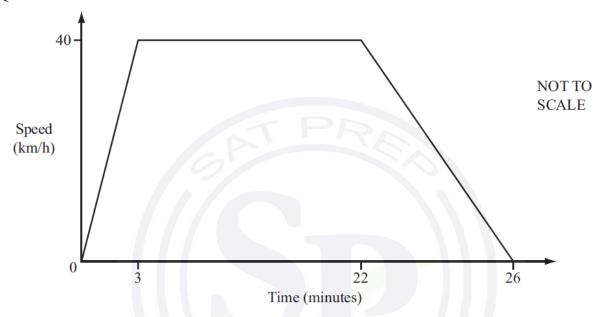
Extended Mathematics


Topic: Graph

Year :May 2013 -May 2024

Paper - 2

Questions Booklet

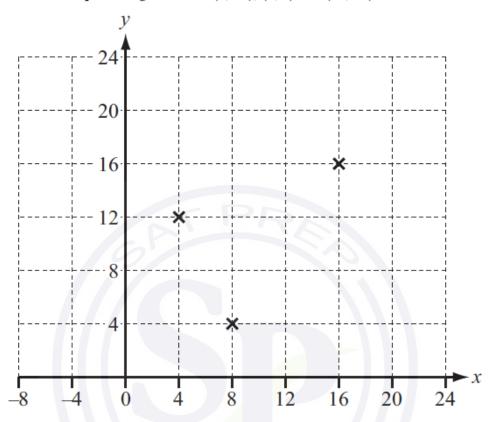
The diagram shows the speed-time graph of a train journey between two stations.

The train accelerates for 3 minutes, travels at a constant maximum speed of 40 km/h, then takes 4 minutes to slow to a stop.

Calculate the distance in kilometres between the two stations.

Answer	 km	[4]

The diagram shows the speed-time graph of a car. It travels at 28 m/s for 20 seconds and then decelerates until it stops after a further 10 seconds.


(a) Calculate the deceleration of the car.

(b) Calculate the distance travelled during the 30 seconds.

Question 3

Find the equation of the line passing through the points (0, -1) and (3, 5).

Three of the vertices of a parallelogram are at (4, 12), (8, 4) and (16, 16).

Write down the co-ordinates of two possible positions of the fourth vertex.

Answer (......) and (.....) [2]

Question 5

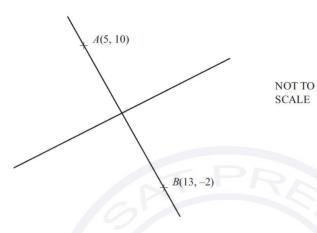
A(5, 23) and B(-2, 2) are two points.

(a) Find the co-ordinates of the midpoint of the line AB.

Answer(a) (....., ,) [2]

(b) Find the equation of the line AB.

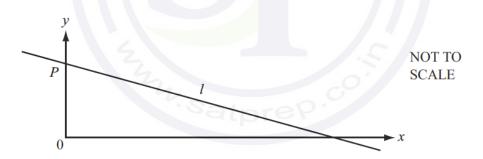
Answer(b)[3]


(c) Show that the point (3, 17) lies on the line AB.

Answer(c)

[1]

Find the equation of the line passing through the points with co-ordinates (5, 9) and (-3, 13).

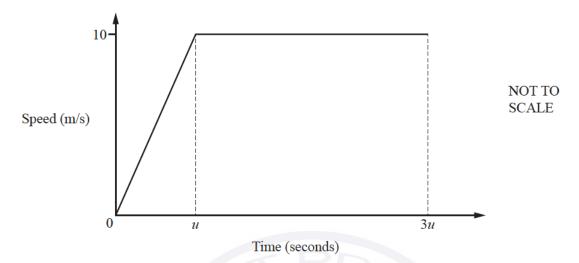

Question 7

A(5, 10) and B(13, -2) are two points on the line AB. The perpendicular bisector of the line AB has gradient $\frac{2}{3}$.

Find the equation of the perpendicular bisector of AB.

Question 8

The equation of the line *l* in the diagram is y = 5 - x.


(a) The line cuts the y-axis at P.

Write down the co-ordinates of P.

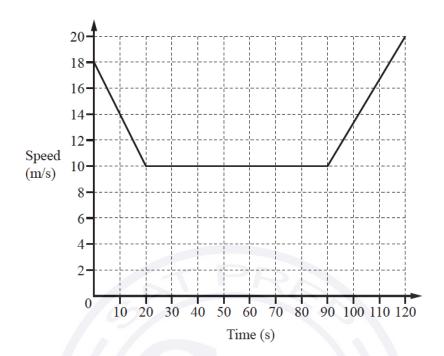
Answer(a) (....., ,) [1]

(b) Write down the gradient of the line 1.

Answer(b) [1]

A car starts from rest and accelerates for u seconds until it reaches a speed of $10\,\mathrm{m/s}$.

The car then travels at $10 \,\mathrm{m/s}$ for 2u seconds.


The diagram shows the speed-time graph for this journey.

The distance travelled by the car in the first 3u seconds is $125 \,\mathrm{m}$.

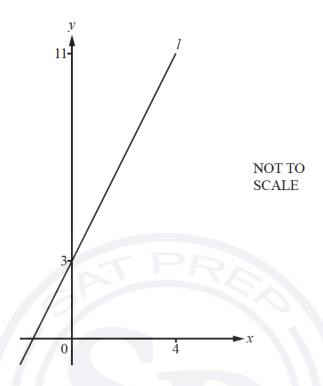
(a) Find the value of u.

$$Answer(a) u = \dots [3]$$

(b) Find the acceleration in the first u seconds.

The diagram shows the speed-time graph for 120 seconds of a car journey.

(a) Calculate the deceleration of the car during the first 20 seconds.


Answer(a) m/s² [1]

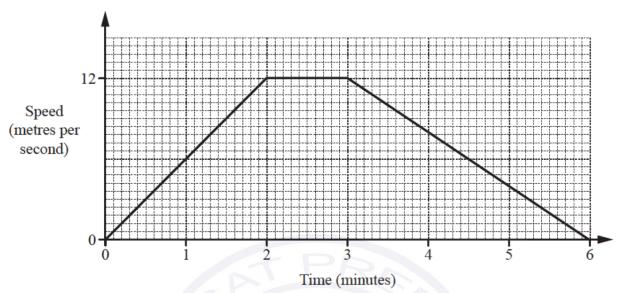
(b) Calculate the total distance travelled by the car during the 120 seconds.

Answer(b) m [3]

(c) Calculate the average speed for this 120 second journey.

Answer(c) m/s [1]

The diagram shows the straight line, *l*, which passes through the points (0, 3) and (4, 11).


(a) Find the equation of line l in the form y = mx + c.

$$Answer(a) y = \dots [3]$$

(b) Line p is perpendicular to line l.

