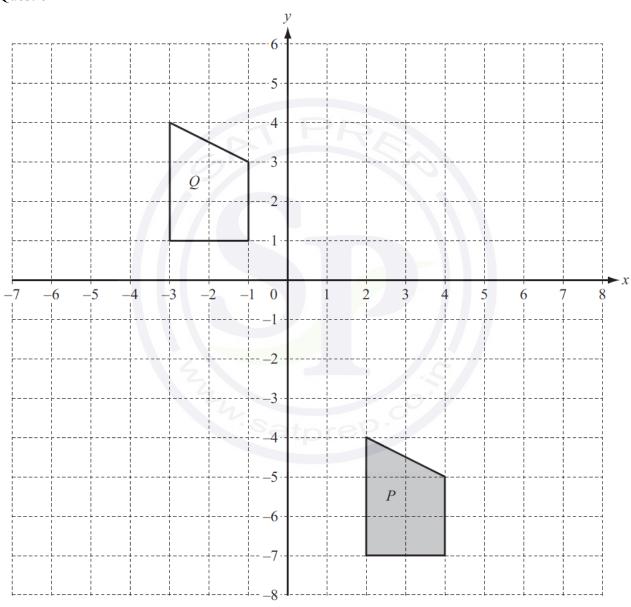
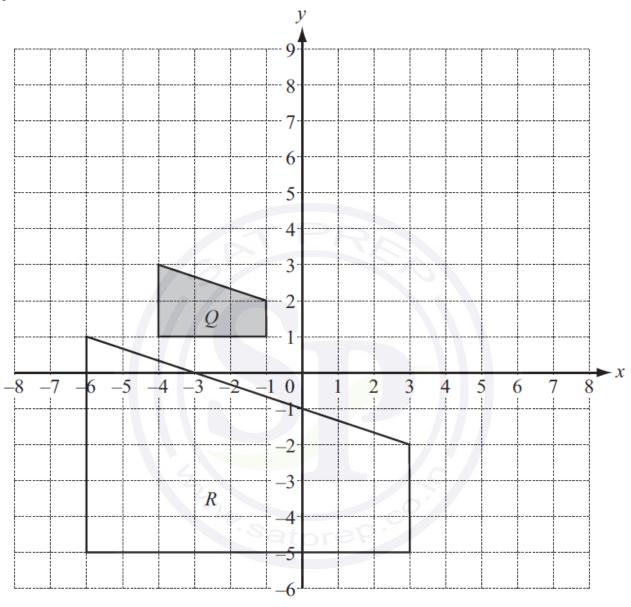
Extended Mathematics


Topic: Vector-Function-Transformation

Year :May 2013 -May 2023


Paper -4

Questions Booklet

Question 1

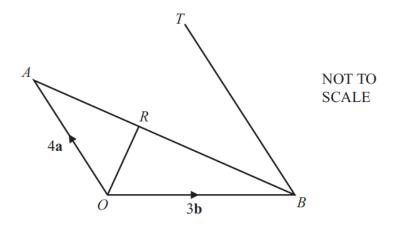
(i)	Describe fully the single transformation which maps shape P onto shape Q .	
	Answer(a)(i)	[2]
(ii)	On the grid above, draw the image of shape P after reflection in the line $y = -1$.	[2]
Ques	etion 2	
	$f(x) = x^2 + x - 3$ $g(x) = 2x + 7$ $h(x) = 2^x$	
(a)	Solve the equation $f(x) = 0$. Show all your working and give your answers correct to 2 decimal places.	
	$Answer(a) x = \dots \qquad \text{or } x = \dots$	[4]
(b)	$fg(x) = px^2 + qx + r$	
	Find the values of p , q and r .	
	$Answer(b) p = \dots$	
	$q = \dots$	
	$r = \dots$	[3]
(c)	Find $g^{-1}(x)$.	
	$Answer(c) g^{-1}(x) = \dots$	[2]
(d)	Find x when $h(x) = 0.25$.	
	$Answer(d) x = \dots$	[1]
(e)		
	Give your answer in standard form, correct to 4 significant figures.	F 43
	Answer(e)	[4]

(a) Describe fully the **single** transformation that maps shape Q onto shape R.

Answer(a) [3]

- **(b)** (i) Draw the image when shape Q is translated by the vector $\begin{pmatrix} 5 \\ 4 \end{pmatrix}$. [2]
 - (ii) Draw the image when shape Q is reflected in the line x = 2. [2]
 - (iii) Draw the image when shape Q is stretched, factor 3, x-axis invariant. [2]

(a) The co-ordinates of P are (-4, -4) and the co-ordinates of Q are (8, 14).(i) Find the gradient of the line PQ.


- Answer(a)(i)[2]
- (ii) Find the equation of the line PQ.

(iii) Write \overrightarrow{PQ} as a column vector.

$$Answer(a)(iii) \qquad \overrightarrow{PQ} = \left(\begin{array}{c} \\ \\ \end{array} \right) \qquad [1]$$

(iv) Find the magnitude of \overrightarrow{PQ} .

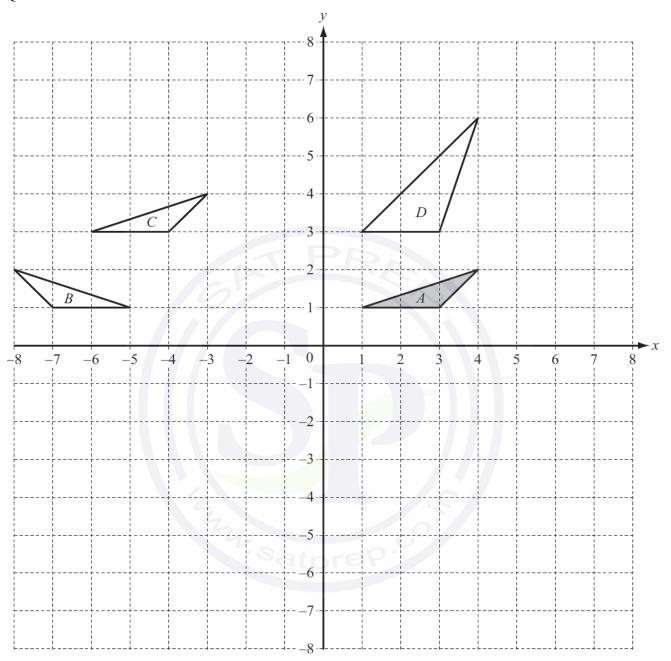
(b)

In the diagram, $\overrightarrow{OA} = 4\mathbf{a}$ and $\overrightarrow{OB} = 3\mathbf{b}$.

R lies on AB such that $\overrightarrow{OR} = \frac{1}{5}(12\mathbf{a} + 6\mathbf{b})$.

T is the point such that $\overrightarrow{BT} = \frac{3}{2}\overrightarrow{OA}$.

- (i) Find the following in terms of a and b, giving each answer in its simplest form.
 - (a) \overrightarrow{AB}


$$Answer(b)(i)(a) \overrightarrow{AB} =$$
 [1]

(b) \overrightarrow{AR}

$$Answer(b)(i)(b) \overrightarrow{AR} =$$
 [2]

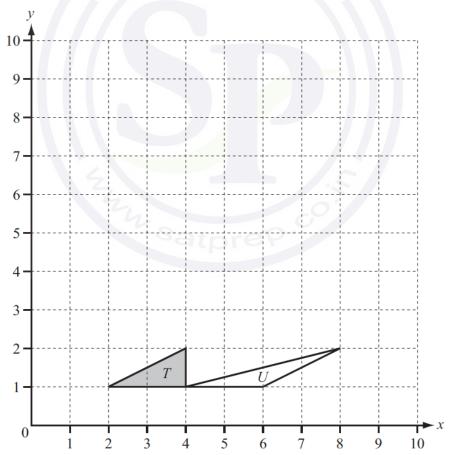
(c) \overrightarrow{OT}

$$Answer(b)(i)(c) \overrightarrow{OT} = \dots [1]$$

(a) Describe fully the single transformation that	t maps triangle A onto
(i) triangle B ,	
Answer(a)(i)	[2]
(ii) triangle C,	
Answer(a)(ii)	[2]
(iii) triangle D.	
Answer(a)(iii)	[3]
(b) On the grid, draw	
(i) the rotation of triangle A about $(6, 0)$ th	rough 90° clockwise, [2]
(ii) the enlargement of triangle A by scale f	factor -2 with centre $(0, -1)$, [2]
Question 6	
$f(x) = 4x + 3$ $g(x) = \frac{7}{x+1} (x - 1)$ h($f(x) = x^2 + 5x$
(a) Work out	
(i) h(-3),	
	Answer(a)(i)[1]
(ii) hg(13).	
	Answer(a)(ii)
(b) Find $f^{-1}(x)$.	
Ansv	$ver(b) f^{-1}(x) = $ [2]
(c) (i) Solve the equation $f(x) = 23$.	
	swer(c)(i) x = [2]
(ii) Solve the equation $h(x) = 7$.	
Show all your working and give your answ	vers correct to 2 decimal places.
Answer(c)(ii)	x = or $x = $ [5]

$$g(x) = 1 - 2x$$
 $h(x) = x^2 - 1$

(i) Find gh(3).


(ii) Find $g^{-1}(x)$.

(iii) Solve the equation h(x) = 3.

(iv) Solve the equation g(3x) = 2x.

Question 8

(a)

- (i) Draw the reflection of triangle T in the line y = 5.
- (ii) Draw the rotation of triangle T about the point (4, 2) through 180° . [2]

P P

NOT TO SCALE

In the pentagon OPQRS, OP is parallel to RQ and OS is parallel to PQ. PQ = 2OS and OP = 2RQ. O is the origin, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OS} = \mathbf{s}$.

Find, in terms of **p** and **s**, in their simplest form,

(i) the position vector of Q,

(ii) \overrightarrow{SR} .

$$Answer(b)(ii) \overrightarrow{SR} = \dots [2]$$

(c) Explain what your answers in part (b) tell you about the lines OQ and SR.

Question 9

$$f(x) = 4 - 3x$$
 $g(x) = 3^{-x}$

(a) Find f(2x) in terms of x.

Answer(a)
$$f(2x) = ...$$
 [1]

(b) Find ff(x) in its simplest form.

$$Answer(b) \text{ ff}(x) = \dots [2]$$

(c) Work out gg(-1).

Give your answer as a fraction.

Continue on the next page...

[2]

(d) Find $f^{-1}(x)$, the inverse of f(x).

(e) Solve the equation gf(x) = 1.

Question 10

$$f(x) = 4 - 3x$$
 $g(x) = 3^{-x}$

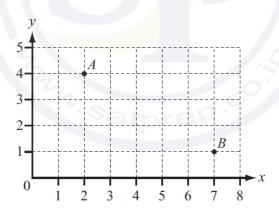
(a) Find f(2x) in terms of x.

(b) Find ff(x) in its simplest form.

$$Answer(b) ff(x) = [2]$$

(c) Work out gg(-1). Give your answer as a fraction.

(d) Find $f^{-1}(x)$, the inverse of f(x).

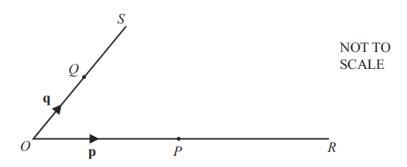

Answer(d)
$$f^{-1}(x) =$$
 [2]

(e) Solve the equation gf(x) = 1.

Answer(e)
$$x =$$
 [3]

Question 11

(a)


(i) Write down the position vector of A.

$$Answer(a)(i)$$
 [1]

(ii) Find $|\overrightarrow{AB}|$, the magnitude of \overrightarrow{AB} .

Answer(a)(ii)		[2
---------------	--	----

(b)

O is the origin, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$. OP is extended to R so that OP = PR. OQ is extended to S so that OQ = QS.

(i) Write down \overrightarrow{RQ} in terms of \mathbf{p} and \mathbf{q} .

$$Answer(b)(i) \overrightarrow{RQ} = \dots [1]$$

(ii) PS and RQ intersect at M and RM = 2MQ.

Use vectors to find the ratio PM: PS, showing all your working.

$$Answer(b)(ii) PM: PS = \dots [4]$$

Question 12

$$f(x) = \frac{1}{x}$$
, $x \neq 0$ $g(x) = 1 - x$ $h(x) = x^2 + x^2$

(a) Find $fg(\frac{1}{2})$.

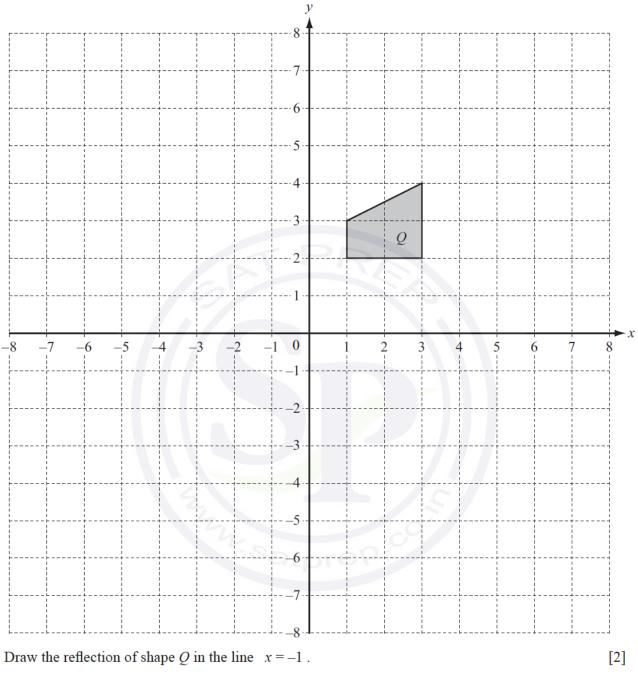
(b) Find $g^{-1}(x)$, the inverse of g(x).

