A-level

Topic: Differential Calculus

May 2013-May 2023

Answer

	t quotient rule or equ		M1	
Obtain (1+	$\frac{(1+e^{2x})2x - (1+x^2)2e^{2x}}{(1+e^{2x})^2}$	or equivalent	A1	
Substitute.	$x = 0$ and obtain $-\frac{1}{2}$	or equivalent	A1	[3]
(ii) Differentia	ate y^3 and obtain $3y$	$\int_{0.2}^{2} \frac{dy}{dx}$	B1	
Differentia	ate 5xy and obtain 5	$y + 5x \frac{dy}{dx}$	B1	
	$^2 + 5y + 5x \frac{\mathrm{d}y}{\mathrm{d}x} + 3y$		В1	
Question 2				
State $2ay \frac{dy}{dx}$ as	s derivative of ay^2		B 1	
State $y^2 + 2xy$	$\frac{dy}{dx}$ as derivative o	fxy^2	B 1	
Equate derivat	ive of LHS to zero	and set $\frac{dy}{dx}$ equal to zero	M1	
Obtain $3x^2 + y$	$y^2 - 6ax = 0$, or ho	orizontal equivalent	A1	
Eliminate y and	d obtain an equatio	on in x	M1	
Solve for <i>x</i> and	d obtain answer $x =$	$=\sqrt{3}a$	A1	
Question 3				

(i)	Use correct quotient or chain rule to differentiate sec <i>x</i> Obtain given derivative, sec <i>x</i> tan <i>x</i> , correctly Use chain rule to differentiate <i>y</i>	M1 A1 M1	
	Obtain the given answer	A1	[4]
(ii)	Using $dx\sqrt{3}\sec^2\theta d\theta$, or equivalent, express integral in terms of θ and $d\theta$ Obtain $\int \sec\theta d\theta$	M1 A1	
	Use limits $\frac{1}{6}\pi$ and $\frac{1}{3}\pi$ correctly in an integral form of the form $k \ln(\sec\theta + \tan\theta)$) M1	
	Obtain a correct exact final answer in the given form, e.g. $\ln\left(\frac{2+\sqrt{3}}{\sqrt{3}}\right)$	A1	[4]
Questic	on 4		
	rrect product or quotient rule at least once	M1*	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{e}^{-t}\sin t - \mathrm{e}^{-t}\cos t \text{ or } \frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{e}^{-t}\cos t - \mathrm{e}^{-t}\sin t \text{, or equivalent}$	A1	
Use $\frac{dy}{dx}$	$\frac{dy}{dt} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin t - \cos t}{\sin t + \cos t}, \text{ or equivalent}$	A1	
EITHE	R: Express $\frac{dy}{dx}$ in terms of tan t only	M1(dep*)	
	Show expression is identical to $\tan\left(t - \frac{1}{4}\pi\right)$	A1	
OR:	Express $\tan\left(t - \frac{1}{4}\pi\right)$ in terms of $\tan t$	M1	
	Show expression is identical to $\frac{dy}{dx}$	A1	[6]
Questic	on 5 Satoreo		
Differe	entiate y^3 to obtain $3y^2 \frac{dy}{dx}$	B1	
Use co	rrect product rule at least once	*M1	
Obtain	$6e^{2x}y + 3e^{2x}\frac{dy}{dx} + e^{x}y^{3} + 3e^{x}y^{2}\frac{dy}{dx}$ as derivative of LHS	A1	
Equate	derivative of LHS to zero, substitute $x = 0$ and $y = 2$ and find value of $\frac{dy}{dx}$	M1(d	*M)
Obtain	$-\frac{4}{3}$ or equivalent as final answer	A1	[5]

Obtain
$$\frac{2}{2t+3}$$
 for derivative of x

M1

Use quotient of product rule, or equivalent, for derivative of y

A1

B1

Obtain
$$\frac{5}{(2t+3)^2}$$
 or unsimplified equivalent

B1

Obtain
$$t = -1$$

Use
$$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$$
 in algebraic or numerical form

M1

Obtain gradient
$$\frac{5}{2}$$

A₁ [6]

Question 7

(i) State
$$\frac{dx}{dt} = 1 - \sec^2 t$$
, or equivalent

B1

Use chain rule

M1

Obtain
$$\frac{dy}{dt} = -\frac{\sin t}{\cos t}$$
, or equivalent

A1

Use
$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$

M1

Obtain the given answer correctly.

A1

5

(ii) State or imply
$$t = \tan^{-1}(\frac{1}{2})$$

Obtain answer x = -0.0364

B1 2

Question 8

Use product rule

M1

Obtain derivative in any correct form

A1

Differentiate first derivative using the product rule

M1A1

Obtain second derivative in any correct form, e.g. $-\frac{1}{2}\sin\frac{1}{2}x - \frac{1}{4}x\cos\frac{1}{2}x - \frac{1}{2}\sin\frac{1}{2}x$ Verify the given statement

A1

5

5

(ii) Integrate and reach $kx \sin \frac{1}{2}x + l \int \sin \frac{1}{2}x \, dx$

M1*

Obtain $2x \sin \frac{1}{2}x - 2 \int \sin \frac{1}{2}x \, dx$, or equivalent

A1 **A**1

Obtain indefinite integral $2x \sin \frac{1}{2}x + 4 \cos \frac{1}{2}x$

Use correct limits x = 0, $x = \pi$ correctly

M1(dep*)

Obtain answer $2\pi - 4$, or exact equivalent

A1

Obtain correct derivative of RHS in any form	B1	
Obtain correct derivative of LHS in any form	B1	
Set $\frac{dy}{dx}$ equal to zero and obtain a horizontal equation	M1	
Obtain a correct equation, e.g. $x^2 + y^2 = 1$, from correct work	A1	
By substitution in the curve equation, or otherwise, obtain an equation in x^2 or y^2	M1	
Obtain $x = \frac{1}{2}\sqrt{3}$	A1	
Obtain $y = \frac{1}{2}$	A1	7

	Obtain integrand e^{2u}	A1	
	Obtain indefinite integral $\frac{1}{2}e^{2u}$	A1	
	Use limits $u = 0$, $u = 1$ correctly, or equivalent	M1	
	Obtain answer $\frac{1}{2}(e^2-1)$, or exact equivalent	A1	5
(ii)	Use chain rule or product rule	M1	
	Obtain correct terms of the derivative in any form, e.g. $2\cos x e^{2\sin x}\cos x - e^{2\sin x}\sin x$	A1 + A1	
	Equate derivative to zero and obtain a quadratic equation in sin x	M1	
	Solve a 3-term quadratic and obtain a value of x	M1	
	Obtain answer 0.896	A1	6
Que	stion 11		
(i)	Use chain rule correctly at least once	M1	
	Obtain either $\frac{dx}{dt} = \frac{3\sin t}{\cos^4 t}$ or $\frac{dy}{dt} = 3\tan^2 t \sec^2 t$, or equivalent	A1	
	Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
	Obtain the given answer	A1	[4]

M1

B1

M1

A1

[3]

(i) Substitute for x and dx throughout using $u = \sin x$ and $du = \cos x dx$, or equivalent

Question 12

Use Pythagoras

Obtain the given answer

(ii) State a correct equation for the tangent in any form

Use correct product rule or correct chain rule to differentiate y M1

Use $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$ M*1

Obtain $\frac{-4\cos\theta\sin^2\theta + 2\cos^3\theta}{\sec^2\theta}$ or equivalent A1

Express $\frac{dy}{dx}$ in terms of $\cos\theta$ DM*1

Confirm given answer $6\cos^5\theta - 4\cos^3\theta$ legitimately A1 [5]

Question 13

Differentiate to obtain form $a \sin 2x + b \cos x$	M1	
Obtain correct $-6\sin 2x + 7\cos x$	A1	
Use identity $\sin 2x = 2\sin x \cos x$	B1	
Solve equation of form $c \sin x \cos x + d \cos x = 0$ to find at least one value of x	M1	
Obtain 0.623	A1	
Obtain 2.52	A1	
Obtain 1.57 or $\frac{1}{2}\pi$ from equation of form $c \sin x \cos x + d \cos x = 0$	A1	
Treat answers in degrees as MR – 1 situation		[7]

Question 14

- (i) Use product rule to find first derivative M1

 Obtain $2xe^{2-x} x^2e^{2-x}$ Confirm x = 2 at MA1

 [3]
- (ii) Attempt integration by parts and reach $\pm x^2 e^{2-x} \pm \int 2xe^{2-x} dx$ *M1

 Obtain $-x^2 e^{2-x} + \int 2xe^{2-x} dx$ A1

 Attempt integration by parts and reach $\pm x^2 e^{2-x} \pm 2xe^{2-x} \pm 2e^{2-x}$ *M1

 Obtain $-x^2 e^{2-x} 2xe^{2-x} 2e^{2-x}$ A1

 Use limits 0 and 2 having integrated twice M1 dep *M

 Obtain $2e^2 10$ A1 [6]

Obtain
$$\frac{dx}{dt} = \frac{2}{t+2}$$
 and $\frac{dy}{dt} = 3t^2 + 2$

Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$

M1

Obtain $\frac{dy}{dx} = \frac{1}{2} (3t^2 + 2)(t+2)$

Identify value of t at the origin as -1

Substitute to obtain $\frac{5}{2}$ as gradient at the origin

A1 [5]