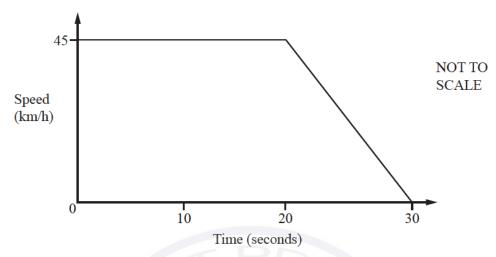
Write down the gradient of line p.

Answer(b)[1]

A tram leaves a station and accelerates for 2 **minutes** until it reaches a speed of 12 metres per second. It continues at this speed for 1 minute.

It then decelerates for 3 minutes until it stops at the next station.

The diagram shows the speed-time graph for this journey.


Calculate the distance, in metres, between the two stations.

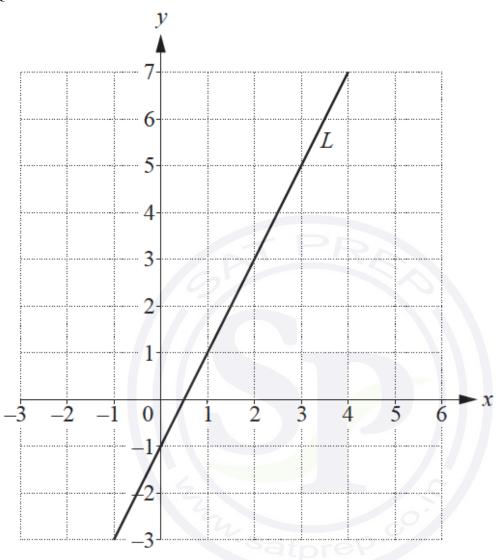
Answer m [3]

Question 13

The point A has co-ordinates (-4, 6) and the point B has co-ordinates (7, -2).

Calculate the length of the line AB.

The diagram shows the speed-time graph of a car.


The car travels at 45 km/h for 20 seconds.

The car then decelerates for 10 seconds until it stops.

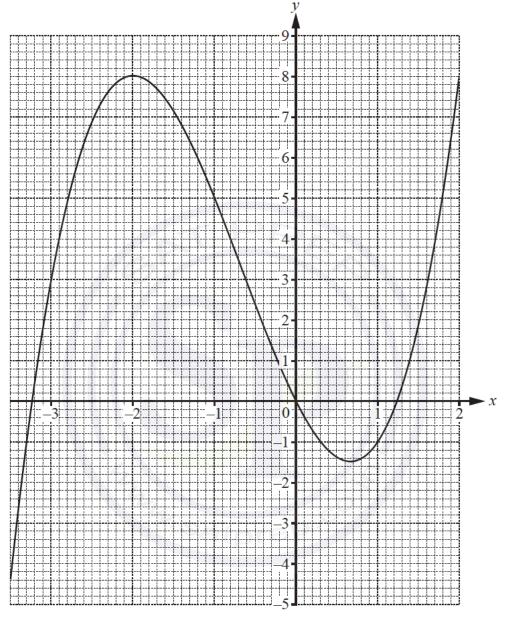
(a) Change 45 km/h into m/s.

(b) Find the deceleration of the car, giving your answer in m/s².

(c) Find the distance travelled by the car during the 30 seconds, giving your answer in metres.

- (a) Work out the gradient of the line L.
- (b) Write down the equation of the line parallel to the line L that passes through the point (0, 6).

[2]


Question 16

A is the point (4, 1) and B is the point (10, 15).

Find the equation of the perpendicular bisector of the line AB.

.....[6]

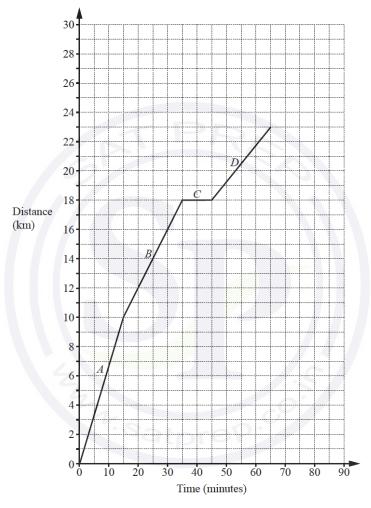
The curve $y = x^3 + 2x^2 - 4x$ is shown on the grid.

(a) By drawing a suitable tangent, find an estimate of the gradient of the curve when x = 1.

.....[3]

(b) A point D lies on the curve.The x co-ordinate of D is negative.The gradient of the tangent at D is 0.

Write down the co-ordinates of D.


(.....) [1]

A is the point (8, 3) and B is the point (12, 1).

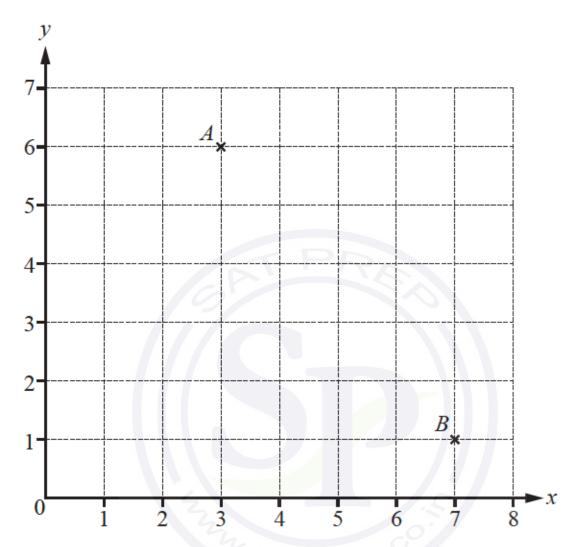
Find the equation of the line, perpendicular to the line AB, which passes through the point (0, 0).

.....[3]

Question 19

The diagram shows the distance-time graph for the first 65 minutes of a bicycle journey.

(a) There are four different parts to the journey labelled A, B, C and D.


Write down the part of the journey with the fastest speed.

.....[1]

(b) After the first 65 minutes the bicycle travels at a constant speed of 20 km/h for 15 minutes.

Draw this part of the journey on the diagram.

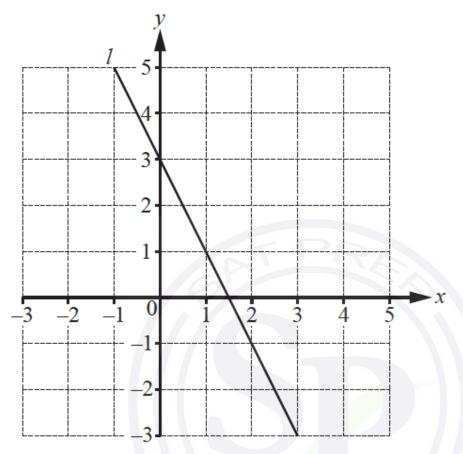
[1]

Point A has co-ordinates (3, 6).

6	• /	Write	down	tha	co-ordinates	αf	noint	R
	1,	WIIIC	UO WII	uic	co-orumaics	OI.	иши	\boldsymbol{D}

(.....) [1]

(b) Find the gradient of the line AB.


