor with at least two terms correct	M1	
	$x^2 - 6x + 7$	A1	
	Correct use of formula or completing the square on <i>their</i> 3-term quadratic, e.g., $x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4[1](7)}}{2[1]}$ or $x = \frac{6 \pm \sqrt{36 - 4[1](7)}}{2(1)}$	M1	FT <i>their</i> 3-term quadratic providing it is from an attempt at finding a quadratic factor and the discriminant is not negative
	2	R	
	$x = 3 \pm \sqrt{2}$	A1	
6	$\left[\frac{(x+2)^2}{x}\right] = \frac{1}{x+4} + \frac{4}{x} \operatorname{soi}$	B2	B1 for two terms correct or for $\frac{x^2 + 4x + 4}{x}$
	$\left[\frac{x^2}{2} + 4x + 4\ln x\right]_2^3$	B2	B1 for $\left[\frac{x^2}{2} + + 4\ln x\right]_2^3$ or $\left[+ 4x + 4\ln x\right]_2^3$ or $\left[\frac{x^2}{2} + 4x + k\ln x\right]_2^3$ with $k \neq 0$
	$\left[\frac{9}{2}+12+4\ln 3\right]-\left[\frac{4}{2}+8+4\ln 2\right]$	M1	dep on at least previous B1 for integration
	$6.5 + 4\ln\left(\frac{3}{2}\right)$ or exact equivalent	A1	
7(a)	Velocity: $3e^{2t} - 4e^{-2t} - 1$ isw	B2	B1 for $3e^{2t}$ or $-4e^{-2t}$
	Acceleration: $6e^{2t} + 8e^{-2t}$ isw	B1	FT $me^{2t} + ne^{-2t} + k$ where <i>m</i> , <i>n</i> and <i>k</i> are constants

Question	Answer	Marks	Guidance
7(b)	$3e^{4t} - e^{2t} - 4 = 0$	B1	
	or $3(e^{2t})^2 - e^{2t} - 4 = 0$		
	$(3e^{2t}-4)(e^{2t}+1)=0$	M1	FT <i>their</i> 3-term quadratic in e^{2t} oe
	$e^{2t} = \frac{4}{3}$ nfww	A1	
	$\frac{1}{2}\ln\frac{4}{3}$ oe, isw or 0.144 or 0.1438[41] rot to 4 or more dp and no other solutions	A1	
7(c)	$6 \times e^{2\left(\frac{1}{2}\ln\frac{4}{3}\right)} + 8 \times e^{-2\left(\frac{1}{2}\ln\frac{4}{3}\right)}$	M1	FT $pe^{2t} + qe^{-2t}$ where <i>p</i> and <i>q</i> are non-zero constants and <i>their</i> positive $\frac{1}{2}\ln\frac{4}{3}$ from part (b)
	14 nfww	A1	
8(a)	Derivative of $\sin 2x$: $2\cos 2x$ soi	B1	
	Product rule: $x \times 2\cos 2x + [1]\sin 2x$ isw	B1	FT <i>their</i> 2cos2 <i>x</i>
8(b)	$y = \frac{\pi}{4}$ soi, isw	B 1	
	gradient of tangent: 1 soi	B1	dep on correct derivative
	y = x or y - x = 0 or x - y = 0	B 1	dep on correct derivative
8(c)	$\left[x\sin 2x + \frac{1}{2}\cos 2x\right]_{0}^{\frac{\pi}{6}} \text{nfww}$	M3	M2 for $x\sin 2x + k\cos 2x$ where $k > 0$ or $k = -\frac{1}{2}$; nfww or M1 for $\int 2x\cos 2x dx = x\sin 2x - \int \sin 2x dx$ or $\frac{-\cos 2x}{2} + \int 2x\cos 2x dx = x\sin 2x$
	$\frac{\pi}{6}\sin\frac{\pi}{3} + \frac{1}{2}\cos\frac{\pi}{3} - \frac{1}{2}\cos 0$	A1	
	$\frac{\pi\sqrt{3}}{12} - \frac{1}{4}$ or $\frac{\pi\sqrt{3} - 3}{12}$	A1	

Question	Answer	Marks	Guidance
9(a)	Correct pair of simplified linear equations in <i>a</i> and <i>d</i> with terms collected, e.g., 3a+3d = -36 isw or $a + d = -12$ isw 3a+30d = 72 isw or $a + 10d = 24$ isw	B3	B2 for one correct simplified equation or B1 for a+a+d+a+2d = -36 or $\frac{3}{2}\{2a+(3-1)d\} = -36$ or $a+9d+a+10d+a+11d = 72$ or $\frac{12}{2}\{2a+(12-1)d\} - \frac{9}{2}\{2a+(9-1)d\} = 72$ or $12a+66d-9a-36d = 72$ or $\frac{3}{2}\{2(a+9d)+(3-1)d\} = 72$
	Solves two linear equations for d or a e.g. $27d = 108 \rightarrow d = \dots$ or $9d = 36 \rightarrow d = \dots$ or $a + 10(-12 - a) = 24 \rightarrow a = \dots$ $27a = -432 \rightarrow a = \dots$	M1	FT <i>their</i> linear equations in <i>a</i> and <i>d</i> providing at least B1 earned and the equations have a solution
	d = 4 and $a = -16$ nfww	A1	
9(b)	1.2 ⁿ *101	B3	where * is any inequality sign or =; B2 for $\frac{[1](1.2^n - 1)}{(1.2 - 1)} * 500$ or B1 for $r = 1.2$ soi
	<i>n</i> log1.2*log101 or log _{1.2} 101 soi	M1	FT $1.2^n * their$ 101 providing B2 has been awarded and (<i>their</i> 101) > 0
	<i>n</i> = 26	A1	dep on all previous marks awarded
	".satp	reP	

Question	Answer	Marks	Guidance
10(a)	Writes cotx and tanx in terms of sinx and cosx: $\frac{\sin x}{1 - \frac{\cos x}{\sin x}} + \frac{\cos x}{1 - \frac{\sin x}{\cos x}}$	M1	OR $\frac{\sin x \left(1 - \frac{\sin x}{\cos x}\right) + \cos x \left(1 - \frac{\cos x}{\sin x}\right)}{\left(1 - \frac{\cos x}{\sin x}\right) \left(1 - \frac{\sin x}{\cos x}\right)}$
	Simplifies denominator: $\frac{\sin x}{\frac{\sin x - \cos x}{\sin x}} + \frac{\cos x}{\frac{\cos x - \sin x}{\cos x}}$	A1	$\frac{\operatorname{Sin} x \left(\frac{\cos x - \sin x}{\cos x} \right) + \cos x \left(\frac{\sin x - \cos x}{\sin x} \right)}{\left(\frac{\sin x - \cos x}{\sin x} \right) \left(\frac{\cos x - \sin x}{\cos x} \right)}$
	Writes as two simple algebraic fractions: $\frac{\sin^2 x}{\sin x - \cos x} + \frac{\cos^2 x}{\cos x - \sin x}$	A1	OR writes as a single simple algebraic fraction: $\frac{\sin^2 x(\cos x - \sin x) + \cos^2 x(\sin x - \cos x)}{(\sin x - \cos x)(\cos x - \sin x)}$
	Writes as a difference with a common denominator: $\frac{\sin^2 x}{\sin x - \cos x} - \frac{\cos^2 x}{\sin x - \cos x}$	A1	$OR \frac{\sin^2 x(\cos x - \sin x) - \cos^2 x(\cos x - \sin x)}{(\sin x - \cos x)(\cos x - \sin x)}$
	Correct simplification to given answer, e.g., $\frac{(\sin x - \cos x)(\sin x + \cos x)}{(\sin x - \cos x)} = \sin x + \cos x$ or $\frac{(\sin x - \cos x)(\sin x + \cos x)}{(\sin x - \cos x)} [= \sin x + \cos x]$	A1	All steps correct and final step fully justified by factorising

Question	Answer	Marks	Guidance
10(b)	$10\cos^{2} x + 3\cos x - 1[=0]$ or $\sec^{2} x - 3\sec x - 10[=0]$	B2	B1 for $\frac{9\cos x}{\sin x} + \frac{3}{\sin x} = \frac{\sin x}{\cos x}$ or better or $9 + \frac{3\tan x}{\sin x} = \tan^2 x$ or better OR M1 for one sign error in $10\cos^2 x + 3\cos x - 1[=0]$ or $\sec^2 x - 3\sec x - 10[=0]$
	$(5\cos x - 1)(2\cos x + 1)[= 0]$ or $(\sec x - 5)(\sec x + 2)[= 0]$	M1	FT <i>their</i> 3-term quadratic in cosx or secx
	$[\cos x = \frac{1}{5} \text{ and } \cos x = -\frac{1}{2}$ OR $\sec x = 5 \text{ and } \sec x = -2 \text{ leading to}]$ 78.5 or 78.46[30] rot to 2 or more dp 281.5 or 281.53[69] rot to 2 or more dp 120 240 and no extras in range 0 < x < 360	A2	A1 for any two correct angles [found using $\cos x = \frac{1}{5}$ and $\cos x = -\frac{1}{2}$ OR $\sec x = 5$ and $\sec x = -2$]; ignore extras

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/23 October/November 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Guidance
1(a)	3	B2	B1 for $g(0) = 0$ or $[fg(x) =]2sin(e^{3x} - 1) + 3cos(e^{3x} - 1)$ soi
1(b)	$gg(x) = e^{3(e^{3x}-1)} - 1$ oe, isw	B1	
1(c)	$3y = \ln(x+1)$ or $3x = \ln(y+1)$ and swops the variables at some point	M1	condone one error
	$g^{-1}(x) = \frac{1}{3}\ln(x+1)$ soi	A1	
	[<i>x</i> =] 4	A1	
	Alternative method		
	$x = g(\frac{1}{3}\ln 5) \text{ soi}$	(B1)	
	$e^{3(\frac{1}{3}\ln 5)} - 1$ oe	(M1)	
	[<i>x</i> =] 4	(A1)	
2	Uses $b^2 - 4ac$ [*0] $k^2 - 4(4k - 15)$ [*0]	M1	where * is any inequality sign or =;
	$k^2 - 16k + 60$ [*0]	A1	
	(k-6)(k-10)[*0]	DM1	FT <i>their</i> 3-term quadratic; dep on previous M1
	6 < <i>k</i> < 10	A1	Mark final answer
	Alternative method		
	2x + k = 0	(M1)	
	$-\frac{k^2}{4} + 4k - 15[*0]$ oe	(A1)	
	or $-x^2 - 8x - 15[*0]$ oe		
	Solves or factorises $(k-6)(k-10)[*0]$ or $(x+5)(x+3)[*0]$ and $x = -5$, $x = -3$	(DM1)	FT <i>their</i> 3-term quadratic; dep on previous M1
	6 < <i>k</i> < 10	(A1)	Mark final answer

Question	Answer	Marks	Guidance
3(a)	Correctly eliminates $\log_2 x$ or $\log_2 y$	M1	A correct equation in $\log_2 x$ only or $\log_2 y$ only
	x = 16 or $y = 64$	A2	A1 for $\log_2 x = 4$ or $\log_2 y = 6$
	y = 64 or x = 16	A2	A1 for $\log_2 y = 6$ or $\log_2 x = 4$
	Alternative method		
	$x^3 y^2 = 2^{24}$ and $\frac{x^5}{y^3} = 2^2$ oe	(M1)	
	y = 64 or x = 16	(A2)	A1 for $y^{19} = 2^{114}$ oe or $x^{19} = 2^{76}$ oe
	x = 16 or y = 64	(A2)	A1 for $x^3 \times 64^2 = 2^{24}$ oe
	GATER		or $\frac{x^3}{64^3} = 2^2$ oe
			OR
			$16^3 \times y^2 = 2^{24}$ oe
			or $\frac{16^5}{y^3} = 2^2$ oe
3(b)	$2^{t+4-(1-2t)} = 2^9$	B2	B1 for $2^{t+4-(1-2t)} = 512$
	or $2^{t+4} = 2^{9+1-2t}$ oe, soi		or $\frac{2^{t+4}}{2^{1-2t}} = 2^9$ soi
	OR		OR
	$t+4-(1-2t) = \log_2 512$ oe, soi	.00	$(t+4)\log_a 2 - (1-2t)\log_a 2 = \log_a 512$
	or $t + 4 - (1 - 2t) = \frac{\log_a 512}{\log_a 2}$ oe		
	3t + 3 = 9 or better	M1	
	<i>t</i> = 2	A1	

Question	Answer	Marks	Guidance
4	$\frac{(x-1)^2}{x^3} = \frac{1}{x} - 2x^{-2} + x^{-3}$ soi	B2	B1 for $\frac{x^2 - 2x + 1}{x^3}$ or $\frac{1}{x} - \frac{2}{x^2} + \frac{1}{x^3}$ or for any two terms correct in $\frac{1}{x} - 2x^{-2} + x^{-3}$
	$\left[\ln x + \frac{2}{x} - \frac{1}{2x^2}\right]_3^5$	B2	B1 for $\left[\ln x + \dots - \frac{1}{2x^2}\right]_3^5$ or $\left[\ln x + \frac{2}{x} + \dots\right]_3^5$ or $\left[k\ln x + \frac{2}{x} - \frac{1}{2x^2}\right]_3^5$ with $k \neq 0$
	$\left[\ln 5 + \frac{2}{5} - \frac{1}{50}\right] - \left[\ln 3 + \frac{2}{3} - \frac{1}{18}\right]$	M1	dep on at least previous B1 for integration
	$\ln\left(\frac{5}{3}\right) - \frac{52}{225}$	A1	
5(a)	Correct use of $\pi r^2 h = 1000$ to find an expression that can be used to eliminate <i>h</i> e.g. $h = \frac{1000}{\pi r^2}$ or $\pi r h = \frac{1000}{r}$	M2	M1 for $\pi r^2 h = 1000$ soi
	Correct substitution and completion to given answer e.g. $2\pi r^2 + 2\pi r \times \frac{1000}{\pi r^2} = 2\pi r^2 + \frac{2000}{r}$	A1	
	W.satprep	.00	

0606/23

Question	Answer	Marks	Guidance
5(b)	Correct derivative: $4\pi r - \frac{2000}{r^2}$ oe, isw	B2	B1 for one correct term
	$4\pi r - \frac{2000}{r^2} = 0$ and solves for r	M1	FT <i>their</i> derivative providing that at least one term is correct
	$r = \sqrt[3]{\frac{2000}{4\pi}}$ oe, isw or 5.42 or 5.419[26] rot to 3 or more dp	A1	
	Second derivative $\frac{d^2S}{dr^2} = 4\pi + 4000r^{-3}$ and When $r = 5.42$, $\frac{d^2S}{dr^2} > 0$ oe [hence minimum] or $4\pi + 4000(5.42)^{-3} > 0$ oe [hence minimum]	A1	Dep on previous mark
	or $\frac{d^2S}{dr^2} = 12\pi$ or 37 to 38 [hence minimum] or as $r > 0$, $\frac{d^2S}{dr^2} > 0$ [hence minimum]		
	OR correctly finds the values of the first derivative at 5.42 oe $\pm h$, where <i>h</i> is small [hence minimum]		
6(a)	Velocity: $\frac{8t}{4t^2-5}-1$	B2	B1 for $\frac{f(t)}{4t^2-5} - 1$ or for $\frac{8t}{4t^2-5} + g(t)$
	Correct structure of quotient rule or equivalent product rule	M1	FT <i>their v</i> if possible; must be of equivalent difficulty
	Acceleration: $\frac{(4t^2 - 5)(8) - (8t)(8t)}{(4t^2 - 5)^2}$ oe, isw	A1	FT $\frac{8t}{4t^2-5} + k$ where k is a constant
6(b)	$4t^2 - 8t - 5 = 0$ oe	B1	
	(2t+1)(2t-5)=0	M1	FT <i>their</i> 3-term quadratic in <i>t</i>
	t = 2.5 and no other values	A1	dep on correct quadratic seen
6(c)	$\frac{(4 \times 2.5^2 - 5)(8) - (8 \times 2.5)(8 \times 2.5)}{(4 \times 2.5^2 - 5)^2}$ oe, soi	M1	Substitutes a value of $t > 2$ in an expression for a which has at least one term with a factor of $\frac{1}{(4t^2-5)^2}$ or $\frac{1}{16t^4-40t^2+25}$
	$a = -\frac{3}{5}$ oe only	A1	

