Extended Mathematics

Topic: Vector-Function-Transformation

Year :May 2013 -May 2024

Paper - 2

Answers

Question 1

(b) (i)
$$-\mathbf{b} + \mathbf{c}$$

(ii)
$$b - \frac{1}{2}$$

Question 2

(b)
$$2(x+5) \text{ or } 2x+10$$

1

1

2 B1 for OB + BA or any correct route

1FT
$$= their(b)(i)$$

Question 3

(c)
$$\frac{x-4}{5}$$
 or

2 **B1** for [g(18) =] 4

2 M1 for correct first step e.g. $x = \frac{y}{5} - 5$ or

$$\frac{x}{2} = y + 5$$
 or $2y = x - 10$

2 B1 for
$$[g(5)=]$$
 0.1 oe

2 M1 for
$$\frac{1}{2(\frac{1}{2x})}$$
 seen oe

2 M1 for a correct first step

e.g.
$$y - 4 = 5x$$
 or $\frac{y}{5} = x + \frac{4}{5}$ or $x = 5y + 4$

2 M1 for
$$\left(\frac{1}{2}\right)^{-3} = 8$$
 or $\left(\frac{1}{2}\right)^{x} = \left(\frac{1}{2}\right)^{-3}$ or $2^{x} = \frac{1}{8}$ oe or $2^{-x} = 2^{3}$

(a) (i)
$$p + \frac{1}{2}r$$

(ii)
$$2\mathbf{p} + \mathbf{r}$$

(b) Midpoint of
$$RQ$$

1ft
$$2 \times their$$
 (i)

(c)
$$\frac{x-3}{2}$$
 oe final answer

Question 6

(a)
$$-2a - 2c$$
 oe

(b)
$$2a + c$$

(c)
$$-a-c$$
 oe

Question 7

Question 8

(a)

(b)
$$\frac{3}{2}$$
 p + $\frac{1}{2}$ **r**

(b)
$$\frac{3}{2} \mathbf{p} + \frac{1}{2} \mathbf{r}$$

2 B1 for
$$[g(6) =]36$$

1

2FT

3 M1 for
$$(2x + 3)^2 = 100$$

M1 for $2x + 3 = [\pm]10$

If 0 scored, SC1 for one correct value as answer

2 M1 for
$$x = 2y + 3$$
 or $y - 3 = 2x$ or $\frac{y}{2} = x + \frac{3}{2}$ or better

2 M1 for BO = -a - c or for any correct route or correct unsimplified expression

2 M1 for any correct route or correct unsimplified expression

FT their (a) or correct answer
Or M1 for a correct non direct route from O to E or for
correct unsimplified expression or for correct FT
unsimplified

B1 for translation by
$$\begin{pmatrix} k \\ -4 \end{pmatrix}$$
 or $\begin{pmatrix} 3 \\ k \end{pmatrix}$

1 OR enlargement 1 [centre] (1,0) 1 [scale factor] -1

1

M1 for
$$\mathbf{p} + \frac{1}{2}their(\mathbf{a})$$

$$\mathbf{(a)} \qquad \frac{1}{2}\mathbf{b} - \frac{1}{2}\mathbf{a} \quad \text{oe}$$

2 M1 for $\frac{1}{2}(\overrightarrow{AO} + \overrightarrow{OB})$ oe or correct unsimplified route e.g. $\overrightarrow{AO} + \overrightarrow{OB} + \overrightarrow{BP}$ or $-\mathbf{a} + \mathbf{b} + \frac{1}{2} \overrightarrow{BA} = -\mathbf{a} + \mathbf{b} + \frac{1}{2} (\mathbf{a} - \mathbf{b})$

(b)
$$\frac{1}{4}$$
a + $\frac{3}{4}$ **b** or

M1 for $\overrightarrow{OA} + \overrightarrow{AQ}$ oe or correct unsimplified route

Question 10

(a) (i)
$$c-a$$

(ii)
$$-\frac{1}{3} a + \frac{1}{3} c$$

M2 for
$$-\mathbf{a} + \frac{1}{3}(\mathbf{c} + 2\mathbf{a})$$
 oe
e.g. $-\mathbf{a} + \mathbf{c} + 2\mathbf{a} - \frac{2}{3}(\mathbf{c} + 2\mathbf{a})$
Or M1 for a correct route from A to X