.....[2]

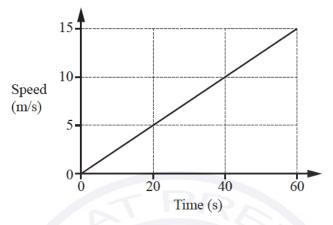
(c) Find the equation of the line that

• is perpendicular to the line AB and

• passes through the point (0, 2).

.....[3]

(a) Find the equation of the line *l*. Give your answer in the form y = mx + c.


y =	[1	3]

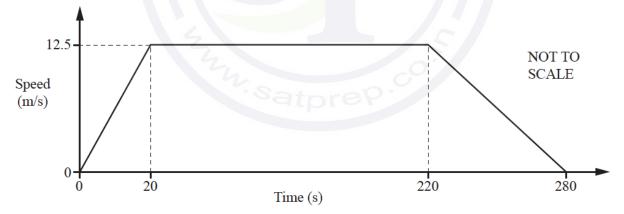
(b) A line perpendicular to the line l passes through the point (3, -1).

Find the equation of this line.

......[3]

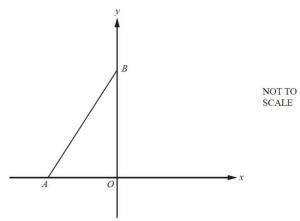
The speed-time graph shows the first 60 seconds of a train journey.

(a) Find the acceleration of the train.


.....m/s² [1]

(b) Calculate the distance the train has travelled in this time. Give your answer in kilometres.

.....km [3]


Question 23

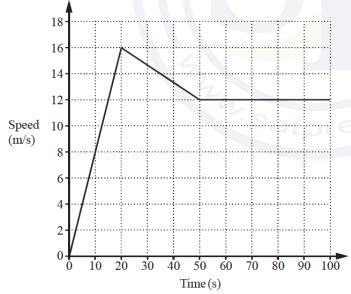
The diagram shows a speed-time graph for the journey of a car.

Calculate the total distance travelled.

.....m [3]

A is the point (-2, 0) and B is the point (0, 4).

(a) Find the equation of the straight line joining A and B.


.....[3]

(b) Find the equation of the perpendicular bisector of *AB*.

.....[4]

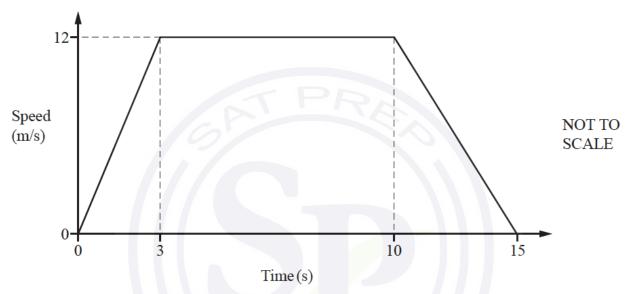
Question 25

The diagram shows information about the first 100 seconds of a car journey.

(a) Calculate the acceleration during the first 20 seconds of the journey.

.....m/s² [1]

(b) Work out the total distance travelled by the car in the 100 seconds.


.....m [3]

A line has gradient 5. M and N are two points on this line. M is the point (x, 8) and N is the point (k, 23).

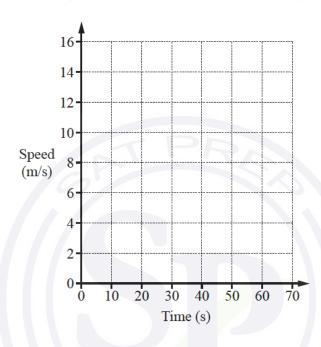
Find an expression for x in terms of k.

 $x = \dots [3]$

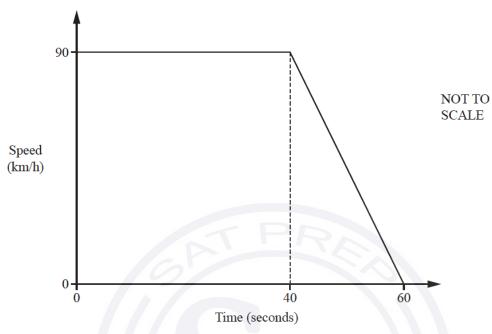
Question 27

The diagram shows a speed-time graph.

Calculate the total distance travelled.


m [3]

Petra begins a journey in her car.


She accelerates from rest at a constant rate of 0.4 m/s² for 30 seconds.

She then travels at a constant speed for 40 seconds.

On the grid, draw the speed-time graph for the first 70 seconds of Petra's journey.

[2]

The diagram shows the speed-time graph for 60 seconds of a car journey.

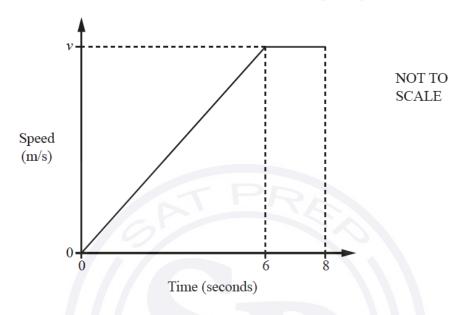
(a) Change 90 km/h to m/s.

..... m/s [2]

(b) Find the deceleration of the car in m/s².

-m/s² [1]
- (c) Find the distance travelled, in metres, in the 60 seconds.
- m [2]

Question 30


P is the point (16, 9) and Q is the point (22, 24).

- (a) Find the equation of the line perpendicular to PQ that passes through the point (5, 1). Give your answer in the form y = mx + c.
 - *y* =[4]

(b) N is the point on PQ such that PN = 2NQ.

Find the co-ordinates of N.

The diagram shows information about the first 8 seconds of a car journey.

The car travels with constant acceleration reaching a speed of vm/s after 6 seconds.

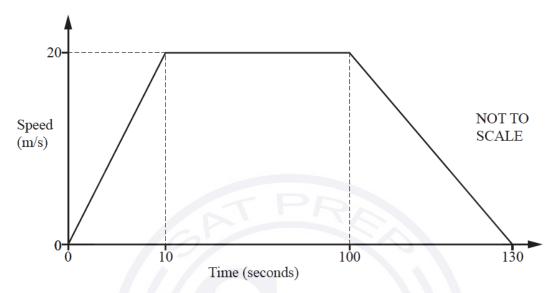
The car then travels at a constant speed of v m/s for a further 2 seconds.

The car travels a total distance of 150 metres.

Work out the value of v.

$$v =$$
 [3

Question 32

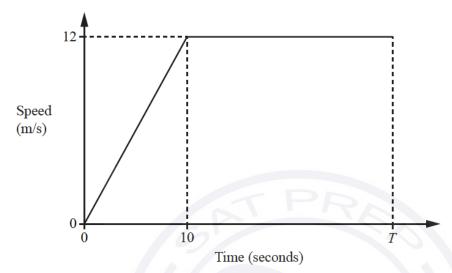

(a) Point A has co-ordinates (1, 0) and point B has co-ordinates (2, 5).

Calculate the angle between the line AB and the x-axis.

.....[3]

(b) The line PQ has equation y = 3x - 8 and point P has co-ordinates (6, 10).