Question	Answer	Marks	Guidance
7(a)	$\frac{BC}{\sin 60} = \frac{\sqrt{2}}{\sin 45} \text{ oe}$	M1	
	$BC = \sqrt{3}$ oe	A1	
	$\frac{1}{2} \times \sqrt{2} \times \sqrt{3} \times \sin 75 = \frac{3 + \sqrt{3}}{4}$	M1	FT <i>their BC</i> providing it has not been found using the given result for sin75
	OR height = $\left(\frac{3+\sqrt{3}}{4}\right) \times \frac{2}{\sqrt{3}}$ oe		
	$\sin 75 = \frac{2(3 + \sqrt{3})}{4\sqrt{6}} \text{ oe}$ OR $\sin 75 = \frac{\left(\frac{3 + \sqrt{3}}{4}\right) \times \frac{2}{\sqrt{3}}}{\sqrt{2}} \text{ oe} \left[= \frac{\frac{1 + \sqrt{3}}{2}}{\sqrt{2}} = \frac{1 + \sqrt{3}}{2\sqrt{2}} \right]$	A1	dep on all previous marks being awarded Isolates sin 75 correctly or deals with surds on LHS of correct equation e.g. $\frac{1}{2} \times 6 \times \sin 75 = \left(\frac{3+\sqrt{3}}{4}\right) \times \sqrt{6}$
	correct completion to given answer $\frac{\sqrt{6} + \sqrt{2}}{4}$	A1	must be convincing with an intermediate step if needed
	Alternative methods (finding AC first)		
	$\frac{1}{2} \times \sqrt{2} \times AC \times \sin 60 = \frac{3 + \sqrt{3}}{4} \text{ oe}$	(M1)	
	$AC = \frac{2}{\sqrt{2}} \times \frac{2}{\sqrt{3}} \times \frac{3+\sqrt{3}}{4} \text{ oe}$	(A1)	Isolates AC correctly
	$AC = \frac{\sqrt{2} + \sqrt{6}}{2}$	(A1)	Must be convinced no calculator is being used
	$\frac{\frac{\sin 75}{\sqrt{2} + \sqrt{6}}}{2} = \frac{\sin 45}{\sqrt{2}}$ oe	(M1)	FT their AC May simplify to $\sin 75 = \frac{AC}{2}$ before inserting their AC
	correct completion to given answer $\frac{\sqrt{6} + \sqrt{2}}{4}$	(A1)	dep on all previous marks being awarded must be convincing with an intermediate step if needed

Question	Answer	Marks	Guidance
7(b)	$\frac{AC}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{\sqrt{2}}{\frac{\sqrt{2}}{2}} \text{ or } \frac{AC}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{\sqrt{3}}{\frac{\sqrt{3}}{2}} \text{ or better}$	M1	
	$\frac{\sqrt{6} + \sqrt{2}}{2} \text{ nfww}$	A1	
8(a)	$\frac{\frac{\sin x}{\sin x}}{\frac{\cos x}{\cos x} - 1} - \frac{\frac{\cos x}{\sin x}}{\frac{\sin x}{\cos x} + 1}$	M1	OR $\frac{\sin x(\tan x + 1) - \cos x(\tan x - 1)}{(\tan x - 1)(\tan x + 1)}$
	$\frac{\frac{\sin x}{\frac{\sin x - \cos x}{\cos x}} - \frac{\cos x}{\frac{\sin x + \cos x}{\cos x}}}{\frac{\sin x}{\cos x} + 1} - \cos x \left(\frac{\sin x}{\cos x} - 1\right)}$ OR $\frac{\frac{\sin x \left(\frac{\sin x}{\cos x} + 1\right) - \cos x \left(\frac{\sin x}{\cos x} - 1\right)}{\frac{\sin^2 x}{\cos^2 x} - 1}$	A1	$\frac{OR}{\frac{\sin x \tan x + \sin x - \cos x \tan x + \cos x}{(\tan x - 1)(\tan x + 1)}}$ $OR \frac{\frac{\sin x}{\cos x} + 1 - \cos x \left(\frac{\sin x}{\cos x} - 1\right)}{\left(\frac{\sin x}{\cos x} - 1\right) \left(\frac{\sin x}{\cos x} + 1\right)}$
	$\frac{\frac{\sin x \cos x}{\sin x - \cos x} - \frac{\cos^2 x}{\sin x + \cos x}}{\frac{\sin x}{\cos x} - \cos x} = \frac{\sin x \left(\frac{\sin x - \cos x}{\cos x}\right) - \cos x \left(\frac{\sin x - \cos x}{\cos x}\right)}{\frac{\sin^2 x - \cos^2 x}{\cos^2 x}}$	A1	OR $\frac{\frac{\sin^2 x}{\cos x} + \sin x - \sin x + \cos x}{\frac{\sin^2 x}{\cos^2 x} - 1}$
	$\frac{\sin^2 x \cos x + \sin x \cos^2 x - \cos^2 x \sin x + \cos^3 x}{\sin^2 x + \cos x \sin x - \cos x \sin x - \cos^2 x}$ OR $\frac{\sin^2 x + \sin x \cos x - \cos x \sin x + \cos^2 x}{\cos x} \times \frac{\cos^2 x}{\sin^2 x - \cos^2 x}$	A1	OR $\frac{\frac{\sin^2 x + \cos^2 x}{\cos x}}{\frac{\sin^2 x - \cos^2 x}{\cos^2 x}} \text{ or } \frac{\frac{\sin^2 x + \cos^2 x}{\cos x}}{\frac{1 - 2\cos^2 x}{\cos^2 x}}$
	Fully correct justification of given answer e.g. $\frac{\cos x \left(\sin^2 x + \cos^2 x\right)}{\sin^2 x - \cos^2 x} = \frac{\cos x}{\sin^2 x - \cos^2 x}$ oe	A1	All steps correct and final step justified $\frac{1}{\cos x} \times \frac{\cos^2 x}{\sin^2 x - \cos^2 x} = \frac{\cos x}{\sin^2 x - \cos^2 x}$ oe
8(b)	$2\cos^2 x + \cos x - 1 [=0]$	B2	B1 for $\cos x = 1 - \cos^2 x - \cos^2 x$ or better
	$(2\cos x - 1)(\cos x + 1)[= 0]$	M1	FT <i>their</i> 3-term quadratic in cos <i>x</i>
	$[x =] 60^{\circ}, 300^{\circ}, 180^{\circ}$ and no extras in range	A2	A1 for any two correct, ignoring extras

Question	Answer	Marks	Guidance
9(a)	Derivative of e^{2x} : $2e^{2x}$ soi	B 1	
	$x \times 2e^{2x} + e^{2x}$ isw	B 1	FT <i>their</i> $2e^{2x}$
9(b)	$[When x=1]y=e^2$	B1	
	$\left[\text{gradient tangent} = \right] their \frac{dy}{dx}\Big _{x=1}$	B1	FT <i>their</i> derivative which must include at least one term in e^{2x}
	Gradient of normal = $\frac{-1}{their(3e^2)}$	B1	$\mathbf{FT} \frac{-1}{\left. \frac{dy}{dx} \right _{x=1}}$
	$y - e^2 = \frac{-1}{3e^2} (x - 1)$ oe, isw	B1	dep on 2 marks awarded in part (a) and all previous marks awarded in this part
9(c)	$\left[xe^{2x}-\frac{1}{2}e^{2x}\right]_0^2$	M3	M2 for $xe^{2x} + ke^{2x}$ where $k < 0$ or $k = \frac{1}{2}$ or M1 for $\int 2xe^{2x}dx = xe^{2x} - \int e^{2x}dx$
	$\left(2e^4 - \frac{1}{2}e^4\right) - \left(-\frac{1}{2}\right)$	A1	
	$1.5e^4 + 0.5$ or exact equivalent	A1	
10(a)	a + 4d = 11 oe	B1	
	a + 6d = 3(a + d) oe	B1	
	Correctly eliminates one unknown and solves for <i>a</i> or <i>d</i>	M1	FT <i>their</i> linear equations in <i>a</i> and <i>d</i> providing B1 earned.
	d = 2, a = 3	A1	

Question	Answer	Marks	Guidance
10(b)	$3+d=3r^2$	B1	
	$3+5d=3r^4$	B1	
	$3+5d = 3\left(\frac{3+d}{3}\right)^2$ oe or $3+5(3r^2-3) = 3r^4$ oe	M1	
	$d^2 - 9d[=0]$ or $3r^4 - 15r^2 + 12[=0]$	A1	
	d = 9 and $r = 2$ and no other values	A2	A1 for $d = 9$ and no other value of d or for $r = 2$ and no other value of r

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/21 May/June 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles	
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1	$lg y = 2\sqrt{x} + 3$ OR lg b = 2 and lg A = 3	B2	B1 for $\lg y = \left(\frac{8-5}{2.5-1}\right)\sqrt{x} + c$ soi or $\lg y = m\sqrt{x} + 3$ soi OR $\lg b = \frac{8-5}{2.5-1}$ or $\lg A = 3$ soi
	$y = 10^{2\sqrt{x+3}}$ or $\lg \frac{y}{10^3} = 2\sqrt{x}$ OR b = 100 and $A = 1000$	M1	FT <i>their m</i> and <i>c</i>
	$y = 10^3 \times 100^{\sqrt{x}}$ oe mark final answer	A1	

Question	Answer	Marks	Partial Marks
2(a)	Correct curve 10 0 30 60 90 120 x -10	3	 B2 for correct cosine shape over 2 cycles with midline at y = 2 and consistent amplitude or B1 for attempt at cosine shape over 2 cycles with consistent amplitude B1 for a consistent amplitude of 2; must have attempted correct shape Maximum of 2 marks if not fully correct
2(b)	4	1	
2(c)	60°	1	
3(a)	a = 2, b = 3, c = -2	2	B1 for any two correct
3(b)	$-3 \le x \le -0.5$ or $x \ge 1$	3	B1 for the critical values -3 , -0.5 , 1 B1 for $-3 \le x \le -0.5$ B1 for $x \ge 1$
4(a)	$(2y-1)\log 5 = \log 6 + y\log 3 \text{ oe}$ or $2y\log 5 = \log 30 + y\log 3 \text{ oe}$ OR [rearranges $\frac{5^{2y}}{5} = 6 \times 3^{y}$ and collects powers to a single power in y] $\left(\frac{5^{2}}{3}\right)^{y} = 30$ oe	MI	
	Collects terms and factorises: $y(2 \log 5 - \log 3) = \log 6 + \log 5$ oe or $y(2 \log 5 - \log 3) = \log 30$ oe OR takes logs $y = \log_{\frac{25}{3}} 30$ oe or $y \log\left(\frac{5^2}{3}\right) = \log 30$ oe 1 604	M1	FT if of equivalent difficulty
	1.004	Al	cao

Question	Answer	Marks	Partial Marks
4(b)	$e^{4x} - 4e^{2x} + 3 = 0$ or $(e^{2x})^2 - 4e^{2x} + 3 = 0$ oe	M1	condone one error
	Factorises: $(e^{2x} - 1)(e^{2x} - 3)$ oe or solves $e^{4x} - 4e^{2x} + 3 = 0$ oe	M1	FT $a(e^{2x})^2 + be^{2x} + c[=0]$
	$e^{2x} = 1, e^{2x} = 3$	A1	
	$x=0, x=\frac{1}{2}\ln 3$ or exact equivalent	A1	
5	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2 \mathbf{oe} \mathbf{and} \left. \frac{\mathrm{d}V}{\mathrm{d}r} \right _{r=6} = 144\pi$	B1	
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}r}{\mathrm{d}V} \mathrm{soi}$	B1	Not if chain rule for $\frac{dt}{dr}$ unless answer is inverted
	$\frac{24}{\text{their } 144\pi}$	M1	<i>their</i> 144π must come from an attempt at differentiation
	0.0531 or 0.05305[16] rot to 4 or more sig figs	A1	
6(a)	$3\binom{x-8}{y-5} = 2\binom{x-4}{y-7}$ oe OR $\overrightarrow{QR} = \binom{x-8}{y-5}$ and $\overrightarrow{PR} = \binom{x-4}{y-7}$ and 3x - 24 = 2x - 8 and 3y - 15 = 2y - 14	MI	
	<i>x</i> = 16	A1	dep on vector method
	<i>y</i> = 1	A1	dep on vector method

Question	Answer	Marks	Partial Marks
6(b)(i)	$\mathbf{a} = -2.5\mathbf{i} - \frac{5\sqrt{3}}{2}\mathbf{j} \text{ isw}$	B1	
	$\mathbf{c} = -5\mathbf{i} + 5\sqrt{3}\mathbf{j} \text{ isw}$	B1	
6(b)(ii)	$\mathbf{b} = (-5 + 2.5)\mathbf{i} + (5\sqrt{3} + 2.5\sqrt{3})\mathbf{j}$ oe soi	B1	
	$r = \sqrt{(-2.5)^2 + (7.5\sqrt{3})^2}$	M1	FT <i>their</i> b of the form $x\mathbf{i} + y\mathbf{j}$ providing neither component is zero
	[<i>r</i> =] 13.2 or 13.22875 rot to 4 or more sf	A1	dep on B1
	$\tan \alpha = \left(\frac{7.5\sqrt{3}}{2.5}\right)$ oe or awrt 79.1 or	M1	FT <i>their</i> b of the form $x\mathbf{i} + y\mathbf{j}$
	$\tan \beta = \left(\frac{2.5}{7.5\sqrt{3}}\right) \text{oe or awrt 10.9}$		
	349[.106] rot to 3 or more sf	A1	dep on B1
	Alternative method		
	$[r^2 =]10^2 + 5^2 - 2 \times 10 \times 5 \times \cos 120^\circ$	(M1)	
	[<i>r</i> =] 13.2 or 13.22875 rot to 4 or more sf	(A1)	
	$\frac{\sin\theta}{10} = \frac{\sin their 120}{their 5\sqrt{7}} \text{ or } \frac{\sin\phi}{5} = \frac{\sin their 120}{their 5\sqrt{7}}$	(M1)	FT consistent use of <i>their</i> 120 and <i>their</i> r
	$[\theta =]$ awrt 40.9 or $[\phi =]$ awrt 19.1	(A1)	
	349[.106] rot to 3 or more sf	(A1)	

