A-level

Topic : Integral Calculus

May 2013-May 2023

Answers

(a)	Carry out integration by parts and reach $ax^2 \ln x + b \int \frac{1}{2} x^2 dx$	M1*	
	Obtain $2x^2 \ln x - \int \frac{1}{x} \cdot 2x^2 dx$	A1	
	Obtain $2x^2 \ln x - x^2$ Use limits, having integrated twice	A1 M1 (dep*)	
	Confirm given result 56 ln 2 – 12	A1	[5]
(b)	State or imply $\frac{du}{dx} = 4\cos 4x$	B1	
	Carry out complete substitution except limits	M1	
	Obtain $\int (\frac{1}{4} - \frac{1}{4}u^2) du$ or equivalent	A1	
	Integrate to obtain form $k_1 u + k_2 u^3$ with non-zero constants k_1, k_2	M1	
	Use appropriate limits to obtain $\frac{11}{96}$	A1	[5]
Que	stion 2		
(i)	Use correct quotient or chain rule to differentiate sec x	M1	
	Obtain given derivative, sec x tan x, correctly	A1	
	Use chain rule to differentiate y Obtain the given answer	M1 A1	[4]
	Obtain the given answer	AI	נדן
(ii)	Using $dx\sqrt{3}\sec^2\theta d\theta$, or equivalent, express integral in terms of θ and $d\theta$	M1	
	Obtain $\int \sec\theta d\theta$	A1	
	Use limits $\frac{1}{6}\pi$ and $\frac{1}{3}\pi$ correctly in an integral form of the form $k \ln(\sec\theta + \tan\theta)$	$(n\theta)$ M1	
	Obtain a correct exact final answer in the given form, e.g. $\ln\left(\frac{2+\sqrt{3}}{\sqrt{3}}\right)$	A1	[4]
Que	stion 3		
(i)	State $R = 2$	B1	
	Use trig formula to find α	M1	
	Obtain $\alpha = \frac{1}{6}\pi$ with no errors seen	A1	[3]
(ii)		M1*	
	State correct indefinite integral $\frac{1}{4} \tan\left(x - \frac{1}{6}\pi\right)$	A1∳	
	Substitute limits Obtain the given answer correctly	M1 (dep*) A1	[4]

Integrate by parts and reach
$$kx^{\frac{1}{2}} \ln x - m \int x^{\frac{1}{2}} \cdot \frac{1}{x} dx$$
 M1*

Obtain
$$2x^{\frac{1}{2}} \ln x - 2 \int \frac{1}{x^{\frac{1}{2}}} dx$$
, or equivalent A1

Integrate again and obtain $2x^{\frac{1}{2}} \ln x - 4x^{\frac{1}{2}}$, or equivalentA1Substitute limits x = 1 and x = 4, having integrated twiceM1(dep*)Obtain answer $4(\ln 4 - 1)$, or exact equivalentA1

Question 5

(i)	Use Pythagoras	M1	
	Use the sin2 <i>A</i> formula	M1	
	Obtain the given result	A1	[3]

(ii) Integrate and obtain a $k \ln \sin \theta$ or $m \ln \cos \theta$ term, or obtain integral of the form $p \ln \tan \theta$ M1* Obtain indefinite integral $\frac{1}{2} \ln \sin \theta - \frac{1}{2} \ln \cos \theta$, or equivalent, or $\frac{1}{2} \ln \tan \theta$ A1

Question 6

Carry out complete substitution including the use of
$$\frac{du}{dx} = 3$$
 M1

Obtain
$$\int \left(\frac{1}{3} - \frac{1}{3u}\right) du$$
 A1

Integrate to obtain form
$$k_1 u + k_2 \ln u$$
 or $k_1 u + k_2 \ln 3u$ where $k_1 k_2 \neq 0$ M1

Obtain
$$\frac{1}{3}(3x+1) - \frac{1}{3}\ln(3x+1)$$
 or equivalent, condoning absence of modulus signs and $+c$ A1 [4]

M1

Question 7

State
$$\frac{du}{dx} = 3\sec^2 x$$
 or equivalent B1

Express integral in terms of *u* and *du* (accept unsimplified and without limits)

Obtain
$$\int \frac{1}{3} u^{\frac{1}{2}} du$$
 A1

Integrate
$$Cu^{\frac{1}{2}}$$
 to obtain $\frac{2C}{3}u^{\frac{3}{2}}$ M1

Obtain
$$\frac{14}{9}$$
 A1 [5]

(i)	Use product rule Obtain derivative in any correct form Differentiate first derivative using the product rule	M1 A1 M1	
	Obtain second derivative in any correct form, e.g. $-\frac{1}{2}\sin\frac{1}{2}x - \frac{1}{4}x\cos\frac{1}{2}x - \frac{1}{2}\sin\frac{1}{2}x$	A1	
	Verify the given statement	A1	5
(ii)	Integrate and reach $kx \sin \frac{1}{2}x + l \int \sin \frac{1}{2}x dx$	M1*	
	Obtain $2x \sin \frac{1}{2}x - 2 \int \sin \frac{1}{2}x dx$, or equivalent	A1	
	Obtain indefinite integral $2x\sin\frac{1}{2}x + 4\cos\frac{1}{2}x$	A1	
	Use correct limits $x = 0$, $x = \pi$ correctly Obtain answer $2\pi - 4$, or exact equivalent	M1(dep*) A1	5
Que	stion 9		
(i)	Use a correct method for finding a constant	M 1	
	Obtain one of $A = 3$, $B = 3$, $C = 0$	A1	
	Obtain a second value	A1	
	Obtain a third value	A1	4
(ii)	Integrate and obtain term $-3\ln(2-x)$	В1√	
	Integrate and obtain term of the form $k \ln(2 + x^2)$	M 1	
	Obtain term $\frac{3}{2}\ln(2+x^2)$	A1√ [^]	
	Substitute limits correctly in an integral of the form $a \ln(2-x) + b \ln(2+x^2)$, where ab		_
	Obtain given answer after full and correct working	A1	5
Que	stion 10		
(i)	Substitute for x and dx throughout using $u = \sin x$ and $du = \cos x dx$, or equivalent	M1	
	Obtain integrand e^{2u}	A1	
	Obtain indefinite integral $\frac{1}{2}e^{2u}$	A1	
	Use limits $u = 0$, $u = 1$ correctly, or equivalent	M 1	
	Obtain answer $\frac{1}{2}(e^2 - 1)$, or exact equivalent	A1	5
(ii)	•	M1	
	Obtain correct terms of the derivative in any form, e.g. $2\cos x e^{2\sin x} \cos x - e^{2\sin x} \sin x$	A1 + A1	
	Equate derivative to zero and obtain a quadratic equation in $\sin x$	M1	
	Solve a 3-term quadratic and obtain a value of x Obtain answer 0.896	M1 A1	6
		AI	U

(i)	State or	imply ordinates 2, 1.1547, 1, 1.1547	B1	
	Use cor	rect formula, or equivalent, with $h = \frac{1}{6}\pi$ and four ordinates	M1	
		unswer 1.95	A1	[3]
(ii)		cognisable sketch of $y = \operatorname{cosec} x$ for the given interval	B1	
	Justify a	a statement that the estimate will be an overestimate	B1	[2]
Que	stion 12			
(i)	State or	imply correct ordinates 1, 0.94259, 0.79719, 0.62000	B1	
		ect formula or equivalent with $h = 0.1$ and four y values	M1	[2]
	Obtain 0	.255 with no errors seen	A1	[3]
(ii)	Obtain c	r imply $a = -6$	B1	
		⁴ term including correct attempt at coefficient	M1	
	Obtain c	r imply $b = 27$	A1	
	Either	Integrate to obtain $x - 2x^3 + \frac{27}{5}x^5$, following their values of <i>a</i> and <i>b</i>	B1√*	
		Obtain 0.259	B1	
	Or	Use correct trapezium rule with at least 3 ordinates	M1	
		Obtain 0.259 (from 4)	A1	[5]
Que	stion 13			
Stat	e or imply	$\frac{du}{dx} = e^x$	B1	
		oughout for x and dx	M1	
Obt	ain ∫	$\frac{u}{-3u+2}$ du or equivalent (ignoring limits so far)	A1	
	J_{u^2}	-3u+2		
Stat	e or imply	y partial fractions of form $\frac{A}{u+2} + \frac{B}{u+1}$, following their integrand	B1	
		prrect process to find at least one constant for their integrand	M1	
Obt	ain correc	$t \frac{2}{u+2} - \frac{1}{u+1}$	A1	
		u+2 $u+1$		
Inte	grate to o	btain $a \ln(u+2) + b \ln(u+1)$	M1	
		$(+2) - \ln(u+1)$ or equivalent, follow their A and B	A1√	
App	oly approp	riate limits and use at least one logarithm property correctly	M1	
Obt	ain given	answer $\ln \frac{8}{5}$ legitimately	A1	[10]
		2		

Attempt calculation of at least 3 ordinatesM1Obtain 9, 7, 1, 17A1Use trapezium rule with $h = 1$ M1			
Obt	ain $\frac{1}{2}(9+14+2+17)$ or equivalent and hence 21	A1	[4]
Question 15			
(a)	Use identity $\tan^2 2x = \sec^2 2x - 1$ Obtain integral of form $ax + b \tan 2x$	B1 M1	
	Obtain correct $3x + \frac{1}{2} \tan 2x$, condoning absence of $+c$	A1	[3]
(b)	State $\sin x \cos \frac{1}{2} \pi + \cos x \sin \frac{1}{6} \pi$	B1	
	Simplify integrand to $\cos \frac{1}{6} \pi + \frac{\cos x \sin \frac{1}{6} \pi}{\sin x}$ or equivalent	B1	
	Integrate to obtain at least term of form $a \ln(\sin x)$	*M1	
	Apply limits and simplify to obtain two terms	M1 dep *M	
	Obtain $\frac{1}{8} \pi \sqrt{3} - \frac{1}{2} \ln(\frac{1}{\sqrt{2}})$ or equivalent	A1	[5]
Ques	stion 16		
(i)	Use product rule to find first derivative	M1	
	Obtain $2xe^{2-x} - x^2e^{2-x}$	A1	
	Confirm $x = 2$ at M	A1	[3]
(ii)	Attempt integration by parts and reach $\pm x^2 e^{2-x} \pm \int 2x e^{2-x} dx$	*M1	
	Obtain $-x^2 e^{2-x} + \int 2x e^{2-x} dx$	A1	
	Attempt integration by parts and reach $\pm x^2 e^{2-x} \pm 2xe^{2-x} \pm 2e^{2-x}$	*M1	
	Obtain $-x^2e^{2-x} - 2xe^{2-x} - 2e^{2-x}$	Al	
	Use limits 0 and 2 having integrated twice	M1 dep *M	[
	Obtain $2e^2 - 10$	A1	[6]
Question 17			
State or imply ordinates 0, 0.405465, 0.623810, 0.693147 B1			
Use correct formula, or equivalent, with $h = \frac{1}{2}\pi$ and four ordinates			
Obtain answer 0.72		A1	[3]