(b)
$$\overrightarrow{AC}$$
 is a multiple of \overrightarrow{AX} and they share a common point [A]

2

Question 11

2 M1 for
$$[g(-2) =]$$
 4 seen or for $5x^2 - 3$

(b)
$$25x^2 - 30x + 9 \text{ or } (5x - 3)^2 \text{ as final answer}$$

2 M1 for
$$g(5x-3)$$

(c)
$$\frac{x+3}{5}$$

2 M1 for
$$5x = y + 3$$
 or $x = 5y - 3$ or $\frac{y}{5} = x - \frac{3}{5}$

$$(\mathbf{b}) \qquad \frac{5}{8}\mathbf{x} + \frac{3}{8}\mathbf{y}$$

M1 for a correct route e.g.
$$OX + XM$$
 or $\frac{3}{8}\overrightarrow{XY}$ or $\frac{5}{8}\overrightarrow{YX}$

(a) (i)
$$-b + a$$

(ii) $b + \frac{1}{2}a$

1

1

 $[\overrightarrow{OX} =] \mathbf{b} + \frac{1}{3}(-\mathbf{b} + \mathbf{a}) \text{ oe}$ **(b)**

M1

$$\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$$
 oe

A1

2 statements from:

$$\overrightarrow{OM} = \mathbf{b} + \frac{1}{2}\mathbf{a}$$
 oe

B2

B1 for any one of these statements

or $[\overrightarrow{OX} =] \frac{2}{3} (\mathbf{b} + \frac{1}{2}\mathbf{a})$ oe

or
$$\overrightarrow{OX} = \frac{2}{3} \overrightarrow{OM}$$
 oe

Question 14

(a)
$$9x^2$$

1

M1 for correct first algebraic step e.g.

$$\frac{x-5}{3}$$

y-5=3x or $\frac{y}{3}=x+\frac{5}{3}$ or better

9x + 20 cao final answer **(c)**

for interchanging x and y, e.g. x = 3y + 5, this does not need to be the first step

M1 for 3(3x + 5) + 5

Question 15

1

(b)
$$-3x-1 \text{ or } 5-3(x+2)$$

1

(c)
$$9x - 10$$
 cao

2 M1 for
$$5 - 3(5 - 3x)$$

(d)
$$\frac{5-x}{3}$$
 final answer oe

(a)
$$a + 2b - a \text{ or } a - (a - 2b) \text{ oe}$$

1

(b) Parallelogram

1

PM equal and parallel to QR

1

2

or

PM or PS parallel to QR **and** MR found = **a** so 2 pairs of parallel sides **SC1** for answer trapezium with reason *PM* parallel to *QR*

Question 17

(a)
$$\frac{1}{3}(-\mathbf{a}+\mathbf{b})$$
 oe

M1 for any correct route eg $AO + OB + \frac{2}{3}BA$

or **B1** for $\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$ oe

(b)
$$\frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$$
 oe simplified

2FT FT their (a) + a simplified only if in terms of a and b.

M1 for identifying \overrightarrow{OC} as position vector or correct route in any form or for correct unsimplified answer

Question 18

- 2 B1 for [f(2)=]8 or
- **(b)** 6x 2 or 2(3x 1) final answer
- **M1** for $(x^3)^3$ or better

(c) $\frac{1}{2}(x-1)$ oe

M1 for correct first step

B1 for 3(2x+1) - 5 or better

eg y-1=2x or $\frac{y}{2}=x+\frac{1}{2}$ or x=2y+1 or better

Question 19

Enlargement
1
_

1

2 origin oe

1

Question 20

Triangle
$$(3, -2)$$
, $(4, -2)$, $(4, -1)$

2

B1 for movement 2 right or 3 down

$$\frac{1}{4}\mathbf{a} - \frac{1}{4}\mathbf{b} - \frac{1}{4}\mathbf{c} \quad \text{oe}$$

2 **B1** for $\overrightarrow{GK} = \mathbf{a} - \mathbf{b} - \mathbf{c}$ oe soi or $\overrightarrow{GL} = \frac{1}{4} (\overrightarrow{GK})$ or for any correct route