EITHER: Use correct product rule

Obtain correct derivative in any form, e.g. $-\sin x \cos 2x - 2\cos x \sin 2x$	A 1	
Use the correct double angle formulae to express derivative in cos x and sin x, or cos 2x and sin x OR1: Use correct double angle formula to express y in terms of cos x and attempt differentiation Use chain rule correctly	M1 M1 M1	
Obtain correct derivative in any form, e.g. $-6\cos^2 x \sin x + \sin x$ OR2: Use correct factor formula and attempt differentiation	A1 M1	
Obtain correct derivative in any form, e.g. $-\frac{3}{2}\sin 3x - \frac{1}{2}\sin x$	A1	
Use correct trig formulae to express derivative in terms of $\cos x$ and $\sin x$, or $\sin x$ Equate derivative to zero and obtain an equation in one trig function	M1 M1	
Obtain $6\cos^2 x = 1$, $6\sin^2 x = 5$, $\tan^2 x = 5$ or $3\cos 2x = -2$ Obtain answer $x = 1.15$ (or 65.9°) and no other in the given interval	A1 A1	[6]
Question 17		
Use correct quotient or product rule Obtain correct derivative in any form Equate derivative to zero and obtain a horizontal equation	M1 A1 M1	
Carry out complete method for solving an equation of the form $ae^{3x} = b$, or $ae^{5x} = be^{2x}$ Obtain $x = \ln 2$, or exact equivalent	M1 A1	
Obtain $y = \frac{1}{3}$, or exact equivalent	A1	6

M1

(i) State
$$\frac{dx}{dt} = -4a\cos^3 t \sin t$$
, or $\frac{dy}{dt} = 4a\sin^3 t \cos t$

Use
$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$
 M1

Obtain correct expression for
$$\frac{dy}{dx}$$
 in a simplified form A1 3

3

- (i) State or imply that the derivative of e^{-2x} is $-2e^{-2x}$ Use product or quotient rule

 Obtain correct derivative in any form

 Use Pythagoras

 Justify the given form

 A1

 [5]
- (ii) Fully justify the given statement B1 [1]
- (iii) State answer $x = \frac{1}{4}\pi$

- (i) Use the quotient rule M1
 Obtain correct derivative in any form A1
 Equate derivative to zero and solve for x M1
 Obtain answer $x = \sqrt[3]{2}$, or exact equivalent A1 [4]
- (ii) State or imply indefinite integral is of the form $k \ln(1+x^3)$ M1

 State indefinite integral $\frac{1}{3} \ln(1+x^3)$ A1

 Substitute limits correctly in an integral of the form $k \ln(1+x^3)$ M1

 State or imply that the area of R is equal to $\frac{1}{3} \ln(1+p^3) \frac{1}{3} \ln 2$, or equivalent

 Use a correct method for finding p from an equation of the form $\ln(1+p^3) = a$

or $\ln((1+p^3)/2) = b$ M1 Obtain answer p = 3.40 A1 [2]

Question 21

Use correct quotient rule or equivalent to find first derivative

Obtain $\frac{-(1+\tan x)\sec^2 x - \sec^2 x(2-\tan x)}{(1+\tan x)^2}$ or equivalent

A1

Substitute $x = \frac{1}{4}\pi$ to find gradient **dep M1***

Obtain $-\frac{3}{2}$

Form equation of tangent at $x = \frac{1}{4}\pi$

Obtain $y = -\frac{3}{2}x + 1.68$ or equivalent A1 [6]

(i)	EITHER	2: State correct derivative of sin y with respect to x Use product rule to differentiate the LHS	B1 M1	
		Obtain correct derivative of the LHS	A1	
		Obtain a complete and correct derived equation in any form	A1	
		Obtain a correct expression for $\frac{dy}{dx}$ in any form	A1	
	OR:	State correct derivative of $\sin y$ with respect to x	B1	
		Rearrange the given equation as $\sin y = x / (\ln x + 2)$ and attempt to differentiate		
		both sides	B1	
		Use quotient or product rule to differentiate the RHS	M1	
		Obtain correct derivative of the RHS	A1	
		Obtain a correct expression for $\frac{dy}{dx}$ in any form	A1	[5]
(ii)	Equate -	$\frac{dy}{dx}$ to zero and obtain a horizontal equation in $\ln x$ or $\sin y$	M1	
	Solve fo		M1	
		$\sin x$ answer $x = 1/e$, or exact equivalent	A1	[3]
Que	stion 23			
	product 1			M 1
		et derivative in any form, e.g. $\cos x \cos 2x - 2\sin x \sin 2x$		A1
		ative to zero and use double angle formulae		M1 M1
		or of $\cos x$ and reduce equation to one in a single trig function $x = 1$, $6\cos^2 x = 5$ or $5\tan^2 x = 1$		
		x = 1, 8cos $x = 3$ of 3tan $x = 1tain x = 0.421$		A1 A1
501	c and ob	Mili X = 0.721		[6]
Que	stion 24			
(i)		imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$		B 1
		$\int_{0}^{2} \frac{dy}{dx}$ as derivative of y^{3}		B1
	Equate a	attempted derivative of the LHS to zero and solve for $\frac{dy}{dx}$		M1
	Obtain t	he given answer		A1
				[4]
(ii)		numerator to zero		M1*
		x = 2y, or equivalent an equation in x or y	п	A1 *M1
		the point $(-2, -1)$	L	A1
		ne point (0, 1.44)		B1
				[5]

State or imp	by derivative of $(\ln x)^2$ is $\frac{2 \ln x}{x}$	B1
	λ	M1
Obtain corre	ct derivative in any form, e.g. $\frac{2 \ln x}{x^2} - \frac{(\ln x)^2}{x^2}$	A1
		M1 A1
-		A1 [6]
Question 26		
(i) State $\frac{dx}{dx}$	$=1-\sin t$	В1
\mathbf{u}_{i}		M1
	in rule to find the derivative of y $dy = \cos t$ or equivalent	A1
	$\frac{dy}{dt} = \frac{\cos t}{1 + \sin t}$, or equivalent	AI
Use $\frac{dy}{dr}$	$=\frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	M 1
Obtain t	he given answer correctly	A1
		[5]
(ii) State or	imply $t = \cos^{-1}(\frac{1}{3})$	B 1
Obtain a	answers $x = 1.56$ and $x = -0.898$	B1 + B1
		[3]
Question 27		I
EITHER:	State $2xy + x^2 \frac{dy}{dx}$, or equivalent, as derivative of x^2y	B1
	State $6y^2 + 12xy \frac{dy}{dx}$, or equivalent, as derivative of $6xy^2$	B1
OR:	Differentiating LHS using correct product rule, state term $xy(1-6\frac{dy}{dx})$, or	
	equivalent	B1
	State term $(y + x \frac{dy}{dx})(x - 6y)$, or equivalent	B1
	State term $(y + x - 0y)$, or equivalent	ы
	Equate attempted derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero	M1*
	Obtain a horizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only)	A1
	Explicitly reject $y = 0$ as a possibility $py^2 - qxy = 0$	A1
	Obtain an equation in x or y	DM1
	Obtain answer $(-3a, -a)$	A1

(i)	Use the correct product rule Obtain correct derivative in any form, e.g. $(2-2x)e^{\frac{1}{2}x} + \frac{1}{2}(2x-x^2)e^{\frac{1}{2}x}$ Equate derivative to zero and solve for x Obtain $x = \sqrt{5} - 1$ only		M1 A1 M1 A1	[4]
(ii)	Integrate by parts and reach $a(2x-x^2)e^{\frac{1}{2}x}+b\int(2-2x)e^{\frac{1}{2}x}dx$ Obtain $2e^{\frac{1}{2}x}(2x-x^2)-2\int(2-2x)e^{\frac{1}{2}x}dx$, or equivalent Complete the integration correctly, obtaining $(12x-2x^2-24)e^{\frac{1}{2}x}$, or equivalent		M1* A1 A1	
	Use limits $x = 0$, $x = 2$ correctly having integrated by parts twice Obtain answer $24 - 8e$, or exact simplified equivalent		DM1 A1	[5]
)ues	stion 29			
	correct quotient or product rule ain correct derivative in any form	M1 A1		
	Pythagoras to simplify the derivative to $\frac{1}{1+\cos x}$, or equivalent	A1		
Just	ify the given statement, $-1 < \cos x < 1$ statement, or equivalent	A1		[4]
)ues	stion 30			
Use	product rule			M 1
Obt	ain correct derivative in any form			A1
Equ	ate derivative to zero, use Pythagoras and obtain a quadratic equation in ta	an x		M1
Obt	ain $\tan^2 x - a \tan x + 1 = 0$, or equivalent			A1
Use	the condition for a quadratic to have only one root			M1
Ob	tain answer $a = 2$			A1
	tain answer $x = \frac{1}{4}\pi$			A1
Ob	7	l l		

(i)	State or imply derivative is $2\frac{\ln x}{x}$	B1
	State or imply gradient of the normal at $x = e$ is $-\frac{1}{2}e$, or equivalent	B1
	Carry out a complete method for finding the x -coordinate of Q	M1
	Obtain answer $x = e + \frac{2}{e}$, or exact equivalent	A1
	Total:	4
(ii)	Justify the given statement by integration or by differentiation	B1
	Total:	1
(iii)	Integrate by parts and reach $ax(\ln x)^2 + b \int x \cdot \frac{\ln x}{x} dx$	M1*
	Complete the integration and obtain $x(\ln x)^2 - 2x \ln x + 2x$, or equivalent	A1
	Use limits $x = 1$ and $x = e$ correctly, having integrated twice	DM1
	Obtain exact value e – 2	A1
	Use x- coordinate of Q found in part (i) and obtain final answer $e - 2 + \frac{1}{e}$	B1√

