

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 2 MARK SCHEME Maximum Mark: 80 Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE™ and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 8

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2020 Page 3 of 8

Question	Answer	Marks	Partial Marks
1	Valid method to find m $m = \frac{34 - 9}{3 - 0.5} [= 10] \text{ oe}$	M1	
	Valid method to find c , e.g. $34 = their \ 10 \times 3 + c$	M1	
	$\sqrt[4]{y} = (their 10)\frac{1}{x} + their 4$	M1	
	$y = \left(\frac{10}{x} + 4\right)^4 \text{ oe, cao}$	A1	
2(a)	$9\left(x-\frac{2}{3}\right)^2 + 1 \text{ oe}$	В3	B1 for each of p , q , r correct in correctly formatted expression; allow correct equivalent values If B0 then SC2 for $9\left(x-\frac{2}{3}\right)+1$ or SC1 for correct values but other incorrect format
2(b)	$their\left(\frac{2}{3},1\right)$ oe	B1	FT their (a)
3(a)	Finds p (– 1)	M1	
	24	A1	
3(b)(i)	p(-2) = 15(-8) + 22(4) - 15(-2) + 2 = 0	B1	
3(b)(ii)	Attempt to find the quadratic factor	M1	
	$15x^2 - 8x + 1$	A1	
	(x+2)(3x-1)(5x-1) oe, cao	A1	If zero scored, SC1 for an answer of $(x+2)(3x-1)(5x-1)$ without working.
4(a)	${}^{5}C_{2} \times {}^{8}C_{4}$ oe	M1	
	700	A1	
4(b)	3×6! oe	M1	
	2160	A1	
5(a)	$4\alpha - 12 = \alpha + 3 \text{ and } 4 - \beta = -2$	M1	
	α =5	A1	
	β =6	A1	

© UCLES 2020 Page 4 of 8

Question	Answer	Marks	Partial Marks
5(b)	$\sqrt{their(\alpha+3)^2+(-2)^2}$	M1	
	$\frac{2\mathbf{j} - their 8\mathbf{i}}{\sqrt{their 68}}$	A1	FT their α
6	$3x^2 + 8x + 5 = kx - 7$	M1	
	$3x^2 + (8-k)x + 12 = 0$ soi	A1	
	$(8-k)^2-4(3)(12)$	M1	
	$k^2 - 16k - 80*0$	M1	
	Critical values: -4 and 20 soi	A1	
	-4 < k < 20	A1	Alternative method: M1 for $k = 6x + 8$ oe M1 for $y = (6x + 8)x - 7$ M1 for $3x^2 + 8x + 5 = (6x + 8)x - 7$ A1 for $x = \pm 2$ A1 for $k = -4$, $k = 20$ A1 for $-4 < k < 20$
7(a)	$x + 2y = \lg 5 \text{ or}$ $3x + 4y = \lg 50$	B1	
	Solves <i>their</i> linear simultaneous equations	M1	
	$x = \lg 2$ or equivalent simplified form	A1	
	$y = \frac{1}{2} \lg \frac{5}{2}$ or equivalent simplified form	A1	If A0 A0 then SC1 for a correct pair of unsimplified values or a correct pair of decimal values correct to at least 3sf
7(b)	$\left(x^{\frac{1}{3}} + 2\right)\left(2x^{\frac{1}{3}} - 5\right) \text{ oe}$	M1	
	$x^{\frac{1}{3}} = -2, \frac{5}{2}$	M1	
	$x = -8, \frac{125}{8}$	A1	
8(a)	$32 - 80x + 80x^2 - 40x^3 + 10x^4 - x^5$	В3	B2 for any four or five terms correct or B1 for any three terms correct or M1 for a fully correct but unsimplified expansion

© UCLES 2020 Page 5 of 8

Question	Answer	Marks	Partial Marks
8(b)	Combines powers sufficiently to be able to take logs or applies correct log laws	M1	
	For making use of <i>their</i> expansion from part (a)	M1	
	$40x^2(2-x) = 0$ oe	M1	FT their (a) if possible
	x=0, x=2 cao	A1	
9(a)	v ms ⁻¹ 3 1.6 60 75 80	B3	B1 for correct shape with three distinct linear sections B1 for 3 and 1.6 on vertical axis B1 for 60, 75, 80 on horizontal axis
9(b)	$3 \times 60 + 15 (1.6) + 0.5 (15) (1.4) + 0.5 (5) (1.6)$ or $3 \times 60 + 0.5 (3 + 1.6) (15) + 0.5 (5) (1.6)$	M2	M1 for attempting at least two terms of the sum:
	218.5 (metres)	A1	
9(c)	0.32 (ms ⁻²)	B1	
10(a)	a = 3, b = 1	B2	B1 for each
10(b)	$\int_0^{their b} 4x^{\frac{2}{3}} dx + \int_{their b}^{their a} (x-3)^2 dx$	M1	
	$\left[\frac{3}{5} \times 4x^{\frac{5}{3}}\right]_{0}^{their b} + \left[\frac{(x-3)^{3}}{3}\right]_{their b}^{their a} soi$	M2	M1 for each, soi
	$\frac{12}{5}(their\ b) - \frac{12}{5}(0) +$	M1	
	$\frac{\left(their\ a-3\right)^3}{3} - \frac{\left(their\ b-3\right)^3}{3}$		
	$\frac{76}{15}$ or $5\frac{1}{15}$ or 5.07 or 5.06 rot to four or more figs; cao	A1	

© UCLES 2020 Page 6 of 8

Question	Answer	Marks	Partial Marks
11(a)	V de la constant de l	В3	B1 for correct shape of f or f¹ B1 for symmetry B1 for drawn over correct domain Maximum of 2 marks if not fully correct
11(b)(i)	$[\pm]\sqrt{x-1} = y-4 \text{ soi}$	M1	
	$g^{-1}(x) = 4 - \sqrt{x-1}$	A1	
	[Range] $g^{-1} \leqslant 4$	B1	
	[Domain] $x \ge 1$	B1	
11(b)(ii)	$\ln(2[(x-4)^2+1]+1)$	M1	
	$\ln(2x^2 - 16x + 35)$	A1	
11(b)(iii)	Valid explanation, e.g. some of the values in the range of f are outside the domain of g	B1	
12(a)	$\frac{d(e^{3x})}{dx} = 3e^{3x}$	B1	
	$\frac{d(2x+3)^6}{dx} = k(2x+3)^5$	M1	
	their $(3e^{3x})(2x+3)^6 + (e^{3x})$ (their $12(2x+3)^5$)	M1	
	$(3e^{3x})(2x+3)^6 + (e^{3x})(12(2x+3)^5)$	A1	
	$(3e^{3x})(2x+3)^5(2x+7) = 0$	M1	
	x = -1.5, -3.5	A1	
12(b)	$x = 0.5 f''(0.5)[=-5] < 0 \Rightarrow \max$ $x = 3 f''(3)[=5] > 0 \Rightarrow \min$	B2	B1 for either one correct

© UCLES 2020 Page 7 of 8

Question	Answer	Marks	Partial Marks
12(c)	$h = \frac{10}{x^2}$	B1	
	$S = 8x^2 + 10x \left(their \frac{10}{x^2}\right)$	B1	
	$\frac{\mathrm{d}S}{\mathrm{d}x} = 16x - 100x^{-2} \text{ oe}$	M1	
	$16x - 100x^{-2} = 0, x = \sqrt[3]{\frac{25}{4}} \text{oe}$	A1	FT their $\frac{dS}{dx} = 0$ if possible
	81.4 or 81.4325 rot to four or more figs	A1	

© UCLES 2020 Page 8 of 8

Cambridge IGCSE™

ADDITIONAL MATHEMATICS		0606/22
Paper 2		May/June 2020
MARK SCHEME		
Maximum Mark: 80		
		1
	Published	

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE™ and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6.

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 9

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- В Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to correct answer only cao

dep dependent

FT follow through after error ignore subsequent working isw not from wrong working nfww

or equivalent oe

rounded or truncated rot

SC Special Case seen or implied soi

© UCLES 2020 Page 3 of 9

Question	Answer	Marks	Partial Marks
1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x - \mathrm{e}^{-x}$	B2	B1 for $\cos x$ or $-e^{-x}$
	$\delta y = their \frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=\frac{\pi}{4}} \times h$	M1	
	0.251 <i>h</i>	A1	
2	Squares: $(1-\sqrt{5})^2 = 1-\sqrt{5}-\sqrt{5}+5$	B1	or rationalises $\frac{10+2\sqrt{5}}{\left(1-\sqrt{5}\right)^2} \times \frac{\left(1+\sqrt{5}\right)^2}{\left(1+\sqrt{5}\right)^2}$
	Rationalises, e.g. $\frac{10+2\sqrt{5}}{6-2\sqrt{5}} \times \frac{6+2\sqrt{5}}{6+2\sqrt{5}}$	B1	or squares $(1+\sqrt{5})^2 = 1+\sqrt{5}+\sqrt{5}+5$
	Multiplies out, e.g. $\frac{60 + 20\sqrt{5} + 12\sqrt{5} + 4(5)}{36 - 20}$	M1	Multiplies out $ \left[\frac{10 + 2\sqrt{5}}{(1 - \sqrt{5})^2} \times \frac{6 + 2\sqrt{5}}{(1 + \sqrt{5})^2} = \right] $ $ \frac{60 + 20\sqrt{5} + 12\sqrt{5} + 4(5)}{(1 - 5)^2} $
	$5+2\sqrt{5}$	A2	A1 for $k + 2\sqrt{5}$ or $5 + k\sqrt{5}$
3	$x - 3 = k^2 x^2 + 5kx + 1$	M1	
	$k^2x^2 + (5k-1)x + 4 = 0$ soi	A1	
	$(5k-1)^2 - 4(k^2)(4)$	M1	
	$9k^2 - 10k + 1*0$	M1	
	Critical values: $\frac{1}{9}$ and 1 soi	A1	
	$k < \frac{1}{9} \text{ or } k > 1$	A1	

© UCLES 2020 Page 4 of 9

Question	Answer	Marks	Partial Marks
4	Factorised form: $(x+n)(x-n)(2x-1)$ oe	B1	
	Multiplies out correctly	M1	FT their factorised form provided of equivalent difficulty
	Correct expanded form in terms of <i>n</i> : $2x^3 - x^2 - 2n^2x + n^2$	A1	
	Uses $(their n^2) = 4$ in their expression	M1	
	$2x^3 - x^2 - 8x + 4$	A1	If A0A0 then SC1 for $(x+n)(x-n)(x-0.5)$ giving $n^2 = 8$ leading to $x^3 - \frac{1}{2}x^2 - 8x + 4$
			Alternative method: B1 for factorised form: (x+n)(x-n)(2x-1)
			M1 for their $n^2 = 4$
			A1 for $n=2$
			M1 for multiplying out $(x+their 2)(x-their 2)(2x-1)$
			A1 for $2x^3 - x^2 - 8x + 4$ If A0A0 then SC1 for $(x+n)(x-n)(x-0.5)$ giving $n^2 = 8$ leading to $x^3 - \frac{1}{2}x^2 - 8x + 4$
5(a)	Finds coordinates of mid-point (8, -2)	B1	2
	$m_{AB} = \frac{3+7}{4-12} \left[= -\frac{5}{4} \right]$ oe soi	B1	
	$m_L = \frac{-1}{-\frac{5}{4}} \text{ oe}$	M1	
	$y+2=\frac{4}{5}(x-8)$ oe isw	A1	

© UCLES 2020 Page 5 of 9

Question	Answer	Marks	Partial Marks
5(b)	$y - 12 = -\frac{5}{4}(x - 5)$	B1	
	Attempts to solve <i>their</i> equations	M1	
	(13, 2)	A2	A1 for $x = 13$ or $y = 2$
6(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 2x$	B1	
	$their \frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=\frac{\pi}{8}} = their 2$	B1	FT their $\frac{dy}{dx}$
	$x = \frac{\pi}{8}, y = 4$	B1	
	$y - their4 = (their2) \left(x - \frac{\pi}{8}\right) \text{ oe}$	M1	
	$2x - y = \frac{\pi}{4} - 4$	A1	
6(b)	$\sqrt{\left(\frac{\pi}{8}-2\right)^2 + \left(4-\frac{\pi}{4}\right)^2} \text{ oe}$	M1	
	3.59 or 3.59[03] rot to four or more figs	A1	
7(a)	$2\ln(5x+2)$	B2	B1 for $k \ln (5x + 2)$
	$2(\ln(22) - \ln(2))$ oe soi	M1	
	2ln11 or ln121 or ln11 ²	A1	
7(b)	$\int e^{8x+4} dx$	M1	
	$\left[\frac{1}{8}e^{8x+4}\right]_0^{\ln 2}$	M1	
	$\frac{1}{8} (e^{\ln 2^8} \times e^4 - e^4)$ oe	M2	M1 for $\frac{1}{8} (e^{\ln 2^8 + 4} - e^4)$
	$\frac{255}{8}e^4$ or exact equivalent	A1	

© UCLES 2020 Page 6 of 9

Question	Answer	Marks	Partial Marks
8(a)	$3(\csc^2 x - 1) - 14\csc x - 2[= 0]$	M1	
	$3\csc^2 x - 14\csc x - 5 = 0$	A1	
	$(\csc x - 5)(3\csc x + 1)$	M1	
	$\sin x = \frac{1}{5} \text{ nfww}$	A1	
	11.5 and 168.5 nfww	A1	
8(b)	Correct use of $\sin^2 y + \cos^2 y = 1$	B1	
	Factorises using the difference of 2 squares	B1	
	Uses $\frac{1}{\cot y} = \tan y$ or $\cot y = \frac{\cos y}{\sin y}$ correctly	B1	
	Full and correct completion to given answer: $\tan y - 2\cos y \sin y$	B1	
9(a)	$\frac{3^{10x}}{3^{3x-6}} [= 243] \text{ oe or}$ $\log 9^{5x} - \log 27^{x-2} = \log 243 \text{ oe}$	B1	
	$3^{7x+6} = 3^5$ soi oe or $5x(\log 9) - (x-2)\log 27 = \log 243$	M1	
	$x = -\frac{1}{7}$	A1	

© UCLES 2020 Page 7 of 9

Question	Answer	Marks	Partial Marks
9(b)	$\frac{1}{2}\log_a b - \frac{1}{2} = \frac{1}{\log_a b}$ or $\frac{\frac{1}{2}}{\log_b a} - \frac{1}{2} = \log_b a$	B2	B1 for bringing down the power of $\frac{1}{2}$ e.g. $\frac{1}{2}\log_a b$ or for a change of base e.g. $\frac{1}{\log_a b}$
	Clears the fraction and rearranges $\frac{1}{2}(\log_a b)^2 - \frac{1}{2}\log_a b = 1 \text{ oe}$ $(\log_a b)^2 - \log_a b - 2 = 0 \text{ oe or}$ $\det x = \log_a b x^2 - x - 2 = 0 \text{ oe}$ or $\frac{1}{2} - \frac{1}{2}\log_b a = (\log_b a)^2$ $0 = 2(\log_b a)^2 + \log_b a - 1 \text{ oe or}$ $\det y = \log_b a 2y^2 + y - 1 = 0$	M1	
	$(\log_a b - 2)(\log_a b + 1) \text{ oe or}$ $(2\log_b a - 1)(\log_b a + 1)$	M1	
	$[\log_a b = 2, \log_a b = -1 \text{ or}$ $\log_b a = \frac{1}{2}, \log_b a = -1$ $\text{leading to }]$ $b = a^2, b = \text{ oe}$	A1	
10(a)(i)	$4\times(-0.5)^{19}$	M1	
	$-\frac{1}{131072}$ or -7.63×10^{-6} or -7.62939×10^{-6} rot to four or more figs	A1	
10(a)(ii)	Valid explanation e.g. the common ratio is between -1 and 1	B1	
	$\frac{4}{1 - (-0.5)} = \frac{8}{3}$	B1	

© UCLES 2020 Page 8 of 9

Question	Answer	Marks	Partial Marks
10(b)(i)	a+9d=15(a+d)	B1	
	$\frac{6}{2}\{2a+5d\} = 87$	B1	
	Solves <i>their</i> equations for d e.g. $2\left(-\frac{3}{7}d\right) + 5d = 29$	M1	
	d=7	A1	
10(b)(ii)	a = -3 soi	B1	
	6990 = their(-3) + (n-1)(their7)	M1	
	n = 1000	A1	
11(a)	$[perimeter =] \frac{4}{3}\pi r \text{ soi}$	B2	B1 for angle $ACB = \frac{2}{3}\pi$
	$\left(their\frac{4}{3}\pi r\right) = 4\pi \text{ oe}$	M1	
	r=3	A1	
11(b)	$\frac{1}{2} \times their^{3^2} \times their^{\frac{2\pi}{3}}$ oe	M1	
	$\frac{1}{2} \times their3^2 \times \sin their \frac{2\pi}{3}$ oe	M1	
	For subtracting and doubling: $their 3^2 \times their \frac{2\pi}{3} -$ $their 3^2 \times sin their \frac{2\pi}{3}$	M1	
	$6\pi - \frac{9}{2}\sqrt{3}$ or exact equivalent	A1	

© UCLES 2020 Page 9 of 9

Cambridge IGCSE™

ADDITIONAL MATHEMATICS		0606/23
Paper 2		May/June 2020
MARK SCHEME		
Maximum Mark: 80		
	Published	

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE™ and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 8

Ma	aths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2020 Page 3 of 8

Question	Answer	Marks	Partial Marks
1	Coordinates of mid-point (-2,1)	B1	
	$m_{AB} = \frac{97}{-8 - 4} \left[= -\frac{16}{12} \right]$	B1	
	$m_{\perp} = \frac{-1}{-16/12}$	M1	
	$y-1=\frac{3}{4}(x+2)$ oe	A1	
2	Uses $b^2 - 4ac$ $(-4k)^2 - 4(4)(2k+3)$ soi	M1	
	Correctly simplifies $16k^2 - 32k - 48$	A1	FT provided of equivalent difficulty
	16(k+1)(k-3) oe	M1	
	CV –1, 3	A1	
	-1 < k < 3	A1	FT <i>their</i> lower $CV < k < their$ upper CV
3(a)	Correct sketch (-2, 0) O (1, 0) (6, 0) x (0, -12)	B2	B1 for correct shape B1 for correct coordinates (-2, 0), (1, 0), (6, 0) and (0, -12)
3(b)	$-2 \leqslant x \leqslant 1 \text{ and } x \geqslant 6$	B2	B1 for $-2 \le x \le 1$ or $x \ge 6$ with no contradictions
4(a)(i)	6720	B2	B1 for $8 \times 7 \times 6 \times 5 \times 4$ or 8P_5
4(a)(ii)	2520	B2	B1 for $3 \times 7 \times 6 \times 5 \times 4$ or ${}^{3}P_{1} \times {}^{7}P_{4}$
4(b)	${}^{4}C_{1} \times {}^{5}C_{2} + {}^{5}C_{3}$	M1	
	50	A1	

© UCLES 2020 Page 4 of 8

Question	Answer	Marks	Partial Marks
5(a)	$\frac{\sqrt{128}}{\sqrt{72}} = \frac{\sqrt{64 \times 2}}{\sqrt{36 \times 2}}$ or simplifies $\sqrt{\frac{128}{72}}$ to $\sqrt{\frac{16}{9}}$	M1	
	correct completion to $\frac{4}{3}$	A1	
5(b)	$\frac{3 + 2\sqrt{3} - \sqrt{3}\left(1 + \sqrt{3}\right)}{\left(1 + \sqrt{3}\right)\left(3 + 2\sqrt{3}\right)}$	M1	
	$\frac{\sqrt{3}}{3 + 2\sqrt{3} + 3\sqrt{3} + 6}$	M1	
	$\frac{\sqrt{3}}{9 + 5\sqrt{3}} \times \frac{9 - 5\sqrt{3}}{9 - 5\sqrt{3}}$	M1	
	$\frac{9\sqrt{3}-15}{6}$ or equivalent	A1	
			Alternative method M1 for $ \frac{1-\sqrt{3}}{(1+\sqrt{3})(1-\sqrt{3})} - \frac{\sqrt{3}(3-2\sqrt{3})}{(3+2\sqrt{3})(3-2\sqrt{3})} $
			M1 for $\frac{1-\sqrt{3}}{1-3} - \frac{3\sqrt{3}-6}{9-12}$
			M1 for writing with a common denominator
			A1 for $\frac{9\sqrt{3}-15}{6}$ or equivalent
6(a)	a = 20 $b = 2$ $c = -3$	В3	B1 for each
6(b)	Correct sketch:	B2	B1 for correct tan shape with one continuous section only B1 for correct <i>y</i> -intercept (0, -4)

© UCLES 2020 Page 5 of 8

Question	Answer	Marks	Partial Marks
7(a)	$\ln y = \ln(Ax^n) \text{ and so}$ $\ln y = \ln A + \ln x^n$	M1	
	ln y = ln A + n ln x	A1	
7(b)	$\ln A = 0.5$	M1	
	$A = e^{0.5}$ or 1.6	A1	
	$n = \frac{1.7 - 0.5}{3.2 - 0}$	M1	
	$n=\frac{3}{8}$ oe	A1	
7(c)	$y = their e^{0.5} (11)^{their \frac{3}{8}} oe$	M1	
	4.05 or 4.05200 rot to four or more figs	A1	
8(a)	$\sec^2(x+4) - 3\cos x$	B2	B1 for each
8(b)	$\frac{\mathrm{d}(\ln(2x+5))}{\mathrm{d}x} = \frac{2}{2x+5}$	B1	
	$\frac{\mathrm{d}(2\mathrm{e}^{3x})}{\mathrm{d}x} = 6\mathrm{e}^{3x}$	B1	
	$\frac{dy}{dx} = \frac{2e^{3x}\left(their\frac{2}{2x+5}\right) - their6e^{3x}\ln(2x+5)}{4e^{6x}}$	M1	FT their derivatives of $ln(2x + 5)$ and $2e^{3x}$
	$\frac{dy}{dx} = \frac{2e^{3x}\left(\frac{2}{2x+5}\right) - 6e^{3x}\ln(2x+5)}{4e^{6x}}$	A1	
	$\delta y = their \frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=1} \times h$	M1	
	-0.138h	A1	
9(a)	-540	B2	B1 for $\frac{6 \times 5 \times 4}{3!} (3x)^3 \left(-\frac{1}{x}\right)^3$ oe

© UCLES 2020 Page 6 of 8

Question	Answer	Marks	Partial Marks
9(b)	$\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{6!} \times \left(\frac{1}{2}\right)^{6}$	B1	
	$\frac{n(n-1)(n-2)(n-3)}{4!} \times \left(\frac{1}{2}\right)^4$	B1	
	Forms a correct equation with <i>their</i> coefficients in terms of <i>n</i>	M1	
	Simplifies their equation to $(n-4)(n-5) = 240$ or better	M1	
	Factorises or attempts to solve <i>their</i> 3-term quadratic	M1	
	n=20	A1	
10(a)	$5(1 + \tan^2 A) + 14 \tan A - 8 = 0 \text{ soi}$	B1	
	Solves or factorises <i>their</i> 3-term quadratic in tan <i>A</i> oe	M1	
	11.3 and 108.4 or 11.30[99] and 108.43[49] rot to four or more decimal places	A2	with no extras in range; not from clearly wrong working but allow recovery from minor slips or A1 for either, ignoring extras
10(b)	$4B - \frac{\pi}{8} = \sin^{-1}\left(-\frac{2}{5}\right) \operatorname{soi}$	B1	
	-0.411[516] rot to three or more figs	M1	
	-0.00470[444] rot to three or more figs	A1	
	-0.584[344] rot to three or more figs	A1	
11(a)	$R = \frac{1}{2}(w + 180)$	B1	
	$V = \frac{1}{3}\pi (their R)^{2} (w+180)$ $-\frac{1}{3}\pi (90)^{2} (180)$	M1	
	Correct completion to given answer: $V = \frac{\pi}{12}(w+180)^3 - 486000\pi$	A1	

© UCLES 2020 Page 7 of 8

Question	Answer	Marks	Partial Marks
11(b)	$\frac{dV}{dw} = 3\frac{\pi}{12}(w+180)^2$ oe	B1	
	$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\mathrm{d}w}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \text{ soi}$	M1	
	$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{1}{their\left(\frac{\mathrm{d}V}{\mathrm{d}w}\right)\Big _{w=10}} \times 10000$	M1	
	0.353 [cms ⁻¹] or 0.3526[97] [cms ⁻¹] rot to four or more figs	A1	
12(a)(i)	$\frac{-(-\sin x)}{\cos^2 x}$ oe	B2	B1 for $\frac{-\sin x}{\cos^2 x}$ oe
	Correct completion to given answer: tanxsecx	B1	dep on all previous marks having been awarded
12(a)(ii)	$\sqrt[4]{e^{3x}} = e^{\frac{3x}{4}} \text{ oe}$	B1	
	$\frac{3}{\cos x} - \int e^{\frac{3x}{4}} dx = \frac{3}{\cos x} - ke^{\frac{3x}{4}} \text{ oe}$	M1	
	$\frac{3}{\cos x} - \frac{4}{3}e^{\frac{3x}{4}} + c \text{ oe}$	A1	
12(b)	$\left[\ln(px+10)\right]_{2}^{5} = \ln 2$	M1	
	$\ln(5p+10) - \ln(2p+10) = \ln 2$	M1	
	$ \ln\left(\frac{5p+10}{2p+10}\right) = \ln 2 $	M1	
	5p + 10 = 2(2p + 10)	M1	
	p=10	A1	

© UCLES 2020 Page 8 of 8

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 22 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 11

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2020 Page 3 of 11

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Partial Marks
1	Expands right hand side and attempts to collect terms	M1	
	Factorises or solves <i>their</i> 3-term quadratic	M1	
	correct CVs $\frac{2}{5}$, $\frac{3}{2}$	A1	
	$\frac{2}{5} < x < \frac{3}{2}$ mark final answer	A1	FT their CVs, provided both M marks awarded

© UCLES 2020 Page 4 of 11

Question	Answer	Marks	Partial Marks
2	Valid method to find m $m = \frac{9-7}{10-6} \left[= \frac{1}{2} \right]$	M1	
	Valid method to find c e.g. $7 = their \frac{1}{2} \times 6 + c$	M1	FT their m
	$\lg y = \left(their\frac{1}{2}\right)x^3 + their4$	M1	
	$y = 10^{\frac{1}{2}x^3 + 4}$ oe, isw	A1	
3	Rewrites in quadratic form soi e.g. $y = 3^x$ then $y^2 - 3y - 4 = 0$ or $(3^x)^2 - 3(3^x) - 4 = 0$	M1	
	Factorises or solves <i>their</i> 3-term quadratic e.g. $(y+1)(y-4) = 0$ or $(3^x+1)(3^x-4) = 0$	M1	
	$3^x = 4$	A1	ignore $3^x = -1$
	$x = \log_3 4$ or $\frac{\ln 4}{\ln 3}$ oe, only	A1	
4	$\overrightarrow{OC} - \overrightarrow{OA} = 4(\overrightarrow{OC} - \overrightarrow{OB})$ soi	B1	
	$[\overrightarrow{OC} =] \begin{pmatrix} 15 \\ -3 \end{pmatrix}$	B2	B1 for $[x =]$ 15 or $[y =]$ -3
	$\left \overrightarrow{OC} \right = \sqrt{their15^2 + their(-3)^2}$	M1	
	$\frac{1}{\sqrt{234}} \begin{pmatrix} 15\\ -3 \end{pmatrix} \text{oe}$	A1	FT their $\begin{pmatrix} 15 \\ -3 \end{pmatrix}$ and their $\sqrt{234}$
5(a)	Correct V shape with vertex on positive <i>x</i> -axis	B1	
	(0, 7)	B1	
	$\left(\frac{7}{5},0\right)$	B1	

© UCLES 2020 Page 5 of 11

Question	Answer	Marks	Partial Marks
5(b)	x = 2	B1	
	5x-7 = their(-3) oe, soi or $25x-35 = their(-15)$ oe, soi	M1	
	$x = \frac{4}{5}$ oe	A1	
	Alternative method		
	$25x^2 - 70x + 40 = 0 \text{ oe}$	(B1	
	factorising e.g. $(5x-4)(x-2)$	M1	
	$x=2, \frac{4}{5}$	A1)	
6(a)	$2(6) + 6\theta = 2(6 + 5\pi)$ oe	M1	
	$\theta = \frac{5}{3}\pi$ oe, soi	A1	
	$\frac{1}{2} \times 6^2 \times their\left(\frac{5\pi}{3}\right)$	M1	
	94.2 or 30π	A1	
	Alternative method		
	$arc AB = 10\pi$	(M1	
	sector is $\frac{10\pi}{12\pi} = \frac{5}{6}$ of the circle	B1	
	$\frac{5}{6} \times 36\pi$	M1	
	94.2 or 30π	A1)	
6(b)	$2\left(7\sin\frac{\pi}{8}\right) + \frac{7\pi}{4} \text{ oe, soi}$	M2	M1 for $2\left(7\sin\frac{\pi}{8}\right) + their\left(\frac{7\pi}{4}\right)$ or
			$their\left(2\left(7\sin\frac{\pi}{8}\right)\right) + \frac{7\pi}{4}$
	10.9 or 10.85 to 10.86	A1	

© UCLES 2020 Page 6 of 11

Question	Answer	Marks	Partial Marks
7	Eliminates one variable e.g. $x^2 = 5(x^2 - 2x + 1) - 1$ or $y = 5y - 1 - 2\sqrt{5y - 1} + 1$	M1	
	Collects terms ready to solve e.g. $4x^2 - 10x + 4 = 0$ or $4y^2 - 5y + 1 = 0$	A1	
	Factorises, applies the formula or completes the square e.g. $2(2x-1)(x-2)$ or $(4y-1)(y-1)$	M1	
	Both (0.5, 0.25) and (2,1)	A2	A1 for either $(0.5, 0.25)$ or $(2, 1)$ provided nfww or $x = 0.5, 2$ or $y = 0.25, 1$
8(a)	Valid explanation e.g. Each value of x is mapped to a unique value of y.	B1	
8(b)	-5 ≤ f ≤ 1	B1	
8(c)	a = 3, b = 0.75 oe, $c = -2$	B4	B1 for $a = 3$ B1 for $c = -2$ M1 for $\frac{2\pi}{b} = \frac{8\pi}{3}$ oe A1 for $b = 0.75$ oe

© UCLES 2020 Page 7 of 11

Question	Answer	Marks	Partial Marks
9	$\frac{d(e^{3x})}{dx} = 3e^{3x} \text{ soi}$	B1	
	Applies product rule to e.g. numerator: $their(3e^{3x})\sin x + e^{3x}\cos x$	M1	or to $x^{-2} \sin x : x^{-2} \cos x + (-2x^{-3}) \sin x$ or to $e^{3x} \times x^{-2}$: $e^{3x} \times (-2x^{-3}) + their(3e^{3x}) \times x^{-2}$
	Correct quotient rule: $\frac{x^{2} \left(their \left(3e^{3x} \sin x + e^{3x} \cos x\right)\right) - 2x(e^{3x} \sin x)}{x^{4}}$	M1	or applies product rule for a second time e.g.: $x^{-2}(their(3e^{3x})\sin x + e^{3x}\cos x) +$ $(-2x^{-3})(e^{3x}\sin x)$
	Fully correct derivative; isw	A1	
	$\delta y = their \left(\frac{\mathrm{d}y}{\mathrm{d}x} \Big _{x=0.5} \right) \times h$	M1	
	7.14h or 7.137[66]h with coefficient rot to 4 or more figs isw	A1	Answer only, without working, scores SC1
10(a)(i)	Correct method to find inverse	M1	
	$g^{-1}(x) = \frac{1}{x-3}$ oe	A1	
10(a)(ii)	$g^{-1} \geqslant 1 \text{ or } [1, \infty)$	B1	
10(a)(iii)	$3 < x \le 4 \text{ or } (3, 4]$	B2	B1 for 3 and 4 in an incorrect inequality or for $x > 3$ or $x \le 4$

© UCLES 2020 Page 8 of 11

Question	Answer	Marks	Partial Marks
10(b)	Correct graph for h	B1	
	h^{-1} the reflection of h in $y = x$	B1	FT their h
	Both graphs drawn over the correct domain	B1	FT their h and h ⁻¹
	$\frac{2}{3}$ $\frac{2}{3}$	B1	Correct graphs intersecting twice
11	$h = \frac{1000}{\pi r^2} \text{ or } r = \sqrt{\frac{1000}{\pi h}} \text{ soi}$	B1	
	$S = \pi r^{2} + 2\pi r \left(\frac{1000}{\pi r^{2}}\right) \text{ oe or}$ $S = \pi \left(\frac{1000}{\pi h}\right) + 2\pi \sqrt{\frac{1000}{\pi h}}(h) \text{ oe}$	M1	
	$S = \pi r^2 + 2\left(\frac{1000}{r}\right) \text{ or better or}$	A1	
	$S = \frac{1000}{h} + 2\pi \sqrt{\frac{1000}{\pi}} \left(h^{\frac{1}{2}} \right)$		
	$\frac{\mathrm{d}S}{\mathrm{d}r} = 2\pi r - 2000r^{-2} \text{ or}$	B2	B1 FT for each term correct
	$\frac{\mathrm{d}S}{\mathrm{d}h} = -1000h^{-2} + \sqrt{1000\pi} \ h^{-\frac{1}{2}}$		
	$\frac{dS}{dr} = 0, r^{3} = \frac{1000}{\pi} \text{ oe or}$ $\frac{dS}{dh} = 0, h^{\frac{3}{2}} = \sqrt{\frac{1000}{\pi}} \text{ oe}$	M1	
	$S = \pi \left(\sqrt[3]{\frac{1000}{\pi}} \right)^2 + \frac{2000}{\sqrt[3]{\frac{1000}{\pi}}} \text{ or }$	M1	
	$S = \frac{1000}{\sqrt[3]{\frac{1000}{\pi}}} + 2\sqrt{1000\pi} \left(\sqrt[3]{\frac{1000}{\pi}}\right)^{\frac{1}{2}}$		
	439 or 439.3 to 439.4	A1	

© UCLES 2020 Page 9 of 11

Question	Answer	Marks	Partial Marks
12(a)	v = -6t + c soi	B1	
	v = -6t + 18	M1	
	-6t+18=0, $t=3$	A1	
12(b)	$s = \frac{-6t^2}{2} + 18t \text{ soi}$	B1	
	$(-3(3)^2 + 18(3)) - (-3(2)^2 + 18(2))$	M1	FT their s provided it is from an attempt to integrate
	3 (metres)	A1	Not from wrong working
13(a)(i)	a + ar = 10 soi	B1	
	$ar^2 = 9$ soi	B1	
	Solves their equations	M1	
	$r = -\frac{3}{5}$, $\frac{3}{2}$ and $a = 25$, 4	A2	A1 for either $r = -\frac{3}{5}$, $\frac{3}{2}$ or $a = 25$, 4 or for $r = -\frac{3}{5}$ and $a = 25$ or for $r = \frac{3}{2}$ and $a = 4$
13(a)(ii)	$\frac{125}{8}$ or 15.625 or $15\frac{5}{8}$ only	B1	

© UCLES 2020 Page 10 of 11

Question	Answer	Marks	Partial Marks
13(b)	d=8	B1	
	$[S_{200} - S_{99} =]$ $\frac{200}{2} \{2(-10) + 199(their8)\} -$ $\frac{99}{2} \{2(-10) + 98(their8)\} \text{ oe}$	M2	M1 for either sum correct or correct FT their d
	119382 cao	A1	
	Alternative method 1		
	d=8	(B1	
	$u_{100} = -10 + 99 \times 8[=782]$ and $u_{200} = -10 + 199 \times 8[=1582]$ and $n = 101$	M1	
	$\frac{1}{2}(101)(782+1582)$	M1	
	119382 cao	A1)	
	Alternative method 2		
	d=8	(B1	
	$u_{100} = -10 + 99 \times 8[= 782]$ and $n = 101$	M1	
	$\frac{1}{2}(101)(2\times782+(101-1)\times8)$	M1	
	119382 cao	A1)	

© UCLES 2020 Page 11 of 11

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/21

Paper 2

October/November 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 7

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Partial Marks
1(i)		B2	B1 shape B1 Correct intersection with axes.
1(ii)	$7 = 2x - 3 \rightarrow x = 5$	B1	
	Uses $7 = 3 - 2x$ oe	M1	
	x = -2	A1	
2	p = 2 $q = 4$ $r = 3$	В3	B1 for each

© UCLES 2019 Page 3 of 7

Question	Answer	Marks	Partial Marks
3(a)	obtain $e^{5x-3} = 3$	M1	OR Take logs $\rightarrow 2x + 1 = \ln 3 + 4 - 3x$
	take logs correctly $\rightarrow 5x - 3 = \ln 3$	M1	OR Collect like terms $\rightarrow 5x = 3 + \ln 3$
	$x = \frac{3 + \ln 3}{5}$ or $x = 0.820$	A1	
3(b)`	Use of laws of logs $ \rightarrow \lg(y-6)(y+15) = 2 $	M1	
	Uses $10^2 = 100$ $\rightarrow [(y-6)(y+15)] = 100$	B1	
	Obtain correct quadratic $y^2 + 9y - 190 = 0$	A1	
	Solve a three term quadratic	M1	
	y = 10 only	A1	
4	Eliminate x or y	M1	
	$x = \frac{7 + 5\sqrt{2}}{3 + 2\sqrt{2}}$ or $y = \frac{1}{3 + 2\sqrt{2}}$	A1	
	Multiply numerator and denominator by $3-2\sqrt{2}$	M1	
	$x = 1 + \sqrt{2}$	A1	
	$y = 3 - 2\sqrt{2}$	A1	
5(i)	Differentiate	M1	Obtain $2\cos 2t$ or $-2\sin 2t$
	$v = 6\cos 2t - 8\sin 2t$	A1	
	$a = -12\sin 2t - 16\cos 2t$	A1	
5(ii)	Equate v to 0 and attempt to solve	M1	
	tan2t = 0.75	A1	or $\sin 2t = 0.6$ or $\cos 2t = 0.8$
	t = 0.32(2)	A1	Must be in radians
5(iii)	Insert value of t into expression for a	M1	Radians or degrees
	a = -20	A1	Must have used radians

Question	Answer	Marks	Partial Marks
6	Eliminate <i>y</i>	M1	
	$x^2 - x - 5 = 0$	A1	
	Use formula	M1	
	$x = \frac{1 \pm \sqrt{21}}{2}$	A1	
	$y = \frac{21 \pm \sqrt{21}}{2}$	A1	
	Find mid-point	M1	(0.5,10.5)
	Show that mid-point lies on $x + y = 11$	A1	
7(a)(i)	f(0.5) = 0.5 + 4.5 - 5 = 0	B1	
7(a)(ii)	Factorise to obtain $2x^2$ and 5	M1	
	$(2x-1)(2x^2+x+5)$	A1	
7(b)(i)	Replace $\tan x$ by $\frac{\sin x}{\cos x}$ and $\sec x$ by $\frac{1}{\cos x}$	M1	$13\frac{\sin x}{\cos^2 x} - 4\sin x - \frac{5}{\cos^2 x} = 0$
	Uses $\cos^2 x = 1 - \sin^2 x$	M1	$13\sin x - 4\sin x \left(1 - \sin^2 x\right) - 5 = 0$
	$4\sin^3 x + 9\sin x - 5 = 0$	A1	Completed correctly
7(b)(ii)	$2\sin^2 x + \sin x + 5 = 0 \text{ no real roots}$	B1	Suitable statement seen
	$2\sin x - 1 = 0$	M1	Attempt to solve
	$x = \frac{\pi}{6}$	A1	
	$x = \frac{5\pi}{6}$	A1	
8(i)	$-2e^{-2x}$ seen	B1	
	Product rule	M1	Clear attempt
	$e^{-2x}\left(1-2x\right)$	A1	

Question	Answer	Marks	Partial Marks
8(ii)	Set $\frac{dy}{dx} = 0$ and attempt to solve	M1	Must have two terms
	$\left(\frac{1}{2},\frac{1}{2e}\right)$	A1	
8(iii)	Attempt to find $\frac{dy}{dx}$ at $x = 1$	M1	
	$y - \frac{1}{e^2} = \frac{-1}{e^2}(x-1)$ or $y = -\frac{1}{e^2}x + \frac{2}{e^2}$	A1	
8(iv)	Integrate part(i) $xe^{-2x} = \int \left(-2xe^{-2x} + e^{-2x}\right) dx$	M1	
	Integrate e^{-2x} and make $\int xe^{-2x}dx$ the subject	M1	
	$\frac{-xe^{-2x}}{2} - \frac{e^{-2x}}{4} + c$	A1	
9(i)	$\frac{1}{3}$	B1	
	$ \begin{pmatrix} -3 & -2 \\ 9 & 5 \end{pmatrix} $	B1	
9 (ii)	$\mathbf{B}^2 = \begin{pmatrix} 10 & 7 \\ 42 & 31 \end{pmatrix}$	B2	Minus one each error
9(iii)	$C = B^2 - BA$	M1	
	$\mathbf{BA} = \begin{pmatrix} 1 & 1 \\ -15 & -3 \end{pmatrix}$	A1	
	$\mathbf{C} = \begin{pmatrix} 9 & 6 \\ 57 & 34 \end{pmatrix}$	A1	
9(iv)	$\mathbf{D} = \mathbf{B}^2 \mathbf{A}^{-1}$	M1	
	$\mathbf{D} = \frac{1}{3} \begin{pmatrix} 33 & 15 \\ 153 & 71 \end{pmatrix}$	A2	Minus one each error
10(i)	$81 + 108x + 54x^2 + 12x^3 + x^4$	В3	B1 for coefficients B1 for powers B1 for all Correct

Question	Answer	Marks	Partial Marks
10(ii)	Identify and select two terms in x and equate to zero	M1	81 - 54p = 0
	p = 1.5	A1	
10(iii)	Constant term = $-108p = -162$	A1	FT using their p
10(iv)	Correctly identify two terms in x^2	M1	$x^2 \text{ term} = 108 - 12p$
	108 – 18 = 90	A1	
11(i)	Uses correct triangle with v_w opposite 10° Sides of 300 and 280 include 10°	M1	
	Use cosine rule	M1	$v_w^2 = 300^2 + 280^2 - 2 \times 300 \times 280 \cos 10$
	$v_w = 54.3$	A1	
11(ii)	Use sine rule	M1	$\frac{280}{\sin\alpha} = \frac{54.3}{\sin 10^{\circ}}$
	$\alpha = 63^{\circ} \text{ or } 64^{\circ}$	A1	
	Bearing 117° or 116°	A1	

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/22

Paper 2

October/November 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 10

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2019 Page 3 of 10

Question	Answer	Marks	Guidance
1		B1	
		B1	
		B 1	
2	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\cos 3x$	B1	
	$-3\sin 3x$	B1	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -18\sin 3x - 9\cos 3x$	B1	FT Correct derivative of their $\frac{dy}{dx}$
	Insert and collect like terms	M1	Must insert for y, their $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ correctly resulting in 6 terms.
	k = -15	A1	Allow –15sin3x seen nfww
3(i)	$^{14}P_5$ or $14 \times 13 \times 12 \times 11 \times 10$	M1	
	240 240	A1	cao
3(ii)	${}^{3}P_{1} \times {}^{5}P_{2} \times {}^{6}P_{2} \text{ or } 3 \times (5 \times 4) \times (6 \times 5)$	M1	Two of the three elements multiplied by
	= 1800	A1	
3(iii)	$^{6}P_{2} \times {^{8}P_{3}} \text{ or } (6 \times 5) \times (8 \times 7 \times 6)$	M1	One element multiplied by Clear intention to multiply
	= 10 080	A1	

Question	Answer	Marks	Guidance
4	$kx + 3 = x^{2} + 5x + 12$ $\rightarrow x^{2} + (5 - k)x + 9(= 0)$	M1	Equate and attempt to simplify to all terms on one side.
	Use discriminant of <i>their</i> quadratic.	M1	dep
	$(5-k)^2 - 36$ oe	A1	Unsimplified
	k = -1 and 11	A1	Both boundary values
	-1 < k < 11	A1	Must be in terms of k .
	OR		
	$2x + 5 \sim k$	M1	Connect gradients of line and curve
	$y = (2x+5)x+3 \to 2x^2 + 5x + 3 = x^2 + 5x + 12$	M1	Eliminate k and y .
	$x^2 = 9 \rightarrow x = \pm 3$	A1	
	k = 11 or k = -1	A1	
	-1 < k < 11	A1	
5(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2k}{\left(x+1\right)^3}$	B1	oe Unsimplified
	Gradient of normal = $\frac{(x+1)^3}{2k}$ or Gradient of tangent = -3	M1	Gradient of normal = $\frac{-1}{\text{gradient of tangent}}$
	$\frac{8}{2k} = \frac{1}{3} \text{ or } \frac{2k}{8} = -3$	M1	Equate gradient of normal to $\frac{1}{3}$ at $x = 1$ or equate gradient of tangent to -3 at $x = 1$
	k = 12	A1	
5(ii)	$x = 2 \rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{8}{9} \text{ or their } \frac{-2k}{27}$	B1	FT
	$y = \frac{4}{3}$ or their $\frac{k}{9}$	B1	FT
	$\frac{y - \frac{4}{3}}{x - 2} = -\frac{8}{9} \text{ or } y = -\frac{8}{9}x + \frac{28}{9}$	B1	isw

Page 5 of 10

Question	Answer	Marks	Guidance
6(i)	$\frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x} + 1} + \frac{\frac{1}{\cos x} + 1}{\frac{\sin x}{\cos x}}$	M1	Use $\tan x = \frac{\sin x}{\cos x}$ and $\sec x = \frac{1}{\cos x}$ throughout
	$\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x}$	M1	dep Multiply by cosx
	$\frac{\sin^2 x + 1 + 2\cos x + \cos^2 x}{\left(1 + \cos x\right)\sin x}$	M1	dep Add <i>their</i> fractions correctly and expand $(1 + \cos x)^2$ correctly
	$\frac{2(1+\cos x)}{(1+\cos x)\sin x}$	M1	dep Use $\sin^2 x + \cos^2 x = 1$ and take out a factor of 2.
	All correct AG	A1	Do not award if brackets missing at any point or <i>x</i> missing more than twice or <i>x</i> misplaced. Do not credit mixed variables.
	OR		
	$\frac{\tan^2 x + (\sec x + 1)^2}{\tan x (\sec x + 1)}$	M1	Add fractions
	$= \frac{2\sec^2 x + 2\sec x}{\tan x (\sec x + 1)}$	M1	dep Expand brackets correctly and use $1 + \tan^2 x = \sec^2 x$
	$\frac{2\sec x}{\tan x}$	M1	$\frac{\text{dep}}{\text{Cancel } \sec x + 1}$
	$\frac{2}{\cos x} \times \frac{\cos x}{\sin x}$	M1	dep Use $\tan x = \frac{\sin x}{\cos x}$ and $\sec x = \frac{1}{\cos x}$ oe
	All correct AG	A1	Do not award if brackets missing at any point or <i>x</i> missing more than twice or <i>x</i> misplaced. Do not credit mixed variables.
6(ii)	$3\sin^2 x + \sin x - 2 = 0 \text{ oe}$	B1	Obtain three term quadratic.
	$(3\sin x - 2)(\sin x + 1) = 0$	M1	Solve three term quadratic
	41.8° awrt	A1	
	138.2° awrt	A1	Mark final answers This mark is not awarded if there are more solutions in the range.

Question	Answer	Marks	Guidance
7(a)	$2 \times 4 \times p = 40 \rightarrow p = 5$	B1	May be obtained later.
	(x-2)(x-4)(x-p) = 0	M1	Factorise cubic
	a = -11	A1	Expand and identify
	b = 38	A1	
	OR		
	$2 \times 4 \times p = 40 \rightarrow p = 5$	B1	May be obtained later.
	Obtain equations $4a + 2b = 32$ $16a + 4b = -24$ and attempt to solve	M1	
	a = -11	A1	
	b = 38	A1	
7(b)	Find $x = -1$	M1	Trial value/s and finds a root or shows that $(x + 1)$ or $(x + 4)$ or $(x - 10)$ divides into $x^3 - 5x^2 - 46x - 40$.
	$(x+1)(x^2-6x-40) (= 0)$ or $(x+4)(x^2-9x-10)(= 0)$ or $(x-10)(x^2+5x+4)(= 0)$	A1	Factorise to give linear and quadratic factor
	(x+1)(x+4)(x-10) (=0)	M1	Solve the quadratic to give 2 roots
	x = -1, -4, 10	A1	
	OR		
	Uses factor theorem to find a root $(-1)^3 - 5(-1^2) - 46(-1) - 40$ or $-1 - 5 + 46 - 40 = 0$ $\rightarrow x = -1$	M1	This may be awarded for $x = -4$ or $x = 10$.
	Uses factor theorem to attempt to find further roots	M1	At least two more trials.
	$(-4)^3 - 5(-4)^2 - 46(-4) - 40$ or $-64 - 80 + 184 - 40 = 0$ $\rightarrow x = -4$	A1	
	$(10)^3 - 5(10)^2 - 46(10) - 40$ or $1000 - 500 - 460 - 40 = 0$ $\Rightarrow x = 10$	A1	

Question	Answer	Marks	Guidance
8(i)	$\sqrt{5^2 + 12^2} = 13$	M1	
	$v_A = -\frac{5}{2}\mathbf{i} - 6\mathbf{j} \text{ or } \frac{1}{2}(-5\mathbf{i} - 12\mathbf{j})$	A1	
8(ii)	$ v_B = \sqrt{12^{12} + (-9)^2}$	M1	Use Pythagoras
	15	A1	Do not allow ± 15. Mark final answer.
8(iii)	$\mathbf{r}_{A} = \begin{pmatrix} 20 \\ -7 \end{pmatrix} + t \begin{pmatrix} -2.5 \\ -6 \end{pmatrix}$	B1	FT on <i>their</i> v_A only if of the form $k(-5\mathbf{i} - 12\mathbf{j})$ where $k \neq 1$ or 0.
	or $r_A = (20 - 2.5t)\mathbf{i} + (-7 - 6t)\mathbf{j}$		
	$r_{B} = \begin{pmatrix} -67\\11 \end{pmatrix} + t \begin{pmatrix} 12\\-9 \end{pmatrix}$	B1	
	or $r_B = (-67 + 12t)\mathbf{i} + (11 - 9t)\mathbf{j}$		
8(iv)	20 - 2.5t = -67 + 12t or $-7 - 6t = 11 - 9t$	M1	Equate <i>x</i> or <i>y</i> coordinates. Must have two terms in both coordinates.
	t = 6	A1	nfww Ignore other value of t.
	$r = \begin{pmatrix} 5 \\ -43 \end{pmatrix} \text{ only}$ or $r = 5\mathbf{i} - 43\mathbf{j}$	A1	A0 if further value of r found.
9(i)	Midpoint (1, 2)	B1	May be seen on diagram
	Gradient of $AB = -\frac{3}{4}$	B1	
	Gradient of PM $= \frac{-1}{their \text{ gradient of } AB} = \frac{4}{3}$	M1	Use $m_1 \times m_2 = -1$
	Equation $PM \frac{y-2}{x-1} = \frac{4}{3}$	M1	dep Attempt to find equation of line with their midpoint and their gradient of PM . If $y = mx + c$ used c must be found.
	$y = \frac{4}{3}x + \frac{2}{3}$	A1	
9(ii)	$s = \frac{4}{3}r + \frac{2}{3}$	B1	FT Insert (r, s) into <i>their</i> linear equation to

Question	Answer	Marks	Guidance
			obtain s =
9(iii)	$(r-1)^2 + (s-2)^2 = 100$ oe	B1	FT Use Pythagoras with <i>their</i> (1, 2)
	Eliminate r or s	M1	From one linear and one quadratic expression. Unsimplified
	$25r^2 - 50r - 875 = 0 \text{ oe}$ or $25s^2 - 100s - 1500 = 0 \text{ oe}$	A1	
	(5r+25)(5r-35) = 0 oe or (5s-50)(5s+30) = 0 oe	M1	Solve three term quadratic Can be implied by correct solution.
	r = 7, s = 10	A1	Do not award if negative values of r and s are also given nfww
	OR Equivalent method such as:		
	$\overrightarrow{MP} = \begin{pmatrix} a \\ b \end{pmatrix} \rightarrow a^2 + b^2 = 100 \text{ and } \frac{b}{a} = \frac{4}{3}$	B1	Using distance =10 and gradient = $\frac{4}{3}$.
	Eliminate a or b	M1	
	$a^2 + \left(\frac{4a}{3}\right)^2 = 100$	A1	
	$\operatorname{or}\left(\frac{3b}{4}\right)^2 + b^2 = 100$		
	$\rightarrow a = (\pm)6$ and $b = (\pm)8$	M1	Solve
	r = 7, s = 10	A1	
10(i)	Quotient rule or product rule	M1	
	$\frac{x-2x\ln x}{x^4}$ or $\frac{x-\ln x.2x}{x^4}$ oe isw	A2/1/0	Minus one each error. Allow unsimplified.
10(ii)	$x - 2x \ln x = 0$	M1	Set $\frac{dy}{dx} = 0$ and attempt to solve. Must have two terms and obtain $\ln x = k$ only.
	$x = 1.65$ awrt or \sqrt{e}	A1	
	$y = 0.184 \text{ awrt or } \frac{1}{2e}$	A1	

Question	Answer	Marks	Guidance
10(iii)	$\frac{\ln x}{x^2} = \int \frac{1}{x^3} - \frac{2\ln x}{x^3} dx$	M1	Integrate <i>their</i> derivative from (i) which must have two terms. Condone omission of dx .
	$\frac{-1}{2x^2}$	A1	Find $\int \frac{1}{x^3} dx$
	$\int \frac{\ln x}{x^3} dx = -\frac{1}{4x^2} - \frac{\ln x}{2x^2} + (C)$	A1	oe Rearrange and complete
10(iv)	Insert limits and subtract correctly	M1	dep Must be inserting into two terms in <i>x</i> from (iii). Values explicitly seen if expression is incorrect.
	$\frac{3}{16} - \frac{\ln 2}{8}$ or 0.101 awrt	A1	
11	$\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)=-4$	B1	Seen anywhere
	Attempt formula	M1	
	$x = \frac{-3 \pm 5}{2\left(\sqrt{5} - 3\right)}$	A1	
	Multiply by their $(\sqrt{5} + 3)$	M1	Attempt must be seen with a further line of working. oe
	$x = \sqrt{5} + 3$	A1	oe Mark final answer
	$x = \frac{-1\left(\sqrt{5} + 3\right)}{4}$	A1	oe Mark final answer

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/23

Paper 2

October/November 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 7

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2019 Page 3 of 7

Question	Answer	Marks	Guidance
1	x = 1	B1	
	-3x - 2 = x + 4 oe	M1	
	x = -1.5 oe	A1	
2(i)	$\frac{\frac{1}{\sin} - \frac{\cos x}{\sin x}}{1 - \cos x}$	M1	express in terms of sinx and cosx
	$\frac{(1-\cos x)}{\sin(1-\cos x)}$	A1	rewrite not as a fraction within a fraction
	$\frac{1}{\sin x} = \csc x$	A1	correct completion answer given
2(ii)	$\left[\sin x = \frac{1}{2}\right] x = 30^{\circ}$	B1	
	$x = 150^{\circ} \text{ nfww}$	B1	no extra answers
3	$(1+ax)^5 = 1+5ax+10a^2x^2+10a^3x^3$ soi	B1	4 terms not ⁿ C _r notation
	$[2] + (10a + b)x + (5ab + 20a^2)x^2$	M1	obtain expansion with 2 terms in x , 2 terms in x^2
	equate terms in x and x^2 to give two equations in a and b each consisting of three terms	M1	
		A1	correct equations imply previous two M marks
	eliminate b	M1	
	obtain $3a^2 - 16a + 21 = 0$ correctly	A1	answer given
	a=3 and $b=2$	B1	
	c = 720 only	B1	no additional answers
4(i)	$y = 2(x-1)^2 - 9$	В3	a = 2, $b = 1$, $c = -9$ in correct form. B1 for each
4(ii)	minimum their –9	B1	FT from <i>their</i> correct form, with $a > 0$
	when $x = their 1$	B1	FT from <i>their</i> correct form, with $a > 0$

Question	Answer	Marks	Guidance
4(iii)	$x = \sqrt{p}$ or $p = x^2$ soi	B1	
	$(x-1) = \sqrt{\frac{9}{2}}$ or $(\sqrt{p}-1) = \sqrt{\frac{9}{2}}$ oe	M1	$(x-b) = \sqrt{\frac{-c}{a}}$ $(\sqrt{p} - b) = \sqrt{\frac{-c}{a}}$
	or $(\sqrt{p}-1) = \sqrt{\frac{2}{2}}$ be		$(\sqrt{p} - b) = \sqrt{\frac{a}{a}}$ using <i>their</i> values of a, b, c from (i)
	p = 9.74	A1	completion not involving use of quadratic formula
5(a)	$\tan\left(y-\frac{\pi}{4}\right) = (\pm)\sqrt{3}$	M1	± 1.73
	$y - \frac{\pi}{4} = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}$	A1	1.04(7) or 2.09(4)
	$y = \frac{7\pi}{12}$ or 1.83	A1	
	$y = \frac{11\pi}{12}$ or 2.88	A1	
5(b)	correctly rewrite equation in terms of sinz and cosz	M1	
	$use \sin^2 z = 1 - \cos^2 z$	M1	appropriate use of Pythagorean identity for forming an equation in one trig ratio
	$6\cos^2 z - 7\cos z + 1 = 0 \text{ oe}$	A1	
	$(6\cos z - 1)(\cos z - 1) = 0$	M1	solve three term quadratic in cosz
	80.4°	A1	
	279.6°	A1	
6(i)	$\left[\tan ACB = \right] \frac{3 + \sqrt{3}}{3 - \sqrt{3}}$	B1	
	rationalise with $3 + \sqrt{3}$	M1	
	simplify showing at least 3 terms in numerator to $2 + \sqrt{3}$	A1	
6(ii)	$(AC)^2 = (3 + \sqrt{3})^2 + (3 - \sqrt{3})^2$ oe	M1	Pythagoras
	at least 4 terms $12 + 6\sqrt{3} + 12 - 6\sqrt{3}$	A1	

Question	Answer	Marks	Guidance
	$AC = 2\sqrt{6}$	A1	
7(i)	evidence of differentiation $(3x + 2)^{-3}$	M1	
	$-12(3x+2)^{-3} \times 3$	A1	may use PR or QR on fraction part
	+1	B1	
	$set their \frac{dy}{dx} = 0$	M1	$1 - 36(3x + 2)^{-3} = 0$
	x = 0.43 nfww	A1	
	y = 0.98 only	A1	
7(ii)	$\frac{-2}{3x+2}$ oe	B1	
	$\frac{1}{2}x^2$	B1	
	$\left[\frac{-2}{6+2}+2\right]-\left[\frac{-2}{2}\right]$	M1	insert correct limits into <i>their</i> two term integral and subtract two non-zero terms in correct order
	2.75 nfww	A1	2.75 following B1 B1implies M1
8(i)	p = -4	B1	
8(ii)	(x-2)(x-3)(x+4)	M1	FT $(x-2)(x-3)(x-p)$
	$(x^2 - 5x + 6)(x + 4)$	A1	FT $(x^2 - 5x + 6)(x - p)$ multiply out two factors
	correctly obtain $a = -1$ $x^3 - x^2 - 14x + 24$	A1	answer given
	b = -14 stated	B1	
8(iii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2x - 14$	B1	FT their numerical $b 3x^2 - 2x + b$
8(iv)	set their $\frac{dy}{dx}$ equal to 2	M1	FT their numerical b
	x=2	A1	
	y = 40 only	A1	no additional answers
8(v)	y-40=2(x+2) $(y=2x+44)$	B1	
9(i)	$\overrightarrow{AD} = 2\mathbf{a} + \mathbf{b}$	B1	

Question	Answer	Marks	Guidance
	$\overrightarrow{OX} = \mathbf{a} + \lambda \left(2\mathbf{a} + \mathbf{b} \right)$	B1	
9(ii)	$\overrightarrow{BC} = 3\mathbf{a} - 2\mathbf{b}$	B1	
	$\overrightarrow{OX} = 2\mathbf{b} + \mu (3\mathbf{a} - 2\mathbf{b})$	B1	
9(iii)	$\overrightarrow{OX} = \overrightarrow{OX}$ and equate for a or b	M1	
	$1+2\lambda=3\mu$ and $\lambda=2-2\mu$	A1	
	solve correct equations for λ or μ	M1	
	$\lambda = \frac{4}{7}$ and $\mu = \frac{5}{7}$	A1	
9(iv)	$\frac{4}{3}$ or 4:3	B1	FT $\lambda/(1-\lambda)$ $0 < \lambda < 1$
10(i)	$gf(x) = e^{2(\ln(3x+2))} - 4$	B1	
	their gf = 5	M1	
	use $\ln a^p = p \ln a$ or $e^{\ln a} = a$ or $\ln e^a = a$	B1	correct use of log/exponential relationship seen anywhere
	$3x + 2 = 3 \text{ or } (3x + 2)^2 = 9$	A1	3 may take the form of e ^{0.5ln9} 9 may take the form of e ^{ln9}
	$x = \frac{1}{3}$ only	A1	
10(ii)	$x = \frac{e^y - 2}{3}$	M1	find x in terms of y
	$\frac{e^x - 2}{3} \left(= f^{-1}(x) \text{ or } = y \right)$	A1	interchange x and y correct completion
10(iii)	$\frac{e^x - 2}{3} = e^{2x} - 4$	M1	their $f^{-1}(x) = g(x)$
	$3e^{2x} - e^x - 10 \ (=0)$	A1	obtain quadratic in e ^x must be arranged as a three term quadratic in order shown
	$\left(3e^x + 5\right)\left(e^x - 2\right) \ \left(=0\right)$	M1	solve for e ^x
	$x = \ln 2$ or 0.693 only	A1	