•			
(i)	State or imply $du = -\frac{1}{2\sqrt{x}} dx$, or equivalent	B1	
	Substitute for x and dx throughout	M1	
	Obtain integrand $\frac{\pm 2(2-u)^2}{u}$, or equivalent	A1	
	Show correct working to justify the change in limits and obtain the given answer with no errors seen	th A1	[4]
(ii)	Integrate and obtain at least two terms of the form $a \ln u$, bu , and cu^2	M1*	
	Obtain indefinite integral $8 \ln u - 8u + u^2$, or equivalent Substitute limits correctly Obtain the given answer correctly having shown sufficient working	A1 M1(dep*) A1	[4]
Que	estion 19		
(i)	State or imply $f(x) = \frac{A}{2x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$	B1	
	Use a relevant method to determine a constant Obtain one of the values $A = 2$, $B = -1$, $C = 3$ Obtain the remaining values A1 +	M1 A1 A1	5
	[Apply an analogous scheme to the form $\frac{A}{2x-1} + \frac{Dx+E}{(x+2)^2}$; the values being $A = 2$,		
	D = -1, E = 1.]		
(ii)	Integrate and obtain terms $\frac{1}{2} \cdot 2 \ln(2x-1) - \ln(x+2) - \frac{3}{x+2}$ B1 $\sqrt[4]{}$	+ B1√ + B1√	
	Use limits correctly, namely substitution must be seen in at least two of the partial fit to obtain M1 Integrate all 3 partial fractions and substitute in all three partial fraction	ns	
	for A1 since AG. Obtain the given answer following full and exact working	M1 A1	5
	Satpre?		-

(i)	Use the quotient rule Obtain correct derivative in any form Equate derivative to zero and solve for x Obtain answer $x = \sqrt[3]{2}$, or exact equivalent	M1 A1 M1 A1	[4]
(ii)	State or imply indefinite integral is of the form $k \ln(1 + x^3)$	M1	
	State indefinite integral $\frac{1}{3}\ln(1+x^3)$	A1	
	Substitute limits correctly in an integral of the form $k \ln(1 + x^3)$	M1	
	State or imply that the area of R is equal to $\frac{1}{3}\ln(1+p^3) - \frac{1}{3}\ln 2$, or equivalent	A1	
	Use a correct method for finding <i>p</i> from an equation of the form $\ln(1 + p^3) = a$		
	or $\ln((1+p^3)/2) = b$	M 1	
	Obtain answer $p = 3.40$	A1	[2]
Que	stion 21		
	te $du = 3 \sin x dx$ or equivalent	B 1	
	e identity $\sin 2x = 2 \sin x \cos x$	B1	
	ry out complete substitution, for x and dx	M1	
Ob	tain $\int \frac{8-2u}{\sqrt{u}} du$, or equivalent	A1	
Inte	egrate to obtain expression of form $au^{\frac{1}{2}} + bu^{\frac{3}{2}}$, $ab \neq 0$	M1*	
Ob	tain correct $16u^{\frac{1}{2}} - \frac{4}{3}u^{\frac{3}{2}}$	A1	
00	3		
	ply correct limits correctly	dep M1*	
Ob	tain $\frac{20}{3}$ or exact equivalent	A1	[8]

\sim \cdot	00
()magtion	
Question	
C	

(i)	Either	Substitute $x = -1$ and evaluate Obtain 0 and conclude $x + 1$ is a factor	M1 A1	
	<u>Or</u>	Divide by $x+1$ and obtain a constant remainder Obtain remainder = 0 and conclude $x+1$ is a factor	M1 A1	[2]
(ii)		division, or equivalent, at least as far as quotient $4x^2 + kx$	M1	
		complete quotient $4x^2 - 5x - 6$ m $\frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{4x+3}$	A1 A1	
	Use relev	vant method for finding at least one constant	M1	
		ne of $A = -2$, $B = 1$, $C = 8$ Il three values	A1 A1	
	Integrate	to obtain three terms each involving natural logarithm of linear form $2 \ln(x+1) + \ln(x-2) + 2 \ln(4x+3)$, condoning no use of modulus signs	M1	
		nce of $\dots + c$	A1	[8]
Que	stion 23			
(i)		mply $dx = \sqrt{3} \sec^2 \theta d\theta$	B1	
		e for x and dx throughout e given answer correctly	M1 A1	[3]
(ii)	Replace	integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$	B1	
	Obtain in	ntegral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$	B 1√	
	Substitut	e limits correctly in an integral of the form $c \sin 2\theta + b\theta$, where $cb \neq 0$	M1	
	Obtain a	nswer $\frac{1}{12}\sqrt{3\pi} + \frac{3}{8}$, or exact equivalent	A1	[4]
Que	stion 24			
(i)		A = 3	B1	
		evant method to find a constant ne of $B = -4$, $C = 4$ and $D = 0$	M1 A1	
		second value	A1	
	Obtain th	he third value	A1	[5]
(ii)	Integrate	and obtain $3x - 4 \ln x$	B 1√	
	Integrate	and obtain term of the form $k \ln(x^2 + 2)$	M1	
	Obtain to	erm $2\ln(x^2+2)$	A1√	
	Substitut	e limits in an integral of the form $ax + b \ln x + c \ln(x^2 + 2)$, where $abc \neq 0$	M1	
	Obtain g	iven answer $3 - \ln 4$ after full and correct working	A1	[5]

Integrate by parts and reach $axe^{-2x} + b\int e^{-2x} dx$ **M1**

Obtain $-\frac{1}{2}xe^{-2x} + \frac{1}{2}\int e^{-2x} dx$, or equivalent **A1** Complete the integration correctly, obtaining $-\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x}$, or equivalent **A1** Use limits x = 0 and $x = \frac{1}{2}$ correctly, having integrated twice **M1 A1**

[5]

Obtain answer $\frac{1}{4} - \frac{1}{2}e^{-1}$, or exact equivalent

Integrate by parts and reach $ax^2 \cos 2x + b \int x \cos 2x dx$	M1*	
Obtain $-\frac{1}{2}x^2\cos 2x + \int x\cos 2x$, or equivalent	A1	
Complete the integration and obtain $-\frac{1}{2}x^2\cos 2x + \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x$, or equivalent Use limits correctly having integrated twice	A1 DM1*	
Obtain answer $\frac{1}{8}(\pi^2 - 4)$, or exact equivalent, with no errors seen	A1	[5]
Question 27		

(i)	State or imply the form $A + \frac{B}{2x+1} + \frac{C}{x+2}$	B1	
	State or obtain $A = 2$	B 1	
	Use a correct method for finding a constant	M1	
	Obtain one of $B = 1, C = -2$	A1	
	Obtain the other value	A1	[5]
(ii)	Integrate and obtain terms $2x + \frac{1}{2}\ln(2x+1) - 2\ln(x+2)$ Substitute correct limits correctly in an integral with terms $a\ln(2x+1)$	B3√ ^k	
	and $b \ln(x+2)$, where $ab \neq 0$	M1	
	Obtain the given answer after full and correct working	A1	[5]

(i)	Substitute	The given form and justify the change in limits $du = 2x dx$, or equivalent for x and dx throughout the given form and justify the change in limits		B1 M1 A1 [3]
(ii)		tegrand to a sum of integrable terms and attempt integration		M1
	Obtain int	egral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent	A1 +	A1
		1 for each error or omission)		
		limits in an integral containing two terms of the form $a \ln u$ and bu^{-2}		M1
	Obtain ans	swer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent		A1
				[5]
Ques	stion 29			
(i)	EITHER:	Use tan 2A formula to express LHS in terms of $\tan \theta$	M1	
		Express as a single fraction in any correct form	A1	
		Use Pythagoras or cos 2 <i>A</i> formula	M1 A1	
		Obtain the given result correctly	AI	
	OR:	Express LHS in terms of sin 2θ , cos 2θ , sin θ and cos θ	M1	
		Express as a single fraction in any correct form	A1	
		Use Pythagoras or $\cos 2A$ formula or $\sin(A - B)$ formula Obtain the given result correctly	M1 A1	[4]
(ii)		and obtain a term of the form $a \ln(\cos 2\theta)$ or $b \ln(\cos \theta)$ (or secant equivalents)	M1*	
		egral $-\frac{1}{2}\ln(\cos 2\theta) + \ln(\cos \theta)$, or equivalent	A1	
		limits correctly (expect to see use of <u>both</u> limits)	DM1	[[4]
		e given answer following full and correct working	A1	[4]
Ques	stion 30			
(i)		prrect product rule	M1	
	Obtain co	rrect derivative in any form, e.g. $(2-2x)e^{\frac{1}{2}x} + \frac{1}{2}(2x-x^2)e^{\frac{1}{2}x}$	A1	
	Equate de	rivative to zero and solve for x	M1	
	Obtain x =	$=\sqrt{5}-1$ only	A1	[4]
		2. 1r . C 1r .		+
(ii)	Integrate	by parts and reach $a(2x - x^2)e^{\frac{1}{2}x} + b\int (2 - 2x)e^{\frac{1}{2}x} dx$	M1*	
	Obtain 2e	$\frac{1}{2}x^{2}(2x-x^{2})-2\int (2-2x)e^{\frac{1}{2}x}dx$, or equivalent	A1	
	Complete	the integration correctly, obtaining $(12x - 2x^2 - 24)e^{\frac{1}{2}x}$, or equivalent	A1	
		x = 0, x = 2 correctly having integrated by parts twice swer 24 – 8e, or <u>exact</u> simplified equivalent	DM1 A1	[5]