(i)	Use chain rule to differentiate $x = \left(\frac{dx}{d\theta} = -\frac{\sin \theta}{\cos \theta}\right)$	M1
	State $\frac{dy}{d\theta} = 3 - \sec^2 \theta$	B1
	Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$	M1
	Obtain correct $\frac{dy}{dx}$ in any form e.g. $\frac{3-\sec^2\theta}{-\tan\theta}$	A1
	Obtain $\frac{dy}{dx} = \frac{\tan^2 \theta - 2}{\tan \theta}$, or equivalent	A1
	Total:	5
(ii)	Equate gradient to -1 and obtain an equation in $\tan \theta$	M1
	Solve a 3 term quadratic $(\tan^2 \theta + \tan \theta - 2 = 0)$ in $\tan \theta$	M1
	Obtain $\theta = \frac{\pi}{4}$ and $y = \frac{3\pi}{4} - 1$ only	A1
	Total:	3
Questi	on 33	
State	or imply $du = -\sin x dx$	B1
Using	correct double angle formula, express the integral in terms of u and du	M1
Obtai	n integrand $\pm (2u^2 - 1)^2$	A1
Chang	ge limits and obtain correct integral $\int_{\frac{1}{\sqrt{2}}}^{1} (2u^2 - 1)^2 du$ with no errors seen	A1
Subst	itute limits in an integral of the form $au^5 + bu^3 + cu$	M1
Obtai	n answer $\frac{1}{15}(7-4\sqrt{2})$, or exact simplified equivalent	A1
	Total:	6

(ii)	Use product rule and chain rule at least once	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and use trig formulae to obtain an equation in $\cos x$ and $\sin x$	M1
	Use correct methods to obtain an equation in $\cos x$ or $\sin x$ only	M1
	Obtain $10\cos^2 x = 9$ or $10\sin^2 x = 1$, or equivalent	A1
	Obtain answer 0.32	A1
	Total:	6
Questi	ion 34	
(i)	State $\frac{\mathrm{d}y}{\mathrm{d}t} = 4 + \frac{2}{2t - 1}$	B1
	Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1
	Obtain answer $\frac{dy}{dx} = \frac{8t-2}{2t(2t-1)}$, or equivalent e.g. $\frac{2}{t} + \frac{2}{4t^2 - 2t}$	A1
	Total:	3
(ii)	Use correct method to find the gradient of the normal at $t = 1$	M1
	Use a correct method to form an equation for the normal at $t = 1$	M1
	Obtain final answer $x + 3y - 14 = 0$, or horizontal equivalent	A1
	Total:	3

'(i)	Use quotient or chain rule	M1
	Obtain given answer correctly	A1
	Total:	2
(ii)	EITHER: Multiply numerator and denominator of LHS by $1 + \sin \theta$	(M1
	Use Pythagoras and express LHS in terms of sec θ and $\tan \theta$	M1
	Complete the proof	A1)
	OR1: Express RHS in terms of $\cos \theta$ and $\sin \theta$	(M1
	Use Pythagoras and express RHS in terms of $\sin \theta$	M1
	Complete the proof	A1)
(iii)	Use the identity and obtain integral $2 \tan \theta + 2 \sec \theta - \theta$	B2
	Use correct limits correctly in an integral containing terms $a \tan \theta$ and $b \sec \theta$	M1
	Obtain answer $2\sqrt{2} - \frac{1}{4}\pi$	A1
Questi	Total:	4
(i)	Use the chain rule	M1
	Obtain correct derivative in any form	A1
	Use correct trigonometry to express derivative in terms of $\tan x$	M1
	Obtain $\frac{dy}{dx} = -\frac{4 \tan x}{4 + \tan^2 x}$, or equivalent	A1
	Total:	4
(ii)	Equate derivative to -1 and solve a 3–term quadratic for $\tan x$	M1
	Obtain answer $x=1.11$ and no other in the given interval	A1
	Total:	2

Use co	orrect quotient rule or product rule	M1
Obtair	n correct derivative in any form	A1
Equat	e derivative to zero and solve for x	M1
Obtair	a x = 2	A1
	Total:	4
Questio	on 38	
(i)	State or imply $y^3 + 3xy^2 \frac{dy}{dx}$ as derivative of xy^3	B1
	State or imply $4y^3 \frac{dy}{dx}$ as derivative of y^4	B1
	Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer	A1
		4
(ii)	Equate numerator to zero	*M1
	Obtain $y = -2x$, or equivalent	A1
	Obtain an equation in x or y	DM1
	Obtain final answer $x = -1$, $y = 2$ and $x = 1$, $y = -2$	A1
	atpror	4

(i)	Use correct product or quotient rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain a 3 term quadratic equation in x	M1
	Obtain answers $x = 2 \pm \sqrt{3}$	A1
		4
(ii)	Integrate by parts and reach $k(1+x^2)e^{-\frac{1}{2}x} + l\int xe^{-\frac{1}{2}x} dx$	*M1
	Obtain $-2(1+x^2)e^{-\frac{1}{2}x} + 4\int xe^{-\frac{1}{2}x} dx$, or equivalent	A1
	Complete the integration and obtain $(-18-8x-2x^2)e^{-\frac{1}{2}x}$, or equivalent	A1
	Use limits $x = 0$ and $x = 2$ correctly, having fully integrated twice by parts	DM1
	Obtain the given answer	A1
		5
Quest	ion 40	
(i)	Use correct product or quotient rule or rewrite as $2\sec x - \tan x$ and differentiate	M1
	Obtain correct derivative in any form	A1
	Equate the derivative to zero and solve for <i>x</i>	M1
	Obtain $x = \frac{1}{6}\pi$	A1
	Obtain $y = \sqrt{3}$	A1
		5
(ii)	Carry out an appropriate method for determining the nature of a stationary point	M1
	Show the point is a minimum point with no errors seen	A1
		2

(i)	State or imply $3x^2y + x^3 \frac{dy}{dx}$ as derivative of x^3y	B1
	State or imply $9xy^2 \frac{dy}{dx} + 3y^3$ as derivative of $3xy^3$	B1
	Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer AG	A1
		4
(ii)	Equate numerator to zero and use $x = -y$ to obtain an equation in x or in y	M1
	Obtain answer $x = a$ and $y = -a$	A1
	Obtain answer $x = -a$ and $y = a$	A1
	Consider and reject $y = 0$ and $x = y$ as possibilities	B1
		4
Ques	tion 42	
(i)	State or imply $y^3 + 3xy^2 \frac{dy}{dx}$ as derivative of xy^3	В1
	State or imply $4y^3 \frac{dy}{dx}$ as derivative of y^4	B1
	Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer	A1
		4
(ii)	Equate numerator to zero	*M1
	Obtain $y = -2x$, or equivalent	A1
	Obtain an equation in x or y	DM1
	Obtain final answer $x = -1$, $y = 2$ and $x = 1$, $y = -2$	A1
		4

(i)	Use correct product or quotient rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain a 3 term quadratic equation in x	M1
	Obtain answers $x = 2 \pm \sqrt{3}$	A1
		4
(ii)	Integrate by parts and reach $k(1+x^2)e^{-\frac{1}{2}x} + l\int xe^{-\frac{1}{2}x} dx$	*M1
	Obtain $-2(1+x^2)e^{-\frac{1}{2}x} + 4\int xe^{-\frac{1}{2}x} dx$, or equivalent	A1
	Complete the integration and obtain $(-18-8x-2x^2)e^{-\frac{1}{2}x}$, or equivalent	A1
	Use limits $x = 0$ and $x = 2$ correctly, having fully integrated twice by parts	DM1
	Obtain the given answer	A1
		5

(i)	State correct derivative of x or y with respect to t	B1
	Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	M1
	Obtain $\frac{dy}{dx} = \frac{4\sin 2t}{2 + 2\cos 2t}$, or equivalent	A1
	Use double angle formulae throughout	M1
	Obtain the given answer correctly AG	A1
		5
(ii)	State or imply $t = \tan^{-1} \left(-\frac{1}{4} \right)$	B1
	Obtain answer $x = -0.961$	B1
		2

Use quotient or product rule	M1
Obtain correct derivative in any form	A1
Equate derivative to zero and obtain a quadratic in $\tan \frac{1}{2}x$ or an equation of the form $a \sin x = b$	M1*
Solve for x	M1(dep*)
Obtain answer 0.340	A1
Obtain second answer 2.802 and no other in the given interval	A1
T PR	6

(i)	State or imply 3 $y^2 \frac{dy}{dx}$ as derivative of y^3	В1
	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$	B1
	OR State or imply $2x(x+3y)+x^2\left(1+3\frac{dy}{dx}\right)$ as derivative of $x^2(x+3y)$	
	Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer	Al
		4

(ii)	Equate derivative to -1 and solve for y	M1*
	Use their $y = -2x$ or equivalent to obtain an equation in x or y	Ml(dep*)
	Obtain answer (1, -2)	Al
	Obtain answer $(\sqrt[3]{3}, 0)$	B1
		4