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/11

Paper 1 May/June 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 12

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2019 Page 3 of 12

Question	Answer	Marks	Guidance
1(a)	E	B1	
	£	В1	
1(b)	R P	B2	B1 for $P \subset R$ and $Q \subset R$ B1 for $P \cap Q = \emptyset$
2(i)	4	B1	
2(ii)	$120^{\circ} \text{ or } \frac{2\pi}{3}$	B1	
2(iii)	2 2 4 4 4 4 4	В3	B1 for a complete curve starting at $(-90^{\circ}, 3)$ and finishing at $(90^{\circ}, -5)$ B1 for $-5 \le y \le 3$ for a complete curve Minimum point(s) at $y = -5$ Maximum point(s) at $y = 3$ DepB1 for a fully correct sine curve satisfying both the above and passing through $(-60^{\circ}, -1), (0^{\circ}, -1)$ and $(60^{\circ}, -1)$
3(i)	-12	B1	
3(ii)	$(2 \times -3 -1)(k-3) - 12 = 23$ oe or $2(-3)^2 + (2k-1)(-3) - k - 12 = 23$	M1	
	k = -2	A1	

© UCLES 2019 Page 4 of 12

Question	Answer	Marks	Guidance
	$(2x-1)(x-2)-12 = -25$ $2x^2 - 5x + 15 = 0$	M1	expansion and simplification to a 3 term quadratic equation equated to zero, using <i>their k</i> .
	Discriminant: $25 - (4 \times 2 \times 15)$ = -95	M1	using discriminant for their three term quadratic equation
,	which is < 0 so no real solutions	A1	cao for correct discriminant and correct conclusion
4(i)	a = 256	B1	
	$8 \times 2^7 \times bx [= 256x] \text{ oe}$ or $\frac{8 \times 7 \times 2^6 \times (bx)^2}{2} [= cx^2] \text{ oe}$	M1	
	$b = \frac{1}{4}$ oe, $c = 112$	A2	A1 for each
4(ii)	$(256 + 256x + 112x^2)(4x^2 - 12 + \frac{9}{x^2})$	B1	$for \left(4x^2 - 12 + \frac{9}{x^2}\right)$
	Ferms independent of x are $(256 \times (-12)) + (112 \times 9)$ $= -3072 + 1008$	M1	adding and selecting $(their256 \times their(-12)) + (their112 \times their9)$
=	= -2064	A1	
5(i)	$v = 20 \times \frac{1}{\sqrt{3^2 + 4^2}} \binom{3}{4}$ oe	M1	finding and using the magnitude of $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$
	$v = \begin{pmatrix} 12 \\ 16 \end{pmatrix}$	A1	
5(ii)	$\mathbf{r}_p = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 12 \\ 16 \end{pmatrix} t$	M1	correct use of position vector and <i>their</i> velocity vector
		A1	

Question	Answer	Marks	Guidance
5(iii)		M1	equating position vectors of both particles at time <i>t</i> and solve either equation for <i>t</i>
	t=4	A1	
	Position vector of collision $\begin{pmatrix} 49 \\ 66 \end{pmatrix}$	A1	
6	Method 1		
	$3x^2 - 2x + 1 = 2x + 5$ leading to	M1	equating the equations of the line and the curve and rearranging to obtain a three term quadratic equated to zero
	$3x^2 - 4x - 4 = 0$	A1	
	$x = -\frac{2}{3} \text{ and } x = 2$	A1	
	$\int_{-\frac{2}{3}}^{2} \left(2x + 5 - \left(3x^2 - 2x + 1\right)\right) dx$	M1	subtraction (either way round)
	$\int_{-\frac{2}{3}}^{2} \left(4 + 4x - 3x^2\right) \mathrm{d}x$	M1	integration to $Ax + Bx^2 + Cx^3$
	$\left[4x+2x^2-x^3\right]_{-\frac{2}{3}}^2$	A1	for $4x + 2x^2 - x^3$ oe
	$(8+8-8) - \left(-\frac{8}{3} + \frac{8}{9} + \frac{8}{27}\right)$ $= 8\frac{40}{27}$	M1	Dep on preceding M1 correct use of limits
	$= \frac{256}{27} \text{ or } 9.48 \text{ or } 9\frac{13}{27}$	A1	

© UCLES 2019 Page 6 of 12

simplification and dealing with base 3 logarithms to obtain a power of 3

M1

A1

	PUBLISHED			
Question	Answer	Marks	Guidance	
6	Method 2			
	$3x^2 - 2x + 1 = 2x + 5$	M1	equating the line and the curve and rearranging to obtain a three term quadratic	
	leading to		equated to zero	
	$3x^2 - 4x - 4 = 0$	A1		
	$x = -\frac{2}{3} \text{ and } x = 2$	A1		
	Area of trapezium = $\frac{1}{2} \left(\frac{11}{3} + 9 \right) \times \frac{8}{3}$	B1	area of the trapezium, allow unsimplified	
	Area under curve = $\int_{-\frac{2}{3}}^{2} 3x^2 - 2x + 1 dx$	M1	integration to $Ax + Bx^2 + Cx^3$	
	$= \left[x^3 - x^2 + x\right]_{-\frac{2}{3}}^2$	A1	for $x^3 - x^2 + x$	
	$= \left(\left(8 - 4 + 2 \right) - \left(-\frac{8}{27} - \frac{4}{9} - \frac{2}{3} \right) \right)$ $6\frac{38}{27}$	M1	DepM1 for correct use of limits.	
	Shaded Area = $\frac{152}{9} - \frac{200}{27}$	A1		
	$=\frac{256}{27} \text{ or } 9.48 \text{ or } 9\frac{13}{27}$			
7(a)	Method 1			
	$\log_3 x + \frac{\log_3 x}{\log_3 9} = 12$	B1	change to base 3 logarithm	
		+		

© UCLES 2019 Page 7 of 12

 $\frac{3\log_3 x}{2} = 12$

 $x = 3^8 \text{ or } \sqrt[3]{3^{24}}$

x = 6561

Question	Answer	Marks	Guidance
7(a)	$\frac{\text{Method 2}}{\log_9 x} + \log_9 x = 12$	B1	change to base 9
	$3\log_9 x = 12$ $x = 9^4 \text{ or } \sqrt[3]{9^{12}}$	M1	simplification and dealing with base 9 logarithms to obtain a power of 9
	x = 6561	A1	
7(b)	Method 1 $\log_4 (3y^2 - 10) = \log_4 (y - 1)^2 + \frac{1}{2}$	В1	use of power rule
	$\log_4 \frac{3y^2 - 10}{\left(y - 1\right)^2} = \frac{1}{2}$	B1	DepB1 for use of division rule
	$\frac{3y^2 - 10}{(y - 1)^2} = 2$	B1	for $\frac{1}{2} = \log_4 2$
	$y^2 + 4y - 12 = 0$	M1	Dep on first two B marks simplification to a three term quadratic.
	y = 2 only	A1	
7(b)	Method 2 $\log_4 (3y^2 - 10) = \log_4 (y - 1)^2 + \frac{1}{2}$	B1	use of power rule
	$\log_4(3y^2 - 10) = \log_4(y - 1)^2 + \log_4 2$	B1	for log ₄ 2
	$3y^2 - 10 = 2(y - 1)^2$	B1	Dep on first B1 use of the multiplication rule
	$y^2 + 4y - 12 = 0$	M1	Dep on first and third B marks. simplification to a 3 term quadratic
	y = 2 only	A1	

© UCLES 2019 Page 8 of 12

Question	Answer	Marks	Guidance
8(i)	f>-1	B1	or $f(x) > -1$, $y > -1$, $(-1, \infty)$, $\{y: y > -1\}$
8(ii)	$e^{y} = \frac{x+1}{5} \text{ oe}$	M1	a complete valid method to obtain the inverse function
	$y = \ln\left(\frac{x+1}{5}\right)$ or $f^{-1}(x) = \ln\left(\frac{x+1}{5}\right)$ oe	A1	
	Domain $x > -1$ or $(-1, \infty)$	B1	FT their (i) or correct
8(iii)	g(1) = 5 so fg(1) = f(5)	M1	evaluation using correct order of operations
	$5e^5 - 1 = 741$	A1	awrt 741 or 5e ⁵ –1
8(iv)	$g^{2}(x) = (x^{2} + 4)^{2} + 4$	M1	correct use of g ²
	$x^{4} + 8x^{2} + 16 + 4 = 40$ $(x^{2} + 4)^{2} = 36$ or $x^{4} + 8x^{2} - 20 = 0$ $(x^{2} + 10)(x^{2} - 2) = 0$	M1	DepM1 for forming and solving a quadratic in x^2
	$x = \pm \sqrt{2}$ only	A1	
9(i)	Method 1		
	$600\pi = 2\pi r^2 + 2\pi rh$	B1	
	$h = \frac{600\pi - 2\pi r^2}{2\pi r}$	M1	making <i>h</i> subject from a two term expression for SA.
	$V = \pi r^2 h$ $V = \pi r^2 \left(\frac{600\pi - 2\pi r^2}{2\pi r} \right)$ $V = \pi r^2 \left(\frac{300}{r} - r \right)$ $V = 300\pi r - \pi r^3$	A1	correct substitution and manipulation to obtain given answer

© UCLES 2019 Page 9 of 12

Question	Answer	Marks	Guidance
9(i)	Method 2		
	$600\pi = 2\pi r^2 + 2\pi rh$	B1	
	$600\pi r = 2\pi r^3 + 2\pi r^2 h$	M1	multiplying both sides by r
	$\frac{600\pi r - 2\pi r^3}{2} = \pi r^2 h$ $V = \pi r^2 h$ $V = 300\pi r - \pi r^3$	A1	correct manipulation to obtain $\pi r^2 h$
9(ii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 300\pi - 3\pi r^2$	M1	differentiation of given formula to $A+Br^2$
	When $\frac{\mathrm{d}V}{\mathrm{d}r} = 300\pi - 3\pi r^2 = 0$	M1	equating to zero and attempt to solve
	r = 10	A1	
	$V = 2000\pi$ or 6280 or 6283	A1	
	$\frac{d^2V}{dr^2} = -6\pi r , \frac{d^2V}{dr^2} < 0$ so maximum	B1	cao for $\frac{d^2V}{dr^2} = -6\pi r$, $\frac{d^2V}{dr^2} = -60\pi$ or other correct method leading to maximum
10(i)	Method 1		
	$\lg y = A + Bx^2$	B1	statement soi
	16 = A + 6B $4 = A + 2B$	M1	one correct equation
	leading to $A = -2$ and $B = 3$	A2	A1 for each
10(i)	Method 2		
	$\lg y = A + Bx^2$	B1	statement soi
	Gradient = B B = 3	B1	
	16 = A + 6B or $4 = A + 2B$	M1	a correct equation
	A = -2	A1	

Question	Answer	Marks	Guidance
10(i)	Method 3 $\lg y - 4 = 3(x^2 - 2)$ or $\lg y - 16 = 3(x^2 - 6)$	M1	correct equation or for correct method for finding constant.
	OR $4 = 3(2) + c$ or $16 = 3(6) + c$		
	$\lg y = A + Bx^2$	B1	statement soi by their A and B
	Hence $y = 10^{3x^2 - 2}$ B = 3	B1	
	A = -2	A1	
10(ii)	$y = 10^{-2+3\left(\frac{1}{\sqrt{3}}\right)^2}$	M1	correct use of <i>their A</i> and <i>B</i>
	y = 0.1 oe	A1	
10(iii)	$2 = 10^{3x^2 - 2}$	M1	correct use of their A and B
	$ \lg 2 = 3x^2 - 2 \\ x = \sqrt{\frac{\lg 2 + 2}{3}} $	M1	complete correct method to solve for x
	x = 0.876	A1	

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = (x^2 + 1)(2x - 3)^{-\frac{1}{2}} + 2x(2x - 3)^{\frac{1}{2}}$	M1	differentiation of a product
		B1	for $\frac{d}{dx}(2x-3)^{\frac{1}{2}} = \frac{1}{2} \times 2(2x-3)^{-\frac{1}{2}}$ oe
		A1	all else correct i.e. $\frac{dy}{dx} = (x^2 + 1)f(x) + 2x(2x - 3)^{\frac{1}{2}}$
	$= (2x-3)^{-\frac{1}{2}} (x^2+1+2x(2x-3))$	M1	correctly taking out a factor of $(2x-3)^{-\frac{1}{2}}$
			or correctly using $(2x-3)^{\frac{1}{2}}$ as denominator
	$=\frac{5x^2-6x+1}{(2x-3)^{\frac{1}{2}}}$	A1	
11(ii)	When $x = 2$, $y = 5$	B1	
	$\frac{dy}{dx} = 9$, so gradient of normal = $-\frac{1}{9}$	M1	substitution to obtain gradient and correct method for gradient of normal
	Equation of normal $y-5=-\frac{1}{9}(x-2)$	M1	DepM1 for equation of normal
	x+9y-47=0 or $-x-9y+47=0$	A1	Must be in this form

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12

Paper 1 May/June 2019

MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 11

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Guidance
1(a)		B1	
		B1	

© UCLES 2019 Page 3 of 11

Question	Answer	Marks	Guidance
1(b)	$P = \{30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}\}$	B1	May be seen or implied in a Venn diagram Allow without set notation
	$Q = \{30^{\circ}, 150^{\circ}\}$	B1	May be seen or implied in a Venn diagram Allow without set notation
	$P \cap Q = \{30^{\circ}, 150^{\circ}\}$	B1	Dep on both previous B marks Must be in set notation
2	Either: $(2x+3)^2(x-1) = 3(2x+3)$ $(2x+3)(2x^2+x-6)(=0)$	M1	For attempt to equate line and curve and attempt to simplify to $2x+3 \times a$ quadratic factor or cancelling $2x+3$ and obtaining a quadratic factor
	$(2x+3)(2x^2+x-6) = 0$ $(2x+3)(2x-3)(x+2) = 0$	M1	Dep for attempt at 3 linear factors from a linear term and a quadratic term
	$\left(-\frac{3}{2},0\right)$	B1	
	$\left(\frac{3}{2},18\right)$	A1	Dep on first M mark only
	(-2, -3)	A1	Dep on first M mark only
	Or: $(2x+3)^2(x-1) = 3(2x+3)$ $4x^3 + 8x^2 - 9x - 18(=0)$	M1	For attempt to equate line and curve and attempt to simplify to a cubic equation, by collecting like terms
	$(x+2)(4x^{2}-9)$ $(2x-3)(2x^{2}+7x+6)$ $(2x+3)(2x^{2}+x-6)$ $(2x+3)(2x-3)(x+2)(=0)$	M1	Dep For attempt to find a factor from a 4 term cubic equation (usually $x+2$), do long division oe to obtain a quadratic factor and factorise this quadratic factor
	$\left(-\frac{3}{2},0\right)$	A1	
	$\left(\frac{3}{2},18\right)$	A1	
	(-2, -3)	A1	
3(i)	1000	B1	

© UCLES 2019 Page 4 of 11

Question	Answer	Marks	Guidance
3(ii)	$\frac{dB}{dt} = 400e^{2t} - 1600e^{-2t}$	B1	
	$3 = e^{2t} - 4e^{-2t}$ oe	M1	For equating an equation of the form $ae^{2t} + be^{-2t}$ to 1200 and dividing by 400
	$e^{4t} - 3e^{2t} - 4 = 0$	A1	
3(iii)	$(e^{2t} + 1)(e^{2t} - 4) = 0$	M1	For attempt to factorise and solve, dealing with exponential correctly, to obtain $e^{2t} =$
	$t = \ln 2$, $\frac{1}{2} \ln 4$ or awrt 0.693 only isw if appropriate	A1	
4(a)	$a = \frac{5}{2}$	B1	
	$b = -\frac{3}{2}$	B1	
	$c = \frac{11}{2}$	B1	
4(b)	$9x^{\frac{1}{2}} - 3y^{-\frac{1}{2}} = 12$ $4x^{\frac{1}{2}} + 3y^{-\frac{1}{2}} = 14$	M1	For attempt to solve simultaneous equations. Must reach $kx^{\frac{1}{2}} =$ or $ky^{-\frac{1}{2}} =$ oe
	x = 4	A1	
	$y = \frac{1}{4}$	A1	
5(i)	$9.6 = 12\theta$	M1	For use of arc length
	$\theta = 0.8$	A1	

© UCLES 2019 Page 5 of 11

Question	Answer	Marks	Guidance
5(ii)	Either $\tan \theta = \frac{AB}{12}$, $(AB = 12.36)$ Or $OB = \frac{12}{\cos \theta}$ $(OB = 17.22)$	M1	For attempt to find AB or OB using their θ May be implied by a correct triangle area Allow if using degrees consistently
	Either $Area \Delta OAB = \frac{1}{2} \times 12 \times their \ 12.36$ Or $Area \Delta OAB = \frac{1}{2} \times 12 \times their \ 17.22 \times sin\theta$ $(= 74.1 \text{ or } 74.2)$	M1	Allow if using degrees consistently
	Area of sector $OAC = \frac{1}{2} \times 12^2 \times 0.8$ = 57.6	B1	Allow unsimplified
	Area of shaded region = 16.5 or 16.6	A1	
6(a)(i)	40320	B1	
6(a)(ii)	No. of ways with maths books as 1 unit = 5! or $5 \times 4!$ or 5P_5 or 120	B1	
	No. of ways maths books can be arranged amongst themselves = $4!$ or 4P_4 or 24	B1	
	$Total = (5! \times 4! \text{ oe}) = 2880$	B1	
6(a)(iii)	No. of ways with maths books as 1 unit and geography books as 1 unit = $3!$ or 3P_3 or $3 \times 2!$ or 6	B1	
	No. of ways maths books can be arranged amongst themselves and geography books can be arranged amongst themselves = $4! \times 3!$ or ${}^4P_4 \times {}^3P_3$ or 144	B1	
	Total = $(3! \times 4! \times 3! \text{ oe})$ = 864	B1	
6(b)(i)	$^{12}C_6 = 924$	B1	

© UCLES 2019 Page 6 of 11

Question	Answer	Marks	Guidance
6(b)(ii)	Either: 924 – 8C ₆	M1	For <i>their</i> (i) – the number of teams of just men
	Total = 896	A1	
	Or: 5M 1W: ${}^{8}C_{5} \times {}^{4}C_{1}$ (= 224) 4M 2W: ${}^{8}C_{4} \times {}^{4}C_{2}$ (= 420) 3M 3W: ${}^{8}C_{3} \times {}^{4}C_{3}$ (= 224) 2M 4W: ${}^{8}C_{2} \times {}^{4}C_{4}$ (= 28)	M1	For a complete method
	Total = 896	A1	
7(i)	$\frac{120}{\beta 35}$ 650	B1	For correct triangle, may be implied by a correct sine rule or cosine rule.
	$\frac{120}{\sin \alpha}$ or $\frac{120}{\sin(55-\theta)} = \frac{650}{\sin 35}$ or $\frac{650}{\sin 145}$	M1	For use of a correct sine rule to obtain $\alpha =$ or $\theta =$ Or for a correct cosine rule leading to a value for v , followed by a correct sine rule leading to one of the other angles
	$\alpha = 6.08^{\circ} \text{ or } \beta = 138.9$	A1	May be implied by a correct $\theta = \text{awrt } 49^{\circ}$
	Bearing is 048.9° or 049°	A1	
7(ii)	Either $\frac{v_r}{\sin(145 - their\alpha)} = \frac{650}{\sin 35} \text{ or } \frac{120}{\sin(their\alpha)}$ Or $v_r^2 = 650^2 + 120^2 - (2 \times 650 \times 120)\cos(145 - their\alpha)$	M1	For use of sine rule or cosine rule to find resultant velocity Do not allow for a right-angled triangle May be seen in (i)
	$v_r = 745$	A1	For correct resultant velocity, allow awrt 745
	Time taken = $\frac{1250}{their 744.7}$	M1	For correct attempt at finding time using <i>their</i> v , \neq 650, 120, 770 or 530
	=1.68 hours or I hour 41 mins or 101 mins	A1	

© UCLES 2019 Page 7 of 11

Question	Answer	Marks	Guidance
8(i)	$e^y = \frac{m}{x} + c$	B1	May be implied by subsequent work
	Either $20 = 2m + c$ 8 = 4m + c	M1	For at least 1 correct equation
		M1	Dep For attempt to solve <i>their</i> 2 equations simultaneously to obtain at least one unknown
	leading to $m = -6$, $c = 32$	A1	For both
	$y = \ln\left(32 - \frac{6}{x}\right)$	A1	Must have correct brackets Mark the final answer given
	Or: Gradient = $m = (-6)$	M1	For attempt to find gradient and equate it to <i>m</i>
	$20 = 2m + c \text{ or } 8 = 4m + c$ or $e^y - 8 = m\left(\frac{1}{x} - 4\right)$ or $e^y - 20 = m\left(\frac{1}{x} - 2\right)$	M1	For at least 1 correct equation, may be using <i>their m</i>
	leading to $c = 32$ and $m = -6$	A1	For both $m = -6$, $c = 32$
	$y = \ln\left(32 - \frac{6}{x}\right)$	A1	
8(ii)	$x > \frac{3}{16}$ oe	B1	
8(iii)	$y = \ln 30$ isw	B1	
8(iv)	$2 = \ln\left(32 - \frac{6}{x}\right)$	M1	For a correct substitution and attempt to re-arrange using 2, <i>their</i> 32 and <i>their</i> – 6, keeping exactness to obtain $x =$
	$x = \frac{6}{32 - e^2}$ oe	A1	Must be exact

© UCLES 2019 Page 8 of 11

Question	Answer	Marks	Guidance
9(i)	$5 = 4 + 2\cos 3x$	M1	For attempt to solve trig equation to obtain one correct solution
	$\frac{\pi}{9}$	A1	
	$-\frac{\pi}{9}$	A1	
9(ii)	Either: $\int_{-\frac{\pi}{9}}^{\frac{\pi}{9}} 4 + 2\cos 3x - 5 dx$	M1	For use of subtraction method
	$\left[\frac{2}{3}\sin 3x - x\right]_{-\frac{\pi}{9}}^{\frac{\pi}{9}}$	M1	For attempt to integrate to obtain the form $a \sin 3x + bx$
		B1	For $\frac{2}{3}\sin 3x$
		B1	For $-x$, may be implied by $4x-5x$
	$\left(\frac{\sqrt{3}}{3} - \frac{\pi}{9}\right) - \left(-\frac{\sqrt{3}}{3} + \frac{\pi}{9}\right)$	M1	Dep on previous M mark for correct application of <i>their</i> limits in radians from (i) retaining exactness
	Shaded area = $\frac{2\sqrt{3}}{3} - \frac{2\pi}{9}$ oe isw	A1	

© UCLES 2019 Page 9 of 11

Question	Answer	Marks	Guidance
9(ii)	Or: Area of rectangle = $5 \times \frac{2\pi}{9}$	M1	5× the difference of <i>their</i> limits in exact radians
	Area under curve = $\left[4x + \frac{2}{3}\sin 3x\right]_{-\frac{\pi}{9}}^{\frac{\pi}{9}}$	M1	For attempt to integrate to obtain the form $a \sin 3x + bx$
		B1	For $\frac{2}{3}\sin 3x$
		B1	For 4x
	$\left(\frac{\sqrt{3}}{3} + \frac{4\pi}{9}\right) - \left(-\frac{\sqrt{3}}{3} - \frac{4\pi}{9}\right)$ $\left(=\frac{2\sqrt{3}}{3} + \frac{8\pi}{9}\right)$	M1	Dep on previous M mark for correct application of <i>their</i> limits in exact radians from (i) retaining exactness
	Shaded area = $\frac{2\sqrt{3}}{3} - \frac{2\pi}{9}$ oe isw	A1	
10(i)	$800 = 4x^2h$	B1	
	$h = \frac{800}{4x^2}$ oe or $xh = \frac{800}{4x}$ oe	B1	
	$(S=)2hx+8xh+4x^2 \text{ oe}$	M1	Allow if <i>h</i> is substituted at this point
	$S = 4x^2 + \left(\frac{2000}{x}\right)$	A1	Leading to AG, must have $S = \text{or}$ surface area = at some point and no errors

Question	Answer	Marks	Guidance
10(ii)	$\left(\frac{\mathrm{d}S}{\mathrm{d}x} = \right)8x - \frac{2000}{x^2}$	B1	For correct differentiation
	When $\frac{dS}{dx} = 0$, $x = \sqrt[3]{250}$ oe (6.30)	M1	For equating to zero and attempt to solve, must get as far as $x =$, must be using the form $ax + \frac{b}{x^2}$
		A1	For correct positive <i>x</i>
	S = 476 only	A1	
	$\frac{d^2S}{dx^2} = 8 + \frac{4000}{x^3}$ $\frac{d^2S}{dx^2} > 0 \text{ or } 24 \text{ so minimum}$	B1	For a correct convincing method, with enough detail to reach a correct conclusion of a minimum. Must be using $x = \sqrt[3]{250}$ oe
11		M1	For attempt at differentiating a product
		B1	For $\frac{2}{3} \times 3(3x+1)^{-\frac{1}{3}}$
	$\frac{dy}{dx} = \int (x-2) \times \frac{2}{3} \times 3(3x+1)^{-\frac{1}{3}} + (3x+1)^{\frac{2}{3}}$	A1	For all other terms correct
	$y = \frac{4}{3}$	B1	
	When $x = \frac{7}{3}$, $\frac{dy}{dx} = \frac{13}{3}$	M1	For attempt at normal equation using $-\frac{1}{their\ m}$ and their y when $x = \frac{7}{3}$
	Equation of normal: $y - \frac{4}{3} = -\frac{3}{13} \left(x - \frac{7}{3} \right)$	A1	For correct normal equation, may be implied by a correct final answer
	At y-axis, $y = \frac{73}{39}$ $\left(0, \frac{73}{39}\right) \text{ isw}$	A1	

Page 11 of 11

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/13

Paper 1 May/June 2019

MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 8

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2019 Page 3 of 8

Question	Answer	Marks	Guidance
1	$A \cap B = \emptyset$	B1	
	$Z \subset (X \cap Y)$	B2	B1 for identifying $X \cap Y$
2	$a = \frac{3}{2}$	B1	
	$b = \frac{7}{3}$	B1	
	c = 3	B1	
3	$x^2 + (3-m)x + m - 4 = 0$	M1	For equating line and curve and attempting to obtain a quadratic equation equated to zero
	Discriminant: $(3-m)^2-4(m-4)$	M1	Dep For use of $b^2 - 4ac$, could be implied by use of quadratic formula
	$(m-5)^2$	A1	
	Always positive or zero for any <i>m</i> , so line and curve will always touch or intersect	A1	For a suitable comment/conclusion
4(i)		B1	For $\frac{6x^3}{\left(2x^3+5\right)}$
		M1	For attempt to differentiate a quotient
	$\frac{dy}{dx} = \frac{(x-1)\frac{6x^2}{(2x^3+5)} - \ln(2x^3+5)}{(x-1)^2}$	A1	For all other terms correct
	When $x = 2$, $\frac{dy}{dx} = \frac{24}{21} - \ln 21$ or $\frac{8}{7} - \ln 21$, or -1.90	A1	
4(ii)	-1.90p oe	B1	

© UCLES 2019 Page 4 of 8

Question	Answer	Marks	Guidance
5(i)		B1	For shape with maximum in 1st quadrant
	11/	B1	For $\left(-\frac{1}{3},0\right)$ and $(5,0)$
		B1	For (0, 5)
	-00	B1	All correct with cusps and correct shape for $x < -\frac{1}{3}$ and $x > 5$
5(ii)		M1	For attempt to find maximum point
	Maximum point when $x = \frac{7}{3}$	A1	For $x = \frac{7}{3}$
	$y = \frac{64}{3}$ so $k = \frac{64}{3}$	A1	
6(i)	$\frac{1}{\cos\theta} - \frac{\sin\theta}{\cos\theta} \times \sin\theta \text{oe}$	M1	For dealing with sec, tan and cosec in terms of sin and cos
	$\frac{1-\sin^2\theta}{\cos\theta}$	M1	For simplification and use of identity
	$\frac{\cos^2\theta}{\cos\theta}$	A1	For simplification to AG
6(ii)	$\cos 2\theta = \frac{\sqrt{3}}{2}$	M1	For use of part (i) and attempt to solve to get as far as $2\theta =$
	$2\theta = 30^{\circ}, 330^{\circ}$	M1	For dealing with double angle correctly, may be implied by one correct solution
	$\theta = 15^{\circ}, 165^{\circ}$	A1	For both
6(iii)	$\sin\left(\phi + \frac{\pi}{3}\right) = \pm \frac{1}{\sqrt{2}}$ $\phi + \frac{\pi}{3} = \frac{\pi}{4}, \ \frac{3\pi}{4}, \ \frac{5\pi}{4}, \ \frac{7\pi}{4}, \ \frac{9\pi}{4}$	M1	For correct attempt to solve, may be implied by $\phi + \frac{\pi}{3} = \frac{\pi}{4}$
		M1	Dep For dealing with compound angle correctly
	$\phi = \frac{5\pi}{12}, \ \frac{11\pi}{12}, \ \frac{17\pi}{12}, \ \frac{23\pi}{12}$	A2	A1 for one correct pair, A1 for a second correct pair with no extra solutions in the range.

© UCLES 2019 Page 5 of 8

Question	Answer	Marks	Guidance
7(i)	$AC^{2} = \left(2\sqrt{5} - 1\right)^{2} + \left(2 + \sqrt{5}\right)^{2}$	M1	For use of Pythagoras' theorem and attempt to expand brackets
	$=20-4\sqrt{5}+1+4+4\sqrt{5}+5$	A1	For correct unsimplified, must be convinced of non-calculator use
	$AC = \sqrt{30}$	A1	
7(ii)	$\tan ACB = \frac{2\sqrt{5} - 1}{2 + \sqrt{5}} \times \frac{2 - \sqrt{5}}{2 - \sqrt{5}}$	M1	For attempt at tan ACB and rationalisation
	$= \frac{4\sqrt{5} - 2 - 10 + \sqrt{5}}{4 - 5} \text{ oe}$	M1	Dep For seeing at least 3 terms in the numerator
	$=12-5\sqrt{5}$	A1	
7(iii)	$\sec^2 ACB = \tan^2 ACB + 1$ $= 144 - 120\sqrt{5} + 125 + 1$	M1	For use of identity using their (ii)
	$=270-120\sqrt{5}$	A1	
8(i)	g ≥ 1	B1	Must be using correct notation
8(ii)	$g\left(\sqrt{62}\right) = 125$	B1	
	$f^{-1}(x) = \frac{1}{3} \ln x$	B1	
	$\frac{1}{3}\ln 125 = \ln 5$	B1	For correct order and manipulation to obtain the given answer, need to see $\frac{1}{3} \ln 125$
8(iii)	$3e^{3x} = 24$	M1	For dealing with derivatives correctly
	$x = \frac{1}{3} \ln 8$	A1	
	$x = \ln 2$	A1	
8(iv)		В3	B1 for correct g with intercept B1 for $y = x$ and/or implication of symmetry B1 for correct g^{-1} with intercept
9(a)(i)	7! = 5040	B1	

© UCLES 2019 Page 6 of 8

Question	Answer	Marks	Guidance
9(a)(ii)	Treating the 4 trophies as 1 unit so there are 4! ways	B1	Maybe implied by a correct answer
	There are also 4! ways of arranging the football trophies amongst themselves	B1	
	Total = $4! \times 4! = 576$	B1	
9(a)(iii)	Treating the 4 football trophies as 1 unit and the 2 cricket trophies as 1 unit so there are 3! ways	B1	Maybe implied by a correct answer
	There are also 4! ways of arranging the football trophies amongst themselves and 2 ways of arranging the cricket trophies	B1	Maybe implied by a correct answer
	Total = $3! \times 4! \times 2 = 288$	B1	
9(b)(i)	3003	B1	
9(b)(ii)	28	B1	
9(b)(iii)	3003 – 1	M1	For <i>their</i> (i) – 1
	3002	A1	FT
10(i)		M1	Attempt to integrate to obtain $k(2x+3)^{\frac{1}{2}}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x+3)^{\frac{1}{2}} (+c)$	A1	All correct, condone omission of $+c$
	5 = 3 + c	M1	Dep For attempt at <i>c</i>
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(2x+3\right)^{\frac{1}{2}} + 2$	M1	For a further attempt to integrate
	$y = \frac{1}{3}(2x+3)^{\frac{3}{2}} + 2x(+d)$	A1	All correct, condone omission of + <i>d</i>
	$-\frac{1}{3} = \frac{8}{3} + 1 + d$	M1	For attempt at d
	$y = \frac{1}{3}(2x+3)^{\frac{3}{2}} + 2x - 4$	A1	Must have $y =$

© UCLES 2019 Page 7 of 8

Question	Answer	Marks	Guidance
10(ii)	When $x = 3$, $y = 11$	M1	For attempt to find y using their (i)
		M1	Dep For attempt at normal
	Normal: $y-11 = -\frac{1}{5}(x-3)$	A1	All correct unsimplified
	x + 5y - 58 = 0	A1	For correct form
11(i)	120	B1	For correct triangle, may be implied by subsequent work
	600 130		
	$\frac{120}{\sin\alpha} = \frac{600}{\sin 130}$	M1	For use of the correct sine rule
	$\alpha = 8.81^{\circ}$	A1	Allow greater accuracy
	Bearing 041.2° or 041°	A1	Allow greater accuracy
11(ii)	$\frac{v_r}{\sin 41.19} = \frac{600}{\sin 130} = \frac{120}{\sin \alpha}$	M1	For use of sine rule using <i>their</i> α or cosine rule
	$v_r = 515.8$ awrt 516	A1	
	$Time taken = \frac{2500}{515.8}$	M1	For attempt to find time using <i>their</i> v_r , not 600, 720 or 480
	= 4.85 or 4.84	A1	

© UCLES 2019 Page 8 of 8

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/22

Paper 22 March 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 10

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2019 Page 3 of 10

Question	Answer	Marks	Partial Marks
1(i)	1081575	B1	
1(ii)	40 320	B1	
1(iii)	2730	B1	
2(i)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\ln x \right) = \frac{1}{x}, \frac{\mathrm{d}}{\mathrm{d}x} \left(e^x \right) = e^x \text{ soi}$	B2	B1 for each
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^x \times their \frac{1}{x} - (\ln x) \times their \mathrm{e}^x}{\left(\mathrm{e}^x\right)^2}$	M1	
	correct completion to given answer, $\frac{dy}{dx} = \frac{1 - x \ln x}{xe^x}$	A1	
2(ii)	$\delta y = \left(\frac{1 - 2\ln 2}{2e^2}\right) \times h \text{ soi}$	M1	
	-0.0261[]h isw	A1	
3(i)	Fully correct curve -6 y -6 120 180 240 300 360	В3	B1 for correct shape for sine with <i>y</i> -intercept at -1 B1 for curve with period 120° B1 for curve with amplitude 5 Maximum of 2 marks if not fully correct.
3(ii)	a = -1 $b = 5$ $c = 3$	B2	B1 for any 2 correct
4(a)	Expands, rearranges to form a 3-term quadratic on one side $4x^2 + x - 3[*0]$	M1	
	Critical values $\frac{3}{4}$ and -1	A1	
	$-1 \leqslant x \leqslant \frac{3}{4}$ final answer	A 1	FT their critical values

© UCLES 2019 Page 4 of 10

Question	Answer	Marks	Partial Marks
4(b)	$k^2 - 4\left(\frac{1}{4}\right)\left(k^2 + 1\right)$	M1	
	-1	A1	
	discriminant independent of k and negative oe	A1	FT their –1
5	$[m_{AB} =] \frac{2+4}{3-7}$ oe or $-\frac{3}{2}$ soi	M1	
	$[m_{CD} =] their \frac{2}{3} oe, soi$	M1	
	their $\frac{2}{3} = \frac{3+3}{k-2}$ oe or	M1	
	$3 + 3 = their \frac{2}{3}(x - 2)$ oe		
	k = 11 nfww	A1	
	$\left(\frac{(their11)+2}{2}, \frac{3+-3}{2}\right) \text{ oe}$	M1	
	$y = -\frac{3}{2}(x - 6.5)$ oe isw	A1	FT their m_{AB} and (their 6.5, 0)
6(i)	Takes logs, to any base, of both sides and applies the addition/multiplication law for logs $\ln y = \ln(Ab^x) \Rightarrow \ln y = \ln A + \ln b^x$	M1	
	$\Rightarrow \ln y = \ln A + x \ln b$	A1	
6(ii)	$\ln y = 1.4x + 2.2$ oe or $\ln y = x \ln 4 + \ln 9$ oe	B2	B1 for either $m = 1.4$ or $\ln b = 1.4$ or $c = 2.2$ or $\ln A = 2.2$
	$[A = e^{their 2.2} =] 9 \text{ and}$	B2	FT their 2.2 and their 1.4
	$[b = e^{their 1.4} =] 4$		B1 FT for $A = e^{their 2.2}$ or $b = e^{their 1.4}$ or correct FT decimal rounded to more than 1 sf
6(iii)	ln $y = 6$ or $y = their9(their4^{2.7})$ or $y = e^{their2.2}(e^{their1.4\times2.7})$ or ln $y = their1.4(2.7) + their2.2$ or ln $y = (2.7)\ln(their4) + \ln(their9)$	M1	
	awrt 400 correct to 1 sf	A1	

© UCLES 2019 Page 5 of 10

Question	Answer	Marks	Partial Marks
7(i)	$\frac{d}{dx} \left(\sqrt{x^2 + 1} \right) = \frac{1}{2} \left(x^2 + 1 \right)^{-\frac{1}{2}} \times 2x$	B2	B1 for $\frac{d}{dx}(\sqrt{x^2+1}) = kx(x^2+1)^{-\frac{1}{2}}$ where $k \neq 1$
	$\sqrt{x^2 + 1} + x \times their\left(\frac{1}{2}(x^2 + 1)^{-\frac{1}{2}} \times 2x\right)$	M1	
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x} = \right] \frac{2x^2 + 1}{\left(x^2 + 1\right)^{\frac{1}{2}}}$ or $a = 2, b = 1, p = \frac{1}{2}$ nfww	A1	
7(ii)	Complete argument e.g. For stationary points $\frac{dy}{dx} = 0$ and when a and b are positive, $ax^2 + b$ cannot be 0 or $2x^2$ cannot be -1	B2	FT their positive a and b B1 FT for a partially correct argument e.g. Because $\frac{dy}{dx}$ cannot be 0.
8(i)	$6\mathbf{i} - 4\mathbf{j} - (2\mathbf{i} + 12\mathbf{j})$ oe	M1	
	4 i −16 j oe, isw	A1	
8(ii)	$[\overrightarrow{OC} =]\overrightarrow{OA} + \frac{1}{4}\overrightarrow{AB} \text{ oe}$ or $[\overrightarrow{OC} =]\overrightarrow{OB} - \frac{3}{4}\overrightarrow{AB} \text{ oe}$ or $[\overrightarrow{OC} =]\frac{1}{4}\overrightarrow{OB} + \frac{3}{4}\overrightarrow{OA} \text{ oe}$ or $3(x-2) = 6 - x \text{ and}$ $3(y-12) = -4 - y$	M1	
	3i + 8j oe	A1	
	$\left \overrightarrow{OC} \right = \sqrt{their3^2 + their8^2}$	M1	
	their $\frac{3\mathbf{i} + 8\mathbf{j}}{\sqrt{73}}$	A1	FT their $3\mathbf{i} + 8\mathbf{j}$ and their $\sqrt{73}$
8(iii)	$-\frac{\lambda}{1+\lambda}(2\mathbf{i}+12\mathbf{j}) \text{ oe, isw}$	B2	B1 for $\frac{\lambda}{1+\lambda} (2\mathbf{i} + 12\mathbf{j})$ seen or $\overrightarrow{OD} = \frac{1}{1+\lambda} (2\mathbf{i} + 12\mathbf{j})$ oe

© UCLES 2019 Page 6 of 10

Question	Answer	Marks	Partial Marks
9(a)(i)	Valid explanation e.g. Each x is mapped to a unique value of y [and so g is a function] but the inverse does not exist because it is many to one oe	B2	B1 for either each <i>x</i> is mapped to a unique value of <i>y</i> oe or for inverse does not exist because it is many to one oe
9(a)(ii)	$\left[g^{2}(x) = \right] 6(6x^{4} + 5)^{4} + 5 \text{ isw}$ for all real x	B2	B1 for $\left[g^2(x) = \right]$ $6(6x^4 + 5)^4 + 5$ isw B1 for correct domain
9(a)(iii)	[k =] 0	B1	
9(a)(iv)	$x^4 = \frac{y-5}{6} \text{ soi}$	M1	or $y^4 = \frac{x-5}{6}$
	$x = \pm \sqrt[4]{\frac{y-5}{6}}$	A1	or $y = \pm \sqrt[4]{\frac{x-5}{6}}$
	$h^{-1}(x) = -\sqrt[4]{\frac{x-5}{6}}$	A1	If M1 A0 A0 , allow SC1 for an answer of $h^{-1}(x) = \sqrt[4]{\frac{x-5}{6}}$ or $y = \sqrt[4]{\frac{x-5}{6}}$
9(b)(i)	p > 2	B1	
9(b)(ii)	For p: Correct exponential shape tending to $y = 2$ passing through $(0, 5)$	B2	B1 for each
	For the inverse function: Approximate reflection of p in the dotted line passing through (their 5, 0)	B1	
9(b)(iii)	Valid explanation e.g. The graphs do not intersect and so there are no solutions oe	B1	
10(i)	Eliminates x or y e.g. $3x + 3 = x + 5\sqrt{x} + 1$ or $3 + 3u^2 = u^2 + 5u + 1$	M1	
	Rearranges to a 3-term quadratic e.g. $0 = 2x - 5\sqrt{x} + 2$ or $0 = 2u^2 - 5u + 2$	A1	
	Factorises or solves $0 = 2x - 5\sqrt{x} + 2$ oe or $0 = 2u^2 - 5u + 2$ oe	M1	
	$\sqrt{x} = 0.5 , \sqrt{x} = 2$ or $u = 0.5 , u = 2$	A1	

© UCLES 2019 Page 7 of 10

Question	Answer	Marks	Partial Marks
	A(0.25, 3.75) $B(4, 15)$ oe	A2	A1 for each or for $x = 0.25$ and $x = 4$

© UCLES 2019 Page 8 of 10

Question	Answer	Marks	Partial Marks		
10(ii)	Method 1: Finding the area of the trapezium and subtracting				
	Valid method to find the area of the trapezium soi	M1			
	$\frac{1125}{32}$ or $35\frac{5}{32}$ or 35.2 or 35.15625 rot to 4 or more figs, soi	A1			
	Attempts to integrate $\int_{their 0.25}^{their 4} (x + 5\sqrt{x} + 1) dx [-their 35.2]$	M1			
	$\left[\frac{x^2}{2} + \frac{5x^{\frac{3}{2}}}{\frac{3}{2}} + x\right]_{their 0.25}^{their 4} $ [-their 35.2] oe	A1			
	F(their 4) – F(their 0.25) [–their 35.2]	M1			
	$\frac{45}{16}$ or $2\frac{13}{16}$ or 2.8125 isw or 2.81, or 2.812	A1			
	Method 2: Finding the difference of two integrals				
	Attempts to integrate $\int_{their 0.25}^{their 4} (x + 5\sqrt{x} + 1 - (3 + 3x)) dx$ or $\int_{their 0.25}^{their 4} (-2x + 5\sqrt{x} - 2) dx$ oe	M2	M1 for an attempt to form the difference with at most one error and attempts to integrate		
	$their \left(\frac{-2x^2}{2} + \frac{5x^{\frac{3}{2}}}{\frac{3}{2}} - 2x\right) \right]_{their 0.25}^{their 4}$ oe	A1	FT dep on at least M1 already awarded; must be at least 3 terms and, if FT, must be of equivalent difficulty		
	F(their 4) - F(their 0.25)	M1			
	$\frac{45}{16}$ or $2\frac{13}{16}$ or 2.81, 2.812 or 2.8125	A2			

© UCLES 2019 Page 9 of 10

Question	Answer	Marks	Partial Marks
11(a)	$\frac{x^2(x^6+1)}{x^6} = x^2 + \frac{1}{x^4}$ soi	B1	
	$\frac{x^3}{3} + \frac{x^{-3}}{-3} + c$ oe, isw	B2	B1 for any two out of three terms correct
11(b)(i)	$k\sin(4\theta-5)$ where	M1	
	$k > 0 \text{ or } k = -\frac{1}{4}$		
	$\frac{\sin(4\theta-5)}{4}(+c)$	A1	
11(b)(ii)	$\frac{\sin(4(2)-5)}{4} - \frac{\sin(4(1.25)-5)}{4}$ or $\frac{\sin(3)}{4} - \frac{\sin(0)}{4}$	M1	FT their (b)(i), dep on M1 awarded in (b)(i)
	0.0353 or 0.03528[] oe, cao	A1	

© UCLES 2019 Page 10 of 10

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS Paper 2 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme.
 However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 8

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 8

Question	Answer	Marks	Partial Marks
1	$x^2 + 7x - 8 \ (>0)$	2	M1 for expanding and collecting terms
	x < -8 or x > 1	2	M1 for factorising $(x+8)(x-1) > 0$
2(a)	Take logs: $\left(\frac{x}{2} - 1\right) \log 3 = \log 10$	M1	
	Make x the subject: $x = 2\left(\frac{\log 10}{\log 3} + 1\right)$	M1	
	6.19	A1	
2(b)	$e^{5y+1} = \frac{2}{3}$	2	M1 for attempt to combine exponential terms
	-0.281	2	M1 for taking natural logs: $5y+1 = \ln\left(\frac{2}{3}\right)$
3(a)	Expand 4 terms: $8 + 8\sqrt{10} - 3\sqrt{10} - 30$	M1	
	-22	A1	
	5√10	A1	
3(b)	$\frac{\left(4-3\sqrt{6}\right)}{\left(\sqrt{3}+\sqrt{2}\right)} \times \frac{\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)}$ $\frac{4\sqrt{3}-3\sqrt{18}-4\sqrt{2}+3\sqrt{12}}{\sqrt{12}}$	M1	Multiply numerator and denominator by $(\sqrt{3} - \sqrt{2})$
	$\frac{4\sqrt{3} - 3\sqrt{18} - 4\sqrt{2} + 3\sqrt{12}}{3 - 2}$	M1	Expand
	$10\sqrt{3} - 13\sqrt{2}$	A2	A1 for each term

Question	Answer	Marks	Partial Marks
4	$\frac{1}{\cos x} = \frac{\cos x}{\sin x} - 5 \frac{\sin x}{\cos x}$	B1	Correctly converts 3 terms into sinx and cosx
		M1	Uses $\cos^2 x = 1 - \sin^2 x$
	$6\sin^2 x + \sin x - 1 = 0$	A1	
	$(3\sin x - 1)(2\sin x + 1) = 0$	M1	
	19.5°, 160.5°, 210°, 330°	A2	A1 for 2 correct A1 for further 2 correct
5(i)	$A^2 = \begin{pmatrix} 7 & 8 \\ -4 & -1 \end{pmatrix}$	2	Minus 1 each error.
5(ii)	7p+3q=1 8p+2q=0 -4p-q=0, -p+q=1	2	M1 forms two equations in p and q A1 Both correct
	$p = -\frac{1}{5}, q = \frac{4}{5}$	2	$\mathbf{M1}$ solves equations to find p and q
6(i)	120	2	B2 $5 \times 4 \times 3 \times 2$ or B1 for pattern n(n-1)(n-2)(n-3)
6(ii)	720	2	B1 $4 \times 3 \times 2$ B1 dep $\times 6 \times 5 = 720$
6(iii)	2520	2	B1 $4 \times \times \times 3$ B1 Dep $\times 7 \times 6 \times 5 = 2520$
7(i)	$\frac{(1+\cos x)-(1-\cos x)}{(1-\cos x)(1+\cos x)}$	M1	Taking common denominator
	$=\frac{2\cos x}{1-\cos^2 x}$	A1	
	$=\frac{2\cos x}{\sin^2 x}$	M1	Using $1 - \cos^2 x = \sin^2 x$
	$= \frac{2\cos x}{\sin x} \times \frac{1}{\sin x}$ $= 2\cos \cos x \cot x$	A1	Fully correct completion AG

Question	Answer	Marks	Partial Marks
7(ii)	$2\csc x \cot x = \sec x$	M1	
	$\cot^2 x = \frac{1}{2}$	A1	
	0.955, 2.19, 4.10, 5.33	A2	A1 for 2 correct values A1 for further 2 correct values
8(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - 2\mathrm{e}^{2-5x}$	B1	
	$x = 2.5 \rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -1 \text{ and } y = 3.5$	B1	
	Grad of normal = $\frac{-1}{\frac{dy}{dx}}$	M1	
	y = x + 1	A1	Equation of normal
8(ii)	Area of trapezium = $\frac{1}{2} \times 2.5 \times 4.5$	M1	
	5.625 sq units	A1	
	$\int_{2.5}^{5} x + e^{(5-2x)} dx$	M1	Area under curve
	$= \left[\frac{x^2}{2} - \frac{1}{2}e^{(5-2x)}\right]_{2.5}^5$	A1	
		M1	insert limits and subtract (= 9.87)
	Shaded area = 15.5	A1	5.625 + 9.87
9(i)	$2y + 2r + \pi r = 5$	B1	
	$y = \frac{5 - 2r - \pi r}{2}$	B1	Dep

Question	Answer	Marks	Partial Marks
9(ii)	$A = 2yr + \frac{\pi r^2}{2}$	M1	
	$= r(5 - 2r - \pi r) + \frac{\pi r^2}{2}$ $= 5r - 2r^2 - \frac{\pi r^2}{2}$	A1	
	$=5r-2r^2-\frac{\pi r^2}{2}$		
9(iii)		M1	differentiate
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 5 - \pi r - 4r$	A1	
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 0$	M1	set to zero and attempt to solve
	$r = \frac{5}{\pi + 4} = 0.7$	A1	
	A = 1.75	A1	
10(i)	$12-2x = k+6+kx-x^{2}$ $\to x^{2}-(2+k)x+6-k=0$	M1	* Equate and collect terms
	$b^{2} - 4ac = 0$ $ \rightarrow (2+k)^{2} = 4(6-k)$	M1	Dep*
	$k^2 + 8k - 20 = 0$	A1	
	(k+10)(k-2)=0	M1	
	k = -10 or 2	A1	
10(ii)	(-4, 20) and (2, 8)	3	M1 Insert values of k in equations and solve for x A1 $x^2 + 8x + 16 = 0 \rightarrow x = -4$ $\rightarrow y = 20$ A1 $x^2 - 4x + 4 = 0$ $\rightarrow x = 2 \rightarrow y = 8$

Question	Answer	Marks	Partial Marks
10(iii)	Grad of perpendicular $=\frac{1}{2}$	B1	
	Midpoint (-1,14)	B1	FT
	Eqn $\frac{y-14}{x+1} = \frac{1}{2} \to y = \frac{1}{2}x + 14.5$	B1	FT
11	$n((R \cap H) \cap N') = 14 - x$	B1	
	$n((R \cap N) \cap H') = 5$	B1	
	$n(N \cap (R \cup H)') = 21 - x$	B1	
		M1	correctly form equation in x and attempt to solve
	x = 8	A1	
	$n(N \cap (R \cup H)') = 13$	A1	

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/22

Paper 2

October/November 2018

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 10

October/November 2018

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 10

Question	Answer	Marks	Partial Marks
1	$x^2 + x - 12 > x + 13$	M1	expand and simplify
	$\rightarrow x^2 \dots 25$	A1	
	x > 5 or $x < -5or x > 5, x < -5or x > 5 and x < -5$	A1	
2	$n(F \cap C) = n(F \cup C)' = x$	B1	
	$n(C \cap F') = 40 - x$	B1	
	$n(F \cap C') = 80 - 2x$ or $2(40 - x)$	B1	
	x + x + 40 - x + 80 - 2x = 105	M1	
	x = 15	A1	cao
3(i)	$\frac{3x^2\sin 2x - x^3 \times 2\cos 2x}{\left(\sin 2x\right)^2}$	3	M1 Quotient rule A2/1/0 minus one each error isw
3(ii)	$y = \frac{\pi^3}{64} = 0.48$	B1	
	$\frac{dy}{dx} = \frac{3\pi^2}{16}$ [=1.85] oe	B1	
	$y = \frac{3\pi^2}{16}x - \frac{\pi^3}{32}$	B1	cao
	[y = 1.85x - 0.97]		
4(i)	Take logs: $(3x-1)\log 2 = \log 6$	M1	
	Make x the subject : $x = \frac{\frac{\log 6}{\log 2} + 1}{3}$ oe	A1	
	awrt 1.19 or awrt 1.195	A1	

Question	Answer	Marks	Partial Marks
4(ii)	$1 = \log_3 3$	B1	
	$\frac{2}{\log_y 3} = 2\log_3 y$	B1	
	$3y^2 - y - 14 = 0$	B1	
	(3y-7)(y+2)=0	M1	Solve a three term quadratic
	$y = \frac{7}{3}$ only	A1	
5	$\frac{2^{3(p+1)}}{2^{2q}} = 2^{11} \text{ or } \frac{3^{2p+5}}{3^{3(\frac{1}{3})}} = 3^{2(3q)}$	M1	
	Use $\frac{x^a}{x^b} = x^{a-b}$ or $x^a \times x^b = x^{a+b}$	M1	
	3p+3-2q=11 and $2p+5-1=6q$	A1	Allow unsimplified
		M1	solve
	p=4 and $q=2$	A1	
6(a)	Number first = $7 \times 6 \times 5 \times 6 \times 5$ or ${}^{7}P_{3} \times {}^{6}P_{2}$ or 6300	B1	
	Letter first = $6 \times 5 \times 4 \times 7 \times 6$ or ${}^{6}P_{3} \times {}^{7}P_{2}$ or 5040	B1	
	6300 + 5040 = 11 340	B1	
6(b)	With 2 sisters = ${}^{7}C_{5} \times {}^{3}C_{2} = 63$ With 1 sister = ${}^{7}C_{6} \times {}^{3}C_{1} = 21$ With no sister = ${}^{7}C_{7} = 1$ and Total 85	3	B1 One combination evaluated B1Another combination evaluated B1 Third combination and 85
	OR		
	Total no of ways = ${}^{10}C_7 = 120$	B1	
	With 3 sisters = ${}^7C_4 = 35$	B1	
	Without 3 sisters = $120 - 35 = 85$	B1	

Question	Answer	Marks	Partial Marks
7	$\left(1 - \sqrt{3}\right)\left(1 + \sqrt{3}\right) = -2$	B1	
		M1	* uses quadratic formula
	$x = \frac{-1 \pm \sqrt{1 - 4\left(1 - \sqrt{3}\right)\left(1 + \sqrt{3}\right)}}{2\left(1 - \sqrt{3}\right)}$	A1	
		M1	Dep* × numerator and denominator by their $(1+\sqrt{3})$
	$x=1+\sqrt{3}$ or $x=-\frac{1}{2}-\frac{\sqrt{3}}{2}$	A2	A1 for each
8(i)	$\frac{(1+\sin x)-(1-\sin x)}{(1-\sin x)(1+\sin x)}$	M1	
	$\frac{2\sin x}{1-\sin^2 x}$	A1	
	$\frac{2\sin x}{\cos^2 x}$	M1	
	$\frac{2\sin x}{\cos x} \times \frac{1}{\cos x} = 2\tan x \sec x$	A1	AG
8(ii)		M1	equate $2 \sec x \tan x = \csc x$
	$\tan^2 x = \frac{1}{2}$	A1	
	35.3°,144.7°, 215.3°, 324.7°	2	A1 two correct
9(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-\frac{1}{2}}$	B1	
	$x = 4 \to \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$	B1	
	grad of normal $=-2$	M1	
	$\frac{y-4}{x-4} = -2 \rightarrow \left[y = -2x + 12 \right]$	A1	

Question	Answer	Marks	Partial Marks
9(ii)	(6, 0)	B1	FT
9(iii)	Area of triangle = $\frac{1}{2} \times 2 \times 4 = 4$	B1	FT
	Area under curve $=\int 2x^{\frac{1}{2}} dx$	M1	
	$=\frac{4}{3}x^{\frac{3}{2}}$	A1	
	Total area = $14\frac{2}{3}$ [14.7]	A1	FT
	OR		
	Area of trapezium <i>OBAP</i> $= \frac{1}{2}(6+4) \times 4 = 20$	B1	FT
	Area between curve and y- axis $= \int \frac{y^2}{4} dy$	M1	
	$=\frac{y^3}{12}$	A1	
	Total area = $14\frac{2}{3}$ [14.7]	A1	FT

Question	Answer	Marks	Partial Marks
10(i)	$2k+1-kx = 12-4x-x^{2}$ $x^{2}+4x-kx+2k-12+1$	M1	*
	$b^{2} - 4ac$ $\rightarrow (4-k)^{2} - 4(2k-11)$	M1	Dep*
	$k^2 - 16k + 60$	A1	
	(k-6)(k-10)	M1	
	k = 6 or 10	A1	
	OR		
	k = 4 + 2x	M1	*
	$-4x - 2x^{2} + 8 + 4x + 1 = 12 - 4x - x^{2}$ or $2k + 1 - k\left(\frac{k-4}{2}\right) = 12 - 2(k-4) - \left(\frac{k-4}{2}\right)^{2}$	M1	Dep*
	$x^2 - 4x + 3$ or $k^2 - 16k + 60$	A1	
	(x-1)(x-3) or $(k-6)(k-10)$	M1	
	$x = 1 \text{ or } x = 3 \rightarrow k = 6 \text{ or } 10$	A1	
10(ii)	$k = 6 \rightarrow [y] = 13 - 6x$	B1	FT
	$k = 10 \rightarrow [y] = 21 - 10x$	B1	FT
		M1	solve
	x = 2, y = 1.	2	cao
11(i)	$gf(x) = \frac{2(4x-3)+1}{3(4x-3)-1}$	M1	
	$=\frac{8x-5}{12x-10}$	A1	

Question	Answer	Marks	Partial Marks
11(ii)	y(3x-1) = 2x+1 or $x(3y-1) = 2y+1$	В1	
	(3y-2)x = y+1 or $(3x-2)y = x+1$	M1	
	$g^{-1}(x) = \frac{x+1}{3x-2}$	A1	
11(iii)	$4\left(\frac{2x+1}{3x-1}\right) - 3\left[=x-1\right]$	B1	
	$3x^2 - 3x - 6$ oe	B1	
	3(x+1)(x-2)	M1	
	x = 2 only	A1	

Question	Answer	Marks	Partial Marks
12	Identifying angle with downward vertical of wind as 50°	B1	
	Triangle drawn with sides 260,40 and included angle of 50°.	B1	
	Cosine rule: $(v_r)^2 = 260^2 + 40^2 - 2 \times 260 \times 40\cos 50^\circ$	M1	*
	$v_r = 236$	A1	
	Sine rule : $\frac{\sin \alpha}{40} = \frac{\sin 50^{\circ}}{v_r}$	M1	dep*
	or Cosine rule: $40^2 = 260^2 + 236^2 - 2 \times 260 \times 236 \cos \alpha$		
	$\alpha = 7.5^{\circ}$	A1	
	OR Using components		
	Identifying angle with downward vertical of wind as 50°	B1	
	$v_{w} = \begin{pmatrix} 40\cos 40^{\circ} \\ -40\cos 50^{\circ} \end{pmatrix}$	B1	
	$v_r = \sqrt{(40\cos 40^\circ)^2 + (260 - 40\cos 50)^2}$	M1	
	$v_r = 236$	A1	
	$\tan \alpha = \frac{40\cos 40^{\circ}}{260 - 40\cos 50^{\circ}}$	M1	
	α = 7.5°	A1	

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/23

Paper 2

October/November 2018

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 8

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 8

Question	Answer	Marks	Partial Marks
1	x=2	B1	
	3-5x = -3x+13 oe	M1	
	x = -5	A1	
2		3	B1 for each correct diagram
3(i)	$\frac{81}{4} - \left(x - \frac{7}{2}\right)^2$	3	B1 $b = \frac{7}{2}$ M1 $\pm 8 \pm \left(\frac{7}{2}\right)^2$ seen or expand given form and equate for 8 or 7 A1 fully correct
3(ii)	maximum their $\frac{81}{4}$ when $x = their \frac{7}{2}$ from their correct form	2	B1 B1
3(iii)	$\left(z^2 - \frac{7}{2}\right)^2 = \frac{81}{4} \text{ oe}$	M1	replace x by z^2 in their (i) and equate to zero.
	$z^2 = \frac{7}{2} \pm \frac{9}{2}$	M1	
	$z = \pm \sqrt{8}$	A1	

Question	Answer	Marks	Partial Marks
4(i)	integrate: increase in powers of at least one term	M1	*
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - \frac{1}{\left(x+1\right)^3} + \left(C\right)$	A1	
	$C = \frac{1}{8}$	A1	
4(ii)	integrate <i>their</i> (i): increase in powers of at least one term	M1	Dep*
	$y = \frac{1}{3}x^3 + \frac{1}{2(x+1)^2} + \frac{1}{8}x + (D)$	A1	two correct terms in x
	$D = \frac{29}{12}$	A1	
5(i)	$\frac{1}{5} \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$	2	$\mathbf{B1} \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$ $\mathbf{B1} \frac{1}{5}$
5(ii)	post multiply by \mathbf{A}^{-1} $\mathbf{C} = \mathbf{B}\mathbf{A}^{-1}$	M1	
	$\frac{1}{5} \begin{pmatrix} 0 & 5 \\ -13 & 16 \end{pmatrix}$	A1	
5(iii)	$\mathbf{I} - \mathbf{B} = \begin{pmatrix} 0 & -4 \\ 2 & -4 \end{pmatrix} \text{or} \mathbf{AB} = \begin{pmatrix} -4 & 23 \\ -7 & 24 \end{pmatrix}$	B1	
	$\mathbf{D} = \mathbf{A} (\mathbf{I} - \mathbf{B})$ or $\mathbf{D} = \mathbf{A} - \mathbf{A} \mathbf{B}$	M1	
	$\mathbf{D} = \begin{pmatrix} 6 & -20 \\ 8 & -20 \end{pmatrix}$	A1	