-		1		1
(i)	State or imply $du = \frac{1}{2\sqrt{r}} dx$	B 1		
	Substitute for x and dx throughout	M1		
	Justify the change in limits and obtain the given answer	A1		[3]
(ii)	Convert integrand into the form $A + \frac{B}{u+1}$	M1	*	
(11)				
	Obtain integrand $A = 1, B = -2$	A1	^ + A1√	
	Integrate and obtain $u - 2\ln(u + 1)$	AI	/ + AI ∛	
	Substitute limits correctly in an integral containing terms au and $b\ln(u+1)$,	DM		
	where $ab \neq 0$ Obtain the given answer following full and correct working	DM	1	[6]
		A1		[6]
Questi				
(i)	State or imply derivative is $2\frac{\ln x}{x}$			B1
	State or imply gradient of the normal at $x = e$ is $-\frac{1}{2}e$, or equivalent			B 1
	Carry out a complete method for finding the <i>x</i> -coordinate of Q			M1
	Obtain answer $x = e + \frac{2}{e}$, or exact equivalent			A1
		Total:		4
(ii)	Justify the given statement by integration or by differentiation			B1
	4	Total:		1
(iii)	Integrate by parts and reach $ax(\ln x)^2 + b\int x \frac{\ln x}{x} dx$			M1*
	Complete the integration and obtain $x(\ln x)^2 - 2x \ln x + 2x$, or equivalent			A1
	Use limits $x = 1$ and $x = e$ correctly, having integrated twice			DM1
	Obtain exact value e – 2			A1
	Use <i>x</i> - coordinate of <i>Q</i> found in part (i) and obtain final answer $e - 2 + \frac{1}{e}$			B1√

(i)	Remove logarithms correctly and obtain $e^x = \frac{1-y}{y}$	B1
	Obtain the given answer $y = \frac{e^{-x}}{1 + e^{-x}}$ following full working	B1
	Total:	2
(ii)	State integral $k \ln(1 + e^{-x})$ where $k = \pm 1$	*M1
	State correct integral $-\ln(1+e^{-x})$	A1
	Use limits correctly	DM1
	Obtain the given answer $\ln\left(\frac{2e}{e+1}\right)$ following full working	A1
	Total:	4

State	or imply $du = -\sin x dx$	B1
Using	g correct double angle formula, express the integral in terms of u and du	M1
Obta	in integrand $\pm (2u^2 - 1)^2$	A1
Chan	ge limits and obtain correct integral $\int_{\frac{1}{\sqrt{2}}}^{1} (2u^2 - 1)^2 du$ with no errors seen	A1
Subs	titute limits in an integral of the form $au^5 + bu^3 + cu$	M1
Obta	in answer $\frac{1}{15}(7-4\sqrt{2})$, or exact simplified equivalent	A1
	Total:	6
(ii)	Use product rule and chain rule at least once	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and use trig formulae to obtain an equation in $\cos x$ and $\sin x$	M1
	Use correct methods to obtain an equation in $\cos x$ or $\sin x$ only	M1
	Obtain $10\cos^2 x = 9$ or $10\sin^2 x = 1$, or equivalent	A1
	Obtain answer 0.32	A1
	Satpre? Total:	6

'(i)	Use quotient or chain rule	M1
	Obtain given answer correctly	A1
	Total:	2
(ii)	EITHER: Multiply numerator and denominator of LHS by $1 + \sin \theta$	(M1
	Use Pythagoras and express LHS in terms of sec θ and $\tan \theta$	M1
	Complete the proof	A1)
	OR1: Express RHS in terms of $\cos \theta$ and $\sin \theta$	(M1
	Use Pythagoras and express RHS in terms of sin θ	M1
	Complete the proof	A1)
(iii)	Use the identity and obtain integral $2 \tan \theta + 2 \sec \theta - \theta$	B2
	Use correct limits correctly in an integral containing terms $a \tan \theta$ and $b \sec \theta$	M1
	Obtain answer $2\sqrt{2} - \frac{1}{4}\pi$	A1
	Total:	4
Quest	ion 36	
Integ	grate by parts and reach $a\theta \cos \frac{1}{2}\theta + b \int \cos \frac{1}{2}\theta d\theta$	*M1
Com	plete integration and obtain indefinite integral $-2\theta \cos \frac{1}{2}\theta + 4\sin \frac{1}{2}\theta$	A1
Subs	titute limits correctly, having integrated twice	DM1
Obta	in final answer $(4-\pi)/\sqrt{2}$, or exact equivalent	A1
	Total:	4

Questio State o	or imply ordinates 1.6487, 1.3591, 1.4938	B1
	prrect formula, or equivalent, with $h = 1$ and three ordinates	M1
Obtain	answer 2.93 only	A1
	Total:	3
Explai	n why the estimate would be less than E	B
Questio	on 38	I
(i)	State or imply the form $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{3x+2}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = 3$, $B = -2$, $C = -6$	A1
	Obtain a second value	A1
	Obtain the third value [Mark the form $\frac{Ax+B}{x^2} + \frac{C}{3x+2}$ using same pattern of marks.]	A1
	Total:	5
(ii)	Integrate and obtain terms $3 \ln x = \frac{2}{x} - 2 \ln(3x + 2)$ [The FT is on <i>A</i> , <i>B</i> and <i>C</i>] Note: Candidates who integrate the partial fraction $\frac{3x-2}{x^2}$ by parts should obtain $3\ln x + \frac{2}{x} - 3$ or equivalent	B3 FT
	<i>x</i> Use limits correctly, having integrated all the partial fractions, in a solution containing terms $a \ln x + \frac{b}{x} + c \ln (3x + 2)$	M1
	Obtain the given answer following full and exact working	A1
	Total:	5

81

Ques	tion 39	
(i)	Use a relevant method to determine a constant	
	Obtain one of the values $A = 2, B = 2, C = -1$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		4
(ii)	Integrate and obtain terms $2x + 2\ln(x+2) - \frac{1}{2}\ln(2x-1)$ (deduct B1 for each error or omission) [The FT is on <i>A</i> , <i>B</i> and <i>C</i>]	B2 FT
	Substitute limits correctly in an integral containing terms $a \ln(x+2)$ and $b \ln(2x-1)$, where $ab \neq 0$	*M1
	Use at least one law of logarithms correctly	DM1
	Obtain the given answer after full and correct working	A1
-		5
-	tion 40	
(i)	Use correct product or quotient rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain a 3 term quadratic equation in x	M1
	Obtain answers $x = 2 \pm \sqrt{3}$	A1
	Satprep.	4
(ii)	Integrate by parts and reach $k(1+x^2)e^{-\frac{1}{2}x} + l\int xe^{-\frac{1}{2}x} dx$	*M1
	Obtain $-2(1+x^2)e^{-\frac{1}{2}x} + 4\int xe^{-\frac{1}{2}x} dx$, or equivalent	A1
	Complete the integration and obtain $(-18 - 8x - 2x^2)e^{-\frac{1}{2}x}$, or equivalent	A1
	Use limits $x = 0$ and $x = 2$ correctly, having fully integrated twice by parts	DM1
	Obtain the given answer	A1
		5

(i)	State or imply ordinates 0.915929, 1, 1.112485	B 1
	Use correct formula, or equivalent, with $h = 1.2$ and three ordinates	M1
	Obtain answer 2.42 only	A1
		3
(ii)	Justify the given statement	B1
		1
Questi	on 42	•
(i)	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = 2$, $B = 2$, $C = -1$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		4
(ii)	Integrate and obtain terms $2x + 2\ln(x+2) - \frac{1}{2}\ln(2x-1)$ (deduct B1 for each error or omission) [The FT is on <i>A</i> , <i>B</i> and <i>C</i>]	B2 FT
	Substitute limits correctly in an integral containing terms $a \ln(x+2)$ and $b \ln(2x-1)$, where $ab \neq 0$	*M1
	Use at least one law of logarithms correctly	DM1
	Obtain the given answer after full and correct working	A1
		5

(i)	Use correct product or quotient rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain a 3 term quadratic equation in x	M1
	Obtain answers $x = 2 \pm \sqrt{3}$	A1
		4
(ii)	Integrate by parts and reach $k(1+x^2)e^{-\frac{1}{2}x} + l\int xe^{-\frac{1}{2}x} dx$	*M1
	Obtain $-2(1+x^2)e^{-\frac{1}{2}x} + 4\int xe^{-\frac{1}{2}x} dx$, or equivalent	A1
	Complete the integration and obtain $(-18 - 8x - 2x^2)e^{-\frac{1}{2}x}$, or equivalent	A1
	Use limits $x = 0$ and $x = 2$ correctly, having fully integrated twice by parts	DM1
	Obtain the given answer	A1
		5
Quest	ion 44	
State	or imply ordinates 1, 0.8556, 0.6501, 0	B 1
Use	correct formula, or equivalent, with $h = \frac{1}{12}\pi$ and four ordinates	M1
Obta	in answer 0.525	A1
	satprev	3

3(i)	State correct expansion of $\cos(3x + x)$ or $\cos(3x - x)$	B1
	Substitute in $\frac{1}{2}(\cos 4x + \cos 2x)$	M1
	Obtain the given identity correctly AG	A1
		3
(ii)	Obtain integral $\frac{1}{8}\sin 4x + \frac{1}{4}\sin 2x$	B1
	Substitute limits correctly	M1
	Obtain the given answer following full, correct and exact working AG	A1
	6	3

Question 46

(i)

Use a correct method for finding a constant	N
Obtain one of $A = 3$, $B = 1$ and $C = 0$	
Obtain a second value	
Obtain the third value	

(ii)	Integrate and obtain term $\frac{3}{2}\ln(2x+1)$	B1 FT
	(FT on A value)	
	Integrate and obtain term of the form $k \ln(x^2 + 9)$	M1
	Obtain term $\frac{1}{2}\ln(x^2+9)$	A1 FT
	(FT on <i>B</i> value)	
	Substitute limits correctly in an integral of the form $a \ln(2x+1) + b \ln(x^2+9)$, where $ab \neq 0$	M1
	Obtain answer ln 45 after full and correct working	A1
	TPRA	5
Ques	tion 47	I
(i)	State or imply $dx = -2\cos\theta\sin\theta \mathrm{d}\theta$, or equivalent	B1
	Substitute for <i>x</i> and d <i>x</i> , and use Pythagoras	M1
	Obtain integrand $\pm 2\cos^2\theta$	A1
	Justify change of limits and obtain given answer correctly	A1
		4
(ii)	Obtain indefinite integral of the form $a\theta + b\sin 2\theta$	M1*
	Obtain $\theta + \frac{1}{2}\sin 2\theta$	A1
	Use correct limits correctly	M1(dep*)
	Obtain answer $\frac{1}{6}\pi$ with no errors seen	A1
		4