Find the equation of the line that passes through P and is perpendicular to PQ. Give your answer in the form y = mx + c.


The speed—time graph shows information about the journey of a tram between two stations.

(a) Calculate the distance between the two stations.

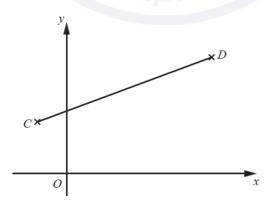
.....m [3]

(b) Calculate the average speed of the tram for the whole journey.

..... m/s [1]

NOT TO SCALE

The diagram shows the speed-time graph for the first T seconds of a car journey.


(a) Find the acceleration during the first 10 seconds.

(b) The total distance travelled during the T seconds is 480 m.

Find the value of T.

$$T = \dots [3]$$

Question 35

NOT TO SCALE The diagram shows the points C(-1, 2) and D(9, 7).

Find the equation of the line perpendicular to CD that passes through the point (1, 3). Give your answer in the form y = mx + c.

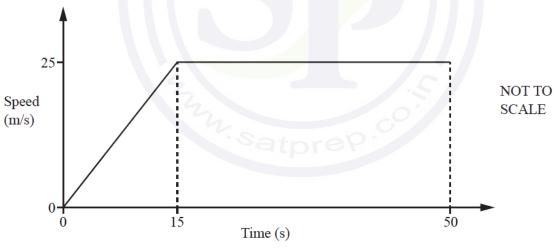
Question 36

Find the mid-point of AB where A = (w, r) and B = (3w, t). Give your answer in its simplest form in terms of w, r and t.

(.....) [2]

Question 37

A is the point (2, 3) and B is the point (7, -5).


(a) Find the co-ordinates of the midpoint of AB.

(.....) [2]

(b) Find the equation of the line through A that is perpendicular to AB. Give your answer in the form y = mx + c.

$$v =$$
 [4]

Question 38

The speed-time graph shows the first 50 seconds of a journey.

Calculate

(a) the acceleration during the first 15 seconds,

, 2	F17
m/s ²	

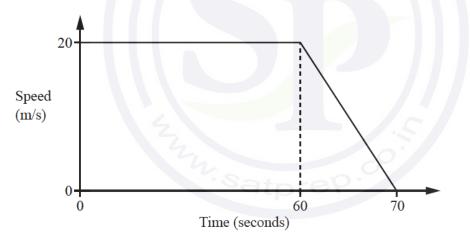
(b) the distance travelled in the 50 seconds.

A is the point (7, 12) and B is the point (2, -1).

Find the length of *AB*.

-[3]
- (a) Find the co-ordinates of the point where the line y = 3x 8 crosses the y-axis.
 - (......) [1]
- **(b)** Write down the gradient of the line y = 3x 8.
-[1]

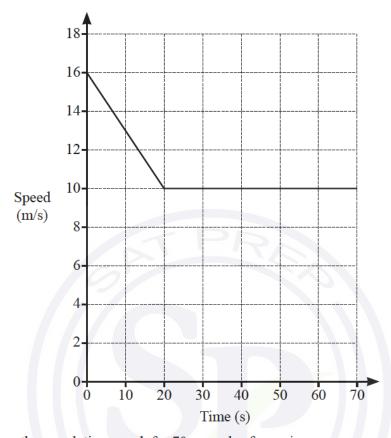
Question 40


Line L passes through the points (0, -3) and (6, 9).

(a) Find the equation of line L.

-[3]
- (b) Find the equation of the line that is perpendicular to line L and passes through the point (0, 2).

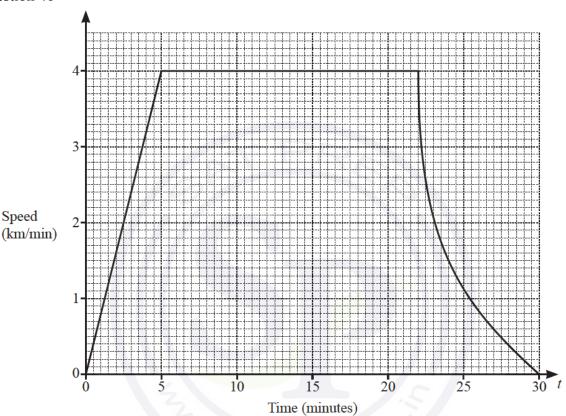
.....[2]


Question 41

NOT TO SCALE

The diagram shows information about the final 70 seconds of a car journey.

- (a) Find the deceleration of the car between 60 and 70 seconds.
-m/s² [1]
- **(b)** Find the distance travelled by the car during the 70 seconds.
-m [3]


The diagram shows the speed-time graph for 70 seconds of a car journey.

(a)	Calculate the deceleration of the car during the first 20 sec	conds.
		m/s ² [1]
(b)	Calculate the total distance travelled by the car during the 7	0 seconds.
		m [3]
Que	stion 43	
	traight line joins the points $(3k, 6)$ and $(k, -5)$. e line has a gradient of 2.	
Fine	d the value of k .	
		$k = \dots $ [3]
Que	stion 44	
A is	the point $(2, 1)$ and B is the point $(9, 4)$.	
Fine	d the length of AB .	
		[3]

Find the gradient of the line that is perpendicular to the line 2y = 3 + 5x.

.....[2¹

Question 46

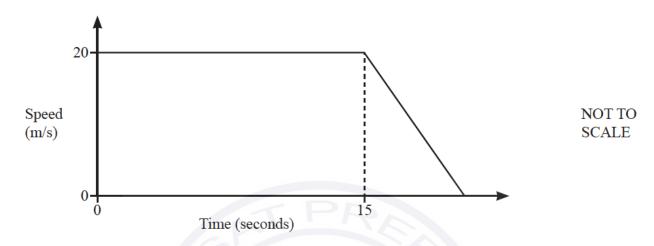
The speed-time graph shows information about a train journey.

(a) By drawing a suitable tangent to the graph, estimate the gradient of the curve at t = 24.

.....[3]

(b) What does this gradient represent?

.....[1]

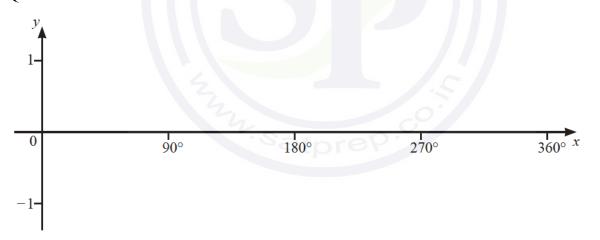

(c) Work out the distance travelled by the train when it is travelling at constant speed.

..... km [2]

Question 47

Show that the line 4y = 5x - 10 is perpendicular to the line 5y + 4x = 35.

[3]



A car travels at $20\,\mathrm{m/s}$ for 15 seconds before it comes to rest by decelerating at $2.5\,\mathrm{m/s^2}$.

Find the total distance travelled.