Question	Answer	Marks	Partial Marks
6	$\log_2 8 = 3 \text{ or } \log 3x - \log y = \log \frac{3x}{y} \text{ (any base)}$	B1	implied by one correct equation
	or $\log_2 2 = 1$ soi		
	x + 2y = 8	B1	
	$\frac{3x}{y} = 2$	B1	
	solve correct equations for x or y	M1	
	x = 2 and y = 3	A1	
7(i)	167 960	1	
7(ii)	evidence of selecting from 16	M1	
	$[^{16}C_7 =] 11 440$	A1	
7(iii)	$2 \times {}^{n}C_{r} \text{ with } n = 16 \text{ or } r = 9$	M1	
	$\left[2 \times^{16} C_9 = \right] 22880$	A1	
7(iv)	$4 \times {}^{n}C_{r} \text{ with } n = 16 \text{ or } r = 9$	M1	
	$\left[4 \times^{16} C_9 = \right] 45760$	A1	
8(i)	$\frac{12.1 - 5.5}{3.7 - 1.5} [= 3]$	B1	correct expression for gradient
	$\frac{y^2 - 5.5}{e^{2x} - 1.5} = their \text{ grad}$ or correctly use $y^2 = (their m) e^{2x} + c$ with one point to find c	M1	
	$y = [\pm]\sqrt{3e^{2x} + 1}$	A1	
8(ii)	[±]34.8	1	

Question	Answer	Marks	Partial Marks
8(iii)	$50 = \sqrt{(their3)e^{2x} + their1} \text{ or }$	B1	*
	$2500 = (their3)e^{2x} + their1$		
	$2x = \ln\left(\frac{2499}{3}\right)$	M1	Dep* obtain 2x explicitly
	3.36 cao	A1	
9(a)	$x + \frac{\pi}{4} = \frac{\pi}{3}$	M1	
	$\frac{\pi}{12}$ and $\frac{5\pi}{12}$ (0.262 and 1.31)	A2	A1 for one correct
9(b)	correctly use $\sec y = \frac{1}{\cos y}$ and $\csc y = \frac{1}{\sin y}$	M1	
	$\tan y = \frac{4}{3}$	A1	obtain expression for tany or y explicitly
	53.1° and 233.1°	A1	
9(c)	correctly rewrite equation in terms of sinz and cosz	M1	
	use $\sin^2 z = 1 - \cos^2 z$	M1	appropriate use of pythagorean identity for forming an equation in one trig ratio
	$8\cos^2 z - 2\cos z - 1 = 0$ oe	A1	
	$(4\cos z + 1)(2\cos z - 1) = 0$	M1	solve 3 term quadratic in cosz
	60° and 300° and 104.5° and 255.5°	A2	A1 for any two correct
10(i)	$\frac{d}{dx}\sqrt{3+x} = \frac{1}{2}(3+x)^{-\frac{1}{2}}$	B1	
	correctly substitute their $\frac{1}{2}(3+x)^{-\frac{1}{2}}$ and their $2x$ into product rule	M1	
	$\frac{dy}{dx} = x^2 \times \frac{1}{2} (3+x)^{-\frac{1}{2}} + 2x(3+x)^{\frac{1}{2}}$	A1	

Question	Answer	Marks	Partial Marks
10(ii)	y=2	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{17}{4}$	B1	
	$\frac{y-2}{x-1} = \frac{17}{4} \qquad (y = \frac{17}{4}x - \frac{9}{4}) \text{ oe}$ or use $y = mx + c$ and find c	B1	FT on their 2 and their $\frac{17}{4}$ from their $\frac{dy}{dx}$
10(iii)	$set their \frac{dy}{dx} = 0$	M1	
	obtain correct quadratic equation $5x^2 + 12x = 0$ soi	A1	
	(0, 0) and (-2.4, 4.46)	A2	A1 for one point or two correct values of x
11(i)	$-5x + k + 5 = 7 - kx - x^2$	M1	*
	$b^2 - 4ac (=0) \rightarrow (k-5)^2 - 4(k-2) (=0)$	M1	Dep*
	$k^2 - 14k + 33 (=0)$	A1	
	(k-11)(k-3) (=0)	M1	Dep dep * solve quadratic in k
	k = 11 and $k = 3$	A1	
11(ii)	$y = -5x + 16$ and $y = 7 - 11x - x^2$ $y = -5x + 8$ and $y = 7 - 3x - x^2$	B2	FT their k B1 for any two correct
	solve one tangent/curve pair for one variable from quadratic equation with repeated root	M1	
	(-3, 31) and (1, 3)	A2	A1 for one correct point or two correct x values
11(iii)	find distance between any two points found in (ii)	M1	
	$\sqrt{800}$ oe	A1	

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/21

Paper 2 May/June 2018

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE™ is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 9

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 9

Question	Answer	Marks	Partial Marks
1(i)(a)	A is not a [proper] subset of B oe	B1	
1(i)(b)	A and C are mutually exclusive oe or A intersection C is the empty set oe	B1	
1(ii)(a)	$n(A \cup B) = 3$	B1	
1(ii)(b)	$x \in (A \cap C')$ oe	B1	
2(i)	$k \times \frac{1}{3x-1}$	M1	
	$3 \times \frac{1}{3x-1}$	A1	
2(ii)	$x = \frac{11}{15} \text{ soi}$	B1	
	$0.125 \approx their \frac{dy}{dx}\Big _{x=their \frac{11}{15}} \times \delta x$ oe	M1	
	0.05 nfww	A1	
3(i)	$(^{12}P_7 =) 3991680$	B1	
3(ii)	$(4 \times {}^{11}P_6 =) \ 1330560$	B1	
3(iii)	4! × 4! × 2 oe	M2	M1 for $4! \times 4!$ oe only or ${}^4P_4 \times {}^4P_3$ oe only
	1152	A1	

© UCLES 2018 Page 4 of 9

Question	Answer	Marks	Partial Marks
4(i)	$2(-4)^{3} + 3(-4)^{2} - 4a - 12 = 0 \text{ with one}$ correct interim step leading to $a = -23$	B1	Note: = 0 must be seen or may be implied by e.g. $-92 = 4a$ or $92 = -4a$ or convincingly showing that $2(-4)^3 + 3(-4)^2 - 4(-23) - 12 = 0$ or correct synthetic division at least as far as $-4 \begin{vmatrix} 2 & 3 & a & -12 \\ & -8 & 20 & -4a - 80 \\ \hline 2 & -5 & a + 20 & 0 \end{vmatrix}$ then $a = -23$ or correct long division to, e.g. verify -23 , at least as far as $\frac{2x^2 - 5x - 3}{x + 4 \sqrt{2}x^3 + 3x^2 - 23x - 12}$ $\frac{2x^3 + 8x^2}{-5x^2 - 20x}$ $-3x - 12$ $\frac{-3x - 12}{0}$
	p(1) = 2 + 3 - 23 - 12 $b = -30$	B1	
4(ii)	finds a correct quadratic factor e.g. $(2x^2 - 5x - 3)$	B2	B1 for quadratic factor with 2 correct terms OR B1 for finding (x - 3) using factor theorem B1 for convincingly finding (2x + 1) as third factor
	Product of three linear factors $(2x+1)(x-3)(x+4)$	M1	
	$x = -\frac{1}{2}$, $x = 3$, $x = -4$ nfww	A1	If M0 then SC1 if quadratic factorised correctly but does not show full factorisation but does give all 3 solutions correctly
5(i)	Putting $y = f(x)$, changing subject to x and swopping x and y or vice versa	M1	
	$f^{-1}(x) = \frac{1}{2} \left(\frac{1}{x} + 5 \right)$ or $\frac{5x+1}{2x}$ oe isw	A1	
5(ii)	x > 0 oe	B1	

© UCLES 2018 Page 5 of 9

Question	Answer	Marks	Partial Marks
5(iii)	$\frac{1}{2\left(\frac{1}{2x-5}\right)-5}$	B1	
	$\frac{1}{\frac{2-5(2x-5)}{2x-5}} \text{ oe}$	M1	FT if expression of equivalent difficulty e.g. $\frac{1}{\left(\frac{1}{2x-5}\right)-5}$
	Completes to $\frac{2x-5}{-10x+27}$ oe final answer	A1	
6(i)	16x = 40 oe	M1	
	x = 2.5 oe (radians)	A1	
6(ii)	$\frac{1}{2}(16)^2(2.5)$ oe	M1	
	320	A1	
6(iii)	$\frac{1}{2}r^2$ (their 2.5) = (their 320) - 140 oe	M1	FT provided their 320 > 140
	correct simplification to $r^2 = \dots$	M1	dep on first M1
	12	A1	
7(i)	$4\tan x + 4x\sec^2 x \text{isw}$	B2	Fully correct B1 for one correct term as part of e.g. a sum of 2 terms
7(ii)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\mathrm{e}^{3x+1} \right) = 3\mathrm{e}^{3x+1}$	B1	
	$\frac{(x^2-1)(their 3e^{3x+1}) - their (2x)e^{3x+1}}{(x^2-1)^2}$	M1	
	$\frac{(x^2-1)(3e^{3x+1})-2xe^{3x+1}}{(x^2-1)^2}$ oe isw	A1	
8(i)	Takes logs of both sides	M1	
	$\ln y = \ln a + n \ln x$ or $\lg y = \lg a + n \lg x$	A1	

© UCLES 2018 Page 6 of 9

Question	Answer	Marks	Partial Marks
8(ii)	n = -0.2 to -0.3 nfww	B1	
	attempts to equate <i>y</i> -intercept to ln <i>a</i> or forms <i>their</i> ln equation with <i>their</i> gradient and a point on the line or uses two points on the line to form a pair of simultaneous equations	M1	
	$a = e^{4.7}$ isw or 110 or 109.9[47]	A1	maximum of 2 marks if no coordinates stated
8(iii)	use of $ln(50)$ and $lnx = 3$ to 3.2	M1	or for $\frac{50}{theira} = x^{their n}$ or better or for $\ln 50 = \ln(theira) + (their n) \ln x$ oe
	awrt 22 or 23 to 2 significant figures	A1	implies M1
9(i)	$5\left(x-\frac{7}{5}\right)^2-\frac{64}{5}$	В3	B1 for each of p , q , r correct in correct format; allow correct equivalent values. If B0 , then SC2 for $5\left(x-\frac{7}{5}\right)-\frac{64}{5}$ or SC1 for correct values but incorrect format
9(ii)	-0.2 0	В4	B2 for fully correct shape in correct position or B1 for fully correct shape translated parallel to the <i>x</i> -axis B1 for <i>y</i> -intercept at (0, 3) marked on graph B1 for roots marked on graph at -0.2 and 3
9(iii)	$0 < k < \left their \left(-\frac{64}{5} \right) \right $	B2	FT their (i) B1 for any inequality using their $\frac{64}{5}$ or max y value is their 12.8soi
10(i)	$v = \frac{\mathrm{d}s}{\mathrm{d}t} = -3\sin 3t$	B1	
	When $v = 0$, $t = \frac{\pi}{3}$	B1	

© UCLES 2018 Page 7 of 9

Question	Answer	Marks	Partial Marks
10(ii)	Finding s when $t = \frac{\pi}{4}$ and $t = \frac{\pi}{2}$	M1	
	Finding s when $t = their \frac{\pi}{3}$ and correct plan	M1	Using their (i) correctly
	1.29 nfww	A1	
10(iii)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = -9\cos 3t$	B1	
	9	B1	FT their $k \cos 3t$
11(a)	$10(1-\sin^2 x) + 3\sin x = 9$	M1	
	Solves $10\sin^2 x - 3\sin x - 1 = 0$ oe	M1	dep on first M1 Solves <i>their</i> three term quadratic in sin <i>x</i>
	$\sin x = \frac{1}{2}, \ \sin x = -\frac{1}{5}$	A1	
	30°, 150° and 191.5°, 348.5° awrt	A2	A1 for any two correct solutions
11(b)	$3\frac{\sin 2y}{\cos 2y} = 4\sin 2y \text{ oe}$	M1	
	Solves $3\sin 2y - 4\sin 2y\cos 2y = 0$	M1	dep on first M1
	$\sin 2y = 0 \cos 2y = \frac{3}{4}$	A1	
	Any two of π , 0.72273, 5.56045 nfww	A1	
	$\frac{\pi}{2}$, 0.361, 2.78 awrt nfww	A1	SC: cancels out sin2y after M1M0 allow SC1 for 0.72273 and 5.56045 and SC1 for 0.361 and 2.78
12(i)	$\tan 30 = \frac{h}{x/2} \text{ oe}$	M1	
	Correct completion to given answer	A1	
	$V = 5\sqrt{3} h^2 \text{ isw}$	B1	

© UCLES 2018 Page 8 of 9

Question	Answer	Marks	Partial Marks
12(ii)(a)	$\frac{\mathrm{d}V}{\mathrm{d}h} = their 10\sqrt{3} h \text{ or } \frac{5\sqrt{3}}{2}$	B1	FT their $V = k h^2$
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \text{ soi}$	M1	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{their\left(\frac{\mathrm{d}V}{\mathrm{d}h}\right)} \times 0.5$	M1	
	0.115 or 0.11547 to 0.1155 oe	A1	
12(ii)(b)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \right) 2\sqrt{3} \times their \frac{1}{5\sqrt{3}}$	M1	
	$\frac{2}{5}$	A1	

© UCLES 2018 Page 9 of 9

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/22

Paper 1 May/June 2018

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE™ is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 10

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 10

Question	Answer	Marks	Partial Marks
1(i)	Uses $\cot \theta = \frac{\cos \theta}{\sin \theta}$ $\frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta}$ Uses $\cos^2 \theta + \sin^2 \theta = 1$ Completes to $\frac{1}{\sin \theta} = \csc \theta$	В3	B1 for using $\cot \theta = \frac{\cos \theta}{\sin \theta}$ oe or $\tan \theta = \frac{\sin \theta}{\cos \theta}$ oe at some stage B1 for use of $\cos^2 \theta + \sin^2 \theta = 1$ oe B1 for common denominator of $\sin \theta$ oe either in a compound fraction or in two partial fractions or for writing $\frac{1-\sin^2 \theta}{\sin \theta}$ as $\frac{1}{\sin \theta} - \frac{\sin^2 \theta}{\sin \theta}$ oe Maximum of 2 marks if not fully correct or does not complete to $\csc \theta$
1(ii)	$\sin\theta = \frac{1}{4}$	M1	
	14.5° or 14.47[751] rot to 4 or more figures isw	A1	Not from wrong working
2(a)		B1	
2(b)	P 11 2 5 Q [0] 4 R [0]	В3	B1 for 8 correctly placed and all the empty regions correct B1 for 11, 2, 5 correctly placed B1 for 4 correctly placed maximum of 2 marks if fully correct but other values such as 30, 21 and/or 15 present within the diagram
	their 12	B1	STRICT FT their Venn diagram

© UCLES 2018 Page 4 of 10

Question	Answer	Marks	Partial Marks
3	p(-3) = 0 or $p(2) = -15$ stated or implied	M1	
	-54 + 9a + 72 + b = 0 or better	A1	finds one correct equation; implies M1
	16 + 4a - 48 + b = -15 or better	A1	finds another correct equation; implies M1
	Solves a pair of simultaneous equations in <i>a</i> and <i>b</i>	M1	dep on first M1 condone one sign or arithmetic error in <i>their</i> solution; as far as finding one unknown
	a = -7, b = 45	A1	
	60 cao	A1	
4	Eliminates one of the unknowns	M1	
	Simplifies to a correct 3-term quadratic: $2x^2 + 4x - 16 = 0$ oe or $2y^2 - 6y - 36 = 0$ oe	A1	
	Factorises or solves (x+4)(x-2) = 0 oe or (y+3)(y-6) = 0 oe	M1	FT their 3-term quadratic in x or y;
	(2, 6) and (-4, -3) oe	A2	Not from wrong working
			A1 for either (2, 6) or (-4, -3) or A1 for $x = 2$ and $x = -4$ or $y = 6$ and $y = -3$
5(a)	$^{7}P_{4}$ or $7 \times 6 \times 5 \times 4$ oe	M1	
	840	A1	
5(b)(i)	20	B1	
5(b)(ii)	${}^{5}C_{1} \times {}^{4}C_{1} \times {}^{2}C_{1}$ or $5 \times 4 \times 2$ oe	M1	
	40	A1	
5(b)(iii)	${}^{5}C_{3} + {}^{4}C_{3}$ oe	M1	
	14	A1	

© UCLES 2018 Page 5 of 10

Question	Answer	Marks	Partial Marks
6(i)	(Arc length =) 1.5×5 oe soi	M1	implied by 7.5
	$(DE =) 10\sin(0.75)$ oe soi	M1	implied by awrt 6.82
	34.3 or answer in range 34.31 to 34.32	A1	
6(ii)	(Area sector =) $\frac{1}{2} \times 5^2 \times 1.5$ oe	M1	implied by 18.75
	(Area triangle =) $\frac{1}{2} \times 5^2 \times \sin(1.5)$ oe	M1	implied by awrt 12.47
	31.2 or answer in range 31.21 to 31.22	A1	
7(i)	$ their(\mathbf{a} + \mathbf{c}) = \sqrt{their(5^2 + 14^2)}$	M1	
	$\sqrt{221}$	A1	mark final answer
7(ii)	$[(2+m)\mathbf{i} + (3-5m)\mathbf{j} \text{ therefore}]$ their $(2+m) = 0$	M1	for attempting to form $\mathbf{a} + m\mathbf{b}$ and equate the scalar of the i component to 0
	m = -2 only	A1	implies M1
7(iii)	[$(2n-1)\mathbf{i} + (3n+5)\mathbf{j} = 3\mathbf{i} + 11\mathbf{j}$ or $n(2\mathbf{i} + 3\mathbf{j}) = (3\mathbf{i} + 11\mathbf{j}) + (\mathbf{i} - 5\mathbf{j})$ oe leading to]	M1	
	2n-1=3 or 3n+5=11 oe, soi		
	n = 2 only	A1	implies M1

© UCLES 2018 Page 6 of 10

Question	Answer	Marks	Partial Marks
8(a)	$ \begin{pmatrix} -2 & 6 \\ 1 & 12 \end{pmatrix} $	B2	B1 for a 2 by 2 matrix with 2 or 3 correct elements
	their $\left[\frac{1}{-30}\begin{pmatrix}12 & -6\\-1 & -2\end{pmatrix}\right]$ oe isw	B2	FT their non-singular BA B1 FT for either $\frac{1}{their}(-30)$ or ×their $\begin{pmatrix} 12 & -6 \\ -1 & -2 \end{pmatrix}$ If their BA is singular, B0 then SC1 for ×their $\begin{pmatrix} 12 & -6 \\ -1 & -2 \end{pmatrix}$ OR Alternative method $A^{-1}B^{-1}$: B2 for $A^{-1} = \frac{1}{-5} \begin{pmatrix} -3 & 1 \\ -1 & 2 \end{pmatrix}$ isw or $B^{-1} = \frac{1}{6} \begin{pmatrix} -5 & 2 \\ -3 & 0 \end{pmatrix}$ isw or B1 for a multiplier of $\frac{1}{-5}$ or for $\begin{pmatrix} -3 & 1 \\ -1 & 2 \end{pmatrix}$ or for a multipler of $\frac{1}{6}$ or for $\begin{pmatrix} -5 & 2 \\ -3 & 0 \end{pmatrix}$ B2 FT for $A^{-1}B^{-1} = their \frac{1}{-30} \times their \begin{pmatrix} 12 & -6 \\ -1 & -2 \end{pmatrix}$ or B1 FT for a 2 by 2 matrix with 2 or 3 correct elements Maximum of 3 marks if not fully correct
8(b)(i)	2 × 3	B1	
8(b)(ii)	$\left(2 - \frac{1}{2}\right)$ oe isw	В2	B1 for each correct element; must be in a 1 by 2 matrix or M1 for a full method as far as finding values for the two elements

© UCLES 2018 Page 7 of 10

Question	Answer	Marks	Partial Marks
9(i)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\sqrt{\sin x} \right) = \frac{1}{2} (\sin x)^{-\frac{1}{2}} (\cos x) \text{ oe}$	B2	B1 for $\frac{1}{2}(\sin x)^{-\frac{1}{2}} \times \dots$ or for $\frac{1}{2}(\sin x)^{-\frac{1}{2}}$ or for $\frac{1}{2}(\dots)^{-\frac{1}{2}} \times \cos x$ or for $their \frac{1}{2}(\sin x)^{\left(their \frac{1}{2}\right)-1} \times \cos x$
	their $(4x^3)\sqrt{\sin x}$ $+x^4\left(their\frac{1}{2}(\sin x)^{-\frac{1}{2}}(\cos x)\right)$ oe	M1	Applies correct form of product rule
	$4x^{3}\sqrt{\sin x} + x^{4}\left(\frac{1}{2}(\sin x)^{-\frac{1}{2}}(\cos x)\right)$ oe isw	A1	Not from wrong working
9(ii)	$\int (4x^3 \sqrt{\sin x}) dx$ $+ \int \left(x^4 \times \frac{1}{2} (\sin x)^{-\frac{1}{2}} (\cos x)\right) dx$ $= x^4 \sqrt{\sin x} \qquad \text{oe}$	M1	or $\int x dx + 2 \int \left(\frac{x^4 \cos x}{2 \sqrt{\sin x}} + 4x^3 \sqrt{\sin x} \right) dx$ oe FT their (i)
	$\frac{x^2}{2} + 2x^4 \sqrt{\sin x} \ [+c]$	A2	A1 for $\int x dx + 2x^4 \sqrt{\sin x}$
10(a)(i)	-3	B2	B1 for correct shape B1 for roots marked on the graph or seen nearby provided graph drawn and one root is negative and one is positive
10(a)(ii)	Any correct domain	B1	
10(b)(i)	$\frac{4}{3x-1}$	B1	mark final answer

© UCLES 2018 Page 8 of 10

Question	Answer	Marks	Partial Marks
10(b)(ii)	Correct method for finding inverse function e.g. swopping variables and changing subject or vice versa; or indicates $(hg)^{-1}(x) = g^{-1}h^{-1}(x)$ and finds $g^{-1}(x) = \frac{x+1}{3}$ and $h^{-1}(x) = \frac{4}{x}$	M1	FT only if $their$ hg(x) of the form $\frac{a}{bx+c}$ where a , b and c are integers
	$\left[(hg)^{-1}(x) = \right] \frac{1}{3} \left(\frac{4}{x} + 1 \right) \text{ oe isw or}$	A1	FT their (hg) ⁻¹ (x) = $\frac{a - cx}{bx}$ oe
	$\left[(hg)^{-1}(x) = \right] \frac{4+x}{3x} \text{ oe isw}$		If M0 then SC1 for <i>their</i> $hg(x)$ of the form
			$y = \frac{a}{x} + b$ oe leading to their (hg) ⁻¹ (x) of the
			form $y = \frac{a}{x - b}$ isw
10(c)	a cao	B1	
11(a)	$\frac{(2x-1)^{\frac{4}{3}}}{\frac{4}{3}\times 2}$ [+c] oe isw	В2	B1 for $k \times \frac{(2x-1)^{\left(\frac{1}{3}+1\right)}}{\left(\frac{1}{3}+1\right)}$ where $k \neq 0$
11(b)(i)	$k\cos 4x[+c]$ where $k < 0$ or $k = \frac{1}{4}$	M1	
	$-\frac{1}{4}\cos 4x \left[+c\right]$	A1	
11(b)(ii)	Sight of correct substitution of limits:	M1	FT their $k \cos 4x$ from (b)(i)
	$-\frac{1}{4}\cos\frac{4\pi}{4} - \left(-\frac{1}{4}\cos\frac{4\pi}{8}\right)$ oe		dep on M1 awarded in (b)(i)
	$\frac{1}{4}$	A1	does not imply M1

© UCLES 2018 Page 9 of 10

Question	Answer	Marks	Partial Marks
11(c)	$\int e^{\frac{x}{3}} dx = ke^{\frac{x}{3}} [+c]$	M1	k any non-zero constant
	k = 3	A1	
	Sight of correct substitution of limits: $their ke^{\frac{\ln 8}{3}} - their ke^0$ oe	M1	dep on first M1
	Shows how to deal with the power of the first term e.g. $\frac{\ln 8}{3} = \ln 8^{\frac{1}{3}} \text{ or } \frac{\ln 8}{3} = \ln 2 \text{ or } 3(\sqrt[3]{8})$ seen	B1	
	6 - 3 = 3	A1	Not from wrong working
12(i)	$\tan\frac{\pi}{12} = \frac{r}{h} \text{ oe}$	M1	
	$r = h(2 - \sqrt{3})$ or $r = h \tan \frac{\pi}{12}$ oe	A1	
	$[V =] \frac{1}{3}\pi (2 - \sqrt{3})^2 h^2 \times h$ oe	M1	Correctly uses <i>their</i> expression for r in terms of h in formula for volume of a cone dependent on finding an expression connecting r and h
	$[V =] \frac{\pi (4 - 4\sqrt{3} + 3)h^3}{3} \text{ oe}$ correctly leading to $[V =] \frac{\pi (7 - 4\sqrt{3})h^3}{3} \text{ AG}$	A1	
12(ii)	Correct derivative of V e.g. $\frac{3\pi(7-4\sqrt{3})h^2}{3}$ oe isw	B1	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \text{ soi}$	B1	
	$\frac{1}{their\left(\frac{\mathrm{d}V}{\mathrm{d}h}\right)\Big _{h=5}} \times 30$	M1	if correct implies B1 B1; if incorrect, a correct FT statement implies the second B1
	5.32	A1	

© UCLES 2018 Page 10 of 10

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/23

Paper 2 May/June 2018

MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE™ is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 9

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 9

Question	Answer	Marks	Partial Marks
1(i)(a)	A is not a [proper] subset of B oe	B1	
1(i)(b)	A and C are mutually exclusive oe or A intersection C is the empty set oe	B1	
1(ii)(a)	$n(A \cup B) = 3$	B1	
1(ii)(b)	$x \in (A \cap C')$ oe	B1	
2(i)	$k \times \frac{1}{3x-1}$	M1	
	$3 \times \frac{1}{3x-1}$	A1	
2(ii)	$x = \frac{11}{15} \text{ soi}$	B1	
	$0.125 \approx their \frac{dy}{dx}\Big _{x=their \frac{11}{15}} \times \delta x$ oe	M1	
	0.05 nfww	A1	
3(i)	$(^{12}P_7 =) 3991680$	B1	
3(ii)	$(4 \times {}^{11}P_6 =) \ 1330560$	B1	
3(iii)	4! × 4! × 2 oe	M2	M1 for $4! \times 4!$ oe only or ${}^4P_4 \times {}^4P_3$ oe only
	1152	A1	

Question	Answer	Marks	Partial Marks
4(i)	$2(-4)^{3} + 3(-4)^{2} - 4a - 12 = 0 \text{ with one}$ correct interim step leading to $a = -23$	B1	Note: = 0 must be seen or may be implied by e.g. $-92 = 4a$ or $92 = -4a$ or convincingly showing that $2(-4)^3 + 3(-4)^2 - 4(-23) - 12 = 0$ or correct synthetic division at least as far as $-4 \begin{vmatrix} 2 & 3 & a & -12 \\ & -8 & 20 & -4a - 80 \\ \hline 2 & -5 & a + 20 & 0 \end{vmatrix}$ then $a = -23$ or correct long division to, e.g. verify -23 , at least as far as $\frac{2x^2 - 5x - 3}{x + 4 \sqrt{2x^3 + 3x^2 - 23x - 12}}$ $\frac{2x^3 + 8x^2}{-5x^2 - 23x}$ $-\frac{5x^2 - 20x}{-3x - 12}$ $\frac{-3x - 12}{0}$
	p(1) = 2 + 3 - 23 - 12 $b = -30$	B1	
4(ii)	finds a correct quadratic factor e.g. $(2x^2 - 5x - 3)$	B2	B1 for quadratic factor with 2 correct terms OR B1 for finding (x - 3) using factor theorem B1 for convincingly finding (2x + 1) as third factor
	Product of three linear factors $(2x+1)(x-3)(x+4)$	M1	
	$x = -\frac{1}{2}$, $x = 3$, $x = -4$ nfww	A1	If M0 then SC1 if quadratic factorised correctly but does not show full factorisation but does give all 3 solutions correctly
5(i)	Putting $y = f(x)$, changing subject to x and swopping x and y or vice versa	M1	
	$f^{-1}(x) = \frac{1}{2} \left(\frac{1}{x} + 5 \right)$ or $\frac{5x+1}{2x}$ oe isw	A1	
5(ii)	x > 0 oe	B1	

© UCLES 2018 Page 5 of 9

Question	Answer	Marks	Partial Marks
5(iii)	$\frac{1}{2\left(\frac{1}{2x-5}\right)-5}$	B1	
	$\frac{1}{\frac{2-5(2x-5)}{2x-5}} \text{ oe}$	M1	FT if expression of equivalent difficulty e.g. $\frac{1}{\left(\frac{1}{2x-5}\right)-5}$
	Completes to $\frac{2x-5}{-10x+27}$ oe final answer	A1	
6(i)	16x = 40 oe	M1	
	x = 2.5 oe (radians)	A1	
6(ii)	$\frac{1}{2}(16)^2(2.5)$ oe	M1	
	320	A1	
6(iii)	$\frac{1}{2}r^2$ (their 2.5) = (their 320) - 140 oe	M1	FT provided their 320 > 140
	correct simplification to $r^2 = \dots$	M1	dep on first M1
	12	A1	
7(i)	$4\tan x + 4x\sec^2 x \text{isw}$	B2	Fully correct B1 for one correct term as part of e.g. a sum of 2 terms
7(ii)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\mathrm{e}^{3x+1} \right) = 3\mathrm{e}^{3x+1}$	B1	
	$\frac{(x^2-1)(their 3e^{3x+1}) - their (2x)e^{3x+1}}{(x^2-1)^2}$	M1	
	$\frac{(x^2-1)(3e^{3x+1})-2xe^{3x+1}}{(x^2-1)^2}$ oe isw	A1	
8(i)	Takes logs of both sides	M1	
	$\ln y = \ln a + n \ln x$ or $\lg y = \lg a + n \lg x$	A1	

© UCLES 2018 Page 6 of 9

Question	Answer	Marks	Partial Marks
8(ii)	n = -0.2 to -0.3 nfww	B1	
	attempts to equate <i>y</i> -intercept to ln <i>a</i> or forms <i>their</i> ln equation with <i>their</i> gradient and a point on the line or uses two points on the line to form a pair of simultaneous equations	M1	
	$a = e^{4.7}$ isw or 110 or 109.9[47]	A1	maximum of 2 marks if no coordinates stated
8(iii)	use of $ln(50)$ and $lnx = 3$ to 3.2	M1	or for $\frac{50}{theira} = x^{their n}$ or better or for $\ln 50 = \ln(theira) + (their n) \ln x$ oe
	awrt 22 or 23 to 2 significant figures	A1	implies M1
9(i)	$5\left(x-\frac{7}{5}\right)^2-\frac{64}{5}$	В3	B1 for each of p , q , r correct in correct format; allow correct equivalent values. If B0 , then SC2 for $5\left(x-\frac{7}{5}\right)-\frac{64}{5}$ or SC1 for correct values but incorrect format
9(ii)	-0.2 0	В4	B2 for fully correct shape in correct position or B1 for fully correct shape translated parallel to the <i>x</i> -axis B1 for <i>y</i> -intercept at (0, 3) marked on graph B1 for roots marked on graph at -0.2 and 3
9(iii)	$0 < k < \left their \left(-\frac{64}{5} \right) \right $	В2	FT their (i) B1 for any inequality using their $\frac{64}{5}$ or max y value is their 12.8soi
10(i)	$v = \frac{\mathrm{d}s}{\mathrm{d}t} = -3\sin 3t$	B1	
	When $v = 0$, $t = \frac{\pi}{3}$	B1	

© UCLES 2018 Page 7 of 9

Question	Answer	Marks	Partial Marks
10(ii)	Finding s when $t = \frac{\pi}{4}$ and $t = \frac{\pi}{2}$	M1	
	Finding s when $t = their \frac{\pi}{3}$ and correct plan	M1	Using their (i) correctly
	1.29 nfww	A1	
10(iii)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = -9\cos 3t$	B1	
	9	B1	FT their $k \cos 3t$
11(a)	$10(1-\sin^2 x) + 3\sin x = 9$	M1	
	Solves $10\sin^2 x - 3\sin x - 1 = 0$ oe	M1	dep on first M1 Solves <i>their</i> three term quadratic in sin <i>x</i>
	$\sin x = \frac{1}{2}, \ \sin x = -\frac{1}{5}$	A1	
	30°, 150° and 191.5°, 348.5° awrt	A2	A1 for any two correct solutions
11(b)	$3\frac{\sin 2y}{\cos 2y} = 4\sin 2y \text{ oe}$	M1	
	Solves $3\sin 2y - 4\sin 2y\cos 2y = 0$	M1	dep on first M1
	$\sin 2y = 0 \cos 2y = \frac{3}{4}$	A1	
	Any two of π , 0.72273, 5.56045 nfww	A1	
	$\frac{\pi}{2}$, 0.361, 2.78 awrt nfww	A1	SC: cancels out sin2y after M1M0 allow SC1 for 0.72273 and 5.56045 and SC1for 0.361 and 2.78
12(i)	$\tan 30 = \frac{h}{x/2} \text{ oe}$	M1	
	Correct completion to given answer	A1	
	$V = 5\sqrt{3} h^2 \text{ isw}$	B1	

© UCLES 2018 Page 8 of 9

Question	Answer	Marks	Partial Marks
12(ii)(a)	$\frac{\mathrm{d}V}{\mathrm{d}h} = their 10\sqrt{3} h \text{ or } \frac{5\sqrt{3}}{2}$	B1	FT their $V = k h^2$
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \text{ soi}$	M1	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{their\left(\frac{\mathrm{d}V}{\mathrm{d}h}\right)} \times 0.5$	M1	
	0.115 or 0.11547 to 0.1155 oe	A1	
12(ii)(b)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \right) 2\sqrt{3} \times their \frac{1}{5\sqrt{3}}$	M1	
	$\frac{2}{5}$	A1	

© UCLES 2018 Page 9 of 9

Cambridge International General Certificate of Secondary Education

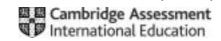
ADDITIONAL MATHEMATICS

0606/22

Paper 22 March 2018

MARK SCHEME
Maximum Mark: 80

Published


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 2 of 9

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2018 Page 3 of 9

Question	Answer	Marks	Partial Marks
1(a)	$(P \cup Q) \cap R'$ oe	B1	
1(b)(i)	7 6 B 10 3 4 8 9 C	В3	B3, 2, 1, 0: key statements: 2 correctly placed 3, 4, 8 correctly placed 1, 5, 7, 6, 10 correctly placed 9 correctly placed
1(b)(ii)	1	B1	FT their (b)(i); do not allow (1) or {1} etc.
2	$(2k-3)^2-4(3-2k)(1)$	M1	
	$4k^2 - 4k - 3$	A1	
	(2k-3)(2k+1)	M1	
	critical values are -0.5 and 1.5	A1	
	(their(-0.5) < k < their 1.5	A1	FT their distinct critical values provided both M marks awarded; mark final answer; allow a pair of correctly connected inequalities e.g. $k > -0.5$ and $k < 1.5$
3(i)	$^{3}P_{2} \times ^{3}P_{1}$ or $3 \times 2 \times 3$ oe soi	M1	
	18	A1	If M0 then SC1 for ${}^{3}P_{2} \times {}^{2}P_{1} = 12$ or $3 \times 2 \times 2 = 12$
3(ii)	24	B1	
3(iii)	$2 \times 4!$ oe soi	M1	
	48	A1	If M0 then SC1 for an answer following one omitted or incorrect factor/factorial e.g. $4! = 24$ or ${}^4P_4 = 24$ or ${}^3P_3 \times 4 = 24$ or $2! \times 3! = 12$ or $2! \times 4 = 8$ or $(2! \times 3!) \times 3 = 36$
4(a)(i)	15	B1	
4(a)(ii)	180° or π (radians)	B1	
4(b)(i)	tanx, -tanx	B2	B1 for each
4(b)(ii)	4	B1	

© UCLES 2018 Page 4 of 9

Question	Answer	Marks	Partial Marks
5	$\frac{104}{1.6}$ oe	M1	or e.g. $\frac{104}{\cos 17.354} \div \sqrt{1.6^2 + 0.5^2}$
	65 or 64.9 to 65.1 (seconds)	A1	
	0.5 × their 65 oe	M1	or $\sqrt{\left(\frac{104}{\cos 17.354}\right)^2 - 104^2}$ or finds a correct angle using trigonometry and then uses trigonometry again to find BC e.g. $104 \times \tan 17.354$
	32.5 or 32.49 to 32.6(metres)	A1	
6(i)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\tan \left(\frac{x}{3} \right) \right) = k \sec^2 \left(\frac{x}{3} \right)$	M1	
	$\frac{1}{3}\sec^2\left(\frac{x}{3}\right)$ cao	A1	
6(ii)	$3\tan\left(\frac{x}{3}\right) + c$ oe	B2	B1 for $3\tan\left(\frac{x}{3}\right) + 3$
			or M1 for $\int their \frac{dy}{dx} dx = \tan\left(\frac{x}{3}\right) + \text{ a constant}$
7(i)	$\frac{1}{2} \times 8^2 \times \theta = 20 \text{ or } \pi \times 8^2 \times \frac{\theta}{360} = 20$	M1	
	$[\theta =] \frac{5}{8}$ or 0.625 rads oe	A1	
7(ii)	$8 \times their \ \theta$ oe	M1	
	5 (cm) cao	A1	
7(iii)	$\frac{1}{2} \times 8^2 \times 1.4 \text{ and } \frac{1}{2} \times 8^2 \times \sin 1.4 \text{ soi}$	M2	M1 for either area seen
	13.3 or 13.26 to 13.27 [cm ²]	A1	
8(a)(i)	$3x + 4 = \ln\left(\frac{14}{5}\right) \text{ oe}$	M1	
	OR $3x + 4 = \ln 14 - \ln 5$ oe		
	x = -0.99(012) isw or exact equivalent	A1	

© UCLES 2018 Page 5 of 9

Question	Answer	Marks	Partial Marks
8(a)(ii)	$\lg(2y^2 - 7y) = \lg 3^2 \operatorname{soi}$	B2	B1 for each of 2 correct moves
	$2y^2 - 7y - 9 = 0 \text{ and attempt to}$ solve	M1	
	y = 4.5 oe only	A1	
8(b)	$\log_2\left(\frac{p}{q}\right)$ as final answer www	B2	B1 for numerator correctly simplified to $\log_2 p - \log_2 q = \log_2 \left(\frac{p}{q}\right)$ or change of base $\log_r 2 = \frac{1}{\log_2 r}$ oe soi
9(i)	$m_{PQ} = \frac{6-2}{11-8} \text{ or better}$	M1	
	$m_L = \frac{-1}{their \frac{4}{3}} \text{ oe}$	M1	
	$y-2 = -\frac{3}{4}(x-8)$ isw or $y = -\frac{3}{4}x + c$ $c = 8$ isw	A1	
	$y = -\frac{3}{4}x + c c = 8 \text{ isw}$		

© UCLES 2018 Page 6 of 9

Question	Answer	Marks	Partial Marks
9(ii)	$PQ^2 = (11 - 8)^2 + (6 - 2)^2$	M1	or attempts to solve $ \frac{1}{2} \begin{vmatrix} 8 & 11 & x & 8 \\ 2 & 6 & -\frac{3}{4}x + 8 & 2 \end{vmatrix} = [\pm]12.5 \text{ oe} $ or $ \frac{1}{2} \begin{vmatrix} 8 & 11 & x & 8 \\ 2 & 6 & y & 2 \end{vmatrix} = [\pm]12.5 $
	PQ = 5 soi	A1	or expands correctly $ \frac{1}{2} \left(8(6) + 11 \left(-\frac{3}{4}x + 8 \right) + 2x \right) $ $ -2(11) - 6x - 8 \left(-\frac{3}{4}x + 8 \right) = [\pm]12.5 \text{ oe} $ or $ \frac{1}{2} \left(8(6) + 11y + 2x \right) $ $ -2(11) - 6x - 8y = [\pm]12.5 \text{ oe} $
	PR = 5 soi	A1	or simplifies to $\frac{1}{2} \left(-\frac{25}{4}x + 50 \right) = [\pm]12.5$ oe or $4x - 3y = 51$ or $3y - 4x = -1$ oe
	Valid method of solution e.g. $R(8 \pm 4, 2 \mp 3)$ or attempts to solve their $y = -\frac{3}{4}x + 8$ and $25 = (x - 8)^2 + (y - 2)^2$ oe or attempts to solve e.g. 4x - 3y = 51 $3x + 4y = 32$ oe	M1	
	(4, 5) (12, -1)	A2	A1 for each or for $x = 4$, $x = 12$ or $y = 5$, $y = -1$
10(a)(i)	Valid comment referencing the graph e.g. the function f is not one to one, as shown by the fact that the graph has a turning point	B1	or equivalent statement or arrows marked on a diagram; must validly reference the graph in some way.
10(a)(ii)	$\sqrt{1+\left(\sqrt{1+x^2}\right)^2}$	M1	
	$\sqrt{2+x^2}$	A1	mark final answer; must be simplified as far as possible
10(b)(i)	Any value greater than or equal to 0	B1	
10(b)(ii)	Correct method for finding inverse	M1	
	$g^{-1}(x) = \sqrt{x^2 - 1}$	A 1	mark final answer

© UCLES 2018 Page 7 of 9

Question	Answer	Marks	Partial Marks
10(c)	fully correct pair of graphs	В4	B1 for exponential shape of h; must cross y-axis B1 for an attempt at the graph of h and $(0, 6)$ soi B1 for correct reflection of <i>their</i> h in the line $y = x$ or logarithmic shape of inverse B1 for an attempt at the graph of h^{-1} and $(6, 0)$ soi Max 3 marks if not fully correct
11(a)(i)	$(1 - \sin A)(1 + \sin A)$ $= 1 - \sin^2 A$ $= \cos^2 A$ $\frac{\cos^2 A}{\sin A \cos A} = \frac{\cos A}{\sin A} (= \cot A)$	M1	
	$\frac{1}{\sin A \cos A} = \frac{1}{\sin A} (= \cot A)$		
11(a)(ii)	$\frac{1}{\tan 3x} = \frac{1}{2} \text{ or better}$	M1	
	Any triple angle correct from 63.4(349) 243.4(349) 423.4(349)	M1	
	21.1(4) 81.1(4) 141.1(4)	A2	A1 for 21.1(4) and 81.1(4) or for 141.1(4)
11(b)	$10(\sec^2 y - 1) - \sec y - 1 (= 0)$ soi	M1	
	$(10\sec y - 11)(\sec y + 1)$ oe	M1	
	$\cos y = \frac{10}{11} \cos y = -1 \text{ nfww}$	A1	
	π, 0.43[0], 5.85	A2	A1 for any one correct
12(i)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2 \text{ soi}$	B1	
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \text{ oe attempted}$	M1	
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1}{their4\pi(10)^2} \times 200 \text{ soi}$	M1	
	0.159 isw or 0.1591(54) rot to 4 or more figs	A1	

© UCLES 2018 Page 8 of 9

Question	Answer	Marks	Partial Marks
12(ii)	$\frac{\mathrm{d}S}{\mathrm{d}r} = 8\pi r \text{ soi}$	B1	
	$\frac{\mathrm{d}S}{\mathrm{d}t} = 8\pi(10) \times their 0.159$	M1	
	awrt 40	A1	following correct solution

© UCLES 2018 Page 9 of 9

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

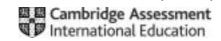
0606/21

Paper 2

October/November 2017

MARK SCHEME
Maximum Mark: 80

Published


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\rm \rlap{R}\hskip-1pt B}$ IGCSE is a registered trademark.

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 7

Question	Answer	Marks	Guidance
1	$x^2 - 6x - 7(>0)$	B1	
	(x-7)(x+1)(>0)	M1	
	Critical values 7 and –1	A1	
	x > 7 or x < -1	A1	
2	$\frac{(1+\sin\theta)-(1-\sin\theta)}{(1-\sin\theta)(1+\sin\theta)}$	M1	Dealing with fractions
	$=\frac{2\sin\theta}{\left(1-\sin^2\theta\right)}$	A1	Simplification
	$=\frac{2\sin\theta}{\cos^2\theta}$	M1	Use of identity (seen anywhere)
	$= 2\tan\theta\sec\theta$	M1	Use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\sec \theta = \frac{1}{\cos \theta}$ (seen anywhere)
3	$2 = \log_5 25$	B1	
	$\log_5 25 + \log_5 (x - 7) = \log_5 25 (x - 7)$ $10x + 5 = 25(x - 7)$	M1	
	180 = 15x	M1	Equate, clear brackets and collect terms.
	12 = x	A1	

Question	Answer	Marks	Guidance
4	$x - 2\left(4 - \sqrt{3}x\right) = 5\sqrt{3}$	M1	Eliminate y
	$x = \frac{5\sqrt{3} + 8}{2\sqrt{3} + 1}$	A1	
	$x = \frac{\left(5\sqrt{3} + 8\right)\left(2\sqrt{3} - 1\right)}{\left(2\sqrt{3} + 1\right)\left(2\sqrt{3} - 1\right)}$	M1	Multiply by $(a\sqrt{b} + c)$ as appropriate
	$x = 2 + \sqrt{3}$	A1	
	$y = 1 - 2\sqrt{3}$	A1	
	Alternative method		
	$\sqrt{3}\left(5\sqrt{3}+2y\right)+y=4$	M1	Eliminate <i>x</i>
	$y = \frac{-11}{\left(2\sqrt{3} + 1\right)}$	A1	
	$y = \frac{-11(2\sqrt{3} - 1)}{(2\sqrt{3} + 1)(2\sqrt{3} - 1)}$	M1	Multiply by $(a\sqrt{b} + c)$ as appropriate
	$y = 1 - 2\sqrt{3}$	A1	
	$x = 2 + \sqrt{3}$	A1	
5(i)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{5}{3x+2} \right) = -5 \left(3x+2 \right)^{-2} \times 3$	M1	$-5(3x+2)^{-2}$
		A1	×3
5(ii)	$\int \frac{30}{(3x+2)^2} \mathrm{d}x = \left[\frac{-10}{(3x+2)} \right]$	M1	$\frac{1}{(3x+2)}$
		A1	×-10
5(iii)	$\left[\frac{-10}{(3x+2)} \right]_{1}^{2} = -\frac{10}{8} + \frac{10}{5}$	M1	Insert limits and subtract
	$=\frac{3}{4}$	A1	
6(i)	2q + 3p = 13	B1	

Question	Answer	Marks	Guidance
6(ii)	Multiply matrices correctly	M1	
	2p + pq = 12	A1	
6(iii)	4p + p(13 - 3p) = 24	M1	Eliminate q
	$3p^2 - 17p + 24 = 0$	A1	
	(3p-8)(p-3)=0	M1	Solve
	p = 3, q = 2	A1	
7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - \frac{1}{x^2} (+C)$	B2	B1 for $3x^2$ B1 for $-\frac{1}{x^2}$.
	$x=1, \frac{\mathrm{d}y}{\mathrm{d}x}=1 \to C=-1$	B1	
	$y = x^3 + \frac{1}{x} - x + D$ $x = 1, y = 3 \rightarrow D = 2$	B2	B1 for two correct terms in x
	$y = x^3 + \frac{1}{x} - x + 2$	B1	
8	$z^{2} = a^{2} + 3(a+3)^{2} + 2a(a+3)\sqrt{3}$ $= 79 + b\sqrt{3}$	M1	
	$a^2 + 3(a+3)^2 = 79$ and $2a(a+3) = b$	A1	FT Equate correctly to obtain both eqns
	$a^{2} + 3a^{2} + 18a + 27 = 79$ $4a^{2} + 18a - 52 = 0$	M1	Expand and simplify to obtain 3 term quadratic
	(a-2)(4a+26)=0	M1	
	a=2, b=20	A2	A1 for each
9(i)	$1 + 4x + 6x^2 + 4x^3 + x^4$	B1	
9(ii)	$1296 - 864x + 216x^2 - 24x^3 + x^4$	B2	Minus 1 each error.
9(iii)	$1295 - 868x + 210x^2 - 28x^3 = 175$	M1	Subtract and equate to 1
	$28x^3 - 210x^2 + 868x - 1120 = 0$	A1	

Question	Answer	Marks	Guidance
9(iv)	$28(2)^3 - 210(2)^2 + 868(2) - 1120$	M1	Inserts $x = 2$
	= 224 - 840 + 1736 - 1120 = 0 (x-2) is a factor	A1	
	$(x-2)(28x^2-154x+560)$	M1A1	M1 for 28 and 560 seen oe A1 for -154
	$b^2 - 4ac < 0 \text{ shown}$	B1	
10(i)	$\mathbf{r}_{A} = (2\mathbf{i} + 4\mathbf{j}) + t(\mathbf{i} + \mathbf{j})$	B1	
10(ii)	$\mathbf{r}_{B} = (10\mathbf{i} + 14\mathbf{j}) + t(-2\mathbf{i} - 3\mathbf{j})$	B1	
10(iii)	$\mathbf{r}_B - \mathbf{r}_A = (8\mathbf{i} + 10\mathbf{j}) + t(-3\mathbf{i} - 4\mathbf{j})$	M1	
	$X^{2} = (8-3t)^{2} + (10-4t)^{2}$	M1A1	
10(iv)	Differentiate	M1	
	$\frac{dX^2}{dt} = 2(8-3t)(-3) + 2(10-4t)(-4)$ oe	A1	
	$\frac{\mathrm{d}X^2}{\mathrm{d}t} = 0 \to t = 2.56$ $\to X = 0.4$	B2	B1 for value of t B1 for value of X .
11(i)	$x^2 - 2x + (kx + 3)^2 = 8$	M1	Eliminate y
	$(1+k^2)x^2 + (6k-2)x + 1 = 0$	A1	
	$b^2 - 4ac = 0 \rightarrow (6k - 2)^2 - 4(1 + k^2) = 0$	M1	
	$k = \frac{3}{4}$	A1	Answer given
11(ii)	$x = \frac{-b}{2a} \to x = \frac{-2.5}{2 \times 1.5625}$	M1	
	=-0.8	A1	
	$y = 0.75 \times -0.8 + 3 = 2.4$	A1	FT

Question	Answer	Marks	Guidance
11(iii)	Eqn of PQ $\frac{y-2.4}{x+0.8} = \frac{-4}{3}$	M1	
	$\rightarrow 3y = 4 - 4x$	A1	
12(i)	$\frac{\mathrm{d}(\cos x)^{-1}}{\mathrm{d}x} = \frac{1}{\cos^2 x} \times \sin x$	M1	$\frac{1}{\cos^2 x}$
		A1	× sinx
12(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x + \frac{4\sin x}{\cos^2 x}$	B1	$\sec^2 x$
		B1	$\frac{4\sin x}{\cos^2 x}$
12(iii)	$\frac{1}{\cos^2 x} + \frac{4}{\cos x} \times \frac{\sin x}{\cos x} = 4$	M1	Equate <i>their</i> (i) to 4 and multiply by $\cos^2 x$
	$\rightarrow 1 + 4\sin x = 4\cos^2 x$	M1	Use of identity and simplify
	$4\sin^2 x + 4\sin x - 3 = 0$	A1	
	$(2\sin x - 1)(2\sin x + 3) = 0$	M1	Solve
	$x = \frac{\pi}{6}, \ \frac{5\pi}{6}$	A2	A1 for each

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

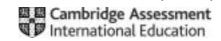
0606/22

Paper 2

October/November 2017

MARK SCHEME
Maximum Mark: 80

Published


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\rm \rlap{R}\hskip-1pt B}$ IGCSE is a registered trademark.

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 8

Question	Answer	Marks	Partial Marks
1	$z^2 = 7 + 4\sqrt{3}$	B1	Accept $4+3+4\sqrt{3}$
	$a\left(7+4\sqrt{3}\right)+b\left(2+\sqrt{3}\right)=1+\sqrt{3}$	M1	Equate both $\sqrt{3}$ terms and constant terms to obtain two equations in a and b .
	7a + 2b = 1 $4a + b = 1$	A1	Both correct. Accept equation with a multiple of $\sqrt{3}$
	Attempt to solve a pair of linear simultaneous eqns to $a = \text{ or } b =$	M1	M1dep
	a = 1 and $b = -3$	A1	
2	$2x^{1.5} + 6x^{-0.5} = x(x^{0.5} + 5x^{-0.5})$	M1	Attempt to multiply by $x^{0.5} + 5x^{-0.5}$ or $x^{0.5}$ or divide by $x^{0.5}$
	$2x^{1.5} + 6x^{-0.5} = x^{1.5} + 5x^{0.5} \text{ or}$ $x^{1.5} - 5x^{0.5} + 6x^{-0.5} = 0$ or $\frac{2x^2 + 6}{x + 5} = x \text{ or } \frac{2x + \frac{6}{x}}{1 + \frac{5}{x}} = x$	A1	Simplified numerical powers
	$x^2 - 5x + 6 = 0$	M1	M1dep obtain a three term quadratic. Allow errors in signs and coefficients but not powers
	(x-3)(x-2)=0	M1	Solve a three term quadratic
	x = 3 or 2 only	A1	
3	Correctly obtain a value of $x = 2$	B1	Inequality not required
	Correctly obtain a value of $x = -\frac{1}{2}$	B1	Inequality not required
	$x > 2$ and $x < -\frac{1}{2}$	B1	B1dep mark final answer(s). Allow $2 < x < -\frac{1}{2}$

Question	Answer	Marks	Partial Marks
4	$x + 4 = y^2$	B1	
	$7y - x = 16$ $7y - 16 + 4 = y^2$	B1	allow 2 ⁴ for 16
	$y^{2} - 7y + 12 \rightarrow (y - 3)(y - 4)(= 0)$ or $x^{2} - 17x + 60 \rightarrow (x - 5)(x - 12)(= 0)$	M1	Attempt to eliminate x or y to obtain a three term quadratic.
	Solve a three term quadratic	M1	M1dep
	$\rightarrow y = 3, x = 5 \text{ or } y = 4 \ x = 12$	A1	Allow for values seen even if correct pairs not clear.
5(i)	$^{10}C_4 = 210$	B1	
5(ii)	2 Mystery 2 others = ${}^{5}C_{2} \times {}^{5}C_{2} = 100$ 3 Mystery 1 other = ${}^{5}C_{3} \times {}^{5}C_{1} = 50$ 4 Mystery = ${}^{5}C_{4} = 5$ Total 155	В3	B1 for one combination, unsimplified B1 for second combination, unsimplified B1 for third combination, unsimplified and total
	Alternative Method		
	All – 0 Mystery – 1 Mystery	B1	All minus 0 or 1 or both
	$=210-{}^{5}C_{4}-{}^{5}C_{1}^{5}C_{3}$	В1	B1dep 1Mystery and 0 mystery unsimplified
	$= 210 - 5 - 5 \times 10 = 155$	B1	B1dep final answer
5(iii)	$2M1C1R = {}^{5}C_{2} \times {}^{3}C_{1} \times {}^{2}C_{1} = 60$ $1M2C1R = {}^{5}C_{1} \times {}^{3}C_{2} \times {}^{2}C_{1} = 30$ $1M1C2R = {}^{5}C_{1} \times {}^{3}C_{1} \times {}^{2}C_{2}$ $= 15$ $Total 105$	В3	B1 for one combination, unsimplified B1 for second combination, unsimplified B1 for third combination, unsimplified and total
6(i)	$\pi x^2 h = 500 \rightarrow h = \frac{500}{\pi x^2}$	B1	Ignore units Condone r for x
6(ii)	$A = 2\pi x^2 + 2\pi x h$	M1	Correct expression for <i>A</i> and insert for <i>their h</i> .
	$= 2\pi x^2 + 2\pi x \times \frac{500}{\pi x^2} = 2\pi x^2 + \frac{1000}{x}$	A1	Answer given Condone r for x .

Question	Answer	Marks	Partial Marks
6(iii)	Differentiate: at least one power reduced by 1	M1	
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 4\pi x - \frac{1000}{x^2}$	A1	
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 0 \to x = \sqrt[3]{\frac{1000}{4\pi}} \text{ isw or} \left(x = 4.3(0)\right)$	A1	
	$A = 2\pi (4.3)^2 + \frac{1000}{4.3} = 349 \mathrm{cm}^2$	A1	awrt 349
	$\frac{d^2 A}{dx^2} = 4\pi + \frac{2000}{x^3} (>0) \text{ or a positive value}$ $(\rightarrow \text{min})$	B1	Correct second differential (need not be evaluated) and conclusion. or Examine correct gradient either side of $x = 4.3$ and conclusion
7(i)	(Gradient or $\frac{dy}{dx}$) = $\frac{3x-1}{\sqrt{x}}$	B1	Gradient = Negative reciprocal. Can be implied.
	$=3x^{\frac{1}{2}}-x^{-\frac{1}{2}}$	B1	± One correct term
	$y = 2x^{\frac{3}{2}} - 2x^{\frac{1}{2}} (+C)$	M1	at least 1 fractional power increased by 1.
	$-10 = 2 - 2 + C \rightarrow C = -10$	A1	one term correct with simplified coefficients
	$y = 2x^{\frac{3}{2}} - 2x^{\frac{1}{2}} - 10$	A1	For C from correct working.
7(ii)	$x = 4 \rightarrow y = 16 - 4 - 10 = 2$	B1	
	$\rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 6 - \frac{1}{2} = 5.5$	B1	
	Eqn with <i>their</i> grad and point (4,)	M1	
	Eqn of tangent: $\frac{y-2}{x-4} = 5.5 \rightarrow y = 5.5x - 20$ oe	A1	Must be in the form $y = mx + c$ but accept $2y = 11x - 40$
8(i)	$2\mathbf{A} = \begin{pmatrix} 4 & 2 \\ 8 & 6 \end{pmatrix}$	B1	
	$ (2\mathbf{A})^{-1} = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ -8 & 4 \end{pmatrix} $	B2	B1 for $\begin{pmatrix} 6 & -2 \\ -8 & 4 \end{pmatrix}$
			B1 for $\frac{1}{8}$

Question	Answer	Marks	Partial Marks
8(ii)	4x + 2y = -5 $8x + 6y = -9$	B1	
	Pre multiply $\begin{pmatrix} -5 \\ -9 \end{pmatrix}$ by a 2×2 matrix.	M1	Allow recovery
		M1	Pre multiply their $\begin{pmatrix} -5 \\ -9 \end{pmatrix}$ by their answer to (i)
	$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{8} \begin{pmatrix} -12 \\ 4 \end{pmatrix} = \begin{pmatrix} -1.5 \\ 0.5 \end{pmatrix} $	A2	A1 for x value A1 for y value oe Allow both unsimplified
9(i)	$\frac{\mathrm{d}}{\mathrm{d}x}(x\ln x) = x \times \frac{1}{x} + \ln x \text{ isw}$	M1A1	Product rule. One correct term + another term. Allow unsimplified.
9(ii)	$\int 1 + \ln x dx = x \ln x$	M1	Correct use of (i) and must be dealing with 2 terms. soi
	$\int \ln x dx = x \ln x - x + (C)$	A1	Correct answer with no working is fine.
9(iii)	$\int_{k}^{2k} \ln x dx = [2k \ln 2k - 2k] - [k \ln k - k]$ $= k(2\ln 2k - lnk - 1)$	M1	Insert limits and subtract correctly using <i>their</i> result from (ii) which must contain an ln function
	$= k \left(\ln \left(2k \right)^2 - \ln k - 1 \right)$	M1	Uses $n \ln a = \ln a^n$ somewhere oe
	$= k \left(\ln \left(\frac{4k^2}{k} \right) - 1 \right)$	M1	Uses $\ln a - \ln b = \ln \left(\frac{a}{b}\right)$ or $\ln a + \ln b = \ln ab$ somewhere
	$= k \left(\ln 4k - 1 \right)$	A1	Answer given Correct completion.

Question	Answer	Marks	Partial Marks
10(i)	$c = 1 \rightarrow 6(1)^3 - 7(1)^2 + 1 = 0 \rightarrow (c-1)$ is a factor.	B1	Or correct division. Finding or using one correct factor.
	Attempt to factorise or use long division to obtain $6c^2 \pm 1$ or $6c^2 \pm c$ respectively	M1	
	$(c-1)(6c^2-c-1)=0$	A1	
	(c-1)(2c-1)(3c+1)=0	A1	
	$c=1, \frac{1}{2}, -\frac{1}{3}$	A1	FT From three different linear factors
10(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x + 6\cos x$	B2	B1 for each term
10(iii)	$\frac{1}{\cos^2 x} + 6\cos x = 7$	B1	B1dep Replaces $\sec^2 x$ by $\frac{1}{\cos^2 x}$
	$\rightarrow 6\cos^3 x - 7\cos^2 x + 1 = 0$	B1	B1dep Answer given so all steps must be correct.
10(iv)	$\cos x = 1, \frac{1}{2}, -\frac{1}{3}.$ $\rightarrow x = 0, 1.05 \left(\text{or } \frac{\pi}{3} \right), 1.91$	A2	A1 for 2 values awrt A1 for third value and no others in range. No credit for answers in degrees
11(i)	$y = 0 \rightarrow (x-4)(x+1) = 0$	M1	Solve
	$\rightarrow A \text{ is } (4,0) \text{ nfww}$	A1	Indication somewhere that $x = 4$ when $y = 0$
11(ii)	$4+3x-x^{2} = mx+8$ $x^{2} + (m-3)x + 4 = 0$	M1	Eliminate y.
	$b^2 - 4ac(=0) \rightarrow (m-3)^2 = 16$	M1	M1dep Use of discriminant
	m = -1	A1	Do not award if $m = 7$ is not discarded
11(iii)	Obtain quadratic $x^2 + (m-3)x + 4 = 0$ using their m and attempt to solve.	M1	Working must be seen for any marks to be awarded. Must not be awarded if <i>m</i> is not obtained correctly
	Point <i>B</i> (2, 6)	A1	

Question	Answer	Marks	Partial Marks
11(iv)	Area under curve $= \int_{2}^{4} (4 + 3x - x^{2}) dx$ Integrate powers increased in at least 2 terms	M1	
	$= \left[4x + \frac{3}{2}x^2 - \frac{1}{3}x^3\right]_2^4$	A1	
	$= \left[16 + 24 - \frac{64}{3}\right] - \left[8 + 6 - \frac{8}{3}\right]$ $= 7\frac{1}{3}$	M1	M1dep Insert limits of <i>their</i> 2 and 4 and subtract in correct order. May be implied by $18\frac{2}{3}$
	Intercept is (8,0) so area of triangle = $\frac{6 \times 6}{2}$ = 18	M1	Area of triangle using $their B = \frac{(their 8 - x_B)}{2} \times y_B$ or Attempt to find other suitable areas to result in a complete method.
	Shaded area = $18 - 7\frac{1}{3} = 10\frac{2}{3}$	A1	Accept 10.7. Must not be awarded if point <i>B</i> is not obtained correctly.