Question 22

(a)
$$a+b-c$$

(b)
$$\frac{1}{2} \mathbf{a} + \frac{1}{2} \mathbf{b} + \frac{1}{2} \mathbf{c}$$

(c)
$$\frac{1}{2} \mathbf{c} - \frac{1}{2} \mathbf{a} - \frac{1}{6} \mathbf{b}$$

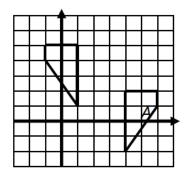
2 M1 for
$$\mathbf{c} + \frac{1}{2}$$
 (their (a)) or for a correct route e.g. $\overrightarrow{OC} + \frac{1}{2}\overrightarrow{CB}$, \overrightarrow{OQ}

2 M1 for
$$\frac{1}{3}\mathbf{b} - \frac{1}{2}$$
 (their (a)) or other correct route
e.g. $-\frac{2}{3}\mathbf{b} - \mathbf{a} + their$ (b), $\overrightarrow{PO} + \overrightarrow{OQ}$

Question 23

2 M1 for
$$\overrightarrow{CB} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

or for correct route allow e.g. BA - BC, CB + BA


2 M1 for
$$\sqrt{(-5)^2 + 6^2}$$

(b)
$$\frac{x+7}{6}$$
 final answer

2 M1 for
$$\frac{x}{4} - 3 = -0.5$$

2 M1 for
$$y+7=6x$$
 or $\frac{y}{6}=x-\frac{7}{6}$ or $x=6y-7$

2 M1 for
$$[f(13) =] \frac{1}{4}$$

3

B2 for correct translation of A seen

or **B1** for translation of *A* by $\binom{-1}{k}$ or $\binom{k}{3}$

seen

and **B1** for correct reflection of their translation in x = 2 seen

If 0 scored SC2 for correct TM(A) or SC1 for reflection in x = 2 seen or a correct translation of $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$ seen

Question 26

Enlargement

[s.f.]
$$\frac{1}{2}$$
 [centre] (-1,3)

1

1

1

Question 27

$$\frac{2}{7}\mathbf{p} + \frac{5}{7}\mathbf{q}$$

M1 for $PZ = \frac{5}{7}(\mathbf{q} - \mathbf{p})$ oe or $QZ = \frac{2}{7}(\mathbf{p} - \mathbf{q})$ oe

M1 for correct route from O to Z or identifying OZ

Question 28

(a)	3+12x final answer	1	e0.0
(b)	24x + 31 final answer	2	M1 for $3 + 4(6x + 7)$

(a)	$2\mathbf{a} + \mathbf{b}$	1	
(b)	D	1	
(c)	\overrightarrow{CF} and \overrightarrow{BG}	2	B1 for each

Question 31

$\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$ oe simplified	3	B2 for correct unsimplified vector for \overrightarrow{OK} in terms of a and b
	AT	or M1 for a correct route for \overrightarrow{OK} or $\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$ or $\overrightarrow{BA} = -\mathbf{b} + \mathbf{a}$ or recognition of \overrightarrow{OK} as a position vector

Question 32

Enlargement	1	
$\frac{1}{3}$	1	
(2, 1)	1	

Question 33

(a)	2	2	M1 for $f(5)$ or $7-(7-x)$ or better
(b)	30-4x final answer	ator	M1 for $4(7-x)+2$ or better or for correct answer then spoilt
(c)	$15 - 4x^2$ final answer	2	M1 for $15 - (2x)^2$ or better or for correct answer then spoilt

(a)	Rotation [centre] origin oe 90°[anti-clockwise] oe	3	B1 for each
(b)	Enlargement [centre] (0, 3) [sf] - 2	3	B1 for each

2 **B1** for
$$CF = 2(\mathbf{q} + \mathbf{p})$$

or $BA = \mathbf{q} + \mathbf{p}$
or $DE = \mathbf{q} + \mathbf{p}$
or $DA = 2\mathbf{q}$
or for correct route

Question 36

i(a)	Enlargement	3	B1 for each
	[scale factor] 2		
	[centre] (7, 0)		
(b)	Image at (6, 4), (7, 4), (6, 8)	3	B2 for rotation through 90° clockwise but about other point
	19		or B1 for rotation through 90° anticlockwise about any point or for triangle at $(6, 4), (7, 4), (6, k)$

Question 37

$$\frac{2}{3}\mathbf{p} + \frac{1}{3}\mathbf{q}$$

$$\mathbf{M1} \text{ for correct route e.g. } \overrightarrow{OT} \text{ or } \overrightarrow{OQ} + \overrightarrow{QT}$$
or for $\overrightarrow{QT} = \frac{2}{3}(-\mathbf{q} + \mathbf{p}) \text{ oe or for } \overrightarrow{PT} = \frac{1}{3}(-\mathbf{p} + \mathbf{q}) \text{ oe}$