Question	Answer	Marks	Partial Marks
7(a)	$\left[\frac{6x^2}{2} - \frac{x^3}{3}\right]_0^5$	B1	
	Area under line: $0.5 \times 5 \times 5$ oe	B1	
	Fully actioned correct plan: $3(25) - \frac{5^3}{3} - \left(3(0) - \frac{0^3}{3}\right) - 0.5 \times 5 \times 5 \text{ oe}$	M1	
	$\frac{125}{6}$ oe isw	A1	dep on all previous marks
	Alternative method		
	$\int_0^5 (5x - x^2) \mathrm{d}x$	(B1)	
	$\left[\frac{5x^2}{2} - \frac{x^3}{3}\right]_0^5$	(B1)	
	Correct use of correct limits $2.5(25) - \frac{5^3}{3} - \left(2.5(0) - \frac{0^3}{3}\right)$	(M1)	
	$\frac{125}{6}$ oe isw	(A1)	dep on all previous marks
7(b)(i)	$\frac{(2x-6)^{-2}}{2} + \sin x$ (+ c) oe, isw	3	B1 for sinx
	-2×2	rep.	B2 for $\frac{(2x-6)^{-2}}{-2 \times 2}$ or B1 for $\frac{(2x-6)^{-2}}{-2}$ soi
7(b)(ii)	$\frac{x^7}{2} + x^3 + \frac{1}{2x}$ oe	B1	
	$\frac{x^8}{16} + \frac{x^4}{4} + \frac{1}{2}\ln x(+c)$ oe or	B2	B1 for any two correct
	$\frac{x^8}{16} + \frac{x^4}{4} + \frac{1}{2}\ln 2x(+c)$ oe		

Question	Answer	Marks	Partial Marks
8(a)(i)	[Domain f^1] $0 \le x \le 2.25$ oe	B2	B1 for either end correct or for 0 and 2.25 in an incorrect inequality
	$[\text{Range } f^1] \ 0 \leqslant f^{-1} \leqslant 3$	B1	
8(a)(ii)	x = 1.6 oe or $x = 0$	2	B1 for each
8(a)(iii)	2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25	2	B1 for attempt at correct graph of inverse function drawn over correct domain soiB1 for correct shape with intersection in approximately correct location
8(b)(i)	For a complete method to find the inverse, including changing the subject and swapping the variables $\int g^{-1}(x) = \sqrt[3]{\frac{x^3 - 3}{x^2}}$ oe mark final answer	M1 A1	
9(1.)('')		1	
8(0)(11)		1	
8(b)(iii)	$\sqrt[3]{8e^{12x}+3}$ mark final answer	1	

Question	Answer	Marks	Partial Marks
9(a)	$\frac{1}{2} \times 24^2 \times \theta = 432$	M1	
	$\theta = \frac{3}{2}$ rads soi	A1	
	$24 \times their \ \theta$	M1	
	36 cao	A1	
	Alternative method		
	$s = r\theta$ soi and	(B1)	
	$\frac{1}{2} \times r \times s = 432$		
	$\frac{1}{2} \times 24 \times s = 432$	(M1)	
	$s = \frac{432 \times 2}{24} $ oe	(M1)	
	[<i>s</i> =] 36	(A1)	
9(b)(i)	$[OB =] 2y \cos \alpha$ oe	B1	
9(b)(ii)	$\frac{(their 2y\cos\alpha) \times y\sin\alpha}{2}$ $-\frac{1}{2} \times (their y\cos\alpha)^2 \times \alpha \text{ oe}$	M2	M1 for either area
	correct completion to $\frac{y^2}{2}\cos\alpha(2\sin\alpha - \alpha\cos\alpha)$	Al	50

Question	Answer	Marks	Partial Marks
10	[Term independent of x:] ${}^{9}C_{3} \times a^{6} \times b^{3}$ or $84 \times a^{6} \times b^{3}$	B1	
	$a^6b^3 = \frac{-145152}{84}$	M1	dep on B1
	$(a^2b)^3 = -1728$ leading to $a^2b = -12$ or $a^2b = \sqrt[3]{-1728} = -12$	A1	
	${}^{9}C_{1} \times a^{8} \times b$ or $9 \times a^{8} \times b$	B1	
	Correctly solves correct equations simultaneously $9 \times a^8 \times b = -6912$ and $a^2b = -12$	M1	Must be solving correct equations
	as far as $a^{2} = \dots$ or $b^{2} = \dots$ a = 2, b = -3 and no other values nfww	B2	B1 for each nfww dep on previous B1B1
11	Eliminates one variable $(k-3y)^2 + y^2 + 2y - 9 = 0$	M1	
	$10y^2 + (2-6k)y + (k^2 - 9) = 0$ soi	A1	
	Uses $b^2 - 4ac * 0$ with <i>their</i> 3-term quadratic: $(2-6k)^2 - 4(10)(k^2 - 9)$ [*0]	M1	* can be = or any inequality sign
	$-4k^2 - 24k + 364$ [*0]	Al	
	Factorises $-4k^2 - 24k + 364$ or solves <i>their</i> $-4k^2 - 24k + 364 = 0$	M1	
	k = 7 only	A1	
	Uses <i>their k</i> in $10y^2 + (2-6k)y + (k^2 - 9) = 0$ oe	M1	
	y = 2 only	A1	
	x = 1 only	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 May/June 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
\overline{FT}	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	$3x^2 - 15x + 12 [*0]$ oe where * is any inequality sign or =	B1	
	Factorises or solves their 3-term quadratic	M1	FT their 3-term quadratic
	x < 1 or $x > 4$ mark final answer	A1	
1(b)(i)	$3(x-2)^2 + 4$	3	B2 for $3(x-2)^2$ or B1 for $(x-2)^2$ or $a = 3, b = -2$ and B1 for $a(x+b)^2 + 4$ with numerical values of <i>a</i> and <i>b</i> or $c = 4$
1(b)(ii)	y = their 4	B1	STRICT FT their 4 from part (i)

Question	Answer	Marks	Partial Marks
2(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 64x - \frac{2x^{-3}}{8}$ oe, isw	B2	B1 for $\frac{dy}{dx} = 64x + kx^{-3}$ or $\frac{dy}{dx} = kx - \frac{2x^{-3}}{8}$ where k is a non-zero constant or SC1 for $\frac{dy}{dx} = 64x - \frac{2}{8}x^{-3} + c$
	<i>their</i> $\frac{dy}{dx} = 0$ and attempt to solve	M1	FT <i>their</i> derivative providing it has two terms and at least one term is a correct power of x
	(0.25, 4), (-0.25, 4) nfww, isw	A2	A1 for either stationary point correct or for $x = \pm 0.25$ nfww or, if $\frac{dy}{dx} = 64x - 16x^{-3}$, then award SC2 for $\left(\pm \frac{1}{\sqrt{2}}, \frac{65}{4}\right)$ oe or SC1 for either of these stationary points or $x = \pm \frac{1}{\sqrt{2}}$ oe

Question	Answer	Marks	Partial Marks
2(b)	Correct second derivative: 1^2	M1	FT their $\frac{dy}{dt} = mx + nx^{-3}$ where $m \neq 0$
	$\frac{d^2 y}{dx^2} = 64 + \frac{3}{4}x^{-4}$ oe, isw		dx and $n \neq 0$ seen in part (a)
	$64 + \frac{3}{4} \left(\frac{1}{4}\right)^{-4} = 256 \text{ or } 64 + \frac{3}{4} \left(\frac{1}{4}\right)^{-4} > 0$	A2	dep on $x = \pm 0.25$ nfww in part (a)
	or when $x = 0.25 \frac{d^2 y}{dx^2} = 256$ or $\frac{d^2 y}{dx^2} > 0$ oe		A1 dep on $x = 0.25$ or $x = -0.25$ nfww in part (a) for correctly showing or stating $\frac{d^2 y}{d^2 y} = 64 + \frac{3}{d^2 y} = 64$
	and minimum [points] oe		$dx^2 \begin{bmatrix} 0 & 1 & 4x^4 \end{bmatrix}$ is positive
	$64 + \frac{3}{4} \left(-\frac{1}{4} \right)^{-4} = 256 \text{ or } 64 + \frac{3}{4} \left(-\frac{1}{4} \right)^{-4} > 0$		
	or when $x = -0.25 \frac{d^2 y}{dx^2} = 256 \text{ or } \frac{d^2 y}{dx^2} > 0 \text{ oe}$	RE	0
	and minimum [points] oe		
	OR $d^2 v$ 3		
	$\frac{d^2 y}{dx^2} = 64 + \frac{3}{4x^4}$ and this is positive for any		
	value of x and minimum [points]		7
3(a)	-12 - 69 + 27 + 54 = 0	B1	

Question	Answer	Marks	Partial Marks
3(b)	$10x + 7 = -2x^3 + 3x^2 + 33x - 5 $ oe, soi	M1	
	Uses the correct factor $x + 3$ to find a quadratic factor of the polynomial from part (a) oe with at least 2 terms correct	M1	
	$-2x^2 + 9x - 4$ or $2x^2 - 9x + 4$	A1	
	Factorises or solves <i>their</i> 3-term quadratic factor = 0: (2x-1)(-x+4) or $(-2x+1)(x-4)$ or $(2x-1)(x-4)$ oe	DM1	dep on previous M1
	x = -3, x = 0.5, x = 4 nfww	A1	dep on at least M0 M1 A1 DM1 awarded
	A(-3, -23), B(0.5, 12), C(4, 47) oe and correct method to show mid-point e.g.: $\left(\frac{-3+4}{2}, \frac{-23+47}{2}\right) = \left(\frac{1}{2}, 12\right) \text{ oe}$ or $\left[\overline{AB} = \right] \begin{pmatrix} 0.5\\12 \end{pmatrix} - \begin{pmatrix} -3\\-23 \end{pmatrix} = \begin{pmatrix} 3.5\\35 \end{pmatrix} \text{ and}$ $\left[\overline{BC} = \right] \begin{pmatrix} 4\\47 \end{pmatrix} - \begin{pmatrix} 0.5\\12 \end{pmatrix} = \begin{pmatrix} 3.5\\35 \end{pmatrix} \text{ oe}$ OR [x-coordinate mid-point] $\frac{-3+4}{2} = \frac{1}{2}$ oe and valid comment e.g. The points are collinear [so B is the mid-point of AC].	B2	dep on $x = -3$, $x = 0.5$, $x = 4$ nfww B1 dep on $x = -3$, $x = 0.5$, $x = 4$ nfww for A(-3, -23), $B(0.5, 12)$, $C(4, 47)$ oe or [x-coordinate of the mid-point] $\frac{-3+4}{2} = \frac{1}{2}$ oe

Question	Answer	Marks	Partial Marks
4	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{sec}^2(1-x)\mathrm{oe}$	B2	must be seen B1 for $\frac{dy}{dx} = k \sec^2(1-x)$ oe, $k \neq -1$ or SC1 for $\frac{dy}{dx} = -\sec^2 1 - x$ or $\frac{dy}{dx} = -\sec^2(1-x) + c$
	Solves $3 = 2 + \tan(1 - x)$ as far as $1 - x = \tan^{-1} 1$	M1	
	$1 - x = \frac{\pi}{4} \text{ isw or } 0.7853[98]$ $x = 1 - \frac{\pi}{4} \text{ isw or } 0.2146[01]$	A1	
	Correct use of chain rule and correctly writes in terms of cosine or tangent: $\frac{their(-1)}{\cos^2\left(their\frac{\pi}{4}\right)} \times 0.04 \text{ oe, soi or}$ $their(-1)\left\{1 + \tan^2\left(their\frac{\pi}{4}\right)\right\} \times 0.04 \text{ oe soi}$	M1	dep on at least B1 and an attempt to solve $3 = 2 + \tan(1 - x)$
	-0.08 oe, nfww	A1	dep on all previous marks awarded
5(a)	lg P = lg A + T lg b oe nfww and correct comparison with $y = mx + c$ soi	B2	Must be seen and not from wrong working B1 for $\lg P = \lg A + T \lg b$ isw, nfww
5(b)	$A = 10^{6}$ oe isw and $b = 10^{\frac{3}{7}}$ oe isw	4	B2 for $A = 10^{6}$ oe isw or B1 correct method which could be used to find A e.g. $\lg A = 6$ or $12 = \frac{3}{7} \times 14 + \lg A$ B2 for $b = 10^{\frac{3}{7}}$ oe isw or B1 correct method which could be used to find b e.g. $\lg b = \frac{12-6}{14-0}$ oe or $12 = 14 \lg b + 6$

Question	Answer	Marks	Partial Marks
5(c)	lg $P_1 = 8$ and lg $P_2 = 9$ soi leading to $T_1 = 4.6$ to 4.8 or $T_2 = 6.8$ to 7.2	M1	If graph not used then allow M1 for substitution of <i>their A</i> and <i>their b</i> in the exponential equation as far as $\frac{10^8}{theirA} = (theirb)^T \text{ and } \frac{10^9}{theirA} = (theirb)^T$ OR substitution of <i>their A</i> and <i>their b</i> or <i>their</i> lgA and <i>their</i> lg b in the log equation $lg10^8 = their lgA + T(their lgb) \text{ or better}$ and $lg10^9 = their lgA + T(their lgb) \text{ or better}$
	Difference of correct times: $T_2 - T_1$ where $T_2 = 6.8$ to 7.2 $T_1 = 4.6$ to 4.8	M1	
	Answer in range 2.2 to 2.4 nfww	A1	
	Alternative method		
	Change in $T = \frac{9-8}{\frac{3}{7}}$	(M2)	M1 for $\lg 10^8 = 8$ and $\lg 10^9 = 9$ and $\frac{\text{Change in } \lg P}{\text{Change in } T} = \frac{3}{7}$
	Answer in range 2.2 to 2.4 nfww	(A1)	
6(a)(i)	$1 + \frac{5}{7}x + \frac{10}{49}x^2$	B2	B1 for any two correct terms or for the three terms listed but not summed
6(a)(ii)	12	B2	B1 for $7n + 5 = 89$ or $7\left(n + \frac{5}{7}\right) = 89$ oe or ${}^{n}C_{1} = 12$
6(b)	${}^{8}C_{4} \times k^{4} \times (-2)^{4} [\times x^{4}]$ oe or $1120k^{4} [x^{4}]$ soi	B1	
	${}^{8}C_{2} \times k^{6} \times (-2)^{2} [\times x^{2}]$ oe or $112k^{6} [x^{2}]$ soi	B1	
	$\frac{1120k^4}{112k^6} = \frac{5}{8} \text{ or } \frac{70 \times 16 \times k^4}{28 \times 4 \times k^6} = \frac{5}{8} \text{ oe, soi}$	M1	FT providing at least B1 awarded and correct terms attempted
	$k^2 = 16$ soi	A1	
	[For coefficient of <i>x</i> to be positive $k < 0$, therefore] $k = -4$	A1	