(i)	Use correct product or quotient rule	M1	$\frac{dy}{dx} = -\frac{1}{3}(x+1)e^{-\frac{1}{3}x} + e^{-\frac{1}{3}x}$
	19		$\frac{dy}{dx} = -\frac{1}{3}(x+1)e^{-\frac{1}{3}x} + e^{-\frac{1}{3}x}$ or $\frac{dy}{dx} = \frac{e^{\frac{1}{3}x} - (x+1)\frac{1}{3}e^{\frac{1}{3}x}}{e^{\frac{2}{3}x}}$
	Obtain complete correct derivative in any form	Al	
	Equate derivative to zero and solve for x	M1	
	Obtain answer $x = 2$ with no errors seen	Al	
		4	
(ii)	Integrate by parts and reach $a(x+1)e^{-\frac{1}{3}x} + b \int e^{-\frac{1}{3}x} dx$	M1*	
	Obtain $-3(x+1)e^{-\frac{1}{3}x} + 3\int e^{-\frac{1}{3}x} dx$, or equivalent	Al	$-3xe^{-\frac{1}{3}x} + \int 3e^{-\frac{1}{3}x} dx - 3e^{-\frac{1}{3}x}$
	Complete integration and obtain $-3(x+1)e^{\frac{1}{3}x}-9e^{\frac{1}{3}x}$, or equivalent	Al	i.S.
	Use correct limits $x = -1$ and $x = 0$ in the correct order, having integrated twice	M1(dep*)	
	Obtain answer $9e^{\frac{1}{3}} - 12$, or equivalent	Al	
		5	

(i)	State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3	B1
	State or imply $3y^2 + 6xy \frac{dy}{dx}$ as derivative of $3xy^2$	B1
	Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer	A1
	Total:	4
(ii)	Equate denominator to zero and solve for y	M1*
	Obtain $y = 0$ and $x = a$	A1
	Obtain $y = \alpha x$ and substitute in curve equation to find x or to find y	M1(dep*)
	Obtain $x = -a$	A1
	Obtain $y = 2a$	A1
	Total:	5
Questi	ion 49	
(i)	Obtain $\frac{dx}{d\theta} = 2\cos\theta + 2\cos 2\theta$ or $\frac{dy}{d\theta} = -2\sin\theta - 2\sin 2\theta$	B1
	Use $dy/dx = dy/d\theta \div dx/d\theta$	Ml
	Obtain correct $\frac{dy}{dx}$ in any form, e.g. $-\frac{2\sin\theta + 2\sin 2\theta}{2\cos\theta + 2\cos 2\theta}$	Al
		3
<u>ii)</u>	Equate denominator to zero and use any correct double angle formula	M1*
	Obtain correct 3-term quadratic in $\cos \theta$ in any form	Al
	Solve for θ	depM1*
	Obtain $x = 3\sqrt{3}/2$ and $y = \frac{1}{2}$, or exact equivalents	Al
		4

(i)	Use product rule	M1*
	Obtain correct derivative in any form	Al
	Equate derivative to zero and obtain an equation in a single trig function	depM1*
	Obtain a correct equation, e.g. $3 \tan^2 x = 2$	Al
	Obtain answer $x = 0.685$	Al
		5
(ii)	Use the given substitution and reach $a \int (u^2 - u^4) du$	M1
	Obtain correct integral with $a = 5$ and limits 0 and 1	Al
	Use correct limits in an integral of the form $a\left(\frac{1}{3}u^3 - \frac{1}{5}u^5\right)$	MI
	Obtain answer $\frac{2}{3}$	Al
		4

	Use correct quotient or product rule	
Obtain correct derivative in any form Equate numerator to zero Use $\cos^2 x + \sin^2 x = 1$ and solve for $\sin x$		
Use $\cos^2 x + \sin^2 x = 1$ and solve for $\sin x$	Equate numerator to zero	
	Use $\cos^2 x + \sin^2 x = 1$ and solve for $\sin x$	
Obtain coordinates $x = -\pi/6$ and $y = \sqrt{3}$ ISW	Obtain coordinates $x = -\pi/6$ and $y = \sqrt{3}$ ISW	Al

State indefinite integral of the form $k \ln (2 + \sin x)$	M1
Substitute limits correctly, equate result to 1 and obtain $3 \ln (2 + \sin a) - 3 \ln 2 = 1$	A
Use correct method to solve for a	M1(dep*
Obtain answer $a = 0.913$ or better	Ai
	4

(i)	Obtain $\frac{dx}{d\theta} = 2\cos\theta + 2\cos 2\theta$ or $\frac{dy}{d\theta} = -2\sin\theta - 2\sin 2\theta$	B1
	Use $dy/dx = dy/d\theta \div dx/d\theta$	M1
	Obtain correct $\frac{dy}{dx}$ in any form, e.g. $-\frac{2\sin\theta + 2\sin 2\theta}{2\cos\theta + 2\cos 2\theta}$	Al
	2 .5	3
(ii)	Equate denominator to zero and use any correct double angle formula	M1*
	Obtain correct 3-term quadratic in $\cos \theta$ in any form	Al
	Solve for θ	depM1*
	Obtain $x = 3\sqrt{3}/2$ and $y = \frac{1}{2}$, or exact equivalents	Al
		4

(i)	Use product rule	M1*
	Obtain correct derivative in any form	Al
	Equate derivative to zero and obtain an equation in a single trig function	depM1*
	Obtain a correct equation, e.g. $3 \tan^2 x = 2$	Al
	Obtain answer $x = 0.685$	Al
		5
(ii)	Use the given substitution and reach $a \int (u^2 - u^4) du$	M1
	Obtain correct integral with $a = 5$ and limits 0 and 1	Al
	Use correct limits in an integral of the form $a\left(\frac{1}{3}u^3 - \frac{1}{5}u^5\right)$	M1
	Obtain answer $\frac{2}{3}$	Al
		4
Questi	ion 54	1
State	$\cos y \frac{\mathrm{d}y}{\mathrm{d}x}$ as derivative of $\sin y$	B1
State of	correct derivative in terms of x and y, e.g. $\sec^2 x / \cos y$	B1
State o	correct derivative in terms of x, e.g. $\frac{\sec^2 x}{\sqrt{1-\tan^2 x}}$	B1
Use de	ouble angle formula	M1
Obtain	n the given answer correctly	Al
		5

(i)	State or imply $du = -\sin x dx$	B1
	Using Pythagoras express the integral in terms of u	M1
	Obtain integrand $\pm \sqrt{u} \left(1 - u^2\right)$	Al
	Integrate and obtain $-\frac{2}{3}u^{\frac{3}{2}} + \frac{2}{7}u^{\frac{7}{2}}$, or equivalent	Al
	Change limits correctly and substitute correctly in an integral of the form $au^{\frac{3}{2}} + bu^{\frac{7}{2}}$	MI
	Obtain answer $\frac{8}{21}$	Al
		6
(ii)	Use product rule and chain rule at least once	Ml
	Obtain correct derivative in any form	A1 + A1
	Equate derivative to zero and obtain a horizontal equation in integral powers of $\sin x$ and $\cos x$	MI
	Use correct methods to obtain an equation in one trig function	М1
	Obtain $\tan^2 x = 6$, $7\cos^2 x = 1$ or $7\sin^2 x = 6$, or equivalent, and obtain answer 1.183	Al
		6

State or imply $3y^2 + 6xy \frac{dy}{dx}$ as derivative of $3xy^2$	Bl
State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3	B1
Equate derivative of LHS to zero, substitute (1, 3) and find the gradient	MI
Obtain final answer $\frac{10}{3}$ or equivalent	Al
	4

Question 37	1
Use chain rule	M1
Obtain correct answer in any form	Al
Question 58	1
Use correct quotient rule	M1
Obtain correct derivative in any form	Al
Equate derivative to $\frac{1}{4}$ and obtain a quadratic in $\ln x$ or $(1 + \ln x)$	M1
Reduce to $(\ln x)^2 - 2 \ln x + 1 = 0$	Al
Solve a 3-term quadratic in ln x for x	M1
Obtain answer $x = e$	Al
Obtain answer $y = \frac{1}{2}$ e	Al
	7

(i)	State correct expansion of $\sin(3x+x)$ or $\sin(3x-x)$	B1	B0 If their formula retains \pm in the middle
	Substitute expansions in $\frac{1}{2}(\sin 4x + \sin 2x)$	M1	
	Obtain $\sin 3x \cos x = \frac{1}{2} (\sin 4x + \sin 2x)$ correctly	Al	Must see the $\sin 4x$ and $\sin 2x$ or reference to LHS and RHS for A1 AG
		3	
(ii)	Integrate and obtain $-\frac{1}{8}\cos 4x - \frac{1}{4}\cos 2x$	B1 B1	
	Substitute limits $x = 0$ and $x = \frac{1}{3}\pi$ correctly	M1	In their expression
	Obtain answer $\frac{9}{16}$	Al	From correct working seen.
		4	
)(iii)	State correct derivative $2\cos 4x + \cos 2x$	В1	
	Using correct double angle formula, express derivative in terms of $\cos 2x$ and equate the result to zero	M1	
	Obtain $4\cos^2 2x + \cos 2x - 2 = 0$	Al	L 1111
	Solve for x or 2x (could be labelled x) $\left(\cos 2x = \frac{-1 \pm \sqrt{33}}{8}\right)$	MI	Must see working if solving an incorrect quadratic The roots of the correct quadratic are -0.843 and 0.593 Need to get as far as $x =$ The wrong value of x is 0.468 and can imply M1 if correct quadratic seen Could be working from a quartic in $\cos x$: $16\cos^4 x - 14\cos^2 x + 1 = 0$
	Obtain answer $x = 1.29$ only	Al	/~/
	2	5	

(i)	Use the quotient or product rule	M1
	Obtain correct derivative in any form	Al
	Reduce to $-\frac{2e^{-x}}{\left(1-e^{-x}\right)^2}$, or equivalent, and explain why this is always negative	Al
		3
(ii)	Equate derivative to - 1 and obtain the given equation	B1
	State or imply $u^2 - 4u + 1 = 0$, or equivalent in e^a	B1
	Solve for a	M1
	Obtain answer $a = \ln(2 + \sqrt{3})$ and no other	Al
		4
Ques	tion 61	I
(i)	Use product rule	M1
	Obtain correct derivative in any form	Al
		2
(ii)	Equate derivative to zero and use correct $cos(A + B)$ formula	M1
	Obtain the given equation	Al
	2. SatoreP.	2
(iii)	Use correct method to solve for x	M1
	Obtain answer, e.g. $x = \frac{1}{12}\pi$	Al
	Obtain second answer, e.g. $\frac{7}{12}\pi$, and no other	Al
		1