(i)	Use correct double angle formulae and express LHS in terms of $\cos x$ and $\sin x$	М1	$\frac{2\sin x - 2\sin x \cos x}{1 - \left(2\cos^2 x - 1\right)}$
	Obtain a correct expression	Al	
	Complete method to get correct denominator e.g. by factorising to remove a factor of $1 - \cos x$	M1	
	Obtain the given RHS correctly OR (working R to L):	Al	
	$\frac{\sin x}{1+\cos x} \times \frac{1-\cos x}{1-\cos x} = \frac{\sin x - \sin x \cos x}{1-\cos^2 x} $ M1A1 $= \frac{2\sin x - 2\sin x \cos x}{2-2\cos^2 x}$		Given answer so check working carefully
	$=\frac{2\sin x - \sin 2x}{1 - \cos 2x} $ M1A1		
(ii)	State integral of the form $a \ln(1 + \cos x)$	M1*	If they use the substitution $u = 1 + \cos x$ allow M1A1 for $-\ln u$
	Obtain integral $-\ln(1 + \cos x)$	Al	
	Substitute correct limits in correct order	M1(dep)*	
	Obtain answer $\ln\left(\frac{3}{2}\right)$, or equivalent	Al	
Ques (i)	stion 49 Use correct product or quotient rule	4 M1	$\frac{dy}{dx} = -\frac{1}{3}(x+1)e^{-\frac{1}{3}x} + e^{-\frac{1}{3}x}$ or $\frac{dy}{dx} = \frac{e^{\frac{1}{3}x} - (x+1)\frac{1}{3}e^{\frac{1}{3}x}}{e^{\frac{2}{3}x}}$
	Obtain complete correct derivative in any form	Al	
	Equate derivative to zero and solve for x	M1	
	Obtain answer $x = 2$ with no errors seen	Al	
		4	
(ii)	Integrate by parts and reach $a(x+1)e^{\frac{1}{3}x} + b\int e^{\frac{1}{3}x} dx$	M1*	
	Obtain $-3(x+1)e^{\frac{1}{3}x} + 3\int e^{\frac{1}{3}x} dx$, or equivalent	Al	$-3xe^{-\frac{1}{3}x} + \int 3e^{-\frac{1}{3}x} dx - 3e^{-\frac{1}{3}x}$
	Complete integration and obtain $-3(x+1)e^{\frac{1}{3}x} - 9e^{\frac{1}{3}x}$, or	Al	
	equivalent		
	equivalent Use correct limits $x = -1$ and $x = 0$ in the correct order, having integrated twice	M1(dep*)	
	Use correct limits $x = -1$ and $x = 0$ in the correct order,	M1(dep*) A1	

Integ	grate by parts and reach $ax \sin 3x + b \int \sin 3x dx$	M1*
Obta	in $\frac{1}{3}x\sin 3x - \frac{1}{3}\int \sin 3x dx$, or equivalent	A1
Com	plete the integration and obtain $\frac{1}{3}x\sin 3x + \frac{1}{9}\cos 3x$, or equivalent	A1
Subs	titute limits correctly having integrated twice and obtained $ax \sin 3x + b \cos 3x$	M1(dep*)
Obta	in answer $\frac{1}{18}(\pi - 2)$ OE	A1
	Total:	5
Quest	ion 51	
(i)	State answer $R = \sqrt{5}$	B1
	Use trig formulae to find tan α	M1
	Obtain $\tan \alpha = 2$	A1
	Total:	3
ii)	State that the integrand is $3\sec^2(\theta - \alpha)$	B1FT
	State correct indefinite integral $3\tan(\theta - \alpha)$	B1FT
	Substitute limits correctly	M1
	Use $\tan(A \pm B)$ formula	M1
	Obtain the given exact answer correctly	A1
	Total:	5

'(i)	Use product rule	M1*
	Obtain correct derivative in any form	Al
	Equate derivative to zero and obtain an equation in a single trig function	depM1*
	Obtain a correct equation, e.g. $3\tan^2 x = 2$	Al
	Obtain answer $x = 0.685$	Al
		5
(ii)	Use the given substitution and reach $a \int (u^2 - u^4) du$	MI
	Obtain correct integral with $a = 5$ and limits 0 and 1	Al
	Use correct limits in an integral of the form $a\left(\frac{1}{3}u^3 - \frac{1}{5}u^5\right)$	MI
	Obtain answer $\frac{2}{3}$	Al
		4

(i)	State or imply the form $\frac{A}{2-x} + \frac{B}{3+2x} + \frac{C}{(3+2x)^2}$	Bl
	Use a correct method to find a constant	MI
	Obtain one of $A = 1$, $B = -1$, $C = 3$	Al
	Obtain a second value	Al
	Obtain the third value [Mark the form $\frac{A}{2-x} + \frac{Dx+E}{(3+2x)^2}$, where $A = 1, D = -2$ and $E = 0$, B1M1A1A1A1 as above.]	Al
	6	5
(ii)	Integrate and obtain terms $-\ln(2-x) - \frac{1}{2}\ln(3+2x) - \frac{3}{2(3+2x)}$	B3ft
	Substitute correctly in an integral with terms $a \ln (2-x)$, $b \ln (3+2x)$ and $c/(3+2x)$ where $abc \neq 0$	MI
	Obtain the given answer after full and correct working [Correct integration of the A , D , E form gives an extra constant term if integration by parts is used for the second partial fraction.]	Al
		5
Questio (i)	Integrate by parts and reach $a \frac{\ln x}{x^2} + b \int \frac{1}{x} \frac{1}{x^2} dx$	M1*
	Obtain $\pm \frac{1}{2} \frac{\ln x}{x^2} \pm \int \frac{1}{x} \frac{1}{2x^2} dx$, or equivalent	Al

Complete integration correctly and obtain
$$-\frac{\ln x}{2x^2} - \frac{1}{4x^2}$$
, or equivalent 3

(11)	Substitute limits correctly in an expression of the form $a \frac{\ln x}{x^2} + \frac{b}{x^2}$	Ml(dep*)
	or equivalent	
	Obtain the given answer following full and exact working	Al
		2

Use correct quotient or product rule	1
Obtain correct derivative in any form	
Equate numerator to zero	
Use $\cos^2 x + \sin^2 x = 1$ and solve for $\sin x$]
Obtain coordinates $x = -\pi/6$ and $y = \sqrt{3}$ ISW	A1 +
Obtain coordinates $x = -\pi/6$ and $y = \sqrt{3}$ ISW	

State indefinite integral of the form $k \ln (2 + \sin x)$	M1*
Substitute limits correctly, equate result to 1 and obtain $3 \ln (2 + \sin a) - 3 \ln 2 = 1$	Al
Use correct method to solve for <i>a</i>	M1(dep*)
Obtain answer $a = 0.913$ or better	Al
	4

Use product rule	M1*
Obtain correct derivative in any form	Al
Equate derivative to zero and obtain an equation in a single trig function	depM1*
Obtain a correct equation, e.g. $3\tan^2 x = 2$	Al
Obtain answer $x = 0.685$	Al
	5
Use the given substitution and reach $a \int (u^2 - u^4) du$	МІ
Obtain correct integral with $a = 5$ and limits 0 and 1	Al
Use correct limits in an integral of the form $a\left(\frac{1}{3}u^3 - \frac{1}{5}u^5\right)$	МІ
Obtain answer $\frac{2}{3}$	Al
	4

State or imply the form $\frac{A}{2-x} + \frac{B}{3+2x} + \frac{C}{(3+2x)^2}$	B1
Use a correct method to find a constant	MI
Obtain one of $A = 1$, $B = -1$, $C = 3$	Al
Obtain a second value	Al
Obtain the third value [Mark the form $\frac{A}{2-x} + \frac{Dx+E}{(3+2x)^2}$, where $A = 1, D = -2$ and $E = 0$, B1M1A1A1A1 as above.]	Al
A PRA	5
(ii) Integrate and obtain terms $-\ln(2-x) - \frac{1}{2}\ln(3+2x) - \frac{3}{2(3+2x)}$	B3ft
Substitute correctly in an integral with terms $a \ln (2-x)$, $b \ln (3+2x)$ and $c/(3+2x)$ where $abc \neq 0$	Ml
Obtain the given answer after full and correct working [Correct integration of the A , D , E form gives an extra constant term if integration by parts is used for the second partial fraction.]	Al
Question 58	5
Integrate by parts and reach $ax^{\frac{1}{2}} \ln x + b \int x^{\frac{1}{2}} \frac{1}{x} dx$	MI*
Obtain $-2x^{-\frac{1}{2}}\ln x + 2\int x^{-\frac{1}{2}} \cdot \frac{1}{x} dx$, or equivalent	Al
Complete the integration, obtaining $-2x^{\frac{1}{2}} \ln x - 4x^{\frac{1}{2}}$, or equivalent	Al
Substitute limits correctly, having integrated twice	M1(dep*)
Obtain the given answer following full and correct working	Al
	5

(i)	State or imply $du = -\sin x dx$	Bl
	Using Pythagoras express the integral in terms of u	MI
	Obtain integrand $\pm \sqrt{u} (1-u^2)$	Al
	Integrate and obtain $-\frac{2}{3}u^{\frac{3}{2}} + \frac{2}{7}u^{\frac{7}{2}}$, or equivalent	Al
	Change limits correctly and substitute correctly in an integral of the form $au^{\frac{3}{2}} + bu^{\frac{7}{2}}$	МІ
	Obtain answer $\frac{8}{21}$	Al
	6	6
ii)	Use product rule and chain rule at least once	MI
	Obtain correct derivative in any form	A1 + A1
	Equate derivative to zero and obtain a horizontal equation in integral powers of $\sin x$ and $\cos x$	MI
	Use correct methods to obtain an equation in one trig function	MI
	Obtain $\tan^2 x = 6$, $7\cos^2 x = 1$ or $7\sin^2 x = 6$, or equivalent, and obtain answer 1.183	Al
		6