Question 38

(a)	$6\mathbf{a} - 2\mathbf{b} \text{ or } 2(3\mathbf{a} - \mathbf{b})$	2	M1 for $4a + b - (-2a + 3b)$ or better
(b)	5a – b		M1 for a correct route e.g. $\overrightarrow{OD} + \overrightarrow{DE}$, $4\mathbf{a} + \mathbf{b} + \mathbf{a} - 2\mathbf{b}$, \overrightarrow{OE}

Question 39

!(a)	-17	2	M1 for $f(11)$ seen or $5 - 2(5 - 2x)$ or better
(b)(i)	$4x^2 + 8$ oe	1	
(b)(ii)	$\frac{5-x}{2}$ oe final answer		M1 for $x = 5 - 2y$ or $2x = 5 - y$ or $y - 5 = -2x$ or $\frac{y}{2} = \frac{5}{2} - x$

(a)
$$\mathbf{c} + \frac{2}{3}\mathbf{a}$$
 2 M1 for correct unsimplified form or correct route e.g. $\overrightarrow{OC} + \overrightarrow{CP}$

(b)(i)	$\frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{c}$		M1 for correct unsimplified form or correct route e.g. $\overrightarrow{OC} + \overrightarrow{CX}$
(b)(ii)	3:2 oe	2	B1 for $\overrightarrow{OX} = \frac{3}{5}\overrightarrow{OP}$ oe or $\overrightarrow{XP} = \frac{2}{5}\mathbf{c} + \frac{4}{15}\mathbf{a}$

(a)(i)	$5x^3 + 2$ final answer	1	
(a)(ii)	$\frac{x-2}{5}$ final answer		M1 for correct first step e.g. $y - 2 = 5x$, $x = 5y + 2$, $\frac{y}{5} = x + \frac{2}{5}$
(b)	5	2	M1 for $a \times (-2)^2 + 1 = 21$

Question 42

(a)	27	2	M1 for 3^{3x} seen
(b)	3	2	M1 for $7 + 3x = 2^4$
(c)	$\frac{x-7}{3}$ oe final answer		M1 for $x = 7 + 3y$ or $y - 7 = 3x$ or $-3x = 7 - y$ or $\frac{y}{3} = \frac{7}{3} + x$

Question 43

(a)	-s+t	1	60.
(b)	$-\frac{4}{5}$ s $-\frac{1}{5}$ t oe simplified	atpi3	M2 for correct unsimplified e.g. $-\mathbf{t} + \frac{4}{5}(-\mathbf{s} + \mathbf{t}) \text{ or } -\mathbf{s} - \frac{1}{5}(-\mathbf{s} + \mathbf{t})$ or M1 for a correct route e.g. $\overrightarrow{CB} + \overrightarrow{BN}$ or $[\overrightarrow{BN} =] \frac{4}{5}(-\mathbf{s} + \mathbf{t})$ or $[\overrightarrow{DN} =] -\frac{1}{5}(-\mathbf{s} + \mathbf{t})$

(a)	Rotation 90° clockwise oe (1, 0)	3	B1 for each
(b)	Enlargement - 2 (0, 2)	3	B1 for each

Question 46

(a)	$\frac{5}{3}$ p -2 q oe simplified	2	M1 for correct unsimplified answer or $c\mathbf{p} - 2\mathbf{q}$ or $\frac{5}{3}\mathbf{p} + c\mathbf{q}$ $c \neq 0$ or for a correct route
(b)	5 6	2	B2FT for $\frac{their\ c}{2}$ if their (a) is $c\mathbf{p} - 2\mathbf{q}$ oe M1 for $\overrightarrow{MX} = \frac{5}{6}\mathbf{p} - \mathbf{q}$ or $\overrightarrow{MX} = \frac{1}{2}$ their (a) or $\overrightarrow{BX} = \frac{1}{2}$ \overrightarrow{AN} or $\mathbf{q} + \frac{1}{2}$ their (a) or $\mathbf{q} + \overrightarrow{MX} - k\mathbf{p} = 0$ oe