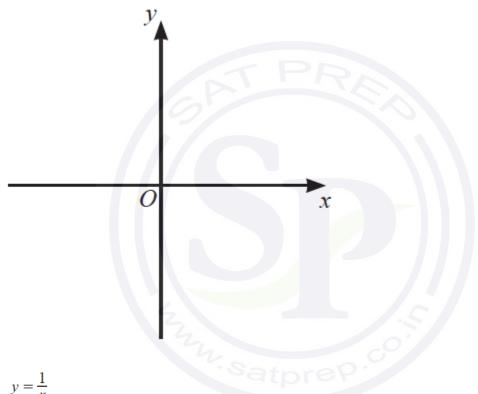
..... m [5]

Question 49

- (a) On the diagram, sketch the graph of $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$. [2]
- **(b)** Solve the equation $4\cos x + 2 = 3$ for $0^{\circ} \le x \le 360^{\circ}$.

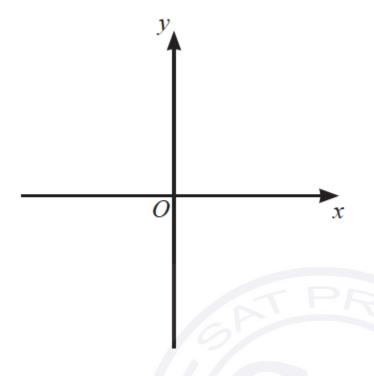
x = and x = [3]

A is the point (3, 5) and B is the point (1, -7).


Find the equation of the line perpendicular to AB that passes through the point A. Give your answer in the form y = mx + c.

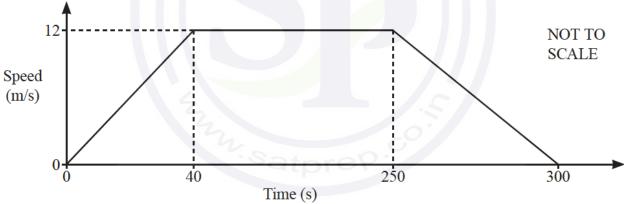
$$y =$$
 [4]

Question 51


Sketch the graph of each function.

(a)
$$y = x - 3$$

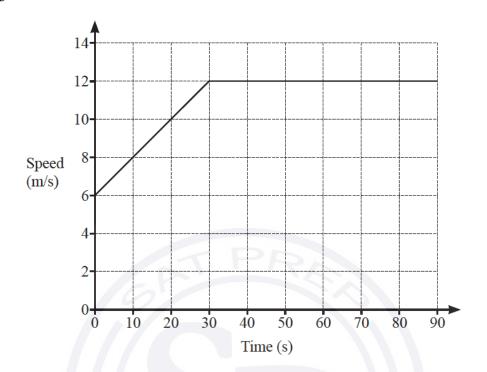
(b) $y = \frac{1}{x}$


[1]

[2]

Question 52

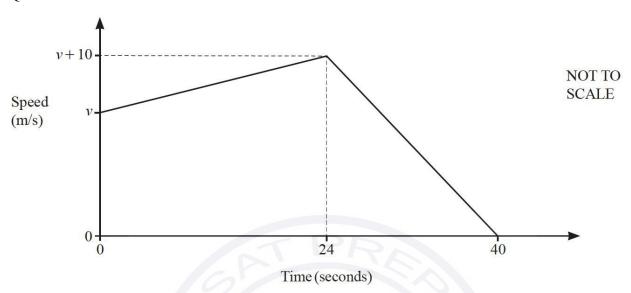
The diagram shows the speed-time graph of a train journey between two stations.



(a) Find the acceleration of the train during the first 40 seconds.

, 2	F 4 7
m/s ²	I

(b) Calculate the distance between the two stations.


..... m [3]

The diagram shows the speed–time graph for 90 seconds of a journey.

Calculate the total distance travelled during the 90 seconds.

..... m [3]

The diagram shows the speed–time graph for the final 40 seconds of a car journey. At the start of the 40 seconds the speed is v m/s.

(a) Find the acceleration of the car during the first 24 seconds.

..... m/s² [1]

(b) The total distance travelled during the 40 seconds is 1.24 **kilometres**.

Find the value of v.

$$v = \dots$$
 [4]

Question 55

A straight line, *l*, has equation y = 5x + 12.

(a) Write down the gradient of line *l*.

.....[1]

(b) Find the coordinates of the point where line l crosses the x-axis.

(.....) [2]

(c) A line perpendicular to line l has gradient k.

Find the value of k.

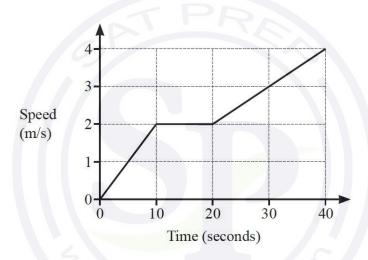
$$k = \dots$$
 [1]

A line from the point (2, 3) is perpendicular to the line $y = \frac{1}{3}x + 1$. The two lines meet at the point P.

Find the coordinates of P.

(.....) [5]

Question 57

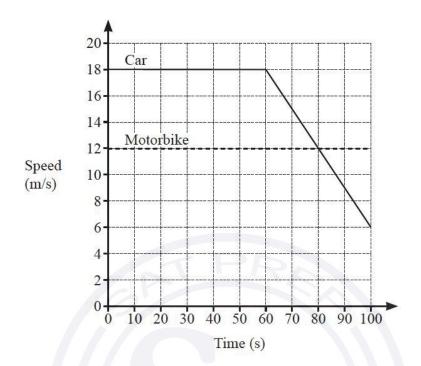

(a) Differentiate $6+4x-x^2$.

.....[2]

(b) Find the coordinates of the turning point of the graph of $y = 6 + 4x - x^2$.

(.....) [2]

Question 58


The diagram shows the speed–time graph for the first 40 seconds of a cycle ride.

(a) Find the acceleration between 20 and 40 seconds.

.....m/s² [1]

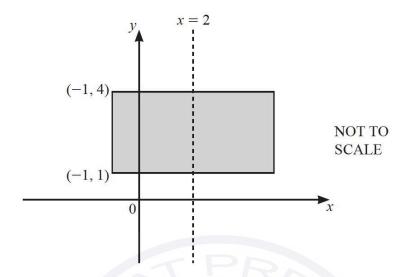
(b) Find the total distance travelled.

..... m [3]

The diagram shows the speed-time graph for 100 seconds of the journey of a car and of a motorbike.

(a) Find the deceleration of the car between 60 and 100 seconds.

12	Fa.
 m/s^2	


(b) Calculate how much further the car travelled than the motorbike during the 100 seconds.

n	1 [3
11	1 [3

Question 60

Find the gradient of a line that is perpendicular to 8y+4x=5.

.....[2]

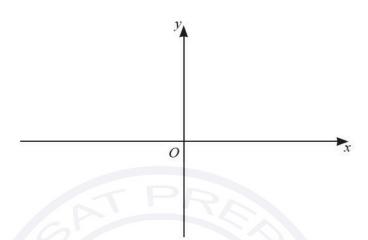
The diagram shows a rectangle with a line of symmetry at x = 2. Two vertices of the rectangle are at (-1, 1) and (-1, 4).