State or imply ordinates 3, 2, 0, 4	Bl
Use correct formula, or equivalent, with $h = 1$ and four ordinates	Ml
Obtain answer 5.5	Al
	3

(1)	State correct expansion of $sin(2x+x)$	B1
	Use trig formulae and Pythagoras to express $\sin 3x$ in terms of $\sin x$	Ml
	Obtain a correct expression in any form	A1
	Obtain $\sin 3x = 3\sin x - 4\sin^3 x$ correctly AG	Al
		4
<u>ii)</u>	Use identity, integrate and obtain $-\frac{3}{4}\cos x + \frac{1}{12}\cos 3x$	B1 B1
	Use limits correctly in an integral of the form $a \cos x + b \cos 3x$, where $ab \neq 0$	MI
	5	Al
	Obtain answer $\frac{3}{24}$	

(i)	State or imply the form $\frac{A}{2x+1} + \frac{B}{2x+3} + \frac{C}{(2x+3)^2}$	B1
	Use a correct method to find a constant	Ml
	Obtain the values $A = 1$, $B = -1$, $C = 3$	Al Al Al
	[Mark the form $\frac{A}{2x+1} + \frac{Dx+E}{(2x+3)^2}$, where $A = 1, D = -2$ and	
	E = 0, B1M1A1A1A1 as above.]	
	T PRA	5
(ii)	Integrate and obtain terms	B1 B1 B1
	$\frac{1}{2}\ln(2x+1) - \frac{1}{2}\ln(2x+3) - \frac{3}{2(2x+3)}$	
	[Correct integration of the A, D, E form of fractions gives	
	$\frac{1}{2}\ln(2x+1) + \frac{x}{2x+3} - \frac{1}{2}\ln(2x+3)$ if integration by parts is used for the second partial fraction.]	
	for the second partial fraction.]	
	Substitute limits correctly in an integral with terms $a \ln(2x+1)$,	M1
	$b\ln(2x+3)$ and $c/(2x+3)$, where $abc \neq 0$	
	If using alternative form: $cx/(2x+3)$	
	Obtain the given answer following full and correct working	Al
		5

(i)	State correct expansion of $\sin(3x+x)$ or $\sin(3x-x)$	B1	B0 If their formula retains \pm in the middle
	Substitute expansions in $\frac{1}{2}(\sin 4x + \sin 2x)$	M1	
	Obtain $\sin 3x \cos x = \frac{1}{2} (\sin 4x + \sin 2x)$ correctly	Al	Must see the $\sin 4x$ and $\sin 2x$ or reference to LHS and RHS for A1 AG
		3	
ii)	Integrate and obtain $-\frac{1}{8}\cos 4x - \frac{1}{4}\cos 2x$	B1 B1	
	Substitute limits $x = 0$ and $x = \frac{1}{3}\pi$ correctly	Ml	In their expression
	Obtain answer $\frac{9}{16}$	Al	From correct working seen.
		4	
111)	State correct derivative $2\cos 4x + \cos 2x$	B1	
	Using correct double angle formula, express derivative in terms of $\cos 2x$ and equate the result to zero	Ml	
	$Obtain 4\cos^2 2x + \cos 2x - 2 = 0$	Al	
	Solve for x or 2x (could be labelled x) $\left(\cos 2x = \frac{-1 \pm \sqrt{33}}{8}\right)$	M	Must see working if solving an incorrect quadratic The roots of the correct quadratic are -0.843 and 0.593 Need to get as far as $x =$ The wrong value of x is 0.468 and can imply M1 if correct quadratic seen Could be working from a quartic in $\cos x$: $16\cos^4 x - 14\cos^2 x + 1 = 0$
		Al	
	Obtain answer $x = 1.29$ only		

Commence integration and reach $ax^2 \sin 2x + b \int x \sin 2x dx$	M1*
Obtain $\frac{1}{2}x^2 \sin 2x - \int x \sin 2x dx$, or equivalent	Al
Complete the integration and obtain $\frac{1}{2}x^2\sin 2x + \frac{1}{2}x\cos 2x - \frac{1}{4}\sin 2x$, or equivalent	Al
Use limits correctly, having integrated twice	DM1
Obtain given answer correctly	Al
6	5
Question 65	
(i) Use double angle formulae and express entire fraction in terms of $\sin\theta$ and $\cos\theta$	M1

(i)	Use double angle formulae and express entire fraction in terms of $\sin\theta$ and $\cos\theta$	M1
	Obtain a correct expression	Al
	Obtain the given answer	Al
		3
(ii)	State integral of the form $\pm \ln \cos \theta$	M1*
	Use correct limits correctly and insert exact values for the trig ratios	DM1
	Obtain a correct expression, e.g. $-\ln \frac{1}{\sqrt{2}} + \ln \frac{\sqrt{3}}{2}$	Al
	Obtain the given answer following full and exact working	Al
		4

i(i)	Use correct quotient rule	M1
	Obtain $\frac{dy}{dx} = -\csc^2 x$ correctly	Al
		2
(ii)	Integrate by parts and reach $ax \cot x + b \int \cot x dx$	*M1
	Obtain $-x \cot x + \int \cot x dx$	Al
(State $\pm \ln \sin x$ as integral of $\cot x$	M1
	Obtain complete integral $-x \cot x + \ln \sin x$	Al
	Use correct limits correctly	DM1
	Obtain $\frac{1}{4}(\pi + \ln 4)$ following full and exact working	Al
		6
Quest	tion 67	
~		

(i)	Use $cos(A + B)$ formula to express $cos3x$ in terms of trig functions of $2x$ and x	M1
	Use double angle formulae and Pythagoras to obtain an expression in terms of $\cos x$ only	M1
	Obtain a correct expression in terms of cos x in any form	Al
	Obtain $\cos 3x \equiv 4\cos^3 x - 3\cos x$	Al
		4
(11)	Use identity and solve cubic $4\cos^3 x = -1$ for x	M1
	Obtain answer 2.25 and no other in the interval	Al
		2

(i)	State or imply the form $\frac{A}{2x-1} + \frac{Bx+C}{x^2+2}$	Bl
	Use a correct method for finding a constant	Ml
	Obtain one of $A = 4$, $B = -1$, $C = 0$	Al
	Obtain a second value	Al
	Obtain the third value	Al
		5
(ii)	Integrate and obtain term $2\ln(2x-1)$	BIFT
	Integrate and obtain term of the form $k \ln(x^2 + 2)$	*M1
	Obtain term $-\frac{1}{2}\ln(x^2+2)$	AlFT
	Substitute limits correctly in an integral of the form $a \ln (2x-1) + b \ln (x^2+2)$, where $ab \neq 0$	DM1
	Obtain answer ln 27 after full and correct exact working	Al
	Satprep.	5

(i)	State or imply ordinates 1, 1.2116, 2.7597	B1
	Use correct formula, or equivalent, with $h = 0.6$	Ml
	Obtain answer 1.85	Al
		3
(ii)	Explain why the rule gives an overestimate	Bl
		1
<u>iii)</u>	Differentiate using quotient or chain rule	Ml
	Obtain correct derivative in terms of $\sin x$ and $\cos x$	Al
	Equate derivative to 2, use Pythagoras and obtain an equation in $\sin x$	M1
	$Obtain 2\sin^2 x + \sin x - 2 = 0$	Al
	Solve a 3-term quadratic for x	Ml
	Obtain answer $x = 0.896$ only	Al
		6

(i)	Use product rule and chain rule at least once	Ml
	Obtain correct derivative in any form	Al
	Equate derivative to zero, use Pythagoras and obtain an equation in $\cos x$	MI
	Obtain $\cos^2 x + 3\cos x - 1 = 0$, or 3-term equivalent	Al
	Obtain answer $x = 1.26$	Al
		5
(ii)	Using $du = \pm \sin x dx$ express integrand in terms of u and du	MI
	Obtain integrand $e^u(u^2-1)$	Al
	Commence integration by parts and reach $ae^{u}(u^{2}-1)+b\int ue^{u} du$	*M1
	Obtain $e^u (u^2 - 1) - 2 \int u e^u du$	Al
	Complete integration, obtaining $e^{u}(u^2 - 2u + 1)$	Al
	Substitute limits $u = 1$ and $u = -1$ (or $x = 0$ and $x = \pi$), having integrated completely	DM1
	Obtain answer $\frac{4}{e}$, or exact equivalent	Al
	32. satprep.00'	7

Al
Ml
Al
DM1
Ml
Al
7

(a)	Commence division and reach quotient of the form $2x + k$	M1
	Obtain quotient $2x-1$	Al
	Obtain remainder 6	Al
		3
(b)	Obtain terms $x^2 - x$ (FT on quotient of the form $2x + k$)	BlFT
	Obtain term of the form $a \tan^{-1}\left(\frac{x}{\sqrt{3}}\right)$	M1
	Obtain term $\frac{6}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3}} \right)$ (FT on a constant remainder)	AlFT
	Use $x = 1$ and $x = 3$ as limits in a solution containing a term of the form $a \tan^{-1}(bx)$	M1
	Obtain final answer $\frac{1}{\sqrt{3}}\pi$ + 6, or exact equivalent	Al
		5

