A-level

Topic : Numerical Equation and Solution

May 2013-May 2023

Answer

Obt	e iterative formula correctly at least once tain final answer 0.14	M1 A1	
	ow sufficient iterations to 4 s.f. to justify answer to 2 s.f. or show a sign nge in the interval (0.135, 0.145)	A1	[3]
Ques	stion 2		
(i)	Use the iterative formula correctly at least once Obtain final answer 3.6840 Show sufficient iterations to at least 6 d.p. to justify 3.6840, or show there is a sign	M1 A1	
	change in the interval (3.68395, 3.68405)	A1	[3]
(ii)	State a suitable equation, e.g. $x = \frac{x(x^3 + 100)}{2(x^3 + 25)}$	В1	
	State that the value of α is $3\sqrt{50}$, or exact equivalent	B1	[2]
Ques	stion 3		
(i)	State the correct derivatives $2e^{2x-3}$ and $2/x$ Equate derivatives and use a law of logarithms on an equation equivalent to $ke^{2x-3} = m/x$ Obtain the given result correctly (or work <i>vice versa</i>)	B1 M1 A1	[3]
(ii)	Consider the sign of $a - \frac{1}{2}(3 - \ln a)$ when $a = 1$ and $a = 2$, or equivalent	M1	
	Complete the argument with correct calculated values	A1	[2]
(iii)	Use the iterative formula correctly at least once Obtain final answer 1.35 Show sufficient iterations to 4 d.p. to justify 1.35 to 2 d.p. or show there is a sign shores	M1 A1	
	Show sufficient iterations to 4 d.p. to justify 1.35 to 2 d.p., or show there is a sign change in the interval (1.345, 1.355)	A1	[3]

(i) State or imply $AB = 2r\cos\theta$ or $AB^2 = 2r^2 - 2r^2\cos(\pi - 2\theta)$ B1Use correct formula to express the area of sector ABC in terms of r and θ M1Use correct area formulae to express the area of a segment in terms of r and θ M1State a correct equation in r and θ in any form A1 Obtain the given answer A1 [5] [SR: If the complete equation is approached by adding two sectors to the shaded area above BO and OC give the first M1 as on the scheme, and the second M1 for using correct area formulae for a triangle AOB or AOC, and a sector AOB or AOC.] (ii) Use the iterative formula correctly at least once M1 Obtain final answer 0.95 A1 Show sufficient iterations to 4 d.p. to justify 0.95 to 2 d.p., or show there is a sign change in the interval (0.945, 0.955) A1 [3]

- (i) Use integration by parts to obtain $axe^{-\frac{1}{2}x} + \int be^{-\frac{1}{2}x} dx$ M1*

 Obtain $-8xe^{-\frac{1}{2}x} + \int 8e^{-\frac{1}{2}x} dx$ or unsimplified equivalent

 A1

 Obtain $-8xe^{-\frac{1}{2}x} 16e^{-\frac{1}{2}x}$ Use limits correctly and equate to 9

 Obtain given answer $p = 2\ln\left(\frac{8p+16}{7}\right)$ correctly

 A1 [5]
- (ii) Use correct iteration formula correctly at least once
 Obtain final answer 3.77
 Show sufficient iterations to 5sf or better to justify accuracy 3.77 or show sign change in interval (3.765, 3.775)

 [3.5 → 3.6766 → 3.7398 → 3.7619 → 3.7696 → 3.7723]

 [3]

- (i) Sketch $y = \operatorname{cosec} x$ for at least 0, x, π Sketch $y = x(\pi x)$ for at least 0, x, π B1

 Justify statement concerning two roots, with evidence of 1 and $\frac{1}{4}\pi^2$ for y-values on graph via scales

 B1

 [3]

 (ii) Use $\operatorname{cosec} x = \frac{1}{\sin x}$ and commence rearrangement

 M1
- (iii) (a) Use the iterative formula correctly at least once
 Obtain final answer 0.66
 Show sufficient iterations to 4 decimal places to justify answer or show a sign change in the interval (0.655, 0.665)