(i)	Use correct quotient rule	M1
	Obtain $\frac{dy}{dx} = -\csc^2 x$ correctly	Al
		2
(ii)	Integrate by parts and reach $ax \cot x + b \int \cot x dx$	*M1
	Obtain $-x \cot x + \int \cot x dx$	Al
	State $\pm \ln \sin x$ as integral of $\cot x$	M1
	Obtain complete integral $-x \cot x + \ln \sin x$	Al
	Use correct limits correctly	DM1
	Obtain $\frac{1}{4}(\pi + \ln 4)$ following full and exact working	Al
		6
-	ion 63	
(i)	Use $\cos(A + B)$ formula to express $\cos 3x$ in terms of trig functions of $2x$ and x	M1
	Use double angle formulae and Pythagoras to obtain an expression in terms of $\cos x$ only	M1
	Obtain a correct expression in terms of cos x in any form	Al
	Obtain $\cos 3x = 4\cos^3 x - 3\cos x$	Al
		4
(ii)	Use identity and solve cubic $4\cos^3 x = -1$ for x	M1
	Obtain answer 2.25 and no other in the interval	Al
		2

State $4xy + 2x^2 \frac{dy}{dx}$, or equivalent, as derivative of $2x^2y$	B1
State $y^2 + 2xy \frac{dy}{dx}$, or equivalent, as derivative of xy^2	B1
Equate attempted derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero (or set numerator equal to zero)	*M1
Reject $y = 0$	B1
Obtain $y = 4x$	Al
Obtain an equation in y (or in x) and solve for y (or for x) in terms of a	DM1
Obtain $y = -2a$	Al
	7

(i)	State or imply ordinates 1, 1.2116, 2.7597	B1
	Use correct formula, or equivalent, with $h = 0.6$	Ml
	Obtain answer 1.85	Al
		3
(ii)	Explain why the rule gives an overestimate	B1
		1
111)	Differentiate using quotient or chain rule	M1
	Obtain correct derivative in terms of $\sin x$ and $\cos x$	Al
	Equate derivative to 2, use Pythagoras and obtain an equation in sin x	M1
	Obtain $2\sin^2 x + \sin x - 2 = 0$	Al
	Solve a 3-term quadratic for x	M1
	Obtain answer $x = 0.896$ only	Al
		6

(i)	Use product rule and chain rule at least once	M1
	Obtain correct derivative in any form	Al
	Equate derivative to zero, use Pythagoras and obtain an equation in cos x	M1
	Obtain $\cos^2 x + 3\cos x - 1 = 0$, or 3-term equivalent	Al
	Obtain answer $x = 1.26$	Al
		5
(ii)	Using $du = \pm \sin x dx$ express integrand in terms of u and du	M1
	Obtain integrand $e^{u}(u^{2}-1)$	Al
	Commence integration by parts and reach $ae^{u}(u^{2}-1)+b\int ue^{u} du$	*M1
	Obtain $e^u(u^2-1)-2\int ue^u du$	Al
	Complete integration, obtaining $e^{u}(u^2 - 2u + 1)$	Al
	Substitute limits $u = 1$ and $u = -1$ (or $x = 0$ and $x = \pi$), having integrated completely	DM1
	Obtain answer $\frac{4}{e}$, or exact equivalent	Al
	34 69	7

'(a)	State or imply $3y^2 + 6xy \frac{dy}{dx}$ as derivative of $3xy^2$	B1
	State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3	B1
	Equate attempted derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer correctly	Al
		4
'(Ъ)	Equate denominator to zero	*M1
	Obtain $y = 2x$, or equivalent	Al
	Obtain an equation in x or y	DM1
	Obtain the point (1, 2)	Al
	State the point $(\sqrt[3]{5},0)$	B1
		5

(a)	Use product rule	M1
	Obtain derivative in any correct form e.g. $2e^{2x}(\sin x + 3\cos x) + e^{2x}(\cos x - 3\sin x)$	Al
	Equate derivative to zero and obtain an equation in one trigonometric ratio	M1
	Obtain $x = 1.43$ only	Al
		4
(b)	Use a correct method to determine the nature of the stationary point $x = 1.42$, $y' = 0.06e^{2xt} > 0$ e.g. $x = 1.44$, $y' = -0.07e^{2xt} < 0$	M1
	Show that it is a maximum point	Al
		2

(a)	Use quotient or product rule	M1
	Obtain derivative in any correct form e.g. $\frac{-\sin x(1+\sin x)-\cos x(\cos x)}{(1+\sin x)^2}$	Al
	Use Pythagoras to simplify the derivative	M1
	Justify the given statement	Al
		4
(b)	State integral of the form $a \ln (1 + \sin x)$	*M1
	State correct integral $\ln(1 + \sin x)$	Al
	Use limits correctly	DM1
	Obtain answer $\ln \frac{4}{3}$	Al
	T PRA	4

Question 70

Use correct product rule	M1
Obtain correct derivative in any form, e.g. $-\sin x \sin 2x + 2\cos x \cos 2x$	A1
Use double angle formula to express derivative in terms of $\sin x$ and $\cos x$	M1
Equate derivative to zero and obtain an equation in one trig function	M1
Obtain 3 sin $2x = 1$, or 3 cos $2x = 2$ or 2 tan $2x = 1$	A1
Solve and obtain $x = 0.615$	A1
	6

(a)	Use quotient or product rule	M1
	Obtain correct derivative in any form e.g. $\frac{(1+3x^4)-x\times 12x^3}{(1+3x^4)^2}$	A1
	Equate derivative to zero and solve for x	M1
	Obtain answer 0.577	A1
		4

(b)	State or imply $du = 2\sqrt{3x} dx$, or equivalent	B1
	Substitute for x and dx	M1
	Obtain integrand $\frac{1}{2\sqrt{3(1+u^2)}}$, or equivalent	A1
	State integral of the form $a \tan^{-1} u$ and use limits $u = 0$ and $u = \sqrt{3}$ (or $x = 0$ and $x = 1$) correctly	M1
	Obtain answer $\frac{\sqrt{3}}{18}\pi$, or exact equivalent	A1
		5
Que	estion 72	
(a)	Use the product rule	M1
	State or imply derivative of $\tan^{-1}(\frac{1}{2}x)$ is of the form $k/(4+x^2)$, where $k=2$ or 4, or equivalent	M1
	Obtain correct derivative in any form, e.g. $\tan^{-1}\left(\frac{1}{2}x\right) + \frac{2x}{x^2 + 4}$, or equivalent	A1
		3
(b)	State or imply y-coordinate is $\frac{1}{2}\pi$	B1
	Carry out a complete method for finding p , e.g. by obtaining the equation of the tangent and setting $x = 0$, or by equating the gradient at $x = 2$ to $\frac{1}{2}\pi - p$	M1
	Obtain answer $p = -1$	A1
		3
Que	estion 73	
Sta	ate or imply $\frac{dx}{d\theta} = 2\sin 2\theta$ or $\frac{dy}{d\theta} = 2 + 2\cos 2\theta$	B1
Us	$\sec \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \div \frac{\mathrm{d}x}{\mathrm{d}\theta}$	M1
Ob	otain correct answer $\frac{dy}{dx} = \frac{2 + 2\cos 2\theta}{2\sin 2\theta}$	A1
Us	se correct double angle formulae	M1
Ob	otain the given answer correctly $\frac{dy}{dx} = \cot \theta$	A1

(a)	Use correct product or quotient rule	*M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and solve for x	DM1
	Obtain $x = 4$	A1
	Obtain $y = -2e^{-2}$, or exact equivalent	A1
		5
)(b)	Commence integration and reach $a(2-x)e^{-\frac{1}{2}x} + b\int e^{-\frac{1}{2}x} dx$	*M1
	Obtain $-2(2-x)e^{-\frac{1}{2}x} - 2\int e^{-\frac{1}{2}x} dx$	A1
	Complete integration and obtain $2xe^{\frac{1}{2}x}$	A1
	Use correct limits, $x = 0$ and $x = 2$, correctly, having integrated twice	DM1
	Obtain answer 4e ⁻¹ , or exact equivalent	A1

(a)	State $\frac{dx}{d\theta} = \sec^2 \theta$ or $\frac{dy}{d\theta} = -2\sin\theta\cos\theta$	B1
	Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \div \frac{\mathrm{d}x}{\mathrm{d}\theta}$	M1
	Obtain $\frac{dy}{dx} = -2\sin\theta\cos^3\theta$ from correct working	A1
	Alternative method for question 5(a)	
	Convert to Cartesian form and differentiate	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2x}{\left(1+x^2\right)^2}$	A1
	Obtain $\frac{dy}{dx} = -2\sin\theta\cos^3\theta$ from correct working	A1
		3

)	Use correct product rule to obtain $\frac{d}{d\theta} (\pm 2\cos^3\theta\sin\theta)$	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain an equation in one trig ratio	A1
	Obtain answer $x = -\frac{1}{\sqrt{3}}$	A1
	Alternative method for question 5(b)	- 8
	Use correct quotient rule to obtain $\frac{d^2y}{dx^2}$	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain an equation in x^2	A1
	Obtain answer $x = -\frac{1}{\sqrt{3}}$	A1
		4