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/23

Paper 2

October/November 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\rm \rlap{R}\hskip-1pt B}$ IGCSE is a registered trademark.

October/November 2017

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 6

Question	Answer	Marks	Guidance
1(a)		B2	B1 for each
1(b)	n(P') = 18	B1	
	$n\big((Q \cup R) \cap P\big) \qquad = 11$	B1	
	$n(Q' \cup P) = 29$	B1	
2	$3x - 1 = 5 + x \qquad \qquad x = 3$	B1	
	3x-1 = -5 - x oe	M1	M1 not earned if incorrect equation(s) present
	x = -1	A1	
3	$\frac{p(\sqrt{3}+1)+(\sqrt{3}-1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = q + 3\sqrt{3}$	M1	on LHS take common denominator or rationalise each term or multiply throughout
	$p(\sqrt{3}+1)+(\sqrt{3}-1)=2q+6\sqrt{3}$ oe	A1	correct eqn with no surds in denominators of LHS
	equate surd/non surd parts	M1	equate and solve for p or $q \neq 0$
	p = 5 and $q = 2$	A1	
4	$\log_3 3 = 1 \text{ or } \log_3 9 = 2$	B1	implied by one correct equation
	x+1=3y	B1	
	x - y = 9	B1	
	solve correct equations for x or y	M1	
	x=14 and $y=5$	A1	
5(i)	$\overrightarrow{OX} = \lambda \left(1.5\mathbf{b} + 3\mathbf{a} \right)$	B1	
5(ii)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} \text{ or } \overrightarrow{BA} = \mathbf{a} - \mathbf{b}$	B1	
	$\overrightarrow{OX} = \mathbf{a} + \mu(\mathbf{b} - \mathbf{a})$	B1	
5(iii)	$1.5\lambda = \mu$ or $3\lambda = 1 - \mu$	M1	$\overrightarrow{OX} = \overrightarrow{OX}$ and equate for a or b
	$\mu = \frac{1}{3} \qquad \lambda = \frac{2}{9}$	A2	A1 for each

Question	Answer	Marks	Guidance
5(iv)	$\frac{AX}{XB} = \frac{1}{2}$	B1	Accept 1:2 but not $\frac{1}{2}$:1
5(v)	$\frac{OX}{XD} = \frac{2}{7}$	B1	Accept 2:7 but not $\frac{2}{7}$:1
6(i)	$f^2 = f(f)$ used algebraic $([(x+2)^2 + 1] + 2)^2 + 1$	M1	numerical or algebraic
	17	A1	
6(ii)	$x = \frac{y-2}{2y-1}$	M1	change x and y
	$2xy - x = y - 2 \rightarrow y(2x - 1) = x - 2$	M1	M1dep multiply, collect y terms, factorise
	$y = \frac{x-2}{2x-1} \qquad \left[= g(x) \right]$	A1	correct completion
6(iii)	gf(x) = $\frac{\left[(x+2)^2+1\right]-2}{2\left[(x+2)^2+1\right]-1}$ oe	B1	
	$\frac{(x+2)^2 - 1}{2(x+2)^2 + 1} = \frac{8}{19}$	M1	their gf = $\frac{8}{19}$ and simplify to
	$3(x+2)^2 = 27$ oe $3x^2 + 12x - 15 = 0$		quadratic equation
	solve quadratic	M1	M1dep Must be of equivalent form
	x=1 $x=-5$	A1	
7(i)	$v = 0 \to \cos 2t = \frac{1}{3}$	M1	set $v = 0$ and solve for $\cos 2t$
	$\rightarrow t = 0.615$ or 0.616	A1	
7(ii)	$s = \frac{3}{2}\sin 2t - t (+c)$	M1A1	M1 for $\sin 2t$ and $\pm t$
	$t = \frac{\pi}{4} $ $s = 1.5 - \frac{\pi}{4}$ $(= 0.715)$	A1	
7(iii)	$a = -6\sin 2t$	M1A1	M1 for -sin2 <i>t</i>
	$t = 0.615 \rightarrow a = -5.66 \text{ or } -5.65 \text{ or } -2\sqrt{8}$	A1	condone substitution of degrees

Question	Answer	Marks	Guidance
8(i)	$\cos \alpha = \frac{1}{3}$ oe	M1	
	α = 70.5°	A1	
8(ii)	speed = $\sqrt{3^2 - 1^2}$	M1	Pythagoras/trig ratio/cosine rule
	$\sqrt{8}$ or $2\sqrt{2}$ or 2.83 m s ⁻¹	A1	
8(iii)	$time = \frac{50}{their\sqrt{8}}$	M1	
	$\frac{25\sqrt{2}}{2} \text{or} 17.7s$	A1	
8(iv)	their 8(iii) seen	B1	
	$BC = 10\sqrt{2}$ or 14.1 m or 14.2 m	B1	
9(i)	$\frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$ and	B1	seen
	$\frac{d}{dx}x^3 = 3x^2 \text{ or } \frac{d}{dx}x^{-3} = -3x^{-4}$		
	Substitution of <i>their</i> derivatives into quotient rule	M1	
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\ln x}{x^3} \right) = \frac{x^3 \times \frac{1}{x} - 3x^2 \ln x}{x^6} \text{oe}$	A1	correct completion
9(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \to 1 - 3\ln x = 0 \qquad \qquad \ln x = \frac{1}{3}$	M1	equate given $\frac{dy}{dx}$ to zero and solve for $\ln x$ or x
	$x = e^{\frac{1}{3}}$	A1	seen
	$y = \frac{1}{3e}$	A1	seen
9(iii)	$\frac{\ln x}{x^3} = \int \frac{1 - 3\ln x}{x^4} dx \text{oe}$	M1	use given statement in (i)
	$\int \frac{1}{x^4} \mathrm{d}x = \frac{-1}{3x^3}$	B1	seen anywhere
	$\int \frac{\ln x}{x^4} dx = -\frac{1}{9x^3} - \frac{\ln x}{3x^3} $ (+C) oe	A2	A1 for each term

Question	Answer	Marks	Guidance
10(a)	LHS = $\frac{\sin^2 x + (1 + \cos x)^2}{\sin x (1 + \cos x)}$	B1	correct addition of fractions
	$=\frac{1+2\cos x+1}{\sin x(1+\cos x)}$	B1	expansion and use of identity
	$= \frac{2(1+\cos x)}{\sin x(1+\cos x)} = 2\csc x$	B1	factorisation and completion
10(b)(i)	$\csc^2 y - 1 + \csc y - 5 = 0$ $\csc^2 y + \csc y - 6 = 0$	M1	use of identity for $\cot^2 y$ to obtain quadratic in $\csc y$
	$(\csc y - 2)(\csc y + 3) = 0$	M1	solve 3 term quadratic for cosecy
	$\sin y = \frac{1}{2} , \sin y = -\frac{1}{3}$	M1	obtain values for siny
	y = 30°, 150°, 199.5°, 340.5°	A2	A1 for 2 values
10(b)(ii)	$2z + \frac{\pi}{4} = \frac{5\pi}{6}$ or $\frac{7\pi}{6}$ (2.6, 3.6)	M2	M1 equate to $\frac{5\pi}{6}$ M1 equate to $\frac{7\pi}{6}$
	$z = \frac{7\pi}{24}$ or $\frac{11\pi}{24}$ (0.916, 1.44)	A2	A1 for 1 value
11(i)	Other root = 4	B1	
	$f(x) = (x-3)(x-3)(x-4)$ $= x^3 - 10x^2 + 33x - 36$	M1	multiply out $(x-3)(x-3)(x \pm p)$
	a = -10 $b = 33$	A2	A1 for each Can be implied by correct cubic
11(ii)	x = 6, x = 6, x = 1 x = 2, x = 2, x = 9	В4	B1 for each of first two sets B2 for third set
	x=1, x=1, x=36		

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/21

Paper 2 May/June 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 ${\rm \rlap{R}\hskip-1pt B}$ IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 7

Question	Answer	Marks	Guidance
1	Integrates	M1	must be clear attempt to integrate at least one term
	$[y=]x^4+x(+c)$	A1	Both terms correct
	$17 = 2^4 + 2 + c$	DM1	Substitution of $x = 2$, $y = 17$ to find c
	$y = x^4 + x - 1 \text{cao}$	A1	must have $y =$
2(a)	$2\sqrt{6} \times 3\sqrt{3} = 6\sqrt{18} \text{oe}$	M1	method must be shown – simplifies and combines product
	$18\sqrt{2}$	A1	If all over common denominator then consider the product for M1A1
	$9\sqrt{2}$ oe soi leading to final answer of $27\sqrt{2}$	B1	
2(b)	$\left[x=\right]\frac{6+\sqrt{3}}{2-\sqrt{3}}$	M1	Expanding and making x subject – condone slips but must be of equivalent difficulty
	$[x =] \frac{6 + \sqrt{3}}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}}$ oe and multiplies out numerator and denominator	M1	numerator at least 3 terms; $12 + 2\sqrt{3} + 6\sqrt{3} + 3$
	$15 + 8\sqrt{3}$	A1	
3(i)	$\frac{2x}{x^2+1}$ final answer	B2	B1 for $\frac{1}{x^2+1} \times (ax+b)$, a or b must be non-zero
3(ii)	$\delta y = their\left(\frac{2(3)}{(3)^2 + 1}\right) \times h \text{ or better}$	M1	Substitutes $x = 3$ into their $\frac{dy}{dx}$ and multiplies by h
	$\frac{6}{10}h$ oe	A1	
4(a)(i)	36	B1	
4(a)(ii)	7	B1	
4(b)	$[y=] 5\sin 4x + 7$	B4	B1 for each of 5, 4 and 7 and B1 for sine Accept $a = 5$, $b = 4$, $c = 7$ for B3

© UCLES 2017 Page 3 of 7

Question	Answer	Marks	Guidance
5(i)	$16 + 32ax + 24a^2x^2 + 8a^3x^3 + a^4x^4$	B2	B1 for at most 2 terms incorrect or missing or for correct but unsimplified form SC1 for $16 + 32ax + 24ax^2 + 8ax^3 + ax^4$ or all terms correct listed
5(ii)	$24a^2 = 8a^3$ and solves to given answer	B1	or verifies that $a = 3$ leads to coeff of 216 for both terms must be from correct terms in (i)
5(iii)	x = -0.01 or $ax = -0.03$ soi	M1	
	$16 + 32(3)(-0.01) + 24(9)(-0.01)^2$ leading to $16 - 0.96 + 0.0216$ or 15.06 isw	A1	Must show clear substitution into their expansion for A1 and reach a value which rounds to 15.1
6(i)	$ (\mathbf{M} =) \begin{pmatrix} 90 & 10 & 30 \\ 0 & 45 & 0 \\ 25 & 0 & 15 \\ 10 & 0 & 100 \end{pmatrix} $	B1	columns and/or rows may be interchanged but must be consistent
6(ii)	$(\mathbf{LM} =)(1 1 1) \begin{pmatrix} 90 & 10 & 30 \\ 0 & 45 & 0 \\ 25 & 0 & 15 \\ 10 & 0 & 100 \end{pmatrix} = (125 55 145)$	B1	Answer must be of correct order and must be consistent with a correct M
6(iii)	The total numbers of each type of ticket sold by all 4 cinemas oe	B1	
6(iv)	$ (\mathbf{N} =) \begin{pmatrix} 5 \\ 4 \\ 3 \end{pmatrix} $	B1	Calculation not required
	The total income of all (4) cinemas or other valid comment e.g. total income from all ticket sales	B1	Total cost/value of tickets etc.
7(a)		B2	B1 for each
7(b)(i)	$n(M \cap D) = 0 \text{ or } M \cap D = \emptyset$	B1	No additional brackets e.g. $M \cap D = \{\emptyset\}$ is B0

© UCLES 2017 Page 4 of 7

Question	Answer	Marks	Guidance
7(b)(ii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	В3	B1 correct intersection of circles with 12 and 25 correct B1 33, 2, 11 correctly placed B1FT 17; must be on the Venn diagram and identified as the required answer FT on 100– (sum of their 5 correctly positioned values)
8(a)	$\left[{}^{30}P_2 = \right]870$	B1	
8(b)(i)	${}^{2}C_{1} \times {}^{14}C_{10}$ oe (2×1001)	M1	Condone $\begin{pmatrix} 14 \\ 4 \end{pmatrix}$ for $\begin{pmatrix} 14 \\ 10 \end{pmatrix}$
	2002	A1	implies M1
8(b)(ii)	$ \begin{pmatrix} {}^{2}C_{1} \times {}^{5}C_{4} \times {}^{9}C_{6} \end{pmatrix} + \begin{pmatrix} {}^{2}C_{1} \times {}^{5}C_{5} \times {}^{9}C_{5} \end{pmatrix} \text{ oe } (840 + 252) $ $ \begin{pmatrix} {}^{2}C_{1} \times {}^{14}C_{10} - \\ \text{or } \\ {}^{2}C_{1} \times {}^{5}C_{1} \times {}^{9}C_{9} + {}^{2}C_{1} \times {}^{5}C_{2} \times {}^{9}C_{8} + {}^{2}C_{1} \times {}^{5}C_{3} \times {}^{9}C_{7} \end{pmatrix} $ $ \{2002 - (10 + 80 + 720)\} $	М3	M3 for fully correct method soi M2 for all necessary products but not summed with no extra products seen soi M1 for one correct three term product soi
	1092	A1	implies M3
9(i)	Substitution of $y = 2(1-x)$	M1	Must be attempt at full substitution. Condone one sign error in substitution. Condone omission of = 0 or incorrect rhs
	$-3x^2 + 2x + 1 = 0$ oe $(3x^2 - 2x - 1 = 0)$	A1	Terms collected
	Solving <i>their</i> quadratic found from eliminating one variable $(3x+1)(1-x)$ or $(3x+1)(x-1)$	M1	can be implied by a correct pair of x values
	$\left(-\frac{1}{3}, \frac{8}{3}\right)$ oe and $(1, 0)$ oe isw nfww	A2	A1 for each or A1 for a correct pair of <i>x</i> -coordinates or a correct pair of <i>y</i> -coordinates

© UCLES 2017 Page 5 of 7

Question	Answer	Marks	Guidance
9(ii)	$[m=]\frac{1}{2}$ cao	B1	
	$\left(\frac{1}{3}, \frac{4}{3}\right)$	B1	FT
	$y - their \frac{4}{3} = their \frac{1}{2} \left(x - their \frac{1}{3} \right)$	M1	or $y = their \frac{1}{2}x + c$ and substitutes their midpoint and reaches $c =$
	6y - 3x = 7	A1	allow any equivalent form with integer coeffs/constant
10(i)	t 1 1.5 2 2.5 lnP 1.48 2.12 2.76 3.4(0)	M1	allow lnP values to 1 dp rounded or truncated (1.5, 2.1, 2.8, 3.4)
	single ruled line drawn within tolerance at least for <i>t</i> between 1 and 2.5	A1	All points within 1 square of line / must not pass through origin
10(ii)	e ^{their3}	M1	
	18 to 22.2	A1	
10(iii)	$(0, c)$ with $0.1 \le c \le 0.3$ (0.2)	B1	allow $y = c$ condone $c =$
	m in the range $1.25 \le m \le 1.34 (1.28)$	B1	
10(iv)	ln P = (their 1.28)t + their 0.2	M1	or $\ln P = (\ln b)t + \ln a$
	$P = e^{(their1.28)t + their0.2}$	M1	or $\ln b = m = their 1.28$ and $\ln a = c = their 0.2$
	$P = e^{their 0.2} e^{(their 1.28)t}$	A1	or $1.10 \le a \le 1.35$ $3.49 \le b \le 3.82$
10(v)	$1000 * e^{their 0.2} \times e^{their 1.28t}$ or $1000 * their \ a \times their \ b^t$	M1	A correct relationship e.g. $1.3t * \ln(1000) - 0.2$ where * is = or an inequality sign
	5.3	A1	5.2 to 5.5 must be to 1dp

© UCLES 2017 Page 6 of 7

Question	Answer	Marks	Guidance
11(i)	$\frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} = \frac{\cos^2 x + \sin^2 x}{\sin x \cos x} \text{ oe}$	B2	B1 for either $\cot x = \frac{\cos x}{\sin x}$ or $\tan x = \frac{\sin x}{\cos x}$ used B1 for correctly placing over a common denominator or for splitting into 3 correct terms not just for stating or working from both sides
	Valid use of Pythagorean identity e.g. $\cos^2 x + \sin^2 x = 1$	B1	
	Simplification to secx (correct solution only)	B1	not if working from both sides
11(ii)	$\cos x = \frac{1}{2} \operatorname{soi}$	M1	
	60, 300	A1	Correct pair
	$\cos x = -\frac{1}{2} \operatorname{soi}$	M1	
	120, 240	A1	Correct pair
12(i)	$\left[v = \frac{d(3t - \cos 5t + 1)}{dt} = 3 + 5\sin 5t\right]$	B2	B1 for either with no other terms or for both with 1 extra
	$their(3+5\sin 5t)=0$	M1	Must be from an attempt to differentiate
	awrt 0.76	A1	0.7570187525
	awrt 1.13	A1	1.12793684
	substitutes <i>their t</i> values into <i>s</i> (4.07, 3.58)	DM1	must be two values
	0.48 to 0.49 [m]	A1	Final A1 may imply earlier A1s
12(ii)	25cos 5 <i>t</i>	M1	Differentiating <i>their v</i> correctly providing at least 2 terms with one trig function
	-25	A1	Ignore +25 following –25

© UCLES 2017 Page 7 of 7

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/22

Paper 2 May/June 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 14

Question	Answer	Marks	Partial Marks
1	5x + 3 = 3x - 1 oe or $5x + 3 = 1 - 3x$ oe	M1	
	x = -2 and $x = -0.25$ only mark final answer	A2	nfww A1 for $x = -2$ ignoring extras implies M1 if no extras seen
			If M0 then SC1 for any correct value with at most one extra value
	Alternative method		
	$(5x+3)^2 = (1-3x)^2$ oe soi	M1	
	$16x^2 + 36x + 8 = 0 \text{ oe}$	A1	
	x = -0.25, $x = -2$ only; mark final answer	A1	
2	Without using a calculator Sufficient evidence must be seen to be convinced that a calculator has not been used. Withhold the mark for any step that is unsupported.		
	deals with the negative index soi	B1	$e.g. \left(\frac{3-\sqrt{5}}{1+\sqrt{5}}\right)^2$
	rationalises $\frac{3-\sqrt{5}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}$ oe	M1	allow for $\frac{1+\sqrt{5}}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}}$
	multiplies out correctly $\frac{3-4\sqrt{5}+5}{1-5}$ oe	A1	allow for $\frac{3+4\sqrt{5}+5}{9-5}$
	squares correct binomial $\left(-2 + \sqrt{5}\right)^2 = \left(4 - 4\sqrt{5} + 5\right)$ oe	A1	allow for $(2 + \sqrt{5})^2 = (4 + 4\sqrt{5} + 5)$
	$9-4\sqrt{5}$ cao	A1	dep on all previous marks awarded

Question	Answer	Marks	Partial Marks
2	Alternative method 1:		
	dealing with the negative index soi	B1	
	correctly squaring with at least 3 terms in the numerator and denominator $\frac{3-\sqrt{5}}{1+\sqrt{5}} \times \frac{3-\sqrt{5}}{1+\sqrt{5}} = \frac{9-6\sqrt{5}+5}{1+2\sqrt{5}+5} \text{ oe}$	B1	
	rationalising their $\left(\frac{14 - 6\sqrt{5}}{6 + 2\sqrt{5}} \times \frac{6 - 2\sqrt{5}}{6 - 2\sqrt{5}}\right)$ oe	M1	
	multiplying out correctly; at least 3 terms in the numerator but condone a single value for the denominator $\frac{84-64\sqrt{5}+60}{36-20}$ oe	A1	
	$9-4\sqrt{5}$ cao	A1	
	Alternative method 2		
	dealing with the negative index soi	B1	
	$9 - 6\sqrt{5} + 5 = \left(a + b\sqrt{5}\right)\left(1 + 2\sqrt{5} + 5\right)$	M1	
	$ \begin{array}{r} 14 = 6a + 10b \\ -6 = 2a + 6b \end{array} $ oe	A1	
	a=9 cao	A1	
	b = -4 cao	A1	
	Alternative method 3		
	for dealing with the negative index soi	B1	
	$[3 - \sqrt{5} = (c + d\sqrt{5})(1 + \sqrt{5}) \text{ leading to}]$ $c + 5d = 3$ $c + d = -1$	M1	
	c = -2 and $d = 1$	A1	
	$\left(-2 + \sqrt{5}\right)^2 = 4 - 4\sqrt{5} + 5$	A1	
	$9-4\sqrt{5}$ cao	A1	

© UCLES 2017 Page 4 of 14

Question	Answer	Marks	Partial Marks
3	Correctly finding a correct linear factor or root	B1	from a valid method, e.g. factor theorem used or long division or synthetic division: $f(2) = 10(2^{3}) - 21(2^{2}) + 4 = 0$ $10x^{2} - x - 2$ or $x - 2$ $10x^{3} - 21x^{2} + 4$ $10x^{3} - 20x^{2}$ $-x^{2}$ $-x^{2}$ $-2x + 4$ $-2x + 4$ 0 or 2 10 -21 0 4 10 -1 -2 0
	correct linear factor stated or implied by, e.g. $(x-2)(10x^2-x-2)$	B1	(x-2) or $(2x-1)$ or $(5x+2)do not allow \left(x-\frac{1}{2}\right) or \left(x+\frac{2}{5}\right)$
	Correct quadratic factor $(10x^2 - x - 2)$ or $(5x^2 - 8x - 4)$ or $(2x^2 - 5x + 2)$	B2	found using any valid method; B1 for any 2 terms correct
	(x-2)(2x-1)(5x+2) mark final answer	B1	must be written as a correct product of all 3 linear factors; only award the final B1 if all previous marks have been awarded
			If quadratic factor is not found but correct remaining linear factors are found using e.g. the factor theorem or long division or synthetic division etc. with correct, sufficient, complete working to justify that no calculator has been used allow: B1 for correctly finding a correct linear factor or root
			B1 for a correct linear factor stated or implied SC3 for the full, complete and correct working to find the remaining two linear factors and arrive at the correct product of 3 linear factors

© UCLES 2017 Page 5 of 14

Question	Answer	Marks	Partial Marks
4	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x - 7 \text{ soi}$	B1	
	$m_{\text{normal}} = -\frac{1}{5} \text{ soi}$	B1	finds or uses correct gradient of normal
	$m_{\text{tangent}} = 5 \text{ soi or } \left(6x - 7\right) \left(-\frac{1}{5}\right) = -1 \text{ oe}$	M1	uses $m_1 m_2 = -1$ with numerical gradients
	$6x - 7 = 5$ oe $\Rightarrow x = 2$	A1	
	y=9	A1	
	k = 47	A1	
	Alternative method		
	$m_{\text{normal}} = -\frac{1}{5}$	B1	
	$m_{\rm tangent} = 5$	M1	
	$3x^2 - 12x + 11 - c = 0 \text{ oe}$	A1	
	solving $3x^2 - 12x + 12 = 0$ oe to find $x = 2$	A1	
	y = 9	A1	
	k = 47	A1	
5(i)	$\left(their 2x^4\right)(0.2 - \ln 5x) + 0.4x^5 \left(their \frac{-5}{5x}\right) \text{ oe or}$	M1	clearly applies correct form of product rule
	their $0.4x^4 - \left(\left(their 2x^4 \right) \ln 5x + 0.4x^5 \left(their \frac{5}{5x} \right) \right)$ oe		
	$-2x^4 \ln 5x$ isw	A1	nfww
5(ii)	$3\ln 5x \text{ or } \ln 5x + \ln 5x + \ln 5x$	B1	

© UCLES 2017 Page 6 of 14

Question	Answer	Marks	Partial Marks
5(iii)	$\frac{3}{-2} \int \left(-2x^4 \ln 5x\right) dx \text{ oe}$	M1	FT $k = 2$ from (i) allow for $\frac{3}{2} \int (2x^4 \ln 5x) dx$ or, when $k = -2$, for $\int (x^4 \ln 5x) dx = -0.2x^5 (0.2 - \ln 5x)$ or $-\frac{2}{3} \int (3x^4 \ln 5x) dx = 0.4x^5 (0.2 - \ln 5x)$ oe or, when FT $k = 2$, for $\int (x^4 \ln 5x) dx = 0.2x^5 (0.2 - \ln 5x)$ or $\frac{2}{3} \int (3x^4 \ln 5x) dx = 0.4x^5 (0.2 - \ln 5x)$ oe
	$-\frac{3}{2}(0.4x^{5}(0.2-\ln 5x))[+c]$ oe isw cao	A1	nfww; implies M1 An answer of $0.6x^5(0.2 - \ln 5x)$ following $k = 2$ from (i) implies M1 A0
6	Uses $b^2 - 4ac$	M1	
	$(p-q)^2-4(p)(-q)$	A1	implies M1
	$p^2 + 2pq + q^2$	M1	correctly simplifies
	$(p+q)^2 \ge 0$ oe cao isw	A1	
	Alternative method $ (px-q)(x+1) [=0] \text{ or } \frac{-(p-q)\pm\sqrt{(p+q)^2}}{2p} $	M2	or M1 for $(px+q)(x-1)$ $[=0]$ or $\frac{-(p-q) \pm \sqrt{(p-q)^2 - 4(p)(-q)}}{2p}$
	$x = \frac{q}{p}, x = -1$	A1	
	for conclusion, e.g. p and q are real therefore $\frac{q}{p}$ is real [and -1 is real]	A1	
7(a)(i)	7	B1	
7(a)(ii)	$\frac{1}{7}$ or $\frac{1}{their7}$	B1	FT their 7 must not be 1 if following through

© UCLES 2017 Page 7 of 14

Question	Answer	Marks	Partial Marks
7(b)	$y = 81^{-\frac{1}{4}}$ or $y = 3^{-1}$ or $y = 9^{-\frac{1}{2}}$ oe	M1	Anti-logs
	$y = \frac{1}{3}$ only or 0.333[3] only	A1	nfww; implies the M1; $y = \dots$ must be seen at least once
			If M0 then SC1 for e.g. $81^{-\frac{1}{4}} = \frac{1}{3}$ as final answer
7(c)	$\frac{2^{5(x^2-1)}}{(2^2)^{x^2}}$ oe or $\frac{4^{\frac{5}{2}(x^2-1)}}{4^{x^2}}$ oe or $\frac{32^{x^2} \times 32^{-1}}{4^{x^2}}$	B1	converts the terms given left hand side to powers of 2 or 4; may have crossmultiplied
	or $\log 32^{x^2-1} - \log 4^{x^2} = \log 16$ oe		or separates the power in the numerator correctly
			or applies a correct log law
	$2^{3x^2-5} = 16 \text{ oe} \Rightarrow 3x^2-5=4 \text{ oe}$	M1	combines powers and takes logs or equates powers;
	or $4^{\frac{3}{2}x^2 - \frac{5}{2}} = 16$ oe $\Rightarrow \frac{3}{2}x^2 - \frac{5}{2} = 2$ oe or $\frac{8^{x^2}}{32} = 16$ oe $\Rightarrow x^2 \log 8 = \log 512$ oe		or brings down all powers for an equation already in logs
	or $(x^2 - 1)\log 32 - x^2 \log 4 = \log 16$ oe		condone omission of necessary brackets for M1; condone one slip
	$[x=]\pm\sqrt{3}$ isw cao or ± 1.732050 rot to 3 or more figs. isw	A1	
8(i)	$y-8 = -\frac{8}{12}(x-(-8))$ oe isw	B2	B1 for $m_{AB} = -\frac{8}{12}$ oe
	or $y[-0] = -\frac{8}{12}(x-4)$ oe isw or $3y = -2x + 8$ oe isw		or M1 for $\frac{8-0}{-8-4}$ oe
8(ii)	$(-8-4)^2 + (8[-0])^2$ oe	M1	any valid method
	$\sqrt{208}$ isw or $4\sqrt{13}$ isw or 14.4222051 rot to 3 or more sf	A1	implies M1 provided nfww

© UCLES 2017 Page 8 of 14

Question	Answer	Marks	Partial Marks
8(iii)	[coordinates of $D = $] $(-2, 4)$ soi	B1	If coordinates of D not stated then a calculation for m_{CD} or a relevant length with the coordinates clearly embedded must be shown to imply B1
	Gradient methods:	M1	or Length of sides methods:
	$\begin{bmatrix} m_{CD} = \frac{7 - their4}{0 - their(-2)} = \end{bmatrix} their \left(\frac{3}{2}\right)$ A $2\sqrt{13}$ D 4 $-8 -6 -4 -2 0 2 4$ -2 B 4 -2 -2		finds or states $AC^2 = 65$ or $AC = \sqrt{65}$ or $AC^2 = (-8-0)^2 + (8-7)^2$ oe or $AC = \sqrt{(-8-0)^2 + (8-7)^2}$ oe and $CD^2 = their13$ or $CD = their\sqrt{13}$ or $CD^2 = (0 - their(-2))^2 + (7 - their4)^2$ oe or $CD = \sqrt{(0 - their(-2))^2 + (7 - their4)^2}$ oe and $AD^2 = their52$ or $AD = their2\sqrt{13}$ or $AD^2 = (-8 - their(-2))^2 + (8 - their4)^2$ or $AD = \sqrt{(-8 - their(-2))^2 + (8 - their4)^2}$ or uses a valid method with $their$ coordinates of D to find the exact area of the triangle and equates to
			$\frac{1}{2}(AD)(CD)\sin(ADC)$
	states $\frac{3}{2} \times \left(-\frac{8}{12}\right) = -1$ oe or $\frac{3}{2}$ is the negative reciprocal of $-\frac{2}{3}$ oe or finds the equation of the perpendicular bisector of AB as $y = \frac{3}{2}x + 7$ independently of C and states that C lies on this line.	A1	applies Pythagoras to confirm, using integer values, that $65 = 13 + 52$ or finds e.g. $AC = \sqrt{65}$ using $\sqrt{(2\sqrt{13})^2 + (\sqrt{13})^2}$ or solves $\frac{1}{2}(2\sqrt{13})(\sqrt{13})\sin ADC = 13$ or $(\sqrt{65})^2 = (2\sqrt{13})^2 + (\sqrt{13})^2 - 2(2\sqrt{13})(\sqrt{13})\cos ADC$ to show ADC is a right angle
8(iv)	$\begin{pmatrix} -4 \\ 1 \end{pmatrix}$ or $-4\mathbf{i} + \mathbf{j}$	B1	condone coordinates

© UCLES 2017 Page 9 of 14

Question	Answer	Marks	Partial Marks
8(v)	Full valid method e.g. for showing that e.g. $\overrightarrow{CB} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 7 \end{pmatrix} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}$ or showing that e.g. $\overrightarrow{AC} = \begin{pmatrix} 0 \\ 7 \end{pmatrix} - \begin{pmatrix} -8 \\ 8 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \end{pmatrix}$ oe and $\overrightarrow{EB} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} - \begin{pmatrix} -4 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \end{pmatrix}$ oe or comparing gradients of both pairs of opposite sides and showing they are pairwise the same or comparing the lengths of both pairs of opposite sides and showing that they are pairwise the same or showing that length AC = length AE or that the length BC = length BE or comparing the gradients and lengths of a pair of opposite sides or showing that length DC = length DE and that C , D and E are collinear	B2	B1 for incomplete method e.g. for stating that $\overrightarrow{CB} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}$ or $\overrightarrow{AC} = \begin{pmatrix} 8 \\ -1 \end{pmatrix} = \overrightarrow{EB}$ or just showing that one pair of opposite sides is parallel or has the same length or just showing that length $DC = \text{length}$ DE or just showing that C , D and E are collinear $A(-8,8) \qquad m_{AC} = -\frac{1}{8} \qquad \sqrt{65}$ $m_{BC} = -\frac{7}{4} \qquad m_{BC} = -\frac{7}{4} \qquad \sqrt{65}$ $m_{EC} = -\frac{1}{8} \qquad \sqrt{65} \qquad D(-2,4) \qquad m_{BC} = -\frac{7}{4} \qquad D(-2,4) \qquad D(-2$
9(i)	$2(x-1.5)^2 + 0.5$ isw	B3	or B3 for $a = 2$ and $b = 1.5$ and $c = 0.5$ provided not from wrong format isw or B2 for $2(x-1.5)^2 + c$ where $c \ne 0.5$ or $a = 2$ and $b = 1.5$ or SC2 for $2(x-1.5) + 0.5$ or $2((x-1.5)^2 + \frac{1}{4})$ seen or B1 for $(x-1.5)^2$ seen or for $b = 1.5$ or for $c = 0.5$ or SC1 for 3 correct values seen in incorrect format e.g. $2(x-1.5x) + 0.5$ or $2(x^2-1.5) + 0.5$

© UCLES 2017 Page 10 of 14

Question	Answer	Marks	Partial Marks
9(ii)	1.5 0.5 0.5 1.5 5	B3	 B1 for correct graph for f over correct domain or correct graph for f – 1 over correct domain B1 for vertex marked for f or f – 1 and intercept marked for f or f – 1 B1 for idea of symmetry – either symmetrical by eye, ignoring any scale or line y = x drawn and labelled Maximum of 2 marks if not fully correct
9(iii)	$\frac{x - 0.5}{2} = (y - 1.5)^2$	M1	FT their a,b,c, provided their $a \ne 1$ and a,b,c are all non-zero constants or $\frac{y-0.5}{2} = (x-1.5)^2$ and reverses variables at some point
	$f^{-1}(x) = 1.5 - \sqrt{\frac{x - 0.5}{2}}$ oe	A1	must have selected negative square root only; condone $y =$ etc.; must be in terms of x
			If M0 then SC2 for $f^{-1}(x) = \frac{6 - \sqrt{8x - 4}}{4}$ oe
			or SC1 for $f^{-1}(x) = \frac{-(-6) \pm \sqrt{36 - 4(2)(5 - x)}}{2(2)}$ oe
	$x \ge \frac{1}{2}$ oe	B1	
10(i)	$\sin^{-1}\left(\frac{3}{4}\right)$ soi	M1	implied by 0.848[06]
	0.848[06] rot to 3 or more figs or 2.29[35] rot to 3 or more figs	M1	implied by a correct answer of acceptable accuracy
	0.544 486 rot to 3 or more figs isw	A1	
	1.03 or 1.02630 rot to 4 or more figs isw	A1	Maximum 3 marks if extra angles in range; no penalty for extra values outside range $0 \le x \le \frac{\pi}{2}$

© UCLES 2017 Page 11 of 14

Question	Answer	Marks	Partial Marks
10(ii)	Correctly uses $\tan^2 y = \sec^2 y - 1$ and/or $\frac{\sin y}{\cos y}$ and $\sin^2 y = 1 - \cos^2 y$	M1	for using correct relationship(s) to find an equation in terms of a single trigonometric ratio
	$3\sec^2 y - 14\sec y - 5 = 0$ $\Rightarrow (3\sec y + 1)(\sec y - 5)$ or $5\cos^2 y + 14\cos y - 3 = 0$ $\Rightarrow (5\cos y - 1)(\cos y + 3)$	DM1	for factorising or solving their 3-term quadratic dependent on the first M1 being awarded
	$[\cos y = -3] \cos y = \frac{1}{5}$	A1	
	78.5 or 78.4630 rot to 2 or more decimal places isw	A1	
	281.5 or 281.536 rot to 2 or more decimal places isw	A1	Maximum 4 marks if extra angles in range; no penalty for extra values outside range $0 \le x \le 360$
11(i)	$\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} + 5x[+c]$ isw	B2	B1 for any 3 correct terms
11(ii)	$x^3 + 4x^2 - 5x + 5 = 5$ and rearrange to $x(x^2 + 4x - 5) = 0$ oe soi	B1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Solves their $x^2 + 4x - 5 = 0$ soi	M1	
	x = -5, x = 1 soi	A1	
	OEAB = 25, $OBCD = 5$	A1	

Question	Answer	Marks	Partial Marks
11(iii)	Correct or correct FT substitution of 0, their -5 seen in $\left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} + 5x\right]_{their-5}^0$	M1	dependent on at least B1 in (i)
	Correct or correct FT substitution of <i>their</i> 1, 0 seen in $\left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} + 5x\right]_0^{their1}$	M1	dependent on at least B1 in (i)
	their $\frac{1175}{12}$ – their OEAB + their OBCD – their $\frac{49}{12}$ oe	M1	for the strategy needed to combine the areas; may be in steps; 97.916-25+5-4.083
	$\frac{886}{12} \text{ oe or } 73\frac{5}{6} \text{ oe or } 73.83 \text{ rot to 3 or more sig}$ figs	A1	all method steps must be seen; not from wrong working
			If M0 then allow SC3 for $\int_{-5}^{0} (x^3 + 4x^2 - 5x) dx - \int_{0}^{1} (x^3 + 4x^2 - 5x) dx \text{oe}$ $= \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{-5}^{0} - \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{0}^{1}$ $= \left[0 - \left(\frac{625}{4} - \frac{500}{3} - \frac{125}{2} \right) \right] - \left[\left(\frac{1}{4} + \frac{4}{3} - \frac{5}{2} \right) - 0 \right]$ $= \frac{443}{6} \text{oe}$
			or SC2 for $\int_{their(-5)}^{0} (x^3 + 4x^2 - 5x) dx - \int_{0}^{their1} (x^3 + 4x^2 - 5x) dx \text{ oe}$ $= \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{their(-5)}^{0} - \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{0}^{their1}$ $= \left[F(0) - F(their(-5)) \right] - \left[F(their1) - F(0) \right]$
12(i)	$-6(2x+1)^{-2}$ or $\frac{-6}{(2x+1)^2}$ oe isw	B1	Allow $-3(2x+1)^{-2} \times 2 \text{ or } \frac{-3 \times 2}{(2x+1)^2} \text{ oe}$
	Denominator or $(2x+1)^2$ is positive [and numerator negative therefore $g'(x)$ is always negative] oe	B1	FT their $g'(x)$ of the form $\frac{-k}{(2x+1)^2}$ oe where $k > 0$; Allow $(2x+1)^{-2}$ is always positive
12(ii)	g > 0	B1	
12(iii)	$\frac{3k}{2x+1} + 3 \text{ oe isw}$	B1	

Question	Answer	Marks	Partial Marks
12(iv)	$\frac{3k}{2(0)+1} + 3 = 5$	B1	
	$k = \frac{2}{3}$ isw	B1	implies the first B1
12(v)	$x > -\frac{1}{2}$	B1	

© UCLES 2017 Page 14 of 14

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/23

Paper 2 May/June 2017

MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 ${\rm \rlap{R}}$ IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 7

Question	Answer	Marks	Guidance
1(a)	$\log_7 2.5 = 2x + 5 \text{ or } \log_7 \left(\frac{2.5}{7^5}\right) = 2x$ or $(2x + 5)\log 7 = \log 2.5$	M1	correct first anti-logging step
	$[x =] \frac{\log_7 2.5 - 5}{2}$ or $\frac{1}{2} \log_7 \left(\frac{2.5}{7^5}\right) = x$ or $x = \frac{1}{2} \left(\frac{\log 2.5}{\log 7} - 5\right)$	M1	isolates x
	-2.26(4)	A1	
1(b)	$5^2 p^{-3} q^{\frac{5}{4}}$ oe	В3	B1 for each term If B0 then allow M1 for numerator of $125q^{\frac{3}{2}}$ or denominator of $5p^3q^{\frac{1}{4}}$
2(i)	B and C with valid reason	B2	B1 for one graph and valid reason or both graphs and no reason
2(ii)	B only with valid reason	B2	B1 for graph <i>B</i> or valid reason
3	$[m=]\frac{13-5}{1-0.2}$ or 10 soi	M1	or $13 = m + c$ and $5 = 0.2m + c$ and subtracting/substituting to solve for m or c , condone one error
	$Y-13 = their \ 10(X-1)$ or $Y-5 = their \ 10(X-0.2)$ or $13 = their \ 10+c$ or $5 = their \ 10 \times 0.2+c$	M1	or using <i>their m</i> or <i>their c</i> to find <i>their c</i> or <i>their m</i> , without further error
	$\sqrt[3]{y} = (their \ m)\frac{1}{x} + (their \ c) \text{ or}$ $\sqrt[3]{y} = (their \ m)\left(\frac{1}{x} - 1\right) + 13 \text{ or}$ $\sqrt[3]{y} = (their \ m)\left(\frac{1}{x} - 0.2\right) + 5$	M1	their m and c must be validly obtained
	$y = \left(\frac{10}{x} + 3\right)^3$ or $y = \left(10\left(\frac{1}{x} - 1\right) + 13\right)^3$ or $y = \left(10\left(\frac{1}{x} - 0.2\right) + 5\right)^3$ cao, isw	A1	

© UCLES 2017 Page 3 of 7

Question	Answer	Marks	Guidance
4(a)(i)	$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	B1	
4(a)(ii)	$\sqrt{11^2 + (-15)^2}$ or better	M1	
	$\frac{1}{\sqrt{346}} \binom{11}{-15}$	A1	
4(b)	$\overrightarrow{OR} = \overrightarrow{OP} + \frac{3}{4}\overrightarrow{PQ}$ soi	M1	or $\overrightarrow{OR} = \overrightarrow{OQ} - \frac{1}{4}\overrightarrow{PQ}$ soi
	$\left[\overrightarrow{OR} = \right]\mathbf{p} + \frac{3}{4}(\mathbf{q} - \mathbf{p})$	M1	or $\left[\overrightarrow{OR} = \right] \mathbf{q} - \frac{1}{4} (\mathbf{q} - \mathbf{p})$
	$\left[\overrightarrow{OR} = \right] \frac{1}{4}\mathbf{p} + \frac{3}{4}\mathbf{q} \text{ oe}$	A1	
5(a)	$(9\times8\times7\times6\times1)+(8\times8\times7\times6\times1)$ soi	M2	M1 for one correct product of the sum
	5712	A1	
5(b)	${}^{9}C_{4} \times {}^{5}C_{4} + {}^{9}C_{3} \times {}^{5}C_{5}$ oe	M2	M1 for one correct product of the sum
	[630 + 84 =] 714	A1	
6	$64 = 2^n$	M1	
	n=6	A1	
	$their6(2)^{their(6-1)} \times (-a) = -16b$ oe	M1	
	their $\frac{6 \times (6-1)}{2} (2)^{their(6-2)} \times (-a)^2 = 100b$ oe	M1	
	attempts to solve	DM1	dep on both M1 marks being awarded; must have correctly or correct FT eliminated one unknown
	a = 5	A1	
	b = 60	A1	

© UCLES 2017 Page 4 of 7

Question	Answer	Marks	Guidance
7(i)	$k(1+4x)^9$	M1	
	$4 \times 10(1+4x)^9$ or better	A1	
	$(1+4x)^{10}(their-\sin x)+$	M1	clearly applies product rule
	$\cos x \left(their \left(4 \times 10 \times \left(1 + 4x \right)^9 \right) \right)$		
	$(1+4x)^{10}(-\sin x) + \cos x (4\times10\times(1+4x)^9)$	A1	all correct
7(ii)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{4x-5}\right) = 4\mathrm{e}^{4x-5} \text{ soi}$	B1	
	$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x \mathrm{soi}$	B1	
	clearly applies correct form of quotient rule $\tan x \left(their \ 4e^{4x-5} \right) - e^{4x-5} \left(their \sec^2 x \right)$	M1	or correct form of product rule to $e^{4x-5}(\tan x)^{-1}$
	$\frac{\tan x \left(\cot x + e^{-x} \right) + e^{-x} \left(\cot x + e^{-x} \right)}{\left(\tan x \right)^2}$		$4e^{4x-5}(\tan x)^{-1} + e^{4x-5}(\tan x)^{-2} \times \sec^2 x$
	$\frac{\tan x (4e^{4x-5}) - e^{4x-5} (\sec^2 x)}{(\tan x)^2}$ isw	A1	all correct
8(i)	$\frac{\pi}{3}$	B1	
	6 [cm]	B1	
8(ii)	[major arc =] $\left(2\pi - their \frac{\pi}{3}\right) their r$	M1	
	$10\pi + 6$ cao	A1	
8(iii)	$\frac{1}{2}(their 6)^2 \left(2\pi - their \frac{\pi}{3}\right)$	M1	$\frac{1}{2}(their 6)^2 \left(their \frac{\pi}{3}\right)$
	$\frac{1}{2}(their 6)^2 \sin\left(their \frac{\pi}{3}\right)$	M1	$\frac{1}{2}(their 6)^2 \sin\left(their\frac{\pi}{3}\right)$
	Sector + triangle	M1	$\pi \times their6^2$ – (Sector – triangle)
	$30\pi + 9\sqrt{3}$	A1	

© UCLES 2017 Page 5 of 7

Question	Answer	Marks	Guidance
9(i)	$\frac{y}{9} = \sqrt{x-1} \text{ with attempt to swop } x \text{ and } y \text{ at some point}$ or $\frac{x}{9} = \sqrt{y-1}$	M1	attempt to swop; may be in later work that contains an error
	$\left[f^{-1}(x) = \right] \left(\frac{x}{9}\right)^2 + 1 \text{ oe}$	A1	condone $y =$ etc; must be a function of x
	x > 0	B1	
9(ii)	f(51)	M1	or $fg(x) = 9\sqrt{x^2 + 1}$
	$9\sqrt{50}$ oe	A1	
9(iii)	$[gf(x) =] (9\sqrt{x-1})^2 + 2$	M1	
	[gf(x) =]81(x-1) + 2 or better	A1	
	their $(81x - 79) = 5x^2 + 83x - 95 \rightarrow$ their $(5x^2 + 2x - 16[=0])$	M1	provided <i>their</i> ($81x - 79$) of the form $ax + b$ for non-zero a and b
	1.6 oe only	A1	must disregard other solution
10(a)	$\sin x = 0.5$, $\sin x = -0.5$	M1	
	$\frac{\pi}{6}, -\frac{\pi}{6}, \frac{5\pi}{6}, -\frac{5\pi}{6}$ oe	A2	A1 for any correct pair of angles if M0 then SC1 for a correct pair of angles
10(b)	$2y + 15 = \tan^{-1}\left(\frac{1}{3}\right) \text{ soi}$	M1	
	18.43(49) and 198.43(49)	M1	
	1.7, 91.7	A2	A1 for each

© UCLES 2017 Page 6 of 7

Question	Answer	Marks	Guidance
10(c)	Uses $\cot^2 z = \csc^2 z - 1$ oe	M1	for using correct identity or identities to obtain an equation in terms of a single trigonometric ratio
	$2\csc^2 z + 7\csc z - 4 = 0 \Rightarrow$ $(2\csc z - 1)(\csc z + 4)$	DM1	for dealing with quadratic
	$[\sin z = 2] \sin z = -\frac{1}{4}$	M1	
	194.5, 345.5	A2	A1 for each
11(i)	$5 + \sqrt{10x} = \frac{5x + 20}{4} \rightarrow 20 + 4\sqrt{10x} = 5x + 20$	M1	or better; equates and solves as far as clearing the fraction
	$\left[\frac{x}{\sqrt{x}}\right] = \sqrt{x} = \frac{4\sqrt{10}}{5} \text{ oe}$	M1	Simplifies as far as $\sqrt{x} = \cdots$
	x = 6.4 cao	A1	squares and simplifies to 6.4
	[y=]13	B1	
11(ii)	(area of trapezium =) their 57.6	B1	FT $x = their$ 6.4, $y = their$ 13 using any valid method
	$\int_0^{6.4} \left(5 + \sqrt{10x}\right) \mathrm{d}x$	M1	
	$\int (10x)^{\frac{1}{2}} dx = k (10x)^{\frac{3}{2}} \text{ or}$	M1	or $\int \sqrt{10}x^{\frac{1}{2}} dx = k \sqrt{10}(x)^{\frac{3}{2}}$
	$\left[5x + \frac{2(10x)^{\frac{3}{2}}}{3\times10}\right]$	A1	or $\left[5x + \frac{2(10)^{\frac{1}{2}}(x)^{\frac{3}{2}}}{3}\right]$
	their $\left[5(6.4) + \frac{2(10 \times 6.4)^{\frac{3}{2}}}{3 \times 10} \right] - their 57.6$ oe	M1	limits used correctly or correct FT and subtraction of trapezium; $their \frac{992}{15} - their 57.6$
	$\frac{128}{15}$ or 8.53 oe	A1	allow 8.5333333 rot to 4 or more sf

© UCLES 2017 Page 7 of 7

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/22

Paper 22 March 2017

MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

Question	Answer	Marks	Guidance
1	$-\frac{5}{3}$ isw	B1	or exact equivalent
	Solve $5 - 3x = -10$ or $(5 - 3x)^2 = 100$	M1	
	x = 5	A1	
2 (i)	\$12 000	B1	
(ii)	$\frac{8000}{12000} = e^{-0.2t} \text{oe}$	M1	
	[t =] 2(.0273) years	A1	

© UCLES 2017 Page 2 of 8

	Question	Answer	Marks	Guidance
3	(i)	multiply out correctly	B1	or divide out correctly
	(ii)	Finding another factor	B1	(x-1) or $(x+2)$ or $(x-2)$; method must be seen
		Either $(x-1)^{2}(x^{2}-4)$ Or $(x-1)(x+2)(x^{2}-3x+2)$ Or $(x-1)(x-2)(x^{2}+x-2)$	B1	For stating a relevant quadratic factor for <i>their</i> linear factors
		Attempts to factorise quadratic	M1	
		$(x-1)^2(x+2)(x-2)$ oe	A1	mark final answer
				Alternative method: B1 for finding a second linear factor using any valid method and B1 for finding a third linear factor using any valid method and B1 for finding the final linear factor using any valid method and B1 for fully correct product stated; mark final answer
				If fully correct product stated but no method shown then B1 only.
4		Eliminates y $3x + k = 2x^2 - 3x + 4$	M1	Alternative calculus method: Equates gradients $4x - 3 = 3$
		Collects terms $2x^2 - 6x + 4 - k = 0 \text{ soi}$	A1	Finds point of tangency (1.5, 4)
		Applies $b^2 - 4ac$ $(-6)^2 - 4(2)(4-k)$ or better	M1	Substitutes into $y = 3x + k$ 4 = 3(1.5) + k
		$k < -\frac{1}{2}$ oe	A1	

© UCLES 2017 Page 3 of 8

Question	Answer	Marks	Guidance
5	$\sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5} \text{seen}$	B1	may be later in working; must be convinced that calculator has not been used
	$(3+\sqrt{5})x+\frac{1}{2}x(their 2\sqrt{5})=13+5\sqrt{5}$ oe		
	leading to $(3 + their 2\sqrt{5})x = 13 + 5\sqrt{5}$	M1	equates <i>their</i> area to given area and factorises to collect <i>x</i> terms; may still have $\sqrt{20}$
	$[x=]\frac{13+5\sqrt{5}}{3+their2\sqrt{5}} \times \frac{3-their2\sqrt{5}}{3-their2\sqrt{5}}$	M1	divides and attempts to rationalise; may still have $\sqrt{20}$
			or forms a pair of simultaneous equations e.g. $3p+10q=13$ $2p+3q=5$
	$[x=]\frac{39-26\sqrt{5}+15\sqrt{5}-50}{9-20}$	M1	numerator must have at least 3 terms; denominator may be -11
			or solves their simultaneous equations to find one unknown
	$1+\sqrt{5}$ www	A1	or $p = 1$, $q = 1$
6 (a) (i)	$-2x^{\frac{5}{2}}$ oe or $a = -2$ and $b = \frac{5}{2}$ oe	B2	mark final answer B1 for -2 and B1 for $\frac{5}{2}$
(ii)	$[x=] \left(\frac{-6250}{their(-2)}\right)^{their\frac{2}{5}} $ oe	M1	may be in steps
	25	A1	
(b) (i)	Valid explanation	B1	e.g. If $x > 0.75$ then all the arguments are positive as required. oe
(ii)	$1 = \log_a a$	M1	may be seen in e.g. $\log_a(ax) = 1 + \log x$
	$2\log_a(4x-3) = \log_a(4x-3)^2$ soi	M1	
	completion to given result	A1	

© UCLES 2017 Page 4 of 8

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
(iii)	$x^{2}(16x-24) = 0$ oe or $x(16x-24) = 0$ oe	M1	e.g. equates, anti-logs, rearranges and factorises or divides OR rearranges, combines using correct log law, anti-logs and factorises or divides
	$[x=]\frac{24}{16} \text{ or } \frac{3}{2} \text{ oe}$	A1	inclusion of $x = 0$ is A0
7 (a)	$[r^2 =] 5^2 + 10^2 - 2 \times 5 \times 10 \times \cos 120$ oe	M1	or for $[r^2 =] 5^2 + 10^2 - 2 \times 5 \times 10 \times \cos 60^\circ$ or for $[r^2 =] 5^2 + 10^2 - 2 \times 5 \times 10 \times \cos 240^\circ$
	[r =] 13.2 or 13.22875 rot to 4 or more sf	A1	not from wrong working
	$\frac{\sin x}{5} = \frac{\sin 120}{their 13.2} \text{ or better}$	M1	or $\frac{\sin y}{10} = \frac{\sin 120}{their 13.2}$ or better
	[x =] awrt 19.1	A1	or $[y =]$ awrt 40.9
	360 - 120 - their x	A1FT	or 180 + <i>their y</i>
(b)	94 [km/h] west	B2	B1 for 94 [km/h]
8 (i)	$y - (-4) = \frac{1}{6}(x - 6)$	B1	or $y = \frac{1}{6}x + c$ and $c = -5$
	$[m_{AB} =] \frac{7-4}{3-8}$ or $-\frac{3}{5}$ oe	M1	
	$y-7=-\frac{3}{5}(x-3)$ or $y-4=-\frac{3}{5}(x-8)$	A1	or $y = -\frac{3}{5}x + c$ and $c = \frac{44}{5}$
	$their\left(\frac{1}{6}x - 5\right) = their\left(-\frac{3}{5}x + \frac{44}{5}\right)$	M1	valid method of solution for <i>their</i> equations; must be of equivalent difficulty
	x = 18	A1	
	y = -2 isw	A1	

© UCLES 2017 Page 5 of 8

Question	Answer	Marks	Guidance
(ii)	$[m=]-\frac{3}{2}$	M1	
	$y - their(-2) = -\frac{3}{2}(x - their 18) \text{ isw}$	A1FT	FT their D; $y = -\frac{3}{2}x + c$ and $c = their 25$
9 (a)	ke^{2x+1} (+ c)	M1	for some non-zero integer k where $k \neq 2$
	$k = \frac{1}{2}$	A1	
(b) (i)	$\frac{d(\ln x)}{dx} = \frac{1}{x} \text{ soi}$	B1	
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{(their1)\ln x - x\left(their\frac{1}{x}\right)}{\left(\ln x\right)^2}$	M1	correct form of quotient rule or equivalent product rule applied; brackets may be omitted or misplaced for M1
	correct, isw	A1	may be unsimplified; allow recovery of brackets
(ii)	$\int \frac{\ln x - 1}{(\ln x)^2} dx + \int \frac{1}{x^2} dx = \frac{x}{\ln x} + \int \frac{1}{x^2} dx$ $\int \frac{1}{x^2} dx = -\frac{1}{x} (+c)$ $\frac{x}{\ln x} + \left(their - \frac{1}{x} \right) (+c)$	M1	rearranges and uses their answer to (i)
	$\int \frac{1}{x^2} dx = -\frac{1}{x} \left(+c \right)$	B1	
	$\frac{x}{\ln x} + \left(their - \frac{1}{x}\right)(+c)$	A1FT	correct or correct FT completion; their $-\frac{1}{x}$ must not be $\frac{1}{x^2}$

© UCLES 2017 Page 6 of 8

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance	
10 (i)	$\tan(2x-10) = \frac{4}{3}$	B1		
	$2x - 10 = \tan^{-1}\left(\frac{4}{3}\right) \text{soi}$	M1		
	31.6 and 121.6 isw	A1	or for 31.6 and 211.6 isw	
	211.6 and 301.6 isw	A1	or for 121.6 and 301.6 isw	
			Penalty of 1 mark if all 4 angles given correctly but prematurely approximated OR if any extra angles are given besides the correct 4	
			If A0 A0 then allow SC1 for 53.1(30), 233.1(30), 413.1(30), 593.1(30) seen OR for 63.1(30), 243.1(30), 423.1(30), 603.1(30) seen	
(ii)	$1 - \cos^2 x - \cos^2 x = \cos x$	M1	uses $\sin^2 x = 1 - \cos^2 x$	
	$2\cos^2 x + \cos x - 1 = 0 \text{ oe}$	A1		
	$(2\cos x - 1)(\cos x + 1)[=0]$	M1	factorises or solves <i>their</i> 3-term quadratic in $\cos x$	
	[x=]60,300,180	A2	A1 for any two correct	
11 (i)	$g \geqslant -\frac{1}{2}$	B1		
(ii)	g(1) = 0 valid comment e.g. domain of f is $x \ge 2$	B1 B1	B1 for either	
(iii)	$\frac{\left(\frac{x^2-2}{x}\right)^2-1}{2}$	M1	or $\frac{\left(x-\frac{2}{x}\right)^2-1}{2}$	
	$\left(\frac{x^2 - 2}{x}\right)^2 = \frac{x^4 - 4x^2 + 4}{x^2}$ soi	B1	or $\left(x - \frac{2}{x}\right)^2 = x^2 - 4 + \frac{4}{x^2}$	
	$\frac{1}{2}x^2 - \frac{5}{2} + \frac{2}{x^2}$	A1	or correct 3 term equivalent or $a = 0.5$, $b = -2.5$, $c = 2$	

© UCLES 2017 Page 7 of 8

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
(iv)	$x \geqslant 2$	B1	
(v)	$x^2 - yx - 2 = 0$	B1	or $y^2 - xy - 2 = 0$
	$[x=]\frac{-(-y)\pm\sqrt{(-y)^2-4(1)(-2)}}{2}$	M1	or $[y=]$ $\frac{-(-x) \pm \sqrt{(-x)^2 - 4(1)(-2)}}{2}$
	Explains why negative square root should be discarded	B1	at some point
	$f^{-1}(x) = \frac{x + \sqrt{x^2 + 8}}{2}$	A1	allow $y = \frac{x + \sqrt{x^2 + 8}}{2}$
			If zero scored, allow SC2 for showing correctly that the inverse of the given f ⁻¹ is f.
12 (i)	[length of rectangle =] $\frac{20-3x}{2}$	B1	
	$[A =] x \times their \frac{20 - 3x}{2} - \frac{1}{2} \times x \times x \times \sin 60 \text{ oe}$	M1	
	Correct completion to given answer $A = 10x - \left(\frac{6 + \sqrt{3}}{4}\right)x^2$	A1	
(ii)	$10 - 2\left(\frac{6 + \sqrt{3}}{4}\right)x \text{ oe}$	B1	
	their $\left(10 - 2\left(\frac{6 + \sqrt{3}}{4}\right)x\right) = 0$ oe	M1	
	x = 2.6	A1	allow 2.586635 rot to 3 or more sf
	A = 13	A1	allow 12.9331 rot to 3 or more sf

© UCLES 2017 Page 8 of 8

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/21

Paper 2

October/November 2016

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	21

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Part Marks
1	$4x - 3 = x \rightarrow x = 1$ $4x - 3 = -x$ $x = 0.6$	B1 M1 A1	www use of $-x$ or $-(4x-3)$ but not both.
	OR $(4x-3)^2 = x^2$ $15x^2 - 24x + 9 = 0$ 3(x-1)(5x-3) = 0 x = 1 and $x = 0.6$	B1 M1 A1	solve correct 3 term quadratic www
2	$a(\sqrt{3}-1)+b(\sqrt{3}+1)$ $=(\sqrt{3}-3)(\sqrt{3}-1)(\sqrt{3}+1)$ $=2(\sqrt{3}-3) \text{ oe}$ $a+b=2$ $-a+b=-6$ $b=-2 \text{ and } a=4$	M1 DM1 A1 DM1 A1	Common denominator or $\times (\sqrt{3} - 1)(\sqrt{3} + 1)$ equate constant terms and $\sqrt{3}$ terms. both correct solve two linear equations to obtain $a = $ or $b = $ both correct
3	$2\lg x = \lg x^{2}$ $1 = \lg 10$ $\lg x^{2} - \lg \left(\frac{x+10}{2}\right) = \lg \left(\frac{2x^{2}}{x+10}\right) \text{ oe}$ $2x^{2} - 10x - 100 = 0 \to 2(x+5)(x-10) = 0$ $x = 10 \text{ only}$	B1 B1 B1 M1	soi anywhere soi anywhere soi division; logs may be removed obtain correct 3 term quadratic equation and attempt to solve x = -5 must not remain.