The shaded region is defined by the inequalities $a \le x \le b$ and $c \le y \le d$.

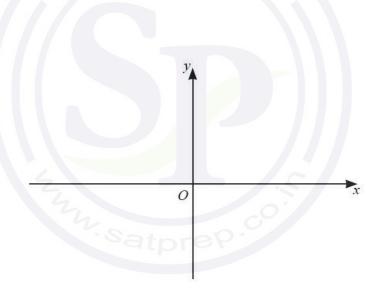
Find the values of a, b, c and d.

<i>a</i> =	
<i>b</i> =	
<i>c</i> =	
d =	[2

Question 62


A curve has equation $y = x^3 - 2x^2 + 5$.

Find the coordinates of its two stationary points.


(.....) and (.....) [5]

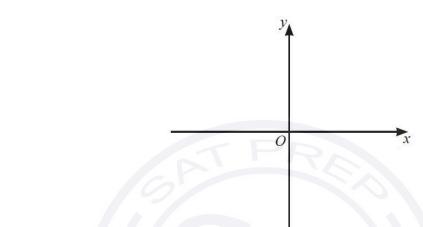
On the axes, sketch the graph of each of these functions.

(a) $y = \frac{1}{x}$

(b) $y = 4^x$

[2]

[2]

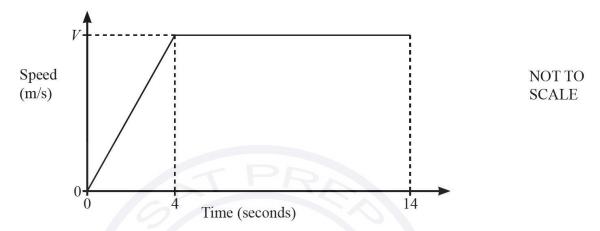

Question 64

Find the x-coordinates of the points on the graph of $y = x^5 - 5x^4$ where the gradient is 0.

.....[4]

On the axes, sketch the graph of each of these functions.

(a)
$$y = \frac{2}{x}$$



[2]

[2]

A car starts from rest and accelerates at a rate of 3 m/s^2 for 4 seconds. The car then travels at a constant speed for 10 seconds.

The diagram shows the speed-time graph for this journey.

(a) Find the value of V.

$$V = \dots$$
 [1]

(b) Calculate the total distance travelled by the car during the 14 seconds.

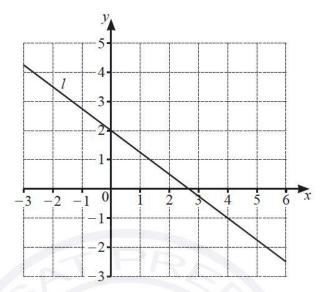
..... m [2]

Question 67

Find the gradient of the line that is perpendicular to the line 3y = 4x - 5.

.....[2]

Question 68


A is the point (5, 7) and B is the point (9, -1).

(a) Find the length AB.

.....[3]

(b) Find the equation of the line AB.

.....[3]

-	(0)	Find	the	gradient	of	line	1
1	(a)	LIIIG	me	gradient	OI	Ime	1.

																																									_	_	
																																								- 1	1	7	
																		_															 2							- 1		L	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		 	 ٠.	 			 •	•	- 1		_	

(b) Find the equation of line
$$l$$
 in the form $y = mx + c$.

$$y =$$
 [2]

(c) Find the equation of the line that is perpendicular to line l and passes through the point (12, -7). Give your answer in the form y = mx + c.

Question 70

A is the point (5, -5) and B is the point (9, 3).

(a) Find the coordinates of the midpoint of AB.

(b) Find the length of AB.

Question 71

Find the equation of the straight line that passes through the points (2, -2) and (3, 10).

Give your answer in the form y = mx + c.

$$y =$$
 [3]

(a) A is the point (3, 16) and B is the point (8, 31).

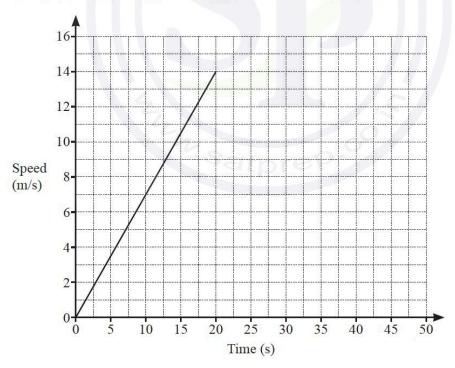
Find the equation of the line that passes through A and B. Give your answer in the form y = mx + c.

$$y =$$
 [3]

(b) The line *CD* has equation y = 0.5x - 11.

Find the gradient of a line that is perpendicular to the line CD.

.....[1]

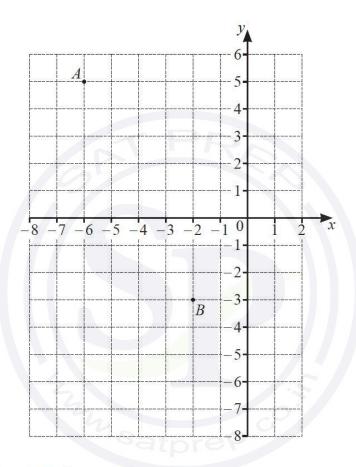

Question 73

A car starts its journey by accelerating from rest at a constant rate of 0.7 m/s^2 for 20 seconds, before reaching a constant speed of 14 m/s.

It then travels at 14 m/s for a distance of 210 m.

The car then decelerates at a constant rate of 1.4 m/s², before coming to a stop.

On the grid, complete the speed-time graph for the car's journey.


[3]

Line *L* has equation y = 4 - 5x.

Find the equation of a line that is perpendicular to line L and passes through the point (0, 6).

.....[3]

Question 75

A is the point (-6, 5) and B is the point (-2, -3).

(a) Find the equation of the straight line, l, that passes through point A and point B. Give your answer in the form y = mx + c.

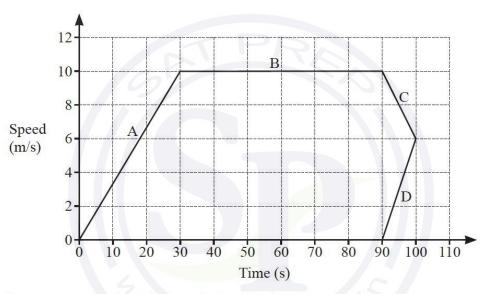
 $y = \dots$ [2]

(b) Find the equation of the line that is perpendicular to *l* and passes through the origin.

.....[2]

(a) Write down the gradient of the line y = 5x + 7.

.....[1]


(b) Find the coordinates of the point where the line y = 5x + 7 crosses the y-axis.

(.....) [1]

Question 77

Abdul draws this speed-time graph for a journey.