Question 47

(a)	$\frac{1}{3}\mathbf{p} - \frac{1}{2}\mathbf{q}$ oe simplified	2	M1 for a correct unsimplified answer or a correct route
(b)	$\frac{5}{6}$ p + $\frac{3}{4}$ q oe simplified	Pip 2	M1 for a correct unsimplified answer or a correct route

i(a)	$-\frac{1}{3}\mathbf{q} + \frac{1}{2}\mathbf{p} \text{oe}$	2	M1 for correct unsimplified answer or correct route
(b)	$\frac{1}{2}\mathbf{p} + \frac{1}{2}\mathbf{q} \text{oe}$	2	M1 for correct unsimplified answer or correct route

(a)	19	2	M1 for $3(2^x) - 5$ soi or for f(8)
(b)	$\frac{x+5}{3}$ oe final answer		M1 for correct first step $y+5=3x$ or $\frac{y}{3}=x-\frac{5}{3}$ or $x=3y-5$

Question 50

X, Y and Z are collinear oe	1	Allow in a straight line
X is the midpoint of ZY oe	1	Allow e.g. $ZY = 2XY$, $ZX = XY$ oe

Question 51

(a)	Rotation 90° clockwise oe (0, 2)	3	B1 for each
(b)	Reflection $y = x$	2	B1 for each
(c)	Enlargement [sf] $\frac{1}{2}$ (4, 6)	3	B1 for each

Question 52

(a)(i)	$\mathbf{a} - \mathbf{b}$ or $-\mathbf{b} + \mathbf{a}$	2	B1 for a correct route or identifying \overrightarrow{OT}
(a)(ii)	$\frac{1}{2}\mathbf{a} - \mathbf{b} \text{ or } -\mathbf{b} + \frac{1}{2}\mathbf{a}$	atp	ep.co.
(b)	$\overrightarrow{PT} = \mathbf{a} - 2\mathbf{b}$ oe	M1	
	$\overrightarrow{PT} = 2\overrightarrow{RV}$ oe	A1	Dep on correct vector RV
			Accept in words

Enlargement	3	B1 for each
[scale factor] $-\frac{1}{2}$		
[centre] (3, 4)		

(a)(i)	$\begin{pmatrix} 15 \\ 21 \end{pmatrix}$	1	
(a)(ii)	26	2	M1 for $10^2 + (-24)^2$ or better
'(b)	$\mathbf{p} + \frac{3}{4}\mathbf{q}$	2	M1 for a correct route or for $\overrightarrow{AE} = \frac{3}{4} \mathbf{q}$

Question 55

(a)	[<i>p</i> =] –13	2	M1 for $4(5x - 4) + 3$ or better
(b)	$\frac{3x+1}{5}$	3	M2 for $x = \frac{3y+1}{5}$, $5y = 3x + 1$ or $y - \frac{1}{5} = \frac{3x}{5}$
	(GP		M1 for $x = \frac{5y-1}{3}$, $3y = 5x - 1$ or $y + \frac{1}{3} = \frac{5x}{3}$

(b)
$$\begin{vmatrix} 2\mathbf{a} - \frac{1}{2}\mathbf{b} \end{vmatrix}$$
 $\begin{vmatrix} 3 \\ \mathbf{B2} \text{ for answer } 2\mathbf{a} + p\mathbf{b} \text{ or } q\mathbf{a} - \frac{1}{2}\mathbf{b} q \neq \frac{1}{2} \end{vmatrix}$ or correct unsimplified answer in terms of \mathbf{a} and \mathbf{b} or $\mathbf{M1}$ for $\overrightarrow{AC} = \frac{3}{2}\mathbf{a}$ or $\overrightarrow{OC} = \frac{5}{2}\mathbf{a}$ or correct route If 0 scored SC1 for answer $\mathbf{a} + \frac{1}{2}\mathbf{b}$

(a)	$\frac{5}{6} \mathbf{m} - \frac{1}{3} \mathbf{n}$	3	B2 for correct unsimplified answer in terms of m and n e.g. $\frac{1}{3}$ (m – n) + $\frac{1}{2}$ m or M1 for a correct route or for $\overline{FC} = \mathbf{m} - \mathbf{n}$ or $\overline{CF} = \mathbf{n} - \mathbf{m}$ or better e.g. $\overline{AC} = \frac{1}{3}$ (m – n)
(b)	$\overrightarrow{GH} = 3 \overrightarrow{JK}$ oe or \overrightarrow{GH} has a greater magnitude	2	B1 for each
	\overrightarrow{GH} and \overrightarrow{JK} are parallel		

