A-level Topic : Binomial Theorem May 2013-May 2023 Questions

Question 1

Expand $\frac{1+3x}{\sqrt{(1+2x)}}$ in ascending powers of x up to and including the term in x^2 , simplifying the coefficients. [4]

Question 2

Expand $(1 + 3x)^{-\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [4]

Question 3

Show that, for small values of x^2 ,

$$(1-2x^2)^{-2} - (1+6x^2)^{\frac{2}{3}} \approx kx^4,$$

where the value of the constant k is to be determined.

Question 4

Given that $\sqrt[3]{(1+9x)} \approx 1 + 3x + ax^2 + bx^3$ for small values of x, find the values of the coefficients a and b. [3]

Question 5

Expand $\frac{1}{\sqrt{1-2x}}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [4]

Question 6

Expand $(2 - x)(1 + 2x)^{-\frac{3}{2}}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients. [4]

Question 7

Expand $\frac{1}{\sqrt[3]{(1+6x)}}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [4]

Question 8

Expand $(3 + 2x)^{-3}$ in ascending powers of x up to and including the term in x^2 , simplifying the coefficients. [4]

[6]

Question 9

Expand $\sqrt[4]{(1-4x)}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [4]

Question 10

Expand $\frac{4}{\sqrt{(4-3x)}}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients. [4]

Question 11

Find the coefficient of x^3 in the expansion of $(3 - x)(1 + 3x)^{\frac{1}{3}}$ in ascending powers of x. [4]

Question 12

- (a) Expand $(2-3x)^{-2}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients. [4]
- (b) State the set of values of x for which the expansion is valid. [1]

Question 13

- (a) Expand $\sqrt[3]{1+6x}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [4]
- (b) State the set of values of x for which the expansion is valid. [1]

Question 14

Expand $(1 + 3x)^{\frac{2}{3}}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [4]

Question 15

When $(a + bx)\sqrt{1 + 4x}$, where *a* and *b* are constants, is expanded in ascending powers of *x*, the coefficients of *x* and x^2 are 3 and -6 respectively.

Find the values of *a* and *b*.

Question 16

- (a) Expand $(2 x^2)^{-2}$ in ascending powers of x, up to and including the term in x^4 , simplifying the coefficients. [4]
- (b) State the set of values of x for which the expansion is valid. [1]

[6]

Question 17

Expand $\sqrt{\frac{1+2x}{1-2x}}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients. [5]

Question 18

Let
$$f(x) = \frac{2x^2 + 7x + 8}{(1+x)(2+x)^2}$$
.

(a) Express f(x) in partial fractions.

[5]

(b) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 . [5]

Question 19

Let
$$f(x) = \frac{21 - 8x - 2x^2}{(1 + 2x)(3 - x)^2}$$

(a) Express f(x) in partial fractions.

[5]

(b) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 . [5]

Question 20

Find the coefficient of x^3 in the binomial expansion of $(3 + x)\sqrt{1 + 4x}$. [4]