Question	Answer	Marks	Partial Marks
7(a)	$\frac{10(4x-2)^4}{\sqrt{3}+(4x-2)^5} \text{ or } \frac{10(4x-2)^4}{\left(3+(4x-2)^5\right)^{\frac{1}{2}}} \text{ isw}$	3	B2 for correct unsimplified form e.g. $\frac{1}{2}(3+(4x-2)^5)^{-\frac{1}{2}} \times 5(4x-2)^4 \times 4$ or $10(3+(4x-2)^5)^{-\frac{1}{2}}(4x-2)^4$ or B1 for $5(4x-2)^4 \times 4$ soi or $\frac{1}{2}(3+(4x-2)^5)^{-\frac{1}{2}} \times g(x)$
7(b)	$\frac{dy}{dx} = \frac{5(3x+2) - 3(5x)}{(3x+2)^2} \text{ oe isw or} \\ \frac{dy}{dx} = 5x(-(3x+2)^{-2} \times 3) + 5(3x+2)^{-1} \text{ oe isw}$	B1	
	[y = 10] x = -0.8	B1	
	$\frac{0.01}{\delta x} = \left(their \frac{dy}{dx} \Big _{x=-0.8} \right) oe$	M1	FT <i>their</i> x providing <i>their</i> $x \neq 10$ or 0.01 and <i>their</i> genuine attempt at a derivative using product or quotient rule
	$\frac{1}{6250}$ or 0.00016 or 1.6×10^{-4} isw	A1	dep on all previous marks awarded
	Alternative method		
	$x = \frac{-2y}{3y-5} \text{ oe}$	(B1)	i'r
	$\frac{dx}{dy} = \frac{-2(3y-5)-3(-2y)}{(3y-5)^2} \text{ oe isw or}$ $\frac{dx}{dx} = -2y(-(3y-5)^{-2} \times 3) + (-2)(3y-5)^{-1}$	(B1)	
	$\frac{dy}{dy} = \frac{2y(-(3y-3)+(-2)(3y-3))}{(-2)(-3y-3)}$		
	$\frac{\delta x}{0.01} = \left(\left. their \frac{\mathrm{d}x}{\mathrm{d}y} \right _{y=10} \right) \text{oe}$	(M1)	FT <i>their</i> genuine attempt at a derivative using product or quotient rule
	$\frac{1}{6250}$ or 0.00016 or 1.6×10^{-4} isw	(A1)	dep on all previous marks awarded
7(c)(i)	$3x^2\ln x + x^3 \times \frac{1}{x}$ or better, isw	B2	B1 for (<i>their</i> $3x^2$)ln $x + x^3 \times (their \frac{1}{x})$

Question	Answer	Marks	Partial Marks
7(c)(ii)	$\frac{x^3 \ln x}{6} + \frac{x^3}{18} + c$ oe, isw	B3	must have arbitrary constant
			B2 for $\frac{x^3 \ln x}{6} + \frac{x^3}{18}$ or
			$\frac{x^{3}\ln x}{6} + \frac{kx^{3}}{3} + c, \ k > 0 \text{ nfww}$
			or B1 for
			$\frac{1}{6}\int \left(3x^2\ln x + x^2\right)dx + \frac{1}{6}\int x^2 dx \operatorname{soi}$
			or $\frac{x^3 \ln x}{6} + \int \frac{x^2}{6} dx$ soi
	TP		$\operatorname{or} \int (3x^2 \ln x) dx = x^3 \ln x - \int x^2 dx \operatorname{soi}$
	6		or $\int (3x^2 \ln x) dx = x^3 \ln x - \frac{x^3}{3}$ soi
8	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{4}\sin\frac{x}{4}$	M2	M1 for $\frac{dy}{dx} = k \sin \frac{x}{4}$, $k < 0$ or $k = \frac{1}{4}$
	<i>y</i> = 0.5	B 1	
	$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right _{x=\frac{4\pi}{3}} = -\frac{1}{4} \times \frac{\sqrt{3}}{2} \text{or} -\frac{\sqrt{3}}{8}$	M1	FT (<i>their k</i>) $\times \frac{\sqrt{3}}{2}$ providing at least M1 awarded
	$[m_{\text{normal}} =] \frac{8}{\sqrt{2}}$ soi	M1	$\mathbf{FT} = \frac{-1}{ \mathbf{d}\mathbf{v} }$
	v3 Sator	ap.o	their $\frac{dy}{dx}\Big _{x=\frac{4\pi}{3}}$
	$y - 0.5 = \frac{8}{\sqrt{3}} \left(x - \frac{4\pi}{3} \right) \text{ oe}$	A1	dep on previous M1 ; must have exact values
			FT <i>their</i> m_{normal} and <i>their</i> 0.5 providing both are non-zero, exact values
	$\left(\frac{4\pi}{3}-\frac{\sqrt{3}}{16},0\right)$ or exact equivalent;	A1	
	mark final answer		

Question	Answer	Marks	Partial Marks
9	$\int e^{\frac{t}{4}} dt = 4e^{\frac{t}{4}}(+c) \text{ and } \int \frac{16e}{t^2} dt = \frac{-16e}{t}(+c)$	B3	B2 for either correct or B1 for $\int e^{\frac{t}{4}} dt = ae^{\frac{t}{4}}(+c)$ where <i>a</i> is a constant, $a > 0$ or $\int \frac{16e}{t^2} dt = \frac{-b}{t}(+c)$ where <i>b</i> is a constant $b > 0$
	Correct plan: $\int_{0}^{4} e^{\frac{t}{4}} dt + \int_{4}^{k} \frac{16e}{t^{2}} dt = 13.4 \text{ soi}$	M1	
	Correct equation: $4e^{1} - 4e^{0} + \left(-\frac{16e}{k} + \frac{16e}{4}\right) = 13.4$	A1	dep on B3; implies M1
	OR [When $t = 4 \ s = 4e - 4$ When $t = k \ s = \frac{-16e}{k} + 8e - 4$ and] $13.4 = \frac{-16e}{k} + 8e - 4$		
	<i>k</i> = 10 or awrt 10.0	A1	dep on all previous marks awarded
10	$\lambda\left(\mathbf{c}+\frac{2}{5}\mathbf{b}\right)$ isw	B2	B1 for $\lambda(\mathbf{c}+k\mathbf{b})$ where $k \neq \frac{2}{5}$ or $1, k > 0$
	$2\mathbf{c} + \mu(\mathbf{b} - \mathbf{c})$ isw or $\mu \mathbf{b} + (2 - \mu)\mathbf{c}$ isw or $\mathbf{c} + \mathbf{b} + (1 - \mu)(\mathbf{c} - \mathbf{b})$ isw	B2	B1 for any of the following with $n > 0$ $2\mathbf{c} + \mu(\mathbf{b} - n\mathbf{c})$ or $n\mathbf{c} + \mu(\mathbf{b} - \mathbf{c})$ or $\mathbf{c} + \mathbf{b} + (1 - \mu)(n\mathbf{c} - \mathbf{b})$ or $n(\mathbf{c} + \mathbf{b}) + (1 - \mu)(\mathbf{c} - \mathbf{b})$
	Equates components at least once $\lambda = 2 - \mu$ or $\frac{2}{5}\lambda = \mu$ soi	M1	FT providing of equivalent forms e.g.: $\lambda(s\mathbf{c}+t\mathbf{b})$ and $x\mathbf{c} + \mu(y\mathbf{b}+z\mathbf{c})$ where <i>s</i> , <i>t</i> , <i>x</i> , <i>y</i> , <i>z</i> are scalars
	$\lambda = 2 - \mu$ and $\frac{2}{5}\lambda = \mu$ soi, nfww	A1	
	$\mu = \frac{4}{7} \left[\lambda = \frac{10}{7} \right]$	A1	
	[AE: EB =] 4: 3 oe	A1	must have earned all previous marks

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/23 May/June 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	4x - 5 = 7 and $4x - 5 = -7$ oe, soi	M1	
	$x = 3, x = -\frac{1}{2}$	A1	

Question	Answer	Marks	Partial Marks
1(b)	Correct graph 12 10 1	3	B1 for correct graph and B2 dep for $-7 \le x \le -1$; dependent on a correct graph for $-7 \le x \le -1$ or B1 STRICT FT for <i>their</i> critical values from the two intersections of <i>their</i> straight-line section of graph providing it has negative gradient
2	$\frac{7\sqrt{2}x^{6}(3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})}$	M2	M1 for $7\sqrt{2}x^{6}$ or $\frac{\sqrt{98x^{12}}(3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})}$ or $\frac{\sqrt{98}x^{6}(3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})}$ or $\frac{their7\sqrt{2}x^{6}(3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})}$
	$\frac{21\sqrt{2}x^6 - 14x^6}{9 - 2} \text{ or } \frac{7x^6(3\sqrt{2} - 2)}{9 - 2} \text{ oe}$	A1	Ş
	$(3\sqrt{2}-2)x^{6}$	A1	
	Alternative method		
	$\frac{\sqrt{98x^{12}}}{3+\sqrt{2}} \times \frac{3-\sqrt{2}}{3-\sqrt{2}} \text{ or } \frac{\sqrt{98}x^6}{3+\sqrt{2}} \times \frac{3-\sqrt{2}}{3-\sqrt{2}}$	(M1)	
	$\frac{3\sqrt{98x^{12}} - \sqrt{196x^{12}}}{9-2} \text{ or } \frac{3\sqrt{98x^6} - \sqrt{196x^6}}{9-2}$	(M1)	
	$\frac{3\sqrt{98x^{12}} - \sqrt{196x^{12}}}{\sqrt{49}} \text{ or } \frac{3 \times 7\sqrt{2}x^6 - 14x^6}{7} \text{ oe}$	(A1)	
	$(3\sqrt{2}-2)x^6$	(A1)	

Question	Answer	Marks	Partial Marks
3(a)	$\frac{3(x+2)}{r(x+3)}$ or $\frac{3x+6}{r^2+3r}$ or simplified equivalent;	2	mark final answer
	$\lambda(\lambda+3) = \lambda+3\lambda$		B1 for $\frac{3x^2 + 6x}{x^3 + 3x^2}$ oe
3(b)	$\frac{1}{3}\ln(x^3+3x^2) + c$	2	B1 for $\frac{1}{3}\ln(x^3 + 3x^2)$
4(a)	$2(-4)^3 + 11(-4)^2 + 22(-4) + 40 = 0$ oe	1	
4(b)	$(x+4)(2x^2+3x+10)$	B2	B1 for $2x^2 + 3x + 10$ with two terms out of three correct
	Correct use of $b^2 - 4ac$ for <i>their</i> 3-term quadratic factor	M1	
	$3^2 - 4(2)(10) < 0$ isw or $3^2 - 4(2)(10) = -71$ oe, cao	A1	
5(a)(i)	35700	2	M1 for ${}^{20}C_6 - {}^{18}C_4$ or ${}^{18}C_6 + {}^{18}C_5 \times {}^{2}C_1$ oe
5(a)(ii)	32400	2	M1 for ${}^{6}P_{4} \times {}^{10}P_{2}$ or $(6 \times 5 \times 4 \times 3) \times (10 \times 9)$ oe
5(b)(i)	Correct algebraic method to show $(n-3)^n C_3$ is the same as $4 \times {}^n C_4$ oe	2	B1 for ${}^{n}C_{3} = \frac{n!}{3!(n-3)!}$ or ${}^{n}C_{4} = \frac{n!}{4!(n-4)!}$
5(b)(ii)	$\frac{n(n-1)(n-2)}{6} = 5n \text{ or} n(n-1)(n-2) = 30n$	B2	B1 for $\begin{bmatrix} {}^{n}C_{3} = \end{bmatrix} \frac{n(n-1)(n-2)}{6}$ or $n(n-1)(n-2) = 30n$ seen
	and completion to given answer: $n^2 - 3n - 28 = 0$		
	(n-7)(n+4) = 0 oe	M1	
	<i>n</i> = 7	A1	

Question	Answer	Marks	Partial Marks
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = 10\mathrm{e}^{2x}$	B1	
	[At A, m =] 10	B1	
	[At A, y =]2	B1	
	[Equation tangent is] $y = 10x + 2$ oe	B1	
	$AB^{2} = \left(\frac{-their2}{their10}\right)^{2} + \left(their2\right)^{2} oe$	M 1	providing <i>their</i> 10 is derived using differentiation
	[<i>AB</i> =] 2.01 or 2.009[9] nfww, isw	A1	
7	$\frac{d(4x^3 + 2\sin 8x)}{dx} = 12x^2 + 16\cos 8x \text{ soi}$	B2	B1 for $12x^2 + k\cos 8x$, where $k > 0$
	Correct quotient rule: $\frac{(1-x)(their(12x^{2}+16\cos 8x)) - (4x^{3}+2\sin 8x)(-1)}{(1-x)^{2}}$	M1	or applies correct product rule to $(4x^{3} + 2\sin 8x)(1 - x)^{-1}$: $(4x^{3} + 2\sin 8x)(-(1 - x)^{-2} \times -1) +$ $(their(12x^{2} + 16\cos 8x))(1 - x)^{-1}$
	Fully correct derivative; isw	A1	FT <i>their</i> $12x^2 + 16\cos 8x$
	$\frac{\delta y}{h} = their\left(\frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=0.1}\right)$	M1	5
	14.3 <i>h</i> or 14.29[54] <i>h</i> with coefficient rot to 4 or more figs isw	Al	
8(a)(i)	$f \leq -1$	1	

Question	Answer	Marks	Partial Marks
8(a)(ii)	x = -2 nfww	3	M1 for $\left[x = f\left(\frac{2\pi}{3}\right) = \right] \sec\left(\frac{2\pi}{3}\right)$ or $\sec^{-1} x = \frac{2\pi}{3}$ A1 for $\frac{1}{\cos\left(\frac{2\pi}{3}\right)}$ OR M1 for a complete attempt to find $f^{-1}(x)$; includes swapping the variables A1 for $f^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right)$
8(a)(iii)	$\frac{\pi}{2} < x < \frac{3\pi}{2}$		
8(a)(iv)	$gf(x) = 3(\sec^2 x - 1)$	B1	
	$3\tan^2 x = 1$ or $\frac{1}{\cos^2 x} = \frac{4}{3}$ oe	M1	
	$\tan x = [\pm] \sqrt{\frac{1}{3}}$ oe or $\cos x = [\pm] \sqrt{\frac{3}{4}}$ oe and solves for x, soi	M1	
	$x = \frac{5\pi}{6}, \frac{7\pi}{6}$ and no other solutions	A2	A1 for one correct solution, condoning extras
8(b)	Correct diagram with intercepts indicated and asymptotes shown. $ \frac{y}{h^{-1}(x)} = \frac{y}{1 + 1} $ $ \frac{y}{1 +$	4	B1 for correct shape for h; may not be over correct domain but must have positive <i>y</i> -intercept and <i>x</i> -intercept and appear to tend to an asymptote in the 4th quadrant B1 for 3 and ln4 correctly marked; must have attempted correct shape B1 for the position of the vertical asymptote indicated; must have attempted correct shape B1 for h ⁻¹ the reflection of <i>their</i> h in the line y = x Maximum of 3 marks if not fully correct