Page 3	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	21

Qu	estion	Answer	Marks	Part Marks
4	(i)	$t = 10 \rightarrow N = 7000 + 2000e^{-0.5}$ = 8213 or 8210	B1	Do not accept non integer responses.
	(ii)	$N = 7500 \rightarrow 7500 = 7000 + 2000e^{-0.05t}$ $e^{-0.05t} = \frac{500}{2000}$	M1	insert and make e ^{-0.05t} subject
		$-0.05t = \ln 0.25 \rightarrow t = \frac{\ln 0.25}{-0.05}$ $= 27.7 \text{ (days)}$	M1 A1	take logs and make t the subject awrt 27.7
	(iii)	$\frac{dN}{dt} = -100e^{-0.05t}$ $t = 8 \rightarrow \frac{dN}{dt} = \pm 67 (.0)$	M1 A1 A1	$ke^{-0.05t}$ where k is a constant $k = -100$ or -0.05×2000 awrt ± 67 mark final answer
5	(i)	$\frac{dy}{dx} = 3x^2 + 4x - 7$ $x = -2 \rightarrow \frac{dy}{dx} = 12 - 8 - 7 = -3$	B1	
		<u> </u>	M1	insert $x = -2$ into <i>their</i> gradient and use $(-2, 16)$ and <i>their</i> gradient of tangent in equation of line.
		Equation of tangent: $\frac{y-16}{x+2} = -3 \rightarrow y = -3x + 10$	A1	equation of fine.
	(ii)	Tangent cuts curve again $x^3 + 2x^2 - 7x + 2 = -3x + 10$ $x^3 + 2x^2 - 4x - 8 = 0$	M1 A1	equate curve and <i>their</i> linear answer from (i).
		(x+2)(x+2)(x-2) = 0	M1	factorise: $(x \pm 2)$ and a two or three term
		x=2, $y=4$	A1A1	quadratic is sufficient. Allow long division withhold final A1 if (2, 4) not clearly identified as their sole answer.
6	(i)	$\frac{\cos x}{1+\tan x} - \frac{\sin x}{1+\cot x} = \frac{\cos x}{1+\frac{\sin x}{\cos x}} - \frac{\sin x}{1+\frac{\cos x}{\sin x}}$	M1	$\tan x = \frac{\sin x}{\cos x} \text{ and } \cot x = \frac{\cos x}{\sin x}$
		$= \frac{\cos^2 x}{\cos x + \sin x} - \frac{\sin^2 x}{\cos x + \sin x}$	M1 A1	Attempt to multiply by cosx and sinx
		$= \frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x + \sin x)}$	A1	AG
	(ii)	$-\sin x + \cos x = 3\sin x - 4\cos x$ $5\cos x = 4\sin x$ 5	M1	equate and collect sinx and cosx oe
		$\tan x = \frac{1}{4}$	A1	ET Communication
		$x = 51.3^{\circ}, -128.7^{\circ}$	A1A1	FT from $\tan x = k$

Page 4	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	21

Question	Answer	Marks	Part Marks
7 (i)	$h = \sqrt{9 - x^2}$ $A = \frac{\sqrt{9 - x^2}}{2} (14 + x + x) = \sqrt{9 - x^2} (7 + x)$	B2/1/0	Must be clear that $\sqrt{9-x^2}$ is the height of the trapezium. $14+2x$ oe must be seen AG
(ii)	$\frac{dA}{dx} = \sqrt{9 - x^2} + (7 + x)\frac{1}{2}(9 - x^2)^{-0.5} \times -2x$	M1 A2/1/0	product rule on correct function minus 1 each error, allow unsimplified.
	$\frac{dA}{dx} = 0 \rightarrow 9 - x^2 = 7x + x^2$ $2x^2 + 7x - 9 = 0$	M1 A1	equate to 0 and simplify to a linear or quadratic equation. correct three term quadratic obtained
	x=1 $A=16\sqrt{2} \text{ or } 8\sqrt{8} \text{ or } \sqrt{512} \text{ or } 22.6$	A1 A1	Extra positive answer loses penultimate A1 . ignore negative solution.
8 (i)	$f'(x) = \frac{(x^3 + 1)9x^2 - (3x^3 - 1)3x^2}{(x^3 + 1)^2}$	M1 A1	quotient rule or product rule all correct
	$=\frac{12x^2}{\left(x^3+1\right)^2}$	A1	www beware $9x^6 - 9x^6$ gets A0
(ii)	$\int_{1}^{2} \frac{x^{2}}{\left(x^{3}+1\right)^{2}} dx = \frac{1}{12} \left[\frac{3x^{3}-1}{x^{3}+1} \right]_{1}^{2}$		$c \times \frac{3x^3 - 1}{x^3 + 1}$
		A1	$\mathbf{FT} \ c = \frac{1}{their12}$
	$=\frac{1}{12} \left[\frac{23}{9} - \frac{2}{2} \right]$	DM1	top limit – bottom limit in <i>their</i> integral.
	$=\frac{7}{54}$	A1	or 0.130 or 0.1296 or 0.12
(iii)	$x = \frac{3y^3 - 1}{y^3 + 1}$ $y^3 = \frac{x + 1}{3 - x}$	B1	make y^3 or x^3 the subject
	$f^{-1}(x) = \sqrt[3]{\frac{x+1}{3-x}}$	B1	FT take cube root (as long as y^3 or x^3 equals a fraction with terms in x or y only) oe
	Domain: $-1 \leqslant x \leqslant 2\frac{6}{7}$	B1 B1	FT change x and y – can be done at any time
	Domain . $-1 \leqslant x \leqslant 2\frac{\pi}{7}$	DI	Allow upper limit of 2.86. Do not isw

Page 5	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	21

Question	Answer	Marks	Part Marks
9 (i)	tangent touches circle $x^{2} + (kx - 4)^{2} - 2(kx - 4) = 8$	M1	eliminate y or x allow unsimplified
	$k^2x^2 + x^2 - 8kx - 2kx + 16 = 0$ or better	A1	
	Equal roots as tangent touches circle: $b^2 = 4ac$	DM1	use of discriminant on 3 term quadratic soi
	$(-10k)^2 = 4(k^2 + 1) \times 16$	A1	
	$36k^2 = 64$ $k = +\frac{4}{3} \text{ only}$	A1	oe any inequality loses last A1
	3		
(ii)	$x = \frac{-b}{2a} \rightarrow x = \frac{\frac{4}{3} \times 10}{\frac{25}{9}}$	M1	use $x = \frac{-b}{2a}$
	$x = \frac{12}{5}$ $y = -\frac{4}{5}$	A1A1	
	OR tangent $y = \frac{4}{3}x - 4$ cuts radius	M1	find equation of radius and attempt to solve with tangent
	$y = -\frac{3}{4}x + 1$		
	$at x = \frac{12}{5}$	A1	
	$y = -\frac{4}{5}$	A1	
	OR Obtain $25x^2 - 120x + 144 = 0$ oe	M1	obtain any 3 term quadratic using <i>their</i> non zero k and reach $x = \dots$
	(5x-12)(5x-12)=0		
	$x = \frac{12}{5} \rightarrow y = -\frac{4}{5}$	A1A1	
(iii)	$TP = \sqrt{(0-2.4)^2 + (-4+0.8)^2} = 4$	M1A1	M1 for using their T and $(0,-4)$. Signs must be correct.

Page 6	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	21

Question	Answer	Marks	Part Marks
10 (i)	$r_{j} = {5000 \choose 1000 p} + {-2\cos 40 \choose 2\cos 50} t$	B1 B1	x coordinate oe y coordinate oe
(ii)	$2.5t\cos 70 = 5000 - 2t\cos 40$	M1	equate <i>their x</i> values (must be 3 terms)
	$t = \frac{5000}{2.5\cos 70 + 2\cos 40}$	DM1	make t the subject allow one sign error
	= 2095 awrt or 2090 or 2100 $(2.5\cos 20 - 2\cos 50) \times 2095 = 1000 p$	A1 M1	equate <i>their y</i> values(must be 3 terms) and insert <i>their t</i> or $ t $.
	p = 2.23 awrt	A1	, ,
11 (i)	Free choice: no. of ways ${}^{6}C_{4} \times {}^{5}C_{2} = 15 \times 10$ $= 150$	B1 B1	${}^{6}C_{4} \times \text{another } {}^{n}C_{r} \text{ term only}$ $\times {}^{5}C_{2}$ and answer or vice versa
(ii)	Both Mr and Mrs Coldicott ${}^{5}C_{3} \times {}^{4}C_{1} = 10 \times 4$ $= 40$	B1 B1	${}^{5}C_{3} \times \text{ another } {}^{n}C_{r} \text{ term only}$ $\times {}^{4}C_{1} \text{ and answer or vice versa}$
(iii)	Mr C and not Mrs C ${}^5C_3 \times {}^4C_2 (= 60)$ Not Mr C and Mrs C ${}^5C_4 \times {}^4C_1 (= 20)$ Total = 80	B1 An incorrect final answer does not affect the awarding of the first two B1 marks. B1 www	
	OR Total = (i) - (ii) - neither Neither = ${}^{5}C_{4} \times {}^{4}C_{2} = 30$ Total = $150 - 40 - 30 = 80$	M1 A1 A1	

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/22

Paper 2

October/November 2016

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	22

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Part Marks
1	$4x - 3 = x \rightarrow x = 1$ $4x - 3 = -x$ $x = 0.6$	B1 M1 A1	www use of $-x$ or $-(4x-3)$ but not both.
	OR $(4x-3)^2 = x^2$ $15x^2 - 24x + 9 = 0$ 3(x-1)(5x-3) = 0 x = 1 and $x = 0.6$	B1 M1 A1	solve correct 3 term quadratic www
2	$a(\sqrt{3}-1)+b(\sqrt{3}+1)$ $=(\sqrt{3}-3)(\sqrt{3}-1)(\sqrt{3}+1)$ $=2(\sqrt{3}-3) \text{ oe}$ $a+b=2$ $-a+b=-6$ $b=-2 \text{ and } a=4$	M1 DM1 A1 DM1 A1	Common denominator or $\times (\sqrt{3} - 1)(\sqrt{3} + 1)$ equate constant terms and $\sqrt{3}$ terms. both correct solve two linear equations to obtain $a = $ or $b = $ both correct
3	$2\lg x = \lg x^{2}$ $1 = \lg 10$ $\lg x^{2} - \lg \left(\frac{x+10}{2}\right) = \lg \left(\frac{2x^{2}}{x+10}\right) \text{ oe}$ $2x^{2} - 10x - 100 = 0 \to 2(x+5)(x-10) = 0$ $x = 10 \text{ only}$	B1 B1 B1 M1	soi anywhere soi anywhere soi division; logs may be removed obtain correct 3 term quadratic equation and attempt to solve x = -5 must not remain.

Page 3	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	22

Qu	estion	Answer	Marks	Part Marks
4	(i)	$t = 10 \rightarrow N = 7000 + 2000e^{-0.5}$ = 8213 or 8210	B1	Do not accept non integer responses.
	(ii)	$N = 7500 \rightarrow 7500 = 7000 + 2000e^{-0.05t}$ $e^{-0.05t} = \frac{500}{2000}$	M1	insert and make e ^{-0.05t} subject
		$-0.05t = \ln 0.25 \rightarrow t = \frac{\ln 0.25}{-0.05}$ $= 27.7 \text{ (days)}$	M1 A1	take logs and make t the subject awrt 27.7
	(iii)	$\frac{dN}{dt} = -100e^{-0.05t}$ $t = 8 \rightarrow \frac{dN}{dt} = \pm 67 (.0)$	M1 A1 A1	$ke^{-0.05t}$ where k is a constant $k = -100$ or -0.05×2000 awrt ± 67 mark final answer
5	(i)	$\frac{dy}{dx} = 3x^2 + 4x - 7$ $x = -2 \rightarrow \frac{dy}{dx} = 12 - 8 - 7 = -3$	B1	
		<u> </u>	M1	insert $x = -2$ into <i>their</i> gradient and use $(-2, 16)$ and <i>their</i> gradient of tangent in equation of line.
		Equation of tangent: $\frac{y-16}{x+2} = -3 \rightarrow y = -3x + 10$	A1	equation of fine.
	(ii)	Tangent cuts curve again $x^3 + 2x^2 - 7x + 2 = -3x + 10$ $x^3 + 2x^2 - 4x - 8 = 0$	M1 A1	equate curve and <i>their</i> linear answer from (i).
		(x+2)(x+2)(x-2) = 0	M1	factorise: $(x \pm 2)$ and a two or three term
		x=2, $y=4$	A1A1	quadratic is sufficient. Allow long division withhold final A1 if (2, 4) not clearly identified as their sole answer.
6	(i)	$\frac{\cos x}{1+\tan x} - \frac{\sin x}{1+\cot x} = \frac{\cos x}{1+\frac{\sin x}{\cos x}} - \frac{\sin x}{1+\frac{\cos x}{\sin x}}$	M1	$\tan x = \frac{\sin x}{\cos x} \text{ and } \cot x = \frac{\cos x}{\sin x}$
		$= \frac{\cos^2 x}{\cos x + \sin x} - \frac{\sin^2 x}{\cos x + \sin x}$	M1 A1	Attempt to multiply by cosx and sinx
		$= \frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x + \sin x)}$	A1	AG
	(ii)	$-\sin x + \cos x = 3\sin x - 4\cos x$ $5\cos x = 4\sin x$ 5	M1	equate and collect sinx and cosx oe
		$\tan x = \frac{1}{4}$	A1	ET Communication
		$x = 51.3^{\circ}, -128.7^{\circ}$	A1A1	FT from $\tan x = k$

Page 4	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	22

Question	Answer	Marks	Part Marks		
7 (i)	$h = \sqrt{9 - x^2}$ $A = \frac{\sqrt{9 - x^2}}{2} (14 + x + x) = \sqrt{9 - x^2} (7 + x)$	B2/1/0	Must be clear that $\sqrt{9-x^2}$ is the height of the trapezium. $14+2x$ oe must be seen AG		
(ii)	$\frac{dA}{dx} = \sqrt{9 - x^2} + (7 + x)\frac{1}{2}(9 - x^2)^{-0.5} \times -2x$	M1 A2/1/0	product rule on correct function minus 1 each error, allow unsimplified.		
	$\frac{dA}{dx} = 0 \to 9 - x^2 = 7x + x^2$ $2x^2 + 7x - 9 = 0$	M1 A1	equate to 0 and simplify to a linear or quadratic equation. correct three term quadratic obtained		
	x=1 $A=16\sqrt{2}$ or $8\sqrt{8}$ or $\sqrt{512}$ or 22.6	A1 A1	Extra positive answer loses penultimate A1 . ignore negative solution.		
8 (i)	$f'(x) = \frac{(x^3 + 1)9x^2 - (3x^3 - 1)3x^2}{(x^3 + 1)^2}$	M1 A1	quotient rule or product rule all correct		
	$=\frac{12x^2}{\left(x^3+1\right)^2}$	A1	www beware $9x^6 - 9x^6$ gets A0		
(ii)	$\int_{1}^{2} \frac{x^{2}}{\left(x^{3}+1\right)^{2}} dx = \frac{1}{12} \left[\frac{3x^{3}-1}{x^{3}+1} \right]_{1}^{2}$	M1	$c \times \frac{3x^3 - 1}{x^3 + 1}$		
		A1 $\mathbf{FT} \ c = \frac{1}{their 12}$			
	$= \frac{1}{12} \left[\frac{23}{9} - \frac{2}{2} \right]$	DM1	top limit – bottom limit in <i>their</i> integral.		
	$=\frac{7}{54}$	A1	or 0.130 or 0.1296 or 0.12		
(iii)	$x = \frac{3y^3 - 1}{y^3 + 1}$ $y^3 = \frac{x + 1}{3 - x}$	B1	make y^3 or x^3 the subject		
	$f^{-1}(x) = \sqrt[3]{\frac{x+1}{3-x}}$	B1 FT take cube root (as long as y^3 or x^3 equals fraction with terms in x or y only) oe			
	Domain: $-1 \leqslant x \leqslant 2\frac{6}{7}$	B1 B1	FT change x and y – can be done at any time Allow upper limit of 2.86. Do not isw		

Page 5	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	22

Question	Answer	Marks	Part Marks
9 (i)	tangent touches circle $x^{2} + (kx - 4)^{2} - 2(kx - 4) = 8$	M1	eliminate y or x allow unsimplified
	$k^2x^2 + x^2 - 8kx - 2kx + 16 = 0$ or better	A1	
	Equal roots as tangent touches circle: $b^2 = 4ac$	DM1	use of discriminant on 3 term quadratic soi
	$\left(-10k\right)^2 = 4\left(k^2 + 1\right) \times 16$	A1	
	$36k^2 = 64$		
	$k = +\frac{4}{3}$ only	A1	oe any inequality loses last A1
(ii)	$x = \frac{-b}{2a} \rightarrow x = \frac{\frac{4}{3} \times 10}{\frac{25}{9}}$	M1	use $x = \frac{-b}{2a}$
	$x = \frac{12}{5} \qquad y = -\frac{4}{5}$	A1A1	
	OR tangent $y = \frac{4}{3}x - 4$ cuts radius	M1	find equation of radius and attempt to solve with tangent
	$y = -\frac{3}{4}x + 1$		
	at $x = \frac{12}{5}$	A1	
	$y = -\frac{4}{5}$	A1	
	5 OR Obtain $25x^2 - 120x + 144 = 0$ oe	M1	obtain any 3 term quadratic using <i>their</i> non zero
	(5x-12)(5x-12)=0		k and reach $x = \dots$
	$(5x-12)(5x-12) = 0$ $x = \frac{12}{5} \to y = -\frac{4}{5}$	A1A1	
(iii)	$TP = \sqrt{(0-2.4)^2 + (-4+0.8)^2} = 4$	M1A1	M1 for using their T and $(0,-4)$. Signs must be correct.

Page 6	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	22

Question	Answer	Marks	Part Marks
10 (i)	$r_{j} = {5000 \choose 1000 p} + {-2\cos 40 \choose 2\cos 50} t$	B1 B1	x coordinate oe y coordinate oe
(ii)	$2.5t\cos 70 = 5000 - 2t\cos 40$	M1	equate <i>their x</i> values (must be 3 terms)
	$t = \frac{5000}{2.5\cos 70 + 2\cos 40}$	DM1	make t the subject allow one sign error
	= 2095 awrt or 2090 or 2100 $(2.5\cos 20 - 2\cos 50) \times 2095 = 1000 p$	A1 M1	equate <i>their y</i> values(must be 3 terms) and insert <i>their t</i> or $ t $.
	p = 2.23 awrt	A1	
11 (i)	Free choice: no. of ways ${}^{6}C_{4} \times {}^{5}C_{2} = 15 \times 10$ $= 150$	B1 B1	${}^{6}C_{4} \times \text{another } {}^{n}C_{r} \text{ term only}$ $\times {}^{5}C_{2}$ and answer or vice versa
(ii)	Both Mr and Mrs Coldicott ${}^{5}C_{3} \times {}^{4}C_{1} = 10 \times 4$ $= 40$	B1 B1	${}^{5}C_{3} \times \text{ another } {}^{n}C_{r} \text{ term only}$ $\times {}^{4}C_{1} \text{ and answer or vice versa}$
(iii)	Mr C and not Mrs C ${}^5C_3 \times {}^4C_2 (= 60)$ Not Mr C and Mrs C ${}^5C_4 \times {}^4C_1 (= 20)$ Total = 80	B1 B1 B1	An incorrect final answer does not affect the awarding of the first two B1 marks. www
	OR Total = (i) - (ii) - neither Neither = ${}^{5}C_{4} \times {}^{4}C_{2} = 30$ Total = $150 - 40 - 30 = 80$	M1 A1 A1	

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/23

Paper 2

October/November 2016

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0606	23

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Mark	Part Marks
1	$\frac{\left(\sqrt{5}+3\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)} \times \frac{\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)}$	M1	rationalise with $(\sqrt{5} - \sqrt{3})$
	$= \frac{5+3\sqrt{15}-\sqrt{15}-9}{5-3}$	A1	numerator (3 or 4 terms)
	$=\frac{2\sqrt{15}-4}{2}=\sqrt{15}-2$	A1	denominator and completion
2	$ lne^{3x} = ln6e^{x} 3x = ln6e^{x} 3x = ln6 + lne^{x} 3x = ln6 + x x = \frac{1}{2} ln6 or ln \sqrt{6} or 0.896 $	M1 M1	one law of indices/logs second law of indices/logs www oe in base 10
	2		
3 (i)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\sin x}{1 + \cos x} \right) = \frac{\left(1 + \cos x \right) \cos x + \sin x \sin x}{\left(1 + \cos x \right)^2}$	M1 A1	Quotient Rule (or Product Rule from $(\sin x)(1 + \cos x)^{-1}$) correct unsimplified
	$= \frac{\cos x + \cos^2 x + \sin^2 x}{\left(1 + \cos x\right)^2}$	B1	use of $\sin^2 x + \cos^2 x = 1$ oe
	$=\frac{1+\cos x}{\left(1+\cos x\right)^2}$	A1	completion
(ii)	$\int_0^2 \left(\frac{1}{1+\cos x}\right) dx = \left[\frac{\sin x}{1+\cos x}\right]_0^2$	M1	correct integrand
	awrt 1.56	A1	

Page 3	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	23

Question	Answer	Mark	Part Marks
4 (i)	$p(2) = 0 \rightarrow 8 + 4a + 2b - 24 = 0$	B1	
	$\rightarrow (4a + 2b = 16)$		
	$p(1) = -20 \rightarrow 1 + a + b - 24 = -20$	B 1	
	$\rightarrow (a+b=3)$	M 1	solve <i>their</i> linear equations for <i>a</i> or <i>b</i>
	a = 5 and $b = -2$	A1	solve men inical equations for a or o
(ii)	$p(x) = x^3 + 5x^2 - 2x - 24$	M 1	find quadratic factor
	$=(x-2)(x^2+7x+12)$	A1	correct quadratic factor soi
	=(x-2)(x+3)(x+4)	M1	factorise quadratic factor and write as product of 3 linear factors
	$p(x) = 0 \rightarrow x = 2, -3, -4.$	A1	if 0 scored, SC2 for roots only
5 (i)	$AB^{2} = \left(\sqrt{3} + 1\right)^{2} + \left(\sqrt{3} - 1\right)^{2}$	M1	use cosine rule
	$-2(\sqrt{3}+1)(\sqrt{3}-1)\cos 60$		
	$= 3 + 1 + 2\sqrt{3} + 3 + 1 - 2\sqrt{3} - 2$ $= 6$	A1 A1	at least 7 terms correct completion AG
(ii)	$\frac{\sin A}{\sqrt{3} - 1} = \frac{\sin 60}{\sqrt{6}}$	M1	sine rule (or cosine rule)
	$\sin A = \frac{\left(\sqrt{3} - 1\right)\sin 60}{\sqrt{6}} = \frac{\sqrt{6} - \sqrt{2}}{4} \text{ oe or } 0.259$ or 0.2588	A1	correct explicit expression for sin A AG
(iii)	Area = $\frac{1}{2} (\sqrt{3} + 1) (\sqrt{3} - 1) \sin 60$	M1	correct substitution into $\frac{1}{2}ab\sin C$
	$=\frac{\sqrt{3}}{2}$	A1	
6 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x$	B 1	
	$x = \frac{\pi}{4} \to \frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 \frac{\pi}{4} = 2$	B 1	evaluated
	y = 8	B 1	
	Equation of tangent $\frac{y-8}{x-\frac{\pi}{4}} = 2$	B1	
	$x - \frac{x}{4}$ $(4 - 2y = \pi - 16, \ y = 2x + 6.429, \frac{\pi}{4} = 0.7853)$		

Page 4	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	23

Question	Answer	Mark	Part Marks
(ii)	$\sec^{2} x = \tan x + 7$ $\tan^{2} x - \tan x - 6 = 0 \text{ oe}$ $(\tan x - 3)(\tan x + 2) = 0$ $\tan x = 3 \text{ or } \tan x = -2$ $x = 1.25, 2.03$	M1 M1 A1A1	use $\sec^2 x = 1 + \tan^2 x$ to obtain a 3 term quadratic in $\tan x$ solve three term quadratic for $\tan x$ extras in range lose final A1
7 (i)	$r^2 + h^2 = (0.5h + 2)^2$ oe	M1	
	$r^{2} = 0.25h^{2} + 2h + 4 - h^{2}$ $r^{2} = 2h + 4 - 0.75h^{2}$	A1	correct expansion and r^2 subject and completion www AG
(ii)	$V = \frac{1}{3}\pi r^2 h = \frac{\pi}{3} \left(2h^2 + 4h - 0.75h^3 \right)$	B1	any correct form in terms of <i>h</i> only
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\pi}{3} \left(4h + 4 - 2.25h^2 \right)$	M1 A1	differentiate V correct differentiation
	$\frac{\mathrm{d}v}{\mathrm{d}h} = 0 \rightarrow 2.25h^2 - 4h - 4 = 0$	M1	equate to 0 and solve 3 term quadratic
	h = 2.49 only	A1	cao
(iii)	$\frac{d^2V}{dh^2} = \frac{\pi}{3}(4 - 4.5h) \text{ when } h = 2.49$	M1	differentiate <i>their</i> 3 term $\frac{dV}{dh}$ and substitute
	(–7.545) < 0 so maximum	A1	their h draw correct conclusion www
8 (i)	$\cos TOA = \frac{6}{10} \rightarrow$	M1	any method
	TOA = 0.927	A1	
(ii)	area of major sector = $\frac{1}{2}6^2 (2\pi - 2 \times their 0.927) \qquad (= 79.7)$	M2	or M1 for $\frac{1}{2}$ 6 ² (2 × <i>their</i> 0.927)
	area of half kite = $\frac{1}{2}(6)\sqrt{10^2 - 6^2}$ (=24)	M1	DM1 for $\pi \times 6^2 - \frac{1}{2} 6^2 (2 \times their 0.927)$
	area of kite $\times 2$ (=48)	DM1	any method
	complete correct plan awrt 128	DM1 A1	their major sector + their kite
(iii)	arc length = $6 \times (2\pi - 2 \times their 0.927) + 2 \times \sqrt{10^2 - 6^2}$) awrt 42.6	M1 A1	complete correct method

Page 5	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	23

Question	Answer	Mark	Part Marks
9 (i)	p=4	B1	
(ii)	$\tan \alpha = \pm \frac{1}{3}$ or ± 3 or 18.4° or 71.6° seen 108	M1 A1	could use cos or sin
(iii)	$\mathbf{r}_{A} = \begin{pmatrix} 1 \\ 5 \end{pmatrix} + t \begin{pmatrix} their \ p \\ -3 \end{pmatrix}$	B1	
(iv)	$\mathbf{r}_{\mathbf{B}} = \begin{pmatrix} q \\ -15 \end{pmatrix} + t \begin{pmatrix} 3 \\ -1 \end{pmatrix}$	B1	
(v)	$5 - 3t = -15 - t$ $\rightarrow t = 10$	M1 A1	$r_A = r_B$ and equate y/\mathbf{j} and solve for t
(vi)	$\begin{pmatrix} 41 \\ -25 \end{pmatrix}$ only	B1	
(vii)	q = 11 only	B1	
10 (i)	$fg(x) = \ln(2e^x + 3) + 2$	B1	isw
(ii)	$\mathrm{ff}(x) = \ln(\ln x + 2) + 2$	B1	isw
(iii)	$x = 2e^{y} + 3$ $x = 3$	M1	change x and y and make e^y the subject
	$e^{y} = \frac{x-3}{2}$ $g^{-1}(x) = \ln\left(\frac{x-3}{2}\right) \text{ oe}$	A1	
(iv)	e^2 or 7.39	B1	
(v)	$gf(x) = 2e^{(\ln x + 2)} + 3 = 20$	B1	gf correct and equation set up correctly
	$2e^{\ln x}e^{2} + 3 = 20$ $2xe^{2} = 17$ $x = \frac{17}{2e^{2}} \text{ or } 1.15$	M1 M1 A1	one law of indices/logs second law of indices/logs
	2e ² 11.13		www if 0 scored, SC2 for 17.3

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0606	23

Question	Answer	Mark	Part Marks
11 (i)	$\mathbf{A}^2 = \begin{pmatrix} 2 & q \\ p & 3 \end{pmatrix} \begin{pmatrix} 2 & q \\ p & 3 \end{pmatrix} = \begin{pmatrix} 4+pq & 2q+3q \\ 2p+3p & pq+9 \end{pmatrix}$	B2,1,0	−1 each error
	$A^2 - 5A = 2I \rightarrow 4 + pq - 10 = 2$ or $9 + pq - 15 = 2$	M1	equate top left or bottom right elements
	$\rightarrow pq = 8$	A1	accept $p = \frac{8}{q}$, $q = \frac{8}{p}$
(ii)	$\det \mathbf{A} = 6 - pq$	B1	
	6 - pq = -3p and solve	M1	their det $\mathbf{A} = -3p$ and use their $pq = k$ oe to solve for p or q
		A1	
	q = 12	A1	FT from their $pq = k$

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/21

Paper 2 May/June 2016

MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	21

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Q	uestion	Answer	Marks	Guidance
1		$x^2 - 2x - 15$	M1	expands and rearranges to form a 3 term quadratic
		critical values –3 and 5	A1	not from wrong working
		x < -3 $x > 5$	A1	mark final inequality; A0 if spurious attempt to combine e.g. 5 < x < -3
2	(a)	B C	В1	It must be clear how the sets are nested
	(b) (i)	$h \in P$	B1	Allow $\{m, a, t, h, s\}$ for P
	(ii)	$n(P \cap Q) = 2$ cao	B1	
	(iii)	{ t, h, s}	B1	
3	(i)	-2	B1	
	(ii)	-n	B1	
	(iii)	$\frac{\lg 5}{\log_5 10} = [(\lg y)^2] \text{ or } \frac{\lg 20 - \lg 4}{\lg 5} = [(\lg y)^2]$	M1	One log law used correctly
		correct completion to $(\lg 5)^2$ isw	A1	answer only does not score
	(iv)	$[\log_r]6x^2 = [\log_r]600$	B1	Condone base missing
		x = 10 only	B1	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	21

Q	uestion	Answer	Marks	Guidance
4	(i)	$\frac{\pi}{3}$ isw	B1	
	(ii)	[Area triangle $ABC = \frac{1}{2} \times 10^2 \times \sin\left(their\frac{\pi}{3}\right)$ oe	M1	seen or implied by $25\sqrt{3}$ or $43.3(0)$
		[Area 1 sector =] $\frac{1}{2} \times 5^2 \times their \frac{\pi}{3}$ oe or $\pi \times 5^2 \times \frac{their 60^\circ}{360}$	M1	seen or implied by $\frac{25\pi}{6}$ or 13.0(8) or 13.09
		Complete correct plan	M1	e.g. <i>their</i> triangle – 3(<i>their</i> sector)
		4.03(1) or $25\sqrt{3} - \frac{25\pi}{2}$ isw	A1	Units not required
5	(a)	$\frac{\sqrt{8}}{\left(\sqrt{7}-\sqrt{5}\right)} \times \frac{\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)} \text{ and attempt to}$ $\frac{\sqrt{56}+\sqrt{40}}{2} \text{ oe}$ $\sqrt{14}+\sqrt{10}$ $q^2+4q\sqrt{3}+12 \text{ soi}$ $28=q^2+12 \text{ oe}$	M1	
		$\frac{\sqrt{56} + \sqrt{40}}{2} \text{oe}$	A1	not from wrong working
		$\sqrt{14} + \sqrt{10}$	A1	
	(b)	$q^2 + 4q\sqrt{3} + 12 \text{soi}$	B1	
		$28 = q^2 + 12$ oe	M1	can be implied by 4 and 16 or –4 and –16
		q = 4, -4 $p = 16, -16$	A1	all values
6	(i)	$4(x+1)^2-9$	B3,2, 1,0	one mark for each of p, q, r correct in a correctly formatted expression; allow correct equivalent values;
				If B0 then SC2 for $4(x+1)-9$ or SC1 for correct 3 values seen in incorrect format e.g. $4(x+1x)-9$ or $4(x^2+1)-9$ or for a correct completed square form of the original expression in a different but correct format. e.g. $2(\sqrt{2}x+\sqrt{2})^2-9$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	21

Question	Answer	Marks	Guidance
(ii)	(-1, 9)	B2FT	B1FT $(-q, -r)$ $r < 0$ for each correct coordinate
(iii)	10 9 8 9 8 9	B1	Correct symmetric W shape with cusps on <i>x</i> -axis
	5	B1	y-intercept marked at 5 only or coords indicated on graph
	2- 1- 2.5 -1+0.5	B1	x-intercepts marked at -2.5 and 0.5 only x-axis or coords indicated on graph or close by
7 (i) (a)	q – p	B1	
(b)	$2\mathbf{q} - 2\mathbf{p}$ or $2(\mathbf{q} - \mathbf{p})$	B1	
(ii)	The points are collinear oe	B1	
	\overrightarrow{PQ} is a (scalar) multiple of \overrightarrow{QR} and they have a point in common. oe	B1	Condone \overrightarrow{PQ} is parallel to \overrightarrow{QR} and
(iii)	$[\overrightarrow{OR} =]4\mathbf{i} - 3\mathbf{j}$ oe soi	B1	
	$[\overrightarrow{OR} =]4\mathbf{i} - 3\mathbf{j} \text{ oe soi}$ $\sqrt{4^2 + (-3)^2} (=5)$	M1	condone $\sqrt{4^2 + 3^2}$; may be implied by correct answer or correct FT answer
	$\frac{1}{5}(4\mathbf{i} - 3\mathbf{j}) \text{ oe}$	A1	
8 (a) (i)	$a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ final answer	B2,1,0	-1 each error/omission
(ii)	$a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ final answer $6(2x)^2 \left(\frac{1}{5x}\right)^2 \text{ soi}$ $\frac{24}{25} \text{ or } 0.96 \text{ isw}$	M1	Could be in full expansion
	$\frac{24}{25}$ or 0.96 isw	A1	Must be explicitly identified
(b)	$\frac{1}{8} \left(\frac{n(n-1)(n-2)}{6} \right) = \frac{5n}{12} $ soi leading to a cubic or quadratic $(n^2 - 3n - 18 = 0)$	M1	Must attempt to expand and remove fractions
	Solves <i>their</i> quadratic $[(n-6)(n+3)]$	M1	must have come from a valid attempt
	[n=] 6 only, not from wrong working	A1	Must be <i>n</i> if labelled

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	21

Q	uestion	Answer	Marks	Guidance
9	(a)	a = 2 $b = 4$ $c = -2$	В3	B1 for each correct value
	(b) (i)	2-	B3,2,1, 0	sinusoidal curve symmetrical about <i>y</i> -axis clear intent to have amplitude of 2 2 cycles If not fully correct max B2
	(ii)	$-\frac{\pi}{2}$, $-\frac{\pi}{6}$, $\frac{\pi}{6}$, $\frac{\pi}{2}$, $-\frac{\pi}{3}$, $\frac{\pi}{3}$ cao	B2	B1 for any 4 correct
10	(a) (i)	$2 \times 4!$ or $\frac{2}{5} \times 5!$ oe	M1	
		48	A1	
	(ii)	5P_3 or $\frac{5!}{2!}$ or $5 \times 4 \times 3$ oe	M1	
		60	A1	
	(b) (i)	$4 \times 2[!] \times 30e$	M1	Correct first step implied by a correct product of two elements
		24	A1	
	(ii)	3! or 3×3 seen	M1	
		18	A1	
11	(i)	$\frac{3x^2}{2} - \frac{2x^{\frac{5}{2}}}{5} (+c)$ isw	B1+B1	
	(ii)	(9, 0) oe	B1	Not just $x = 9$
	(iii)	Substitute (3, 9) into both lines	B1	$3 \times 3 = 9$ and $\frac{27 - 3 \times 3}{2} = 9$
		Or solves simultaneously $(6x = 27 - 3x \text{ oe})$ to get $x = 3$, $y = 9$		

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	21

Question	Answer	Marks	Guidance
(iv)	[Area $AOB =]\frac{1}{2} \times 9 \times 9$ oe $(\frac{81}{2} \text{ or } 40.5)$	M1	Uses <i>their</i> (ii). May split into 2 triangles (13.5 and 27). May integrate. Must be a complete method.
	their $\left[\frac{3(9)^2}{2} - \frac{2(9)^{\frac{5}{2}}}{5}\right] - [0]$ (= 24.3)	M1	lower limit may be omitted but must be correct if seen
	their $\frac{81}{2}$ – their $\frac{243}{10}$	M1	must be from genuine attempts at area of triangle and area under curve
	16.2	A1	
12 (i)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x} = \right] \frac{2(x-1) - (2x-5)}{(x-1)^2}$	M1A1	Allow slips in $\frac{du}{dx}$ and $\frac{dv}{dx}$ but must be explicit. Allow $(x-1)^2 = x^2 - 2x + 1$
	– 12 isw	B1	
	ALT using $y = \frac{-12x^2 + 14x - 5}{x - 1}$ -24x + 14	B1	
	$\left[\frac{dy}{dx} = \right] \frac{(x-1)(-24x+14) - (-12x^2 + 14x - 5)}{(x-1)^2}$	M1	
		A1FT	FT on their derivative of 3 term quadratic
(ii)	$\left[\frac{d^2y}{dx^2}\right] k(x-1)^{-3}$ $k = -6 \text{ isw}$	M1	No additional terms
	k = -6 isw	A1	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	21

Question	Answer	Marks	Guidance
(iii)	their $\left[\frac{3}{(x-1)^2} - 12\right] = 0$ and find a value for x	M1	$12 x^2 - 24x + 9 = 0 \text{ oe}$ $(2x - 3)(2x - 1) = 0 \text{ oe}$
	x = 0.5 and $x = 1.5$	A1	
	y = 2 and $y = -22$	A1	if $A0 A0$ then $A1$ for a correct (x, y) pair
	$\frac{-6}{(-0.5)^3} > 0 \text{ therefore min when } x = 0.5 \text{ oe}$	В1	or $\left[\frac{-6}{(-0.5)^3}\right] = 48$ therefore min when $x = 0.5$ oe
	$\frac{-6}{(0.5)^3} < 0 \text{ therefore max when } x = 1.5 \text{ oe}$	B1	or $\left[\frac{-6}{(0.5)^3}\right]$ = $\left[-48\right]$ therefore max when $x = 1.5$ oe
			M1A1 is possible from other methods

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/22

[Turn over

Paper 2 May/June 2016

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This document consists of 8 printed pages.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	22

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Guidance
1 (i)	$(2k)^2 - 4(1)(4k - 3)$ [< 0] Correct completion to given inequality $k^2 - 4k + 3 < 0$ isw	M1 A1	clear attempt at $b^2 - 4ac$
(ii)	Critical values 1 and 3 soi $1 < k < 3$ as final answer	M1 A1	May be implied by incorrect inequalities
2 (i)	Clear attempt at quotient rule or equivalent product rule $\left[\frac{dy}{dx} = \right] \frac{14}{(3-x)^2}$ or $\left[\frac{dy}{dx} = \right] \frac{14}{x^2 - 6x + 9}$ cao or correct simplified equivalent	M1 A1	allow recovery from bracketing errors or omissions if implied in correct work to the correct answer
(ii)	$[y = 9] x = 2$ $\frac{0.07}{\delta x} \approx \left(\frac{dy}{dx} \Big _{x=2} \right) \text{ oe}$ 0.005 oe	B1 M1 A1	condone $\frac{0.07}{\delta x} = \left(their \frac{dy}{dx} \Big _{x=2} \right)$ not from wrong working; answer only does not score
3	Any one of: $\begin{bmatrix} {}^{6}C_{0} \times {}^{3}C_{3} + {}^{6}C_{1} \times {}^{7}C_{2} \\ \text{or } 35 + 126 \\ \text{or } {}^{13}C_{3} - {}^{6}C_{2} \times {}^{7}C_{1} - {}^{6}C_{3} \\ \text{or } 286 - 105 - 20$	M2	M1 for $\begin{bmatrix} {}^{6}C_{0} \times \end{bmatrix} {}^{7}C_{3}$ or ${}^{6}C_{1} \times {}^{7}C_{2}$ or ${}^{13}C_{3} - {}^{6}C_{2} \times {}^{7}C_{1}$ or ${}^{13}C_{3} - {}^{6}C_{3}$ or ${}^{6}C_{2} \times {}^{7}C_{1} + {}^{6}C_{3}$ or for the numerical equivalent of one of these calculations
ı	161	A1	If M0 then B3 for answer only of 161

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	22

C	uestion	Answer	Marks	Guidance
4	(i)	$2(2)^3 - 3(2)^2 + 2q + 56 = 0$ with one correct interim step leading to $q = -30$	B1	allow for only $16 - 12 + 2q + 56 = 0$ q = -30
				NB = 0 must be seen or may be implied by e.g. $-60 = 2q$ or $60 = -2q$;
				or convincingly showing $2(2)^3 - 3(2)^2 - 30(2) + 56 = 0$; allow for only 16 - 12 + 2(-30) + 56 = 0
				or correct synthetic division at least as far as $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
				then $q = -30$
	(ii)	$2x^{2} + x - 28$ $(x-2)(2x-7)(x+4)$	B2 M1	B1 for any two terms correct For factorising the correct equation; condone = 0; condone $(2x-7)(x+4)$ only for M1 but for A1 must see all 3 factors in
				this part; do not allow $\left(x - \frac{7}{2}\right)$
		x = 2, x = -4, x = 3.5 oe	A1	not from wrong working; answers only do not score
5	(i)	(2, 8)	B1, B1	
	(ii)	$\frac{their8 - 0}{their2 - p} = -2 \text{ or better}$	M1	Condone $\frac{their8 - 0}{their2 - p} = \frac{-1}{their \text{ gradient } AB} \text{ oe}$
		[p=] 6	A1	men 2 – p men gradient Ab

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	22

Question	Answer	Marks	Guidance
(iii)	$[MB =] \sqrt{(6 - their 2)^2 + (10 - their 8)^2}$	M1	implied by $[MB =]\sqrt{20}$ or
	or $\left[\frac{1}{2}AB = \right] \frac{1}{2}\sqrt{(6-2)^2 + (10-6)^2}$		$\left[\frac{1}{2}AB = \right] \frac{1}{2}\sqrt{80} \text{ e.g. 4.47},$
	or $[MC =] \sqrt{(their 2 - their p)^2 + (their 8 - 0)^2}$		or $[MC =]\sqrt{80}$ or e.g. 8.94 or 63.4° or equivalents
	soi		
	or $tan[] = \frac{8}{4} soi$		
	or $4.47^2 = 8.94^2 + 10^2 - 2(8.94)(10)\cos[]$		
	or $8.94^2 = 10^2 + 10^2 - 2(10)(10)\cos[]$		
	$\sin^{-1}\left(\frac{\sqrt{20}}{10}\right)$ oe soi	M1	$\operatorname{or} \cos^{-1} \left(\frac{\sqrt{80}}{10} \right)$
			or $\tan^{-1}\left(\frac{\sqrt{20}}{\sqrt{80}}\right)$
			or $\tan^{-1}\left(\frac{4}{8}\right)$
			or $90 - \tan^{-1}\left(\frac{8}{4}\right)$
			or equivalent complete correct method; implies first M1
	26.56 to 26.6° or 0.4636 to 0.464 rads cao	A1	Not from wrong working
6 (i)	Valid explanation	B1	e.g. arc length is greater than the radius or 7 is greater than 5
(ii)	$7 = 5\theta$ $\theta = 1.4 \text{ oe}$	M1	implies M1
		A1	implies M1
(iii)	$\frac{1}{2} \times 5^2 \times their1.4$ oe	M1	
	17.5oe	A1	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	22

Question	Answer	Marks	Guidance
(iv)	[triangle area =] $\frac{1}{2} \times 5^2 \times \sin their$ 1.4 or 12.3 to 12.32 or for [$\frac{1}{2} \times \text{base} \times \text{height}$ =]	M1	may be embedded in a difference calculation
	$\frac{1}{2} \times 6.4[4] \times 3.8[2]$ oe		
	5.18 to 5.2 inclusive	A1	implies M1
7 (i)	$ \begin{pmatrix} 12 & 15 \\ 9 & 6 \end{pmatrix} + \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix} soi $	M1	if no method shown, may be implied by their answer with at least 2 correct elements
	$ \begin{pmatrix} 16 & 17 \\ 10 & 9 \end{pmatrix} $	A1	
(ii)	$\det \mathbf{A} = 4 \times 2 - 3 \times 5 = -7$ or $\det \mathbf{B} = 4 \times 3 - 2 \times 1 = 10$	B1	allow for e.g. $(4 \times 2 - 3 \times 5) \times (4 \times 3 - 2 \times 1) = -70$
			or $\det \mathbf{A} = 8 - 15 = -7$
	(21 22)		or $\det \mathbf{B} = 12 - 2 = 10$
	$\mathbf{AB} = \begin{pmatrix} 21 & 23 \\ 14 & 12 \end{pmatrix}$	B2	or B1 for two elements correct
	$\det(\mathbf{AB}) = 21 \times 12 - 23 \times 14 = -70$	B1	allow for $det(\mathbf{AB}) = 252 - 322 = -70$
			For full marks must conclude that $\det \mathbf{AB} = \det \mathbf{A} \times \det \mathbf{B}$ or show the product $-7 \times 10 = -70$
			otherwise max 3 marks
(iii)	$\frac{1}{their \det \mathbf{AB}} \times their \begin{pmatrix} 12 & -23 \\ -14 & 21 \end{pmatrix} \text{ isw}$	B2	correct or correct FT; FT their AB and their non-zero det AB;
			their AB must be an attempt at a matrix product e.g. $\begin{pmatrix} 16 & 10 \\ 3 & 6 \end{pmatrix}$
			$\mathbf{B1} \text{ for } \frac{1}{\text{their } \det \mathbf{AB}} \times \text{their} \left(\right)$
			or for $k \times their \begin{pmatrix} 12 & -23 \\ -14 & 21 \end{pmatrix}$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	22

Question	Answer	Marks	Guidance
8	Eliminates y e.g. $4 + \frac{5}{15x + 10} + \frac{3}{x} = 0$ or eliminates x e.g. $4 + \frac{5}{y} + \frac{3}{(y - 10)/15} = 0$	M1	allow even after incorrect rearrangement of the equation of the curve (dependent on resulting equation still in terms of x and y); condone substitution of e.g. $\frac{y+10}{15}$
	Rearrange to a 3-term quadratic $60x^2 + 90x + 30 = 0$ oe or $4y^2 + 10y - 50 = 0$ oe	M1 A1	condone sign slips/arithmetic slips
	Factorise or solve 3-term quadratic	M1	1
	$x = -\frac{1}{2}, x = -1 \text{ isw}$	A1	or $y = 2\frac{1}{2}$, $y = -5$
	$y = 2\frac{1}{2}$, $y = -5$ isw	A1	or $x = -\frac{1}{2}$, $x = -1$
			If final A marks not awarded then A1 for a correct <i>x</i> , <i>y</i> pair
9 (a)	$\frac{x^2}{2} + x - \frac{1}{x} (+c) \text{isw}$	В3	B1 for each term allow $\frac{x^2}{2} + x + \frac{x^{-1}}{-1}(+c)$ isw for B3
(b) (i)	$k\cos(5x + \pi) \text{ where } k < 0$ or $\frac{\cos(5x + \pi)}{5}$	M1	
	$\frac{-\cos(5x+\pi)}{5}(+c)$	A1	
(ii)	$\frac{-\cos(5(0) + \pi)}{5} - \frac{-\cos(5(-\pi/5) + \pi)}{5}$ $\operatorname{or} \frac{-\cos(\pi)}{5} - \left(\frac{-\cos(0)}{5}\right)$	M1	correct substitution of the given limits into their expression of the form $k \cos(5x + \pi)$, dep on M1 in (b)(i)
	0.4 oe	A1	answer only does not score
10 (a)	2 = p - q and 14 = 4p - 2q oe $p = 5$ $q = 3$	M1 A1 A1	
(b)	Factorise $10^{2x} - 2(10^x) - 24 = 0$ or factorise $u^2 - 2u - 24 = 0$	M1	or applies the formula or completes the square
	$10^x = 6$ $x = \lg 6 \text{cao as final answer}$	A1 A1	ignore $10^x = -4$ for this mark or exact equivalent

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	22

Question	Answer	Marks	Guidance
(c)	$\frac{x+1}{x} = 2^3 \text{ oe www}$	M2	combines logs and anti-logs or B1 for one correct log move
			$e.g. \log_2\left(\frac{x+1}{x}\right) = 3$
			or $\log_2(x+1) - \log_2(x) = \log_2 8$
	1		or $\log_2(x+1) - \log_2(x) = 3\log_2 2$
	$x = \frac{1}{7}$ or 0.143 or 0.1428 to 0.1429	A1	
11 (a)	Valid method	M1	Completing the square as far as
			e.g. constant $-\left(x-\frac{1}{2}\right)^2$
			or calculus as far as $1 - 2x = 0$
			or finding roots $x = 0$ and $x = 1$ and using symmetry soi
	when $x = \frac{1}{2}$	A1	Implies M1 if not clearly from wrong working
	[greatest value =] $\frac{1}{4}$	B1	
(b)	Valid comment e.g. when $x \ge 1$, f' is always	B1	Allow e.g. a sketch with a comment such as the curve is one-one [when $x \ge 1$]
	decreasing		or e.g. the curve is one-one when $x > \frac{1}{2}$
(c) (i)	$k(10) = 8 \text{ or } 5 + \sqrt{10 - 1} = 8 \text{ or stating}$ h(8)	M1	$or[hk(x) =] lg(7 + \sqrt{x-1})$
	$h(8) = 1 \text{ or } \lg(8+2) = 1 \text{ cao}$	A1	$[hk(10) =] \lg(7 + \sqrt{10 - 1}) = 1$
(ii)	$\left(y-5\right)^2 = x-1$	M1	$\operatorname{or}(x-5)^2 = y-1$
	$k^{-1}(x) = (x-5)^2 + 1$ isw	A1	
	or $k^{-1}(x) = x^2 - 10x + 26$ isw 5 < x < 15	B1, B1	B1 for $5 < x$ oe and B1 for $x < 15$ oe
		-	allow (5, 15); one mark for each limit of the interval;
			if B0 then SC1 for $5 \le x \le 15$ or '5 to 15' or [5, 15] etc.
	$1 < k^{-1}(x) < 101$	B1	allow (1, 101)

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	22

Question	Answer	Marks	Guidance
12 (i)	$8(1-\cos^2 A) + 2\cos A = 7 \text{ or better}$	B1	
	Solves or factorises <i>their</i> 3-term quadratic in cosA	M1	
	60, 104.477 rounded or truncated to 1 dp or more;	A2	with no extras in range; not from clearly wrong working but allow recovery from minor slips or A1 for either, ignoring extras
(ii)	$\sin(3B+1) = 0.4 \text{ soi}$	B1	may be implied by $\frac{1}{\sin(3B+1)} = 2.5$
	[3B + 1 =] 0.41 or better	M1	implies B1
	0.577, 1.9[0], 2.67 or 0.57669, 1.89823, 2.67108 rounded or truncated to 4 or more sf	A2	with no extras in range; or A1 for any one correct ignoring extras
	Tourist of transmiss to 1 of more of		If M0 then B2 for all 3 correct angles found or B1 for 1 or 2 correct angles found

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/23

Paper 2 May/June 2016

MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This document consists of 7 printed pages.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2016	0606	23

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Q	uestion	Answer	Marks	Guidance
1		$x^2 - 2x - 15$	M1	expands and rearranges to form a 3 term quadratic
		critical values –3 and 5	A1	not from wrong working
		x < -3 $x > 5$	A1	mark final inequality; A0 if spurious attempt to combine e.g. 5 < x < -3
2	(a)	B C A	B1	It must be clear how the sets are nested
	(b) (i)	$h\in P$	B1	Allow $\{m, a, t, h, s\}$ for P
	(ii)	$n(P \cap Q) = 2$ cao	B1	
	(iii)	{ t, h, s}	B1	
3	(i)	-2	B1	
	(ii)	-n	B1	
	(iii)	$\frac{\lg 5}{\log_5 10} = [(\lg y)^2] \text{ or } \frac{\lg 20 - \lg 4}{\lg 5} = [(\lg y)^2]$	M1	One log law used correctly
		correct completion to $(\lg 5)^2$ isw	A1	answer only does not score
	(iv)	$[\log_r]6x^2 = [\log_r]600$	B1	Condone base missing
		x = 10 only	B1	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	23

Q	uestion	Answer	Marks	Guidance
4	(i)	$\frac{\pi}{3}$ isw	B1	
	(ii)	[Area triangle $ABC = \frac{1}{2} \times 10^2 \times \sin\left(their\frac{\pi}{3}\right)$ oe	M1	seen or implied by $25\sqrt{3}$ or $43.3(0)$
		[Area 1 sector =] $\frac{1}{2} \times 5^2 \times their \frac{\pi}{3}$ oe or $\pi \times 5^2 \times \frac{their 60^\circ}{360}$	M1	seen or implied by $\frac{25\pi}{6}$ or 13.0(8) or 13.09
		Complete correct plan	M1	e.g. <i>their</i> triangle – 3(<i>their</i> sector)
		4.03(1) or $25\sqrt{3} - \frac{25\pi}{2}$ isw	A1	Units not required
5	(a)	$\frac{\sqrt{8}}{\left(\sqrt{7}-\sqrt{5}\right)} \times \frac{\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)} \text{ and attempt to}$ $\frac{\sqrt{56}+\sqrt{40}}{2} \text{ oe}$ $\sqrt{14}+\sqrt{10}$ $q^2+4q\sqrt{3}+12 \text{ soi}$ $28=q^2+12 \text{ oe}$	M1	
		$\frac{\sqrt{56} + \sqrt{40}}{2} \text{oe}$	A1	not from wrong working
		$\sqrt{14} + \sqrt{10}$	A1	
	(b)	$q^2 + 4q\sqrt{3} + 12 \text{soi}$	B1	
		$28 = q^2 + 12$ oe	M1	can be implied by 4 and 16 or –4 and –16
		q = 4, -4 $p = 16, -16$	A1	all values
6	(i)	$4(x+1)^2-9$	B3,2, 1,0	one mark for each of p, q, r correct in a correctly formatted expression; allow correct equivalent values;
				If B0 then SC2 for $4(x+1)-9$ or SC1 for correct 3 values seen in incorrect format e.g. $4(x+1x)-9$ or $4(x^2+1)-9$ or for a correct completed square form of the original expression in a different but correct format. e.g. $2(\sqrt{2}x+\sqrt{2})^2-9$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	23

Question	Answer	Marks	Guidance
(ii)	(-1, 9)	B2FT	B1FT $(-q, -r)$ $r < 0$ for each correct coordinate
(iii)	10 9 8 9 8 9	B1	Correct symmetric W shape with cusps on <i>x</i> -axis
	5	B1	y-intercept marked at 5 only or coords indicated on graph
	2- 1- 2.5 -1+0.5	B1	x-intercepts marked at -2.5 and 0.5 only x-axis or coords indicated on graph or close by
7 (i) (a)	q – p	B1	
(b)	$2\mathbf{q} - 2\mathbf{p}$ or $2(\mathbf{q} - \mathbf{p})$	B1	
(ii)	The points are collinear oe	B1	
	\overrightarrow{PQ} is a (scalar) multiple of \overrightarrow{QR} and they have a point in common. oe	B1	Condone \overrightarrow{PQ} is parallel to \overrightarrow{QR} and
(iii)	$[\overrightarrow{OR} =]4\mathbf{i} - 3\mathbf{j}$ oe soi	B1	
	$[\overrightarrow{OR} =]4\mathbf{i} - 3\mathbf{j} \text{ oe soi}$ $\sqrt{4^2 + (-3)^2} (=5)$	M1	condone $\sqrt{4^2 + 3^2}$; may be implied by correct answer or correct FT answer
	$\frac{1}{5}(4\mathbf{i} - 3\mathbf{j}) \text{ oe}$	A1	
8 (a) (i)	$a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ final answer	B2,1,0	-1 each error/omission
(ii)	$a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ final answer $6(2x)^2 \left(\frac{1}{5x}\right)^2 \text{ soi}$ $\frac{24}{25} \text{ or } 0.96 \text{ isw}$	M1	Could be in full expansion
	$\frac{24}{25}$ or 0.96 isw	A1	Must be explicitly identified
(b)	$\frac{1}{8} \left(\frac{n(n-1)(n-2)}{6} \right) = \frac{5n}{12} $ soi leading to a cubic or quadratic $(n^2 - 3n - 18 = 0)$	M1	Must attempt to expand and remove fractions
	Solves <i>their</i> quadratic $[(n-6)(n+3)]$	M1	must have come from a valid attempt
	[n=] 6 only, not from wrong working	A1	Must be <i>n</i> if labelled

Page 5	ge 5 Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0606	23

Q	uestion	Answer	Marks	Guidance
9	(a)	a = 2 $b = 4$ $c = -2$	В3	B1 for each correct value
	(b) (i)	2	B3,2,1, 0	sinusoidal curve symmetrical about <i>y</i> -axis clear intent to have amplitude of 2 2 cycles If not fully correct max B2
	(ii)	$-\frac{\pi}{2}$, $-\frac{\pi}{6}$, $\frac{\pi}{6}$, $\frac{\pi}{2}$, $-\frac{\pi}{3}$, $\frac{\pi}{3}$ cao	B2	B1 for any 4 correct
10	(a) (i)	$2 \times 4!$ or $\frac{2}{5} \times 5!$ oe	M1	
		48	A1	
	(ii)	5P_3 or $\frac{5!}{2!}$ or $5 \times 4 \times 3$ oe	M1	
		60	A1	
	(b) (i)	$4 \times 2[!] \times 30e$	M1	Correct first step implied by a correct product of two elements
		24	A1	
	(ii)	3! or 3×3 seen	M1	
		18	A1	
11	(i)	$\frac{3x^2}{2} - \frac{2x^{\frac{5}{2}}}{5} (+c)$ isw	B1+B1	
	(ii)	(9, 0) oe	B1	Not just $x = 9$
	(iii)	Substitute $(3, 9)$ into both lines Or solves simultaneously $(6x = 27 - 3x \text{ oe})$ to get $x = 3, y = 9$	B1	$3 \times 3 = 9$ and $\frac{27 - 3 \times 3}{2} = 9$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	23

Question	Answer	Marks	Guidance
(iv)	[Area $AOB =]\frac{1}{2} \times 9 \times 9$ oe $(\frac{81}{2} \text{ or } 40.5)$	M1	Uses <i>their</i> (ii). May split into 2 triangles (13.5 and 27). May integrate. Must be a complete method.
	their $\left[\frac{3(9)^2}{2} - \frac{2(9)^{\frac{5}{2}}}{5}\right] - [0]$ (= 24.3)	M1	lower limit may be omitted but must be correct if seen
	their $\frac{81}{2}$ – their $\frac{243}{10}$	M1	must be from genuine attempts at area of triangle and area under curve
	16.2	A1	
12 (i)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x} = \right] \frac{2(x-1) - (2x-5)}{(x-1)^2}$	M1A1	Allow slips in $\frac{du}{dx}$ and $\frac{dv}{dx}$ but must be explicit. Allow $(x-1)^2 = x^2 - 2x + 1$
	– 12 isw	B1	
	ALT using $y = \frac{-12x^2 + 14x - 5}{x - 1}$ -24x + 14	B1	
	$\left[\frac{dy}{dx} = \right] \frac{(x-1)(-24x+14) - (-12x^2 + 14x - 5)}{(x-1)^2}$	M1	
		A1FT	FT on their derivative of 3 term quadratic
(ii)	$\left[\frac{d^2y}{dx^2}\right] k(x-1)^{-3}$ $k = -6 \text{ isw}$	M1	No additional terms
	k = -6 isw	A1	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	23

Question	Answer	Marks	Guidance
(iii)	their $\left[\frac{3}{(x-1)^2} - 12\right] = 0$ and find a value for x	M1	$12 x^2 - 24x + 9 = 0 \text{ oe}$ $(2x - 3)(2x - 1) = 0 \text{ oe}$
	x = 0.5 and $x = 1.5$	A1	
	y = 2 and $y = -22$	A1	if $A0 A0$ then $A1$ for a correct (x, y) pair
	$\frac{-6}{(-0.5)^3} > 0 \text{ therefore min when } x = 0.5 \text{ oe}$	В1	or $\left[\frac{-6}{(-0.5)^3}\right] = 48$ therefore min when $x = 0.5$ oe
	$\frac{-6}{(0.5)^3} < 0 \text{ therefore max when } x = 1.5 \text{ oe}$	B1	or $\left[\frac{-6}{(0.5)^3}\right]$ = $\left[-48\right]$ therefore max when $x = 1.5$ oe
			M1A1 is possible from other methods

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the March 2016 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 22, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE® and Cambridge International A and AS Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	22

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

Question	Answer	Marks	Guidance
1 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = k(x-9)^{-\frac{3}{2}}$	M1	If M0 then SC1 for the correct answer with an extra term.
	$k = -\frac{5}{2}$ isw	A1	condone $5 \times -\frac{1}{2}$
(ii)	$\delta y = their \left(\frac{\mathrm{d}y}{\mathrm{d}x} \Big _{x=13} \right) \times h$	M1	
	-0.3125h oe	A1	
2	$\begin{array}{c c} A & & & \\ \hline & 2 & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ & & & \\ \hline \end{array}$	B3,2,1,0	B2 for C as a proper subset of A A and B with an intersection B and C mutually exclusive Or B1 for any two of the these and B1 for the number of elements correctly placed
	5	B1FT	FT their 5
3	Integrates $9x^2 - 3x^{-2}$	M1	condone one rearrangement error
	$(y=)\frac{9x^3}{3} - \frac{3x^{-1}}{-1}(+c)$	A1	
	Substitute $x = 1$ and $y = 7$ into <i>their</i> expression with 'c'	M1	their expression must be from an attempt to integrate
	$y = 3x^3 + 3x^{-1} + 1$ oe isw	A1	condone $y = 3x^3 + 3x^{-1} + c$ and $c = 1$ seen, isw