(a)	State or imply $du = \cos x dx$	B1
	Using double angle formula for $\sin 2x$ and Pythagoras, express integral in terms of u and du .	M1
	Obtain integral $\int 2(u-u^3) du$	A1
	Use limits $u = 0$ and $u = 1$ in an integral of the form $au^2 + bu^4$, where $ab \neq 0$	M1
	Obtain answer $\frac{1}{2}$	A1
		5
(b)	Use product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and use a double angle formula	*M1
	Obtain an equation in one trig variable	DM1
	Obtain $4\sin^2 x = 1$, $4\cos^2 x = 3$ or $3\tan^2 x = 1$	A1
	Obtain answer $x = \frac{1}{6}\pi$	A1
	SatpreP.	6

(a)	Calculate the values of a relevant expression or pair of expressions at $x = 1$ and $x = 1.5$	
	Complete the argument correctly with correct calculated values	A1
		2
(b)	Use the iterative formula $x_{n+1} = \frac{e^{2x_n} + 1}{e^{2x_n} - 1}$, or equivalent, correctly at least once	M1
	Obtain final answer 1.20	A1
	Show sufficient iterations to 4 dp to justify 1.20 to 2 dp, or show there is a sign change in the interval (1.195,1.205)	A1
		3
(c)	Use quotient rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to -8 and obtain a quadratic in e^{2x}	M1
	Obtain $2(e^{2x})^2 - 5e^{2x} + 2 = 0$	A1
	Solve a 3-term quadratic in e^{2x} for x	M1
	Obtain answer $x = \frac{1}{2} \ln 2$, or exact equivalent, only	A1

(a)	Use quotient or product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and solve for x	M1
	Obtain $x = \sqrt[4]{e}$ and $y = \frac{1}{4e}$, or exact equivalents	A1
		4
(b)	Commence integration and reach $ax^{-3} \ln x + b \int x^{-3}$. $\frac{1}{x} dx$	*M1
	Obtain $-\frac{1}{3}x^{-3}\ln x + \frac{1}{3}\int x^{-3} \cdot \frac{1}{x} dx$	A1
	Complete integration and obtain $-\frac{1}{3}x^{-3}\ln x - \frac{1}{9}x^{-3}$	A1
	Substitute limits correctly, having integrated twice	DM1
	Obtain answer $\frac{1}{9} - \frac{1}{3}a^{-3} \ln a - \frac{1}{9}a^{-3}$	A1
	Justify the given statement	A1
		6

(a)	State $\frac{\mathrm{d}x}{\mathrm{d}t} = 1 + \frac{1}{t+2}$	B1
	Use product rule	M1
	Obtain $\frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{e}^{-2t} - 2(t-1)\mathrm{e}^{-2t}$	A1
	Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	M1
	Obtain correct answer in any simplified form, e.g. $\frac{(3-2t)(t+2)}{t+3}$ e ^{-2t}	A1
		5
(b)	Equate derivative to zero and solve for t	M1
	Obtain $t = \frac{3}{2}$ and obtain answer $y = \frac{1}{2}e^{-3}$, or exact equivalent	A1
	3	2

Use correct pr	oduct (or quotient) rule	M1
Obtain $\frac{dy}{dx} = -$	$-5e^{-5x} \tan^2 x + 2e^{-5x} \tan x \sec^2 x$	A1
Equate their d	erivative to zero and obtain an equation in $\sin x$ and $\cos x$	M1
Obtain 5 cos x	$\sin x = 2$	A1
State answer a	c = 0	B1
Use double an	gle formula or square both sides and solve for x	M1
Obtain answer	r, e.g. 0.464	A1
Obtain second	non-zero answer, e.g. 1.107 and no other in the given interval	A1
		8
Question 81		
(a) Use con	rect product rule or correct quotient rule	M1

ı

(b)	Commence integration and reach $ax^{\frac{1}{3}} \ln x + b \int x^{\frac{1}{3}} \frac{1}{x} dx$	*M1
	Obtain $3x^{\frac{1}{3}} \ln x - 3 \int x^{\frac{1}{3}} \cdot \frac{1}{x} dx$	A1
	Complete the integration and obtain $3x^{\frac{1}{3}} \ln x - 9x^{\frac{1}{3}}$	A1
1	Use limits correctly in an expression of the form $px^{\frac{1}{3}} \ln x + qx^{\frac{1}{3}} \ (pq \neq 0)$	DM1
	Obtain $18 \ln 2 - 9$ from full and correct working	A1
		5
Question (a)	Use correct chain rule or correct quotient rule to differentiate x or y	M1
	Obtain $\frac{dx}{dt} = \frac{3}{2+3t}$ or $\frac{dy}{dt} = \frac{2}{(2+3t)^2}$	A1
-	Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	M1
	Obtain answer $\frac{2}{3(2+3t)}$	A1
	Explain why this is always positive	A1
(b)	Obtain $y = -\frac{1}{3}$ when $x = 0$	В1
-	Use a correct method to form the given tangent	M1
_	Obtain answer $3y = 2x - 1$	A1
		3

(a)	Use quotient or product rule	M1	
	Obtain correct derivative in any form	A1	
	Equate derivative to zero and solve for x	M1	
	Obtain answer $x = 3$	A1	
		4	
(b)	State $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$, or $dx = 2\sqrt{x}du$, or $2u du = dx$	B1	
	Substitute and obtain integrand $\frac{2}{9-u^2}$	B1	
	Use given formula for the integral or integrate relevant partial fractions	M1	
	Obtain integral $\frac{1}{3} \ln \left(\frac{3+u}{3-u} \right)$	A1	OE
	Use limits $u = 0$ and $u = 2$ correctly	M1	
	Obtain the given answer correctly	A1	
		6	

Question 84

(a)	Use chain rule to differentiate LHS	*M1
	Obtain $\frac{1}{x+y} \left(1 + \frac{dy}{dx} \right)$	A1
	Equate derivative of LHS to $1-2 \frac{dy}{dx}$ and solve for $\frac{dy}{dx}$	DM1
	Obtain the given answer correctly	A1
	2	4
(b)	State $x + y = 1$	B1
	Obtain or imply $x - 2y = 0$	B1
	Obtain coordinates $x = \frac{2}{3}$ and $y = \frac{1}{3}$	B1
		3

Use chain rule	M1	Allow if not starting with the correct index.
Obtain correct derivative in any form	A1	$e.g. \frac{dy}{dx} = \frac{\sec^2 x}{2\sqrt{\tan x}}$
Use correct Pythagoras to obtain correct derivative in terms of $\tan x$	A1	e.g. $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 + \tan^2 x}{2\sqrt{\tan x}}$
Use a correct derivative to obtain $\frac{dy}{dx} = 1$ when $x = \frac{1}{4}\pi$	В1	Confirm the given statement from correct work. Should see at least $\frac{2}{2} = 1$.
	4	

State correct derivative of ye^{2x} with respect to x State correct derivative of y^2e^x with respect to x B1 $2ye^x \frac{dy}{dx} + y^2e^x$ Equate attempted derivative of the LHS to zero and solve for $\frac{dy}{dx}$ Obtain $\frac{dy}{dx} = \frac{2ye^x - y^2}{2y - e^x}$ A1 Obtain the given answer correctly. Condone multiplication by $\frac{-1}{-1}$ and cancelling of e^x without comment. (b) Equate denominator to zero and substitute for y or for e^x in the equation of the curve Obtain equation of the form $ae^{3x} = b$ or $cy^3 = d$ Obtain $y = 1$ A1 Accept $\frac{1}{3} \ln 8$ ISW Question 87	~			
Equate attempted derivative of the LHS to zero and solve for $\frac{dy}{dx}$ Obtain $\frac{dy}{dx} = \frac{2ye^x - y^2}{2y - e^x}$ A1 Obtain the given answer correctly. Condone multiplication by $\frac{-1}{-1}$ and cancelling of e^x without comment. (b) Equate denominator to zero and substitute for y or for e^x in the equation of the curve Obtain equation of the form $ae^{3x} = b$ or $cy^3 = d$ Obtain $y = 1$ A1 Accept $\frac{1}{3} \ln 8$ ISW Question 87	(a)	State correct derivative of ye^{2x} with respect to x	B1	$2ye^{2x} + e^{2x}\frac{dy}{dx}$
Equate attempted derivative of the LHS to zero and solve for $\frac{cy}{dx}$ Obtain $\frac{dy}{dx} = \frac{2ye^x - y^2}{2y - e^x}$ A1 Obtain the given answer correctly. Condone multiplication by $\frac{-1}{-1}$ and cancelling of e^x without comment. Equate denominator to zero and substitute for y or for e^x in the equation of the curve Obtain equation of the form $ae^{3x} = b$ or $cy^3 = d$ Obtain $x = \ln 2$ A1 Accept $\frac{1}{3} \ln 8$ ISW Obtain $y = 1$ A1 Question 87		State correct derivative of y^2e^x with respect to x	В1	$2ye^{x}\frac{dy}{dx}+y^{2}e^{x}$
Obtain $\frac{dy}{dx} = \frac{2y - y}{2y - e^x}$ Condone multiplication by $\frac{-1}{-1}$ and cancelling of e^x without comment. (b) Equate denominator to zero and substitute for y or for e^x in the equation of the curve Obtain equation of the form $ae^{3x} = b$ or $cy^3 = d$ Obtain $x = \ln 2$ Obtain $y = 1$ A1 Question 87		Equate attempted derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1	
without comment. Equate denominator to zero and substitute for y or for e^x in the equation of the curve Obtain equation of the form $ae^{3x} = b$ or $cy^3 = d$ Obtain $x = \ln 2$ Obtain $y = 1$ A1 Question 87		$dv = 2ve^x - v^2$	A1	Obtain the given answer correctly.
(b) Equate denominator to zero and substitute for y or for e^x in the equation of the curve Obtain equation of the form $ae^{3x} = b$ or $cy^3 = d$ Obtain $x = \ln 2$ Obtain $y = 1$ A1 Question 87		Obtain $\frac{\sqrt{y}}{dx} = \frac{\sqrt{y}}{2y - e^x}$		Condone multiplication by $\frac{-1}{-1}$ and cancelling of e^x
Obtain equation of the form $ae^{3x} = b$ or $cy^3 = d$ Obtain $x = \ln 2$ Obtain $y = 1$ Obtain $y = 1$ A1 Question 87				1
Obtain $x = \ln 2$ Obtain $y = 1$ A1 Accept $\frac{1}{3} \ln 8$ ISW A1 Question 87	(b)		*M1	
Obtain $y = 1$ Question 87		Obtain equation of the form $ae^{3x} = b$ or $cy^3 = d$	DM1	$(e^{3x} = 8, y^3 = 1)$ SOI
Question 87		Obtain $x = \ln 2$	A1	Accept $\frac{1}{3} \ln 8$ ISW
Question 87		Obtain $y = 1$	A1	
			4	
	Que		1	

