A-level

Topic: Binomial Theorem
 May 2013-May 2023
 Questions

Question 1

Expand $\frac{1+3 x}{\sqrt{ }(1+2 x)}$ in ascending powers of x up to and including the term in x^{2}, simplifying the coefficients.

Question 2

Expand $(1+3 x)^{-\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^{3}, simplifying the coefficients.

Question 3

Show that, for small values of x^{2},

$$
\left(1-2 x^{2}\right)^{-2}-\left(1+6 x^{2}\right)^{\frac{2}{3}} \approx k x^{4},
$$

where the value of the constant k is to be determined.

Question 4

Given that $\sqrt[3]{(1+9 x)} \approx 1+3 x+a x^{2}+b x^{3}$ for small values of x, find the values of the coefficients a and b.

Question 5
Expand $\frac{1}{\sqrt{ }(1-2 x)}$ in ascending powers of x, up to and including the term in x^{3}, simplifying the coefficients.

Question 6

Expand $(2-x)(1+2 x)^{-\frac{3}{2}}$ in ascending powers of x, up to and including the term in x^{2}, simplifying the coefficients.

Question 7

Expand $\frac{1}{\sqrt[3]{(}(1+6 x)}$ in ascending powers of x, up to and including the term in x^{3}, simplifying the coefficients.

Question 8

Expand $(3+2 x)^{-3}$ in ascending powers of x up to and including the term in x^{2}, simplifying the coefficients.

Question 9

Expand $\sqrt[4]{ }(1-4 x)$ in ascending powers of x, up to and including the term in x^{3}, simplifying the coefficients.

Question 10

Expand $\frac{4}{\sqrt{ }(4-3 x)}$ in ascending powers of x, up to and including the term in x^{2}, simplifying the coefficients.

Question 11
Find the coefficient of x^{3} in the expansion of $(3-x)(1+3 x)^{\frac{1}{3}}$ in ascending powers of x.

Question 12

(a) Expand $(2-3 x)^{-2}$ in ascending powers of x, up to and including the term in x^{2}, simplifying the coefficients.
(b) State the set of values of x for which the expansion is valid.

Question 13
(a) Expand $\sqrt[3]{1+6 x}$ in ascending powers of x, up to and including the term in x^{3}, simplifying the coefficients.
(b) State the set of values of x for which the expansion is valid.

Question 14

Expand $(1+3 x)^{\frac{2}{3}}$ in ascending powers of x, up to and including the term in x^{3}, simplifying the coefficients.

Question 15

When $(a+b x) \sqrt{1+4 x}$, where a and b are constants, is expanded in ascending powers of x, the coefficients of x and x^{2} are 3 and -6 respectively.

Find the values of a and b.
Question 16
(a) Expand $\left(2-x^{2}\right)^{-2}$ in ascending powers of x, up to and including the term in x^{4}, simplifying the coefficients.
(b) State the set of values of x for which the expansion is valid.

Question 17

Expand $\sqrt{\frac{1+2 x}{1-2 x}}$ in ascending powers of x, up to and including the term in x^{2}, simplifying the coefficients.

Question 18
Let $\mathrm{f}(x)=\frac{2 x^{2}+7 x+8}{(1+x)(2+x)^{2}}$.
(a) Express $\mathrm{f}(x)$ in partial fractions.
(b) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 19

Let $\mathrm{f}(x)=\frac{21-8 x-2 x^{2}}{(1+2 x)(3-x)^{2}}$.
(a) Express $\mathrm{f}(x)$ in partial fractions.
(b) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 20
Find the coefficient of x^{3} in the binomial expansion of $(3+x) \sqrt{1+4 x}$.