 A1
 [3]

A1

[2]

Obtain given equation correctly, showing sufficient detail

(b) Obtain 2.48

Question 7

- (i) Use correct arc formula and form an equation in r and xM1Obtain a correct equation in any formA1Rearrange in the given formA1
- (ii) Consider sign of a relevant expression at x = 1 and x = 1.5, or compare values of relevant expressions at x = 1 and x = 1.5
 Complete the argument correctly with correct calculated values
 (iii) Use the iterative formula correctly at least once
 M1
- Obtain final answer 1.21

 Show sufficient iterations to 4 d.p. to justify 1.21 to 2 d.p., or show there is a sign change in the interval (1.205,1.215)

 A1

 A1

 A1

 A1

- (i) Consider sign of $x 10/(e^{2x} 1)$ at x = 1 and x = 2 M1 Complete the argument correctly with correct calculated values A1 2
- (ii) State or imply $\alpha = \frac{1}{2}\ln(1+10/\alpha)$ B1

 Rearrange this as $\alpha = 10/(e^{2\alpha} 1)$ or work *vice versa* B1 2
- (iii) Use the iterative formula correctly at least once
 Obtain final answer 1.14
 Show sufficient iterations to 4 d.p. to justify 1.14 to 2 d.p., or show there is a sign change in the interval (1.135, 1.145)

 A1
 3

(i) Integrate and reach $bx\ln 2x - c \int x \cdot \frac{1}{x} dx$, or equivalent M1* Obtain $x \ln 2x - \int x \cdot \frac{1}{x} dx$, or equivalent **A**1 Obtain integral $x \ln 2x - x$, or equivalent A1 Substitute limits correctly and equate to 1, having integrated twice M1(dep*) Obtain a correct equation in any form, e.g. $a \ln 2a - a + 1 - \ln 2 = 1$ **A**1 Obtain the given answer **A**1 [6] (ii) Use the iterative formula correctly at least once M1Obtain final answer 1.94 **A**1 Show sufficient iterations to 4 d.p. to justify 1.94 to 2d.p. or show that there is a sign change in the interval (1.935, 1.945). [3] **A**1 Question 10 (i) Sketch increasing curve with correct curvature passing through origin, for $x \ge 0$ **B**1 Recognisable sketch of $y = 40 - x^3$, with equation stated, for x > 0**B**1 Indicate in some way the one intersection, dependent on both curves being roughly correct and both existing for some x < 0B1 [3] (ii) Consider signs of $x^3 + \ln(x+1) - 40$ at 3 and 4 or equivalent or compare values of relevant expressions for x = 3 and x = 4M1Complete argument correctly with correct calculations (-11.6 and 25.6) **A**1 [2] (iii) Use the iterative formula correctly at least once M1Obtain final answer 3.377 A₁ Show sufficient iterations to justify accuracy to 3 d.p. or show sign change in interval (3.3765, 3.3775)A1 [3] (iv) Attempt value of ln(x+1)M1Obtain 1.48 A1 [2] Question 11 (i) Obtain $\frac{dx}{dt} = \frac{2}{t+2}$ and $\frac{dy}{dt} = 3t^2 + 2$ B1Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ M1Obtain $\frac{dy}{dx} = \frac{1}{2} (3t^2 + 2)(t+2)$ A₁ Identify value of t at the origin as -1B1Substitute to obtain $\frac{5}{2}$ as gradient at the origin **A**1 [5]