Use correct product rule	M1	
Obtain correct derivative in any form	A1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{1-2x} - 2x\mathrm{e}^{1-2x}$
Equate derivative to zero and solve for x	M1	
Obtain $x = \frac{1}{2}$ and $y = \frac{1}{2}$	A1	
	4	///
Use a correct method for determining the nature of a stationary point	M1	e.g. $\frac{d^2 y}{dx^2} = -2e^{1-2x} - 2(1-2x)e^{1-2x}$
Show that it is a maximum point	A1	-,0
· Satur	2	

State $\frac{dx}{d\theta} = \sin \theta$ or $\frac{dy}{d\theta} = -\sin \theta + \frac{1}{2}\sin 2\theta$	B1	
Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \div \frac{\mathrm{d}x}{\mathrm{d}\theta}$	M1	
Obtain correct answer in any form	A1	e.g. $\frac{-\sin\theta + \frac{1}{2}\sin 2\theta}{\sin \theta}$
Use double angle correctly to obtain $\frac{dy}{dx}$ in terms of θ	M1	$\sin 2\theta = 2\sin \theta \cos \theta$
Obtain the given answer with no errors seen – $2\sin^2\left(\frac{1}{2}\theta\right)$	A1	AG. Requires correct cancellation of ALL $\sin \theta$ terms and $\cos \theta = 1 - 2\sin^2\left(\frac{1}{2}\theta\right)$ seen SC For incorrect signs, consistent throughout max. B0, M1, A0, M1, A1
	5	

Question 89

(a)

Use chain rule at least once	M1	Needs $\frac{dy}{dt} = \frac{1}{\tan t} \frac{d}{dt} (\tan t)$ or $\frac{dx}{dt} = (-1)(\cos^{-2}t) \frac{d}{dt} (\cos t)$. BOD if $+$ and $(-1)(-1)$ not seen. $\frac{dx}{dt} = \sec t \tan t$ (from List of Formulae MF19) M1 A1. If $\frac{dx}{dt} = -\sec t \tan t$ M1 A0.
Obtain $\frac{dx}{dt} = \sec t \tan t$	A1	OE e.g. $\sin t (\cos t)^{-2}$. If e.g. $\frac{dx}{dt} = \sec x \tan x$ or $\sec \theta \tan \theta$ or $\sec t \tan x$, condone recovery on next line.
Obtain $\frac{dy}{dt} = \frac{\sec^2 t}{\tan t}$	A1	OE e.g. $\frac{1}{\sin t \cos t}$. If e.g. $\frac{dy}{dt} = \frac{\sec^2 x}{\tan x}$ or $\frac{\sec^2 \theta}{\tan \theta}$, condone recovery on next line. Only penalise notation errors once in $\frac{dx}{dt}$ and $\frac{dy}{dt}$ if no recovery.
Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	M1	Allow even if previous M0 scored, but must be using derivatives.
Obtain given answer $\frac{\cos t}{\sin^2 t}$	A1	AG After $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ used, any notation error A0. Must cancel $\cos t$ correctly.
	5	

(b)	State or imply $t = \frac{1}{4}\pi$ when $y = 0$	B1	
	Form the equation of the tangent at $y = 0$ or find c	M1	$x = \sqrt{2}$, $\frac{dy}{dx} = \sqrt{2}$ and $y = 0$, their coordinates and gradient used in $y = mx + c$.
	Obtain answer $y = \sqrt{2}x - 2$	A1	OE e.g. $y = \sqrt{2} (x - \sqrt{2})$ ISW. Allow $y = 1.41x - 2[.00]$ or $1.41(x - 1.41)$.
		3	

(a)	Use correct product rule or quotient rule, and attempt at chain rule	M1	$ke^{-4x} \tan x + e^{-4x} \sec^2 x \text{ or } \frac{e^{4x} \sec^2 x - \tan x (ke^{4x})}{(e^{4x})^2}$ Need to see d(tan x)/dx = sec ² x (formula sheet) and attempt at ke^{-4x} , where $k \neq 1$.
	Obtain correct derivative in any form	A1	$-4e^{-4x} \tan x + e^{-4x} \sec^2 x \text{ or } \frac{e^{4x} \sec^2 x - \tan x (4e^{4x})}{(e^{4x})^2}$
	Use trigonometric formulae to express derivative in the form $ke^{-4x} \sin x \cos x \sec^2 x + ae^{-4x} \sec^2 x \text{ or } ke^{-4x} \frac{\sin x \cos x}{\cos x \cos x} + ae^{-4x} \sec^2 x \text{ or } \sec^2 x (ke^{-4x} \sin x \cos x + ae^{-4x})$ Allow $\frac{1}{\cos^2 x}$ instead of $\sec^2 x$	M1	Need to use $\frac{\tan x}{\sec^2 x} = \sin x \cos x$ or $\tan x = \frac{\sin x}{\cos x} \cdot \frac{\cos x}{\cos x}$ OE. M1 is independent of previous M1, but expression must be of appropriate form.
	Obtain correct answer with $a = 1$ and $b = -2$	A1	At least one line of trigonometric working is required from $-4e^{-4x} \tan x + e^{-4x} \sec^2 x$ to given answer $\sec^2 x(1-2\sin 2x) e^{-4x}$ with elements in any order. If only error: $4\sin x \cos x = 4\sin 2x$ M1 A1 M1 A0.
		4	/ / /
(b)	Equate derivative to zero and use correct method to solve for x	M1	$\sin 2x = \frac{1}{2}$, hence $x = \frac{1}{2}\sin^{-1}\frac{1}{2}$ or $x = \tan^{-1}(2 \pm \sqrt{3})$ Allow M1 for correct method for non-exact value.
	Obtain answer, e.g. $x = \frac{1}{12}\pi$	A1	[0.262 M1 A0]
	Obtain second answer, e.g. $\frac{5}{12}\pi$ and no other in the given interval	A1 FT	FT $\frac{\pi - their 2x}{2}$ if exact values; x must be $<\frac{\pi}{2}$. Ignore answers outside the given interval. Treat answers in degrees as a misread. 15°, 75°. SC No values found for a and b in 4(a) but chooses values in 4(b): max M1 for x .
		3	

(a)	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$	B1	
	State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3	B1	Allow B1 B1 for $(3x^2dx +)6xydx + 3x^2dy - 3y^2dy = 0$
	Equate attempted derivative of left-hand side to zero and solve to obtain an equation with $\frac{dy}{dx}$ as subject	M1	Allow if zero implied by subsequent working. Allow if recover from an extra $\frac{dy}{dx} =$ at the beginning of the left-hand side.
	Obtain $\frac{dy}{dx} = \frac{x^2 + 2xy}{y^2 - x^2}$ correctly	A1	AG Accept y' for $\frac{dy}{dx}$.
		4	
(b)	Equate numerator to zero	*M1	Must be using the given derivative.
	Obtain $x = -2y$, or equivalent	A1	An equation with x or y as the subject SOI.
	Use $x^3 + 3x^2y - y^3 = 3$ to obtain an equation in x or y	DM1	$-8y^3 + 12y^3 - y^3 = 3$ or $x^3 - \frac{3}{2}x^3 + \frac{1}{8}x^3 = 3$ or any equivalent form (do not need to evaluate powers).
	Obtain the point (-2, 1) and no others from solving their cubic equation	A1	Allow if each component stated separately. ISW.
	State the point $(0, -\sqrt[3]{3})$, or equivalent from correct work	B1	Accept $(0, \sqrt[3]{-3})$, or $(0, -1.44)$ (-1.44225). Allow if each component stated separately. ISW.
		5	

Use the correct product rule and then the chain rule to differentiate either $\cos^3 x$ or $\sqrt{\sin x}$	M1	e.g. two terms with one part of $\frac{dy}{dx} = p \cos^2 x \sin x \sqrt{\sin x} + q \frac{\cos^3 x \cos x}{\sqrt{\sin x}}.$
Obtain correct derivative in any form e.g. $\frac{dy}{dx} = -3\cos^2 x \sin x \sqrt{\sin x} + \frac{\cos^3 x \cos x}{2\sqrt{\sin x}}$	A1 A1	A1 for each correct term substituted in the complete derivative.
Equate their derivative to zero and obtain a horizontal equation with positive integer powers of $\sin x$ and/or $\cos x$ from an equation including $\sqrt{\sin x}$ or $\frac{1}{\sqrt{\sin x}}$ using sensible algebra.	M1	e.g. $-3\cos^2 x \sin^2 x + \frac{1}{2}\cos^4 x = 0$
Use correct formula(s) to express <i>their</i> equation/derivative in terms of one trigonometric function	M1	Can be awarded before the previous M1. May involve more than one trigonometric term.
Obtain $7\cos^2 x = 6$, $7\sin^2 x = 1$, or $6\tan^2 x = 1$, or equivalent, and obtain answer $x = 0.388$	A1	CAO. The question asks for 3 sf. Ignore additional answers outside $\left(0, \frac{\pi}{2}\right)$. 22.2° is A0.
	6	