(c) Find hg(x), giving your answer in its simplest form.

$$Answer(c) hg(x) =$$
 [3]

(d) Find the value of x when g(x) = 7.

$$Answer(d) x =$$
 [1]


(e) Solve the equation h(x) = 3x.

Show your working and give your answers correct to 2 decimal places.

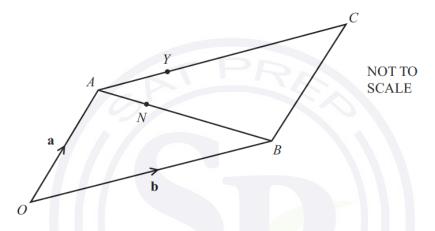
Answer(e)
$$x =$$
 or $x =$ [4]

(f) A function k(x) is its own inverse when $k^{-1}(x) = k(x)$.

For which of the functions f(x), g(x) and h(x) is this true?

Draw the enlargement of shape Q, centre (0, 0), scale factor -2.

(a)
$$\overrightarrow{PQ} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$


(i) P is the point (-2, 3).

Work out the co-ordinates of Q.

Answer(a)(i) (....., ,) [1]

(ii) Work out $|\overrightarrow{PQ}|$, the magnitude of \overrightarrow{PQ} .

(b)

OACB is a parallelogram.

$$\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}.$$

$$AN: NB = 2:3 \text{ and } AY = \frac{2}{5}AC.$$

- (i) Write each of the following in terms of a and/or b. Give your answers in their simplest form.
 - (a) \overrightarrow{ON}

$$Answer(b)(i)(a) \overrightarrow{ON} = \dots$$
 [2]

(b) \overrightarrow{NY}

$$Answer(b)(i)(b) \overrightarrow{NY} = \dots [2]$$

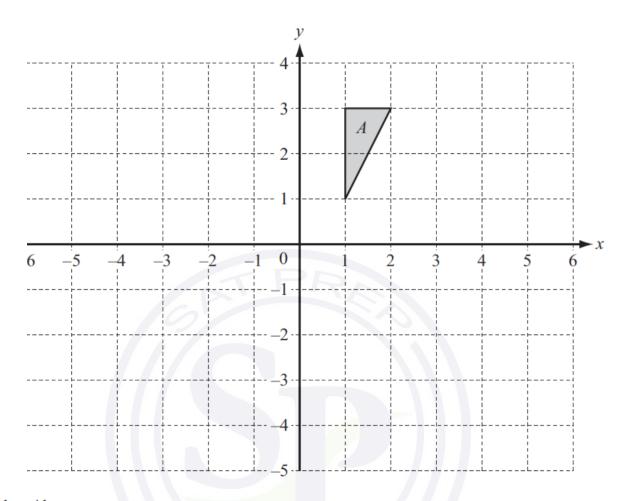
(ii) Write down two conclusions you can make about the line segments NY and BC.

Answer(b)(ii)

.....[2]

$$f(x) = 2x - 3$$
 $g(x) = \frac{1}{x+1} + 2$ $h(x) = 3^x$

(i) Work out f(4).


(ii) Work out fh(-1).

(iii) Find $f^{-1}(x)$, the inverse of f(x).

(iv) Find ff(x) in its simplest form.

(v) Show that the equation f(x) = g(x) simplifies to $2x^2 - 3x - 6 = 0$. Answer(a)(v)

[3]

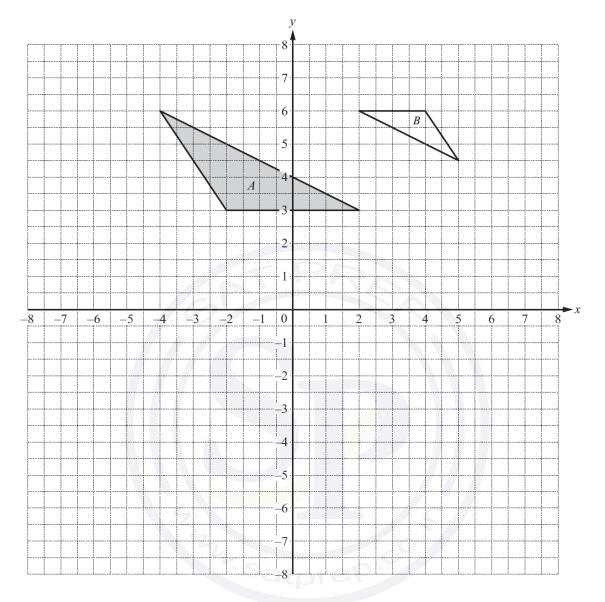
On the grid,

(i) draw the image of shape A after a translation by the vector
$$\begin{pmatrix} -5 \\ -4 \end{pmatrix}$$
, [2]

(ii) draw the image of shape A after a rotation through 90° clockwise about the origin. [2]

$$f(x) = 5x - 2$$
 $g(x) = \frac{7}{x - 3}, x \ne 3$ $h(x) = 2x^2 + 7x$

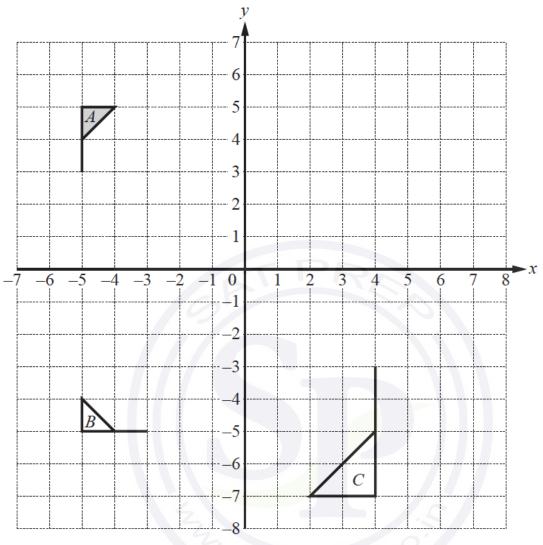
- (a) Work out
- (i) f(2),


(ii) hg(17).

(b) Solve g(x) = x + 3.

(c) Solve h(x) = 11, showing all your working and giving your answers correct to 2 decimal places.

(d) Find $f^{-1}(x)$.


(e) Solve $g^{-1}(x) = -0.5$.

(a) Describe fully the single transformation that maps triangle A onto triangle B.

(b) On the grid, draw the image of

- (i) triangle A after a reflection in the line x = -3, [2]
- (ii) triangle A after a rotation about the origin through 270° anticlockwise, [2]
- (iii) triangle A after a translation by the vector $\begin{pmatrix} -1 \\ -5 \end{pmatrix}$. [2] Question 19

- (a) Describe fully the single transformation that maps
 - (i) flag A onto flag B,

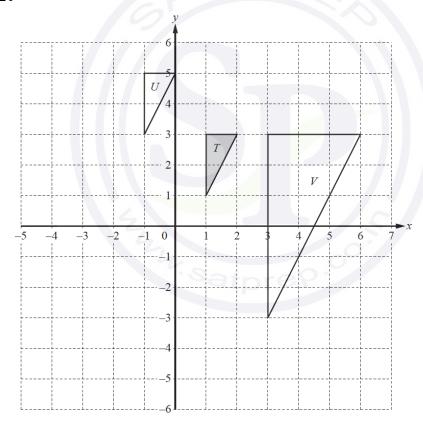
(ii) flag A onto flag C.

- (b) Draw the image of flag A after a translation by the vector [2]
- (c) Draw the image of flag A after a reflection in the line x = 1. [2] Question 20

$$f(x) = 2x - 1$$
 $g(x) = x^2 + x$

$$g(x) = x^2 + x$$

$$h(x) = \frac{2}{x}, \ x \neq 0$$


(a) Find ff(3).

(b) Find gf(x), giving your answer in its simplest form.

(c) Find $f^{-1}(x)$.

(d) Find h(x) + h(x + 2), giving your answer as a single fraction.

Question 21

(a) On the grid, draw the image of

(i) triangle T after a reflection in the line x = -1,

[2]

triangle T after a rotation through 180° about (0, 0).

[2]

- (b) Describe fully the single transformation that maps
 - (i) triangle T onto triangle U,

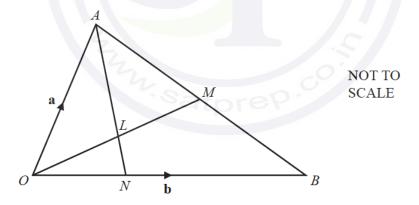
Answer(b)(i)	 	 	

(ii) triangle T onto triangle V.

_____[3]

Question 22

(a)
$$\overrightarrow{PQ} = \begin{pmatrix} 5 \\ -8 \end{pmatrix}$$


(i) Find the value of $|\overrightarrow{PQ}|$

$$Answer(a)(i) |\overrightarrow{PQ}| = \dots [2]$$

(ii) Q is the point (2, -3).

Find the co-ordinates of the point P.

(b)

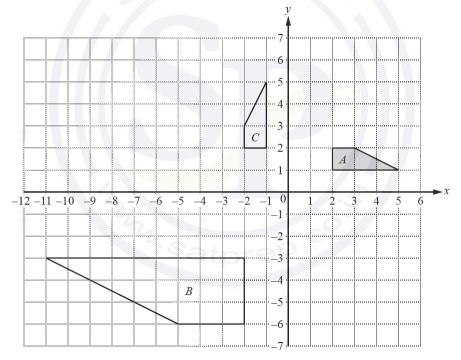
In the diagram, M is the midpoint of AB and L is the midpoint of OM. The lines OM and AN intersect at L and $ON = \frac{1}{3}OB$.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OB} = \mathbf{b}$.

- (i) Find, in terms of a and b, in its simplest form,
 - (a) \overrightarrow{OM} ,

$$Answer(b)(i)(a) \overrightarrow{OM} = \dots [2]$$

(b) \overrightarrow{OL} ,

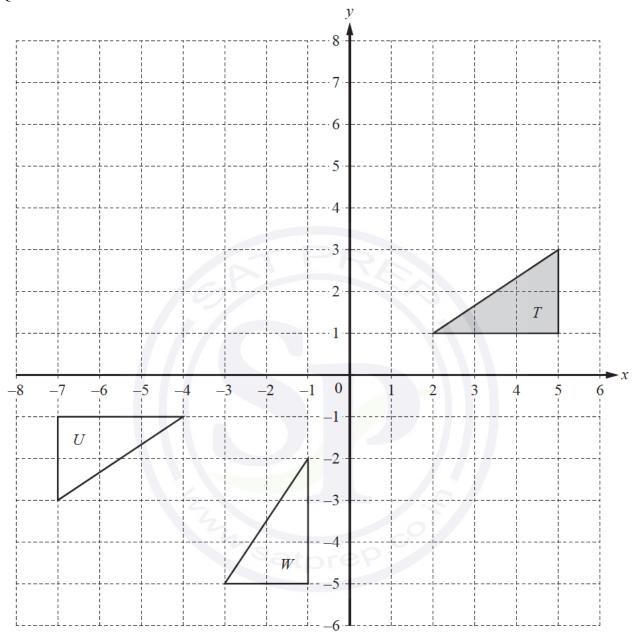

$$Answer(b)(i)(b) \ \overrightarrow{OL} = \dots [1]$$

(c) \overrightarrow{AL} .

$$Answer(b)(i)(c) \overrightarrow{AL} = [2]$$

(ii) Find the ratio AL:AN in its simplest form.

Question 23

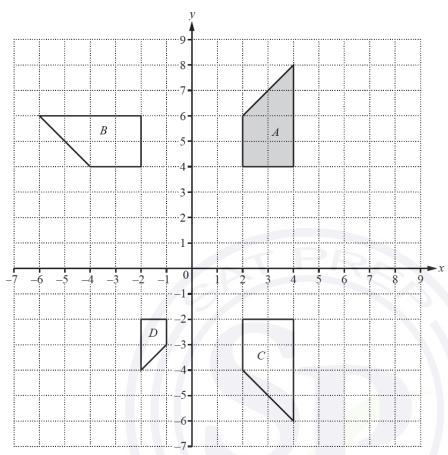


(a) Draw the image of

(i) shape A after a translation by
$$\begin{pmatrix} -1\\3 \end{pmatrix}$$
, [2]

(ii) shape A after a rotation through 180° about the point (0, 0), [2] Continue on the next page...