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	22

Question	Answer	Marks	Guidance
4 (a)	$a = 10$ $b = 6$ $c = 4$ or $10\cos 6x + 4$	B2,1,0	for B1 allow correct FT of c from a e.g. their $c = 14$ – their a
(b)	1 0 45° 90° 135° 180° X -2	B3,2,1,0	Correct shape; two cycles; both maximum at 1 and minimum at -5; starting at (0, -2) and ending at (180, -2)
5 (i)	$2187 + 5103kx + 5103k^2x^2$	В3	1 for each term; ignore extra terms
(ii)	$2(5103k) = 5103k^2$	M1	must not include x , x^2
	k=2	A1	A0 if $k = 0$ also given as a solution
6	$\frac{x}{1+3\sqrt{3}} = \frac{5-\sqrt{3}}{6+2\sqrt{3}}$ oe soi	M1	
	$(x =) \frac{-4 + 14\sqrt{3}}{6 + 2\sqrt{3}} \text{ oe}$	M1	
	$(x =) \frac{-4 + 14\sqrt{3}}{6 + 2\sqrt{3}} \times \frac{6 - 2\sqrt{3}}{6 - 2\sqrt{3}}$	M1	
	p = -27, q = 23 isw	A1 + A1	allow $(x =) \frac{-27 + 23\sqrt{3}}{6}$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	22

Q	uestion	Answer	Marks	Guidance
7		$ \begin{pmatrix} 4 & 6 & 8 \\ -2 & 0 & 4 \end{pmatrix} - \begin{pmatrix} 18 & 3 & 6 \\ 21 & -6 & 3 \end{pmatrix} $	M1	for attempt to multiply and subtract
		$\begin{pmatrix} -14 & 3 & 2 \\ -23 & 6 & 1 \end{pmatrix}$ $-\frac{1}{2} \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix} \text{ oe}$	A1	
	(b) (i)	$-\frac{1}{2}\begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix} $ oe	B1 + B1	1 mark for $-\frac{1}{2}$ and 1 mark
				for $k \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix}$
	(ii)	Valid method	M1	$\mathbf{X}\mathbf{D}^{-1}\mathbf{D} = \mathbf{C}\mathbf{D}$
		$\begin{pmatrix} -8 & -6 \\ 13 & 7 \end{pmatrix}$	A2,1,0	−1 each error
				If M0 then SC1 for $DC = \begin{pmatrix} 4 & 3 \\ -14 & -5 \end{pmatrix}$
8	(i)	Eliminate x (or y)	M1	$3(2y-2)^{2}+(2y-2)y-y^{2}=12$
				$3x^2 + x\left(\frac{x+2}{2}\right) - \left(\frac{x+2}{2}\right)^2 = 12$
		$13y^2 - 26y = 0$ or $\frac{13}{4}x^2 - 13 = 0$ oe	A1	
		13 $y(y-2)$ or $x^2 = 4$ x = -2, $x = 2$	M1	
		x = -2, x = 2	A1 +	or for $(-2, 0)$ or $(2, 2)$ from correct
		y = 0 $y = 2$ isw	A1FT	working FT their x or y values to find their y or x values; or A1 for (-2, 0) and (2, 2)
	(ii)	their $m_{AB} = \frac{1}{2}$ or their $m_{BC} = -2$ soi	M1	may be unsimplified or Pythagoras' theorem correctly applied to <i>their</i> $(0, -2)$, <i>their</i> $(2, 2)$ and $(0, 6)$
		use of $(m_{AB}) \times (m_{BC}) = -1$ and conclusion	A1	or use of $h^2 = a^2 + b^2$ and conclusion

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	22

Question	Answer	Marks	Guidance
9 (i)	$RT = \frac{1}{\tan \theta}$	B1	or $RT = \cot \theta$
	$RS = \frac{1}{\sin \theta}$	B1	or $RS = \csc\theta$
	$x = 1 - \frac{1}{2\tan\theta} - \frac{1}{2\sin\theta} \text{ oe}$ or $x = 1 - \frac{\cot\theta}{2} - \frac{\csc\theta}{2} \text{ oe}$	B1FT	FT their RT and their RS, provided both are functions of trig ratios
(ii)	$A = x + \frac{1}{2}\cot\theta$ oe soi	M1	
	correct completion to given answer $A = 1 - \frac{\csc \theta}{2}$	A1	
(iii)	$\csc\theta = \frac{2\sqrt{3}}{3}$ oe	M1	equivalent must be exact
	$\theta = \frac{\pi}{3}$ cao	A1	implies M1
10 (a) (i)	$(\alpha + \beta)\mathbf{i} - 20\mathbf{j} = 15\mathbf{i} + (2\alpha - 24)\mathbf{j}$	M1	implied by $\alpha + \beta = 15$ or $2\alpha - 24 = -20$
	$\alpha = 2$	A1	
	β = 13	A1	
(ii)	$\sqrt{(their\alpha + their\beta)^2 + (-20)^2}$ oe	M1	
	$\frac{15\mathbf{i} - 20\mathbf{j}}{25} \text{ oe}$	A1FT	FT their $\alpha + \beta$ provided non-zero
(b)	$\overrightarrow{OC} = \overrightarrow{OA} + \lambda \overrightarrow{AB} \text{ or } \overrightarrow{OC} = OB + (1 - \lambda) \overrightarrow{BA}$	B1	
	$[\overrightarrow{OC} =] \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) \text{ or}$ $[\overrightarrow{OC} =] \mathbf{b} + (1 - \lambda)(\mathbf{a} - \mathbf{b})$	M1	
	$[\overrightarrow{OC} =] (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$	A1	
(c)	$\frac{2}{\mu+3} = \frac{\mu}{9}$	M1	or multiplies one of the vectors by a general scale factor and finds a pair of simultaneous equations to solve
	Solves $\mu^2 + 3\mu - 18 = 0$	M1	or solves <i>their</i> correct equation to find <i>their</i> scale factor and attempts to use it to find μ
	$\mu = 3$	A1	A0 if -6 not discarded

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	22

Question	Answer	Marks	Guidance
11 (i)	$\frac{dy}{dx} = \frac{(x^2 + 1)(1) - (x)(2x)}{(x^2 + 1)^2} \text{oe}$	M1*	Attempts to differentiate using the quotient rule
		A1	correct; allow unsimplified
	$their(1-x^2) = 0$	M1 dep*	
	x = 1, x = -1	A1	from correct working only
	y = 0.5, $y = -0.5$ oe	A1	from correct working only
			or A1 for each of $(1, 0.5)$, $(-1, -0.5)$ oe from correct working;
			unsupported answers do not score
(ii)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\left(x^2 + 1 \right)^2 \right) = 2 \left(x^2 + 1 \right) \left(2x \right) \text{ soi}$	B1	$\frac{d}{dx}(x^4 + 2x^2 + 1) = 4x^3 + 4x$
	$\frac{d^2y}{dx^2} = (x^2 + 1)\frac{(x^2 + 1)(their - 2x) - (their(1 - x^2))2(2x)}{(x^2 + 1)^4}$	M1	Applies quotient rule and factors out
	Correct completion to given answer $\frac{d^2y}{dx^2} = \frac{2x^3 - 6x}{\left(x^2 + 1\right)^3}$	A1	
	When $x = 1$ their $\frac{d^2 y}{dx^2}\Big _{x=1} = \frac{2(1)^3 - 6(1)}{(1^2 + 1)^3}$ oe < 0 therefore maximum	B1FT	Complete method including comparison to 0; FT <i>their</i> first or second derivative
	When $x = -1$ their $\frac{d^2 y}{dx^2}\Big _{x=-1} = \frac{2(-1)^3 - 6(-1)}{((-1)^2 + 1)^3}$ oe > 0 therefore minimum	B1FT	Complete method including comparison to 0; FT <i>their</i> first or second derivative

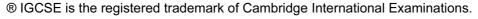
Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	22

Question	Answer	Marks	Guidance
12 (i)	$9t^2 - 63t + 90 = 0$ $(9t - 18)(t - 5)$	M1	
	showing that $t = 2$ is smaller value of t	A1	must see evidence of solving e.g. $t = 5$ and $t = 2$ or factors
(ii)	$(a =) \frac{\mathrm{d}v}{\mathrm{d}t}$ attempted	M1	
	18(3.5) - 63 = 0 cao	A1	
(iii)	$\int (9t^2 - 63t + 90) \mathrm{d}t$	M1	
	$18(3.5) - 63 = 0 \text{ cao}$ $\int (9t^2 - 63t + 90) dt$ $(s =) \frac{9t^3}{3} - \frac{63t^2}{2} + 90t \text{ isw}$	A2,1,0	-1 for each error or for $+c$ left in
(iv) (a)	$(s =) \frac{9(2)^3}{3} - \frac{63(2)^2}{2} + 90(2)$	M1	or $\left[\frac{9t^3}{3} - \frac{63t^2}{2} + 90t \right]_0^2$ FT their (iii)
	78 [m]	A1	
(b)	$(s =) \frac{9(3)^3}{3} - \frac{63(3)^2}{2} + 90(3) = 67.5$	M1	FT their (iii)
	<i>their</i> 78 + 10.5 = 88.5 [m]	A1FT	

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS


0606/21 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	21

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

1	(i)	f(-2) = -32 - 16 + 30 + 18 = 0	B1	All four evaluated terms must be seen. Allow if correct long division used
	(ii)	$f(x) = (x+2)(4x^2 - 12x + 9)$	M1	Coefficients 4 and 9
	(11)		A1	Coefficient –12
		= (x+2)(2x-3)(2x-3)	A1	All three factors together
		$f(x) = 0 \to x = -2, 1.5 \text{ nfww}$	A1	Allow 1.5 mentioned just once
2	(i)	$(2-3x)^6 = 64 - 576x + 2160x^2$ isw	B1B1B1	
	(ii)	$2160 - 2 \times 576 = 1008$	M1	their final $2160 + 2 \times their$ final -576
			A1	
3	(i)	$\overrightarrow{AB} = \begin{pmatrix} -15\\8 \end{pmatrix}$	В1	Allow \overline{BA} May be implied by later work.
		$ AB = \sqrt{15^2 + 8^2}$ (=17)	M1	Use of Pythagoras on their AB
		Speed = $17 \times 3 = 51 \text{km/hr}$	A1	Must be exact
	(ii)	$\overrightarrow{BC} = \begin{pmatrix} 16 \\ -30 \end{pmatrix}$	B1	Allow \overrightarrow{CB}
		$ BC = \sqrt{16^2 + 30^2} (= 34)$	M1	Use of Pythagoras on their BC
		Time taken = $\frac{34}{51} \times 60 = 40 \text{ mins (or } \frac{2}{3} \text{ hrs)}$	A1	Allow answers which round to 40 to 2sf. Accept 0.66 or 0.67 hrs. Mark final answer.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	21

4	(a)	$2\mathbf{B}\mathbf{A} = 2 \begin{pmatrix} 1 & -2 & 4 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & 5 \\ 7 & 4 \end{pmatrix}$ $= 2 \begin{pmatrix} 24 & 5 \\ 5 & 17 \end{pmatrix} = \begin{pmatrix} 48 & 10 \\ 10 & 34 \end{pmatrix}$	B3,2,1,0	-1 each error in 2 × 2 result. Failure to multiply by 2 is one error
	(b) (i)	$\mathbf{C}^{-1} = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ 1 & 1 \end{pmatrix} \text{ isw}$	B1 B1	$\frac{1}{8}$ Matrix
	(ii)	$\mathbf{I} - \mathbf{D} = \begin{pmatrix} -2 & 2 \\ -1 & -3 \end{pmatrix}$	B1	
		$\mathbf{X} = \mathbf{C}^{-1} \left(\mathbf{I} - \mathbf{D} \right) = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2 \\ -1 & -3 \end{pmatrix}$	M1	Pre multiply <i>their</i> $\mathbf{I} - \mathbf{D}$ with <i>their</i> \mathbf{C}^{-1}
		$=\frac{1}{8}\begin{pmatrix} -10 & 18\\ -3 & -1 \end{pmatrix}$ isw	A1	
5	(a)	$2^{3(q-1)} \times 2^{2p+1} = 2^{14}$	B1	Correct powers of 2 allow unsimplified isw
		$3^{2(p-4)} \times 3^q = 3^4$	B1	Correct powers of 3 allow unsimplified
		Solve $3q + 2p = 16$ q + 2p = 12	M1	isw Attempt to solve <i>their</i> linear equations by eliminating one variable
		p=5, $q=2$	A1	Both correct
	(b)	p = 5, q = 2 (3x - 2)(x + 1)	M1	LHS oe isw
		= 50	A1	50 from correct processing of 2-lg2
		$3x^2 + x - 52 = 0 \rightarrow (3x + 13)(x - 4)$	M1	Solution of <i>their</i> three term quadratic Roots must be obtained from correct
		x = 4	A1	quadratic
		$x = -\frac{13}{3}$ discarded	A1	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	21

6 (i)	a = 3, b = 2, c = 4	B1B1B1	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8\cos 4x \text{ isw}$	M1 A1FT	$\pm k \cos cx$ and no other term in $x = c \neq 1$ $bc \times \cos cx$ and no other term
(iii)	$x = \frac{\pi}{2} \to \frac{\mathrm{d}y}{\mathrm{d}x} = 8\cos 2\pi = 8$	DM1	Find <i>their</i> correct numerical $\frac{dy}{dx}$
	Eqn: $\frac{y-3}{x-\frac{\pi}{2}} = -\frac{1}{8}$ $\left(\to y = -\frac{1}{8}x + 3.20 \right)$	M1	Find equation with <i>their</i> numerical normal gradient ie $\frac{-1}{\frac{dy}{dx}}$ and point
		A1	$\left(\frac{\pi}{2}, 3\right)$ All correct isw
7 (i)	$\frac{h}{8} = \frac{6-r}{6} \to h = \frac{4}{3}(6-r)$	M1 A1	Uses correct ratio. Cannot be implied
(ii)	$V = \pi r^{2} h = \pi r^{2} \times \frac{4}{3} (6 - r)$ $= 8\pi r^{2} - \frac{4}{3} \pi r^{3}$	B1	AG all steps must be seen Penalise missing brackets at any point in working
(iii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 16\pi r - 4\pi r^2$	M1 A1	Differentiate at least one power reduced by one
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 0 \to r = 4$	M1 A1	Attempt to solve – must get $r =$ Correct value of r . Ignore $r = 0$
	$V = \frac{128}{3}\pi \qquad \left(=42.7\pi\right)$	A1	Correct value of V . Condone 134. $\frac{d^2V}{dr^2}$ must be correct and some
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = 16\pi - 8\pi r < 0 \text{ when } r = 4 \to \text{max}$	B1	dr ² indication of a negative value seen plus maximum stated

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	21

8 (i)	Gradient $AB = \frac{8-2}{9+3}$ $\left(=\frac{1}{2}\right)$ isw	B1	
	Equation AB and $x = 0 \rightarrow \frac{y-2}{0+3} = \frac{1}{2} \qquad \left(\rightarrow y = \frac{1}{2}x + 3.5 \right)$	M1	Find equation with <i>their</i> gradient and set $x = 0$
	y = 3.5	A1	
(ii)	D is (3, 5)	В1	
(iii)	Gradient perpendicular = -2	M1	Use of $m_1 \times m_2 = -1$ on gradient used for <i>their</i> line in (i)
	Equation perpendicular $\frac{y-5}{x-3} = -2$ $\rightarrow (y = -2x + 11)$	A1	
(iv)	E is (0, 11)	A1FT	
(v)	Area of $ABE = \frac{1}{2} \begin{vmatrix} -3 & 9 & 0 & -3 \\ 2 & 8 & 11 & 2 \end{vmatrix}$	M1	For area of <i>ABE</i> or <i>ECD</i> . $\frac{1}{2}$ and <i>their</i> correct 8 elements must be seen.
	$=\frac{1}{2} -24+99-18+33 =45$	A1	45 condone from $E(0, -4)$
	Area of $EDC = \frac{1}{2} \begin{vmatrix} 3 & 0 & 0 & 3 \\ 5 & 3.5 & 11 & 5 \end{vmatrix}$		
	$=\frac{1}{2} -10.5+33 =11.25$	A1	11.25 condone from $E(0, -4)$

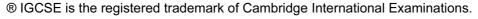
Page 6	ge 6 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	21

	1		<u> </u>
9 (i)	$\tan 2x = -\frac{5}{4}$ (2x = 128.7, 308.7)	M1	For obtaining and using $\tan 2x = \pm \frac{5}{4}$ or $\pm \frac{4}{5}$
			resulting in $2x =$
	x = 64.3 awrt 154.3 awrt	A1 A1FT	$tanx = \dots \text{ gets M0}$ $their 64.3^{\circ} + 90^{\circ}$
(ii)	$\csc^2 y + 3\csc y - 4 = 0$ or	B1	In any form as a three term quadratic.
	$4\sin^2 y - 3\sin y - 1 = 0$		
	$(\csc y + 4)(\csc y - 1) = 0 \text{or}$		
	$(4\sin y + 1)(\sin y - 1) = 0$		
	$\sin y = -\frac{1}{4} \text{or} \sin y = 1$	M1	Solve three term quadratic in cosec <i>y</i>
	104.5 245.5 00	A1A1A1	or sin <i>y</i> Answers must be obtained from the
	y = 194.5, 345.5, 90	AIAIAI	correct quadratic
(iii)	$z + \frac{\pi}{4} = \pi - \frac{\pi}{3}$ or	B1	Accept 2.09, 2.10, $\pi - 1.05$, $\pi - 1.04$ on
			RHS. Could be implied by final answer
	$z + \frac{\pi}{4} = \pi + \frac{\pi}{3}$	B1	Accept 4.19, 4.18, $\pi + 1.05$, $\pi + 1.04$ on
	$z = \frac{5\pi}{12}, \frac{13\pi}{12}$	B1B1	RHS. Could be implied by final answer Answers must be correct multiples of π .
	$z=\frac{1}{12}, \frac{1}{12}$	DIDI	Thiswers must be correct multiples of \(\lambda\).
10 (i)	$s = \frac{1}{2}e^{2t} + 3e^{-2t} - t + (c)$	M1	Integrate: coefficient of $\frac{1}{2}$ or 3 seen
	2		with no change in powers of e. Ignore $-t$
	$t = 0, \ s = 0 \rightarrow c = -3.5$		with no change in powers of c. Ignore 1
	$s = \frac{1}{2}e^{2t} + 3e^{-2t} - t - 3.5$	A1	All correct and simplified
	$\left(\frac{s-2}{2}c^{2}+3c^{2}-l-3.3\right)$	A1	
(**)		N/1	Obtain the state of the state o
(ii)	$v = 0 \rightarrow u^2 - u - 6 = 0$ oe (u - 3)(u + 2) = 0	M1	Obtain three term quadratic in u or e^{2t} Condone sign errors.
	(u-3)(u+2)=0		
		DM1	Solve three term quadratic
	$4u = 3 + 2 = 0$ $4u = 3 + t = \frac{1}{2} \ln 3 \text{ or } 0.549$	A1	Accept 0.55 No second answer
	2		*
(:::)	$t = \frac{1}{2} \ln 2$ $\alpha = 2e^{2t} + 12e^{-2t}$	D1	Compat differentiation
(iii)	$t = \frac{1}{2} \ln 3 \to a = 2e^{2t} + 12e^{-2t}$	B1	Correct differentiation
	=6+4=10	B1	Allow awrt 10.0 or 9.99. No second
			answer.

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS


0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	age 2 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	22

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

1	(i)	f(-2) = -32 - 16 + 30 + 18 = 0	B1	All four evaluated terms must be seen. Allow if correct long division used
	(ii)	$f(x) = (x+2)(4x^2 - 12x + 9)$	M1 A1	Coefficients 4 and 9 Coefficient –12
		= (x+2)(2x-3)(2x-3)	A1	All three factors together
		$f(x) = 0 \to x = -2, 1.5 \text{ nfww}$	A1	Allow 1.5 mentioned just once
2	(i)	$(2-3x)^6 = 64 - 576x + 2160x^2$ isw	B1B1B1	
	(ii)	$2160 - 2 \times 576 = 1008$	M1 A1	their final $2160 + 2 \times their$ final -576
3	(i)	$\overrightarrow{AB} = \begin{pmatrix} -15\\8 \end{pmatrix}$	В1	Allow \overline{BA} May be implied by later work.
		$ AB = \sqrt{15^2 + 8^2}$ (=17)	M1	Use of Pythagoras on their AB
		Speed = $17 \times 3 = 51 \text{km/hr}$	A 1	Must be exact
	(ii)	$\overrightarrow{BC} = \begin{pmatrix} 16 \\ -30 \end{pmatrix}$	В1	Allow \overrightarrow{CB}
		$ BC = \sqrt{16^2 + 30^2} (= 34)$	M1	Use of Pythagoras on their BC
		Time taken = $\frac{34}{51} \times 60 = 40 \text{ mins (or } \frac{2}{3} \text{ hrs)}$	A1	Allow answers which round to 40 to 2sf. Accept 0.66 or 0.67 hrs. Mark final answer.

Page 3	ge 3 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	22

4	(a)	$2\mathbf{B}\mathbf{A} = 2 \begin{pmatrix} 1 & -2 & 4 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & 5 \\ 7 & 4 \end{pmatrix}$ $= 2 \begin{pmatrix} 24 & 5 \\ 5 & 17 \end{pmatrix} = \begin{pmatrix} 48 & 10 \\ 10 & 34 \end{pmatrix}$	B3,2,1,0	-1 each error in 2 × 2 result. Failure to multiply by 2 is one error
	(b) (i)	$\mathbf{C}^{-1} = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ 1 & 1 \end{pmatrix} \text{ isw}$	B1 B1	$\frac{1}{8}$ Matrix
	(ii)	$\mathbf{I} - \mathbf{D} = \begin{pmatrix} -2 & 2 \\ -1 & -3 \end{pmatrix}$	В1	
		$\mathbf{X} = \mathbf{C}^{-1} \left(\mathbf{I} - \mathbf{D} \right) = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2 \\ -1 & -3 \end{pmatrix}$	M1	Pre multiply <i>their</i> $\mathbf{I} - \mathbf{D}$ with <i>their</i> \mathbf{C}^{-1}
		$=\frac{1}{8}\begin{pmatrix} -10 & 18\\ -3 & -1 \end{pmatrix}$ isw	A1	
5	(a)	$2^{3(q-1)} \times 2^{2p+1} = 2^{14}$	B1	Correct powers of 2 allow unsimplified isw
		$3^{2(p-4)} \times 3^q = 3^4$	B1	Correct powers of 3 allow unsimplified
		Solve $3q + 2p = 16$ q + 2p = 12	M1	Attempt to solve <i>their</i> linear equations by eliminating one variable
		p=5, $q=2$	A1	Both correct
	(b)	(3x-2)(x+1)	M1	LHS oe isw
		= 50	A1	50 from correct processing of 2 – lg 2
		$3x^2 + x - 52 = 0 \rightarrow (3x + 13)(x - 4)$	M1	Solution of <i>their</i> three term quadratic Roots must be obtained from correct
		x = 4	A1	quadratic
		$x = -\frac{13}{3}$ discarded	A1	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	22

6 (i)	a = 3, b = 2, c = 4	B1B1B1	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8\cos 4x \text{ isw}$	M1 A1FT	$\pm k \cos cx$ and no other term in $x = c \neq 1$ $bc \times \cos cx$ and no other term
(iii)	$x = \frac{\pi}{2} \to \frac{\mathrm{d}y}{\mathrm{d}x} = 8\cos 2\pi = 8$	DM1	Find <i>their</i> correct numerical $\frac{dy}{dx}$
	Eqn: $\frac{y-3}{x-\frac{\pi}{2}} = -\frac{1}{8}$ $\left(\to y = -\frac{1}{8}x + 3.20 \right)$	M1	Find equation with <i>their</i> numerical normal gradient ie $\frac{-1}{\frac{dy}{dx}}$ and point
		A1	$\left(\frac{\pi}{2}, 3\right)$ All correct isw
7 (i)	$\frac{h}{8} = \frac{6-r}{6} \to h = \frac{4}{3}(6-r)$	M1 A1	Uses correct ratio. Cannot be implied
(ii)	$V = \pi r^{2} h = \pi r^{2} \times \frac{4}{3} (6 - r)$ $= 8\pi r^{2} - \frac{4}{3} \pi r^{3}$	B1	AG all steps must be seen Penalise missing brackets at any point in working
(iii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 16\pi r - 4\pi r^2$	M1 A1	Differentiate at least one power reduced by one
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 0 \to r = 4$	M1 A1	Attempt to solve – must get $r =$ Correct value of r . Ignore $r = 0$
	$V = \frac{128}{3}\pi \qquad \left(=42.7\pi\right)$	A1	Correct value of V . Condone 134. $\frac{d^2V}{dr^2}$ must be correct and some
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = 16\pi - 8\pi r < 0 \text{ when } r = 4 \to \text{max}$	B1	dr ² indication of a negative value seen plus maximum stated

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	22

8 (i)	Gradient $AB = \frac{8-2}{9+3}$ $\left(=\frac{1}{2}\right)$ isw	B1	
	Equation AB and $x = 0 \rightarrow \frac{y-2}{0+3} = \frac{1}{2} \qquad \left(\rightarrow y = \frac{1}{2}x + 3.5 \right)$	M1	Find equation with <i>their</i> gradient and set $x = 0$
	y = 3.5	A1	
(ii)	D is (3, 5)	В1	
(iii)	Gradient perpendicular = -2	M1	Use of $m_1 \times m_2 = -1$ on gradient used for <i>their</i> line in (i)
	Equation perpendicular $\frac{y-5}{x-3} = -2$ $\rightarrow (y = -2x + 11)$	A1	
(iv)	E is (0, 11)	A1FT	
(v)	Area of $ABE = \frac{1}{2} \begin{vmatrix} -3 & 9 & 0 & -3 \\ 2 & 8 & 11 & 2 \end{vmatrix}$	M1	For area of <i>ABE</i> or <i>ECD</i> . $\frac{1}{2}$ and <i>their</i> correct 8 elements must be seen.
	$=\frac{1}{2} -24+99-18+33 =45$	A1	45 condone from $E(0, -4)$
	Area of $EDC = \frac{1}{2} \begin{vmatrix} 3 & 0 & 0 & 3 \\ 5 & 3.5 & 11 & 5 \end{vmatrix}$		
	$=\frac{1}{2} -10.5+33 =11.25$	A1	11.25 condone from $E(0, -4)$

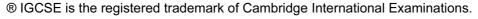
Page 6	ge 6 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	22

	1		<u> </u>
9 (i)	$\tan 2x = -\frac{5}{4}$ (2x = 128.7, 308.7)	M1	For obtaining and using $\tan 2x = \pm \frac{5}{4}$ or $\pm \frac{4}{5}$
			resulting in $2x =$
	x = 64.3 awrt 154.3 awrt	A1 A1FT	$tanx = \dots \text{ gets M0}$ $their 64.3^{\circ} + 90^{\circ}$
(ii)	$\csc^2 y + 3\csc y - 4 = 0$ or	B1	In any form as a three term quadratic.
	$4\sin^2 y - 3\sin y - 1 = 0$		
	$(\csc y + 4)(\csc y - 1) = 0 \text{or}$		
	$(4\sin y + 1)(\sin y - 1) = 0$		
	$\sin y = -\frac{1}{4} \text{or} \sin y = 1$	M1	Solve three term quadratic in cosec <i>y</i>
	104.5 245.5 00	A1A1A1	or sin <i>y</i> Answers must be obtained from the
	y = 194.5, 345.5, 90	AIAIAI	correct quadratic
(iii)	$z + \frac{\pi}{4} = \pi - \frac{\pi}{3}$ or	B1	Accept 2.09, 2.10, $\pi - 1.05$, $\pi - 1.04$ on
			RHS. Could be implied by final answer
	$z + \frac{\pi}{4} = \pi + \frac{\pi}{3}$	B1	Accept 4.19, 4.18, $\pi + 1.05$, $\pi + 1.04$ on
	$z = \frac{5\pi}{12}, \frac{13\pi}{12}$	B1B1	RHS. Could be implied by final answer Answers must be correct multiples of π .
	$z=\frac{1}{12}, \frac{1}{12}$	DIDI	Thiswers must be correct multiples of \(\lambda\).
10 (i)	$s = \frac{1}{2}e^{2t} + 3e^{-2t} - t + (c)$	M1	Integrate: coefficient of $\frac{1}{2}$ or 3 seen
	2		with no change in powers of e. Ignore $-t$
	$t = 0, \ s = 0 \rightarrow c = -3.5$		with no change in powers of c. Ignore 1
	$s = \frac{1}{2}e^{2t} + 3e^{-2t} - t - 3.5$	A1	All correct and simplified
	$\left(\frac{s-2}{2}c^{2}+3c^{2}-l-3.3\right)$	A1	
(**)		N/1	Obtain the state of the state o
(ii)	$v = 0 \rightarrow u^2 - u - 6 = 0$ oe (u - 3)(u + 2) = 0	M1	Obtain three term quadratic in u or e^{2t} Condone sign errors.
	(u-3)(u+2)=0		
		DM1	Solve three term quadratic
	$4u = 3 + 2 = 0$ $4u = 3 + t = \frac{1}{2} \ln 3 \text{ or } 0.549$	A1	Accept 0.55 No second answer
	2		*
(:::)	$t = \frac{1}{2} \ln 2$ $\alpha = 2e^{2t} + 12e^{-2t}$	D1	Compat differentiation
(iii)	$t = \frac{1}{2} \ln 3 \to a = 2e^{2t} + 12e^{-2t}$	B1	Correct differentiation
	=6+4=10	B1	Allow awrt 10.0 or 9.99. No second
			answer.

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS


0606/23 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	2 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	23

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

1	$y = x^{3} + 3x^{2} - 5x - 7$ $\frac{dy}{dx} = 3x^{2} + 6x - 5$	M1	Differentiate
	${\mathrm{d}x} = 3x^{2} + 6x - 3$	A1	Differentiate
	$x = 2 \to \frac{\mathrm{d}y}{\mathrm{d}x} = 19$	A1FT	on their $\frac{dy}{dx}$
	y=3	B1	
	eqn of tangent: $\frac{y-3}{x-2} = 19 \rightarrow (y=19x-35)$	A1FT	
2	$2x + k + 2 = 2x^2 + (k+2)x + 8$	M1	eliminate y or x
	$2x^2 + kx + 6 - k (=0)$	A1	correct quadratic
	$b^2 - 4ac = k^2 - 4 \times 2(6 - k)$	M1	use discriminant
	$k^2 + 8k - 48 (>0)$		
	(k+12)(k-4) (>0)	DM1	attempt to solve 3 term quadratic
		A1	k = -12 and $k = 4$
	k < -12 or k > 4	A1	
3 (a)	$\frac{dy}{dx} = \frac{(2-x^2)3x^2 - x^3(-2x)}{(2-x^2)^2} = \left(\frac{6x^2 - x^4}{(2-x^2)^2}\right)$	M1	For quotient rule (or product rule on correct <i>y</i>)
		A2,1,0	
	dv 1		
(b)	$\frac{dy}{dx} = x \times \frac{1}{2} (4x+6)^{-0.5} \times 4 + (4x+6)^{0.5}$	M1	product rule
		A1	
	$= \frac{6(x+1)}{(4x+6)^{0.5}} \to k = 6$	A1	
		3.41	-1::
4	$x(4-\sqrt{3})=13$	M1 A1	eliminate y or x simplified
	$x = \frac{13(4+\sqrt{3})}{}$	M1	rationalisation
	$x = \frac{1}{\left(4 - \sqrt{3}\right)\left(4 + \sqrt{3}\right)}$	1,11	
	$=4+\sqrt{3}$	A1	
	$= 4 + \sqrt{3}$ $y = 1 - 2\sqrt{3}$	A1	
L		l	

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	23

5	(x-3)(x-3)(x-1) = 0	M1	
	$x^3 - 7x^2 + 15x - 9 = 0$		
	a = -7	A1	
	b=15	A1	
	c = -9	A1	\mathbf{AG} for c
6	$\log_x 2 = \frac{\log_2 2}{\log_2 x}$	B1	
	$2\log_2 x = \log_2 x^2$	B1	
	$3 = \log_2 8$	B1	
	$8x^2 - 29x + 15 \ (=0)$	M1	obtain quadratic and attempt to solve
	$\rightarrow (8x-5)(x-3) \ (=0)$	1411	T
	$x = \frac{5}{8} \text{ or } x = 3$	A1	
7 (i)	$a = -\frac{20}{\left(t+2\right)^3}$	M1 A1	$k(t+2)^{-3}$ oe $k = -20$
	$t = 3 \rightarrow a = -0.16 \text{ m/s}^2$	A1FT	
(ii)	$\frac{10}{(t+2)^2} \text{ is never zero.}$ $s = -\frac{10}{t+2} + 5$	В1	
(iii	$s = -\frac{10}{t+2} + 5$	M1 A1	integrate $\frac{k}{t+2}$ $k = -10$
		A1	+5
(iv	$s = \left[-\frac{10}{t+2} \right]_3^8 = -1 + 2$	M1	insert limits and subtract
	=1	A1	

Page 4	ge 4 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	23

8	(i)	$\sec^2 x + \csc^2 x = \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x}$	B1	
		$= \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x}$	B1	add fractions
		$=\frac{1}{\sin^2 x \cos^2 x}$	B1	use of $\sin^2 x + \cos^2 x = 1$
		$= \sec^2 x \csc^2 x$	B1	fully correct solution
	(ii)	$\frac{1}{\cos^2 x \sin^2 x} = 4 \frac{\sin^2 x}{\cos^2 x}$	M1	
		\rightarrow $4\sin^2 x = 1$	A1	correct simplified equation
		$\sin x = \pm \frac{1}{\sqrt{2}}$		
		$x = 135^{\circ}, 225^{\circ}$	A1, A1	
9	(i)	$f(x) = 3x^{2} + 12x + 2 = 3(x+2)^{2} - 10$ $a = 3$ $b = 2$ $c = -10$	B1 B1 B1	
	(ii)	minimum $f(x) = -10$ at $x = -2$	B1FT B1FT	
	(iii)	$f\left(\frac{1}{y}\right) = 0 \to \left(\frac{1}{y}\right) = (\pm)\sqrt{\frac{10}{3}} - 2$	M1	obtain explicit expression for $\frac{1}{y}$ or y
		y = -5.74, -0.26	A1, A1	

Page 5	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	23

			1	T T
10		$\frac{d}{dx}(e^{2-x^2}) = -2xe^{2-x^2}$	B1	k = -2
	(ii)	$-\frac{3e^{2-x^2}}{2}+c$	M1 A1FT	De^{2-x^2} $D = \frac{-3}{2} \text{ or } \frac{3}{k}$
	(iii)	$\left[-\frac{3e^{2-x^2}}{2} \right]_1^{\sqrt{2}} = -\frac{3}{2} + \frac{3}{2}e$ 2.58	M1 A1	insert limits on their (ii) and subtract
		2.58 $y = 3xe^{2-x^2}$	M1 A1	product rule
		$\frac{dy}{dx} = 3x(-2xe^{2-x^2}) + 3e^{2-x^2}$ $\frac{dy}{dx} = 0 \Rightarrow x = \pm \frac{1}{\sqrt{2}} = \pm 0.707$	A1	both x or a pair
		$y = \pm \frac{3}{\sqrt{2}} e^{1.5} = \pm 9.51$	A1	both y
11	(i)	$\log N = \log A - t \log b$	B1	
	(ii)	t 1 2 3 4 5 6 log N 3.30 3.11 2.95 2.77 2.60 2.41 ln N 7.60 7.17 6.79 6.38 5.98 5.56	M1	find logs of N
			M1	plot $\log N$ or $\ln N$ against t or $-t$
			A1	straight line passing through five points
	(iii)	gradient = $-\log b = \frac{2.415 - 3.3}{5} \rightarrow b = 1.5$	DM1	set gradient = $-\log b$ and solve
		intercept = $\log A = 3.47 \rightarrow A = 2950$	DM1 A1	set intercept = $log A$ and solve both values correct
	(iv)	$t = 10 \to N = \frac{2950}{1.5^{10}} = 51$	B1	
	(v)	$N = 10 \rightarrow 1.5' = 295 \rightarrow t = \frac{\log 295}{\log 1.5}$	M1	substitute $N = 10$, their A , b into given or transformed equation
		= 14 years	A1	

Page 6	6 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	23

12	$v_p = \begin{pmatrix} 250\cos 20^{\circ} \\ 250\sin 20^{\circ} \end{pmatrix}, \ v_r = \begin{pmatrix} V\cos 30^{\circ} \\ V\sin 30^{\circ} \end{pmatrix}, \ v_w = \begin{pmatrix} 0 \\ w \end{pmatrix}$	B1	
	$ \begin{pmatrix} v_r = v_p + v_w \\ \left(V \cos 30^\circ \right) = \begin{pmatrix} 250 \cos 20^\circ \\ 250 \sin 20^\circ \end{pmatrix} + \begin{pmatrix} 0 \\ w \end{pmatrix} $		
	$V = \frac{250\cos 20^{\circ}}{\cos 30^{\circ}}$ $= 271 \text{ km/hr}$	M1 A1	equate x components and solve
	$w = V \sin 30^{\circ} - 250 \sin 20^{\circ}$ = 50.1km/hr	M1 A1	equate y components and solve
	OR triangle with sides $250 V w$ opposite angles $60^{\circ} 110^{\circ} 10^{\circ}$	B1	
	sine rule: $\frac{w}{\sin 10^{\circ}} = \frac{250}{\sin 60^{\circ}}$ $w = 50.1 \text{km/hr}$	M1 A1	apply to correct triangle and solve
	$\frac{V}{\sin 110^{\circ}} = \frac{250}{\sin 60^{\circ}}$	M1 A1	apply to correct triangle and solve
	$V = 271 \mathrm{km/hr}$	711	

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/21 Paper 2 (Paper 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2015	0606	21

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

1	(a)	$\frac{\log_3 x}{\log_3 27}$ $\frac{\log_3 x}{3}$ isw	M1 A1	Can use other interim bases if all correct but M1 when in base 3 only NOT $\log_3 x \div 3$
	(b)	$\log_a 15 - \log_a 3 = \log_a 5 \text{ soi}$	M1	
		$\log_a 5^3 \text{ or } \log_a a$ $\log_a y = \log_a 125a \implies y = 125a$	M1 A1	
	()			G 1
2	(a)	[f(x) =]2x-4 and $[f(x) =]-2x+4$	B1,B1	Condone $y = \dots$
	(b)		B1 B1 B1	correct shape; y intercept marked or seen nearby; intent to tend to $y = 3$ (i.e. not tending to or cutting x-axis)
3	(a)	$\mathbf{A} = \frac{1}{4} \begin{bmatrix} 51 & -8 & 19 \\ 31 & 2 & 65 \end{bmatrix} - \begin{pmatrix} 20 & 0 & -5 \\ 15 & -10 & 25 \end{bmatrix}$	M1	
		$\mathbf{A} = \begin{pmatrix} 8 & -2 & 6 \\ 4 & 3 & 10 \end{pmatrix}$	A1	Integer values
	(b) (i)	The (total) value of the stock in each of the 3 shops	B1	Must have "each" oe
	(ii)	The total value of the stock in all 3 shops	B1	Must have "total" oe

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	21

4	(i)	$\frac{PT}{8} = \tan\left(\frac{3\pi}{8}\right)$ oe	M1	$\frac{PT}{\sin\frac{3\pi}{8}} = \frac{8}{\sin\frac{\pi}{8}}$
		PT=19.3	A1	awrt 19.3
	(ii)	$\frac{1}{2} \times 8^2 \times \frac{3\pi}{4}$ oe (75.4)	M1	or $\frac{1}{2} \times 8^2 \times \frac{3\pi}{8}$
		$8\tan\left(\frac{3\pi}{8}\right) \times 8 - their \text{ sector oe } (=154.5\text{-}`75.4")$	M1	8×their PT – their sector
		79.1	A1	awrt 79.1
	(iii)	$8\left(\frac{3\pi}{4}\right) \text{ oe } (18.8)$	M1	
		$\left[6\pi + 16\tan\left(\frac{3\pi}{8}\right)\right] = 57.5$	A1	Accept 57.4 to 57.5
5	(a)	Permutation because the order matters oe	B1	
	(b) (i)	${}^{6}C_{4} + {}^{5}C_{4} + {}^{7}C_{4}$ 55	M1 A1	3 correct terms added
	(ii)	${}^{2}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}$ 420	M1 A1	4 correct terms multiplied
	(iii)	${}^{6}C_{3} \times {}^{2}C_{1}$ or ${}^{2}C_{2} \times {}^{5}C_{1} \times {}^{6}C_{1}$	M1	for either correct product
		summation 70	M1 A1	adding two correct products
				If 0 scored, then SC1for 1,1,1,0 and 0,0,2,1 seen
6	(i)	$2t^2 - 14t + 12 = 0$	M1	Can use formula, etc.
		(t-1)(t-6) oe $(t=) 1$	A1	If $t = 1$ with no working, then M1A1
				,
	(ii)	$\int (2t^2 - 14t + 12) dt$	M1	
		$(s=)\frac{2t^3}{3} - \frac{14t^2}{2} + 12t$	A2,1,0	-1 for each error or for $+c$ left in or limits introduced
	(iii)	$(a=)\frac{\mathrm{d}v}{\mathrm{d}t} (4t-14)$	M1	
		[4(3) - 14 =] -2 cao	A1	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	21

7	(a)	$\overrightarrow{AB} = 15\mathbf{b} - 5\mathbf{a} = 5(3\mathbf{b} - \mathbf{a}) \text{ or}$	B1	Any correct simplified vector
		$\overrightarrow{BC} = 24\mathbf{b} - 3\mathbf{a} - 15\mathbf{b} = 3(3\mathbf{b} - \mathbf{a}) \text{ or }$	B1	Any second simplified vector
		$\overrightarrow{AC} = 24\mathbf{b} - 3\mathbf{a} - 5\mathbf{a} = 8(3\mathbf{b} - \mathbf{a})$		
		Comment: e.g. the vectors are scalar multiples of each other AND they have a common point (<i>A</i> , <i>B</i> or <i>C</i> as appropriate)	B1dep	Dep on both B marks being awarded.
	(b) (i)	$2\mathbf{i} + 11\mathbf{j} \text{ soi}$ $\Rightarrow \sqrt{2^2 + 11^2}$	B1	
		$\sqrt{125}$ or $5\sqrt{5}$ or 11.2 (3 s.f.) or better)	B1fT	ft their $2\mathbf{i} + 11\mathbf{j}$ (not \overrightarrow{OP} or \overrightarrow{OQ})
	(ii)	$\frac{1}{5\sqrt{5}} (2\mathbf{i} + 11\mathbf{j}) \text{ isw}$	B1fT	ft their answers from (i)
	(iii)	$\frac{i-4j+3i+7j}{2}$ or $i-4j+\frac{2i+11j}{2}$ or	M1	
		$3\mathbf{i} + 7\mathbf{j} - \frac{2\mathbf{i} + 11\mathbf{j}}{2}$		
		2 i +1.5 j	A1	
8	(a) (i)	$ke^{4x+3} (+c)$ oe	M1	any constant, non-zero k
		$k = \frac{1}{4}$ oe	A1	
		4		
	(ii)	$\frac{1}{4} \left(e^{4(3)+3} - e^{4(2.5)+3} \right) \text{ or better}$	DM1	ft their integral attempt
		706650.99 = 707000 to 3 sf or better	A1	Accept $\frac{1}{4} (e^{15} - e^{13})$
	(b) (i)	$k\sin\left(\frac{x}{-}\right)$ (+ c)	M1	any constant, non-zero k
		$k\sin\left(\frac{x}{3}\right) \ (+c)$ $k=3$	A1	
	(ii)	$3\sin\left(\frac{\pi}{6}\times\frac{1}{3}\right)-3\sin(0)$	DM1	Dep on <i>their</i> integral attempt in sin; condone omission of lower limit
		0.520944 = 0.521 to 3 sf or better	A1	Accept $3\sin\left(\frac{\pi}{18}\right)$
	(c)	$\int (x^{-2} + 2 + x^2) dx = \frac{x^{-1}}{-1} + 2x + \frac{x^3}{3}$	B1 M1 A1	Expands – accept unsimplified integration of <i>their</i> 3 term expansion Fully correct
		+ <i>c</i>	B1	+c

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	21

9	(a)	$(4x-1)(x+5) [\leqslant 0]$	M1	Solves quadratic
		critical values $\frac{1}{4}$ and -5 soi	A1	
		$-5 \leqslant x \leqslant \frac{1}{4}$	A1	Accept: $\left[-5, \frac{1}{4}\right]$; $-5 \le x$ AND $x \le 0.25$
	(b) (i)	$(x+4)^2 - 25$ or $a = 4$ and $b = -25$	B1, B1	
	(ii)	(Greatest value =) 25 $x = -4$	B1ft B1ft	Must be clear
	(iii)	9 1	B1	Correct shape with maximum in second quadrant and crossing positive and negative axes correctly All 3 intercepts correctly shown on graph
10	(i)	$\ln y = \ln(Ab^x) \implies \ln y = \ln A + \ln b^x$ $\implies \ln y = \ln A + x \ln b$	M1 A1	
	(ii)	$\ln A = 11.4 \Rightarrow A = e^{their 11.4}$	M1	condone misread of scale for M1 (11.2 only)
		A = 90000 cao $\ln b = -1$ b = 0.4 cao	A1 M1 A1	Allow awrt –1
	(iii)	$x = 2.5 \Rightarrow \ln y = 9$ y = e ⁹ or 8000 to 1 sf	M1 A1	Allow awrt 8100
11	(i)	7 - x, x, 6 - x oe	B1	
		their attempt at $7-x+x+6-x+16=25$ oe	M1	
		x = 4	A1	Condone $x = 4$ for all 3 marks
	(ii)	23 - y, y, 9 - y oe	B1	or $n(A \cup C) = 48 - 16 = 32$
		48 = 30 + 25 + 15 - 7 - 6 - (their 4 + y) + their 4 oe soi	M1	or $32 = 30 + 15 - (their 4 + y)$ or $48 = (23 - y) + 3 + 16 + y + 4$ + 2 + (9 - y)
		y = 9	A1	Condone $y = 9$ for all 3 marks
	(iii)	$n(C) = 15 \text{ and } y + n(B \cap C) = 9 + 6 = 15$ [and so $A' \cap B' \cap C = \emptyset$].	B1	or equivalent deduction

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	22

Abbreviations

awrt answers which round to correct answer only cao

dependent dep

follow through after error FTignore subsequent working isw

or equivalent oe

rounded or truncated rot

SCSpecial Case soi seen or implied

without wrong working www

			Т	
1	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B3,2,1,0	2 correctly placed in Venn diagram; 1, 3, 4, 6 correctly placed; 12, 8, 0, 7, 9, 10 correctly placed; 11, 5 correctly placed
	(ii)	3	B1ft	correct or correct ft <i>their</i> (i), provided non-zero
	(iii)	{4, 6}	B1ft	correct or correct ft <i>their</i> (i), provided not the empty set
2	(i)	$[\mathbf{P} =] \begin{pmatrix} 60 & 70 & 58 \\ 50 & 52 & 34 \end{pmatrix}$ and $[\mathbf{Q} =]$ (120 300)	B2	or $[\mathbf{P} =]$ $\begin{pmatrix} 50 & 52 & 34 \\ 60 & 70 & 58 \end{pmatrix}$ and
				[Q =] (300 120) or B1 if one error
				may be written as an unevaluated product; B0 if choice of P and Q offered
	(ii)	(22200 24000 17160)	B2	must have brackets and must not have commas; must be a 1 by 3 matrix; must be from correct product; working may be seen in (i)
				or B1 for any two elements correct
	(iii)	The total (amount of revenue) from all (three) flights. oe	B1	do not accept, e.g. The total amount from each flight; must be a comment not just a figure; must not contain a contradiction

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	22

		1	
3 (i)	$\frac{\left(36+15\sqrt{5}\right)}{\left(6+3\sqrt{5}\right)} \times \frac{\left(6-3\sqrt{5}\right)}{\left(6-3\sqrt{5}\right)} \text{ oe}$	M1	or $\frac{\left(12+5\sqrt{5}\right)}{\left(2+\sqrt{5}\right)} \times \frac{\left(2-\sqrt{5}\right)}{2-\sqrt{5}}$ oe
	$\frac{216 + 90\sqrt{5} - 108\sqrt{5} - 225}{-9}$	DM1	or $\frac{24 + 10\sqrt{5} - 12\sqrt{5} - 25}{-1}$
			or $-\left(24+10\sqrt{5}\right)-12\sqrt{5}-25$
	$1+2\sqrt{5}$ cao	A1	allow $a = 1$ and $b = 2$
	Alternative method: $36 + 15\sqrt{5} = (6a + 15b) + (3a + 6b)\sqrt{5}$	M1	
	6a + 15b = 36 $3a + 6b = 15$	DM1	
	a=1 and $b=2$	A1	or $1 + 2\sqrt{5}$
(ii)	$\begin{bmatrix} AC^2 = (6+3\sqrt{5})^2 + their(1+2\sqrt{5})^2 \end{bmatrix}$ = 36 + 36\sqrt{5} + 45 + their(1+4\sqrt{5} + 20)	M1	correct or correct ft expansions, using Pythagoras with $\left(6+3\sqrt{5}\right)$ and their BC
	$102 + 40\sqrt{5}$ cao	A1	ignore attempts to square root after correct answer seen
4 (i)	() 2		Alternatively
	$\cos(x) = \frac{2}{3} \text{ oe soi}$	M1	$\sin(y) = \frac{2}{3} \text{ oe soi}$
	48.189° or 131.810° or 0.8410 rad or 2.3(00) rad oe isw with reference axis indicated by comment, e.g. "to the bank" or "upstream", etc. or clearly marked on a diagram	A1	41.810° or 0.7297 or 0.73(0) rad oe isw with reference axis indicated by comment, e.g. "to the perpendicular with the bank", etc. or clearly marked on a diagram If M0 then SC1 for an unsupported answer of 138.189° or 2.4118 rad or 318.189° or 5.5534 rad with reference axis indicated by comment, e.g. "on a bearing of" or "from North" or
			clearly marked on a diagram

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	22

		I	T
(ii)	Speed = $\sqrt{9-4}$ (= $\sqrt{5}$) or $3\sin 48.2$ or $2\tan 48.2$ or $3\cos 41.8$ or $\frac{2}{\tan 41.8}$ or $\sqrt{2^2+3^2-2\times2\times3\cos48.2}$ oe or $2.236(0)$ rot to 4 or more figs or 2.24 [m/s] soi	B1	Or Distance = $\frac{80}{\sin 48.2}$ = 107.(33) oe soi
	time = $\frac{80}{their \sqrt{5}}$ oe	M1	time = $\frac{their 107.33}{3}$
	35.66 to 35.8 (seconds) oe	A1	ignore subsequent rounding or attempted conversion to, e.g. minutes but A0 if answer spoiled by continuation of method if no working, so B0 M0, then allow B3 for an answer 35.66 to 35.8 oe
5	Substitution of either $4 - x$ or $4 - y$ into equation of curve and brackets expanded	M1	condone one sign error or slip in either equation of curve or expansion of brackets; condone omission of $= 0$, BUT $4-x$ or $4-y$ must be correct
	$\begin{vmatrix} 12x^2 - 52x + 48 & [= 0] \\ \text{or } 12y^2 - 44y + 32 & [= 0] \text{ oe} \end{vmatrix}$	A1	
	Solve their 3-term quadratic	M1	dep on a valid substitution attempt
	$x = \frac{4}{3}$ and 3 isw	A1	or $x = \frac{4}{3}$ $y = \frac{8}{3}$
			not from wrong working
	$y = \frac{8}{3}$ and 1 isw	A1	or $x = 3$ $y = 1$ not from wrong working
			if no working, allow full marks for fully correct answer only.
6 (a)	$(x-2) \log 6 = \log \left(\frac{1}{4}\right)$ oe or	M1	or $x \log 6 = \log\left(\frac{36}{4}\right)$ oe
	$\log_6\left(\frac{1}{4}\right) = x - 2 \text{ oe}$		or $x \log 6 - \log 36 = \log 1 - \log 4$ oe
	1.23 or 1.226(29) rot to 4 or more figures isw	A1	correct answer or 1.22 implies M1

Page 5	age 5 Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0606	22

(b)	Method 1 $(8 \times 2v^2 \times 16v)$		
	$\log\left(\frac{8 \times 2y^2 \times 16y}{64y}\right) = \log 4^2 \text{ oe}$	В3	or B2 if at most one error or omitted step or B1 if at most two errors or omitted
	y=2	B1	not from wrong working
	Method 2 $\log 2 + 2 \log y + 3 \log 2 + 4 \log 2 + \log y - 6 \log 2 - \log y = 4 \log 2$	B3,2,1,0	LHS terms $\log 2y^2 = \log 2 + 2\log y$; $\log 8 = 3\log 2$; $\log 16y = 4\log 2 + \log y$; $-\log 64y = -6\log 2 - \log y$; RHS term $2\log 4 = 4\log 2$
	y=2	B1	not from wrong working
7	$\frac{n(n-1)(n-2)(n-3)(2^{4})}{4\times 3\times 2\times 1} = 10\frac{n(n-1)(2^{2})}{2\times 1}$ or better	M3	condone omitting the factor of n and/or $n-1$; must have dealt with factorials M2 if one slip/omission
			or M1 if two slips/omissions or
			B1 for $\frac{n(n-1)}{2}(2)^2[x^2]$ seen
			B1 for $\frac{n(n-1)(n-2)(n-3)}{24}(2)^4[x^4]$
	$n^2 - 5n - 24 = 0$ oe	A1	seen equivalent must be 3-terms, e.g. $n^2 - 5n = 24$
	(n+3)(n-8)[=0]	M1	or any valid method of solution for their 3-term quadratic
	n = 8 only	A1	A0 if -3 also given as a final solution, i.e. not discarded If zero scored, allow SC1 for $n = 8$ unsupported or without correct method

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	22

8	Method 1 (Separate areas subtracted)		
	$[x_B = x_C =] 7 \text{ soi}$	B1	
	$\int \left[\int (x^2 - 6x + 10) dx = \right] \frac{x^3}{3} - \frac{6x^2}{2} + 10x$	M2	or M1 for at least one term correct
	Correct or correct ft substitution of limits 0 and their 7 into their $\left[\frac{x^3}{3} - \frac{6x^2}{2} + 10x\right]$	DM1	dep on at least M1 being earned; evidence of substitution must be seen in <i>their</i> integral which must be at least two terms; condone omission of lower limit;
	$\frac{1}{2}(10+17)\times 7$ oe or	B2	or M1 for
	$\int_0^7 (x+10) dx = \left[\frac{x^2}{2} + 10x \right]_0^7 = \frac{(7)^2}{2} + 10(7)$ oe		$\frac{1}{2}(their 10 + their 17) \times their 7 \text{ oe}$ or B1 for $\int (x+10) dx = \frac{x^2}{2} + 10x$
	their $\left(\frac{189}{2} - \frac{112}{3}\right)$	M1	dep on a genuine attempt to integrate the equation of the curve; must be <i>their</i> area trapezium/under the line – <i>their</i> attempt at area under curve
	$\frac{343}{6}$ or $57\frac{1}{6}$ or 57.2 to 3 sf or $57.16(6)$ rot to 4 figs isw	A1	from full and correct working with no omitted steps
	Method 2 (Subtracting and using integration once)		
	$ [x_B = x_c =] 7 \text{ soi} $ $ \int (-x^2 + 7x) dx $	B1	
	$\int \left(-x^2 + 7x\right) dx$	B1	condone omission of dx
	$\left[-\frac{x^3}{3} + \frac{7x^2}{2} \right] \text{ oe or } \left[\frac{x^3}{3} - \frac{7x^2}{2} \right] \text{ oe}$	M3	or M2 for $\int (px^2 + qx) dx = \frac{px^3}{3} + \frac{qx^2}{2} \text{ oe either with}$ $p = \pm 1 \text{ or } q = \pm 7$
	Correct or correct ft substitution of limits 0 and <i>their</i> 7	M2	or M1 for $\int (px^2 + qx) dx = \frac{px^3}{3} + \frac{qx^2}{2}$ with non-zero constants p and q , with $p \neq \pm 1$ and $q \neq \pm 7$ dep on a valid integration attempt; evidence of substitution must be seen;
	into their $\left[-\frac{x^3}{3} + \frac{7x^2}{2}\right]$		condone omission of lower limit;
	$\frac{343}{6}$ or $57\frac{1}{6}$ or 57.2 to 3 sf or $57.16(6)$ rot to 4 figs isw	A1	from full and correct working with no omitted steps

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	22

9 (i)	10 = 2m + 4 soi	M1	or $[m=]\frac{10-4}{2-0}$ oe soi
	m=3	A1	
(ii)	1	В1	
(iii)	$\frac{10-y_R}{2}=1$ oe soi	M1	or $y = x + 8$ oe
	$\frac{10 - y_R}{2 - 1} = 1 \text{ oe soi}$ (-1, 7) or $x = -1$ and $y = 7$	A1	if $y = 7$ only stated, provided that $x = -1$ is soi in working allow both marks
			if M0 then B1 for $y = 7$ only with no working
(iv)	Use of $m_1 m_2 = -1$ with their m from (i)	M1	may be implied by perpendicular gradient seen in equation
	$y - 10 = \left(their - \frac{1}{3}\right)(x - 2)$	A1	or $\left(their - \frac{1}{3}\right)x + c$ and
			$10 = \left(their - \frac{1}{3}\right)2 + c$
	3y + x = 32 isw	A1	allow for correct equation with integer coefficients in any simplified form
(v)	$\left(\frac{1}{2}, their \frac{11}{2}\right)$ oe isw	B1,B1ft	ft their y_Q
			or M1 for $\left(\frac{2-1}{2}, \frac{10+1}{2}\right)$ seen
(vi)	4.5 oe cao	B2	not from wrong working
			or M1 for any correct method with correct coordinates
10 (a)		B2,1,0	correct sinusoidal/reflected sinusoidal shape, all above <i>x</i> -axis with intent to have all maximum points of equal height;
	0 90 180 270 360		2 maximum points of intended equal height only over 0 to 360;
			all max points clearly at $y = 1$;
			cusp at 180
L		l	<u> </u>

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	22

	(b)(i)	$[hg(x) =] \frac{e^{\ln(4x-3)} + 3}{4}$	M1	Alternative method $y = \ln(4x - 3)$ and change of subject to x
		fully correct and completion to $[hg(x) =] x$	A1	fully correct and comment that $h(x) = g^{-1}(x)$ oe
	(ii)	y = h(x) $y = g(x)$ 1	B2,1,0	correct shape; 1 marked on the <i>y</i> -axis or (0, 1) stated close by; curve with positive gradient in first quadrant only
	(iii)	$x \geqslant 0 \text{ or } [0, \infty)$	B1	not domain ≥ 0
	(iv)	$y\geqslant 1$ or $[1,\infty)$	B1	or $h(x) \geqslant 1$, $h \geqslant 1$ etc.
11	(i)	$\frac{8-h}{8} \text{ or } 8:8-h \text{ soi}$	M1	or $\frac{8}{8-h}$ or $8-h:8$ soi
		$\frac{8-h}{8} \times 4$ oe	A1	or $4 \div \frac{8}{8-h}$ oe
		$h\left(\frac{8-h}{8}\times4\right)^2$ oe	M1	h must be in the numerator of the expression for this mark;
		expand and simplify to $\frac{h^3}{4} - 4h^2 + 16h$ AG	A1	
	(ii)	$\frac{3}{4}h^2 - 8h + 16$ oe	B1	
		their $\left(\frac{3}{4}h^2 - 8h + 16\right) = 0$ and attempt to solve	M1	must be a 3-term quadratic; must be an attempt at a derivative
		$\frac{8}{3}$ oe only	A2	or A1 for $h = \frac{8}{3}$ and 8
				allow 2.67 or 2.66(6) rot to 4 or more figs for $\frac{8}{3}$

Page 9	age 9 Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0606	22

12 (i)	-120 + 104 + 22 - 6 = 0	B1	or correct synthetic division	
	or correct unsimplified form, e.g. $15(-2)^3 + 26(-2)^2 - 11(-2) - 6 = 0$ or $15(-8) + 26(4) - 11(-2) - 6 = 0$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(ii)	Substituting $x = 3$ into $15x^3 + 26x^2 - 11x - 6$	M1	or correct synthetic division	
			3	
	600	A1	correct answer implies M1; must be explicitly identified as answer if using synthetic/long division methods by e.g. circling	
(iii)	$(x-1)(15x^3+26x^2-11x-6)$ soi	B1	by inspection or division; may be implied by e.g. $(ax + b)(15x^3 + 26x^2 - 11x - 6)$ and $a = 1$, $b = -1$ seen in later work comparing coefficients	
	Multiply out $(x \pm 1)(15x^3 + 26x^2 - 11x - 6)$ and compare coefficients of x^3 or x to quartic	M1	or multiply out, e.g. $(ax + b)(15x^3 + 26x^2 - 11x - 6)$ and compare coefficients of x^3 or x to quartic	
	p = 11 $q = 5$	A1	correct p or q implies M1; correct p and q www implies B1 M1	
	Ч ^У	A1		

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/23 Paper 2 (Paper 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2015	0606	23

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

1	(a)	$\frac{\log_3 x}{\log_3 27}$ $\frac{\log_3 x}{3}$ isw	M1 A1	Can use other interim bases if all correct but M1 when in base 3 only NOT $\log_3 x \div 3$
	(b)	$\log_a 15 - \log_a 3 = \log_a 5 \text{ soi}$	M1	
		$\log_a 5^3$ or $\log_a a$	M1	
		$\log_a y = \log_a 125a \implies y = 125a$	A1	
2	(a)	[f(x) =]2x-4 and $[f(x) =]-2x+4$	B1,B1	Condone $y = \dots$
	(b)		B1 B1 B1	correct shape; y intercept marked or seen nearby; intent to tend to $y = 3$ (i.e. not tending to or cutting x -axis)
3	(a)	$\mathbf{A} = \frac{1}{4} \begin{bmatrix} 51 & -8 & 19 \\ 31 & 2 & 65 \end{bmatrix} - \begin{pmatrix} 20 & 0 & -5 \\ 15 & -10 & 25 \end{bmatrix}$	M1	
		$\mathbf{A} = \begin{pmatrix} 8 & -2 & 6 \\ 4 & 3 & 10 \end{pmatrix}$	A1	Integer values
	(b) (i)	The (total) value of the stock in each of the 3 shops	B1	Must have "each" oe
	(ii)	The total value of the stock in all 3 shops	B1	Must have "total" oe