State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3	B1	
State or imply $2y + 2x \frac{dy}{dx}$ as derivative of $2xy$	B1	
Complete differentiation and equate attempted derivative to zero and solve for $\frac{dy}{dx}$	M1	
Obtain answer $-\frac{3x^2 + 2y}{3y^2 + 2x}$	A1	
	4	
Find gradient at either $(0, -2)$ or $(-2, 0)$	M1	
Obtain answers $\frac{1}{3}$ and 3	A1 A1	
Use $\tan(A\pm B)$ formula to find $\tan \alpha$	M1	
Obtain answer $\tan \alpha = \frac{4}{3}$	A1	
	5	

State or imply $\frac{dx}{dt} = 2 - \sec^2 t$ or $\frac{dy}{dt} = 2 \frac{\cos 2t}{\sin 2t}$	B1	-111
Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
Obtain correct answer in any form	A1	///
Use double angle formula to express derivative in terms of $\cos x$ and $\sin x$	M1	
Obtain the given answer correctly	A1	AG
12,	5	0.//

Use correct product rule on given expression	*M1	
Obtain correct derivative in any form	A1	e.g. $\cos x \sin 2x + 2 \sin x \cos 2x$
Use correct double angle formulae to express derivative in terms of $\sin x$ and $\cos x$	*M1	
Equate derivative to zero and obtain an equation in one trig variable	DM1	dependent on the 2 previous M Marks.
Obtain $3\sin^2 x = 2$, $3\cos^2 x = 1$ or $\tan^2 x = 2$	A1	OE
Solve and obtain $x = 0.955$	A1	3 sf only. Final answer in degrees is A0. Ignore any attempt to find the corresponding value of <i>y</i> .

Use correct product or quotient rule	*M1	
Obtain correct derivative in any form	A1	e.g. $\frac{dy}{dx} = -e^{-\frac{x}{3}} - \frac{1}{3}(3-x)e^{-\frac{x}{3}}$
Equate their derivative to zero and solve for x	DM1	
Obtain $x = 6$	A1	
Obtain $y = -3e^{-2}$	A1	Or exact equivalent.
	5	

Question 97

(a)	Obtain $\frac{dx}{dt} = e^{2t} + 2te^{2t}$	В1	OE
	Use $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$	M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2t+1}{\mathrm{e}^{2t}\left(1+2t\right)}.$
	Obtain the given answer $\frac{dy}{dx} = e^{-2t}$	A1	AG Need to see $e^{2t} (1 + 2t)$ in denominator.
		3	
(b)	Obtain $x = -e^{-2}$ or $-\frac{1}{e^2}$ and $y = 3$ at $t = -1$	B1	
	Obtain gradient of normal = $-e^{-2}$ or $-\frac{1}{e^2}$	B1	
	$x = 0$ substituted into equation of normal or use of gradients to give $y = 3 - \frac{1}{e^4}$ with no errors	B1	Equation of normal $y-3 = -e^{-2}(xe^{-2})$. AG SC Decimals B0 B1 B0 - 0.135.
		3	/ / /

Use the product rule correctly	*M1	$x^3 d/dx(\ln x) + d/dx(x^3) \ln x.$	
Obtain the correct derivative in any form	A1	e.g. $\frac{x^3}{x} + 3x^2 \ln x$.	
Equate derivative to zero and solve exactly for x	DM1	Reaching $x = e^a$.	
Obtain answer $\left(\frac{1}{\sqrt[3]{e}}, -\frac{1}{3e}\right)$ or exact equivalent	A1	ISW	
	4		

Use the product rule correctly to obtain $p(x+5)(3-2x)^n + q(3-2x)^{\frac{1}{2}}$	*M1	Allow with incorrect chain rule. BOD over sign errors unless an incorrect rule is quoted.
Obtain correct derivative in any form	A1	e.g. $-(x+5)(3-2x)^{\frac{1}{2}} + (3-2x)^{\frac{1}{2}}$.
Equate derivative to zero and obtain a linear equation	DM1	Allow with surd factor e.g. $(3-2x)^{-\frac{1}{2}}(-(x+5)+(3-2x))=0$.
Obtain a correct linear equation.	A1	e.g. $-(x+5)+3-2x=0$.
Obtain answer $\left(-\frac{2}{3}, \frac{13\sqrt{39}}{9}\right)$.	A1	Or exact equivalent e.g. $\left(-\frac{2}{3}, \frac{13\sqrt{13}}{3\sqrt{3}}\right)$ or $\left(-\frac{2}{3}, \frac{\sqrt{2197}}{\sqrt{27}}\right)$.
		Accept with x, y stated separately. ISW
Alternative Method for Question 10(a)	39	
Obtain y^2 and differentiate	*M1	Ignore their left hand side i.e. their $\frac{d}{dx}y^2$.
Obtain correct derivative in any form	A1	e.g. $-6x^2 - 34x - 20$.
Equate derivative to zero and solve for x	DM1	
Obtain $-\frac{2}{3}$	A1	Ignore –5 if seen.

Question 100

State $\frac{dy}{d\theta} = 1 - 2\sin\theta$	B1	Ignore left side throughout dx/dt , dy/dt , dx , dy but must see $\frac{dy}{dx}$ for final A1.
Use correct quotient rule, or product rule if rewrite x as $\cos \theta (2 - \sin \theta)^{-1}$	M1	Incorrect formula seen M0 A0 otherwise BOD.
Obtain $\frac{dx}{d\theta} = \frac{-(2-\sin\theta)\sin\theta + \cos^2\theta}{(2-\sin\theta)^2}$ o.e.	A ₁	$-\sin\theta(2-\sin\theta)^{-1}-\cos\theta(2-\sin\theta)^{-2}(-\cos\theta)$ or equivalent.
Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \div \frac{\mathrm{d}x}{\mathrm{d}\theta}$	M1	$\left(\frac{dy}{dx} = (1 - 2\sin\theta) + \frac{1 - 2\sin\theta}{(2 - \sin\theta)^2}\right).$ Allow M1 even if errors in both derivatives.
Obtain $\frac{dy}{dx} = (2 - \sin \theta)^2$.	A1	AG – must see working in above cell to gain final A1. Allow $\cos^2 \theta + \sin^2 \theta = 1$ to be implied. x instead of θ or missing θ more than twice on right side then A0 final mark.
	5	

ISW

5

aconom 101		
State or imply $6y \frac{dy}{dx}$ as the derivative of $3y^2$	B1	Allow y' for $\frac{dy}{dx}$ throughout. Accept $\frac{\partial f}{\partial x} = 6x + 4y$.
State or imply $4x \frac{dy}{dx} + 4y$ as the derivative of $4xy$	B1	Accept $\frac{\partial f}{\partial y} = 4x + 6y$.
Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1	Allow an extra $\frac{dy}{dx}$ in front of their differentiated equation. Allow if '= 0' is implied but not seen. Allow $\frac{dy}{dx} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$
Obtain $\frac{dy}{dx} = -\frac{3x + 2y}{2x + 3y}$	A1	AG – must come from correct working. The position of the negative must be clear.
	4	
Equate $\frac{dy}{dx}$ to -2 and solve for x in terms of y or for y in terms of x	*M1	Must be using the given derivative.
Obtain $x = -4y$ or $y = -\frac{x}{4}$	A1	Seen or implied by correct later work.
Substitute their $x = -4y$ or their $y = -\frac{x}{4}$ in curve equation	DM1	Allow unsimplified.
Obtain $y = \pm \frac{1}{\sqrt{7}}$ or $x = \pm \frac{4}{\sqrt{7}}$	A1	Or exact equivalent. Or $x = \frac{4}{\sqrt{7}}$ and $y = -\frac{1}{\sqrt{7}}$ or exact equivalent.
Obtain both pairs of values	A1	Or $x = -\frac{4}{\sqrt{7}}$ and $y = \frac{1}{\sqrt{7}}$ or exact equivalent. A1 A0 for incorrect final pairing.
	5	

(a)	State or imply $2xy + x^2 \frac{dy}{dx}$ as derivative of x^2y	B1	Accept partial: $\frac{\partial}{\partial x} \to 2xy$.
	State or imply $2ay\frac{dy}{dx}$ as derivative of ay^2	B1	Accept partial: $\frac{\partial}{\partial y} \rightarrow x^2 - 2ay$.
	Equate attempted derivative to zero and solve for $\frac{dy}{dx}$	M1	
	Obtain answer $\frac{dy}{dx} = \frac{2xy}{2ay - x^2}$ from correct working	A1	AG
		4	
(b)	State or imply $2ay - x^2 = 0$	*M1	
	Substitute into equation of curve to obtain equation in x and a or in y and a	DM1	e.g. $2ay^2 - ay^2 = 4a^3$ or $\frac{x^4}{2a} - \frac{x^4}{4a} = 4a^3$.
	Obtain one correct point	A1	e.g. (2a, 2a).
	Obtain second correct point and no others	A1	e.g. (-2a, 2a).
		4	SC: Allow A1 A0 for $x = \pm 2a$ or for $y = 2a$.