Question 58

(a)	[a=]7	2	M1 for $3(-2)^2 + a = 19$ or better
'(b)(i)	6x - 9 or $3(2x - 3)$ final answer	2	M1 for $2(3x - 8) + 7$ or better
(b)(ii)	$\frac{x-7}{2}$ final answer	2	M1 for a correct first step $x = 2y + 7$ or $y - 7 = 2x$ or $\frac{y}{2} = x + \frac{7}{2}$

Question 59

$$\sqrt{2^2 + (-3)^2}$$

Question 60

[±] 21	3	M2 for $29^2 - 20^2$ oe or better
		or M1 for $20^2 + k^2 = 29^2$ oe

(a)	Translation $\begin{pmatrix} -1 \\ -8 \end{pmatrix}$	2	B1 for each
(b)	Image at (-1, -1), (-4, -1), (-1, -2)	2	B1 for image correct scale factor and orientation but wrong position or for enlargement scale factor $\frac{1}{2}$ centre $(0,0)$

$$[x =] -2.1$$
 oe

4 M3 for $x^2 + 10x = x^2 - 21$ or better OR M1 for $(x + 1 + 4)^2 - 25$ or better M1 for $x^2 - 25 + 4$ or better If 0 scored SC1 for answer $-\frac{11}{6}$ oe

Question 63

$$\frac{5}{9}\mathbf{a} + \frac{4}{9}\mathbf{b}$$

M1 for $\frac{4}{9}$ (**b** – **a**) or $\frac{5}{9}$ (**a** – **b**) or a correct route

Question 64

3 B1 for each

B1 for each

correct route.

0(a)(ii) enlargement [s.f.]
$$\frac{1}{3}$$
 (6, 6) triangle at (-4, 7) (-4, 1) (-1, 1)

B1 for translation by $\binom{k}{10}$ or $\binom{2}{k}$

$$\frac{3}{5}$$
r + $\frac{2}{5}$ **t** or $\frac{1}{5}$ (3**r** + 2**t**)

M2 for
$$\mathbf{r} + \frac{2}{5}(-\mathbf{r} + \mathbf{t})$$
 oe or $\mathbf{t} + \frac{3}{5}(\mathbf{r} - \mathbf{t})$
oe
or
M1 for $\overrightarrow{RT} = -\mathbf{r} + \mathbf{t}$ oe or $\overrightarrow{TR} = \mathbf{r} - \mathbf{t}$
M1 for $\overrightarrow{OR} + \overrightarrow{RX}$ or $\overrightarrow{OT} + \overrightarrow{TX}$ any other

(a)	32	2	M1 for $f(6) = 8$
			or ff(x)= $2^{(2^{x-3})-3}$ oe
(b)	x+21	1	
(c)	-1	2	M1 for $\frac{1}{16}$ oe or 2^{-4} oe

Question 67

(a)
$$a - \frac{2}{5}b$$
 oe simplified $\frac{2}{5}b$ or a correct route (b) $\frac{5}{2}a$ oe $\frac{5}{2}a$ oe $\frac{2}{5}b$ or a correct route $\frac{5}{2}a$ or $\frac{5}{2}b$ or a correct route

(a)(i)	triangle at (-1, 1) (-4, 2) (-3, 5)	1	
(a)(ii)	triangle at $(-2, -3)$ $(1, -2)$ $(0, 1)$	2	B1 for translation by $\begin{pmatrix} -3 \\ k \end{pmatrix}$ or by $\begin{pmatrix} k \\ -4 \end{pmatrix}$
(b)	enlargement $[sf] \frac{1}{2}$ [centre] $(9, -1)$	tpre	B1 for each

(a)	3	2	M1 for $k(-5k)^2 = 675$ or better
(b)	$\frac{5}{7x-2}$ final answer	1	
(c)	$\frac{1}{2}$ or 0.5	4	B3 for answer $\frac{7}{14}$ OR B2 for $\frac{5x+2}{7}$ or M1 for correct first step for $h^{-1}(x)$ e.g. $x = \frac{7y-2}{5}$ $5y = 7x-2$ $y + \frac{2}{5} = \frac{7x}{5}$ M1FT for $\frac{2(5x+2)}{14} + \frac{3-10x}{14}$ oe with common denominator