(b)	Describe fully the single transformation that maps shape A onto shape B .			
	Answer(b)			
Que	estion 26	[3]		
f(x	$f(x) = 2x - 1$ $g(x) = \frac{1}{x}, x \neq 0$ $h(x) = 2^x$			
(a)	Find h(3).			
	Answer(a)	[1]		
(b)	Find $fg(0.5)$.			
	Answer(b)	[2]		
(c)	Find $f^{-1}(x)$.			
	$Answer(c) f^{-1}(x) = \dots$	[2]		
(d)	Find $ff(x)$, giving your answer in its simplest form.	[0]		
(0)	Answer(d)	[2]		
(e)	Find $(f(x))^2 + 6$, giving your answer in its simplest form.			
	Answer(e)	[2]		
(f)	Simplify $hh^{-1}(x)$.	F4.7		
(-)	Answer(f)	[1]		
(g)				
	$f^{-1}(x) = f(x)$			
	$g^{-1}(x) = g(x)$			
	$h^{-1}(x) = h(x)$ $Answer(g)$	[1]		
(h)	Use two of the functions $f(x)$, $g(x)$ and $h(x)$ to find the composite function which is equal to			
` '	Answer(h)			



(a) On the grid, draw the image of

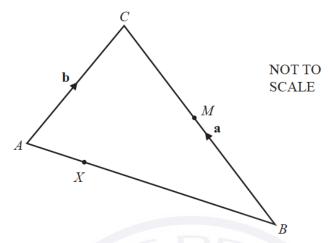
(i) triangle
$$T$$
 after a translation by the vector $\begin{pmatrix} -4\\4 \end{pmatrix}$, [2]

(ii) triangle T after a reflection in the line y = -1. [2]

(b)	Describe fully the single transformation that maps triang	ele T onto triangle U .	
	Answer(b)		
			[3]
De	escribe fully the single transformation that maps trian		-01
Oue	estion 26		2]
-		= 7 - 3x	
(a)	Find		
(i)	f(3),		
	An	swer(a)(i)	[1]
(ii)	gg(3).		
	An	swer(a)(ii)	[2
(b)	Find $f^{-1}(x)$.	ava lex	 1
(-)		$r(b) f^{-1}(x) = \dots$	[2]
(c)	Find $fh(x)$, giving your answer in its simplest form.	Answer(c)	[2]
(d)	Find the integer values of x which satisfy this inequality		[4]
	$1 < f(x) \le 9$		
		Answer(d) [[3]

- (a) Describe fully the single transformation that maps
 - (i) shape A onto shape B,

<i>Answer(a)</i> (i)	
	Га


(ii) shape A onto shape C,

$Answer(a) ({\rm ii})$	
	Γ

(iii) shape A onto shape D.

Answer(a)(iii)

On the grid, draw the image of shape A after a translation by the vector $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$. [2]

 $\overrightarrow{BC} = \mathbf{a}$ and $\overrightarrow{AC} = \mathbf{b}$.

(a) Find \overrightarrow{AB} in terms of a and b.

$$Answer(a) \overrightarrow{AB} = \dots [1]$$

(b) *M* is the midpoint of *BC*. *X* divides *AB* in the ratio 1:4.

Find \overrightarrow{XM} in terms of **a** and **b**.

Show all your working and write your answer in its simplest form.

$$Answer(b) \overrightarrow{XM} = \dots \qquad [4]$$

Question 29

$$f(x) = 2 - 3x$$
 $g(x) = 7x + 3$

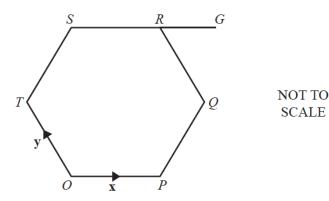
- (a) Find
- (i) f(-3),

.....[1]

(ii) g(2x).

.....[1]

(b) Find gf(x) in its simplest form.


.....[2]

(c) Find x when 3f(x) = 7.

(d) Solve the equation.

$$f(x+4) - g(x) = 0$$

$$x =$$
 [3]

O is the origin and OPQRST is a regular hexagon.

$$\overrightarrow{OP} = \mathbf{x}$$
 and $\overrightarrow{OT} = \mathbf{y}$.

- (a) Write down, in terms of x and/or y, in its simplest form,
 - (i) \overrightarrow{QR} ,

$$\overrightarrow{QR} = \dots$$
 [1]

(ii) \overrightarrow{PQ} ,

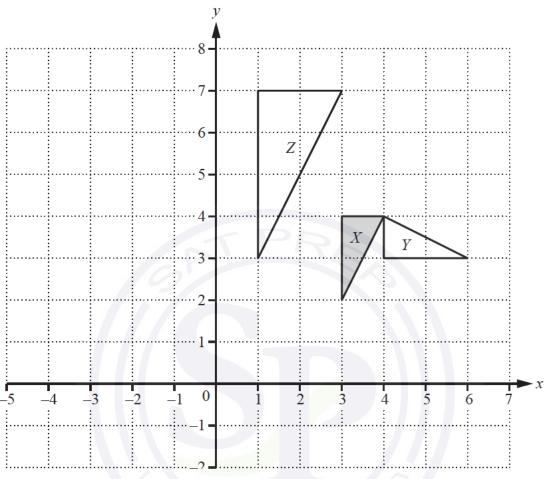
$$\overrightarrow{PO}$$
 –

(iii) the position vector of S.

(b) The line SR is extended to G so that SR : RG = 2 : 1.

Find \overrightarrow{GQ} , in terms of x and y, in its simplest form.

$$\overrightarrow{GQ} = \dots$$
 [2]


- (c) M is the midpoint of OP.
 - (i) Find \overrightarrow{MG} , in terms of x and y, in its simplest form.

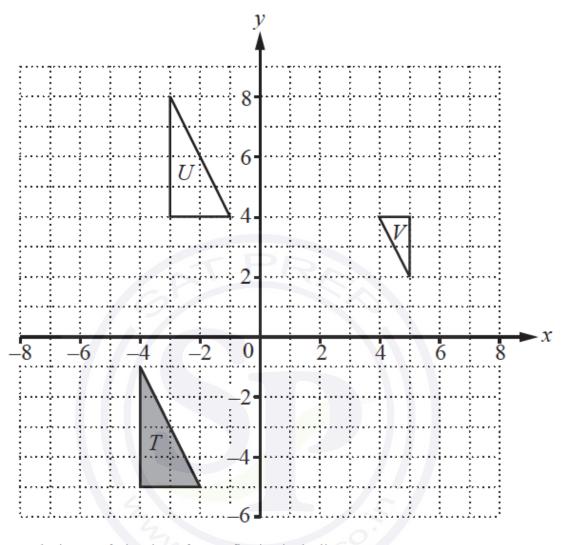
$$\overrightarrow{MG} = \dots [2]$$

(ii) H is a point on TQ such that TH: HQ = 3:1.

Use vectors to show that H lies on MG.

[2]

- (a) Describe fully the single transformation that maps
 - (i) triangle X onto triangle Y,


(ii) triangle X onto triangle Z.

.....[3]

(b) (i) Draw the image of triangle X after a translation by the vector $\begin{pmatrix} -5 \\ 3 \end{pmatrix}$.

Label this triangle P. [2]

(ii) Draw the reflection of triangle P in the line y = 3. [2]

(i)	Draw the image of triangle T after a reflection in the line $x = 0$.	[2]
(ii)	Draw the image of triangle T after a rotation through 90° clockwise about $(-2, -1)$.	[2]
(iii)	Describe fully the single transformation that maps triangle T onto triangle U .	
		[2]
(iv)	Describe fully the single transformation that maps triangle T onto triangle V .	

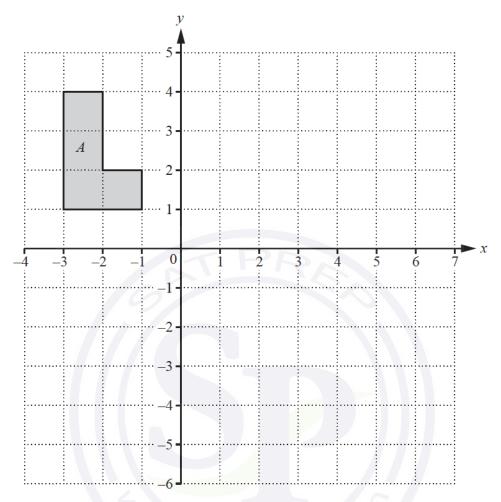
$$f(x) = 5x + 7$$
 $g(x) = \frac{4}{x - 3}, x \neq 3$

- (a) Find
 - (i) fg(1),

(ii) gf(x),

(iii) $g^{-1}(x)$,

$$g^{-1}(x) = \dots [3]$$


(iv) $f^{-1}f(2)$.

[3]

- (ii) Solve $5x^2 8x 25 = 0$. Show all your working and give your answers correct to 2 decimal places.
- **(b)** f(x) = g(x)
 - (i) Show that $5x^2 8x 25 = 0$.

$$x =or x =[4]$$

On the grid, draw the image of

- (i) shape A after a reflection in the line x = 1, [2]
- (ii) shape A after an enlargement with scale factor -2, centre (0, 1), [2]

$$f(x) = 2x + 1$$

$$g(x) = x^2 + 4$$

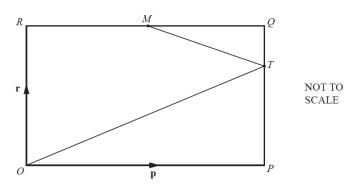
$$h(x) = 2^x$$

(a) Solve the equation f(x) = g(1).

$$x =$$
 [2]

(b) Find the value of fh(3).

(c) Find $f^{-1}(x)$.


$$f^{-1}(x) = \dots [2]$$

(d) Find gf(x) in its simplest form.

(e) Solve the equation $h^{-1}(x) = 0.5$.

 $(\mathbf{f}) \qquad \frac{1}{\mathbf{h}(x)} = 2^{kx}$

Write down the value of k.

- (a) Find, in terms of p and/or r, in its simplest form
 - (i) \overrightarrow{MQ} ,

$$\overrightarrow{MQ} = \dots [1]$$

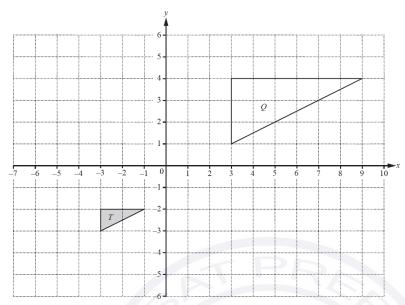
(ii) \overrightarrow{MT} ,

$$\overrightarrow{MT} = \dots [1]$$

(iii) \overrightarrow{OT} .

$$\overrightarrow{OT} = \dots [1]$$

(b) RQ and OT are extended to meet at U.


Find the position vector of U in terms of \mathbf{p} and \mathbf{r} . Give your answer in its simplest form.

.....[2]

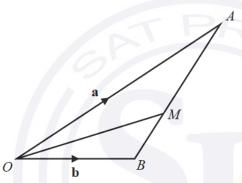
(c) $\overrightarrow{MT} = \begin{pmatrix} 2k \\ -k \end{pmatrix}$ and $|\overrightarrow{MT}| = \sqrt{180}$.

Find the positive value of k.

$$k = \dots [3]$$

- (a) $\mathbf{m} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ $\mathbf{n} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$
 - (i) Work out 2m 3n.
 - (i) Draw the image of triangle T after a translation by the vector $\begin{pmatrix} 5 \\ -2 \end{pmatrix}$. [2]
 - (ii) Draw the image of triangle T after a reflection in the line y = 1. [2]
 - (iii) Describe fully the single transformation that maps triangle T onto triangle Q.

(a)
$$\mathbf{m} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 $\mathbf{n} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$


(i) Work out 2m - 3n.

	[0]
	[2]

(ii) Calculate |2m-3n|.

.....[2]

(b) (i)

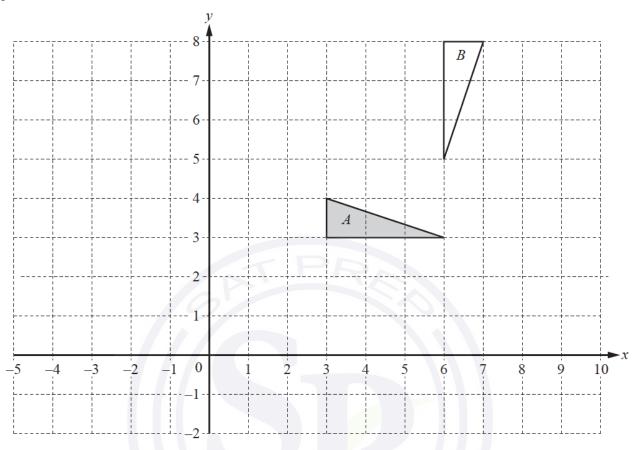
NOT TO SCALE

In the diagram, O is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The point M lies on AB such that AM : MB = 3 : 2.

Find, in terms of a and b, in its simplest form

(a) \overrightarrow{AB} ,

$$\overrightarrow{AB} = \dots [1]$$


(b) \overrightarrow{AM} ,

$$\overrightarrow{AM} = \dots [1]$$

(c) the position vector of M.

(ii) OM is extended to the point C. The position vector of C is $\mathbf{a} + k\mathbf{b}$.

Find the value of k.

- (a) Draw the image when triangle A is reflected in the line x = 1. [2]
- **(b)** Draw the image when triangle A is translated by the vector $\binom{-2}{3}$. [2]
- (c) Draw the image when triangle A is enlarged by scale factor 2 with centre (4, 5). [2]
- (d) Describe fully the **single** transformation that maps triangle A onto triangle B.

[3

- (a) $y = \frac{3}{x} + 2, \quad x \neq 0$
 - (i) Find the value of y when x = -6.

(ii) Find x in terms of y.

(b)
$$g(x) = 2 - x$$
 $h(x) = 2^x$

(i) Find g(5).