(a)	Use quotient or product rule	M
	Obtain derivative in any correct form e.g. $\frac{-\sin x (1 + \sin x) - \cos x (\cos x)}{(1 - \sin x)^2}$	A
	$(1+\sin x)^2$	
	Use Pythagoras to simplify the derivative	Ν
	Justify the given statement	A
(b)	State integral of the form $a \ln (1 + \sin x)$	*N
	State correct integral $\ln(1 + \sin x)$	A
	Use limits correctly	DN
	Obtain answer $\ln \frac{4}{3}$	1
	T PR	
Ques	tion 74	
	5 5	M
Comr	hence integration and reach $ax^{\frac{1}{2}}\ln x + b\int x^{\frac{1}{2}} \cdot \frac{1}{x} dx$	
01	$\ln \frac{2}{5} x^{\frac{5}{2}} \ln x - \frac{2}{5} \int x^{\frac{5}{2}} \cdot \frac{1}{x} dx$	A
Obtai	$1 - \frac{1}{5} - \frac{1}{5} \int \frac{x^2 - \alpha x}{x}$	
Comp	lete the integration and obtain $\frac{2}{5}x^{\frac{5}{2}}\ln x - \frac{4}{25}x^{\frac{5}{2}}$, or equivalent	A
Use li	mits correctly, having integrated twice	
e g 2	4(2) 4	DM
- e.e	$\times 32 \ln 4 - \frac{1}{25} \times 32 - \left \frac{1}{25} \times 0 \right + \frac{1}{25}$	DM
	$\times 32 \ln 4 - \frac{4}{25} \times 32 - \left(\frac{2}{5} \times 0\right) + \frac{4}{25}$	
	$\times 32 \ln 4 - \frac{1}{25} \times 32 - \left(\frac{5}{5} \times 0\right) + \frac{1}{25}$ n answer $\frac{128}{5} \ln 2 - \frac{124}{25}$, or exact equivalent	
	h answer $\frac{128}{5}\ln 2 - \frac{124}{25}$, or exact equivalent	
Obtai		A
Obtai Ques	h answer $\frac{128}{5}\ln 2 - \frac{124}{25}$, or exact equivalent	A
Obtai Ques	tion 75 Use quotient or product rule	
Obtai Ques	tion 75 Use quotient or product rule Obtain correct derivative in any form $e_{x}g_{x} \frac{(1+3x^{4})-x \times 12x^{3}}{x^{4}-x \times 12x^{3}}$	
Obtai Ques	tion 75 Use quotient or product rule Obtain correct derivative in any form e.g. $\frac{(1+3x^4) - x \times 12x^3}{(1+3x^4)^2}$	
Obtai Ques	tion 75 Use quotient or product rule Obtain correct derivative in any form e.g. $\frac{(1+3x^4)-x\times12x^3}{(1+3x^4)^2}$ Equate derivative to zero and solve for x	
Obtai Ques	tion 75 Use quotient or product rule Obtain correct derivative in any form e.g. $\frac{(1+3x^4) - x \times 12x^3}{(1+3x^4)^2}$	

(b)	State or imply $du = 2\sqrt{3x} dx$, or equivalent	B1
	Substitute for x and dx	M1
	Obtain integrand $\frac{1}{2\sqrt{3(1+u^2)}}$, or equivalent	A1
	State integral of the form $a \tan^{-1} u$ and use limits $u = 0$ and $u = \sqrt{3}$ (or $x = 0$ and $x = 1$) correctly	M1
	Obtain answer $\frac{\sqrt{3}}{18}\pi$, or exact equivalent	A1
		5

Commence integration and reach $a(2-x)e^{-2x} + b\int e^{-2x} dx$, or equivalent	M1*
Obtain $-\frac{1}{2}(2-x)e^{-2x} - \frac{1}{2}\int e^{-2x} dx$, or equivalent	A1
Complete integration and obtain $-\frac{1}{2}(2-x)e^{-2x} + \frac{1}{4}e^{-2x}$, or equivalent	A1
Use limits correctly, having integrated twice	DM1
Obtain answer $\frac{1}{4}(3-e^{-2})$, or exact equivalent	A1
	5

(a)	State or imply the form $\frac{A}{2x-1} + \frac{B}{2x+1}$ and use a relevant method to find A or B	M1
	Obtain $A = 1, B = -1$	A1
		2
(b)	Square the result of part (a) and substitute the fractions of part (a)	M1
	Obtain the given answer correctly	A1
		2
(c)	Integrate and obtain $-\frac{1}{2(2x-1)} - \frac{1}{2}\ln(2x-1) + \frac{1}{2}\ln(2x+1) - \frac{1}{2(2x+1)}$, or equivalent	B3, 2, 1, 0
	Substitute limits correctly	M1
	Obtain the given answer correctly	A1
		5

a) Use cor	rect product or quotient rule	*M1
Obtain	correct derivative in any form	A1
Equate	derivative to zero and solve for x	DM1
Obtain	x = 4	A1
Obtain	$y = -2e^{-2}$, or exact equivalent	A1
	PRE	5
	ence integration and reach $x)e^{-\frac{1}{2}x} + b\int e^{-\frac{1}{2}x} dx$	*M1
Obtain	$-2(2-x)e^{-\frac{1}{2}x} - 2\int e^{-\frac{1}{2}x} dx$	A1
Comple	ete integration and obtain $2xe^{\frac{1}{2}x}$	A1
Use co twice	rrect limits, $x = 0$ and $x = 2$, correctly, having integrated	DM1
Obtain	answer 4e ⁻¹ , or exact equivalent	A1

(i)	State or imply the form $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+2}$	B1
	Use a correct method for finding a constant	Ml
	Obtain one of $A = -1$, $B = 3$, $C = 2$	Al
	Obtain a second value	Al
	Obtain the third value	Al
		5
(11)	Integrate and obtain terms $\ln x - \frac{3}{x} + 2\ln(x+2)$	B1FT + B1FT + B1FT
	Substitute limits correctly in an integral with terms $a \ln x$, $\frac{b}{x}$ and $c \ln(x+2)$, where $abc \neq 0$	MI
	Obtain $\frac{9}{4}$ following full and exact working	Al
		5

(a)	State or imply $du = \cos x dx$	B1
	Using double angle formula for $\sin 2x$ and Pythagoras, express integral in terms of u and du .	M1
	Obtain integral $\int 2(u-u^3) du$	A1
	Use limits $u = 0$ and $u = 1$ in an integral of the form $au^2 + bu^4$, where $ab \neq 0$	M1
	Obtain answer $\frac{1}{2}$	A1
	9	5
(b)	Use product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and use a double angle formula	*M1
	Obtain an equation in one trig variable	DM1
	Obtain $4\sin^2 x = 1$, $4\cos^2 x = 3$ or $3\tan^2 x = 1$	A1
	Obtain answer $x = \frac{1}{6}\pi$	A1
	Salpree	6

(a)	Carry out a relevant method to determine constants A and B such that $5a$ A B	M1
	$\frac{5a}{(2x-a)(3a-x)} = \frac{A}{2x-a} + \frac{B}{3a-x}$	
	Obtain $A = 2$	A1
	Obtain $B = 1$	A1
		3
(b)	Integrate and obtain terms $\ln(2x-a) - \ln(3a-x)$	B1 FT B1 FT
	Substitute limits correctly in a solution containing terms of the form $b\ln(2x-a)$ and $c\ln(3a-x)$, where $bc \neq 0$	M1
	Obtain the given answer showing full and correct working	A1
		4
Questio	on 82	
(a)	Use quotient or product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and solve for <i>x</i>	M1
	Obtain $x = \sqrt[4]{e}$ and $y = \frac{1}{4e}$, or exact equivalents	A1
		4

(b)	Commence integration and reach $ax^{-3} \ln x + b \int x^{-3} \cdot \frac{1}{x} dx$	*M1
	Obtain $-\frac{1}{3}x^{-3}\ln x + \frac{1}{3}\int x^{-3} \cdot \frac{1}{x} dx$	A1
	Complete integration and obtain $-\frac{1}{3}x^{-3}\ln x - \frac{1}{9}x^{-3}$	A1
	Substitute limits correctly, having integrated twice	DM1
	Obtain answer $\frac{1}{9} - \frac{1}{3}a^{-3}\ln a - \frac{1}{9}a^{-3}$	A1
	Justify the given statement	A1
		6
Questio	n 83	
(a)	State or imply the form $\frac{A}{1+2x} + \frac{B}{4-x}$ and use a correct method to find a constant	M1
	Obtain one of $A = 4$ and $B = -1$	A1
	Obtain the second value	A1
	·satprep.	3
(b)	Integrate and obtain terms $2\ln(1+2x) + \ln(4-x)$	B1FT +B1FT
	Substitute limits correctly in an integral of the form $a\ln(1+2x)+b\ln(4-x)$, where $ab \neq 0$	M1
		M1 A1

(a)	Express the LHS in terms of $\cos 2\theta$ and $\sin 2\theta$	B1
	Use correct double angle formulae to express the LHS in terms of $\cos \theta$ and $\sin \theta$	M1
	Obtain tan θ from correct working	A1
(b)	State integral of the form $\mp \ln \cos \theta$ or $\pm \ln \sec \theta$	*M1
	Use correct limits correctly and insert exact values for the trigonometric ratios	DM1
	Obtain a correct expression, e.g. $-\ln\frac{1}{2} + \ln\frac{1}{\sqrt{2}}$	A1
	Obtain $\frac{1}{2}\ln 2$ from correct working	A1
		4
Questi	ion 85	I
		*M1

Commence integration and reach $ax \tan^{-1} \frac{1}{2}x + b \int x \frac{1}{c+x^2} dx$	*M1
Obtain $x \tan^{-1}\left(\frac{1}{2}x\right) - \int x. \frac{2}{4+x^2} dx$	A1
Complete integration and obtain $x \tan^{-1}\left(\frac{1}{2}x\right) - \ln\left(4+x^2\right)$	A1
Substitute limits correctly in an expression of the form $px \tan^{-1} x + q \ln(c + x^2)$	DM1
Obtain final answer $\frac{1}{2}\pi - \ln 2$	A1

Use the substitution $\theta = \tan^{-1} \frac{x}{2}$ to obtain $\lambda \int 2\theta \sec^2 \theta d\theta$ and reach $p\theta \tan \theta + q \int \tan \theta d\theta$	*M1
Obtain $2\theta \tan \theta - 2 \int \tan \theta \mathrm{d}\theta$	A1
Complete integration and obtain $2\theta \tan \theta + 2\ln(\cos \theta)$	A1
Substitute correct limits correctly in an expression of the form $r\theta \tan \theta + s \ln(\cos \theta)$	DM1
Obtain final answer $\frac{1}{2}\pi - \ln 2$	A1
	5

btain correct derivative in any form	
"Satore?"	
Equate 2 term derivative to zero and solve for x	
3	
Obtain answer $x = e^{\overline{2}}$	
Obtain answer $y = \frac{3}{2}$	
Obtain answer $y = \frac{3}{2e}$	