Question 70

(a)	$\frac{x+8}{7}$ final answer	2	M1 for $x = 7y - 8$ or $y + 8 = 7x$ or $\frac{y}{7} = x - \frac{8}{7}$
(b)	4	2	M1 for $4 \div \frac{1}{3} + 5$ oe or better

$$\frac{5}{3}$$
 a + $\frac{1}{3}$ **b** final answer

4 M1 for $\overrightarrow{AK} = -\frac{1}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$ or $\overrightarrow{BK} = \frac{2}{3}\mathbf{a} - \frac{2}{3}\mathbf{b}$

M1 for \overrightarrow{AL} (or \overrightarrow{OK}) = \mathbf{a} + their \overrightarrow{AK} oe soi or \overrightarrow{OK} (or \overrightarrow{AL}) = \mathbf{b} + their \overrightarrow{AK} oe soi or \overrightarrow{BL} = \mathbf{a} + their \overrightarrow{AK} oe soi

M1 for a correct route e.g. \overrightarrow{OL} , $\mathbf{a} + \overrightarrow{AL}$, $\mathbf{b} + \overrightarrow{BL}$

Question 73

Enlargement $[sf] - \frac{1}{2}$ [centre] (4, 4)

3 B1 for each

Question 74

(a)	$\frac{2}{x-1}$ final answer	2	M1 for $\frac{10}{5x-3-2}$ or better
(b)	$\frac{10}{x} + 2$ or $\frac{10 + 2x}{x}$ final answer	3 ore	M2 for $y-2 = \frac{10}{x}$ or $x = \frac{10+2y}{y}$ oe or $yx = 10 + 2x$ oe or M1 for $x = \frac{10}{y-2}$ or $y(x-2) = 10$ oe or better
(c)	x-1	1	

(a)	9	1	
(b)	2x - 5 final answer		M1 for correct first step e.g. $x = \frac{y+5}{2}$ or $2y = x+5$ or $y - \frac{5}{2} = \frac{x}{2}$ or better

Rotation 3 B1 for each (5, 3) 90° clockwise oe

Question 77

Question 78

$$\begin{array}{c|c}
(a) & \begin{pmatrix} -3 \\ -2 \end{pmatrix} & 1 \\
\hline
(b) & \begin{pmatrix} -2 \\ 6 \end{pmatrix} & 1
\end{array}$$

Question 79

(a)	6x + 5 cao final answer	2	M1 for $6(x+2)-7$ oe
(b)	$\frac{x+7}{6}$ or $\frac{x}{6} + \frac{7}{6}$ final answer	2	M1 for $x = 6y - 7$ or $y + 7 = 6x$ or $\frac{y}{6} = x - \frac{7}{6}$
(c)	$\frac{1}{5}$ or 0.2	2	M1 for $x^{-3} = 6 \times 22 - 7$ or better

Question 80

M1 for
$$\begin{pmatrix} 1 \\ -5 \end{pmatrix}$$
or $(5-4)^2 + (3-8)^2$
or $\sqrt{e^2 + f^2}$ from their $\overrightarrow{OB} = \begin{pmatrix} e \\ f \end{pmatrix}$
or their $B = (e, f)$
or only $\sqrt{1+25}$

Correct working leading to 5.09[9..]

A1 Dep. on M2 or M1 for only $\sqrt{1+25}$

Rotati	on	3	В1	for each	
(0,0)	pe				
90° cl	ockwise oe				
Questio	on 82				
$\frac{x-2}{5}$ oe final answer		2	M1 for a correct first step $x = 5y + 2 \text{ or } y - 2 = 5x \text{ or } \frac{y}{5} = x + \frac{2}{5}$		
Questio	ĺ	ı			
(a)	Reflection $y = 2$		2	B1 for each	
(b)	Shape at (-2, -2), (-6, -5), (-6, -3), (-4, -2)			B1 for correct size and orientation but wrong position or for rotation of 90° anticlockwise about (–1, 2) or for three correct vertices	
(c)	Shape at (0, -2), (0, 2), (-2, 6), (-6, 6)			B1 for correct size and orientation but wrong position or for three correct vertices	
Questi	on 84				
(a)	(24) -9)	Sai	1		
(b)	$\begin{pmatrix} -4 \\ 32 \end{pmatrix}$		1		
(c)	(9, -7)		1		
(d)	37		2	M1 for $(-12)^2 + 35^2$ oe	
Question 85					
(a)	6.4[0] or 6.403		2	M1 for $(-4)^2 + 5^2$ oe	
(b)	2x - y		1		