.....[1]

- (ii) Find hhh(2).
- (iii) Find x when g(x) = h(3).

$$x = \dots [2]$$

(iv) Find x when $g^{-1}(x) = -1$.

$$x = \dots$$
 [1]

Question 41

$$f(x) = 2x + 1$$

$$g(x) = 3x - 2$$

$$h(x) = 3^x$$

(a) Find hf(2) - fh(1).

-[3]
- **(b)** Find gf(x), giving your answer in its simplest form.
-[2]

(c) Solve the inequality f(x) > g(x).

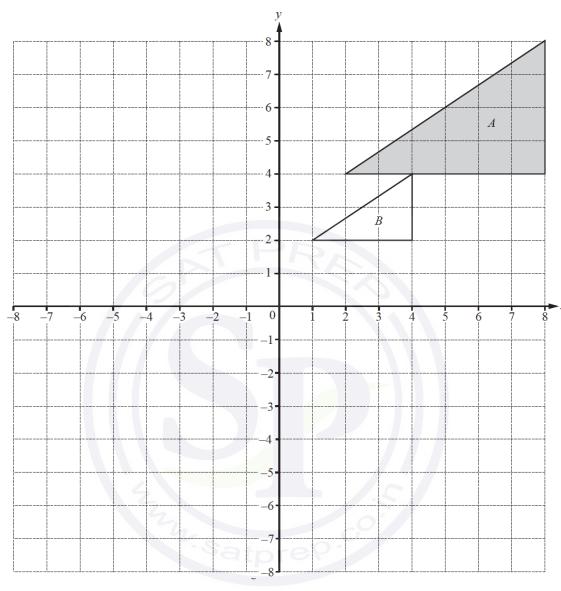
.....[2]

(d) Solve the equation $h(x) = \frac{1}{9}$.

x =[1]

(e) Find $g^{-1}(x)$.

 $g^{-1}(x) = \dots [2]$

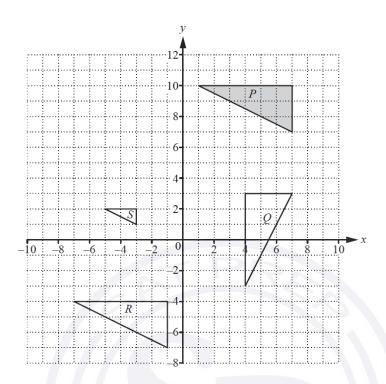

(f) Find $\frac{5}{f(x)} + g(x)$.

Give your answer as a single fraction.

.....[3]

(g) Solve the equation $f^{-1}(x) = 4$.

x =[1]


(a)
$$\mathbf{v} = \begin{pmatrix} -4 \\ -8 \end{pmatrix}$$

- (i) Draw the image of triangle A after the translation by vector \mathbf{v} . [2]
- (ii) Calculate |v|.

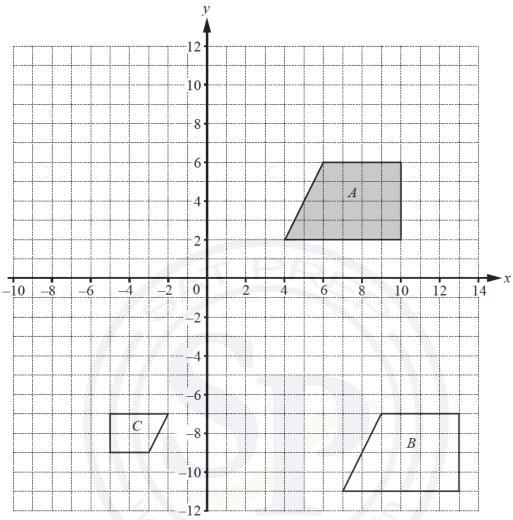
[2]
---	----

(b) (i) Describe fully the **single** transformation that maps triangle A onto triangle B.

[2]
 [3]

- (a) Describe fully the single transformation that maps
 - (i) shape P onto shape Q,

13


(ii) shape P onto shape R,

ГО

(iii) shape P onto shape S.

(b) (i) Draw the reflection of shape S in the line y = x. [2]

(a) Describe fully the single transformation that maps shape A onto

	•	_
(i)	shape	ĸ

.....[2

(ii) shape C.

_____[3]

(b) Draw the image of shape A after rotation through 90° anticlockwise about the point (3, -1). [2]

(c) Draw the image of shape A after reflection in y = 1. [2]

$$f(x) = 3x - 2$$
 $g(x) = x^2$ $h(x) = 3^x$

$$g(x) = x^2$$

$$h(x) = 3^x$$

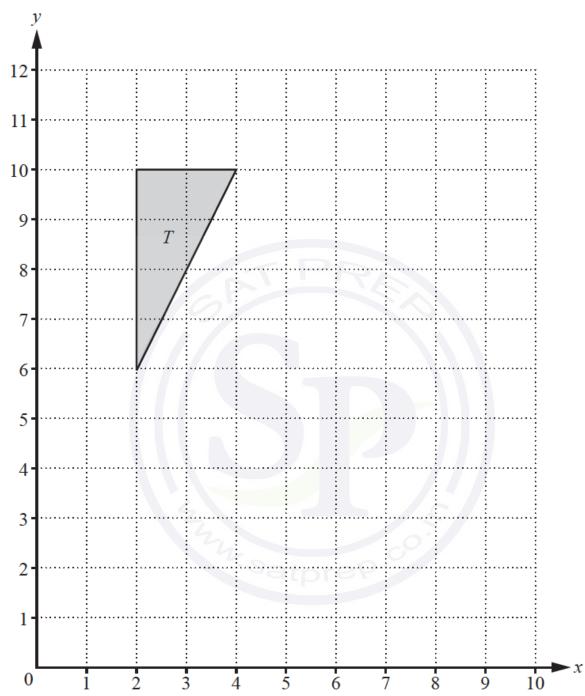
(a) Find f(-3).

r	1	
 L	I	

(b) Find the value of x when f(x) = 19.

$$x = \dots$$
 [2]

(c) Find fh(2).

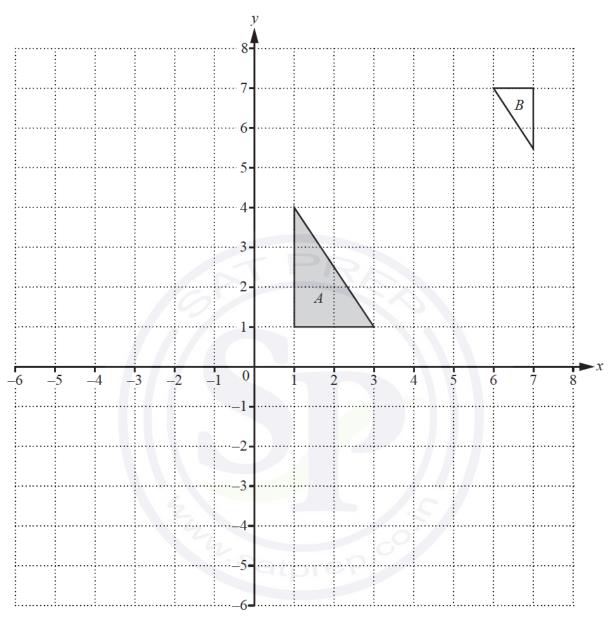

(d) Find gf(x) + f(x) + x. Give your answer in its simplest form.

.....[3]

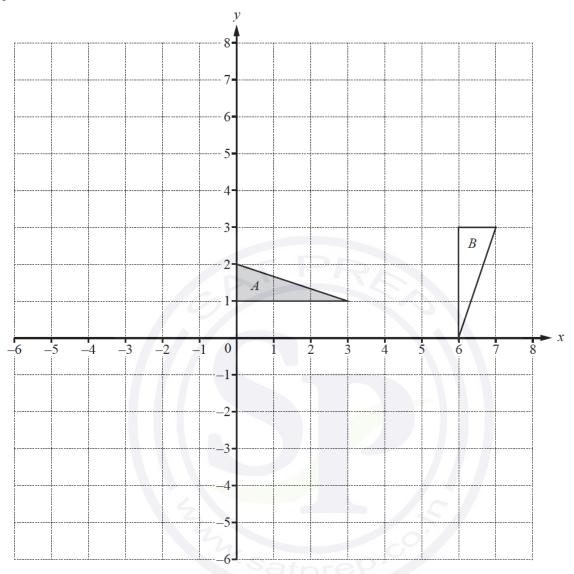
(e) Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots [2]$$

Ouestion 46



On the grid, draw the image of


(i) triangle *T* after translation by the vector
$$\begin{pmatrix} 6 \\ -5 \end{pmatrix}$$
, [2]

(ii) triangle
$$T$$
 after rotation through 90° anticlockwise with centre $(4, 10)$, [2]

(iii) triangle
$$T$$
 after enlargement with scale factor $\frac{1}{2}$, centre $(10, 0)$. [2]

- (a) (i) Draw the image of triangle A after reflection in the line x = 4. [2]
 - (ii) Draw the image of triangle A after rotation of 90° anticlockwise about (0, 0). [2]
 - (iii) Draw the image of triangle A after translation by the vector $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$. [2]
- (b) Describe fully the **single** transformation that maps triangle A onto triangle B.

(a) Draw the image of

- (i) triangle A after a reflection in the line x = 0, [2]
- (ii) triangle A after an enlargement, scale factor 2, centre (0, 4), [2]
- (iii) triangle A after a translation by the vector $\begin{pmatrix} -5 \\ 3 \end{pmatrix}$. [2]

(b)	Describe fully the single transformation that maps triangle A onto triangle B .	

[3

$$f(x) = 1 - 2x$$

$$g(x) = x + 4$$

$$f(x) = 1 - 2x$$
 $g(x) = x + 4$ $h(x) = x^2 + 1$

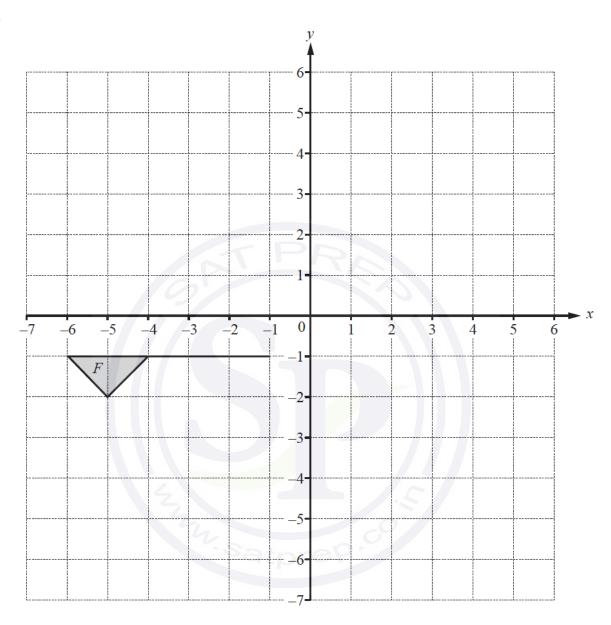
(a) Find f(-1).

(b) Solve the equation.

$$2f(x) = g(x)$$

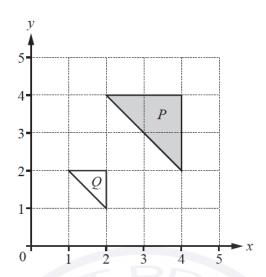
(c) Find fg(x). Give your answer in its simplest form.

(d) Find hh(2).



(e) Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots [2]$$



Continue on the next page...

(b)

(i) Describe fully the single transformation that maps triangle P onto triangle Q.

	[2]
 	 [3]

(c) The point A is translated to the point B by the vector $\begin{pmatrix} 4u \\ 3u \end{pmatrix}$.

$$\left| \overrightarrow{AB} \right| = 12.5$$

Find u.

(a)
$$f(x) = 2x - 3$$
 $g(x) = x^2 + 1$

$$g(x) = x^2 + 1$$

(i) Find gg(2).

(ii) Find g(x+2), giving your answer in its simplest form.

(iii) Find x when f(x) = 7.

$$x = \dots$$
 [2

(iv) Find $f^{-1}(x)$.

- $h(x) = x^x, x > 0$ **(b)**
 - Calculate h(0.3). Give your answer correct to 2 decimal places.

(ii) Find x when h(x) = 256.

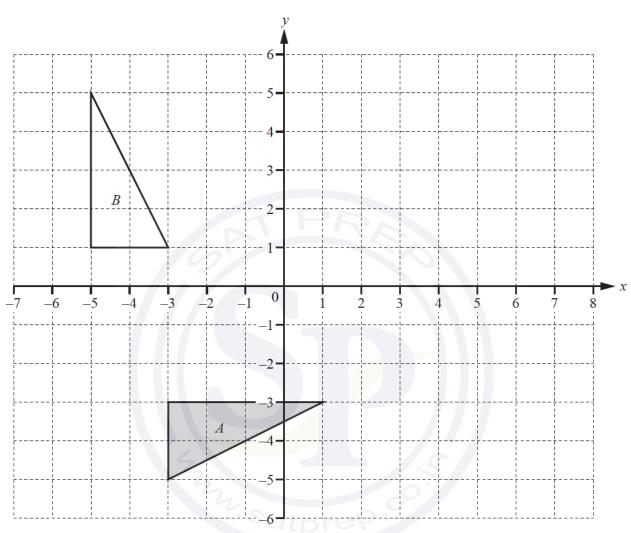
$$x = \dots$$
 [1]

$$f(x) = 8 - 3x$$

$$f(x) = 8 - 3x$$
 $g(x) = \frac{10}{x+1}, x \neq -1$ $h(x) = 2^x$

$$h(x) = 2^x$$

(a) Find


(i)
$$hf\left(\frac{8}{3}\right)$$
,

(ii) gh(-2),

(iii) $g^{-1}(x)$,

(iv) $f^{-1}f(5)$.