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0606	23

4	(i)	$\frac{PT}{8} = \tan\left(\frac{3\pi}{8}\right)$ oe	M1	$\frac{PT}{\sin\frac{3\pi}{8}} = \frac{8}{\sin\frac{\pi}{8}}$
		PT=19.3	A1	awrt 19.3
	(ii)	$\frac{1}{2} \times 8^2 \times \frac{3\pi}{4}$ oe (75.4)	M1	or $\frac{1}{2} \times 8^2 \times \frac{3\pi}{8}$
		$8\tan\left(\frac{3\pi}{8}\right) \times 8 - their \text{ sector oe } (=154.5\text{-}`75.4")$	M1	8×their PT – their sector
		79.1	A1	awrt 79.1
	(iii)	$8\left(\frac{3\pi}{4}\right) \text{ oe } (18.8)$	M1	
		$\left[6\pi + 16\tan\left(\frac{3\pi}{8}\right)\right] = 57.5$	A1	Accept 57.4 to 57.5
5	(a)	Permutation because the order matters oe	B1	
	(b) (i)	${}^{6}C_{4} + {}^{5}C_{4} + {}^{7}C_{4}$ 55	M1 A1	3 correct terms added
	(ii)	${}^{2}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}$ 420	M1 A1	4 correct terms multiplied
	(iii)	${}^{6}C_{3} \times {}^{2}C_{1}$ or ${}^{2}C_{2} \times {}^{5}C_{1} \times {}^{6}C_{1}$	M1	for either correct product
		summation 70	M1 A1	adding two correct products
				If 0 scored, then SC1for 1,1,1,0 and 0,0,2,1 seen
6	(i)	$2t^2 - 14t + 12 = 0$	M1	Can use formula, etc.
		(t-1)(t-6) oe $(t=) 1$	A1	If $t = 1$ with no working, then M1A1
				,
	(ii)	$\int (2t^2 - 14t + 12) dt$	M1	
		$(s=)\frac{2t^3}{3} - \frac{14t^2}{2} + 12t$	A2,1,0	-1 for each error or for $+c$ left in or limits introduced
	(iii)	$(a=)\frac{\mathrm{d}v}{\mathrm{d}t} (4t-14)$	M1	
		[4(3) - 14 =] -2 cao	A1	

Page 4	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2015	0606	23

7	(a)	$\overrightarrow{AB} = 15\mathbf{b} - 5\mathbf{a} = 5(3\mathbf{b} - \mathbf{a}) \text{ or}$	B1	Any correct simplified vector
		$\overrightarrow{BC} = 24\mathbf{b} - 3\mathbf{a} - 15\mathbf{b} = 3(3\mathbf{b} - \mathbf{a}) \text{ or }$	B1	Any second simplified vector
		$\overrightarrow{AC} = 24\mathbf{b} - 3\mathbf{a} - 5\mathbf{a} = 8(3\mathbf{b} - \mathbf{a})$		
		Comment: e.g. the vectors are scalar multiples of each other AND they have a common point (<i>A</i> , <i>B</i> or <i>C</i> as appropriate)	B1dep	Dep on both B marks being awarded.
	(b) (i)	$2\mathbf{i} + 11\mathbf{j} \text{ soi}$ $\Rightarrow \sqrt{2^2 + 11^2}$	B1	
		$\sqrt{125}$ or $5\sqrt{5}$ or 11.2 (3 s.f.) or better)	B1fT	ft their $2\mathbf{i} + 11\mathbf{j} \pmod{\overrightarrow{OP}}$ or \overrightarrow{OQ})
	(ii)	$\frac{1}{5\sqrt{5}} (2\mathbf{i} + 11\mathbf{j}) \text{ isw}$	B1fT	ft their answers from (i)
	(iii)	$\frac{i-4j+3i+7j}{2}$ or $i-4j+\frac{2i+11j}{2}$ or	M1	
		$3\mathbf{i} + 7\mathbf{j} - \frac{2\mathbf{i} + 11\mathbf{j}}{2}$		
		2 i +1.5 j	A1	
8	(a) (i)	$ke^{4x+3} (+c)$ oe	M1	any constant, non-zero k
		$k = \frac{1}{4}$ oe	A1	
		4		
	(ii)	$\frac{1}{4} \left(e^{4(3)+3} - e^{4(2.5)+3} \right) \text{ or better}$	DM1	ft their integral attempt
		706650.99 = 707000 to 3 sf or better	A1	Accept $\frac{1}{4} (e^{15} - e^{13})$
	(b) (i)	$k\sin\left(\frac{x}{-}\right)$ (+ c)	M1	any constant, non-zero k
		$k\sin\left(\frac{x}{3}\right) \ (+c)$ $k=3$	A1	
	(ii)	$3\sin\left(\frac{\pi}{6}\times\frac{1}{3}\right)-3\sin(0)$	DM1	Dep on <i>their</i> integral attempt in sin; condone omission of lower limit
		0.520944 = 0.521 to 3 sf or better	A1	Accept $3\sin\left(\frac{\pi}{18}\right)$
	(c)	$\int (x^{-2} + 2 + x^2) dx = \frac{x^{-1}}{-1} + 2x + \frac{x^3}{3}$	B1 M1 A1	Expands – accept unsimplified integration of <i>their</i> 3 term expansion Fully correct
		+ <i>c</i>	B1	+c

Page 5	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0606	23

9	(a)	$(4x-1)(x+5) [\leqslant 0]$	M1	Solves quadratic
		critical values $\frac{1}{4}$ and -5 soi	A1	
		$-5 \leqslant x \leqslant \frac{1}{4}$	A1	Accept: $\left[-5, \frac{1}{4}\right]$; $-5 \le x$ AND $x \le 0.25$
	(b) (i)	$(x+4)^2 - 25$ or $a = 4$ and $b = -25$	B1, B1	
	(ii)	(Greatest value =) 25 $x = -4$	B1ft B1ft	Must be clear
	(iii)	9 1	B1	Correct shape with maximum in second quadrant and crossing positive and negative axes correctly All 3 intercepts correctly shown on
				graph
10	(i)	$\ln y = \ln(Ab^x) \implies \ln y = \ln A + \ln b^x$	M1	
		$\Rightarrow \ln y = \ln A + x \ln b$	A1	
	(ii)	$\ln A = 11.4 \Rightarrow A = e^{their 11.4}$	M1	condone misread of scale for M1 (11.2 only)
		A = 90000 cao	A1	
		ln b = -1 b = 0.4 cao	M1 A1	Allow awrt –1
	(iii)	$x = 2.5 \Rightarrow \ln y = 9$ y = e ⁹ or 8000 to 1 sf	M1 A1	Allow awrt 8100
11	(i)	7 - x, x, 6 - x oe	B1	
		their attempt at $7-x+x+6-x+16=25$ oe	M1	
		x = 4	A1	Condone $x = 4$ for all 3 marks
	(ii)	23 - y, y, 9 - y oe	B1	or $n(A \cup C) = 48 - 16 = 32$
		48 = 30 + 25 + 15 - 7 - 6 - (their 4 + y) + their 4 oe soi	M1	or $32 = 30 + 15 - (their 4 + y)$ or $48 = (23 - y) + 3 + 16 + y + 4$ + 2 + (9 - y)
		y = 9	A1	Condone $y = 9$ for all 3 marks
	(iii)	$n(C) = 15 \text{ and } y + n(B \cap C) = 9 + 6 = 15$ [and so $A' \cap B' \cap C = \emptyset$].	B1	or equivalent deduction

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the March 2015 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2 (Paper 22), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE[®], components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	22

1 (i)	4	B1	
(ii)	360	B1	or 2π
(iii)	-5	B2	Correct symmetrical shape; one cycle; both maximums at 1 and minimum at –7
2 (a) (i)	$({}^{9}C_{3} =) 84$	B1	
	$({}^{9}P_{5} =) 15120$	B1	
(b)	$\frac{2}{6} \times 6!$ or $5! + 5!$ oe 240	M1 A1	or clear indication of method
3	Eliminate x or y $3x^{2} + 2x - 8 = 0 \text{ or } 12y^{2} - 44y + 32 = 0 \text{ oe}$	M1 A1	
	Factorise 3 term quadratic oe	M1	correct method
	$x = \frac{4}{3} \text{ and } -2$	A1	
	$y = \frac{8}{3}$ and 1	A1	Or allow A1 A1 for each (x, y) pair
			If second M0 then SC1 for one (<i>x</i> , <i>y</i>) pair found by inspection i.e. with no method or with no incorrect method shown

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	22

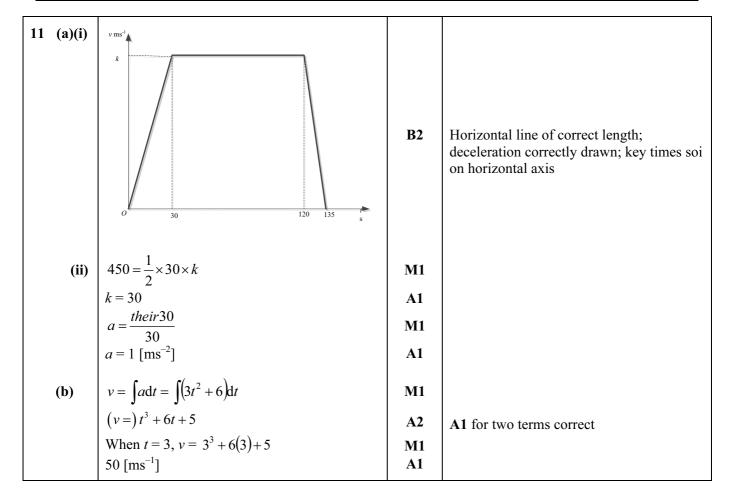
4 (i)	$\sin x \left(their \left(-\sin x \right) \right) + \cos x \left(their \cos x \right)$	M1	clearly applies correct form of product rule
	$-\sin^2 x + \cos^2 x$ oe	A1	If M1 A0 A0 then allow SC1 for
	$1-2\sin^2 x$ oe	A1	$\sin^2 x - \cos^2 x = 2\sin^2 x - 1$
(ii)	$\int (1 - 2\sin^2 x) dx = \sin x \cos x (+c)$	M1	or $\int \sin^2 x dx = \frac{1}{-2} \left(\int (-2\sin^2 x + 1) dx - \int 1 dx \right) \text{ oe}$
	$-2\int \sin^2 x dx = \sin x \cos x - \int 1 dx$	M1	$\int \sin^2 x dx = \frac{1}{2} \sin x \cos x - \frac{1}{2} \int 1 dx$
	$\frac{x}{2} - \frac{1}{2}\sin x \cos x \ [+c] \text{ oe isw}$	A1	-2 -2 3
5 (i)	$6\mathbf{i} + 2\mathbf{j} - (-2\mathbf{i} + 17\mathbf{j})$ = $8\mathbf{i} - 15\mathbf{j}$	B1	
(ii)	$\sqrt{their 8^2 + their (-15)^2}$	M1	
	$\frac{their(8\mathbf{i}-15\mathbf{j})}{their17}$	A1ft	ft their \overrightarrow{AB}
(iii)	$-2\mathbf{i} + 17\mathbf{j} + m(6\mathbf{i} + 2\mathbf{j})$ leading to	N/I	
	17 + 2m = 0 m = -8.5 oe	M1 M1	ISMO allow SC1 for (w. 2 - 0 looding to
	_53 i	A1	If M0 , allow SC1 for $6m - 2 = 0$ leading to $\frac{53}{3}$ j
6 (i)	$15\pi = 20\theta$	M1	
	$\theta = \frac{3}{4}\pi$ or exact equivalent form isw	A1	
/**	Contain along triangles		Contribute to a constant
(ii)	Sector plus triangle approach: Area sector = $\frac{1}{2} \times 20^2 \times \left(their \frac{3}{4}\pi\right)$ soi	B1	Semicircle less segment approach: Area sector = $\frac{1}{2} \times 20^2 \times \left(their \frac{1}{4}\pi\right)$ soi
		BI	2 2 4 (100 4) 501
	Area triangle = $\frac{1}{2} \times 20^2 \times \sin\left(their \frac{1}{4}\pi\right)$ soi	B1	
	their sector area + their triangle area	M1	$\frac{\pi(20)^2}{2}$ – (their area sector – their area
	613 or 612.6(60254) rot to 4 sig figs	A1	triangle) soi

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	22

7 (i)	$\mathbf{A}^2 = \begin{pmatrix} -14 & 45 \\ -27 & 85 \end{pmatrix} \text{ seen}$ $\begin{pmatrix} -11 & 50 \\ -23 & 95 \end{pmatrix}$	M1 A1	condone one error
	(-23 95)		
(ii)	10	B1	
(iii)	$\frac{1}{their10}$ or $\begin{pmatrix} 10 & -5 \\ -4 & 3 \end{pmatrix}$ oe, seen	B1	
	$\frac{1}{10} \begin{pmatrix} 10 & -5 \\ -4 & 3 \end{pmatrix} $ oe isw	B1	
(iv)	$\mathbf{X} = \mathbf{B}^{-1}\mathbf{A}$ soi	M1	
	$\begin{pmatrix} 0.5 & 0 \\ -0.5 & 1 \end{pmatrix} $ oe	A1ft	ft their B ⁻¹
8 (i)	(4, 2)	B1	allow unsimplified
	$m_{AB} = \frac{3}{2} \Rightarrow m_{Perp} = -\frac{2}{3}$ $y - 2 = -\frac{2}{3}(x - 4) \text{ oe}$ $2x + 3y = 14$	M1	allow arithmetic slips provided method is correct
	$y-2=-\frac{2}{3}(x-4)$ oe	M1	ft their mid-point and perpendicular gradient
	2x + 3y = 14	A1	allow any correct equivalent form with integer a, b, c
(ii)	m_{AB} used $y + 2 = their \ m_{AB}(x-10)$	M1 A1ft	
(iii)	$(10-6)^2 + (5-(-2))^2$ oe	M1	any valid method
	$\sqrt{65}$ or 8.0622577 rot to 3 or more sf	A1	
(iv)	$AC^2 = (2-10)^2 + (-1-(-2))^2$ and $AC^2 = BC^2 = 65$ or showing <i>C</i> lies on the perpendicular bisector of <i>AB</i> or showing line from <i>C</i> to (4, 2) is perpendicular to <i>AB</i>	В1	any valid method

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	22

	1(2 1)-3		
9 (i)	$k(2x+1)^{3}$	M1	
	$-8(2x+1)^{-3} \times 2$ oe	A1	
	+ 2	B 1	
	their $\frac{dy}{dx} = 0$ and solves	M1	
	$x = \frac{1}{2}, y = 2$	A1	
(ii)	$y = 4 \times \frac{1}{2} = 2$	B1	or equivalent correct method
(iii)	6 4		Alternative method:
	$\int \left(\frac{1}{(2x+1)^2} + 2x \right) dx$	M1	M1 for $\int \left(\frac{4}{(2x+1)^2} + 2x - 4x \right) dx$
	$k(2x+1)^{-3}$ $-8(2x+1)^{-3} \times 2 \text{ oe}$ $+ 2$ $their \frac{dy}{dx} = 0 \text{ and solves}$ $x = \frac{1}{2}, y = 2$ $y = 4 \times \frac{1}{2} = 2$ $\int \left(\frac{4}{(2x+1)^2} + 2x\right) dx$ $4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{2} \text{ or better}$	A1	A1 for $4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{2} - 2x^2$ or better
	$\left[their \left(4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{2} \right) \right]_0^{their 0.5}$	M1	M1 for $\left[their \left(4 \times \frac{(2x+1)^{-1}}{-2} - \frac{2x^2}{2} \right) \right]_0^{their 0.5}$
	Substitution of correct limits seen, leading	A1	
	to $1\frac{1}{4}$		M1 for subst of <i>their</i> limits into <i>their</i> genuine attempt at an integral
	Shaded area = $their 1\frac{1}{4} - their \frac{1}{2}$	M1	A1 for subst of correct limits into correct expression
	$\frac{3}{4}$	A1	A1 for for $\frac{3}{4}$


Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	22

10 ((a)(i)	O In5	В3	B1 correct shape B1 through (0, -4) B1 through (ln5, 0)
	(ii)	$k \leq -5$	B1	
	(b)	$\frac{1}{2}\log_a 2 + 3\log_a 2 - \log_a 2$ or		
		$\log_a\left(2^{\frac{1}{2}}\times 2^3\times 2^{-1}\right)$ oe	M1	condone one error
		$2\frac{1}{2}\log_a 2$ oe	A1	
	(c)	$\log_9 4x = \frac{\log_3 4x}{\log_3 9}$ or $\log_3 x = \frac{\log_9 x}{\log_9 3}$	B1	soi
		$\log_3 x - \frac{\log_3 4x}{2} = 1$ or $\frac{\log_9 x}{\frac{1}{2}} - \log_9 4x = 1$	M1	
		$\log_3 \frac{x}{(4x)^{\frac{1}{2}}} = \log_3 3 \text{ or } \log_9 \frac{x^2}{4x} = \log_9 9 \text{ oe}$	M1	
		r = 36	A1	

A1

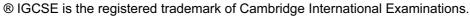
x = 36

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	22

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS


0606/21 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	21

1 (a)		B1	
		B1	
(b)	No.in H only = $50 - x$; No in F only = $60 - x$ Sum: $50 - x + 60 - x + x + 30 - 2x = 98$ x = 14	B1 M1 A1	Both written or on diagram Add at least 3 terms each with <i>x</i> involved and equate to 98 soi
2	$9x^{2} + 2x - 1 < (x + 1)^{2}$ $8x^{2} < 2 \text{ oe isw}$ $-\frac{1}{2} < x < \frac{1}{2}$	M1 A1 A1	Expand and collect terms
3	$\log_2(x+3) = \log_2 y + 2 \rightarrow x + 3 = 4y$ $\log_2(x+y) = 3 \rightarrow x + y = 8$ $x+3 = 4(8-x)$ $5x = 29 \rightarrow x = 5.8, \text{ oe}$ $y = 2.2 \text{ oe}$	B1 B1 M1 A1	Eliminate y or x from two linear three term equations

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	21

4 (i)	$f(37) = 3 \text{ or } gf(x) = \frac{\sqrt{x-1} - 3 - 2}{2(\sqrt{x-1} - 3) - 3}$ $gf(37) = \frac{3-2}{6-3} = \frac{1}{3}$	B1 B1	
(ii)	$y = \sqrt{x-1} - 3 \rightarrow (y+3)^2 = x - 1$ (x+3) ² + 1 = f ⁻¹ (x) oe isw	M1 A1	Rearrange and square in any order Interchange <i>x</i> and <i>y</i> and complete
(iii)	$y = \frac{x-2}{2x-3}$ $2xy - 3y = x - 2 \rightarrow 2xy - x = 3y - 2$ $\frac{3x-2}{2x-1} = g^{-1}(x) \text{ oe}$	M1 A1	Multiply and collect like terms Interchange and complete Mark final answer
5 (i) (ii)	$B = 900$ $B = 500 + 400e^2 = 3455 \text{ or } 3456 \text{ or } 3460$	B1 B1	3455.6 scores B0
(ii)	$\left(\frac{dB}{dt} = \right) 80e^{0.2t}$ $t = 10 \rightarrow \frac{dB}{dt} = 80e^2 = 591 (/day)$	B1 B1	awrt
(iv)	$10000 = 500 + 400e^{0.2t} \rightarrow e^{0.2t} = (23.75)$ $0.2t = \ln 23.75$ $t = 15.8 \text{ (days)}$	M1 DM1 A1	$e^{0.2t} = k$ take logs: $0.2t = \ln k$ awrt

Page 4	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2014	0606	21

6 (i)	$(x+2)^2 + x^2 = 10$	B1	
	$x^{2} + 2x - 3 = 0 \rightarrow (x+3)(x-1) = 0$	M1	3 term quadratic with attempt to solve
	Points $(1, 3), (-3, -1)$ isw	A1 A1	both x or a pair both y or second pair
	or elimination of x leads to $y^2 - 2y - 3 = 0$, then as above		
(ii)	$m^2x^2 + 10mx + 25 + x^2 = 10$	B1	
	$\left(m^2 + 1\right)x^2 + 10mx + 15 = 0$		
	$b^{2} - 4ac = (0) \rightarrow 100m^{2} - 60(m^{2} + 1) = 0$	M1 A1	attempt to use discriminant on three term quadratic. Allow unsimplified
	$m = \pm \sqrt{\frac{3}{2}}$ oe isw	A1	cao \pm is required
	Alternative solution:		
	$\frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^2}} \text{ or } \frac{dy}{dx} = -\frac{x}{y}$	B1	allow unsimplified
	Result: $y^2 = x^2 + 5y$ after inserted in $y = mx + 5$		
	Attempt to solve with $x^2 + y^2 = 10$	M1	Eliminate x or y
	$y = 2, x = \pm \sqrt{6}$	A1	both
	$m = \pm \frac{3}{\sqrt{6}}$ oe	A1	
7 (i)	$v = 2\cos t + 1$	B1	mark final answer
(ii)	$2\cos t + 1 = 0$	M1	equate their <i>v</i> to zero (must be a differential) and attempt to solve to find
	$t = \frac{2\pi}{3}$ or 2.09	A1	an angle awrt
	3		
(iii)	$t = \frac{2\pi}{3} \rightarrow x = 2\sin\left(\frac{2\pi}{3}\right) + \frac{2\pi}{3} = 3.83 \mathrm{m}$	B1	awrt
	$a = -2\sin t$	B1ft	ft their v (2 nd differential)
	$t = \frac{2\pi}{3}a = -\sqrt{3} = -\frac{1.73}{4} \text{ms}^{-2}$	DB1ft	ft using their angle t in correct a awrt
8 (i)	$\frac{dy}{dx} = \frac{(2+x^2) \times 2x - x^2 \times 2x}{(2+x^2)^2} = \frac{4x}{(2+x^2)^2}$	M1 A1	apply quotient or product rule unsimplified
	k=4	A1	<i>k</i> =4 does not need to be specifically identified
(ii)	$\int \frac{x}{(2+x^2)^2} dx = \frac{1}{4} \times \frac{x^2}{2+x^2} + (c) \text{ isw}$	B1 B1	$\frac{1}{their k} \times \text{ original function}$

Page 5	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2014	0606	21

9	$(a+3\sqrt{5})^2 = a^2 + 3\sqrt{5}a + 3\sqrt{5}a + 45$ oe	B1	anywhere
	Equate: $a^2 + a + 45 = 51$	B1	
	and $6a - b = 0$	B1	
	(a+3)(a-2)=0	M1	Attempt to solve three term quadratic with integer coefficients obtained by
	a = -3, 2 b = -18, 12	A1 A1	equating coeffs Both as correct or one correct pair Both bs correct
10 (i)	$\sec x \csc x = \frac{1}{\cos x \sin x}$	B1	anywhere
	$\cot x = \frac{\cos x}{\sin x}$	B1	anywhere
	$LHS = \frac{1 - \cos^2 x}{\cos x \sin x} \text{ oe}$	B1ft	correct addition of their terms
	$= \frac{\sin^2 x}{\cos x \sin x} = \tan x \qquad \text{AG}$	B1	use of identity and cancel
(ii)	$3\cot x - \cot x = \tan x \to 2\cot x = \tan x$	M1	equate and collect like terms, allow sign
	$\tan^2 x = 2$ oe	A1	errors
	x = 54.7, 125.3, 234.7, 305.3	A1 A1	2 values only 2 more values. awrt
11 (i)	Area of sector = $\frac{1}{2} \times x^2 \times 0.8 \left(= 0.4x^2 \text{ cm}^2 \right)$	B1	anywhere
	$SR = 5\sin 0.8 (= 3.59)$ or	B1	SR may be seen in stated $\frac{1}{2}ab\sin C$
	$OR = 5\cos 0.8 (= 3.48)$		2
	Area of triangle =		
	$\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \mathrm{cm}^2$	M1	insert correct terms into correct area
	$0.08x^2 = 6.247$	A1	formulae
	x = 8.837 cm AG	A1	
(ii)	$SQ = 8.84 - 5 (= 3.84 \mathrm{cm})$		
	$PR = 8.84 - 5\cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})$	B1	two lengths from SQ, PR, PQ awrt
	$PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$	B1	third length awrt
	Perimeter = 19.84 to 19.86 cm or rounded to 19.8 or 19.9	B1	sum
(iii)	Area $PQSR = 4 \times 6.247$	M1	
	$=25\mathrm{cm}^2$	A1	24.95 to 25

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	21

12 (i)	$f(2) = 3(2^3) - 14(2^2) + 32 = 0$ Or complete long division	B1	
(ii)	$f(x) = (x-2)(3x^2 - 8x - 16)$ $f(x) = (x-2)(x-4)(3x+4)$	M1 A1 M1 A1	$3x^2$ and 16 8x and correct signs Factorise three term quadratic
(iii)	x=2,4	B1	
(iv)	$\int 3x - 14 + \frac{32}{x^2} dx = 1.5x^2 - 14x - \frac{32}{x} (+ c)$ $Area = \left[1.5x^2 - 14x - \frac{32}{x} \right]_2^4$ $= (-) 2$	B1 B1 M1 A1	first 2 terms third term correct unsimplified Limits of 2 and 4 and subtract

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	22

1 (a)		B1	
		B1	
(b)	No.in H only = $50-x$; No in F only = $60-x$ Sum: $50-x+60-x+x+30-2x=98$ x=14	B1 M1 A1	Both written or on diagram Add at least 3 terms each with <i>x</i> involved and equate to 98 soi
2	$9x^{2} + 2x - 1 < (x + 1)^{2}$ $8x^{2} < 2 \text{ oe isw}$ $-\frac{1}{2} < x < \frac{1}{2}$	M1 A1 A1	Expand and collect terms
3	$\log_2(x+3) = \log_2 y + 2 \to x + 3 = 4y$ $\log_2(x+y) = 3 \to x + y = 8$ $x+3 = 4(8-x)$ $5x = 29 \to x = 5.8, \text{ oe}$ $y = 2.2 \text{ oe}$	B1 B1 M1 A1	Eliminate y or x from two linear three term equations

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	22

4 (i)	$f(37) = 3 \text{ or } gf(x) = \frac{\sqrt{x-1} - 3 - 2}{2(\sqrt{x-1} - 3) - 3}$ $gf(37) = \frac{3-2}{6-3} = \frac{1}{3}$	B1 B1	
(ii)	$y = \sqrt{x-1} - 3 \rightarrow (y+3)^2 = x - 1$ (x+3) ² + 1 = f ⁻¹ (x) oe isw	M1 A1	Rearrange and square in any order Interchange <i>x</i> and <i>y</i> and complete
(iii)	$y = \frac{x-2}{2x-3}$ $2xy - 3y = x - 2 \rightarrow 2xy - x = 3y - 2$ $\frac{3x-2}{2x-1} = g^{-1}(x) \text{ oe}$	M1 A1	Multiply and collect like terms Interchange and complete Mark final answer
5 (i) (ii)	$B = 900$ $B = 500 + 400e^2 = 3455 \text{ or } 3456 \text{ or } 3460$	B1 B1	3455.6 scores B0
(ii)	$\left(\frac{dB}{dt} = \right) 80e^{0.2t}$ $t = 10 \rightarrow \frac{dB}{dt} = 80e^2 = 591 (/day)$	B1 B1	awrt
(iv)	$10000 = 500 + 400e^{0.2t} \rightarrow e^{0.2t} = (23.75)$ $0.2t = \ln 23.75$ $t = 15.8 \text{ (days)}$	M1 DM1 A1	$e^{0.2t} = k$ take logs: $0.2t = \ln k$ awrt

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	22

6 (i)	$(x+2)^2 + x^2 = 10$	B1	
	$x^{2} + 2x - 3 = 0 \rightarrow (x+3)(x-1) = 0$	M1	3 term quadratic with attempt to solve
	Points $(1, 3), (-3, -1)$ isw	A1 A1	both x or a pair both y or second pair
	or elimination of x leads to $y^2 - 2y - 3 = 0$, then as above	AI	both y of second pair
(ii)	$m^2x^2 + 10mx + 25 + x^2 = 10$	B1	
	$(m^2 + 1)x^2 + 10mx + 15 = 0$		
	$b^2 - 4ac = (0) \rightarrow 100m^2 - 60(m^2 + 1) = 0$	M1 A1	attempt to use discriminant on three term quadratic. Allow unsimplified
	$m = \pm \sqrt{\frac{3}{2}}$ oe isw	A1	$cao \pm is required$
	Alternative solution: $\frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^2}} \text{ or } \frac{dy}{dx} = -\frac{x}{y}$	B1	allow unsimplified
	Result: $y^2 = x^2 + 5y$ after inserted in $y = mx + 5$		
	Attempt to solve with $x^2 + y^2 = 10$	M1	Eliminate x or y
	$y = 2, x = \pm \sqrt{6}$	A1	both
	$m = \pm \frac{3}{\sqrt{6}}$ oe	A1	
7 (i)	$v = 2\cos t + 1$	B1	mark final answer
(ii)	$2\cos t + 1 = 0$	M1	equate their <i>v</i> to zero (must be a differential) and attempt to solve to find
	$t = \frac{2\pi}{3} \text{ or } 2.09$	A1	an angle awrt
(iii)	$t = \frac{2\pi}{3} \rightarrow x = 2\sin\left(\frac{2\pi}{3}\right) + \frac{2\pi}{3} = 3.83 \mathrm{m}$	B1	awrt
	$a = -2\sin t$	B1ft	ft their v (2 nd differential)
	$t = \frac{2\pi}{3}a = -\sqrt{3} = -\frac{1.73}{4} \mathrm{ms}^{-2}$	DB1ft	ft using their angle t in correct a awrt
8 (i)	$\frac{dy}{dx} = \frac{(2+x^2) \times 2x - x^2 \times 2x}{(2+x^2)^2} = \frac{4x}{(2+x^2)^2}$	M1 A1	apply quotient or product rule unsimplified
	k=4	A1	k=4 does not need to be specifically
(ii)	$\int \frac{x}{(2+x^2)^2} dx = \frac{1}{4} \times \frac{x^2}{2+x^2} + (c) \text{ isw}$	B1 B1	identified $\frac{1}{their k} \times \text{ original function}$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	22

9	$(a+3\sqrt{5})^2 = a^2 + 3\sqrt{5}a + 3\sqrt{5}a + 45$ oe	B1	anywhere
	Equate: $a^2 + a + 45 = 51$ and $6a - b = 0$	B1 B1	
	(a+3)(a-2)=0	M1	Attempt to solve three term quadratic with integer coefficients obtained by
	a = -3, 2 b = -18, 12	A1 A1	equating coeffs Both as correct or one correct pair Both bs correct
10 (i)	$\sec x \csc x = \frac{1}{\cos x \sin x}$	B1	anywhere
	$\cot x = \frac{\cos x}{\sin x}$	B1	anywhere
	$LHS = \frac{1 - \cos^2 x}{\cos x \sin x} \text{ oe}$	B1ft	correct addition of their terms
	$= \frac{\sin^2 x}{\cos x \sin x} = \tan x \qquad \text{AG}$	B1	use of identity and cancel
(ii)	$3\cot x - \cot x = \tan x \to 2\cot x = \tan x$	M1	equate and collect like terms, allow sign
	$\tan^2 x = 2$ oe x = 54.7, 125.3, 234.7, 305.3	A1 A1 A1	2 values only 2 more values. awrt
11 (i)	Area of sector = $\frac{1}{2} \times x^2 \times 0.8 = 0.4x^2 \text{ cm}^2$	B1	anywhere
	$SR = 5\sin 0.8 (= 3.59)$ or $OR = 5\cos 0.8 (= 3.48)$	B1	SR may be seen in stated $\frac{1}{2}ab\sin C$
	Area of triangle =		
	$\begin{vmatrix} \frac{1}{2} 5 \cos 0.8 \times 5 \sin 0.8 = 6.247 \text{ cm}^2 \\ 0.08 x^2 = 6.247 \end{vmatrix}$	M1 A1	insert correct terms into correct area formulae
	x = 8.837 cm AG	A1	
(ii)	$SQ = 8.84 - 5 (= 3.84 \mathrm{cm})$		
	$PR = 8.84 - 5\cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})$	B1	two lengths from SQ, PR, PQ awrt
	$PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$	B1	third length awrt
	Perimeter = 19.84 to 19.86 cm or rounded to 19.8 or 19.9	B1	sum
(iii)	Area $PQSR = 4 \times 6.247$	M1	
	$=25\mathrm{cm}^2$	A1	24.95 to 25

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	22

12 (i)	$f(2) = 3(2^3) - 14(2^2) + 32 = 0$ Or complete long division	B1	
(ii)	$f(x) = (x-2)(3x^2 - 8x - 16)$ $f(x) = (x-2)(x-4)(3x+4)$	M1 A1 M1 A1	$3x^2$ and 16 8x and correct signs Factorise three term quadratic
(iii)	x = 2, 4	B1	
(iv)	$\int 3x - 14 + \frac{32}{x^2} dx = 1.5x^2 - 14x - \frac{32}{x} (+ c)$ $Area = \left[1.5x^2 - 14x - \frac{32}{x} \right]_2^4$ $= (-) 2$	B1 B1 M1 A1	first 2 terms third term correct unsimplified Limits of 2 and 4 and subtract

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/23 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2014	0606	23

		200 2 200 3 200 2 200 2		
1	(i)	$f(2)=0 \rightarrow 3(2)^3+8(2)^2-33(2)+p=0$	M1	
		correct working to $p = 10$ AG method for quadratic factor	A1	
		f(x) = $(x-2)(3x^2+14x-5)$	M1	
		$1(x) = (x-2)(3x^{2} + 14x - 3)$	A1	
	(ii)	f(x) = (x-2)(3x-1)(x+5)	M1	factorise or solve quadratic factor = 0
		$f(x)=0 \rightarrow x=2, -5, \frac{1}{3}$	A1	
2	(i)	$^{12}C_{4} = 495$	B1	
	(ii)	$^{7}C_{2} \times ^{5}C_{2} = 21 \times 10$	M1	
		=210	A1	
	(iii)	not K and B = ${}^{6}C_{2} \times {}^{4}C_{1} = 15 \times 4 = 60$	B 1	
		K and not B = ${}^{6}C_{1} \times {}^{4}C_{2} = 6 \times 6 = 36$	B 1	
		60 + 36	M1	
		96	A1	
		O.D.		
		OR $V \text{ and } P = {}^{6}C \times {}^{4}C = 6 \times 4 = 24$	B 1	
		K and B = ${}^{6}C_{1} \times {}^{4}C_{1} = 6 \times 4 = 24$		
		not K and not B = ${}^{6}C_{2} \times {}^{4}C_{2} = 15 \times 6 = 90$ 210 - 90 - 24	B1	
		96	M1 A1	
3	(i)	C is $(1, 6)$	B1 M1	
		D is (1,6)+(12,9)	A1ft	
		= (13, 15)	71111	
	(ii)	gradient of $CD = \frac{15-6}{13-1} \left(= \frac{3}{4} \right)$	B1ft	
		gradient of $AB = \frac{10-2}{-2-4} \left(= \frac{8}{-6} = \frac{-4}{3} \right)$	B1	
		$\frac{3}{4} \times \frac{-4}{3} = -1$ lines are perpendicular	B1	correct completion www
	(iii)	area = $\frac{1}{2} \times AB \times CD = \frac{1}{2} \times 10 \times 15$	M1	good attempt at two relevant lengths
	` '	2 2		for $\frac{1}{2}$ base × height method
		=75	A1	
		or array method		
<u> </u>				

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	23

4 (i	$2000 = 1000e^{a+b} -$	$\rightarrow a+b=\ln 2$	B1	
(ii	$3297 = 1000e^{2a-b}$ $= \ln 3.297 \qquad \text{oe}$	$\rightarrow 2a+b$	M1 A1	substitution of 2, 3297 and rearrange
(iii	Solve for one value $a = 0.5$ and $b = 0.19$	3 or 0.19	M1 A1	
(iv	n = 10 $P = 1000e= $180 000.$	5.193	M1 A1	
5 (i	$\overrightarrow{OX} = \mu(a+b)$		B1	
(ii	$\overrightarrow{RP} = b - 3a$ or \overrightarrow{R} $\overrightarrow{OX} = 3a + \lambda (b - 3a)$,	B1 B1	
(iii	$\overrightarrow{OX} = \overrightarrow{OX}$ and equal $\mu = 3 - 3\lambda$ $\mu = \mu = \lambda = 0.75$ $\frac{RX}{XP} = 3 \text{ or } 3:1$		M1 A1 A1ft	$\frac{\lambda}{1-\lambda}$
6 (i	m = 4 equation of line is $\frac{1}{2}$ $\ln y = 4(3^x) + 3$	$\frac{ny-39}{3^x-9} = \frac{39-19}{9-4}$	B1 M1 A1ft	forms equation of line ft only on their gradient
(ii	$x = 0.5 \rightarrow \ln y = 0.5$ $y = 20500$	$4\sqrt{3} + 3 = 9.928$	M1 A1	correct expression for lny
(iii	Substitutes y and resolve $3^x = 1.150$ x = 0.127	arrange for 3 ^x	M1 M1 A1	

Page 4	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2014	0606	23

7 (i)	$x = \frac{2}{y} + 1 \to y = \frac{2}{x - 1}$	M1	any valid method
	$f^{-1}(x) = \frac{2}{x - 1}$	A1	
(ii)	$\operatorname{gf}(x) = \left(\frac{2}{x} + 1\right)^2 + 2$	B2/1/0	−1 each error
(iii)	$fg(x) = \frac{2}{x^2 + 2} + 1$	B2/1/0	−1 each error
(iv)	ff $(x) = \frac{2}{\frac{2}{x} + 1} + 1 = \frac{2x}{x + 2} + 1$	M1	correct starting expression
	$=\frac{3x+2}{x+2}$	A1	correct algebra to given answer
	$\frac{3x+2}{x+2} = x \rightarrow x^2 - x - 2 = 0$	M1	form and solve 3 term quadratic
	(x-2)(x+1) = 0 x = 2 only	A1	
8 (i)	$v = C + K\sin 2t \qquad C \neq 0$	M1	
	$v = 5 + 6\sin 2t$ $a = 12\cos 2t$	A1 A1ft	
(ii)	$a = 0 \rightarrow \cos 2t = 0$ and solve	M1	set $a = 0$ and solve for t
(11)		A1	set u = 0 and solve for t
	$t = \frac{\pi}{4}$ or 0.785 or 0.79	711	
	$v = 5 + 6\sin\frac{\pi}{2} = 11$	A1ft	ft only on <i>K</i>
(iii)	$v = 2 \rightarrow \sin 2t = -\frac{1}{2}$ and solve	M1	set $v = 2$ and solve for t
	$t = \frac{7\pi}{12}$ or $1.83 - 1.84$	A1	
	$a = 12\cos\frac{7\pi}{6} = -6\sqrt{3}$ or -10.4	A1	

Page 5	Page 5 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2014	0606	23

9	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - \frac{1}{(x-2)^2}$	B1	
		$\begin{vmatrix} \frac{dy}{dx} = 0 & \to & (x-2)^2 = \frac{1}{4} \\ (4x^2 - 16x + 15 = 0) \end{vmatrix}$	M1	solve 3 term quadratic from $\frac{dy}{dx} = 0$
		x = 2.5 or 1.5 y = 12 or 4	A1 A1	x values or 1 pair y values or 1 pair
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\left(x - 2\right)^{-3}$	M1	use $\frac{d^2y}{dx^2}$ with solution from
		$x = 2.5 \rightarrow \frac{d^2 y}{dx^2} > 0 \rightarrow \text{minimum}$ $x = 1.5 \rightarrow \frac{d^2 y}{dx^2} < 0 \rightarrow \text{maximum}$	A1	$\frac{dy}{dx} = 0$ both identified www
	(ii)	$x=3 \rightarrow \frac{dy}{dx}=3$	B1	
		Use $m_1m_2 = -1$ for gradient normal from gradient tangent	M1	must use numerical values
		Eqn of normal: $\frac{y-13}{x-3} = -\frac{1}{3}$	A1ft	
		Intersection of norm and curve $14 - \frac{x}{3} = 4x + \frac{1}{x-2}$	M1	equation and attempt to simplify
		$ \begin{array}{ccc} 3 & x-2 \\ 13x^2 - 68x + 87 &= 0 \end{array} $	DM1	attempt to solve 3 term quadratic
		$x = \frac{29}{13}$ or 2.23	A1	•
10	(i)	LHS = $\frac{1 + \cos x + 1 - \cos x}{(1 - \cos x)(1 + \cos x)}$	B1	correct fraction
		$=\frac{2}{1-\cos^2 x}$	B1	correct evaluation
		$= \frac{2}{\sin^2 x} = \text{RHS}$	B1	use of $1 - \cos^2 x = \sin^2 x$ and completion of fully correct proof
	(ii)	$2\csc^2 x = 8$	M1	identity used
		$\sin^2 x = \frac{1}{4}$	A1	
		$\sin x = \pm \frac{1}{2}$	A1	
		$x = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$	A1	

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/21 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	21

			1
1	$x^2 + x [> 0]$	M1	expands and rearranges
	critical values 0 and -1 soi	A1	
	-1 < x < 0	A1	condone space, comma, "and" but not "or" Mark final answer.
2	$\frac{6}{(1+\sqrt{3})^2}$ or $6 = (a+b\sqrt{3})(1+\sqrt{3})^2$	M1	for dealing with the negative index (condone treating 6 as have negative index at this stage)
	$\frac{6}{4+2\sqrt{3}}$ or $6 = (a+b\sqrt{3})(4+2\sqrt{3})$	M1	for squaring
	$\frac{6}{4 + 2\sqrt{3}} \times \frac{4 - 2\sqrt{3}}{4 - 2\sqrt{3}}$ AND attempting to multiply out	M1	for rationalising or for obtaining a pair of simultaneous equations $4a + 6b = 6$ and
	$6-3\sqrt{3}$ isw	A1	2a + 4b = 0
3 (i)	-2 0 4	B1 B1	correct shape <i>x</i> intercepts marked or implied by tick marks, for example or seen nearby; condone <i>y</i> intercept omitted
(ii)	x = 1 (only) soi $y = \pm 9$ (only) 0 < k < 9	B1 B1 B1	can be implied by second B1 or $k = \pm 9, +9$ or -9 or both; must be strict inequality in k ; condone space, comma, "and", "or"
4	Attempt to find f(4) or f(1) or division to a	M1	condone one error
	remainder 128 + 16a + 4b + 12 = 0 or better (16a + 4b = -140)	A1	
	2 + a + b + 12 = -12 or better $(a + b = -26)$	A1	
	Solves linear equations in a and b	M1	
	a = -3, b = -23	A1	both

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	21

5	(i)	$2\left(x - \frac{1}{4}\right)^2 + \frac{47}{8}(5.875)$ isw	B3,2,1,0	one mark for each of p , q , r correct; allow correct equivalent values. If B0 , then
	(ii)	$\frac{47}{8}$ is min value when $x = \frac{1}{4}$	B1ft + B1ft	SC2 for $2\left(x - \frac{1}{4}\right) + \frac{47}{8}$, or SC1 for correct values but incorrect format strict ft their $\frac{47}{8}$ and their $\frac{1}{4}$; each value must be correctly attributed; condone $y = \frac{47}{8}$ for B1 , or $\left(\frac{1}{4}, \frac{47}{8}\right)$ for B1B1
6	(a)	${}^{8}C_{3} \times 3^{3} \times (\pm 2)^{5} \text{ or } 3^{8} \left[{}^{8}C_{3} \left(\pm \frac{2}{3} \right)^{5} \right]$	M1	condone 8C_5 , $-2x^5$
		-48384	A1	can be in expansion
	(b) (i)	$1 + 12x + 60x^2$	B2,1,0	ignore additional terms. If B0 , allow M1 for 3 correct unsimplified terms
	(ii)	Coefficient of x correct or correct ft $(12+a)$ soi Coefficient of x^2 correct or correct ft $(60+12a)$ soi	B1ft B1ft	ft their $1 + 12x + 60x^2$ ft their $1 + 12x + 60x^2$
		$1.5 \times their(12 + a) = their(60 + 12a)$ - 4	M1 A1	no x or x^2
7	(i)	$-\frac{1}{x^2} + \frac{1}{x^{\frac{1}{2}}}$	B1 + B1	or equivalent with negative indices
	(ii)	$\frac{2}{x^3} - \frac{1}{2x^{\frac{3}{2}}}$	B1ft + B1ft	or equivalent with negative indices. Strict ft
	(iii)	Attempting to solve their $\frac{dy}{dx} = 0$	M1	must achieve $x =$ (allow slips)
		x = 1 $y = 3$	A1	SC2 for (1, 3) stated, nfww
		Substitute their $x = 1$ into their $\frac{d^2 y}{dx^2}$; or examines	M1	for using <i>their</i> value from $\frac{dy}{dx} = 0$
		$\frac{\mathrm{d}y}{\mathrm{d}x}$ or y on both sides of their $x = 1$		
		Complete and correct determination of nature. If correct, minimum.	A1	must be from correct work

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	21

0 (0)		3.54	C 1 . (2)
8 (i)	$2r + r\theta = 30 \text{ giving } \theta = \frac{30 - 2r}{r}$	M1	correct arc formula $+ (2)r$ rearranged
	Substitute <i>their</i> expression for θ into $A = \frac{1}{2}r^2\theta$	M1	
	Correct simplification to $A = 15r - r^2$ AG	A1	
(ii)	$\begin{vmatrix} 15 - 2r = 0 \\ r = 7.5 \end{vmatrix}$	M1 A1	their $\frac{\mathrm{d}A}{\mathrm{d}r} = 0$
	56.25	A1	56.3 is A0 unless 56.25 seen; if M0 , then SC2 for $A = 56.25$ with no working; or SC1 for $r = 7.5$ with no working
9 (i)	(3, 5)	B1B1	column vector B0B1
(ii)	$m_{BD} \left(= \frac{6-4}{1-5} \right) = -\frac{1}{2}$	M1	can be implied by second M1
	$m_{AC} \left(= -1 \div -\frac{1}{2} \right)$ seen or used	M1	
	y-5=2(x-3) or $y=2x+c$, $c=-1$ or better	A1	
(iii)	p = 1 $q = 7$ [$A(1, 1)$ $C(4, 7)$] Method for finding area numerically	M1 M1	could be in (ii) e.g.
	Wethou for finding area numericany	1111	$24 - \left(\frac{1}{2} \times 1 \times 3 + \frac{1}{2} \times 1 \times 3 + \frac{1}{2} \times 4\right)$ or shoelace method
	15	A1	SC2 for 15 with no working
10 (i)	$-2\sin 2x$ and $\frac{1}{3}\cos\left(\frac{x}{3}\right)$	B1+B1	each trig function correctly differentiated
	Attempt at product rule	M1	
	$\frac{1}{3}\cos 2x \cos\left(\frac{x}{3}\right) - 2\sin 2x \sin\left(\frac{x}{3}\right) \text{ isw}$	A1ft	ft $k_1 \sin 2x$ and $k_2 \cos \left(\frac{x}{3}\right)$
	1		provided k_1 , k_2 are non-zero
(ii)	$\sec^2 x$ and $\frac{1}{x}$	B1 + B1	
	Attempt at quotient rule (with given quotient) $(\sec^2 x)(1 + \ln x) - \frac{1}{2}(\tan x)$	M1	or rearrangement to correct product and attempt at product rule
	$\frac{\left(\sec^2 x\right)(1+\ln x)-\frac{1}{x}(\tan x)}{(1+\ln x)^2}$ isw	A1	penalise poor bracketing if not recovered

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	21

11 (a)	$2^{x^2-5x} = 2^{-6}$ $x^2 - 5x + 6 = 0$ Correct method of solution of their 3 term quadratic $x = 2 \text{ or } x = 3$	M1 M1 M1	Or $(x^2 - 5x) \ln 2 = \ln \left(\frac{1}{64}\right) = -6 \ln 2$ their "6"
(b)	Correct change of base to $\frac{\log_a 4}{\log_a 2a}$ $\frac{\log_a 4}{\log_a 2 + \log_a a}$ $\log_a a = 1 \text{ used soi}$ simplification to $\log_a 4$	B1 M1 M1 A1	base a only at this stage but can recover at end for $\log 2a = \log 2 + \log a$

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	21

12 (i)	$f(3)$ $\frac{6}{4} \text{ oe}$	M1 A1	or $fg(x) = \frac{2\sqrt{(x+1)}}{\sqrt{(x+1)+1}}$
(ii)	$\frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1}+1}$	M1	allow omission of 2() in numerator or () + 1 in denominator, but not both.
	A correct and valid step in simplification	dM1	e.g. multiplying numerator and denominator by $x + 1$, or
			simplifying $\frac{2x}{x+1} + 1$ to $\frac{2x+x+1}{x+1}$
	Correctly simplified to $\frac{4x}{3x+1}$	A1	x+1
(iii)	Putting $y = g(x)$, changing subject to x and swopping x and y or vice versa	M1	condone $x = y^2 - 1$; reasonable attempt at correct method
	$g^{-1}(x) = x^2 - 1$	A1	condone $y = \dots, f^{-1} = \dots$
	(Domain) $x > 0$ (Range) $g^{-1}(x) > -1$	B1 B1	condone $y > -1$ $f^{-1} > -1$
(iv)	y /		
		B1 + B1	correct graphs; -1 need not be labelled but could be implied by 'one square'
	-1 0 x	B1	idea of reflection or symmetry in line $y = x$ must be stated.

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	22

1	rationalise the denominator to get $\frac{(2+\sqrt{5})^2(\sqrt{5}+1)}{5-1}$ or better squaring to get	M1	or squaring to get $\frac{(4+4\sqrt{5}+5)}{\sqrt{5}-1}$ or better
	$\frac{\left(4+4\sqrt{5}+5\right)\left(\sqrt{5}+1\right)}{their4}$ or better	M1	or rationalising the denominator to get $\frac{their(9+4\sqrt{5})(\sqrt{5}+1)}{5-1}$ or better
	$\frac{29}{4} + \frac{13}{4}\sqrt{5} \text{ oe isw}$	A1 + A1	$5-1$ correct simplification Allow $\frac{29+13\sqrt{5}}{4}$ etc.
2	Correctly eliminate <i>y</i>	M1	$-kx + 2 = 2x^2 - 9x + 4$ oe
	$2x^2 + (k-9)x + 2[=0]$ oe	A1	allow even if x terms not collected; condone = y provided later work implies it should be 0
	Use $b^2 - 4ac$ oe	M1	must be applied to a 3 term quadratic expression containing k as a coefficient; condone < 0 etc.
	Reach $their(k-9=\pm 4)$ or		
	solves their $\left(k^2 - 18k + 65\right) = 0$	M1	condone $9-k=\pm 4$; condone an inequality at this stage

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	22

3 (i)	$3(-1)^3 - 14(-1)^2 - 7(-1) + d = 0$ with completion to $d = 10$	B1	at least $-3 - 14 + 7 + d = 0$, $d = 10$; N.B. = 0 must be seen or implied by = d or = $-d$, may be seen in following step. or convincingly showing $3(-1)^3 - 14(-1)^2 - 7(-1) + 10 = 0$; at least $-3 - 14 + 7 + 10 = 0$ or correct synthetic division at least as far as -1 $\begin{bmatrix} 3 & -14 & -7 & 10 \\ & -3 & 17 & -10 \end{bmatrix}$	
(ii)	$3x^2 - 17x + 10$ isw or $a = 3$, $b = -17$, $c = 10$ isw	B2, 1, 0	-1 each error; must be seen or referenced in (ii) even if found in (i) or (iii)	
(iii)	(x+1)(x-5)(3x-2)	M1	for factorising quadratic ft correct; condone omission of $(x+1)$ or for ft correct use of formula or ft correct completing the square	
	$-1, 5, \frac{2}{3}$	A1	If M0 then SC1 for all three roots stated without working or verified/found by trials	

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	22

4	(i)	$12\left(x - \frac{1}{4}\right)^2 + \frac{17}{4} \text{ isw}$	B3, 2, 1,0	one mark for each of p, q, r correct in a correctly formatted expression; allow correct equivalent values;
				If B0 then SC2 for $12\left(x - \frac{1}{4}\right) + \frac{17}{4}$ or
				SC1 for correct 3 values seen in incorrect format e.g. $12\left(x - \frac{1}{4}x\right) + \frac{17}{4} \text{ or}$ $12\left(x^2 - \frac{1}{4}\right) + \frac{17}{4}$ or for a correct completed square form of the original expression in a different but correct format. e.g. $3\left(2x - \frac{1}{2}\right)^2 + \frac{17}{4}$
	(ii)	their $\frac{4}{17}$ or their 0.235	B1ft	strict ft ; their $\frac{4}{17}$ must be a proper fraction or decimal rounded to 3sig figs or more or truncated to 4 figs or more
		their $x = \frac{1}{4}$ oe	B1ft	strict ft ; <i>x</i> must be correctly attributed
5	(i)	$1-20x+160x^2$	B2, 1, 0	-1 each error
				if B0 then M1 for 3 correct terms seen; may be unsimplified e.g. 1, $5(-4x)$, $\frac{5\times4}{2}(-4x)^2$
	(ii)	a + (their - 20) = -23 soi	M1	condone sign errors only; must be <i>their</i> –20 from (i)
		a = -3	A1	validly obtained
		b + (their - 20)a + (their 160) = 222 soi	M1	condone sign errors only; must be <i>their</i> –20 and <i>their</i> 160 from (i) and <i>their a</i> if used
		b=2	A1	validly obtained

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	22

6	(a)	(i)	1	B1	
		(ii)	x = -1 or -2	B1 + B1	as final answers
	(b)		$\frac{\log_3 5}{\log_3 a}$ seen or implied	B1*	may be implied by $2\log_3 15 - \log_3 5$
			$2\log_3 15 = \log_3 15^2$ seen or implied	B1	
			$\log_3 15^2 - \log_3 5 = \log_3 \left(\frac{15^2}{5}\right)$	B1dep*	not from wrong working
			log ₃ 45 cao	B1	must be 45 not e.g. $\frac{225}{5}$; with no wrong working seen
7	(i)		$x^4(3e^{3x}) + 4x^3e^{3x}$ isw	B1 + B1	each term of the sum correct; must be a sum of two terms
	(ii)		$\frac{1}{2 + \cos x} \times (-\sin x) \text{ isw}$	B2	or B1 for $\frac{1}{2 + \cos x} \times (k \pm \sin x)$ and k a constant
	(iii)		$\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x \ \mathrm{soi}$	B1	
			$\frac{\mathrm{d}}{\mathrm{d}x}\left(1+\sqrt{x}\right) = \frac{1}{2}x^{-\frac{1}{2}} \text{ soi}$	B1	
			$\frac{\left(1+\sqrt{x}\right)their\cos x - \left(their\frac{1}{2}x^{-\frac{1}{2}}\right)\sin x}{\left(1+\sqrt{x}\right)^{2}}$ isw	B1ft	for correct form of quotient rule ft their $\cos x$ and their $\frac{1}{2}x^{-\frac{1}{2}}$;
					allow correct use of product and chain rules to obtain $\begin{pmatrix} 1 & -1 \end{pmatrix}^2 = 1 + \frac{1}{3}$
					$\sin x \left(-\left(1 + \sqrt{x}\right)^{-2} \times \frac{1}{2} x^{\frac{1}{2}} \right) + \cos x \left(1 + \sqrt{x}\right)^{-1} \text{ oe}$

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	22

8	Substitution of either $x - 5$ or $y + 5$ into equation of curve and brackets expanded	M1	condone one sign error in either equation of curve or expansion of brackets; condone omission of $= 0$, BUT $x - 5$ or $y + 5$ must be correct
	$2x^2 - 8x - 10[= 0]$ or $2y^2 + 12y[= 0]$ obtained	A1	
	Solving their quadratic	M1	dep on a valid substitution attempt
	(-1, -6) oe and $(5, 0)$ oe isw	A1*+A1*	or A1 for correct pair of <i>x</i> coordinates or correct pair of <i>y</i> coordinates
	$\sqrt{72}$ or $6\sqrt{2}$ cao isw	B1dep*	
9 (i)	$[y=]\frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} (+c)$ oe	B2	or B1 for $(2x+1)^{\frac{1}{2}+1}$
	$10 = \frac{2}{6} (2(4) + 1)^{\frac{3}{2}} + c \text{ oe}$	M1	for valid attempt to find c ; condone slips e.g. omission of power or sign error
	$y = \frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} + c$ seen and $c = 1$ or	A1	must have $y =$; condone $f(x) =$
(ii)	$y = \frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} + 1 \text{ isw}$		
()	$\int \left(\frac{1}{3}(2x+1)^{\frac{3}{2}}+1\right) dx = \frac{1}{15}(2x+1)^{\frac{5}{2}} + x(+const)$	B1 + B1	B1 for $(2x+1)^{\frac{3}{2}+1}$, B1 for $\frac{1}{15}(2x+1)^{\frac{5}{2}}$
	$\left[\frac{1}{15}(2x+1)^{\frac{5}{2}} + x\right]_0^{1.5} =$	B1ft	B1 ft their c from (i) provided $c \neq 0$
	$\left[\frac{1}{15}(2(1.5)+1)^{\frac{5}{2}}+(1.5)\right]-\left[\frac{1}{15}(2(0)+1)^{\frac{5}{2}}+0\right]$	M1	for a genuine attempt to find $F(1.5)$ – $F(0)$ in an attempt to integrate their y ; if their $F(0)$ is 0 must see at least their $F(1.5)$ – 0; condone + c as long as their c is not numerical.
	$\frac{107}{30}$ oe isw	A1	if decimal 3.57 or more accurate e.g. 3.566

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	22

10 (i)	Taking logs of both sides	M1	any base; must be an explicitly correct statement
	$\log y = \log A + x \log b$	A1	correct form; any base; no recovery from incorrect method steps
(ii)	b: awrt 3 to one sf isw or awrt 4 to one sf isw	B2	or M1 for $b = e^{their gradient}$ soi; their gradient must be correctly evaluated as rise/run
	A: awrt 0.5 to one sf	B2	or B1 for $A = e^{-0.6}$
			or SC1 for $A = e^{-0.3} = 0.7$ (giving an awrt 0.7)
(iii)	Evidence of graph used at $\ln y = 5.4$ soi	M1	or $\frac{220}{their 0.5} = (their 4)^x$
			or $5.39 = their(1.4)x + their -0.6$
			or $\ln(220) = x \ln(their 4) + \ln(their 0.5)$
	awrt 4.4 to two sf	A1	

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	22

11 (i)	$f(x) > 3 \text{ or } [f(x) \in](3, \infty)$	B1	condone $y > 3$
(ii)	$x + 1 = 2^{y}$ $f^{-1}(x) = \log_{2}(x + 1)$	M1 A1	or $y+1=2^x$ mark final answer or $\log_2(y+1)=x$ and $f^{-1}(x) = \log_2(x+1)$ or for $f^{-1}(x) = \frac{\log(x+1)}{\log 2}$ (any base for this form)
	Domain $x > 3$	B1ft	ft their range of f provided mathematically valid inequality or interval
	Range $f^{-1}(x) > 2$	B1	condone $f(x) > 2$ or $y > 2$
(iii)	$2^x(2^x-1)$ oe isw	B1	e.g. $(2^{x} - 1)^{2} + (2x - 1)$ or $2^{2x} - 2 \times 2^{x} + 1 + 2^{x} - 1$
	$2^{x}(2^{x}-1)=0$ leading to $2^{x}=0$, impossible oe	B1	or $2^x = 0$ which is outside domain of gf
	$2^x = 1 \Rightarrow x = 0$	M1	or $2^{x}(2^{x}-1)=2^{2x}-2^{x}=0$ $[2^{2x}=2^{x}] \Rightarrow x=0$
	0 is not in the domain (and so $gf(x) = 0$ has no solutions)	A1	

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	22

12 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 18x + 24$	B1	
	Solving their $3x^2 - 18x + 24 \ge 0$ by factorising or quadratic formula or completing the square	M1	attempt at differentiation resulting in quadratic expression with two terms correct; allow = or \leq or $>$ or \geq 0 omitted here.
	Critical values 2 and 4 $x \le 2, x \ge 4$	A1 A1	A0 if spurious attempt to combine; mark final answer
(ii)	Evaluating their $\frac{dy}{dx}$ at $x = 3$	M1	
	Use of $m_1 m_2 = -1$ to get $m_{normal} = -\frac{1}{their(-3)}$	M1	must be explicit statement of gradient of normal; may be seen in equation
	y = 18 soi	B1	
	$y - their 18 = \left(their \frac{1}{3}\right)(x - 3)$ or		
	$y = their \frac{1}{3}x + c$ and $c = their 17$ isw	A1ft	ft their m provided a genuine attempt at m_{normal} ; no ft if $m = their m_{tangent}$
	P(0, 17) cao	B1	

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/23 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	23

1 (i)	$500 = \frac{1}{2}r^2 (1.6)$	M1	
	25 only	A1	±25 is A0
(ii)	their 25 + their 25 + their 25 \times 1.6 or better	M1	their 25 must be positive
	90	A1	
2	$\log_x 3 = \frac{1}{\log_3 x}$ oe soi	B1	may be implied by $\log_x 3 = \frac{1}{u}$ oe
	$u^2 - 4u - 12 = 0$ oe	M1	condone sign errors
	solve their 3 term quadratic in <i>u</i>	M1	
	Solve $\log_3 x = 6$ or $\log_3 x = -2$ oe	M1	
	729 and $\frac{1}{9}$	A1	
3 (i)	$\begin{pmatrix} 3 & 1 & 4 \\ 1 & 3 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}$	B1	
	or $(5 3 1)$ and $\begin{pmatrix} 3 & 1 \\ 1 & 4 \\ 4 & 0 \end{pmatrix}$		
	Multiplication of compatible matrices	M1	Must be correct shape from candidates product
	$\begin{pmatrix} 22 \\ 17 \end{pmatrix}$ or $\begin{pmatrix} 22 & 17 \end{pmatrix}$ as appropriate	A1	
(ii)	(1 1) with $\begin{pmatrix} 22\\17 \end{pmatrix}$ or $\begin{pmatrix} 22&17 \end{pmatrix}$ with $\begin{pmatrix} 1\\1 \end{pmatrix}$	B1	