(a)	Enlargement [sf] 2 (0, 7)	3	B1 for each
(b)	Rotation (3, 1) 90° clockwise oe	3	B1 for each

Question 87

(a)
$$\begin{pmatrix} 21 \\ -9 \end{pmatrix}$$
 1

(b) 7.62 or 7.615 to 7.616

2 M1 for $(7)^2 + (-3)^2$ oe

If 0 scored SC1 for 22.8 or 22.84 to 22.85

Question 88
$$\mathbf{b} + \frac{4}{3}\mathbf{a}$$

$$\mathbf{B2} \text{ for correct unsimplified answer}$$
or $\overrightarrow{QX} = \frac{1}{3}\mathbf{a}$ seen
or answer $\mathbf{b} + k\mathbf{a}$ where $k > 1$
or $\overrightarrow{OK} = \mathbf{a} + \frac{3}{4}\mathbf{b}$ seen
or $\overrightarrow{QX} = \frac{1}{3}\overrightarrow{OP}$
or $\overrightarrow{OX} = \frac{4}{3} \times \overrightarrow{OK}$

(a)(i)	reflection $x = -2$	2	B1 for each
(a)(ii)	enlargement [sf] $\frac{1}{2}$ (-3,-4)	3	B1 for each

$$\begin{pmatrix} -10 \\ 3 \end{pmatrix}$$
 final answer

Question 91

4 B3 for correct unsimplified answer or for
$$\overrightarrow{OR} = \mathbf{p} + \frac{1}{3}\mathbf{q} - \frac{1}{3}\mathbf{p}$$
 oe or M2 for $\overrightarrow{PR} = \frac{1}{3}(-\mathbf{p} + \mathbf{q})$ oe or $\overrightarrow{QR} = \frac{2}{3}(-\mathbf{q} + \mathbf{p})$ oe or M1 for $\overrightarrow{PQ} = -\mathbf{p} + \mathbf{q}$ oe or $\overrightarrow{QP} = -\mathbf{q} + \mathbf{p}$ oe or a correct route from O to S .

Question 92

(a)	5	2	M1 for $3^x + 2 = 245$
(b)	2189	2	M1 for $x = f(7)$ or $3^7 + 2$

(a)	Rotation	3	B1 for each
	90° clockwise oe		
	(0, -2)		
(b)	Triangle at (-5, -1), (-5, -7), (-7, -7)	2	B1 for enlargement s.f. –2 in wrong position

Questi	011 7 1		
(a)	$\frac{1}{2}\mathbf{b} - \frac{2}{3}\mathbf{a}$	2	B 1 for answer $\frac{1}{2}\mathbf{b} + k\mathbf{a}$ or $j\mathbf{b} - \frac{2}{3}\mathbf{a}$
			or correct unsimplified in terms of a and b
(b)	$\frac{5}{4}$ b	3	REL
	4		M2 for $\overrightarrow{RS} = \frac{1}{4}\mathbf{b}$ oe
			or $\overrightarrow{MS} = \frac{3}{2} \left(\frac{1}{2} \mathbf{b} - \frac{2}{3} \mathbf{a} \right)$ oe
			or $\overrightarrow{NS} = \frac{1}{2} \left(\frac{1}{2} \mathbf{b} - \frac{2}{3} \mathbf{a} \right)$ oe
			or M1 for a correct route in terms of vertices and/or a and/or b
			or B 1 for answer j b where $j > 1$
	32		or $\overrightarrow{RS} = \frac{1}{2} \overrightarrow{MQ}$, $\overrightarrow{RS} = \frac{1}{4} \overrightarrow{OR}$, oe
		atp	$\overrightarrow{NS} = \frac{1}{2}\overrightarrow{MN}$, $\overrightarrow{MS} = \frac{3}{2}\overrightarrow{MN}$
			$\overrightarrow{NS} = 1 \overrightarrow{MS}$

(a)	Enlargement [s f] 2 [centre] (1,-1)	3	B1 for each
(b)	image at $(-1, 4)(-1, 5)(1, 4)$	2	B1 for translation by $\begin{pmatrix} -4 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 3 \end{pmatrix}$