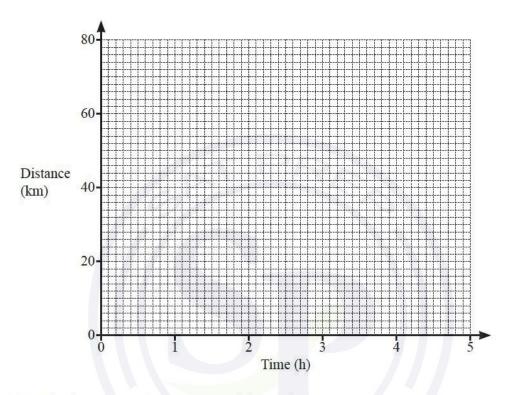
The graph has four sections A, B, C and D.

Complete these statements about the speed-time graph.

Section cannot be correct.

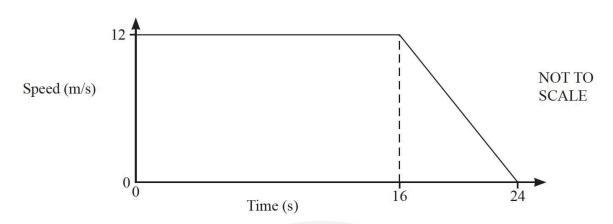
Section shows constant speed.

Section shows deceleration.


The distance travelled in the first 30 seconds of the journey is m.

[4

Annette cycles a distance of 70 km from Midville to Newtown.


Leaving Midville, she cycles for 1 hour 30 minutes at a constant speed of 20 km/h and then stops for 30 minutes.

She then continues the journey to Newtown at a constant speed of 16 km/h.

- (a) On the grid, draw the distance—time graph for the journey. [3]
- (b) Calculate the average speed for the whole journey.

..... km/h [3]

The diagram shows the speed–time graph for 24 seconds of a car journey.

Calculate

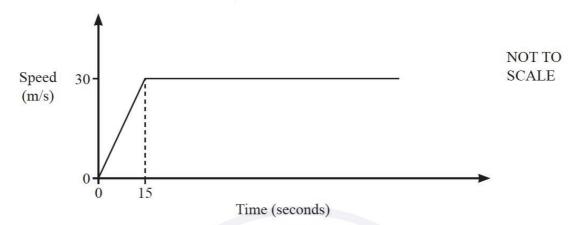
(a) the deceleration of the car in the final 8 seconds,

.....m/s² [1]

(b) the total distance travelled during the 24 seconds.

......m [2

Question 80


A kite is drawn on a coordinate grid. The diagonals of the kite intersect at the point (-2, -5).

One diagonal has equation y = 4x + 3.

Find the equation of the other diagonal of the kite. Give your answer in the form y = mx + c.

$$y =$$
 [3]

The diagram shows the speed-time graph for part of the journey of a car.

The car starts from rest and accelerates at a uniform rate for 15 seconds before reaching a constant speed of 30 m/s.

(a) Calculate the acceleration for the first 15 seconds.

..... m/s² [1]

(b) After *T* minutes, the total distance travelled is 45 kilometres.

Find the value of *T*.

$$T = \dots$$
 min [4]

Question 82

A is the point (-3, 5) and B is the point (5, 2).

Find the coordinates of the midpoint of the line AB.

Question 83

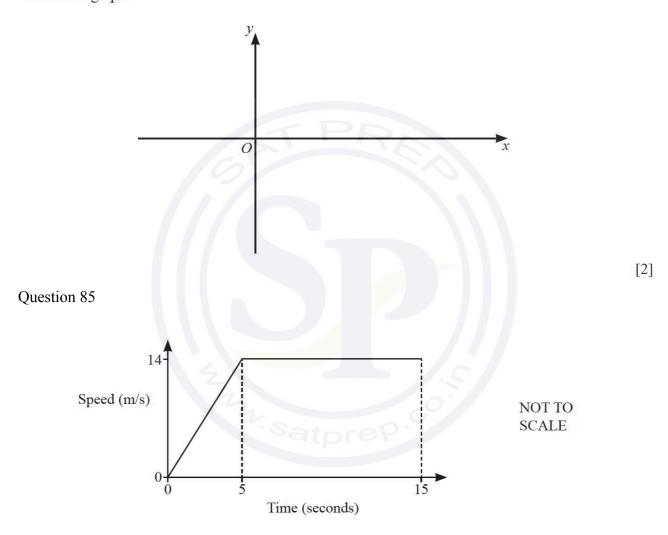
The graph of y = (x-3)(x+b)(x+2) intersects the y-axis at -30.

(a) Find the value of b.

(b) When x > 0 the graph crosses the x-axis once.

Write down the coordinates of this point.

(.....) [1]

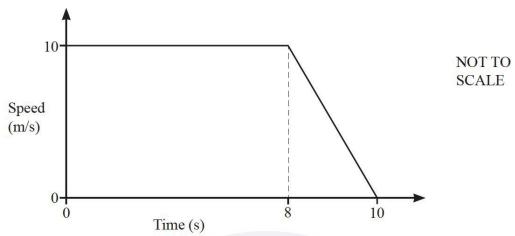

The graph of a cubic function has two turning points.

When x < 0 and when x > 4 the gradient of the graph is positive.

When 0 < x < 4 the gradient of the graph is negative.

The graph passes through the origin.

Sketch the graph.

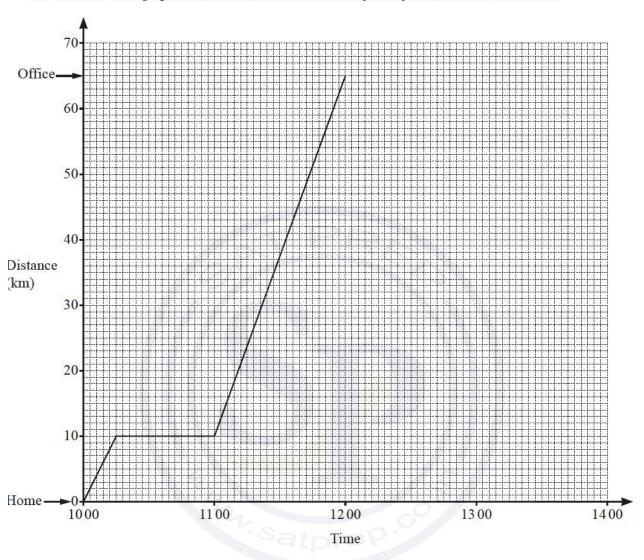

The diagram shows the speed-time graph of the first 15 seconds of a car journey.

(a)	Find the	acceleration	of the	car during	the	first	5 s	seconds.
-----	----------	--------------	--------	------------	-----	-------	-----	----------

..... m/s² [1]

(b) Find the distance travelled during the 15 seconds.

..... m [2]

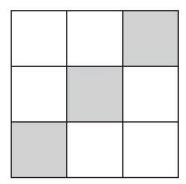


The diagram shows the speed-time graph for part of a car journey.

Calculate the total distance travelled during the 10 seconds.

..... m [2]

The distance-time graph shows information about Kai's journey from home to the office.



(a) Calculate the average speed, in km/h, for Kai's journey from home to the office.

..... km/h [2]

(b) When Kai arrives at the office, he finds his meeting is cancelled. He immediately returns home at a constant speed of 50 km/h.