Question	Answer	Marks	Partial Marks
9(a)	$\frac{x+4}{\sqrt[3]{x}} = x^{\frac{2}{3}} + 4x^{-\frac{1}{3}}$	B1	
	$\left[\frac{3}{5}x^{\frac{5}{3}} + 6x^{\frac{2}{3}}\right]_{1}^{8}$	M1	FT providing one term is correct in $x^{\frac{2}{3}} + 4x^{-\frac{1}{3}}$
	$\frac{3}{5}(8)^{\frac{5}{3}} + 6(8)^{\frac{2}{3}} - \left(\frac{3}{5}(1)^{\frac{5}{3}} + 6(1)^{\frac{2}{3}}\right) = 36.6$	A1	

Question	Answer	Marks	Partial Marks
9(b)	$10(0.1) = 7 - 3x$ and $0.1 = \frac{1}{3x + 4}$ and evaluates both expressions as $x = 2$ oe	M2	M1 for $10(0.1) = 7 - 3x$ and $0.1 = \frac{1}{3x + 4}$ oe
	[Area trapezium =] $\frac{1}{2}(0.1+0.7) \times their2$ oe or $\frac{7(their2)}{2} - \frac{3(their2)^2}{2} - [0]$ oe or 0.8	B1	
	$\frac{10}{\left[\int \frac{1}{3x+4} dx = \right] \frac{1}{3} \ln(3x+4) [+c]}$	B2	B1 for $k \ln(3x+4)$ $k \neq \frac{1}{3}$ or for $\frac{1}{2} \ln 3x + 4$
	$\frac{1}{3}\ln(3(2)+4) - \frac{1}{3}\ln(3(0)+4)$	M1	3 dep on at least previous B1
	<i>their</i> 0.8 – 0.3054oe	M1	dep previous M1 ; FT <i>their</i> 0.8 providing the difference results in a positive value
	0.495 or 0.4945[69] rot to 4 or more sf	A1	
10(a)(i)	<i>a</i> + <i>d</i> , <i>a</i> + 13 <i>d</i> , <i>a</i> + 16 <i>d</i> soi	B1	
	$\frac{a+13d}{a+d} = \frac{a+16d}{a+13d}$ oe	M2	FT <i>their</i> 3 distinct terms providing of the form $a + kd$ where $k \neq 0$ and at least one is correct M1 for either $[r =] \frac{a+13d}{a+d}$ or $[r =] \frac{a+16d}{a+13d}$ or $[r =] \sqrt{\frac{a+16d}{a+d}}$
	Clears fractions and expands oe: $a^{2} + 26ad + 169d^{2}$ $= a^{2} + 17ad + 16d^{2}$	A1	
	$9ad + 153d^2 = 0 \text{ or } 9ad = -153d^2$	A1	
	Convincingly derives $a = -17d$ e.g. 9d(a + 17d) = 0 [therefore] $a = -17d$ oe	A1	

Question	Answer	Marks	Partial Marks
10(a)(ii)	<i>r</i> = 0.25 oe	2	M1 $\frac{-17d+13d}{-17d+d}$ or $\frac{-17d+16d}{-17d+13d}$ or $-16d$, $-4d$, $-d$
10(b)	$\frac{q}{1-0.25} = \frac{256}{3}$ oe	M1	FT <i>their</i> 0.25 providing it is between -1 and 1
	q = 64	A1	
	$[a + d = their \ 64] - 17d + d = their \ 64$	DM1	dep on previous M1
	or $a - \frac{a}{17} = their \ 64$		
	d = -4 and $a = 68$ oe OR $d = -4$ and $S_{20} = -150d$ oe	A2	A1 for either correct
	$S_{20} = \frac{20}{2} \{2(their 68) + 19(their (-4))\}$	M1	FT <i>their a</i> and <i>d</i>
	or $S_{20} = -150(their \ d)$		
	600	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 February/March 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2023 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1	Correct sketch	3	B1 for correct shape, with 3 consistent maxima, 2 cusps on the <i>x</i> -axes and reasonable symmetry B1 for $\left(\frac{\pi}{4}, 0\right)$ and $\left(\frac{3\pi}{4}, 0\right)$ either seen on the graph or stated; must have attempted a graph of correct shape B1 for starts with (0, 4) and ends with (π , 4) and (0, 4) either seen on the graph or stated; must have attempted a graph correct shape
2	$\frac{11x^2}{12+1-4\sqrt{3}}$	B1	
	$\frac{11x^2(13+4\sqrt{3})}{(13-4\sqrt{3})(13+4\sqrt{3})}$	M1	FT <i>their</i> expression of equivalent difficulty
	$\frac{11x^2(13+4\sqrt{3})}{169-48} \text{ or } \frac{143x^2+44\sqrt{3}x^2}{169-48}$	A1	
	$\frac{x^2(13+4\sqrt{3})}{11} \text{ or } \frac{13x^2+4\sqrt{3}x^2}{11}$	A1	mark final answer
	Alternative method		
	$\left(\frac{x\sqrt{11}(2\sqrt{3}+1)}{(2\sqrt{3}-1)(2\sqrt{3}+1)}\right)^2$	(M1)	
	$\left(\frac{x\sqrt{11}(2\sqrt{3}+1)}{12-1}\right)^2 \text{ or } \left(\frac{2\sqrt{33}x + x\sqrt{11}}{12-1}\right)^2$	(A1)	
	$\frac{11x^2(12+1+4\sqrt{3})}{121} \text{ or } \frac{132x^2+11x^2+4\sqrt{363}x^2}{121}$	(A1)	
	$\frac{x^2\left(13+4\sqrt{3}\right)}{11}$	(A1)	mark final answer

Question	Answer	Marks	Partial Marks
3	$(5x+4)^2 * (2x-3)^2$ soi where * is any inequality sign or =	M1	
	$21x^2 + 52x + 7*0$	A1	
	Critical values: $-\frac{1}{7}$, $-\frac{7}{3}$ soi	A1	
	$-\frac{7}{3} \leqslant x \leqslant -\frac{1}{7}$ mark final answer	A1	FT <i>their</i> derived critical values
	Alternative method		
	5x+4*2x-3 oe soi and 5x+4*3-2x oe soi where * is any inequality sign or =	(M1)	
	Critical values: $-\frac{1}{7}$, $-\frac{7}{3}$ soi	(A2)	A1 for $-\frac{1}{7}$ or $-\frac{7}{3}$
	$-\frac{7}{3} \le x \le -\frac{1}{7}$ mark final answer	(A1)	FT <i>their</i> derived critical values
4	$[y=]\frac{1}{\csc 5x} = \sin 5x \text{ nfww}$	B1	
	$\int_{0}^{\frac{\pi}{5}} y \mathrm{d}x = \left[-\frac{\cos 5x}{5} \right]_{0}^{\frac{\pi}{5}}$	B1	FT their asin5x
	$-\frac{1}{5}\cos\left(5\times\frac{\pi}{5}\right) - \left(-\frac{1}{5}\cos(5\times0)\right)$	M1	FT <i>their</i> $a(k\cos bx)$ where $k < 0$ or $k = \frac{1}{5}$
	$\frac{2}{5}$	A1	
5(a)	$1^3 - 2(1^2) - 19 + 20 = 0$	1	
5(b)	$(x-1)(x^2-x-20)$	M2	M1 for two terms correct in the quadratic factor
	(x-1)(x+4)(x-5)	A1	
5(c)	$e^{y} = 1, e^{y} = 5$	M1	
	$y = 0, y = \ln 5$ mark final answer	A1	1.61 or decimal equivalent for ln5 seen is A0 as calculator use not permitted
Question	Answer	Marks	Partial Marks
-----------	---	-------	---
6(a)(i)	$\frac{1}{8}$ or 0.125	2	M1 for 64(0.5) ⁹ oe
6(a)(ii)	$\frac{1023}{8}$ or 127.875	2	M1 for $\frac{64(1-0.5^{10})}{1-0.5}$ oe
6(a)(iii)	128	1	
6(b)	$\frac{20}{2} \{2a+19d\} - 400 = 2 \times \frac{10}{2} \{2a+9d\}$	M2	M1 for $\frac{20}{2} \{2a+19d\}$ or
	oe, soi		$\frac{10}{2}$ {2a+9d} soi
	5a = a + 5d soi	M1	
	<i>d</i> = 4	A1	
	<i>a</i> = 5	A1	
	27 nfww	B1	must have earned all previous marks
7(a)	$\frac{\mathrm{d}}{\mathrm{d}x}(\cos^2 x) = -2\cos x \sin x \mathrm{soi}$	B1	
	Attempts the quotient rule $\frac{dy}{dx} = \frac{-2\cos x \sin x \tan x - (1 + \cos^2 x) \sec^2 x}{\tan^2 x}$	M1	FT their $\frac{d}{dx}(\cos^2 x)$
	Fully correct isw	A1	FT their $\frac{d}{dx}(\cos^2 x)$ only
	$\frac{\delta y}{h} \approx their \frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=\frac{\pi}{4}}$	M1	
	$\delta y \approx -4h$ cao	A1	

Question	Answer	Marks	Partial Marks
7(a)	Alternative method 1		
	$\frac{\mathrm{d}}{\mathrm{d}x}(\cos^3 x) = -3\cos^2 x \sin x \mathrm{soi}$	(B1)	
	Attempts the quotient rule: $\frac{dy}{dx} = \frac{(\sin x)(-\sin x - 3\cos^2 x \sin x) - (\cos x + \cos^3 x) \cos x}{\sin^2 x}$	(M1)	FT their $\frac{d}{dx}(\cos^3 x)$
	Fully correct isw	(A1)	FT <i>their</i> $\frac{d}{dx}(\cos^3 x)$ only
	$\frac{\delta y}{h} \approx their \frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=\frac{\pi}{4}}$	(M1)	
	$\delta y \approx -4h$ cao	(A1)	
	Alternative method 2	2	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{2}{\tan x}\right) = -2(\tan x)^{-2}\sec^2 x$	(B1)	
	Attempts the product rule $\frac{dy}{dx} = -2(\tan x)^{-2} \sec^2 x - (\sin x(-\sin x) + \cos x(\cos x))$	(M1)	FT their $\frac{d}{dx}\left(\frac{2}{\tan x}\right)$
	Fully correct isw	(A1)	FT <i>their</i> $\frac{d}{dx}\left(\frac{2}{\tan x}\right)$ only
	$\frac{\delta y}{h} \approx their \frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=\frac{\pi}{4}}$	(M1)	
	$\delta y \approx -4h$ cao	(A1)	

Question	Answer	Marks	Partial Marks
7(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -3(x-3)^{-4} \text{ oe, soi}$	B1	
	$\frac{d^2 y}{dx^2} = -4 \times -3(x-3)^{-5}$ oe, soi	B1	
	$\frac{(x-3)^2 + 3(x-3) - 4}{(x-3)^5}$ or $\left[\frac{x-3+3}{(x-3)^4} - \frac{4}{(x-3)^5}\right] = \frac{x(x-3) - 4}{(x-3)^5}$	M1	FT $\frac{dy}{dx} = k(x-3)^{-4}$ and $\frac{d^2 y}{dx^2} = m(x-3)^{-5}$ where k and m are constants
	Correct completion to given answer: $\frac{x^2 - 3x - 4}{(x-3)^5} = \frac{(x+1)(x-4)}{(x-3)^5}$	A1	
8(a)(i)	3 ≤ <i>x</i> < 5	B2	B1 for $x \ge 3$ or for $x < 5$ or for 3 and 5 in an incorrect inequality
8(a)(ii)	$x = \sqrt{5x - 4}$ and rearrangement to $x^2 - 5x + 4 = 0$	B1	
	Factorises $x^2 - 5x + 4$ or solves their $x^2 - 5x + 4 = 0$	M1	
	x = 4 only, nfww	A1	
8(a)(iii)	Correct pair of graphs. y $y = f^{-1}(x)$ y = f(x) y = x	4	B1 for correct shape for f; may not be over correct domain but must have positive <i>y</i> -intercept and appear to tend to an asymptote in the 1st quadrant B1 for (0, 3) and f in 1st quadrant only; must have attempted correct shape B1 for asymptote at $y = 5$; must have attempted correct shape B1 for a correct reflection of <i>their</i> f in the line $y = x$ Maximum of 3 marks if not fully correct

Question	Answer	Marks	Partial Marks
8(b)	$f^{-1}(x) = -\ln \frac{5-x}{2}$ or $f^{-1}(x) = \ln \frac{2}{5-x}$ oe	2	M1 for a complete attempt to find the inverse function with at most one sign or arithmetic error: Putting $y = f(x)$ and changing subject to x and swopping x and y or swopping x and y and changing subject to y
	Correct simplified form e.g. $\left[f^{-1}g(x) = \right] - \ln \frac{2-5x}{2(1-x)}$ or $\left[f^{-1}g(x) = \right] \ln \frac{2-2x}{2-5x}$	2	M1 FT for a correct unsimplified form of the function; FT providing of equivalent difficulty
9(a)	$6.5\left(\frac{3\pi}{8}\right) + 5.2\left(\frac{3\pi}{8}\right) + 2(6.5 - 5.2)$	M2	M1 for $6.5\left(\frac{3\pi}{8}\right)$ or $5.2\left(\frac{3\pi}{8}\right)$
	16.38 to 16.4	A1	
9(b)	[Angle $PRQ =] 2\phi$ soi	B1	
	$y = 2a\cos\phi \text{ oe or } y = \frac{a\sin(\pi - 2\phi)}{\sin\phi} \text{ oe}$ $y^2 = a^2 + a^2 - 2a^2\cos(\pi - 2\phi) \text{ oe}$ $\text{or } y^2 = a^2 + a^2 + 2a^2\cos(2\phi) \text{ oe}$	B1	
	Complete and correct plan soi: $\pi a^2 - \frac{1}{2}(2a\cos\phi)^2(2\phi)$ oe or $\pi a^2 - \frac{1}{2}\left(\frac{a\sin(\pi - 2\phi)}{\sin\phi}\right)^2(2\phi)$ oe or $\pi a^2 - \frac{1}{2}(a^2 + a^2 - 2a^2\cos(\pi - 2\phi))(2\phi)$ oe or $\pi a^2 - \frac{1}{2}(a^2 + a^2 + 2a^2\cos(2\phi))(2\phi)$	M1	FT <i>their</i> 2ϕ and <i>their</i> expression for <i>y</i> or y^2 in terms of <i>a</i> and ϕ
	$a^{2} \left(\pi - 4\phi \cos^{2} \phi \right) \text{ or } \pi a^{2} - \frac{a^{2} \phi \sin^{2} (\pi - 2\phi)}{\sin^{2} \phi}$ or $\pi a^{2} - 2\phi (a^{2} - a^{2} \cos(\pi - 2\phi))$ or $\pi a^{2} - 2\phi (a^{2} + a^{2} \cos 2\phi)$ oe	A1	

Question	Answer	Marks	Partial Marks
10(a)(i)	$v = 3t^2 + c$	M1	
	$v = 3t^2 - 1$	A1	
	When $t = 3 v = 26$	A1	
10(a)(ii)	$s = t^3 - t + c$	M1	FT $kt^2 + c$
	$s = t^3 - t - 4$	A1	
	When $t = 3 \ s = 20$	A1	
10(b)	$v = \frac{-18e^3}{e^t} + c \text{ oe}$	M1	
	$v = \frac{-18e^3}{e^t} + 44 \text{ oe}$	A1	FT (<i>their</i> 26) + 18
	$s = \frac{18e^3}{e^t} + their44t + d \text{ oe}$	M1	dep on previous M1
	$s = \frac{18e^3}{e^t} + 44t - 130$ oe, cao	A1	