)(b)	Commence integration and reach $ax^{\frac{1}{3}}\ln x + b\int x^{\frac{1}{3}} \cdot \frac{1}{x} dx$	*M1
	Obtain $3x^{\frac{1}{3}} \ln x - 3 \int x^{\frac{1}{3}} \frac{1}{x} dx$	A1
	Complete the integration and obtain $3x^{\frac{1}{3}} \ln x - 9x^{\frac{1}{3}}$	A1
	Use limits correctly in an expression of the form $px^{\frac{1}{3}}\ln x + qx^{\frac{1}{3}}$ $(pq \neq 0)$	DM1
	Obtain 18ln 2 – 9 from full and correct working	A1
		5
Questi	on 87	
(a)	Use correct double angle formula or <i>t</i> -substitution twice	M1
	Obtain $\frac{1 - \cos 2\theta}{1 + \cos 2\theta} = \tan^2 \theta$ from correct working	A1
		2
(b)	Express $\tan^2 \theta$ in terms of $\sec^2 \theta$	M1
	Integrate and obtain terms $\tan \theta - \theta$	A1
	Substitute limits correctly in an integral of the form $a \tan \theta + b\theta$, where $ab \neq 0$	M1
	Obtain answer $\frac{2}{3}\sqrt{3} - \frac{1}{6}\pi$	A1
		4

(a)	Use quotient or product rule	M1	
	Obtain correct derivative in any form	A1	
	Equate derivative to zero and solve for x	M1	
	Obtain answer $x = 3$	A1	
		4	
(b)	State $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$, or $dx = 2\sqrt{x}du$, or $2u du = dx$	B1	
	Substitute and obtain integrand $\frac{2}{9-u^2}$	B1	
	Use given formula for the integral or integrate relevant partial fractions	M1	
	Obtain integral $\frac{1}{3}\ln\left(\frac{3+u}{3-u}\right)$	A1	OE
	Use limits $u = 0$ and $u = 2$ correctly	M1	
	Obtain the given answer correctly	A1	
		6	
Que	stion 89		

Commence integration and reach $ax \cos \frac{1}{2}x + b \int \cos \frac{1}{2}x dx$	*M1	
Obtain $-2x\cos\frac{1}{2}x + 2\int\cos\frac{1}{2}xdx$	A1	OE
Complete integration obtaining $-2x\cos\frac{1}{2}x + 4\sin\frac{1}{2}x$	A1	OE
Use limits correctly, having integrated twice	DM1	0.
Obtain answer 2 + $\frac{\sqrt{3}}{3}\pi$, or exact equivalent	A1	<u>o</u>
	5	

(a)	State correct expansion of $sin(3x+2x)$ or $sin(3x-2x)$	B1	
	Substitute expansions in $\frac{1}{2}(\sin 5x + \sin x)$, or equivalent	M1	
	Simplify and obtain $\frac{1}{2}(\sin 5x + \sin x) = \sin 3x \cos 2x$	A1	Obtain the given identity correctly.
		3	
(b)	Obtain integral $-\frac{1}{10}\cos 5x - \frac{1}{2}\cos x$, or equivalent	B 1	
	Substitute limits correctly in an expression of the form $p\cos 5x + q\cos x$	M1	Correct limits and subtracted the right way around. Do not need values of trig functions for M1. Maximum one slip.
	Obtain $\frac{1}{5}(3-\sqrt{2})$	A1	Substitute values and obtain the given answer following full, correct and exact working.
		3	

State that $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ or $du = \frac{1}{2\sqrt{x}} dx$	B1	
Substitute throughout for x and dx	M1	
Obtain a correct integral with integrand $\frac{2}{u^2 + 1}$	A1	
Integrate and obtain term of the form $k \tan^{-1} u$	M1	$\left(2\tan^{-1}u\right)$
Use limits $\sqrt{3}$ and ∞ for <i>u</i> or equivalent and evaluate trig.	A1	e.g. $2\left(\frac{\pi}{2}-\frac{\pi}{3}\right)$ Must be working in radians.
Obtain answer $\frac{1}{3}\pi$	A1	Or equivalent single term.
· satp	6	

(a)	Use correct product rule or chain rule	M1	
	Obtain correct derivative in any form	A1	$\cos x \cdot \cos 2x - \sin x \cdot 2\sin 2x$
	Equate derivative to zero and use a correct double angle formula	*M1	If chain rule used then derivative set to 0 gains M1 since correct double angle formula has already been used.
	Obtain an equation in one trigonometric variable	DM1	Allow following from coefficient errors in differentiation only
	Obtain $6\sin^2 x = 1$, $6\cos^2 x = 5$ or $5\tan^2 x = 1$	A1	One of these 3 expressions
	Obtain final answer $x = 0.421$	A1	Must be 3s.f.
		6	
(b)	State or imply $du = -\sin x dx$	B1	
	Using double angle formula, express integral in terms of u and du	M1	Use $\cos 2x = 2\cos^2 x - 1$
	Integrate and obtain $\pm \left(u - \frac{2}{3}u^3\right)$	A1	
	Use limits $u = 1$, $u = \frac{1}{\sqrt{2}}$ in an integral of the form $au + bu^3$, where $ab \neq 0$	M1	Require both limits substituted twice in $au + bu^3$ for M1. Do not condone decimals.
	Obtain $\frac{1}{3}(\sqrt{2}-1)$ or $\frac{1}{3}\sqrt{2}$ $\frac{1}{3}$ or $\frac{2}{3}(\frac{1}{\sqrt{2}})\frac{1}{3}$ or simplified equivalent	A1	ISW
		5	
Que	stion 93		
	Commence division and and provide fithe from 2 and 1	MI	0 + 1 = 1 = 0.3 + 4.2 + 2 = 1.7 = (4.2 + 1)(2 = 1.1)

S(a)	Commence division and reach quotient of the form $2x \pm 1$	M1	Or by inspection $8x^3 + 4x^2 + 2x + 7 = (4x^2 + 1)(2x \pm 1) + r$
	Obtain (quotient) 2x + 1	A1	0'
	Obtain (remainder) 6	A1	
	arth 1	3	
(b)	Obtain terms $x^2 + x$	B1	OE
	Obtain term of the form $a \tan^{-1} 2x$	M1	
	Obtain term $3 \tan^{-1} 2x$	A1	OE
	Use $x = 0$ and $x = \frac{1}{2}$ as limits in a solution containing a term of the form $a \tan^{-1} 2x$	M1	$\left(\frac{1}{2}\right)^2 + \frac{1}{2} + a\frac{\pi}{4}$, need $\frac{\pi}{4}$ seen or implied
	Obtain final answer $\frac{3}{4}(1+\pi)$, or exact equivalent	A1	ISW, Answers in degrees score A0.
		5	

-		
a) State or imply the form $\frac{A}{3x-1} + \frac{Bx+C}{x^2+3}$	B1	
Use a correct method for finding a constant	M1	
Obtain one of $A = 1$, $B = 0$ and $C = 3$ from correct working	A1	A maximum of M1 A1 is available after B0.
Obtain a second value from correct working	A1	
Obtain the third value from correct working	A1	
	5	
b) Integrate and obtain term $\frac{1}{3}\ln(3x-1)$	B1 FT	OE e.g. $\frac{1}{3}\ln(x-\frac{1}{3})$. The FT is on the value of A.
Obtain term of the form $k \tan^{-1}\left(\frac{x}{\sqrt{3}}\right)$	M1	
Obtain term $\sqrt{3} \tan^{-1} \left(\frac{x}{\sqrt{3}} \right)$	A1 FT	OE. The FT is on the value of <i>C</i> .
Substitute correct limits in an integral of the form $a \ln(3x-1) + k \tan^{-1}\left(\frac{x}{\sqrt{3}}\right)$, where $ak \neq 0$, and evaluate trigonometry	M1	Must be subtracted the right way round. $\left(\frac{1}{3}\ln 8 - \frac{1}{3}\ln 2 + \sqrt{3} \times \frac{\pi}{3} - \sqrt{3} \times \frac{\pi}{6}\right)$ Angles should be in radians. Condone angles as decimals.
Obtain answer $\frac{2}{3}\ln 2 + \frac{\sqrt{3}\pi}{6}$ from correct working in part 8(b)	A1	Or exact 2-term equivalent e.g. $\frac{1}{3}\ln 4 + \frac{\pi}{2\sqrt{3}}$ ISW.
	5	

Question 95

B1 (a) State or imply $dx = 3\sec^2\theta d\theta$ Substitute throughout for x and dx**M1** e.g. $\int \frac{81 \sec^2 \theta}{\left(9 + 9 \tan^2 \theta\right)^2} d\theta$ A1 Obtain any correct form in terms of θ A1 AG Justify change of limits and obtain $\int_{0}^{\frac{\pi}{4}} \cos^2 \theta \, d\theta$ correctly 4 (b) *M1 Obtain indefinite integral of the form $\int a + b \cos 2\theta \, d\theta$, where $ab \neq 0$ Obtain $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$ **A1** Use correct limits correctly in an expression containing $p\theta$ and $q\sin 2\theta$ where DM1 $\frac{\pi}{8} + \frac{1}{4} (-0)$ $pq \neq 0$ Or exact equivalent e.g. $\frac{1}{8}\pi + \frac{1}{4}$. Obtain answer $\frac{1}{8}(\pi+2)$ A1 4

Commence integration by parts and reach $x \tan x \pm \int \tan x \cdot 1 dx$	*M1	
Use a correct method to integrate tan <i>x</i>	M1	
Obtain integral $x \tan x - \ln \sec x$, or equivalent	A1	
Use limits correctly, having integrated twice	DM1	
Obtain answer $\frac{1}{4}\pi - \frac{1}{2}\ln 2$, or exact equivalent	A1	
	5	

State or imply the form $\frac{A}{3-x} + \frac{Bx+C}{1+3x^2}$	B1	
Use a correct method to find a constant	M1	
Obtain one of $A = 2$, $B = 0$ and $C = 1$	A1	
Obtain a second value	A1	
Obtain the third value	A1	
	5	
Integrate and obtain term $-2\ln(3-x)$	B1 FT	
Obtain term of the form $b \tan^{-1}(\sqrt{3}x)$	M1	
Obtain term $\frac{1}{\sqrt{3}} \tan^{-1}(\sqrt{3}x)$	A1 FT	///
Substitute limits correctly in an integral with terms $a \ln(3-x)$ and	M1	
$b \tan^{-1}(\sqrt{3}x)$, where $ab \neq 0$		
Obtain answer $2\ln\frac{3}{2} + \frac{1}{3\sqrt{3}}\pi$, or equivalent	Al	
atpre	5	