(b) Write f(x) + g(x) as a single fraction in its simplest form.

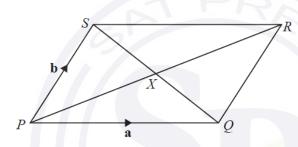
- (a) (i) Draw the image of triangle A after a reflection in the line x = 2. [2]
 - (ii) Draw the image of triangle A after a translation by the vector $\begin{pmatrix} -2\\4 \end{pmatrix}$. [2]
 - (iii) Draw the image of triangle A after an enlargement by scale factor $-\frac{1}{2}$, centre (3, 1). [3]
- (b) Describe fully the **single** transformation that maps triangle A onto triangle B.

$$\overrightarrow{OA} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

$$\overrightarrow{OA} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \qquad \overrightarrow{AB} = \begin{pmatrix} 8 \\ -7 \end{pmatrix} \qquad \overrightarrow{AC} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$$

$$\overrightarrow{AC} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$$

Find

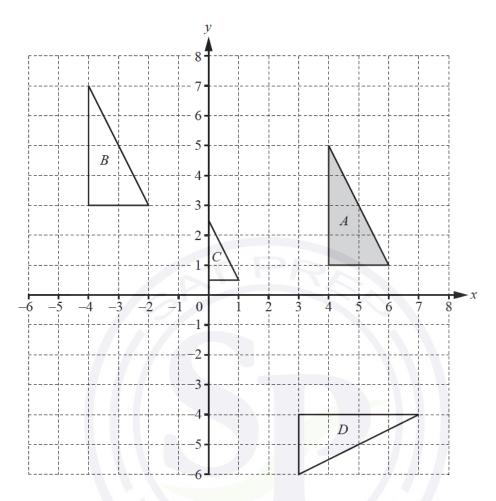

 \overrightarrow{OB} , (i)

 $\left|\overrightarrow{OB}\right| = \dots [3]$

(ii) \overrightarrow{BC} .

$$\overrightarrow{BC} =$$
 (2)

(b)


NOT TO **SCALE**

PQRS is a parallelogram with diagonals PR and SQ intersecting at X. $\overrightarrow{PQ} = \mathbf{a}$ and $\overrightarrow{PS} = \mathbf{b}$.

Find \overrightarrow{QX} in terms of **a** and **b**.

Give your answer in its simplest form.

$$\overrightarrow{OX} = \dots$$
 [2]

- (a) Describe fully the single transformation that maps
 - (i) triangle A onto triangle B,

.....[2]

(ii) triangle A onto triangle C,

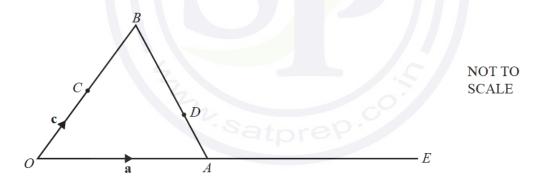
(iii) triangle A onto triangle D.

.....[3]

(a)
$$\mathbf{a} = \begin{pmatrix} -3\\2 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 5\\4 \end{pmatrix}$ $\mathbf{c} = \begin{pmatrix} 14\\9 \end{pmatrix}$

(i) Find 3a - 2b.

(ii) Find | a |.


(iii) $m\mathbf{a} + n\mathbf{b} = \mathbf{c}$

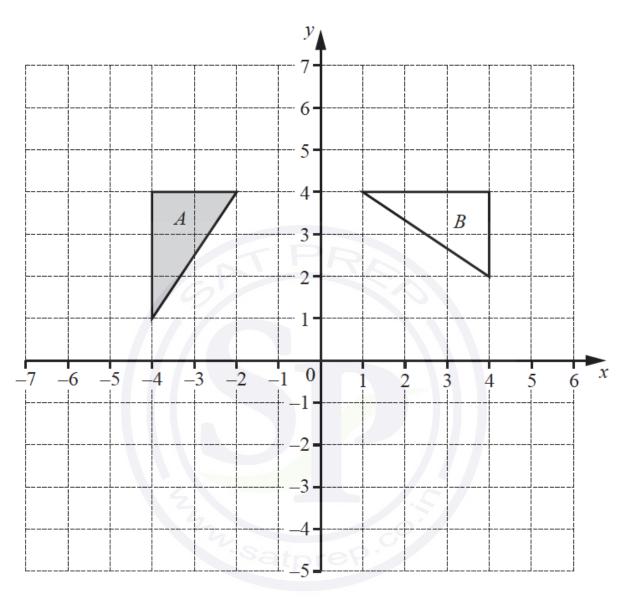
Write down two simultaneous equations and solve them to find the value of m and the value of n. Show all your working.

$$m = \dots$$

$$n = \dots$$
[5]

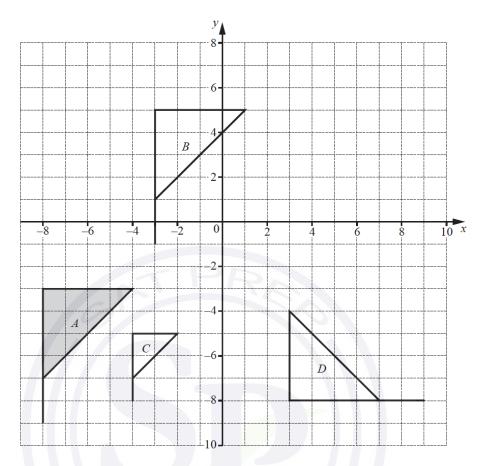
(b)

OAB is a triangle and C is the mid-point of OB.


D is on AB such that AD : DB = 3 : 5.

OAE is a straight line such that OA: AE = 2:3.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$.


Continue on the next page...

(i)	Find	l, in terms of a and c, in its simplest form,	
	(a)	\overrightarrow{AB} ,	
	(b)	\overrightarrow{AD} ,	$\overrightarrow{AB} = \dots [1]$
	(c)	\overrightarrow{CE} ,	$\overrightarrow{AD} = \dots [1]$
	(d)	\overrightarrow{CD} .	$\overrightarrow{CE} = \dots [1]$
(ii)		$\overrightarrow{CE} = k\overrightarrow{CD}$	$\overrightarrow{CD} = \dots [2]$
	Fine	d the value of k .	
			, ,

(a) Describe fully the **single** transformation that maps triangle A onto triangle B.

- (b) On the grid, draw the image of
 - (i) triangle A after a reflection in the x-axis, [1]
 - (ii) triangle A after a translation by the vector $\begin{pmatrix} 7 \\ -5 \end{pmatrix}$, [2]

- (a) Describe fully the single transformation that maps
 - (i) flag A onto flag B,

[2

(ii) flag A onto flag C,

-[3
- (iii) flag A onto flag D.

.....[3

(b) Draw the reflection of flag A in the line y = -1.

[2]

$$f(x) = \frac{3}{x+2}, x \neq -2$$
 $g(x) = 8x-5$ $h(x) = x^2+6$

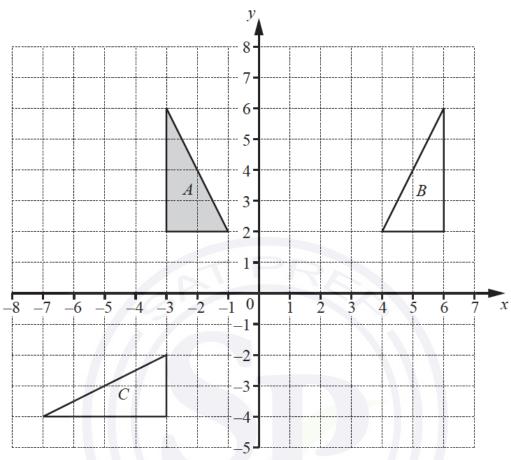
$$g(x) = 8x - 5$$

$$h(x) = x^2 + 6$$

(a) Work out $g\left(\frac{1}{4}\right)$.

(b) Work out ff(2).

(c) Find gg(x), giving your answer in its simplest form.



(d) Find $g^{-1}(x)$.

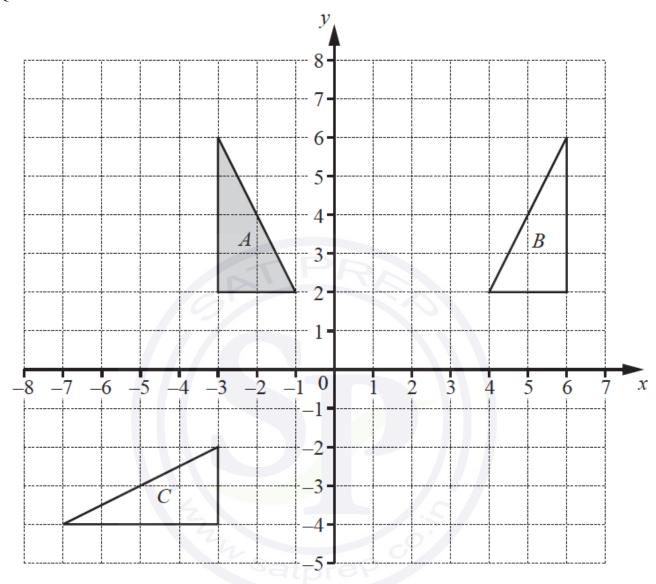
$$g^{-1}(x) =$$
 [2]

(e) Write g(x) - f(x) as a single fraction in its simplest form.

(a) Describe fully the single transformation that maps

(i)	triangle A	onto	triangle	e B.
(1)	urangic 21	OHIO	urangi	· D,

(ii) triangle A onto triangle C.

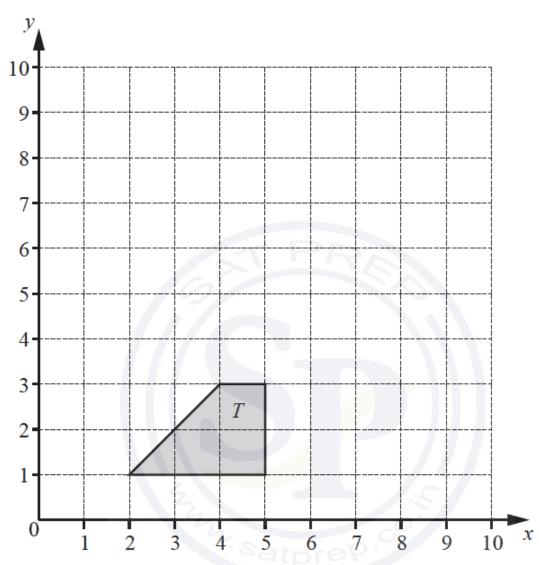

.....

(b) On the grid, draw the image of

(i) triangle A after an enlargement, scale factor
$$-\frac{1}{2}$$
, centre (3, 0), [2]

(ii) triangle A after a translation by the vector
$$\begin{pmatrix} -3\\1 \end{pmatrix}$$
, [2]

58



- (a) Describe fully the single transformation that maps
 - (i) triangle A onto triangle B,

Continue on the next page...

(ii)	triangle A onto triangle C .	
		[3]
(b)	On the grid, draw the image of	
	(i) triangle A after an enlargement, scale factor $-\frac{1}{2}$, centre (3, 0),	[2]
	(ii) triangle A after a translation by the vector $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$,	[2]
Ques	stion 62	
	$f(x) = 7x - 2$ $g(x) = x^2 + 1$ $h(x) = 3^x$	
(a)	Find gh(2).	
		[2]
(b)	Find $f^{-1}(x)$.	
	$f^{-1}(x) = \dots$	[2]
(c)	$gg(x) = ax^4 + bx^2 + c$	
	Find the values of a , b and c .	
(c)	$gg(x) = ax^4 + bx^2 + c$	
	Find the values of a , b and c .	
	<i>a</i> =	
	$b = \dots$. .
	$c = \dots$	[3]
(d)	Find x when $hf(x) = 81$.	

 $x = \dots$ [3]

(a) (i) Translate shape T by the vector $\begin{pmatrix} -1 \\ 6 \end{pmatrix}$.

Label the image A. [2]

- (ii) Rotate shape T about the point (5, 3) through 180° . Label the image B. [2]
- (iii) Describe fully the **single** transformation that maps shape A onto shape B.

.....[3]

(b) (i) Reflect shape T in the line y = x. [2]

$$f(x) = 2x - 3$$

$$f(x) = 2x - 3$$
 $g(x) = 9 - x^2$

$$h(x) = 3^x$$

- (a) Find
 - (i) f(4),

(ii) hg(3),

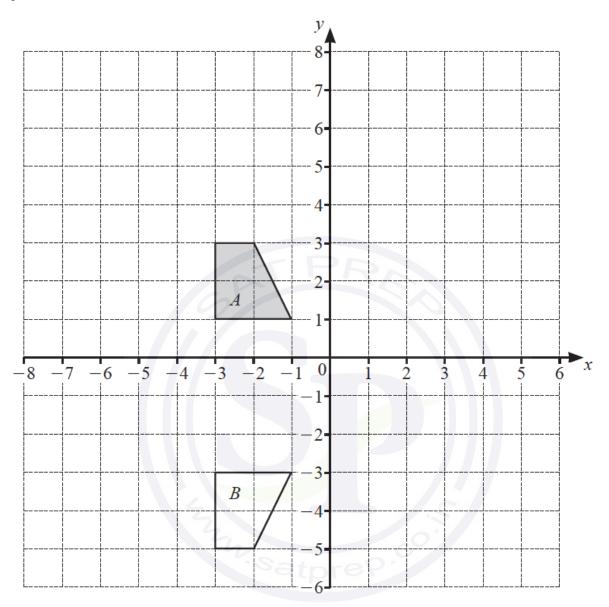
(iii) g(2x) in its simplest form,

(iv) fg(x) in its simplest form.