Question	Answer	Marks	Partial Marks
11	Solves $\sin(4x - \pi) = 0$ oe	M1	
	$a = \frac{3\pi}{4}$	A1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4\cos(4x - \pi)$	B2	B1 for $\frac{dy}{dx} = k \cos(4x - \pi)$, where $k > 0$ or $k = -4$
	$\boxed{\left[\frac{-1}{4\cos(4\times their\frac{3\pi}{4}-\pi)}=\right]-\frac{1}{4}}$	B2	FT their $a = \frac{n\pi}{4}$, <i>n</i> is a positive integer B1 for
	AT PRA		$\frac{-1}{theirk\cos(4\times their\frac{3\pi}{4}-\pi)}$
	$y - 0 = -\frac{1}{4} \left(x - \frac{3\pi}{4} \right)$ or $0 = -\frac{1}{4} \left(\frac{3\pi}{4} \right) + c$ oe	M1	FT <i>their</i> perpendicular gradient and <i>their a</i>
	$B\left(0,\frac{3\pi}{16}\right)$ soi	B1	
	[Exact area =] $\frac{9\pi^2}{128}$	B1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/21 October/November 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Guidance
1	Finds by elimination $3y + \sqrt{7}y = 4$ oe or substitutes $x = 11 - 3y$ into $x - \sqrt{7}y = 7$ oe OR Finds by elimination $3y + \sqrt{7}y = 21 + 11\sqrt{7}$ oe or substitutes $y = \frac{11 - x}{3}$ into $x - \sqrt{7}y = 7$	M1	
	$y = \frac{4}{3 + \sqrt{7}}$ or $x = \frac{21 + 11\sqrt{7}}{3 + \sqrt{7}}$	A1	
	$y = \frac{4}{3 + \sqrt{7}} \times \frac{3 - \sqrt{7}}{3 - \sqrt{7}} \text{ oe}$ or $x = \frac{21 + 11\sqrt{7}}{3 + \sqrt{7}} \times \frac{3 - \sqrt{7}}{3 - \sqrt{7}} \text{ oe}$	M1	FT <i>their</i> value of <i>x</i> or <i>y</i> providing of equivalent difficulty
	$y = 6 - 2\sqrt{7}$ and $x = 6\sqrt{7} - 7$	A2	A1 for either and no extra values
2	$2x^3 + 3x^2 - 29x + 30[=0]$	B1	
	Uses a correct factor $x - 2$ or $x + 5$ to find a quadratic factor with at least 2 terms correct	M1	,0 ⁻
	$(x-2) \rightarrow (2x^2 + 7x - 15) [=0]$ or $(x+5) \rightarrow (2x^2 - 7x + 6) [=0]$	A1	
	Factorises or solves <i>their</i> 3-term quadratic: (x + 5)(2x - 3) [= 0] or $(x - 2)(2x - 3) [= 0]$ or $[x =] \frac{-7 \pm \sqrt{7^2 - 4(2)(-15)}}{2(2)}$ or $\frac{7 \pm \sqrt{(-7)^2 - 4(2)(6)}}{2(2)}$	M1	dep on previous M1
	x = 2, -5, 1.5	A1	

Question	Answer	Marks	Guidance
3(a)	$\frac{dy}{dx} = \frac{1}{2}(1+3x)^{-\frac{1}{2}} \times 3$ oe, isw	B2	B1 for $\frac{dy}{dx} = \frac{1}{2}(1+3x)^{-\frac{1}{2}} \times$ or $\frac{dy}{dx} = \frac{1}{2}()^{-\frac{1}{2}} \times 3$ or $\frac{dy}{dx} = their \frac{1}{2}(1+3x)^{(their\frac{1}{2})-1} \times 3$ or $\frac{dy}{dx} = k(1+3x)^{-\frac{1}{2}} \times 3$, k is a constant, $k \neq \frac{1}{2}$
	$m_{\text{tangent}} = \frac{3}{8} \text{ or } 0.375$ or $m_{\text{normal}} = \frac{-2}{3(1+3x)^{-\frac{1}{2}}}$ oe	B1	FT <i>their</i> $\frac{dy}{dx}$ if necessary providing at least B1 previously awarded
	$\left(their\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{3}{8} \text{ or } \left(their\left(-\frac{\mathrm{d}x}{\mathrm{d}y}\right)\right) = -\frac{8}{3}$	M1	FT <i>their</i> $\frac{dy}{dx}$ if necessary providing at least B1 previously awarded
	(5, 4)	A1	
3(b)	$m_{\text{normal}} = -\frac{10}{3}$	B 1	
	$y-5 = -\frac{10}{3}(x-8)$ or $y = \frac{-10}{3}x + c$ and $5 = (\frac{-10}{3})(8) + c$ oe soi	MI	FT <i>their m</i> _{normal}
	$y = -\frac{10}{3}x + \frac{95}{3}$	A1	FT <i>their m</i> _{normal}
4(a)	$(3x+1)\log 2 = (x-2)\log 5$ oe	B 1	
	$(3\log 2 - \log 5)x = -\log 2 - 2\log 5$	M1	FT if of equivalent difficulty
	<i>x</i> = -8.32	A1	

Question	Answer	Marks	Guidance
4(b)	Writes as a quadratic in e^{2y+1} or states $u = e^{2y+1}$ and writes as a quadratic in u oe, soi	M1	condone one error
	$(e^{2y+1})^2 - e^{2y+1} - 6$ [=0] oe or $u^2 - u - 6$ [=0] oe	A1	
	$(e^{2y+1}+2)(e^{2y+1}-3)$ [=0] leading to $e^{2y+1}=3$ or $(u+2)(u-3)$ [=0] leading to $e^{2y+1}=3$	A1	
	y = 0.0493 and no other solutions	A1	
5(a)	$\frac{dy}{dx} = -(\cos 2x)^{-2} \times -2\sin 2x = \frac{2\sin 2x}{\cos^2 2x}$ or $\frac{dy}{dx} = \frac{0[\cos 2x] - (-2\sin 2x)}{\cos^2 2x} = \frac{2\sin 2x}{\cos^2 2x}$	B2	B1 for $-(\cos 2x)^{-2} \times m \sin 2x$ or $\frac{0[\cos 2x] - (m \sin 2x)}{\cos^2 2x}$ where $m = 2$ or $m < 0$
5(b)	$2\tan^{2}2x = 5$ or $7\cos^{2}2x = 2$ or $7\sin^{2}2x = 5$	M1	FT their k
	$\tan 2x = [\pm] \sqrt{\frac{5}{2}}$ or $\cos 2x = [\pm] \sqrt{\frac{2}{7}}$ or $\sin 2x = [\pm] \sqrt{\frac{5}{7}}$	A1	
	0.503 or 0.5034[26] rot to 4 or more sf 1.07 or 1.067[36] rot to 4 or more sf and no extras in range	A2	A1 for either, ignoring extras
6(a)	$3\left(x+\frac{5}{2}\right)^2 - \frac{155}{4}$	B4	B2 for $3\left(x+\frac{5}{2}\right)^2$ or $3(x+2.5)^2$ or B1 for $\left(x+\frac{5}{2}\right)^2$ or $(x+2.5)^2$ B2 for $c = -\frac{155}{4}$ or -38.75 or B1 for $-\frac{25}{4} \times 3 - 20$ oe
6(b)	Min value $-\frac{155}{4}$ when x is $-\frac{5}{2}$	B2	FT <i>their c</i> from part a and <i>-their b</i> from(a)B1 for either without contradiction

Question	Answer	Marks	Guidance
6(c)	$3\left(y^{\frac{1}{3}} + \frac{5}{2}\right)^2 = \frac{155}{4}$ soi	M1	FT an expression of correct form from (a)
	Rearranges as far as: $y^{\frac{1}{3}} = -\frac{5}{2} \pm \sqrt{\frac{155}{12}}$ soi	A1	
	y = 1.31 or -226	A1	
7	$\frac{a(1-r^3)}{1-r} = 17.5 \text{ oe or } a + ar + ar^2 = 17.5$ oe	B1	
	$\frac{a}{1-r} = 20$	B1	
	Correctly eliminates <i>a</i> or eliminates <i>r</i>	M1	FT <i>their</i> equations providing at least B1 awarded
	$20(1 - r^3) = 17.5$ or $a^3 - 60a^2 + 1200a - 7000 = 0$	A1	
	$r = \frac{1}{2}, a = 10$	A2	A1 for either
8(a)	Product rule attempted	M1	at most one error
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right]\sin x + x\cos x \text{ oe}$	A1	.2.
8(b)	$\left[\text{When } x = \frac{\pi}{2} \right] y = \frac{\pi}{2}$	B1	,O .
	$\left[\text{When } x = \frac{\pi}{2} \right] \frac{\mathrm{d}y}{\mathrm{d}x} = 1$	M1	FT <i>their</i> derivative providing at least M1 awarded in (a)
	y = x	A1	
8(c)	$x\sin x + \cos x + c$	B3	B2 for $x\sin x + \cos x$ or B1 for $\left[\int x\cos x dx = \right] x\sin x - \int \sin x dx$
8(d)	$\frac{\pi}{4}\sin\frac{\pi}{4} + \cos\frac{\pi}{4} - (0 + \cos 0)$	M1	
	0.26	A1	
9(a)	$(\ln(3x+2))^2 + 1$ oe isw	B 1	

Question	Answer	Marks	Guidance
9(b)	$\ln(3x+2) = [\pm] 2$	B 1	
	$e^2 = 3x + 2$	M1	FT $\ln(3x + 2) = k$, where $k > 0$
	$x = \frac{e^2 - 2}{3}$ as only solution	A1	
9(c)	$\ln(3\ln(3x+2)+2)$	B1	
	$their(3\ln(3x+2)+2) = e$	M1	FT <i>their</i> $gg(x)$ with at most one error
	$3\ln(3x+2) + 2 = e$	A1	
	$\ln(3x+2) = \frac{e-2}{3} \text{ or } 0.239[42]$	M1	FT <i>their</i> $a \ln(3x + 2) + b = e$, where <i>a</i> and <i>b</i> are non-zero constants
	$3x + 2 = e^{\frac{e-2}{3}}$ or $3x + 2 = 1.270[52]$	A1	
	awrt -0.243	A1	
10(a)	$\left[v = \int \frac{-45}{(t+1)^2} dt = \right] \frac{-45(t+1)^{-1}}{-1} + C \text{ or}$ better	B2	B1 for $\left[v = \int \frac{-45}{(t+1)^2} dt = \right] k(t+1)^{-1}$
	$50 = \frac{their45}{0+1} + C$	M 1	
	$\left[v=\right]\frac{45}{t+1}+5$	A1	i'n
10(b)	$[F(t) =] [45\ln(t+1) + 5t]_{1}^{10}$	B2	B1 for (<i>their</i> 45) $\ln(t + 1)$
	F(10) – F(1)	M1	dep on at least B1
	122 (m) or 121.7[13] rot to 4 or more sf	A1	dep on all previous marks awarded

Question	Answer	Marks	Guidance
11(a)	1080	3	M2 for a fully correct method e.g.
			[starts with 1, 2, 4, 5 and ends in 3, 6] $4 \times 6 \times 5 \times 4 \times 2$ or 960 and [starts with 3 and ends in 6] $1 \times 6 \times 5 \times 4 \times 1$ or 120 OR [ends with 6 and starts with 1, 2, 3, 4, 5] $5 \times 6 \times 5 \times 4 \times 1$ or 600 and [ends with 3 and starts with 1, 2, 4, 5] $4 \times 6 \times 5 \times 4 \times 1$ or 480
	9		or M1 for a partially correct method equivalent to one of the above two steps
11(b)	2160	3	M2 for a fully correct method e.g.
	Z _A A. satpr		[starts with 1, 3, 5 and ends in 2, 4, 6, 8] $3 \times 6 \times 5 \times 4 \times 4$ or 1440 and [starts with 2 or 4 and ends in 6, 8 or one of 2 or 4] $2 \times 6 \times 5 \times 4 \times 3$ or 720 OR [ends with 6, 8 and starts with 1, 2, 3, 4, 5] $5 \times 6 \times 5 \times 4 \times 2$ or 1200 and [ends with 2, 4 and starts with 1, 3, 5 or one of 2 or 4] $4 \times 6 \times 5 \times 4 \times 2$ or 960
			or M1 for a partially correct method equivalent to one of the above two steps

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 October/November 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Guidance
1	3y - (-5y - 4)y = 6 oe or $3\left(\frac{-4 - x}{5}\right) - x\left(\frac{-4 - x}{5}\right) = 6$ or $x + 5\left(\frac{6}{3 - x}\right) = -4 \text{ oe}$	M1	
	$5y^{2} + 7y - 6 = 0$ or $x^{2} + x - 42 = 0$	A1	
	Factorises <i>their</i> 3-term quadratic expression or solves <i>their</i> 3-term quadratic equation, e.g. (5y-3)(y+2) = 0 or $(x-6)(x+7) = 0$	M1	
	$ x = 6, y = -2 \\ x = -7, y = 0.6 $	A2	A1 for either $x = 6$, $x = -7$ or $y = -2$, $y = 0.6$ or for an <i>x</i> , <i>y</i> pair from a correct factorisation or correct solving of a correct equation. The method of solution must be seen in this case.
2	$e^{2x-3-(5-x)} = \frac{7}{4}$ or $e^{5-x-(2x-3)} = \frac{4}{7}$ oe	M1	
	$e^{3x-8} = \frac{7}{4}$ oe, soi or $e^{8-3x} = \frac{4}{7}$ oe, soi	A1	5
	$3x - 8 = \ln \frac{7}{4}$ or $8 - 3x = \ln \frac{4}{7}$ or	M1	FT expression of similar structure which has at most one sign or arithmetic slip
	$x = \frac{\ln 1.75 + 8}{3}$ oe or $x = \frac{8 - \ln \frac{4}{7}}{3}$ oe or 2.85[32] rot to 3 or more sf	A1	

Question	Answer	Marks	Guidance
2	Alternative method		
	$\ln 4 + \ln e^{2x-3} = \ln 7 + \ln e^{5-x}$ oe, soi	(M1)	
	$\ln 4 + 2x - 3 = \ln 7 + 5 - x$ oe	(A1)	
	$2x + x = \ln 7 + 5 - \ln 4 + 3$ or $3x - 8 = \ln \frac{7}{4}$ oe or $8 - 3x = \ln \frac{4}{7}$ oe	(M1)	FT expression of similar structure which has at most one sign or arithmetic slip
	$x = \frac{\ln 7 - \ln 4 + 8}{3}$ or or 2.85[32] rot to 3 or more sf	(A1)	
3	$\left[m_{\text{tangent}}=\right]-ax^{-2}+3$ oe	B1	
	[When $x = 1$, $m_{\text{normal}} = $] $\frac{-1}{3-a}$ oe or gradient of tangent = 4 soi	B1	FT $\frac{-1}{\left. their \frac{dy}{dx} \right _{x=1}}$ if appropriate
	$\frac{-1}{their(3-a)} = -\frac{1}{4}$ oe or their (3-a) = 4 oe	M1	FT $\frac{-1}{their \frac{dy}{dx}\Big _{x=1}}$ or their $\frac{dy}{dx}\Big _{x=1}$ and their evaluation of $\frac{-1}{-\frac{1}{4}}$
	a = -1 nfww	A1	
	[When $x = 1$] their $0 = -\frac{1}{4}[1] + b$ oe	M1	FT $y = (their a) + 1$ providing at least 2 of the first 3 marks awarded
	$b = \frac{1}{4}$ nfww	A1	