Complete the distance–time graph to show his journey home. [1]

1	(0)	V.	Com	nlate	the	staten	nent
٧	a	,	COIII	ipicic	unc	State	пош

The diagram has rotational symmetry of order [1]

(b) On the diagram, draw all the lines of symmetry.

[2]

Question 89

C is the point (5, -1) and D is the point (13, 15).

(a) Find the midpoint of CD.

(.....) [2⁻¹

(b) Find the gradient of *CD*.

.....[2]

(c) Find the equation of the perpendicular bisector of CD. Give your answer in the form y = mx + c.

y = [3]

Question 90

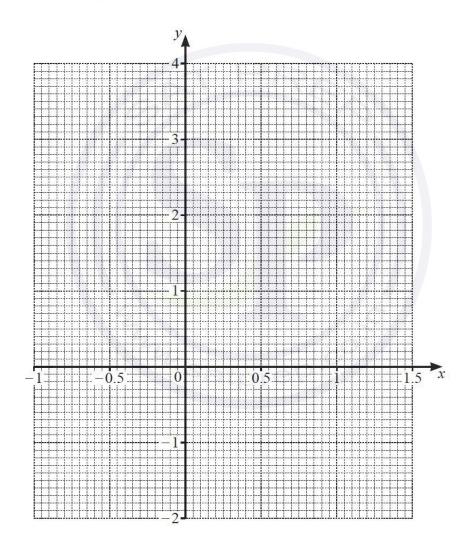
A curve has equation $y = x^3 - 12x$.

(a) Find the gradient of the curve at the point (1,-11).

.....[3]

(b) Find the coordinates of the turning points of the curve.

(....., and (.....,) [3]


The table shows some values for $y = 3x^2 - 2x - 1$.

x	-1	-0.5	0	0.5	1	1.5
у	4		-1		0	2.75

(a) Complete the table.

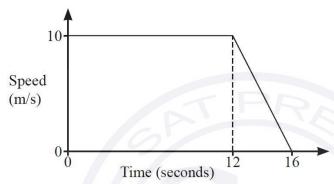
[1]

(b) On the grid, draw the graph of $y = 3x^2 - 2x - 1$ for $-1 \le x \le 1.5$.

[3]

(c) By drawing a suitable straight line, solve the equation $3x^2 - 4x - 2 = 0$ for $-1 \le x \le 1.5$.

x = [3]


The derivative of $2ax^7 + 3x^k$ is $42x^6 + 15x^{k-1}$.

Find the value of a and the value of k.

$$a = \dots$$

$$k = \dots$$
 [2]

Question 93

NOT TO SCALE

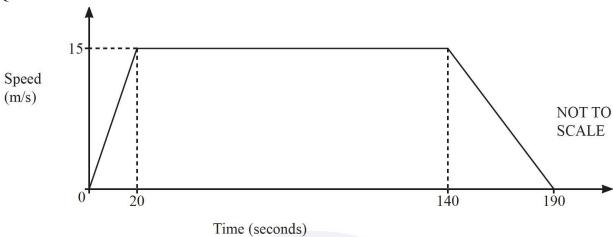
The diagram shows a speed-time graph for 16 seconds of a car journey.

(a) Find the deceleration of the car in the final 4 seconds.

..... m/s^2 [1]

(b) Find the total distance travelled during the 16 seconds.

......m [2]


Question 94

A is the point (6, 1) and B is the point (2, 7).

Find the equation of the perpendicular bisector of AB. Give your answer in the form y = mx + c.

$$y = \dots$$
 [5]

The speed-time graph shows information about a bus journey.

Calculate the total distance travelled by the bus.

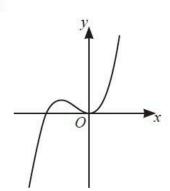
..... m [3]

Question 96

The line y = 2x - 5 intersects the line y = 3 at the point P.

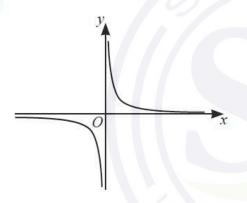
Find the coordinates of the point P.

...... [2]

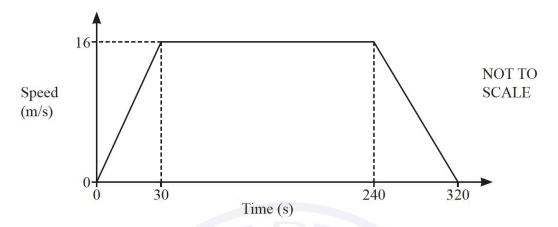

Question 97

Find the gradient of the line joining the points (-2, 7) and (3, 1).

.....[2]


For each sketch, put a ring around the correct type of function shown.

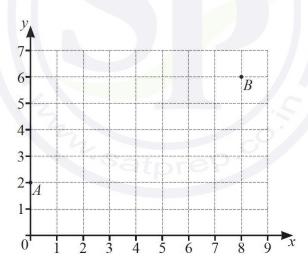
(i)


linear cubic quadratic reciprocal exponential [1]

(ii)

linear cubic quadratic reciprocal exponential [1]

The speed-time graph shows information about a car journey.

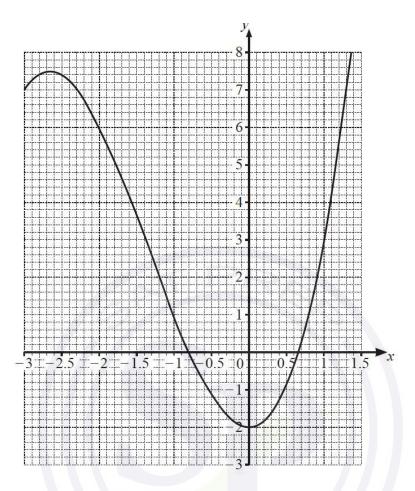

(a) Find the deceleration of the car between 240 and 320 seconds.

..... m/s² [1]

(b) Calculate the total distance the car travels during the 320 seconds.

..... m [3]

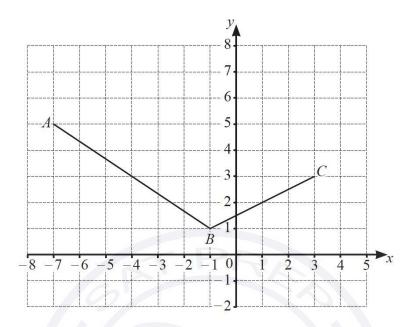
Question 100



A is the point (0, 2) and B is the point (8, 6).

Find the equation of line AB.

Give your answer in the form y = mx + c.


$$y =$$
 [2]

The diagram shows the graph of $y = x^3 + 4x^2 - 2$ for $-3 \le x \le 1.5$.

By drawing a suitable straight line, solve the equation $x^3 + 4x^2 - 2 = 2x$ for $-3 \le x \le 1.5$.

$$x = \dots$$
 or $x = \dots$ [3]

The diagram shows two sides of a parallelogram ABCD.

Find the coordinates of point D.

		\ F
		1