(b) Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots$$
 [2]

(c) Find x when 5f(x) = 3.

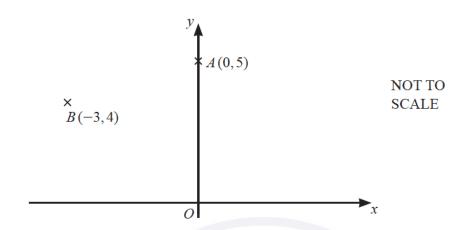

$$x = \dots$$
 [2]

(d) Solve the equation gf(x) = -16.

$$x = \dots$$
 or $x = \dots$ [4]

(e) Find x when $h^{-1}(x) = -2$.

$$x = \dots$$
 [1]



(a) Describe fully the **single** transformation that maps shape A onto shape B.

[2

(b) On the grid, draw the image of

- (i) shape A after a translation by the vector $\begin{pmatrix} -3\\4 \end{pmatrix}$, [2]
- (ii) shape A after a rotation through 180° about (0, 0), [2]
- (iii) shape A after an enlargement, scale factor 2, centre (-7, 0). [2]

(i) Write \overrightarrow{OA} as a column vector.

$$\overrightarrow{OA} = \left(\right)$$
 [1]

(ii) Write \overrightarrow{AB} as a column vector.

$$\overrightarrow{AB} = \left(\right)$$
 [1]

(iii) A and B lie on a circle, centre O.

Calculate the length of the arc AB.

.....[6]

$$f(x) = 7 - 2x$$

$$f(x) = 7 - 2x$$
 $g(x) = \frac{10}{x}, x \neq 0$ $h(x) = 27^x$

$$h(x) = 27^x$$

(a) Find

(i)
$$f(-3)$$
,

(iii)
$$f^{-1}(x)$$

$$f^{-1}(x) = \dots [2]$$

(b) Solve.
$$g(2x+1) = 4$$

$$x =$$
 [3]

(c) Simplify, giving your answer as a single fraction.

$$\frac{1}{f(x)} + g(x)$$

(d) Find $h^{-1}(19683)$.

A line joins A(1, 3) to B(5, 8).

(a)	(i)	Find the midpoint of AB .
		(, ,
	(ii)	Find the equation of the line AB . Give your answer in the form $y = mx + c$.
		$y = \dots $ [3]
(b)	The	line AB is transformed to the line PQ .
	Fine	If the co-ordinates of P and the co-ordinates of Q after AB is transformed by
	(i)	a translation by the vector $\begin{pmatrix} 5 \\ -2 \end{pmatrix}$,
		P (, ,)
		Q (, ,, [2]
	(ii)	a rotation through 90° anticlockwise about the origin,
		P (, ,)
		Q (,) [2]
(iii)) ar	eflection in the line $x = 2$,
		<i>P</i> ()

Continue on them next ...

$$f(x) = 4x - 1$$
 $g(x) = x^2$ $h(x) = 3^{-x}$

- (a) Find in its simplest form
 - (i) f(x-3),
 -[1]
 - **(ii)** g(5x).

(b) Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots [2]$$

(c) Find the value of hh(l), correct to 4 significant figures.

(d) (i) Show that g(3x-2) - h(-3) can be written as $9x^2 - 12x - 23$.

[2]

(ii) Use the quadratic formula to solve $9x^2 - 12x - 23 = 0$. Give your answers correct to 2 decimal places.

$$x =$$
 or $x =$ [4]

(e) Find *x* when f(61) = h(x).

$$x = \dots$$
 [2]

$$f(x) = 7x - 4$$

$$g(x) = \frac{2x}{x-3}, x \neq 3$$

$$h(x) = x^2$$

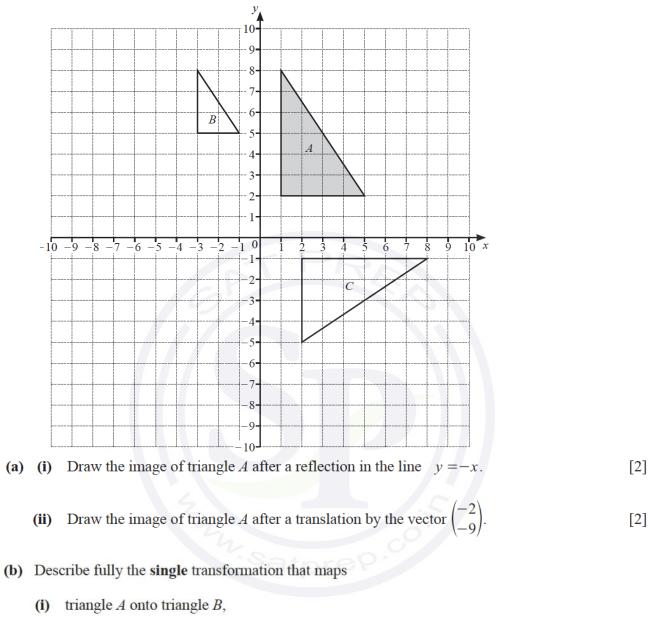
(a) Find g(6).

(b) Find fg(4).

(c) Find fh(x).

(d) Find $\frac{f(x)}{2} + g(x)$.

Give your answer as a single fraction, in terms of x, in its simplest form.


(e) Find the value of x when f(x+2) = -11.

$$x =$$
 [2]

(f) Find the values of p that satisfy h(p) = p.

(ii) triangle A onto triangle C.

$$f(x) = 3x + 2$$
 $g(x) = x^2 + 1$ $h(x) = 4^x$

$$g(x) = x^2 + 1$$

$$h(x) = 4^{3}$$

(a) Find h(4).

.....[1]

(b) Find fg(1).

(c) Find gf(x) in the form $ax^2 + bx + c$.

(d) Find *x* when f(x) = g(7).

(e) Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots [2]$$

(f) Find $\frac{g(x)}{f(x)} + x$.

Give your answer as a single fraction, in terms of x, in its simplest form.

.....[3]

(g) Find x when $h^{-1}(x) = 2$.

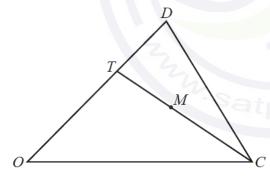
$$x = \dots$$
 [1]

(a)
$$\mathbf{p} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} -2 \\ 7 \end{pmatrix}$$

(i) Find 2p+q.

(ii) Find |p|.

.....[2]


(b) A is the point (4, 1) and $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$. Find the coordinates of B.

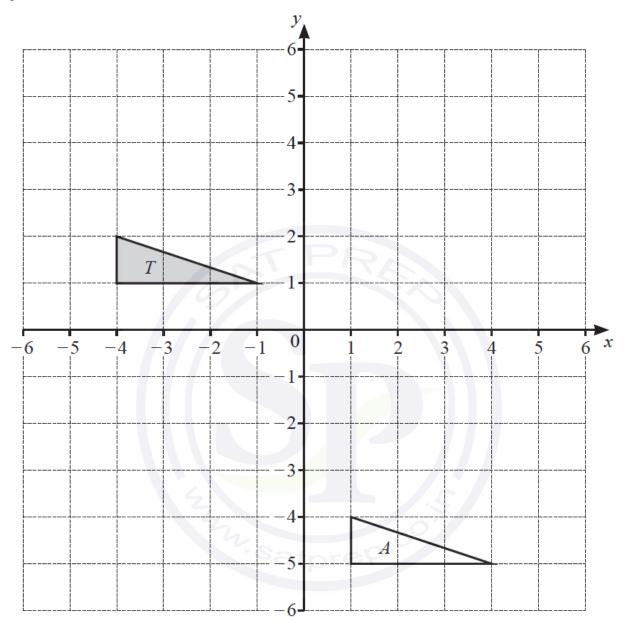
(.....) [1]

(c) The line y = 3x - 2 crosses the y-axis at G. Write down the coordinates of G.

(.....) [1]

(d)

NOT TO SCALE


In the diagram, O is the origin, OT = 2TD and M is the midpoint of TC. $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{OD} = \mathbf{d}$.

Find the position vector of M.

Give your answer in terms of ${\bf c}$ and ${\bf d}$ in its simplest form.

.....[3]

Question 74

- (a) Draw the image of triangle T after a reflection in the line y = -1. [2]
- (b) Draw the image of triangle T after a rotation through 90° clockwise about (0, 0). [2]
- (c) Describe fully the **single** transformation that maps triangle *T* onto triangle *A*.

$$f(x) = 4 - 3x$$

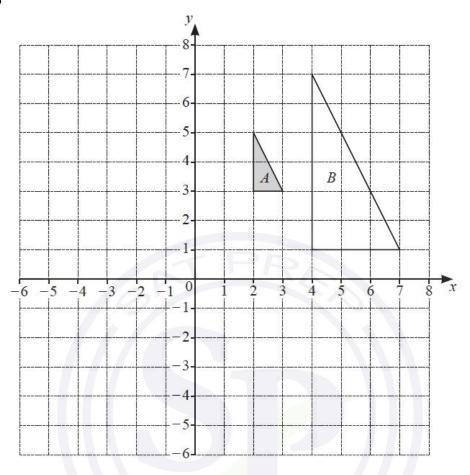
$$f(x) = 4-3x$$
 $g(x) = x^2 + x$ $h(x) = 3^x$

$$h(x) = 3^x$$

(a) Find fh(2).

(b) Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots [2]$$


(c) Simplify.

(i)
$$f(1-2x)$$

(ii)
$$gf(x) - 9g(x)$$

$$(\mathbf{d}) \quad \frac{1}{\mathbf{h}(x)} = 9^{kx}$$

Find the value of k.

- (a) On the grid, draw the image of
 - (i) triangle A after a rotation of 90° anticlockwise about (0, 0), [2]
 - (ii) triangle A after a translation by the vector $\begin{pmatrix} 3 \\ -5 \end{pmatrix}$. [2]
- **(b)** Describe fully the **single** transformation that maps triangle *A* onto triangle *B*.

$$f(x) = x^2 + 1$$

$$g(x) = 1 - 2x$$

$$g(x) = 1 - 2x$$
 $h(x) = \frac{1}{x}, x \neq 0$ $j(x) = 5^x$

$$j(x) = 5^x$$

(a) Find the value of

(i)
$$f(3)$$
,

......[1]

(ii) gf(3).

......[1]

(b) Find $g^{-1}(x)$.

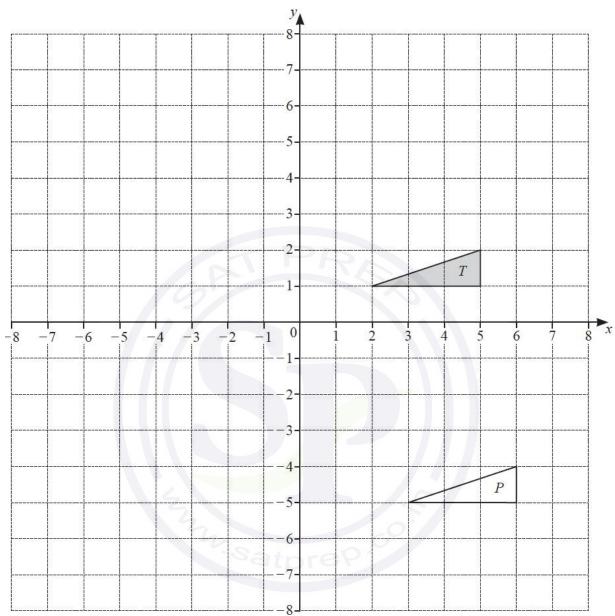
$$g^{-1}(x) =$$
 [2]

(c) Find x when h(x) = 2.

$$x = \dots$$
 [1]

(d) Find g(x)g(x) - gg(x), giving your answer in the form $ax^2 + bx + c$.

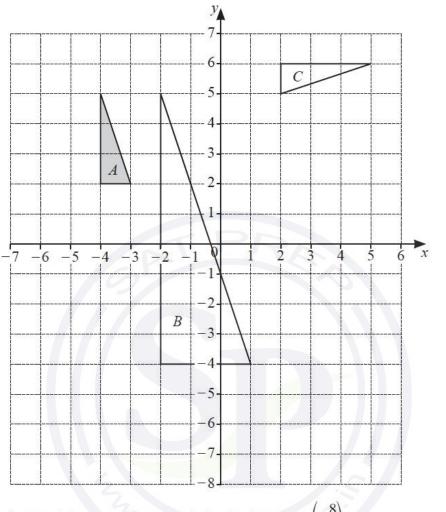
(e) Find hh(x), giving your answer in its simplest form.


(f) Find j(5).