Question	Answer	Marks	Guidance
4	$\log_{3}\left(\frac{11x-8}{x^{2}}\right) = 1$ or $\log_{3}(11x-8) = \log_{3}(3x^{2}) \text{ soi}$ OR $\log_{x}\left(\frac{11x-8}{3}\right) = 2$ or $\log_{x}(11x-8) = \log_{x}(3x^{2}) \text{ soi}$	M2	M1 for correct use change of base in a correct equation so that all logs have consistent base: $\log_x 3 = \frac{\log_3 3}{\log_3 x}$ or $\log_x 3 = \frac{1}{\log_3 x}$ oe, soi OR $\log_3(11x-8) = \frac{\log_x(11x-8)}{\log_x 3}$ oe, soi
	$3x^2 - 11x + 8 = 0$] oe, nfww	A1	
	(3x-8)(x-1) = 0	M1	FT <i>their</i> 3-term quadratic dep on at least M1 previously awarded
	$x = \frac{8}{3}$ or 2.67 or 2.666[6] rot to 3 or	A1	
	more dp as only solution		
5	$6x^3 - 5x^2 - 13x + 12 [=0]$	B 1	
	Uses the correct factor $x - 1$ to find a quadratic factor with at least 2 terms correct	M1	
	$6x^2 + x - 12$	A1	
	Factorises or solves <i>their</i> 3-term quadratic: $(2x + 3)(3x - 4) = 0$ or $[x =]\frac{-1 \pm \sqrt{1 - 4(6)(-12)}}{2(6)}$ oe	M1	dep on previous M1
	$x = 1, -1.5, \frac{4}{3}$ nfww	A1	dep on all previous marks awarded

Question	Answer	Marks	Guidance
6(a)	510	3	M2 for a fully correct method e.g. [starts with 5, 7, 9 and ends in 3 or two of 5, 7, 9] $3 \times 6 \times 5 \times 3$ or 270 and [starts with 6, 8 and ends in 3,5,7, 9] $2 \times 6 \times 5 \times 4$ or 240
	SATE	R	OR [ends with 3 and starts with 5, 6, 7, 8, 9] $5 \times 6 \times 5 \times 1$ or 150 and [ends with 5, 7, 9 and starts with 6, 8 or two of 5, 7, 9] $4 \times 6 \times 5 \times 3$ or 360 or M1 for a partially correct method equivalent to one of the above two
6(b)	540	3	steps M2 for a fully correct method e.g. [starts with 5, 7 and ends with 2, 3 and 5 or 7] $2 \times 6 \times 5 \times 3 = 180$ and [starts with 6, 8, 9 and ends with 2, 3, 5, 7] $3 \times 6 \times 5 \times 4 = 360$ OR [ends with 2, 3 and starts with 5, 6, 7, 8, 9] $5 \times 6 \times 5 \times 2$ or 300 and [ends with 5, 7 and starts with 6, 8, 9 with 5, 7 and starts with 6, 8, 9
			or M1 for a partially correct method equivalent to one of the above two steps

Question	Answer	Marks	Guidance
7(a)	$\frac{\sin^2 x + (1 - \cos x)^2}{(1 - \cos x)\sin x}$ or $\frac{\sin^2 x}{(1 - \cos x)\sin x} + \frac{(1 - \cos x)^2}{(1 - \cos x)\sin x}$	M1	
	$\frac{\sin^2 x + 1 - 2\cos x + \cos^2 x}{(1 - \cos x)\sin x}$	A1	OR $\frac{1 - \cos^2 x + (1 - \cos x)^2}{(1 - \cos x)\sin x}$
	$\frac{1+1-2\cos x}{(1-\cos x)\sin x}$ or $\frac{1-\cos^2 x+1-2\cos x+\cos^2 x}{(1-\cos x)\sin x}$	A1	OR $\frac{(1 - \cos x)(1 + \cos x) + (1 - \cos x)^2}{(1 - \cos x)\sin x}$
	Fully correct justification of given answer: $\frac{2(1-\cos x)}{(1-\cos x)\sin x} = 2\csc x$ or $\frac{2-2\cos x}{(1-\cos x)\sin x} = \frac{2}{\sin x} = 2\csc x$ or equivalent	A1	All steps correct and final step justified OR $\frac{1 + \cos x + 1 - \cos x}{\sin x} = 2 \operatorname{cosec} x$
	Alternative		
	$\frac{\sin x(1+\cos x)}{(1-\cos x)(1+\cos x)} + \frac{(1-\cos x)\sin x}{\sin x \sin x}$ or $\frac{\sin x(1+\cos x)}{1-\cos^2 x} + \frac{(1-\cos x)\sin x}{\sin^2 x}$	(M1)	ri'
	$\frac{\sin x + \sin x \cos x}{\sin^2 x} + \frac{\sin x - \cos x \sin x}{\sin^2 x}$	(A1)	CO
	$\frac{2\sin x}{\sin^2 x}$	(A1)	
	Fully correct justification of given answer: $\frac{2}{\sin x} = 2 \operatorname{cosec} x$	(A1)	All steps correct and final step justified

Question	Answer	Marks	Guidance
7(b)	$3\sin^2 x - \sin x - 2$ [=0] soi	B 1	
	$(3\sin x + 2)(\sin x - 1) = 0$ oe	M1	
	$\sin x = -\frac{2}{3}, \ \sin x = 1$	A1	
	90 221.8 or 221.81[03] rot to 2 or more dp 318.2 or 318.18[96] rot to 2 or more dp	A1	and no extras in range If B1 M1 A0 A0 allow SC1 for 221.8 or 221.81[03] rot to 2 or more dp and 318.2 or 318.18[96] rot to 2 or more dp and no extras in range
8(a)	$2\pi rh + 2\pi r^2 + \pi r^2 [= 300]$ oe	M1	
	$h = \frac{300 - 3\pi r^2}{2\pi r}$ oe, isw	A1	
8(b)	$V = \pi r^2 \left(their \frac{300 - 3\pi r^2}{2\pi r} \right) + \frac{2}{3}\pi r^3 \text{ oe}$	M2	FT <i>their h</i> providing in terms of <i>r</i> and derived from a dimensionally correct equation in (a); M1 for $V = \pi r^2 \left(their \frac{300 - 3\pi r^2}{2\pi r} \right) + k\pi r^3,$ $k \neq \frac{2}{3} \text{ oe}$
	Correct completion to given answer: $150r - \frac{5}{6}\pi r^3$ nfww	A1	0
8(c)	Derivative of V: $150 - \frac{5}{2}\pi r^2$ oe, soi, isw	B1	
	their $\left(150 - \frac{5}{2}\pi r^2\right) = 0$ and solves as far as $r = \dots$	M1	FT <i>their</i> $\frac{dV}{dr}$ providing that at least one term is correct
	$r = \sqrt{\frac{300}{5\pi}}$ oe or 4.37 (cm)	A1	
	$150(their 4.37) - \frac{5}{6}\pi(their 4.37)^3$	M1	FT <i>their</i> 4.37
	437 or awrt 437 (cm ³) isw	A1	

Question	Answer	Marks	Guidance
9(a)	$\frac{1}{2}(\sqrt{5}-1)(\sqrt{5}+1)\sin A = \frac{2\sqrt{5}}{3}$	M1	OR $\frac{1}{2} \times (\sqrt{5} + 1) \times \text{height} = \frac{2\sqrt{5}}{3}$ and $\sin A = (their \text{ height}) \div (\sqrt{5} - 1)$
	Simplifies to $\frac{1}{2} \times (5-1) \times \sin A = \frac{2\sqrt{5}}{3}$ oe	A1	OR $\sin A = \frac{4\sqrt{5}}{3(\sqrt{5}+1)} \div (\sqrt{5}-1)$
			or $\sin A = \frac{5 - \sqrt{5}}{3} \div (\sqrt{5} - 1)$
	$\frac{\sqrt{5}}{3}$ isw	A1	
9(b)	$\cos A = \frac{2}{3}$ or exact equivalent	B2	B1 for $\cos A = \sqrt{1 - their\left(\frac{\sqrt{5}}{3}\right)^2}$ or for $\cos A = \cos\left(\sin^{-1}\frac{\sqrt{5}}{3}\right)$ or for a sketch $A = \frac{3}{2}\sqrt{5}$
	$(\sqrt{5}-1)^2 + (\sqrt{5}+1)^2$ -2($\sqrt{5}-1$)($\sqrt{5}+1$)×cos A soi	M1	
	$(\sqrt{5}-1)^2 + (\sqrt{5}+1)^2$ $-2(\sqrt{5}-1)(\sqrt{5}+1) \times \frac{2}{3}$ soi	A1	5
	$x = \sqrt{\frac{20}{3}}$ or $\frac{2}{3}\sqrt{15}$ or $2\sqrt{\frac{5}{3}}$ oe, isw	Al	

Question	Answer	Marks	Guidance
9(c)	$\frac{\text{their } x}{\text{their } \sin A} = \frac{\sqrt{5} + 1}{\sin B} \text{ oe, soi}$ or $\frac{1}{2} \times (\sqrt{5} - 1) \times \text{their } x \times \sin B = \frac{2\sqrt{5}}{3} \text{ oe,}$ soi	M1	FT <i>their x</i> and <i>their</i> sin <i>A</i>
	Correct expression $\frac{\sqrt{\frac{20}{3}}}{\frac{\sqrt{5}}{3}} = \frac{\sqrt{5}+1}{\sin B} \text{ oe}$ or $\frac{1}{2} \times (\sqrt{5}-1) \times \sqrt{\frac{20}{3}} \times \sin B = \frac{2\sqrt{5}}{3} \text{ oe}$	A1	
	$\frac{\sqrt{15} + \sqrt{3}}{6}$ or $\frac{\sqrt{3}}{6}(\sqrt{5} + 1)$ or $\frac{\sqrt{5} + 1}{2\sqrt{3}}$ oe, isw	A1	
10(a)	$ar^2 = 4.5$ and $ar^5 = 15.1875$ soi	B 1	
	Correctly eliminates one unknown using correct equations e.g $\left(\frac{4.5}{r^2}\right)r^5 = 15.1875$ or $\sqrt{\frac{4.5}{a}} = \sqrt[5]{\frac{15.1875}{a}}$ oe, soi	M1	
	<i>r</i> = 1.5, <i>a</i> = 2	A2	A1 for either
10(b)	$S_{15} = \frac{2(1-1.5^{15})}{1-1.5}$ and $S_{25} = \frac{2(1-1.5^{25})}{1-1.5}$ oe	B2	M1 FT their a and r for $S_{15} = \frac{2(1-1.5^{15})}{1-1.5}$ or $S_{25} = \frac{2(1-1.5^{25})}{1-1.5}$ oe
	Correct plan: $S_{25} - S_{15}$ oe attempted	M1	FT <i>their a</i> and <i>r</i>
	99253	A1	

Question	Answer	Marks	Guidance
10(b)	Alternative 1		
	first term = $(their2)(their1.5)^{15}$ and an attempt at S_{10}	(M1)	FT <i>their a</i> and <i>r</i>
	Correct sum $S_{10} = \frac{875.7(1-1.5^{10})}{1-1.5}$ oe	(B2)	M1 FT <i>their</i> first term and <i>r</i> for $S_{10} = \frac{their 875.7(1 - their 1.5^{10})}{1 - their 1.5}$
	99253	(A1)	
	Alternative 2		
	Correct sum: $2(1.5)^{15} + 2(1.5)^{16} + 2(1.5)^{17} + 2(1.5)^{18} + 2(1.5)^{19} + 2(1.5)^{20} + 2(1.5)^{21} + 2(1.5)^{22} + 2(1.5)^{23} + 2(1.5)^{24}$ oe or $2(1.5)^{15}\{1 + 1.5 + (1.5)^2 + (1.5)^3 + (1.5)^4 + (1.5)^5 + (1.5)^6 + (1.5)^7 + (1.5)^8 + (1.5)^9\}$	(M3)	M2 FT <i>their a</i> and <i>r</i> for sum starting with $2(1.5)^{15}$ and ending with $2(1.5)^{24}$ with at most one omission or error or M1 FT <i>their a</i> and <i>r</i> for sum starting with $2(1.5)^{15}$ or ending with $2(1.5)^{24}$ with at most two omissions or errors
	99 253	(A1)	
11(a)	(-2, 2)	B2	B1 for one correct coordinate nfww M1 for $\overrightarrow{AC} = \frac{1}{3} \begin{pmatrix} 9 \\ -12 \end{pmatrix}$ or $\overrightarrow{CA} = \frac{1}{3} \begin{pmatrix} -9 \\ 12 \end{pmatrix}$ for $x = -5 + 3$ or $x = 4 - 6$ or for $y = 6 - 4$ or $y = -6 + 8$ or for $x + 5 = \frac{4 - x}{2}$ or $6 - y = \frac{y + 6}{2}$ or for $2\left(\overrightarrow{OC} - \begin{pmatrix} -5 \\ 6 \end{pmatrix}\right) = \begin{pmatrix} 4 \\ -6 \end{pmatrix} - \overrightarrow{OC}$ oe

Question	Answer	Marks	Guidance
11(b)	$m_{AB} = \frac{-6-6}{4-(-5)}$ oe or $-\frac{12}{9}$ or $-\frac{4}{3}$	B1	
	$m_{CD} = \frac{3}{4}$	M1	FT $\frac{-1}{their m_{AB}}$
	$y-2 = \frac{3}{4}(x+2)$ oe or $y = \frac{3}{4}x + c$ and $2 = \left(\frac{3}{4}\right)(-2) + c$ oe soi	M1	FT <i>their</i> (-2, 2) and $\frac{-1}{their m_{AB}}$
	$y = \frac{3}{4}x + \frac{7}{2}$ or equivalent in form y = mx + c	A1	
11(c)	$(x-4)^2 + (y+6)^2 = 125$ oe, soi	B1	
	Uses <i>their</i> $y = \frac{3}{4}x + \frac{7}{2}$ to eliminate one unknown	M1	if correct implies B1
	Correct equation in one unknown $[BD^{2} =](x-4)^{2} + \left(\frac{3}{4}x + \frac{7}{2} + 6\right)^{2} = 125 \text{ oe}$	A1	
	Writes in solvable form: $25x^2 + 100x - 300 = 0$ oe	A1	
	Factorises or solves a correct 3-term quadratic	A1	.5. 0
	(2, 5) and (-6, -1)	AI	If B1 , M0 award: SC2 for identifying one correct point by inspection from the length equation and testing it in the correct equation of <i>CD</i> and SC2 for identifying the second correct point by inspection from the length equation and testing it in the correct equation of <i>CD</i>