~			
(a)	State ($a =$) π^2	B1	Allow 32400, 180^2 . Accept $(x=)\pi^2$.
		1	
(b)	State or imply $dx = 2u du$ or equivalent	B1	e.g. $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ Incorrect statements e.g. $du = \frac{1}{2\sqrt{x}}$ is B0.
	Substitute for x and dx throughout the integral	M1	
	Obtain $\int 2u \sin u du$	A1	Allow with missing d <i>u</i> .
	Commence integration of $\int ku \sin u du$ by parts and reach $\mp ku \cos u \pm \int k \cos u du$	*M1	
	Obtain integral $-ku\cos u + k\sin u$	A1	
	Substitute limits $u = 0$ and $u = \sqrt{their a}$, $a \neq 0$, a in radians or $x = 0$ and their a in the complete integral	DM1	$-2\pi\cos\pi + 2\sin\pi(+0 - 2\sin\theta)$ Need limits stated but condone if zeros not shown in substitution.
	Obtain answer 2π	A1	
	6	7	
Que	stion 99		
(a)	State or imply the form $\frac{A}{1+x} + \frac{Bx+C}{2+x^2}$	B1	
	Use a correct method for finding a constant	M1	
	Obtain one of $A = 2$, $B = -1$ and $C = 0$	A1	SC: A maximum of M1A1 is available for obtaining $A = 2$ after scoring B0.
	Obtain a second value	A1	
	Obtain the third value	A1	
		5	
(b)	Integrate and obtain term $2\ln(1+x)$	B1 FT	$A\ln(1+x)$
	Integrate and obtain term of the form $k \ln(2+x^2)$ from an integral of the correct form	*M1	Ignore any separate working relating to $C \neq 0$.
	Obtain term $-\frac{1}{2}\ln(2+x^2)$	A1 FT	$\frac{B}{2}\ln\left(2+x^2\right)$
	Substitute limits in an integral containing terms of the form $a\ln(1+x)+b\ln(2+x^2)$, where $ab \neq 0$	DM1	Ignore working relating to $C \neq 0$. $(2\ln 5 - 2\ln 1 - \frac{1}{2}\ln 18 + \frac{1}{2}\ln 2)$ Dependent on the first M1. Must be subtracting the correct way round. Must have an exact substitution.
	Obtain answer $\ln\left(\frac{25}{3}\right)$	A1	ISW Any exact equivalent e.g. $\ln \frac{25\sqrt{2}}{\sqrt{18}}$ with no number in front of the logarithm.
		5	

Commence integration and reach $a(3-x)e^{\frac{1}{3}x} + b\int e^{\frac{1}{3}x} dx$, where $ab \neq 0$	*M1	
Obtain $-3(3-x)e^{\frac{1}{3}x} - 3\int e^{\frac{1}{3}x} dx$, or equivalent	A1	
Complete integration and obtain $3xe^{\frac{1}{3}x}$, or equivalent	A1	$-3e^{-\frac{x}{3}}(3-x)+9e^{-\frac{x}{3}}$
Substitute limits $x = 0$ and $x = 3$, having integrated twice	DM1	
Obtain answer $\frac{9}{e}$, or exact equivalent	A1	
	5	

Integrate by parts and reach $ax^4 \ln x + b \int (x^4 / x) dx$	*M1	
Obtain $\frac{x^4}{4} \ln x - \frac{1}{4} \int (x^4 / x) dx$	A1	OE
Complete integration and obtain $\frac{x^4}{4} \ln x - \frac{x^4}{16}$	A1	OE
Use limits of $x = \frac{1}{2}$ and $x = 1$ in the correct order, having integrated twice	DM1	Correct substitution $[(1/4)\ln 1 \text{ or } 0 - 1/16] - [(1/64)\ln(1/2) - (1/16)^2]$ or minus this value CWO. Allow omission of $(1/4)\ln 1$ or 0.
Obtain answer $\frac{15}{256} - \frac{1}{64} \ln 2$ or exact equivalent final answer	A1	
	5	

State or imply the form $\frac{A}{1+x} + \frac{Bx+C}{2+x^2}$	B1	
Use a correct method for finding a constant	M1	
Obtain one of $A = 2$, $B = -1$ and $C = 0$	A1	SC: A maximum of M1A1 is available for obtaining $A = 2$ after scoring B0.
Obtain a second value	A1	
Obtain the third value	A1	
	5	
Integrate and obtain term $2\ln(1+x)$	B1 FT	$A\ln(1+x)$
Integrate and obtain term of the form $k \ln(2+x^2)$ from an integral of the correct form	*M1	Ignore any separate working relating to $C \neq 0$.
Obtain term $-\frac{1}{2}\ln(2+x^2)$	A1 FT	$\frac{B}{2}\ln\left(2+x^2\right)$
Substitute limits in an integral containing terms of the form $a\ln(1+x)+b\ln(2+x^2)$, where $ab \neq 0$	DM1	Ignore working relating to $C \neq 0$. $(2\ln 5 - 2\ln 1 - \frac{1}{2}\ln 18 + \frac{1}{2}\ln 2)$ Dependent on the first M1. Must be subtracting the correct way round. Must have an exact substitution.
Obtain answer $\ln\left(\frac{25}{3}\right)$	A1	ISW Any exact equivalent e.g. $\ln \frac{25\sqrt{2}}{\sqrt{18}}$ with no number in front of the logarithm.
	5	
lestion 103		

$\frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x$	B1	SOI
Use double angle formula and substitute for <i>x</i> and d <i>x</i> throughout the integral	M1	All <i>x</i> 's must be removed, can be coefficient errors provided 2 seen in working.
Obtain $\pm \int 2ue^{2u} du$	A1	Limits may be omitted, or left as 0 and π , during the change of variable stage.
Justify new limits and obtain $\int_{-1}^{1} 2ue^{2u} du$ from correct working	A1	AG Must see $x = 0$, $u = 1$ and $x = \pi$, $u = -1$. Inequalities alone e.g. $0 \le x \le \pi$ and $1 \le u \le -1$ or $-1 \le u \le 1$ for limits are insufficient A0 If sign in expression and order of limits incorrect then A0. If negative sign is present in the integrand then this can be removed and limits introduced in correct order in a single step.
	4	

*1 11	
*M1	OE Need to see -2 or $-\frac{1}{2}$ used. Condone if du missing of the integral sign is missing.
	Allow M1A0 for complete substitution into $\int x\sqrt{3-2x} dx$
	to obtain first term of the line below.
A1	OE e.g. $-\frac{1}{2}\left[\int \frac{3-u}{2}\sqrt{u}\mathrm{d}u + 5\int\sqrt{u}\mathrm{d}u\right].$
	Ignore limits at this stage. Condone if du missing.
B 1	SOI e.g. by $u = 13$ and 0. In any order and at any stage.
DM1	
A1	or exact equivalents.
5	
1	M1* Condone dx.
	A1 OE Allow $(2u\frac{1}{2}e^{2u}) - \frac{1}{2}e^{2u}$.
E	PM1 1 and -1 for u , 0 and π for x e.g. $ce^2 + de^2 - (-ce^{-2} + de^{-2})$. Not decimals. Allow one sign error at most in going from $cue^{2u} + de^{2u}$ or $c \cos x e^{2\cos x} + de^{2\cos x}$ to $ce^2 + de^2 - (-ce^{-2} + de^{-2})$. $[e^2 - \frac{1}{2}e^2 - (-e^{-2} - \frac{1}{2}e^{-2})]$ Complete reversal of sign by converting back to $\cos x$ and not making $x = 0$ upper limit is DM0 A0.
	A1 ISW
	A1 B1 DM1 A1 5 N

B1	Alternative form: $\frac{A}{1+2x} + \frac{Dx+E}{(2-x)^2}$
M1	e.g. $A(2-x)^2 + B(1+2x)(2-x) + C(1+2x)$ = $2x^2 + 17x - 17$ and compare coefficients or substitute for x. $A(2-x)^3 + B(1+2x)(2-x)^2 + C(1+2x)(2-x)$ = $2x^2 + 17x - 17$ scores M0.
A1	
A1	
A1	Extra term in partial fractions, then B0 unless recover at end. Allow the marks for any constants found correctly. Missing terms in partial fractions, B0 but M1A1 is available for a correct method that obtains at least one correct constant (e.g. cover-up rule) Max 2/5. Ignore any substitution back into their original expression.
	If alternative form used: $A = -4$, $D = 3$ and $E = -1$.
5	
B1FT	OE The FT is on correct use of <i>their A</i> , <i>B</i> and <i>C</i> ; or on <i>A</i> , <i>D</i> an
B1FT	<i>E.</i> If using the <i>A</i> , <i>D</i> , <i>E</i> form then B1 for the <i>A</i> term, but no
B1FT	further marks until partial fractions are used to split the second term or they use integration by parts to obtain $\frac{Dx+E}{2-x} - \int \frac{D}{2-x} dx$ for the 2 nd B1 and 3 rd B1 for correct completion. B0FT, B0FT, B0FT if they place <i>their A, B, C</i> with incorrect denominators.
M1	Condone minor slips in substitution. Exact substitution required.
A1	AG – evidence of some correct work to combine or simplify logs is required e.g. allow from $-\ln 9 + \ln \frac{1}{8}$ or $-\ln 2^3 - \ln 3^2$.
	MI AI AI AI BIFT BIFT BIFT BIFT MI

a)	State or imply the form $\frac{A}{2x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$	B1	Accept $\frac{A}{2x+1} + \frac{Dx+E}{(x+2)^2}$.
	Use a correct method for finding a constant	M1	
	Obtain one of $A = 1, B = -2, C = 3$	A1	For alternative form: $A = 1, D = -2, E = -1$.
	Obtain a second value	A1	
	Obtain the third value	A1	
		5	
(b)	Integrate and obtain one of $\frac{1}{2}\ln(2x+1), -2\ln(x+2), \frac{-3}{x+2}$	B1 FT	The follow through is on <i>their A</i> , <i>B</i> , <i>C</i> .
	Obtain a second term	B1 FT	If the alternative form is used, then either need to use
Obtain the	Obtain the third term	B1 FT	integration by parts or split the fraction further.
	Substitute limits correctly in an integral with at least two terms of the form $\frac{1}{2}\ln(2x+1), -2\ln(x+2)$ and $\frac{-3}{x+2}$ and subtract in correct order	M1	The terms used need to have been obtained correctly. Must be exact values, not decimals.
	Obtain 1 – ln 3	A1	
		5	

Satprep.co.