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	23

4	(a) (i)		B1	
	(ii)	or O	B1	any Venn diagram showing three circles which do not all overlap
	(b) (i)	50 ∉ C	B 1	
	(ii)	$64 \in S \cap C$	B1ft	ft only on use of ⊄ and ⊂ instead of ∉ and ∈
	(iii)	n(S') = 90	B 1	
5	(i)	$\left(2\sqrt{2} + 4\right)^2 = 8 + 16\sqrt{2} + 16$	B1	
		Correct completion	B 1	
	(ii)	Use $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	M1	$\left(=\frac{\left(2\sqrt{2}+4\right)}{2\left(2\sqrt{2}+3\right)}\right)$
		Multiply top and bottom by $2\sqrt{2} - 3$	M1	
		$2-\sqrt{2}$	A1	Or $4\sqrt{2} - 6$
6		Eliminate x or y	M1	
		Rearrange to quadratic in x or y	M1	
		$x^2 - 27x + 72 = 0$ or $y^2 + 9y - 90 = 0$	A1	
		Factorise or solve 3 term quadratic	M1	
		x = 3, $x = 24$ or $y = 6$, $y = -15$	A1	
		y = 6, y = -15 or x = 3, x = 24	B 1	

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	23

7	(a)	$\frac{\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}}{\frac{1}{\cos\theta} + \frac{1}{\sin\theta}}$	B1	
		Clears the fractions in the numerator and denominator using common denominator	M1	
		$\frac{\sin^2\theta + \cos^2\theta}{\sin\theta + \cos\theta}$ and completion	A1	
	(b)	evidence of 13	B 1	
		$\sin x = \frac{5}{13}$	B1	
		$\cos x = -\frac{12}{13}$	B1ft	ft on their 13
8	(i)	Attempt to find $b^2 - 4ac$	M1	may be in formula or attempt to complete square
		Completely correct argument	A1	
	(ii)	m = 6(4) - 8(2) + 3	M1	
		y - 10 = 11(x - 2) or $y = 11x - 12$	A1	
	(iii)	Integrate to $2x^3 - 4x^2 + 3x(+c)$	B2,1,0	
		$10 = 2(2)^3 - 4(2)^2 + 3(2) + c$	M1	dep on c being a genuine constant of integration
		$y = 2x^3 - 4x^2 + 3x + 4 \text{ soi}$	A1	

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	23

9 (i)	(0, 7)	B1	
	$m_{AB}=2$	B1	
	perpendicular gradient = $-\frac{1}{2}$	M1	
	$y = -\frac{1}{2}x + 7$	A1	
(ii)	$m_{AB} = -1$	B1	
	y = -x + 13	B1	
	Solve their $y = -x + 13$ and $y = -\frac{1}{2}x + 7$	M1	
	D(12,1)	A1	
	Complete method for area	M1	
	84	A1	
10 (i)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\sqrt{x^2 + 21} \right) = \frac{x}{\sqrt{x^2 + 21}}$	B1	Alt method using product rule $d 1 -x D1$
			$\frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{\left(\sqrt{x^2 + 21}\right)} = \frac{-x}{\left(\sqrt{x^2 + 21}\right)^3} \text{ is B1}$
	Use of quotient rule	M1	then M1 A1 as in quotient
	$\frac{2\sqrt{(x^{2}+21)}-2x\times\frac{x}{\sqrt{(x^{2}+21)}}}{(x^{2}+21)}$	A1	
	Multiply each term by $\sqrt{(x^2 + 21)}$	M1	
	$\frac{2(x^2 + 21) - 2x^2}{(x^2 + 21)^{\frac{3}{2}}}$ leading to $k = 42$	A1	
(ii)	$\frac{6}{k} \times \frac{2x}{\sqrt{x^2 + 21}}$	M1	k must be a constant
	Use limits in $C \times \frac{2x}{\sqrt{x^2 + 21}}$	M1	
	$\frac{8}{55}$ or 0.145	A1	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	23

11 (i)	$\overrightarrow{OM} = \mathbf{a}$	B1	
	$\overrightarrow{MB} = 5\mathbf{b} - \mathbf{a}$	B1	
(ii)	$\overrightarrow{ON} = 3b$	B1	
	$\overrightarrow{AP} = \lambda \left(3\mathbf{b} - 2\mathbf{a} \right)$	B1	
(iii)	$\overrightarrow{MP} = \overrightarrow{MA} + \overrightarrow{AP}$	M1	
	$\mathbf{a} + \lambda \left(3\mathbf{b} - 2\mathbf{a} \right)$	A1	
(iv)	Put $\overrightarrow{MP} = \mu \overrightarrow{MB}$	M1	
	Equate components	M1	
	Solve simultaneous equations	M1	
	$\lambda = \frac{5}{7}$	A1	
12 (i)	3 < f < 7	B1,B1	If B0 then SC1 for $3 < f < 7$
(ii)	f(12) = 5	B1	$f^{2}(x) \sqrt{(\sqrt{(x-3)}+2-3)} + 2 \text{ earns } \mathbf{B1}$
	$(f(5) =) 2 + \sqrt{2}$	B1	
(iii)	Clear indication of method $f^{-1}(x) = (x-2)^2 + 3$	M1 A1	condone $y = (x - 2)^2 + 3$
(iv)	gf (x) = $\frac{120}{\sqrt{(x-3)}+2}$	B1	
	Attempt to solve <i>their</i> gf $(x) = 20$	M1	
	x = 19	A1	

MMM. XITEMER ADERS COM

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/21 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	21

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work
 only. A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	21

1	(x+6)(x-1)	M1	Attempt to solve a three term
	Critical values –6 and 1	A1	quadratic
	-6 < <i>x</i> < 1	A1 [3]	Allow $x > -6$ AND $x < 1$ but not OR or a comma. Mark final answer.
2	$\left(4\sqrt{5} - 2\right)^2 = 80 - 16\sqrt{5} + 4$	M1	Attempt to expand, allow one error,
	Multiply top and bottom by $\sqrt{5+1}$	M1	must be in the form $a + b\sqrt{5}$. Must be attempt to expand top and bottom.
	$17\sqrt{5+1}$	A1 A1 [4]	Allow A1 for $\frac{68\sqrt{5}+4}{c}$
	OR $(4\sqrt{5} - 2)^2 = 80 - 16\sqrt{5 + 4}$ $(\sqrt{5} - 1)(p\sqrt{5} + q) = 5p - q + \sqrt{5(q - p)}$	M1 M1	
	Leading to $5p-q=84$, $q-p=-16$ p=17 $q=1$	A1 A1	Must get to a pair of simultaneous equations for this mark
3 (i)	$\frac{\mathrm{d}y}{\mathrm{d}k} = k \left(\frac{1}{4}x - 5\right)^7$	M1	
	k = 2	A1 [2]	
(ii)	Use $\partial y = \frac{\mathrm{d}y}{\mathrm{d}x} \times \partial x$ with $x = 12$ and $\partial x = p$	M1	$^{\uparrow}$ on k needs both M marks
	-256 <i>p</i>	A1 [∱] [2]	only for −128kp and must be evaluated
4 (i)	10	B1	
(ii)	-5	[1] B1	Not $\log_p 1 - 5$
(iii)	$\log_p XY = \log_p X + \log_p Y = 7$	[1] B1	Or $\log_{XY} p = \frac{1}{\log_p XY}$
			Do not allow just $\log_p X + \log_p Y = 7$
	$\frac{1}{7}$	B1√^ [2]	

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	21

5		x - 4y = 5 oe	B 1	
		2x + 2y = 5 oe	B 1	
		Solve their linear simultaneous equations	M1	Each in two variables and not quadratic as far as $x =$ or $y =$
		x = 3 or $y = -0.5$	A1,A1 [†] [5]	quadratic as far as $x = \dots$ or $y = \dots$
		OR from log $0.602x - 2.408y = 3.01$ $0.954x + 0.954y = 2.386$	B1 B1	
		OR from ln 1.386x - 5.545y = 6.931 2.197x + 2.197y = 5.493 Final M1A1A1 follows as before	B1 B1	
6	(a) (i)	-8 or 20	B1	± 40 implies $\pm 2 \times 20$ or ± 160 hence B1
		$-160(x^3)$ isw	B1 [2]	OK if seen in expansion
	(ii)	$60(x^2)$	B1	Can be implied
		(i) $+\frac{1}{2}$ (their 60)	M1	
		$-130(x^3)$	A1 [3]	
	(b)	$16x^2 + 32x + 24 + \frac{8}{x} + \frac{1}{x^2}$ oe	B3,2,1,0	Terms must be evaluated (allow $24x^0$) B2 for 4 terms correct. B1 for 2 or 3 terms correct. ISW once expansion is seen.
7	(i)	$l = \frac{3500}{x^2}$	B1	allow $lx^2 = 3500$
		$L = 3 \times 4x + 2x + 2l$	B1	RHS 3 terms e.g. $12x + 2x + 2\left(\frac{3500}{x^2}\right)$
		Substitute for <i>l</i> and correctly reach $L = 14x + \frac{7000}{x^2}$	DB1ag [3]	or better Dependent on both previous B marks
	(ii)	$\frac{\mathrm{d}L}{\mathrm{d}x} = 14 - \frac{14000}{x^3}$	M1A1	M1 either power reduced by one A1 both terms correct
		Equate $\frac{dL}{dr}$ to 0 and solve	DM1	Must get $x^n =$
		dx $x = 10$ $L = 210$	A1	Both values
		$\frac{d^2y}{dx^2} = \frac{42000}{x^4}$ and minimum stated	B1 [5]	Or use of gradient either side of turning point.

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	21

8	(i)	x^2	B1 [1]	Implied by axes or values in a table. May be seen in (ii)
	(ii)	Plot $\frac{y}{x}$ against x^2 with linear scales		Must be linear scales
		x^2 4 16 36 64	B1	At least 3 correct points plotted and
		$\frac{y}{x}$ 4.8 9.6 17.5 29	B1 [2]	no incorrect points Line must be ruled and through at least 2 correct points
	(iii)	Finds gradient (0.4) $a = 0.4 \pm 0.02$	M1	Condone use of correct values from table/graph to find gradient and /or
		$b = 3.2 \pm 0.4$	A1 B1 [3]	equation. Values read from graph must be correct.
	(iv)	Read $\frac{y}{x} = 12.5$	M1	Obtaining (x^2) = 22 to 24 from graph
		or substitute in formula		As far as $x^2 = +$ ve constant
		4.8	A1 [2]	4.7 to 4.9 ignore –4.8 or 0
9		Method A	M1	
		Takes components $12v \sin \alpha = 40$	A1 A1	
		$12(v\cos\alpha+1.8)=70$	M1A1	
		$12v\cos\alpha = 48.4$	DM1	
		Solve for v or α $\alpha = 39.6$	A1 A1	Allow 0.691 radians
		v = 5.23	[8]	Tillow 0.071 radians
		Method B 70 D 40		
		$\frac{\sqrt{a}}{y}$		
		$x = 1.8 \times 12 = 21.6$	B1	
		y = 70 - 21.6 = 48.4	B1	
		$D^2 = 40^2 + 48.4^2 (= 3942.56)$	M1	
		D = 62.8	A1	
		$V = \frac{D}{12}$	DM1	
		V = 5.23	A1	5.23 or better
		$\tan \alpha = \frac{40}{48.4}$	M1	
		48.4 $\alpha = 39.6^{\circ}$	A1 [8]	Allow 0.691 radians

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	21

Method C		
N B		
v 40		
1.8		
70		
$z = \sqrt{40^2 + 70^2} \left(= 80.6 \right)$	B 1	
$v = \frac{\sqrt{40^2 + 70^2}}{12} (= 6.72)$	B 1	
12		7
$\tan \delta = \frac{4}{7} \rightarrow (\delta = 29.74)$ oe	B 1	Or $\tan(90-\delta) = \frac{7}{4}$
$V^2 = 1.8^2 + 6.72^2 - 2 \times 1.8 \times 6.72 \cos 29.74$	M1	
V = 5.23	A1	
$\frac{\sin \beta}{1}.8 = \frac{\sin 29.74}{5}.23$	M1	
$\beta = 9.8(3) \text{ or } 9.8(2)$	A1	Allow 0.172 radians
$\alpha = 29.74 + \beta = 39.6$	A1	Allow 0.691 radians
	[8]	
Method D		
z B 40		
21.6	B 1	
	B1	
$z = \sqrt{40^2 + 70^2 (= 80.6)}$ $x = 1.8 \times 12 = 21.6$	B 1	
$\tan \delta = \frac{4}{7} \rightarrow (\delta = 29.74)$ oe	M1 A1	This method has extra steps so note at
$D^2 = 21.6^2 + 80.6^2 - 2.21.6.80.6\cos 29.74$	AI	this point the M mark is for an
V = (62.8/12) = 5.23		equation in D but the A mark is for a
		value of <i>V</i> .
	M1	
$\frac{\sin \beta}{21}.6 = \frac{\sin 29.74}{62}.8$		
$\beta = 9.8(3)$ or $9.8(2)$	A1	Allow 0.172 radians
$\alpha = 29.74 + \beta = 39.6$	A1	Allow 0.691 radians
	[8]	

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	21

10 (i)	$AB^{2} = 12^{2} + 12^{2} - 2 \times 12 \times 12 \times \cos 1.4$ 15.4 to 15.5 $\theta = 2\pi - 1.4 (= 4.88)$ Use $s = r\theta (= 58.6)$ 74.1	M1 A1 B1 M1 A1 [5]	$AB = 2 \times 12 \sin 0.7$ May be implied May be implied 12×4.9 or better oe
(ii)	(Sector) $\frac{1}{2} \times 12^2 \times (2\pi - 1.4) (= 352)$ or $\pi \times 12^2 - \frac{1}{2} \times 12^2 \times 1.4$ (Triangle) $= \frac{1}{2} \times 12 \times 12 \times \sin 1.4 (= 70.9 \text{ or } 71)$	M1 M1	May be implied .
	Area of major sector + Area of triangle 422 or 423	M1 A1 [4]	May be implied
11 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}e^{\frac{1}{3}x}$	B 1	
	$m = \frac{1}{3}e^3$	M1	For insertion of $x = 9$ into their $\frac{dy}{dx}$. 6.7 or better if correct.
	$y - e^3 = \frac{1}{3}e^3(x-9)$	DM1	Using their evaluated m to find eqn $y = 6.7x - 40.2$ or better if correct.
	At Q y = 0, x = 6	A1 [4]	Accept value that rounds to 6.0 to 2sf
(ii)	Area triangle 1.5e ³ or 30.1 $\int_{0}^{1/2} e^{\frac{1}{3}x} dx = 3e^{\frac{1}{3}x} e^{\frac{1}{3}x}$	B1	
	Uses limits of 0 and 9 in integrated function.	B1 M1	± must see both values inserted if incorrect answer
	$3e^3 - 3$ or 57.3 Area under curve subtract area of triangle $1.5e^3 - 3$ or 27.1	A1 M1 A1	Condone 27.2 if obtained from
		[6]	57.3 – 30.1.

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	21

12	(a)	$cosecx = \frac{1}{\sin x}$ inserted into equation $\tan x = -\frac{2}{7}$	B1 DB1	
		164.1 344.1	B1 B1√	One correct value. on $180 + (164.1)$ Must come from $tanx =$ Condone 164 and 344 Deduct 1 mark for extras in range
	(b)	(2y-1) = 0.79or 2.34 Find y using radians 0.898 (or 0.9 or 0.90) 1.67, 4.04 and $4.81(45)$	B1 M1 A1 A1 A1 [5]	Allow 0.8, 2.3 or 45.6° Add 1 then divide by 2 on a correct angle One correct value Another correct value Final two values Deduct 1 mark for extras in range

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work
 only. A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

1	(x+6)(x-1)	M1	Attempt to solve a three term
	Critical values –6 and 1	A1	quadratic
	-6 < x < 1	A1 [3]	Allow $x > -6$ AND $x < 1$ but not OR or a comma. Mark final answer.
2	$\left(4\sqrt{5}-2\right)^2 = 80 - 16\sqrt{5} + 4$	M1	Attempt to expand, allow one error,
	Multiply top and bottom by $\sqrt{5} + 1$	M1	must be in the form $a + b\sqrt{5}$. Must be attempt to expand top and bottom.
	$17\sqrt{5}+1$	A1 A1 [4]	Allow A1 for $\frac{68\sqrt{5}+4}{c}$
	OR $(4\sqrt{5}-2)^2 = 80-16\sqrt{5}+4$ $(\sqrt{5}-1)(p\sqrt{5}+q) = 5p-q+\sqrt{5}(q-p)$	M1 M1	
	Leading to $5p - q = 84$, $q - p = -16$ p = 17 $q = 1$	A1 A1	Must get to a pair of simultaneous equations for this mark
3 (i)	$\frac{\mathrm{d}y}{\mathrm{d}k} = k \left(\frac{1}{4}x - 5\right)^7$	M1	
	k = 2	A1 [2]	
(ii)	Use $\partial y = \frac{dy}{dx} \times \partial x$ with $x = 12$ and $\partial x = p$	M1	$^{\uparrow}$ on k needs both M marks
	-256 <i>p</i>	A1 [∱] [2]	only for −128kp and must be evaluated
4 (i)	10	B1	
(ii)	-5	[1] B1	Not $\log_p 1 - 5$
(iii)	$\log_p XY = \log_p X + \log_p Y = 7$	[1] B1	Or $\log_{XY} p = \frac{1}{\log_p XY}$
			Do not allow just $\log_p X + \log_p Y = 7$
	$\frac{1}{7}$	B1√^ [2]	$ ^{\uparrow} $ on $\frac{1}{\log_p XY}$

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

5		x-4y=5 oe	B1	
		2x + 2y = 5 oe	B1	
		Solve their linear simultaneous equations	M1	Each in two variables and not
		^		quadratic as far as $x = \dots$ or $y = \dots$
		x = 3 or $y = -0.5$	A1,A1√	
			[5]	
		OR from log	B 1	
		0.602x - 2.408y = 3.01	B1	
		0.954x + 0.954y = 2.386	D 1	
		OR from ln	B1	
		1.386x - 5.545y = 6.931	B1	
		2.197x + 2.197y = 5.493		
		Final M1A1A1 [↑] follows as before		
6	(a) (i)	-8 or 20	B1	± 40 implies $\pm 2 \times 20$ or ± 160
	. , . ,			hence B1
		$-160(x^3)$ isw	B1	OK if seen in expansion
			[2]	
	(ii)	$60(x^2)$	B1	Can be implied
		(i) $+\frac{1}{2}$ (their 60)	M1	
		$-130(x^3)$	A1	
		,	[3]	
	(b)	$16x^2 + 32x + 24 + \frac{8}{x} + \frac{1}{x^2}$ oe	B3,2,1,0	Terms must be evaluated (allow $24x^0$)
	、 /	$\frac{1}{x}$ $\frac{1}{x^2}$	20,2,1,0	B2 for 4 terms correct.
			[2]	B1 for 2 or 3 terms correct.
			[3]	ISW once expansion is seen.
7	(i)	$l = \frac{3500}{2}$	B1	allow $lx^2 = 3500$
'	(1)	X^{-}		
		$L = 3 \times 4x + 2x + 2l$	B1	RHS 3 terms e.g. $12x + 2x + 2\left(\frac{3500}{x^2}\right)$
				or better
		Substitute for <i>l</i> and correctly reach		
		$L = 14x + \frac{7000}{r^2}$	DB1ag	Dependent on both previous B marks
		x^2	[3]	Bependent on sour previous B marks
		17 14000		
	(ii)	$\frac{dL}{dx} = 14 - \frac{14000}{x^3}$	M1A1	M1 either power reduced by one
		•••		A1 both terms correct
		Equate $\frac{dL}{dx}$ to 0 and solve	DM1	Must get $x^n =$
		x = 10	A1	Both values
		L = 210		
		$\frac{d^2y}{dx^2} = \frac{42000}{x^4}$ and minimum stated	B 1	Or use of gradient either side of
		$dx^2 - x^4$ and minimum stated	[5]	turning point.

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

8	(i)	x^2	B1 (41)	Implied by axes or values in a table.
			[1]	May be seen in (ii)
	(ii)	Plot $\frac{y}{x}$ against x^2 with linear scales		Must be linear scales
		x^2 4 16 36 64	B1	At least 3 correct points plotted and no incorrect points
		$\frac{y}{x}$ 4.8 9.6 17.5 29	B1 [2]	Line must be ruled and through at least 2 correct points
	(iii)	Finds gradient (0.4) $a = 0.4 \pm 0.02$	M1	Condone use of correct values from table/graph to find gradient and /or
		$b = 3.2 \pm 0.4$	A1 B1 [3]	equation. Values read from graph must be correct.
	(iv)	Read $\frac{y}{x} = 12.5$	M1	Obtaining (x^2) = 22 to 24 from graph
		or substitute in formula		As far as $x^2 = +$ ve constant
		4.8	A1 [2]	4.7 to 4.9 ignore –4.8 or 0
9		Method A	M1	
		Takes components $12v \sin \alpha = 40$	A1 A1	
		$12(v\cos\alpha + 1.8) = 70$	M1A1	
		$12v\cos\alpha = 48.4$	DM1	
		Solve for v or α	A1	
		$\alpha = 39.6$ $v = 5.23$	A1 [8]	Allow 0.691 radians
		Method B ← 70 →		
		$\frac{D}{a}$ $\frac{1}{x}$		
		$x = 1.8 \times 12 = 21.6$	B1	
		y = 70 - 21.6 = 48.4	B1	
		$D^2 = 40^2 + 48.4^2 (= 3942.56)$	M1	
		D = 62.8	A1	
		$V = \frac{D}{12}$	DM1	
		V = 5.23	A1	5.23 or better
		$\tan \alpha = \frac{40}{48.4}$	M1	
		$\alpha = 39.6^{\circ}$	A1 [8]	Allow 0.691 radians

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

1002 0000000000000000000000000000000000		
Method C		
v B 40		
1.8		
$z = \sqrt{40^2 + 70^2} \left(= 80.6 \right)$	B1	
$v = \frac{\sqrt{40^2 + 70^2}}{12} (= 6.72)$	B1	
$\tan \delta = \frac{4}{7} \rightarrow (\delta = 29.74)$ oe	B1	Or $\tan(90-\delta) = \frac{7}{4}$
$V^{2} = 1.8^{2} + 6.72^{2} - 2 \times 1.8 \times 6.72 \cos 29.74$ $V = 5.23$	M1 A1	7
$\frac{\sin \beta}{1}.8 = \frac{\sin 29.74}{5}.23$	M1	
$\beta = 9.8(3) \text{ or } 9.8(2)$	A1	Allow 0.172 radians
$\alpha = 29.74 + \beta = 39.6$	A1 [8]	Allow 0.691 radians
Method D		
z B 40		
21.6	B1	
$z = \sqrt{40^2 + 70^2} \left(= 80.6 \right)$	B1	
$x = 1.8 \times 12 = 21.6$ $\tan \delta = \frac{4}{7} \rightarrow (\delta = 29.74) \text{ oe}$	B1 M1	
$D^2 = 21.6^2 + 80.6^2 - 2.21.6.80.6\cos 29.74$	A1	This method has extra steps so note at this point the M mark is for an
V = (62.8/12) = 5.23		equation in D but the A mark is for a value of V .
	M1	
$\frac{\sin \beta}{21}.6 = \frac{\sin 29.74}{62}.8$		
$\beta = 9.8(3) \text{ or } 9.8(2)$	A1	Allow 0.172 radians
$\alpha = 29.74 + \beta = 39.6$	A1 [8]	Allow 0.691 radians

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

10	(i)	$AB^2 = 12^2 + 12^2 - 2 \times 12 \times 12 \times \cos 1.4$	M1	$AB = 2 \times 12 \sin 0.7$ May be implied
		15.4 to 15.5 $\theta = 2\pi - 1.4 (= 4.88)$	A1 B1	May be implied May be implied
		Use $s = r\theta (= 58.6)$		* *
		74.1	M1	12×4.9 or better oe
		/4.1	A1 [5]	
			[2]	
	(ii)	(Sector) $\frac{1}{2} \times 12^2 \times (2\pi - 1.4) (= 352)$ or	M1	May be implied .
		$\pi \times 12^2 - \frac{1}{2} \times 12^2 \times 1.4$		
		(Triangle) = $\frac{1}{2} \times 12 \times 12 \times \sin 1.4 (= 70.9 \text{ or } 71)$	M1	
		Area of major sector + Area of triangle	M1	May be implied
		422 or 423	A1	
			[4]	
11	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}e^{\frac{1}{3}x}$	B1	
		$m = \frac{1}{3}e^3$	M1	For insertion of $x = 9$ into
		3	1,22	
		1		their $\frac{dy}{dx}$. 6.7 or better if correct.
		$y - e^3 = \frac{1}{3}e^3(x - 9)$	DM1	Using their evaluated <i>m</i> to find eqn
		3		y = 6.7x - 40.2 or better if correct.
		At Q y = 0, x = 6	A1	Accept value that rounds to 6.0 to 2sf
			[4]	
	(ii)	Area triangle 1.5e ³ or 30.1	B1	
		$\int e^{\frac{1}{3}x} dx = 3e^{\frac{1}{3}x}$ oe	B 1	
		Uses limits of 0 and 9 in integrated function.	M1	± must see both values inserted if incorrect answer
		$3e^3 - 3 \text{ or } 57.3$	A1	
		Area under curve subtract area of triangle	M 1	
		$1.5e^3 - 3 \text{ or } 27.1$	A1	Condone 27.2 if obtained from
			[6]	57.3 – 30.1.

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

12	(a)	$\csc x = \frac{1}{\sin x}$ inserted into equation $\tan x = -\frac{2}{7}$	B1 DB1	
		164.1 344.1	B1 B1√*	One correct value. on $180 + (164.1)$ Must come from $tanx =$ Condone 164 and 344 Deduct 1 mark for extras in range
	(b)	(2y-1) = 0.79or 2.34 Find y using radians 0.898 (or 0.9 or 0.90) 1.67, 4.04 and 4.81 (45)	B1 M1 A1 A1 A1 [5]	Allow 0.8, 2.3 or 45.6° Add 1 then divide by 2 on a correct angle One correct value Another correct value Final two values Deduct 1 mark for extras in range

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/23 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	23

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	23

1	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 12x - 36$	B2, 1, 0	Allow B1 if 2 terms correct
	Equate to 0 and solve 3 term	M1	
	quadratic $x = -2$ and $x = 6$	A1	Or one coordinate pair
	y = 56 and $y = -200$	A1 [5]	For two y values
2 (a) (i)	840	B1 [1]	
(ii)	480	B1 [1]	
(iii)	Calculates any case(s) correctly Partitions all cases correctly 140	B1 M1 A1 [3]	e.g. $1 \times 5 \times 4 \times 3 = 60, 1 \times 5 \times 4 \times 4 = 80$
3	Eliminate x or y	M1*	
	Obtain $kx^2 + 8x + k - 6 (= 0)$	A1	
	Use $b^2 - 4ac*0$	DM1	
	Obtain $-4k^2 + 24k + 64*0$ oe	A1	
	Solve 3 term quadratic ($k = 2, 8$) $k < -2, k > 8$	M1 A1 [1]	
4 (a) (i)	A=3, B=2	B1, B1	
(ii)	C = 4	B1	
(b)	120 or $\frac{2\pi}{3}$	B1	
	5	B1	
5 (a) (i) (ii)		B1 [1]	
		B1 [1]	
(b)	$S \cap T'$ or $(S' \cup T)'$ oe	B1 [1]	Others will be seen but only accept completely correct set notation

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	23

		1		
(c)	18-x x 14-x	B1		B1 for any two of x , $3x$, $18 - x$ or $14 - x$ in correct place (or implied by correct equation)
	$\begin{vmatrix} 18 - x + x + 14 - x + 3x = 40 \\ x = 4 \end{vmatrix}$	M1 A1	[3]	
6 (a) (i)	Equate f(-3) to zero Equate f(2) to 65	M1 M1		
		A1		
	Solve simultaneous equations $a = 5, b = 4$	M1 A1	[5]	
(ii)	Calculate $f\left(-\frac{1}{2}\right) = -\frac{1}{4} + \frac{a}{4} - \frac{b}{2} + 21$	M1		Or use long division
	20	A1	[2]	
7	Eliminate x or y Rearrange to quadratic in x or y correctly	M1 M1		
	$x^{2} - 10x + 16 (= 0)$ or $y^{2} + 8y - 128 (= 0) \text{ oe}$	A1		
	Solve 3 term quadratic	M1		
	x = 2, x = 8 y = 8, y = -16	A1 A1		Or one correct coordinate pair
	Correct method for at least one coordinate of <i>C</i>	M1		e.g. $x_c = \frac{1}{3} [2 (2) + 1 (8)],$ $\mathbf{OC} = \mathbf{OA} + \frac{1}{3} \mathbf{AB} \text{ oe}$
	C (4, 0)	A1	[8]	

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	23

8 (a) (i)	X(14, 12)	B1	
	$m_{AX} = \frac{1}{3}$	B1	
	Use $m_1m_2 = -1$ for grad CD from grad AX	M1	
	CD is y - 4 = -3(x - 10) or		
	y = -3x + 34	A1√	$\sqrt{\text{ on grad } AX}$
	$AX \text{ is } y - 6 = \frac{1}{3}(x+4)$		
	$ \begin{array}{l} \text{or} \\ 3y - x = 22 \end{array} $	B1√	$\sqrt{\text{ on grad } AX}$
	Solve eqn for CD with eqn for AX D (8, 10)	M1 A1 [7]	
(ii)	Method for area 100	M1 A1 [2]	
9 (a) (i)	9	B1 [1]	
(ii)	$a = k \cos 2t$ $12 \cos 2t$	M1 A1	No other functions of <i>t</i> or constants
	-7.84	$A1\sqrt{1}$ [3]	on k only Must be negative (if correct) or say "deceleration"
(iii)	$t = \frac{7\pi}{12} \text{ or awrt } 1.8$	B1	
	$3t-3\cos 2t$	B1, B1	
	Use limits of 0 and their $\left(\frac{7\pi}{12}\right)$		Upper limit must be positive
	or finds $c \neq 0$ and substitutes their $\left(\frac{7\pi}{12}\right)$	M1	
	11.1 or $\frac{7\pi}{4} + \frac{3\sqrt{3}}{2} + 3$	A1 [5]	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	23

10 (a) (i)	Radius is $\frac{h}{4}$	B1	
	Use $\frac{1}{3}\pi r^2 h$	M1	On water cone
	$\frac{1}{3}\pi\left(\frac{h}{4}\right)^2\times h\left(=\frac{\pi h^3}{48}\right)$	A1ag [3]	
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\pi h^2}{16}$	B1	
	Use $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}h}{\mathrm{d}V}$		
	with $h = 50$, $\frac{\mathrm{d}V}{\mathrm{d}t} = 20\pi$	M1	
	0.128	A1 [3]	
(iii)	$A = \frac{\pi h^2}{16} \frac{\mathrm{d}A}{\mathrm{d}h} = \frac{\pi h}{8}$	B1 M1	
	Use $\frac{dA}{dt} = \frac{dh}{dt} \times \frac{dA}{dh}$ with substitution of $h = 50$, their 0.128	M1	
	0.8π or 2.51	A1 [3]	
11 (a) (i)	$(2\mathbf{i} + 4\mathbf{j})t$	B1	
	$(-21\mathbf{i} + 22\mathbf{j}) + (5\mathbf{i} + 3\mathbf{j})t$	B1 [2]	
(ii)	Subtract position vectors $((-21+3t)\mathbf{i} + (22-t)\mathbf{j})$	M1	Or use $t = 2$ to find position vectors of A , B $4\mathbf{i} + 8\mathbf{j}$, $-11\mathbf{i} + 28\mathbf{j}$
	Substitute $t = 2$ and use Pythagoras Correctly reach 25	M1 A1 [3]	Subtract position vectors and use Pythagoras
(iii)	$(-21+3t)^2 + (22-t)^2 = 25^2$ oe	M1	Set expression for distance apart to 25
	$t^2 - 17t + 30 \ (=0)$	A1	
	Solve 3 term quadratic	M1	Not essential to solve quadratic
	t = 15 (and 2)	A1	e.g. $t_1 + t_2 = 17$ and $t_1 = 2$
	13 hours	A1 [5]	

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/21 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	21

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	21

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	21

1	$2+2\sin^2\theta$		For all methods look for:
	$\frac{2 + 2 \sin^{-6} \theta}{\cos^{2} \theta}$	B1	correct simplified expression
	2 2 0		- correct use of Pythagoras
	$\frac{2}{\cos^2 \theta} = 2 \sec \theta$	B1	$- use of tan = \frac{sin}{cos}$
	$\sin^2\theta$	D1	$-$ use of $\frac{1}{-}$ = sec
	$\frac{\sin^2 \theta}{\cos^2 \theta} = 2 \tan^2 \theta$	B1	cos
	$2 \sec^2 \theta = 2 + 2 \tan^2 \theta$ and completion	B1	Award first 3 then last B1 for final expression from fully correct method.
			Inconsistent no angle used then –1 (can recover).
			If start from RHS award similarly.
	Or (ID1 D1	
	$(\sec \theta + \tan \theta)^2 + (\sec \theta - \tan \theta)^2$	[B1, B1	
	$2\sec^2\theta + 2\tan^2\theta$	B1	
	$2(1 + \tan^2 \theta) + 2 \tan^2 \theta$ and completion	B1]	
	Or		
	$\frac{2+2\sin^2\theta}{\cos^2\theta}$	[B1	
	$\frac{2(\sin^2\theta + \cos^2\theta) + 2\sin^2\theta}{\cos^2\theta}$	B1	
	$\frac{4\sin^2\theta}{\cos^2\theta} = 4\tan^2\theta$	B1	
	$\frac{2\cos^2\theta}{\cos^2\theta} = 2 \text{ and completion}$	B1]	
2 (i)	3.2	B1	
(ii)	15	B1	
(iii)	uses area to find distance	M1	If split 2 or 3 correct formulae and must be attempting total area
	two of 40, 240 and 32	A1	
	312	A1	or A2 for 312 from trapezium

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	21

3	dv		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = k \sin x \cos x$	M1	
	k = -8	A1	
	Attempt to find x when $y = 8$	M1	Must get to $x =$ numerical value
	$x = \frac{\pi}{4} (0.785)$	A1	45° = A0 (but can still gain next 2 marks)
	Uses $\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$	M1	Must use numerical value for x and 0.2 for $\frac{dx}{dt}$
	-0.8 (not rounded)	A1	(condone poor notation if correct terms multiplied)
4 (i)	Idea of modulus correct	B1	Two straight lines above and touching <i>x</i> -axis
	$\frac{1}{2}$ indicated on x-axis	B1	Must be a sketch
	2 indicated on <i>y</i> -axis	B1	Must be a sketch
(ii)	$\frac{2}{3}$ (0.667)	B1	0.67 is B0
	Solve $4x - 2 = -x$ or $(4x - 2)^2 = x^2$	M1	As far as $x =$ numerical value
	$\frac{2}{5}$	A1	SC: If drawn then B1 , B2 for exact answers only
5 (i)	$(QR = PS =) \frac{96 - 3x}{2}$	B1	Can be implied by next statement
	$Area = \left(\frac{96 - 3x}{2}\right) \times x$	B1	AG
(ii)	$\frac{dA}{dx} = \frac{96 - 6x}{2}$ or $48 - 3x$ o.e.	В1	
	Solving $\frac{dA}{dx} = \frac{96 - 6x}{2} = 0$	M1	As far as $x =$ numerical value
	x = 16	A1	
	A = 384 and state maximum	A1	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	21

4	Applies quetient mule comments	N/I	on muo divot milo
6	Applies quotient rule correctly	M1	or product rule
	$\frac{(x-2)2x-(x^2+8)}{(x-2)^2}$	A1	$2x (x-2)^{-1} - (x^2+8) (x-2)^{-2}$
	y = 12	B1	
	Uses $m_1 m_2 = -1$	M1	
	(Gradient normal = $\frac{1}{2}$)		
	Uses equation of line for normal	M1	If uses $y = mx + c$ must find c for M1
	$y-12 = \frac{1}{2}(x-4)$ or $y = \frac{1}{2}x+10$	A1	
7 (i)	$64 + 192x + 240x^2 + 160x^3$ mark final answer	B3, 2, 1, 0	3 terms correct earn B2 ; 2 terms correct earn B1 Can be earned in (ii); SC2 correct but unsimplified
(ii)	Multiply out $(1+3x)(1-x)$	M1	
	$1 + 2x - 3x^2$ o.e.	A1	
	$(1) \times (160) + (2) \times (240) + (-3) \times (192)$ o.e.	M1	3 terms
	64	A1	
	Or Multiply out $(1-x)(64 + 192x + 240x^2 + 160x^3)$	[M1	May be other variations: for first M1 find x^2 term or x^3 term
	$48x^2 - 80x^3$ o.e.	A1	
	Multiply by $1 + 3x$	M1	for second M1 must produce all relevant terms
	64	A1]	
	Or $(1+3x)(64+192x+240x^2+160x^3)$	[M1	
	$816x^2 + 880x^3$ o.e.	A1	
	Multiply by $1 - x$	M1	
	64	A1]	

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	21

8	Eliminates <i>y</i> (or <i>x</i>) and full attempt at expansion	M1	
	$4x^2 - 8x - 96 = 0 \text{or } y^2 + 12y - 64 = 0$	A1	
	Factorise 3 term relevant quadratic	M1	Or use correct formula
	x = -4 and 6 or $y = -16 and 4$	A1	
	y = -16 and 4 or $x = -4 and 6$	A1 √	
	Uses Pythagoras for relevant points	M1	
	22.4 or $\sqrt{500}$ or $10\sqrt{5}$	A1	cao
9 (i)	Attempt to solve 3 term quadratic	M1	
	-3 and 8	A1	
	-3 < x < 8	A1	Condone $-3 < x$ AND $x < 8$
(ii)	4 < x (< 12)	B1	
	$S \cup T = -3 < x < 12$	B1	
(iii)	$S \cap T = 4 < x < 8$ or $S' = -5 < x \le -3, 8 \le x < 12$ and $T' = -5 < x \le 4$	B1	Penalise confusion over $<$ and \le (or $>$ and \ge) once only
	$-5 < x \le 4$	B 1√	their 4
	$8 \le x < 12$	B 1√	their 8 (Ignore AND/OR etc.)

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	21

10 (i)	$\frac{\sin \alpha}{50} = \frac{\sin 58}{240}$	M1 A1	Use of sin rule/cosine rule/resolving with 50, 240 and 58/32/122/148. Must be correct for A1
	$\alpha = 10.2$	A1	
	Bearing (0)21.8 or (0)22	A1 √	$\sqrt{\text{ for } 32 - \alpha}$
(ii)	$V^2 = 240^2 + 50^2 - 2 \times 240 \times 50 \times \cos(122 - \alpha)$	M1	Correct use of sin rule/cosine rule/resolving
	V = 263 awt	A1	Can be in (i)
	$T = \frac{500}{V}$	M1	Only allow if <i>V</i> calculated from non right-angled triangle
	114 or 1 hour 54 mins	A1	Do not allow incorrect units
	Or $T = \frac{500\cos 32}{240\cos 21.8}$	[M1	Alternative for part (ii) only Also can find distance for 240 (457) then 457/240
	500 cos 32	B1	
	240 cos 21.8	B1	
	114 or 1 hour 54 mins	A1]	
11 (i)	1	B1	Not a range for k , but condone $x = 1$ and $x \ge 1$
(ii)	f ≥ -5	B1	Not x , but condone y
(iii)	Method of inverse	M1	Do not reward poor algebra but allow slips
	$1+\sqrt{x+5}$	A1	Must be $f^{-1} =$ or $y =$
(iv)	f: Positive quadratic curve correct range and domain	B 1	Must cross <i>x</i> -axis
	f^{-1} : Reflection of f in $y = x$	B1 √	\sqrt{their} f(x) sketch Condone slight inaccuracies unless clear contradiction.
(v)	Arrange $f(x) = x$ or $f^{-1}(x) = x$ to 3 term quadratic = 0	M1	
	4 only www	A1	Allow $x = 4$ with no working. Condone $(4, 4)$. Do not allow final A mark if -1 also given in answer

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	21

		T		T
12	(i)	f(3) = (27 + 9 + 3a + b) = 0 or $3a + b = -36$	M1	Equate f(3) to 0
		f(-1) = (-1 + 1 - a + b) = 20 or $-a + b = 20$	M1	Equate f(-1) to 20
		Solve equations	M1	
		a = -14, b = 6	A1	If uses $b = 6$ then M0 , A0 Need both values for A1
	(ii)	Find quadratic factor	M1	If division, must be complete with first 2 terms correct If writes down, must be $(x^2 + kx - 2)$
		$x^2 - 4x - 2$	A1	
		Use quadratic formula or completing square on relevant 3 term quadratic	M1	If completing square, must reach $\left(x + \frac{k}{2}\right)^2 = 2 \pm \left(\frac{k}{2}\right)^2$
		$\frac{-4 \pm \sqrt{16 + 8}}{2}$ or better	A1 √	
		$-2 \pm \sqrt{6}$ isw	A1	cao

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"\" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW −1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

1	$m = \frac{18 - 3}{4 - 1}$ or 5 soi	M1	or $18 = 4m + c$ and $3 = m + c$ subtracting/substituting to solve for m or c , condone one error
	Y-3 = their 5(X-1) or Y-18 = their 5(X-4)		for m of c, condone one circl
	or $3 = their \ 5 + c$ or $18 = their \ 5 \times 4 + c$	M1	or using <i>their m</i> or <i>their c</i> to find <i>their c</i> or <i>their m</i> , without further
	$\sqrt{y} = (their m) x^2 + (their c) or$		error
	$\sqrt{y} = (their m) (x^2 - 1) + 3 \text{ or}$		
	$\sqrt{y} = (their m) (x^2 - 4) + 18$	M1	their m and c must be validly obtained
	$y = (5x^2 - 2)^2$ or $y = (5(x^2 - 1) + 3)^2$ or $y = (5(x^2 - 4) + 18)^2$ cao, isw	A1	
2 (a)	$(p+1) \ln 3 = \ln 0.7$	M1	or $p + 1 = \log_3 0.7$ or
2 (a)	(p+1) in 3 - in 0.7	IVII	$p \ln 3 = \ln \left(\frac{0.7}{3} \right)$
	$p = \frac{\ln 0.7}{\ln 3} - 1$ or $p = \frac{\lg 0.7}{\lg 3} - 1$	M1	or $p = \log_3 0.7 - 1$
	$p = \ln 3$ $\log p = \log 3$	IVII	
			or $p \ln 3 = \ln \left(\frac{0.7}{3} \right) \div \ln 3$
	-1.32 cao	A1	allow M2 for $p = \log_3\left(\frac{0.7}{3}\right)$
			correct answer only scores B3
(b)	$2^{\frac{5}{2}} \times x^6 \times y^{-\frac{1}{2}}$ or $a = \frac{5}{2}$, $b = 6$, $c = -\frac{1}{2}$	В3	B1 for each component
2 (a) (i)	A and E	B2	1 moult for each
3 (a) (i)	A and E	B2	1 mark for each B1 for 1 extra, B0 if 2 or more extras
(ii)	C and D	B2	1 mark for each
			B1 if 1 extra, B0 if 2 or more extras
(b)	5.7	B2	(-1, 0), (1, 3), (3, 4) or B1 for two points correct and joined or for three points correct but clearly not joined
	5.3		

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

4	(i)	$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} \text{ or}$ $\overrightarrow{OB} - \overrightarrow{OA} = 3(\overrightarrow{OC} - \overrightarrow{OA}) \text{ soi}$	B1	or $3\overrightarrow{AC} = 3(c_1 - 4)\mathbf{i} + 3(c_2 + 21)\mathbf{j}$ o.e. soi
		$\pm (18\mathbf{i} - 9\mathbf{j})$ o.e. or $\overrightarrow{OC} = \frac{2}{3}\overrightarrow{OA} + \frac{1}{3}\overrightarrow{OB}$	B1	
		$4\mathbf{i} - 21\mathbf{j} + \frac{1}{3}(their(18\mathbf{i} - 9\mathbf{j}))$ o.e. or	M1	or $3(c_1 - 4) = their$ 18 and $3(c_2 + 21) = their$ (-9)
		$\begin{vmatrix} \frac{2}{3}(4\mathbf{i} - 21\mathbf{j}) + \frac{1}{3}(22\mathbf{i} - 30\mathbf{j}) \\ 10\mathbf{i} - 24\mathbf{j} \text{ cao} \end{vmatrix}$	A1	
	(ii)	$\left \overrightarrow{OC} \right = \sqrt{their 10^2 + their (-24)^2}$ soi	M1	condone
		$\frac{1}{13}(5\mathbf{i} - 12\mathbf{j}) \text{ or } \frac{1}{26}(10\mathbf{i} - 24\mathbf{j}) \text{ isw}$	A1 FT	$\left \overrightarrow{OC} \right = \sqrt{their 10^2 + their (24)^2}$ FT their $x\mathbf{i} + y\mathbf{j}$ o.e.
5		$AX = \sqrt{45}$	B1	may be implied by $3\sqrt{5}$
		$AX = 3\sqrt{5}$	B1	may be seen later
		$\frac{1}{2}\left(4+\sqrt{5}+2+x\right) \times their \sqrt{45} \text{ soi}$	M1	may be implied by e.g. summation of rectangle and two
		$15(\sqrt{5} + 2) = \frac{1}{2}(4 + \sqrt{5} + 2 + x) \times their \sqrt{45} \text{ or}$	M1	triangles
		better Correctly divide <i>their</i> equation by <i>their</i> $\sqrt{5}$ or	M1	or correctly multiply both sides
		their $\sqrt{45}$ and rationalise denominator		of their equation by their $\sqrt{5}$ or their $\sqrt{45}$ and obtain a rational coefficient of x soi
		completion to $4 + 3\sqrt{5}$ www	A1	answer only does not score

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

6	(i)	arc $AB = r\left(\frac{\pi}{3}\right)$ chord $AB = r$ with justification and summation and completion to given answer	B1 B1	$r\left(\frac{3+\pi}{3}\right)$
	(ii)	r = 12.7	B1	must be seen; accept awrt 12.7
		$\left[\frac{1}{2} \times their r^2 \times \left(\frac{\pi}{3} - \sin\left(\frac{\pi}{3}\right)\right)\right]$	M3	may be implied for example 84.45– 69.84
				or M1 for $\frac{1}{2} \times their r^2 \times \frac{\pi}{3}$ or
				84.45 and
				M1 for $\frac{1}{2} \times their r^2 \times \sin \frac{\pi}{3}$ o.e.
				or 69.84 and
		awrt 14.6	A 1	M1 for Area Sector – Area triangle attempted
7	(i)	$k(3-5x)^{11}$	M1	
		$5 \times 12(3-5x)^{11}$ or better, isw	A1	
	(ii)	$x^{2}(their \cos x) + (their 2x) \sin x$	M1	clearly applies correct form of product rule
		$x^2 \cos x + 2x \sin x \text{ isw}$	A1	product rule
	(iii)	Quotient rule attempt:		Product rule attempt:
		$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$	B1	$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$
		$\frac{\mathrm{d}}{\mathrm{d}x}\left(1+\mathrm{e}^{2x}\right)=2\mathrm{e}^{2x}$	B1	$\frac{d}{dx}(1+e^{2x})^{-1} = -2e^{2x}(1+e^{2x})^{-2}$
		clearly applies correct form of quotient rule $\frac{(1 + e^{2x})(their \sec^2 x) - (their 2e^{2x})\tan x}{(1 + e^{2x})^2}$	M1	$\tan x (their - 2e^{2x}(1 + e^{2x})^{-2}) + (1 + e^{2x})^{-1}(their \sec^2 x)$
		$\frac{(1+e^{2x})\sec^2 x - 2e^{2x}\tan x}{(1+e^{2x})^2}$ isw	A1	$\tan x \left(-2e^{2x}(1+e^{2x})^{-2}\right) + (1+e^{2x})^{-1}(\sec^2 x)$

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

8	(i)	$y-2 = \left(\frac{6-2}{2+6}\right)(x+6)$ o.e. soi	M1	or $y - 6 = \left(\frac{6 - 2}{2 + 6}\right)(x - 2)$
		$y = \frac{1}{2}x + 5 \text{ isw}$	A1	
	(ii)	Use of $m_1m_2 = -1$ y - 6 = (their - 2)(x - 2) or better, isw	M1 A1 FT	or $y = (their - 2)x + c$, c = their 10, isw
	(iii)	$(x+6)^2 + (y-2)^2 = 10^2$ o.e.	В1	or $(x-2)^2 + (y-6)^2 = (\sqrt{20})^2$ o.e. or $(\sqrt{80})^2 + ((x-2)^2 + (y-6)^2) = 10^2$
		Substitute $y = their (-2x + 10)$	M1*	or identifying one point by inspection from the length equation and testing it in the equation of <i>BC</i> or vice versa
		Solve their quadratic	M1 dep*	or identifying the second point by inspection from the length equation and testing it in the equation of <i>BC</i> or vice versa
		(0, 10) and (4, 2) o.e. only	A1	answer only does not score
9	(a)	$14 = k + c$ and $6 = \frac{k}{9} + c$ o.e.	M1	for two equations in <i>k</i> and <i>c</i> ; may be unsimplified; condone one slip in one equation
		c = 5 $k = 9$	A1 A1	The state of the s
	(b) (i)	79.2 or 79.158574 rot to 4 or more sf	B1	
	(ii)	$e^{2x} + 5e^x - 24 = 0$ or $(e^x)^2 + 5e^x - 24 = 0$ o.e.	M1	condone one error, but must be three terms
		factorise their 3 term quadratic	M1	or correct/correct ft use of formula or completing the square
		$e^x = 3$ $x = \ln 3$ or 1.1(0) or 1.0986122 rot to 3 or more sf as only answer from fully correct working	A1 A1	ignore $e^x = -8$ do not allow final mark if value given from $e^x = -8$
		correct working		if M0M0 then SC2 if $e^x = 3$ is seen www and leads to $x = \ln 3$ or 1.1(0) or 1.0986122 rot to 3 or more sf

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

10 (a) (i)	90 180 270 360	B1 B1 B1 B1	shape; cosine curve – ends must be approaching a turning point be centred on $y = 1$ clear intent to have min at –2 and max at 4 2 cycles
(ii)	3	B1	
(iii)	180	B1	
(b)	$\csc x = \frac{1}{\sin x} \operatorname{soi}$	B1	$or 1 + tan^2 x = \frac{1}{\cos^2 x}$
	$\sin x = \sqrt{1 - \cos^2 x} \text{ or } \sqrt{1 - p^2}$	B1	or $\csc^2 x = 1 + \frac{1}{1 - p^2/p^2}$ soi
	$\frac{-1}{\sqrt{1-p^2}} \text{ o.e.}$	B1	or $-\sqrt{1+\frac{p^2}{1-p^2}}$ or better

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

11	(i)	dy 2 2 $(4)^{-4}$ 2 2 dy	24 . 24	
		$\frac{dy}{dx} = 3 - 3(x - 4)^{-4}$ o.e. isw	B1 + B1	
		$\frac{d^2 y}{dx^2} = (their \ 12)(x - 4)^{their \ (-5)} \text{ o.e.}$	M1	
		$\frac{d^2 y}{dx^2} = 12(x-4)^{-5} \text{ o.e. isw}$	A1	if M0 then SC1 for $12(x-4)^{-5}$ + one other term
	(ii)	Verifies $\frac{dy}{dx} = 0$ when $x = 3$ and $x = 5$ or solves $3 - \frac{3}{(x-4)^4} = 0$ to obtain 3 and 5	M1	if M0 then SC1 for verifying or correctly solving to find one <i>x</i> coordinate and showing that it
		(- ')		gives rise to the corresponding <i>y</i> coordinate
		Shows that $x = 3 \Rightarrow y = 8$ and $x = 5 \Rightarrow y = 16$	A1	
	(iii)	$x = 5 \frac{d^2 y}{dx^2}$ (=12) > 0 \Rightarrow min or	M1	or, using first derivative e.g.
		$x = 3 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \ (= -12) < 0 \implies \max$		$\frac{\mathrm{d}y}{\mathrm{d}x}$ 0
				$ min at x = 5 \\ or $
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		Both correct cao	A 1	$\max \text{ at } x = 3$
	(*)		AI	
	(iv)	$\frac{3x^2}{2} - \frac{(x-4)^{-2}}{2} (+c)$ o.e. isw	B1 + B1	may be unsimplified
	(v)	their		
		$\left[\left(\frac{3(6)^2}{2} - \frac{1}{2(6-4)^2} \right) - \left(\frac{3(5)^2}{2} - \frac{1}{2(5-4)^2} \right) \right]$	M1	
		16.875 to 3 or more sf or $\frac{135}{8}$ or $16\frac{7}{8}$ cao	A1	

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/23 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

1	$2+2\sin^2\theta$		For all methods look for:
	$\frac{2 + 2 \sin^{-6} \theta}{\cos^{2} \theta}$	B1	correct simplified expression
	2 2 0		- correct use of Pythagoras
	$\frac{2}{\cos^2 \theta} = 2 \sec \theta$	B1	$- use of tan = \frac{sin}{cos}$
	$\sin^2\theta$	D1	$-$ use of $\frac{1}{-}$ = sec
	$\frac{\sin^2 \theta}{\cos^2 \theta} = 2 \tan^2 \theta$	B1	cos
	$2 \sec^2 \theta = 2 + 2 \tan^2 \theta$ and completion	B1	Award first 3 then last B1 for final expression from fully correct method.
			Inconsistent no angle used then –1 (can recover).
			If start from RHS award similarly.
	Or (ID1 D1	
	$(\sec \theta + \tan \theta)^2 + (\sec \theta - \tan \theta)^2$	[B1, B1	
	$2\sec^2\theta + 2\tan^2\theta$	B1	
	$2(1 + \tan^2 \theta) + 2 \tan^2 \theta$ and completion	B1]	
	Or		
	$\frac{2+2\sin^2\theta}{\cos^2\theta}$	[B1	
	$\frac{2(\sin^2\theta + \cos^2\theta) + 2\sin^2\theta}{\cos^2\theta}$	B1	
	$\frac{4\sin^2\theta}{\cos^2\theta} = 4\tan^2\theta$	B1	
	$\frac{2\cos^2\theta}{\cos^2\theta} = 2 \text{ and completion}$	B1]	
2 (i)	3.2	B1	
(ii)	15	B1	
(iii)	uses area to find distance	M1	If split 2 or 3 correct formulae and must be attempting total area
	two of 40, 240 and 32	A1	
	312	A1	or A2 for 312 from trapezium

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

3	$\frac{\mathrm{d}y}{\mathrm{d}x} = k \sin x \cos x$	M1	
	k = -8	A1	
	Attempt to find x when $y = 8$	M1	Must get to $x =$ numerical value
	$x = \frac{\pi}{4} (0.785)$	A1	45° = A0 (but can still gain next 2 marks)
	Uses $\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$	M1	Must use numerical value for x and 0.2 for $\frac{dx}{dt}$
	-0.8 (not rounded)	A1	(condone poor notation if correct terms multiplied)
4 (i)	Idea of modulus correct	B1	Two straight lines above and touching <i>x</i> -axis
	$\frac{1}{2}$ indicated on x-axis	B1	Must be a sketch
	2 indicated on <i>y</i> -axis	B1	Must be a sketch
(ii)	$\frac{2}{3}$ (0.667)	B1	0.67 is B0
	Solve $4x - 2 = -x$ or $(4x - 2)^2 = x^2$	M1	As far as $x =$ numerical value
	$\frac{2}{5}$	A1	SC: If drawn then B1 , B2 for exact answers only
5 (i)	$(QR = PS =) \frac{96 - 3x}{2}$	B1	Can be implied by next statement
	$Area = \left(\frac{96 - 3x}{2}\right) \times x$	B1	AG
(ii)	$\frac{dA}{dx} = \frac{96 - 6x}{2}$ or $48 - 3x$ o.e.	B1	
	Solving $\frac{dA}{dx} = \frac{96 - 6x}{2} = 0$	M1	As far as $x =$ numerical value
	x = 16	A1	
	A = 384 and state maximum	A1	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

6	Applies quotient rule correctly	M1	or product rule
	$\frac{(x-2)2 x - (x^2 + 8)}{(x-2)^2}$	A1	$2x (x-2)^{-1} - (x^2 + 8) (x-2)^{-2}$
	y = 12	B1	
	Uses $m_1 m_2 = -1$	M1	
	(Gradient normal = $\frac{1}{2}$)		
	Uses equation of line for normal	M1	If uses $y = mx + c$ must find c for M1
	$y-12 = \frac{1}{2}(x-4)$ or $y = \frac{1}{2}x+10$	A1	
7 (i)	$64 + 192x + 240x^2 + 160x^3$ mark final answer	B3, 2, 1, 0	3 terms correct earn B2 ; 2 terms correct earn B1 Can be earned in (ii); SC2 correct but unsimplified
(ii)	Multiply out $(1+3x)(1-x)$	M1	
	$1 + 2x - 3x^2$ o.e.	A1	
	$(1) \times (160) + (2) \times (240) + (-3) \times (192)$ o.e.	M1	3 terms
	64	A1	
	Or Multiply out $(1-x)(64 + 192x + 240x^2 + 160x^3)$	[M1	May be other variations: for first M1 find x^2 term or x^3 term
	$48x^2 - 80x^3$ o.e.	A1	
	Multiply by $1 + 3x$	M1	for second M1 must produce all relevant terms
	64	A1]	
	Or $(1+3x)(64+192x+240x^2+160x^3)$	[M1	
	$816x^2 + 880x^3$ o.e.	A1	
	Multiply by $1-x$	M1	
	64	A1]	

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

8	Eliminates y (or x) and full attempt at expansion	M1	
	$4x^2 - 8x - 96 = 0 \text{or } y^2 + 12y - 64 = 0$	A1	
	Factorise 3 term relevant quadratic	M1	Or use correct formula
	x = -4 and 6 or $y = -16 and 4$	A1	
	y = -16 and 4 or $x = -4$ and 6	A1 √	
	Uses Pythagoras for relevant points	M1	
	22.4 or $\sqrt{500}$ or $10\sqrt{5}$	A1	cao
9 (i)	Attempt to solve 3 term quadratic	M1	
	-3 and 8	A1	
	-3 x 8	A1	Condone -3 x AND x 8
(ii)	4 x (12)	B1	
	$S \cup T = -3 \qquad x \qquad 12$	B1	
(iii)	$S \cap T = 4$ $x \in 8$ or $S' = -5$ $x \in -3, 8$ $x \in 12$ and $T' = -5$ $x \in 4$	B1	Penalise confusion over and (or and) once only
	-5 x 4	B 1√	their 4
	8 x 12	B1 √	their 8 (Ignore AND/OR etc.)

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

10 (i)		M1 A1	Use of sin rule/cosine
	50 240		rule/resolving with 50, 240 and 58/32/122/148. Must be correct for A1
	$\alpha = 10.2$	A1	
	Bearing (0)21.8 or (0)22	A1 √	$\sqrt{\text{ for } 32 - \alpha}$
(ii)	$V^{2} = 240^{2} + 50^{2} - 2 \times 240 \times 50 \times \cos(122 - \alpha)$	M1	Correct use of sin rule/cosine rule/resolving
	V = 263 awt	A1	Can be in (i)
	$T = \frac{500}{V}$	M1	Only allow if <i>V</i> calculated from non right-angled triangle
	114 or 1 hour 54 mins	A1	Do not allow incorrect units
	$T = \frac{500\cos 32}{\cos 32}$	[M1	Alternative for part (ii) only
	240 cos 21.8	[]	Also can find distance for 240 (457) then 457/240
	500 cos 32	B1	
	240 cos 21.8	B1	
	114 or 1 hour 54 mins	A1]	
11 (i)	1	B1	Not a range for k , but condone $x = 1$ and $x = 1$
(ii)	f -5	B1	Not x , but condone y
(iii)	Method of inverse	M1	Do not reward poor algebra but allow slips
	$1+\sqrt{x+5}$	A1	Must be $f^{-1} =$ or $y =$
(iv)	f: Positive quadratic curve correct range and domain	B1	Must cross <i>x</i> -axis
	f^{-1} : Reflection of f in $y = x$	B 1√	\sqrt{their} f(x) sketch Condone slight inaccuracies unless clear contradiction.
(v)	Arrange $f(x) = x$ or $f^{-1}(x) = x$ to 3 term quadratic = 0	M1	
	4 only www	A1	Allow $x = 4$ with no working. Condone $(4, 4)$. Do not allow final A mark if -1 also given in answer

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

		T		T
12	(i)	f(3) = (27 + 9 + 3a + b) = 0 or $3a + b = -36$	M1	Equate f(3) to 0
		f(-1) = (-1 + 1 - a + b) = 20 or $-a + b = 20$	M1	Equate f(-1) to 20
		Solve equations	M1	
		a = -14, b = 6	A1	If uses $b = 6$ then M0 , A0 Need both values for A1
	(ii)	Find quadratic factor	M1	If division, must be complete with first 2 terms correct If writes down, must be $(x^2 + kx - 2)$
		$x^2 - 4x - 2$	A1	
		Use quadratic formula or completing square on relevant 3 term quadratic	M1	If completing square, must reach $\left(x + \frac{k}{2}\right)^2 = 2 \pm \left(\frac{k}{2}\right)^2$
		$\frac{-4 \pm \sqrt{16 + 8}}{2}$ or better	A1 √	
		$-2 \pm \sqrt{6}$ isw	A1	cao