Question	Answer	Marks	Guidance
11(c)	Alternative		
	[<i>BC</i> =]	(B1)	FT their C
	$\sqrt{(4 - (their - 2))^2 + (-6 - (their 2))^2}$		
	$CD = \sqrt{125 - their100}$	(M1)	FT <i>their</i> BC^2 providing $125 - their$ $100 > 0$
	<i>CD</i> = 5	(A1)	
	$ \begin{pmatrix} 4 \\ 3 \end{pmatrix} + \begin{pmatrix} -2 \\ 2 \end{pmatrix} \text{ or } \begin{pmatrix} -4 \\ -3 \end{pmatrix} + \begin{pmatrix} -2 \\ 2 \end{pmatrix} $	(A2)	A1 for $\overrightarrow{CD_1} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ or $\overrightarrow{CD_2} = \begin{pmatrix} -4 \\ -3 \end{pmatrix}$ soi
	OR		OR A1 for finds
	finds $25x^2 + 100x - 300 = 0$ oe	R	$(x+2)^{2} + \left(\frac{3}{4}x + \frac{7}{2} - 2\right)^{2} = 25$
	(2, 5) and (-6, -1)	(A1)	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/23 October/November 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of **10** printed pages.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to correct answer only cao dependent dep FT follow through after error ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot SC Special Case seen or implied soi

Question	Answer	Marks	Guidance
1	$2x^2 - 8x + 3x - 12 + 3x^2 - 3x + 4x - 4$	B 1	Correctly expands all brackets * is any inequality or equals sign
	$[0^*] x^2 + 6x + 8$	B1	Collects terms to correct 3-term quadratic in solvable form
	$[0^*](x+2)(x+4)$	M1	Factorises or solves <i>their</i> 3-term quadratic
	-4 and -2	A1	Correct critical values
	-4 < x < -2 mark final answer	A1	
2	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2ax - 5$	B 1	
	$2a \times 2 - 5 = 7$ oe	M1	FT their $\left(\frac{dy}{dx} \Big _{x=2} \right) = 7$
	<i>a</i> = 3	A1	
	$7 \times 2 + b = their 4$ or $b = 2 - 4 \times their a$	M1	dep on previous M1 where <i>their</i> 4 is an attempt to evaluate $y = ax^2 - 5x + 2$ using $x = 2$ and <i>their a</i>
	<i>b</i> = -10	A1	
	Alternative		
	$(-12)^2 - 4a(2-b) = 0$ oe	(B1)	for use of discriminant on $ax^2 - 12x + 2 - b = 0$
	144 - 8a + 4a(4a - 22) = 0 oe or $144 - (b + 22)(2 - b) = 0 \text{ oe}$	(M1)	Condone one sign or arithmetic error
	$a^{2}-6a+9 = 0$ oe or $b^{2}+20b+100 = 0$ oe	(A1)	for correct 3-term quadratic in solvable form
	a=3 and $b=-10$	(A2)	A1 for $a = 3$ or $b = -10$

Question	Answer	Marks	Guidance
3	$lg((2x-1)(x+2)) = lg\frac{100}{4} \text{ oe}$ or $10^2 = 4(2x-1)(x+2)$ oe	M2	M1 for one log law correctly applied within a correct equation e.g. $lg4(2x-1)(x+2) = 2$
	$2x^2 + 3x - 27[=0]$	A1	Collects terms to correct 3-term quadratic in solvable form
	(2x+9)(x-3)[=0]	M1	dep on at least M1 previously awarded Factorises <i>their</i> $2x^2 + 3x - 27$ or solves <i>their</i> $2x^2 + 3x - 27 = 0$
	x = 3 indicated as only valid solution	A1	nfww
4(a)	2k+6=8-16+6k+2 oe	M1	For equating line to curve and substituting $x = 2$, or vice versa
	<i>k</i> = 3	A1	
4(b)	$x^{3}-4x^{2}+(2\times their k)x-4 \ [=0]$ or $x^{3}-4x^{2}+6x-4 \ [=0]$	M1	FT <i>their k</i> in correct cubic
	$x^2 - 2x + 2$	A2	Correct quadratic factor from correct cubic A1 for a quadratic factor with two terms correct, from correct cubic
	$(-2)^2 - 4(1)(2) < 0$ oe or $4 - 8 < 0$ oe	A1	Uses discriminant correctly on the correct quadratic factor
	[and so $x = 2$ is the only solution]		

Question	Answer	Marks	Guidance
5(a)	$\frac{\cos^2 x + (1 - \sin x)^2}{(1 - \sin x)\cos x}$	M1	Correctly takes common denominator
	or $\frac{\cos^2 x}{(1-\sin x)\cos x} + \frac{(1-\sin x)^2}{(1-\sin x)\cos x}$		
	$\frac{\cos^2 x + 1 - 2\sin x + \sin^2 x}{(1 - \sin x)\cos x}$	A1	OR $\frac{1-\sin^2 x + (1-\sin x)^2}{(1-\sin x)\cos x}$
	$\frac{1+1-2\sin x}{(1-\sin x)\cos x}$ or $\frac{1-\sin^2 x+1-2\sin x+\sin^2 x}{(1-\sin x)\cos x}$	A1	OR $\frac{(1-\sin x)(1+\sin x)+(1-\sin x)^2}{(1-\sin x)\cos x}$
	$\frac{2(1-\sin x)}{(1-\sin x)\cos x} = 2\sec x$ or $\frac{2-2\sin x}{(1-\sin x)\cos x} = \frac{2}{\cos x} = 2\sec x$	A1	All steps correct and final step justified OR $\frac{1+\sin x+1-\sin x}{\cos x} = 2 \sec x$
	or equivalent		
	Alternative Must work with LHS only		
	$\frac{(\cos x)(1+\sin x)}{(1-\sin x)(1+\sin x)} + \frac{(1-\sin x)\cos x}{(\cos x)\cos x}$	(M1)	Forms fractions with common denominator in different form
	$\frac{(\cos x)(1+\sin x)}{\cos^2 x} + \frac{(1-\sin x)\cos x}{\cos^2 x}$	(A1)	Uses difference of two squares and $\sin^2 x + \cos^2 x = 1$ to write fractions with a common denominator in the same form
	$\frac{2\cos x}{\cos^2 x}$	(A1)	Combine as a single fraction and collects terms
	$\frac{2}{\cos x} = 2 \sec x$	(A1)	All steps correct and final step justified
5(b)	$\cos^3\frac{\theta}{2} = \frac{1}{4}$	B1	
	$\cos\frac{\theta}{2} = \sqrt[3]{their\frac{1}{4}}$ soi	M1	dep on starting with $2\sec\frac{\theta}{2} = 8\cos^2\frac{\theta}{2}$
	±101.9 awrt	A2	and no extras in range A1 for either, ignoring extras in range If A0 then SC1 for ± 102 with no extras in range

Question	Answer	Marks	Guidance
6	$81+108ax+54a^{2}x^{2}+12a^{3}x^{3} \text{ soi}$ or $12a^{3} = \frac{3}{2} b = 108a c = 54a^{2} \text{ soi}$	М3	M2 for any 3 correct terms or 2 correct equations or M1 for any 2 correct terms, 1 correct equation or for correct but insufficiently simplified expansion e.g. $3^4 + 4 \times 3^3 \times ax + \frac{4 \times 3}{2} \times 3^2 \times (ax)^2$ $+ \frac{4 \times 3 \times 2}{3 \times 2} \times 3 \times (ax)^3$
	$a = \frac{1}{2}$ oe	A1	
	<i>b</i> = 54	A1	FT $108 \times their a$, providing at least M1 awarded
	$c = \frac{27}{2}$ oe	A1	FT 54 × (<i>their a</i>) ² , providing at least M1 awarded
7	${}^{n}C_{4} = \frac{n!}{(n-4)!4!}$ and ${}^{n}C_{2} = \frac{n!}{(n-2)!2!}$ soi	B1	
	$\frac{n(n-1)(n-2)(n-3)}{24} = \frac{13n(n-1)}{2}$ or $(n-2)(n-3) = \frac{13 \times 24}{2}$ oe, soi	M1	Writes in a correct form, free of factorials
	$n^2 - 5n - 150 [=0]$	A1	
	n = 15 only, nfww	A1	dep on previous A1
	$^{15}C_8 = 6435$ only	B1	
8(a)	(Velocity vector =) $\frac{26}{\sqrt{12^2 + 5^2}} \begin{pmatrix} 12\\5 \end{pmatrix}$ oe	M2	M1 for $\sqrt{12^2 + 5^2}$ or 13 or 2 seen
	(Position vector =) $\begin{pmatrix} 3 \\ -2 \end{pmatrix} + t \begin{pmatrix} 24 \\ 10 \end{pmatrix}$ oe	A1	
0606/23

Cambridge IGCSE – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
8(b)	(Direction vector =) $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ soi	B 1	
	or x component: $\cos \alpha = \frac{4}{5}$		
	y component: $\sin \alpha = \frac{3}{5}$ soi		
	(Velocity vector =) $\frac{20}{\sqrt{4^2 + 3^2}} \times their\begin{pmatrix}4\\3\end{pmatrix}$ oe soi	M1	
	or $20 \begin{pmatrix} their \cos \alpha \\ their \sin \alpha \end{pmatrix}$ soi		
	(Position vector =) $\begin{pmatrix} 67 \\ -18 \end{pmatrix} + t \begin{pmatrix} 16 \\ 12 \end{pmatrix}$ oe	A2	A1 FT $\begin{pmatrix} 67 \\ -18 \end{pmatrix}$ + $t \times their \begin{pmatrix} 16 \\ 12 \end{pmatrix}$
			If zero scored, SC2 for one correct component, either $67+16t$ or -18+12t
8(c)	3+24t = 67+16t oe or $-2+10t = -18+12t$ oe	M1	FT Equates <i>their x</i> components, or <i>their y</i> components from parts (a) and (b), providing of equivalent difficulty, e.g. $a+bt=c+dt$
	<i>t</i> = 8	A1	dep on full marks in (a) and (b)
	(Position of meeting =) $\binom{195}{78}$	A1	dep on full marks in (a) and (b)
9(a)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{-2x}\right) = -2\mathrm{e}^{-2x} \mathrm{soi}$	B 1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = k\mathrm{e}^{-2x} - 2kx\mathrm{e}^{-2x}$ oe, isw	B1	FT for use of product rule $k.e^{-2x} + kx.\left(their\frac{d}{dx}(e^{-2x})\right)$
	Alternative		
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{2x}\right) = 2\mathrm{e}^{2x} \mathrm{soi}$	(B1)	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{k\mathrm{e}^{2x} - 2kx\mathrm{e}^{2x}}{\left(\mathrm{e}^{2x}\right)^2} \text{ oe, isw}$	(B1)	FT for use of quotient rule $\frac{k \cdot e^{2x} - kx \cdot (their 2e^{2x})}{(e^{2x})^2}$

0606/23

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
9(b)	Equates $\frac{dy}{dx} = 0$ and finds $10 - 20x = 0$ oe	M1	FT <i>their</i> (a), provided of the form $me^{-2x} + nxe^{-2x}$ or $me^{2x} + nxe^{2x}$
	$\left(\frac{1}{2}, \frac{5}{e}\right)$ oe only	A2	For both values: $x = 0.5$ and $y = 5e^{-1}$ or 1.84 or 1.839[39] rot to 4 or more sf A1 for $x = \frac{1}{2}$ only
9(c)	$-2xe^{-2x} - e^{-2x} + c$	B3	For fully correct answer or B2 for $-2xe^{-2x} - e^{-2x}$ or $\left[\int 4xe^{-2x}dx\right] = -2xe^{-2x} + \int 2e^{-2x}dx$ or B1 for $kxe^{-2x} = \int (ke^{-2x} - 2kxe^{-2x})dx$ or better
9(d)	$-2e^{-2} - e^{-2} - (0 - e^{0})$ oe	M1	Correct substitution of limits into correct expression
	$1 - \frac{3}{e^2}$ or $1 - 3e^{-2}$	A1	
10(a)	a + (3-1)d = 10 soi	B1	
	$\frac{8}{2}$ { $2a + (8-1)d$ } = 116 soi	B1	
	Correct method to eliminate one unknown and attempt to solve to find <i>a</i> or <i>d</i>	M1	dep on at least B1 awarded
	a = 4 and $d = 3$	A2	A1 for either
10(b)	$S_{30} = \frac{30}{2} \{ 2(4) + 29(3) \}$ and $S_{11} = \frac{11}{2} \{ 2(4) + 10(3) \}$	B2	M1 FT <i>their a</i> and <i>their d</i> for $S_{30} = \frac{30}{2} \{2(their 4) + 29(their 3)\}$ or $S_{11} = \frac{11}{2} \{2(their 4) + 10(their 3)\}$
	Correct plan $S_{30} - S_{11}$ attempted	M1	FT their a and their d
	1216	A1	

0606/23

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance		
10(b)	Alternative 1				
	first term = $4 + 11 \times 3$ or 37 and an attempt at S_{19}	(M1)	FT <i>their</i> $a + 11 \times their d$		
	$\frac{19}{2} \{2(37) + (19 - 1) \times 3\}$ oe or $\frac{19}{2} \{37 + 91\}$ oe	(B 2)	M1 FT for <i>their</i> first term and <i>their d</i> in $\frac{19}{2}$ {2(<i>their</i> 37)+(19-1)× <i>their</i> 3} or for <i>their</i> first term and <i>their</i> last term in $\frac{19}{2}$ { <i>their</i> 37 + <i>their</i> 91}		
	1216	(A1)			
Alternative 2					
	Correct sum of terms: 37 + 40 + 43 + 46 + 49 + 52 + 55 + 58 + 61 + 64 + 67 + 70 + 73 + 76 + 79 + 82 + 85 + 88 + 91	(M3)	M2 FT <i>their a</i> and <i>their d</i> for sum starting with <i>their</i> 37 and ending with <i>their</i> 91, with at most one omission or error or M1 FT <i>their a</i> and <i>their d</i> for sum starting with <i>their</i> 37 or ending with <i>their</i> 91, with at most two omissions or errors		
	1216	(A1)			
11(a)	$2\mathbf{a} + \lambda(3\mathbf{b} - 2\mathbf{a})$ oe isw or $3\mathbf{b} - (1 - \lambda)(3\mathbf{b} - 2\mathbf{a})$ oe isw	B3	B1 for $\overrightarrow{PS} = 3\mathbf{b} - 2\mathbf{a}$ soi and B1 for correct route using λ , either $\overrightarrow{OX} = \overrightarrow{OP} + \lambda \overrightarrow{PS}$ soi or $\overrightarrow{OX} = \overrightarrow{OS} - (1 - \lambda) \overrightarrow{PS}$ soi		
11(b)	$\mu(5\mathbf{a}+2\mathbf{b})$ isw	B2	B1 for $\overrightarrow{OQ} = 3\mathbf{b} + 5\mathbf{a} - \mathbf{b}$ oe soi		
11(c)	$2-2\lambda = 5\mu$ and $3\lambda = 2\mu$ oe	M2	for correctly equating scalars for both components FT <i>their</i> (a) and (b) if possible M1 FT for equating scalars for either component		
	Solves to find $\lambda = \frac{4}{19}$ or $\mu = \frac{6}{19}$	A1			
	$\lambda = \frac{4}{19}$ and $\mu = \frac{6}{19}$	A1			
11(d)	$\frac{6}{19}$ isw	B 1			
11(e)	$\frac{4}{15}$ isw	B1			