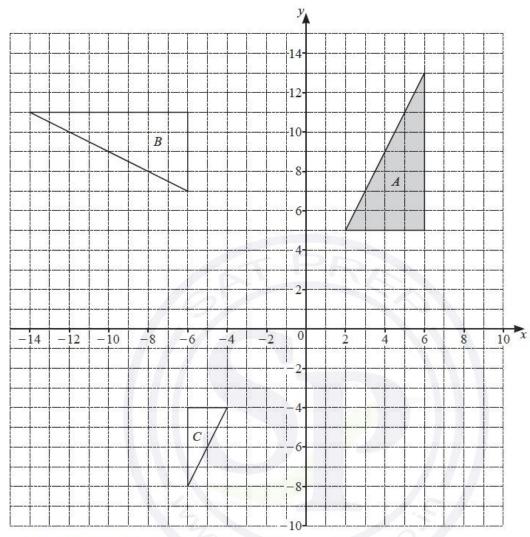
(g) Find x when $j^{-1}(x) = 2$.

(h) j(x) = hg(-12)

Find the value of x.


$$x =$$
 [2]

(a) Describe fully the **single** transformation that maps triangle T onto triangle P.


.....[2

- (b) (i) Reflect triangle T in the line x = 1. [2]
 - (ii) Rotate triangle T through 90° anticlockwise about (6, 0). [2]
 - (iii) Enlarge triangle T by a scale factor of -2, centre (1, 0). [2]

- (a) Draw the image of shape A after a translation by the vector $\begin{pmatrix} 8 \\ -6 \end{pmatrix}$. [2]
- (b) Draw the image of shape A after a reflection in the line y = -1. [2]
- (c) Describe fully the **single** transformation that maps shape A onto shape B.

 [3]
- (d) Describe fully the **single** transformation that maps shape A onto shape C.

- (a) Describe fully the single transformation that maps
 - (i) triangle A onto triangle B,

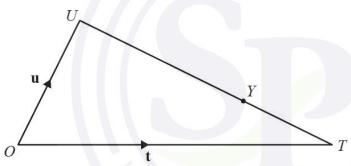
______[3]

(ii) triangle A onto triangle C.

......[3]

- **(b)** Draw the image of triangle A after a translation by the vector $\begin{pmatrix} -5 \\ -10 \end{pmatrix}$. [2]
- (c) Draw the image of triangle A after a reflection in the line y = 4. [2]

		f(x) = 3x - 2	g(x) = 5x - 7	$h(x) = x^2 + x$	$j(x) = 3^x$	
(a) F	ind					
(i)	f(2),				
						[1]
(ii)	g(2),				
						[1]
(iii	i)	gf(2).				
						[1]
(b) F	ind	$f^{-1}(x)$.				
				$f^{-1}(x) =$	=	. [2]
(c) F	ind	hf(x), giving your	answer in the form	$ax^2 + bx + c$.		
						[3]
(d) F	ind	the derivative of h	(x).			
						. [1]
(e) (i)	Find x when $j^{-1}(x)$) = 4.			
)=4. Satr	oreo x	=	[1]
(i	i)	Simplify $j^{-1}j(x)$.				
						[1]


The position vector of P is $\begin{pmatrix} -2\\3 \end{pmatrix}$ and the position vector of Q is $\begin{pmatrix} -2\\5 \end{pmatrix}$.

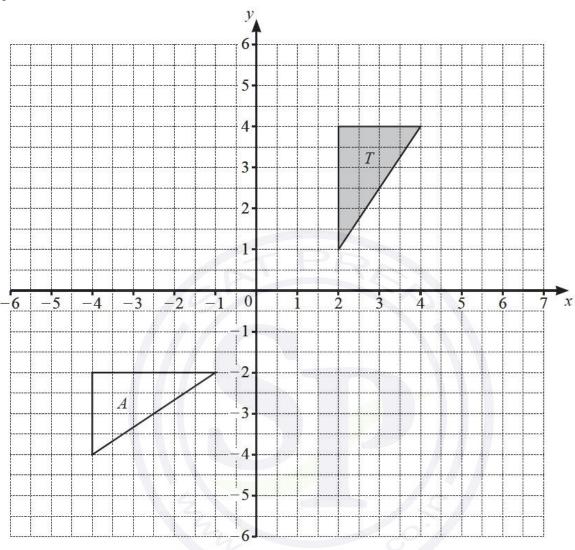
(i) Find the vector \overrightarrow{PQ} .

(ii) R is the point such that $\overrightarrow{PR} = 3\overrightarrow{PQ}$.

Find the position vector of R.

Question 83

NOT TO SCALE


- $\overrightarrow{OT} = \mathbf{t}$, $\overrightarrow{OU} = \mathbf{u}$ and UY = 2YT.
- (i) Find \overrightarrow{OY} in terms of **t** and **u**. Give your answer in its simplest form.

$$\overrightarrow{OY} = \dots$$
 [2]

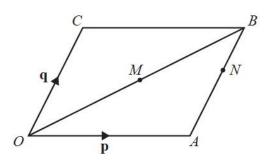
(ii) Z is on OT and YZ is parallel to UO.

Find \overrightarrow{OZ} in terms of **t** and/or **u**. Give your answer in its simplest form.

$$\overrightarrow{OZ} = \dots$$
 [1]

(a) On the grid, draw the image of

- (i) triangle T after a translation by the vector $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$, [2]
- (ii) triangle T after a rotation, 90° clockwise, about the origin, [2]
- (iii) triangle T after an enlargement, scale factor $-\frac{1}{2}$, centre (-2, 3). [2]
- **(b)** Describe fully the **single** transformation that maps triangle T onto triangle A.


- (a) $\mathbf{a} = \begin{pmatrix} -3 \\ 8 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$
 - (i) Find
 - (a) b-a,
 - $\left(\begin{array}{c} \end{array}\right)$ [1]
 - **(b)** 2a + b,
 - (c) |b|.
 - (ii) $\mathbf{a} + k\mathbf{b} = \begin{pmatrix} 13 \\ m \end{pmatrix}$, where k and m are integers.

Find the value of k and the value of m.

$$m = \dots$$
 [3]

Continue on the next page...

(b)

NOT TO SCALE

OABC is a parallelogram and O is the origin.

M is the midpoint of OB.

N is the point on AB such that AN : NB = 3 : 2.

$$\overrightarrow{OA} = \mathbf{p}$$
 and $\overrightarrow{OC} = \mathbf{q}$.

- (i) Find, in terms of p and q, in its simplest form.
 - (a) \overrightarrow{OB}

$$\overrightarrow{OB} = \dots$$
 [1

(b) *CM*

$$\overrightarrow{CM} = \dots$$
 [2]

(c) \overrightarrow{MN}

$$\overrightarrow{MN} = \dots$$
 [2]

(ii) CB and ON are extended to meet at D.

Find the position vector of D in terms of \mathbf{p} and \mathbf{q} . Give your answer in its simplest form.

[3]
 []

$$f(x) = 3 - 2x$$

$$g(x) = x^2 + 5 \qquad h(x) = x^3$$

$$h(x) = x^3$$

(a) Find f(-5).

 [1]

(b) Find ff(x). Give your answer in its simplest form.

(c) Solve g(x) = f(x) + 37.

$$x = \dots$$
 or $x = \dots$ [4]

(d) Find $f^{-1}(x)$.

$$f^{-1}(x) =$$
 [2]

(e) Find hf(x) + g(x). Give your answer in its simplest form.

Question 87

$$f(x) = 2x - 1$$

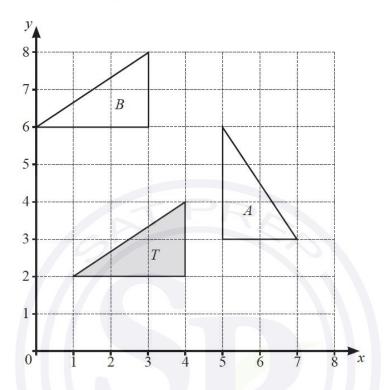
$$g(x) = x^2 + 2x$$

$$h(x) = 4^x$$

$$j(x) = 2^{x}$$

- (a) Find the value of
 - (i) h(3),

(ii) fh(3).


(b) Solve the equation gf(x) = 0.

$$x = \dots$$
 or $x = \dots$ [4]

 $p^{-1}(x) = f(x)$ (c)

Find p(x).

The diagram shows three triangles, T, A, and B, drawn on a 1 cm² grid.

(a) Describe fully the **single** transformation that maps triangle T onto triangle A.

[3]

(b) (i) Describe fully the **single** transformation that maps triangle T onto triangle B.

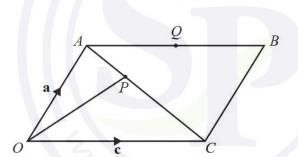
......[2]

(ii) Calculate the distance that each point of triangle T moves when it is mapped onto triangle B.

(a) F is the point (5, -2) and $\overrightarrow{FG} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$.

Find

(i) the coordinates of point G,


(.....) [1]

(ii) $5\overrightarrow{FG}$,

[1]

(iii) $|\overrightarrow{FG}|$.

(b)

NOT TO **SCALE**

OABC is a parallelogram.

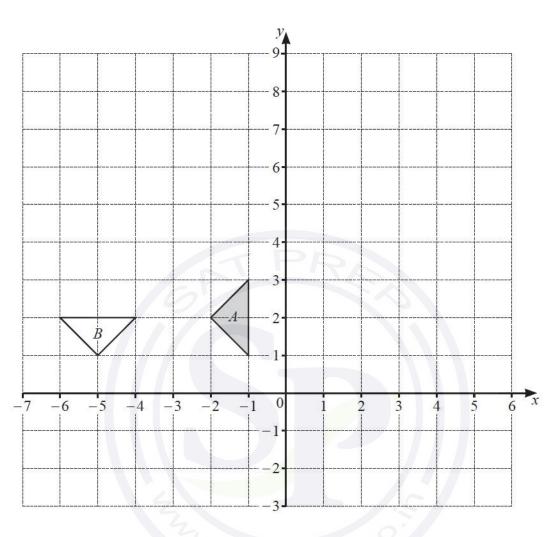
P is a point on AC and Q is the midpoint of AB. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$.

- (i) Find, in terms of a and/or c
 - (a) \overrightarrow{AQ} ,

 $\overrightarrow{AQ} = \dots$ [1]

(b) \overrightarrow{OQ} .

Continue on the next page...


2	
00	F 4 7
(00) =	111
U	 1 -

- (ii) $\overrightarrow{OP} = \frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{c}$
 - (a) Show that O, P and Q lie on a straight line.

[2]

(b) Write down the ratio *OP* : *OQ*. Give your answer in the form 1 : *n*.

(a) On the grid, draw the image of triangle A after

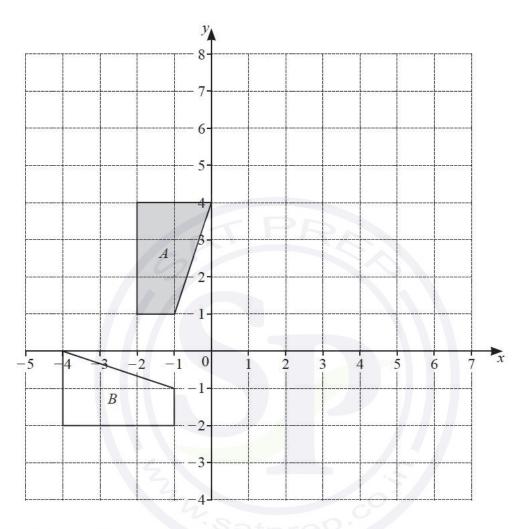
(i) a translation by the vector
$$\begin{pmatrix} -4\\5 \end{pmatrix}$$
, [2]

(ii) a reflection in the line
$$x = 1$$
, [2]

(iii) an enlargement, scale factor 2 and centre
$$(-5, -2)$$
. [2]

(b) Describe fully the single transformation that maps triangle A onto triangle B.

$$f(x) = 3 - 5x$$

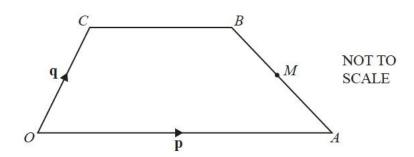

(i) Find x when f(x) = -5.

$$x = \dots$$
 [2]

(ii) Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots$$
 [2]

(a)



- (i) On the grid, draw the image of
 - (a) shape A after an enlargement, scale factor 2, centre (0, 1), [2]
 - (b) shape A after a reflection in the line y = x 1. [3]
- (ii) Describe fully the single transformation that maps shape A onto shape B.

.....[3]

Continue on the next page...

(b)

OABC is a trapezium and O is the origin. M is the midpoint of AB.

$$\overrightarrow{OA} = \mathbf{p}$$
, $\overrightarrow{OC} = \mathbf{q}$ and $OA = 2CB$.

Find, in terms of \mathbf{p} and \mathbf{q} , the position vector of M. Give your answer in its simplest form.

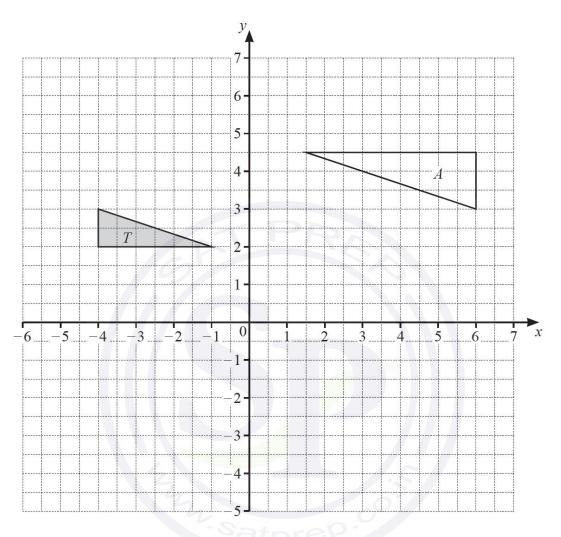
[3		[3]
----	--	-----

$$f(x) = 1 + 4x \qquad \qquad g(x) = x^2$$

$$g(x) = x^2$$

(a) Find

101	((3)
(i)	gf(3)
111	21(3)


.....[2]

(ii) fg(x),

(iii) $f^{-1}f(x)$.

(b) Find the value of x when f(x) = 15.

(a)

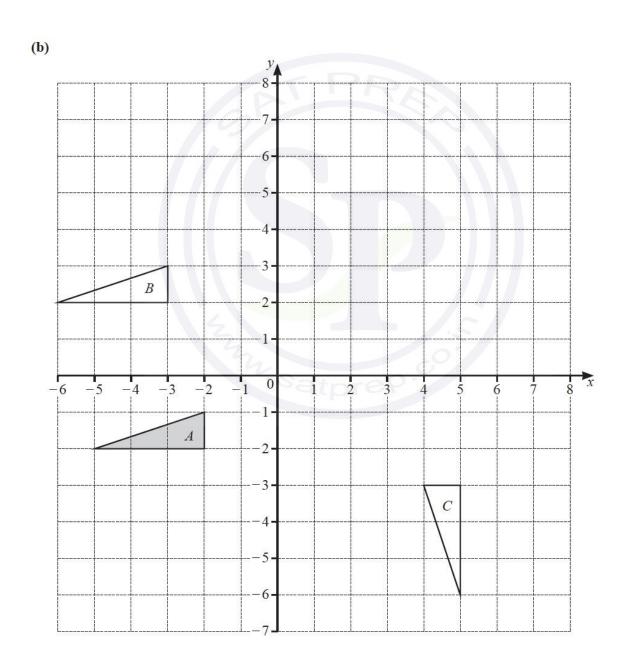
- (i) Draw the image of triangle T after a reflection in the line y = x. [2]
- (ii) Draw the image of triangle T after a translation by the vector $\begin{pmatrix} -1\\3 \end{pmatrix}$. [2]
- (iii) Describe fully the single transformation that maps triangle T onto triangle A.

[3]

Continue on the next page...

The area of quadrilateral P is $20 \mathrm{cm}^2$.	(b)	A quadrilateral P is enlarged by a scale factor of 1.2 to give quadrilateral Q . The area of quadrilateral P is $20 \mathrm{cm}^2$.
---	------------	---

Calculate the area of quadrilateral \mathcal{Q} .


.....cm² [2]

(a) Draw the lines of symmetry of the rectangle.

[2]

(i)	Des	cribe fully the single transformation that maps	
	(a)	triangle A onto triangle B ,	
			[2]
	(b)	triangle A onto triangle C .	
			[3]
(ii)	(a)	Draw the image of triangle A after reflection in $y = 2$.	[2]
	(b)	Draw the image of triangle A after enlargement by scale factor -2 , centre $(-1, 1)$.	[2]

$$f(x) = 2x - 1$$

$$g(x) = 3x - 2$$

$$f(x) = 2x - 1$$
 $g(x) = 3x - 2$ $h(x) = \frac{1}{x}, x \neq 0$ $j(x) = 5^x$

$$j(x) = 5^x$$

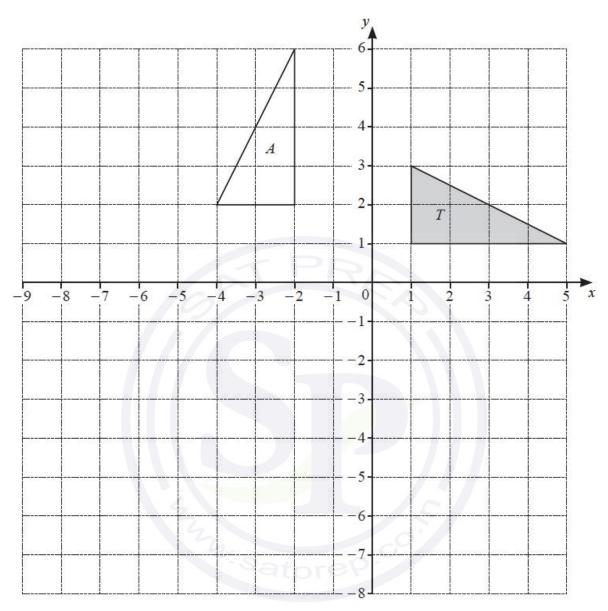
(a) Find

(i)
$$f(2)$$
,

..... [1]

(ii) gf(2).

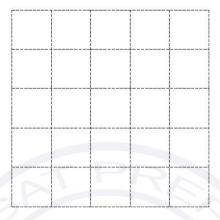
(b) Find $g^{-1}(x)$.

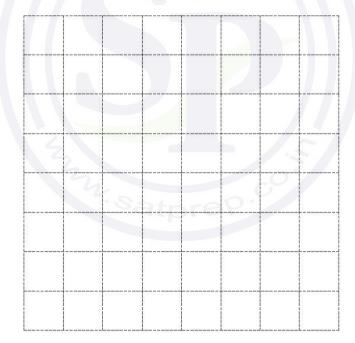

(c) Find x when h(x) = j(-2).

(d) Write f(x) - h(x) as a single fraction.

(e) Find the value of jj(2).

(f) Find x when $j^{-1}(x) = 4$.

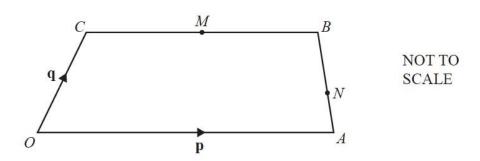

x = [2]


- (a) Draw the reflection of triangle T in the line y = -2. [2]
- **(b)** Draw the enlargement of triangle T with scale factor $\frac{1}{2}$ and centre of enlargement (-5, -3). [2]
- (c) Describe fully the single transformation that maps triangle T onto triangle A.

(a)
$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$

(i) On the grid, draw and label vector 2a.

(ii) On the grid, draw and label vector $(\mathbf{a} - \mathbf{b})$.



[2]

[1]

Continue on the next page..

(b)

OABC is a trapezium with OA parallel to CB.

M is the midpoint of CB and N is the point on AB such that AN: NB = 1:2.

O is the origin, $\overrightarrow{OA} = \mathbf{p}$, $\overrightarrow{OC} = \mathbf{q}$ and $\overrightarrow{CB} = \frac{3}{4}\mathbf{p}$.

- (i) Find, in terms of p and/or q, in its simplest form
 - (a) \overrightarrow{OB}

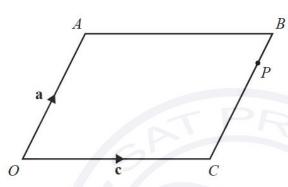
$$\overrightarrow{OB} = \dots$$
 [1]

(b) \overrightarrow{AB}

$$\overrightarrow{AB} = \dots$$
 [2]

(c) \overrightarrow{MN} .

$$\overrightarrow{MN} = \dots$$
 [3]


(ii) OA and MN are extended to meet at G.

Find the position vector of G in terms of \mathbf{p} .

.....[2]

Find the two possible values of m.

(b)

NOT TO SCALE

OABC is a parallelogram.

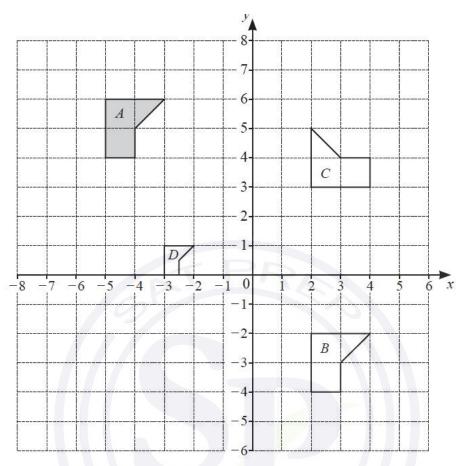
$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$.

P is the point on CB such that CP : PB = 3 : 1.

- (i) Find, in terms of a and/or c, in their simplest form,
 - (a) \overrightarrow{AC} ,

$$\overrightarrow{AC} = \dots$$
 [1]

(b) \overrightarrow{CP} ,


$$\overrightarrow{CP} = \dots$$
 [1]

(c) \overrightarrow{OP} .

$$\overrightarrow{OP} = \dots$$
 [1]

(ii) OP and AB are extended to meet at Q.

Find the position vector of Q.

(a) Describe fully the single transformation that maps

(i)	shape A	onto	shape B ,
-----	-----------	------	-------------

Satore9 [2]

(ii) shape A onto shape C,

[3]

(iii) shape A onto shape D.

(b) On the grid, draw the image of shape A after a reflection in the line y = x + 8. [2]

$$f(x) = 10 - x$$

$$f(x) = 10 - x$$
 $g(x) = \frac{2}{x}, x \neq 0$

$$h(x) = 2^x$$

$$h(x) = 2^x j(x) = 5 - 2x$$

(a) (i) Find $g(\frac{1}{2})$.

.....[1]

(ii) Find $hg(\frac{1}{2})$.

......[1]

(b) Find x when f(x) = 7.

[1]

(c) Find x when g(x) = h(3).

(d) Find $j^{-1}(x)$.

(e) Write f(x) + g(x) + 1 as a single fraction in its simplest form.

 $(f(x))^2 - ff(x) = ax^2 + bx + c$ **(f)**

Find the values of a, b and c.

.....

 $b = \dots$

 $c = \dots [4]$

(g) Find x when $h^{-1}(x) = 10$.

 $x = \dots$ [2]

(a)
$$\mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 $\mathbf{q} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

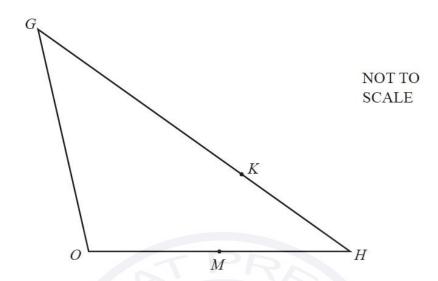
Find

(i) 3q,

(ii) $\mathbf{p} - \mathbf{q}$,

 $\left(\begin{array}{cc} & \end{array}\right) \quad [1]$

(iii) |p|.


.....[2]

(b) B is the point (2, 7) and $\overrightarrow{AB} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}$. Find the coordinates of A.

(.....) [2]

Continue on the next page....

(c)

In triangle OGH, M is the midpoint of OH and K divides GH in the ratio 5:2. $\overrightarrow{OG} = \mathbf{g}$ and $\overrightarrow{OH} = \mathbf{h}$.

Find \overrightarrow{MK} in terms of **g** and **h**. Give your answer in its simplest form.

$$\overrightarrow{MK} = \dots [4]$$

Question 103

$$f(x) = 2x - 1$$

$$g(x) = 3x + 2$$

$$h(x) = \frac{1}{x}, x \neq 0$$

$$j(x) = x^2$$

(a) Find j(-1).

(b) Find *x* when f(x) + g(x) = 0.

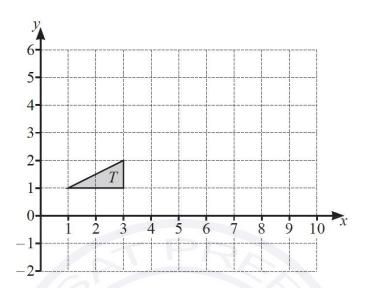
$$x = \dots$$
 [2]

(c) Find gg(x), giving your answer in its simplest form.

(d) Find hf(x) + gh(x), giving your answer as a single fraction in its simplest form.

Continue on the next page...

(e) When pp(x) = x, p(x) is a function such that $p^{-1}(x) = p(x)$.


Draw a ring around the function that has this property.

$$f(x) = 2x - 1$$
 $g(x) = 3x + 2$ $h(x) = \frac{1}{x}, x \neq 0$ $j(x) = x^2$

[1]

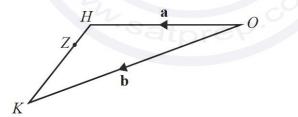
(a)

(i) Enlarge triangle T by scale factor 3, centre (0, 2).

[2]

(ii) (a) Rotate triangle T about (4, 2) by 90° clockwise. Label the image P.

[2]


(b) Reflect triangle T in the line x+y=6. Label the image Q.

[3]

(c) Describe fully the single transformation that maps triangle P onto triangle Q.

[2]

(b)

NOT TO SCALE

The diagram shows triangle OHK, where O is the origin. The position vector of H is \mathbf{a} and the position vector of K is \mathbf{b} . Z is the point on HK such that HZ: ZK = 2: 5.

Find the position vector of Z, in terms of \mathbf{a} and \mathbf{b} . Give your answer in its simplest form.

.....[3]

$$f(x) = x-4$$
 $g(x) = 2x+5$ $h(x) = 3^x$

$$h(x) = 3^x$$

(a) Find

(i)
$$f(-3)$$

(ii)
$$g^{-1}(x)$$

$$g^{-1}(x) = \dots [2$$

(iii)
$$f(x) \times g(x) \times f(x)$$
.

(b) Find *x* when h(x) = g(f(2)).

$$x = \dots [2]$$