(ii) (a) Equate derivative to $\frac{1}{2}$ and confirm $p = \frac{1}{3n^2 + 2} - 2$ B1[1] **(b)** Use the iterative formula correctly at least once M1Obtain value p = -1.924 or better (-1.92367...)**A**1 Show sufficient iterations to justify accuracy or show a sign change in appropriate interval **A**1 Obtain coordinates (-5.15, -7.97)**A**1 [4] Question 12 (i) State or imply $AT = r \tan x$ or $BT = r \tan x$ B1Use correct arc formula and form an equation in r and xM1 Rearrange in the given form **A**1 [3] (ii) Calculate values of a relevant expression or expressions at x = 1 and x = 1.3M1 Complete the argument correctly with correct calculated values A1 [2] (iii) Use the iterative formula correctly at least once M1 Obtain final answer 1.11 **A**1 Show sufficient iterations to 4 d.p. to justify 1.11 to 2 d.p., or show there is a sign change in the interval (1.105, 1.115) Α1 [3] Question 13 (i) Integrate and reach $\pm x \sin x \mp \int \sin x \, dx$ M1* Obtain integral $x \sin x + \cos x$ A1Substitute limits correctly, must be seen since AG, and equate result to 0.5 M1(dep*) Obtain the given form of the equation A₁ 4 (ii) EITHER: Consider the sign of a relevant expression at a = 1 and at another relevant value, e.g. $a = 1.5 \le \frac{\pi}{2}$ M1Using limits correctly, consider the sign of $\left[x \sin x + \cos x\right]_0^a - 0.5$, or compare OR: the value of $[x \sin x + \cos x]_0^a$ with 0.5, for a = 1 AND for another relevant value, e.g $a = 1.5 \le \frac{\pi}{2}$. M1 Complete the argument, so change of sign, or above and below stated, both with correct calculated values **A**1 2 (iii) Use the iterative formula correctly at least once M1Obtain final answer 1.2461 **A**1 Show sufficient iterations to 6 d.p. to justify 1.2461 to 4 d.p., or show there is a sign change in the interval (1.24605, 1.24615) **A**1 3

- (i) Evaluate, or consider the sign of, $x^3 x^2 6$ for two integer values of x, or equivalent Obtain the pair x = 2 and x = 3, with no errors seen A1 [2]
- (ii) State a suitable equation, e.g. $x = \sqrt{(x + (6/x))}$ B1
 - Rearrange this as $x^3 x^2 6 = 0$, or work *vice versa* B1 [2]
- (iii) Use the iterative formula correctly at least once
 Obtain final answer 2.219
 Show sufficient iterates to 5 d.p. to justify 2.219 to 3 d.p., or show there is a sign change in the interval (2.2185, 2.2195)

 A1
 [3]

Ouestion 15

- (i) Use $\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}$ and equate $\frac{dy}{dx}$ to 4
 - Obtain $\frac{4p^3}{2p+3} = 4$ or equivalent
 - Confirm given result $p = \sqrt[3]{2p+3}$ correctly A1 [3]
- (ii) Evaluate $p \sqrt[3]{2p+3}$ or $p^3 2p 3$ or equivalent at 1.8 and 2.0 M1

 Justify result with correct calculations and argument

 (-0.076 and 0.087 or -0.77 and 1 respectively)

 A1 [2]
- (iii) Use the iterative process correctly at least once with $1.8 \le p_n \le 2.0$ M1
 Obtain final answer 1.89
 Show sufficient iterations to at least 4 d.p. to justify 1.89 or show sign change in interval (1.885, 1.895)
 A1
 [3]

- (i) Consider sign of $x^5 3x^3 + x^2 4$ at x = 1 and x = 2, or equivalent

 Complete the argument correctly with correct calculated values

 A1 [2]
- (ii) Rearrange the given quintic equation in the given form, or work vice versa B1 [1]
- (iii) Use the iterative formula correctly at least once
 Obtain final answer 1.78
 Show sufficient iterations to 4 d.p. to justify 1.78 to 2 d.p., or show there is a sign change in the interval (1.775, 1.785)

 A1
 [3]

- Make recognizable sketch of a relevant graph **B1** Sketch the other relevant graph and justify the given statement **B**1
 - [2]

[2]

[2]

- State $x = \frac{1}{2} \ln(25/x)$ **B1**
 - Rearrange this in the form $5e^{-x} = \sqrt{x}$ **B1**
- (iii) Use the iterative formula correctly at least once **M**1 Obtain final answer 1.43 **A1** Show sufficient iterations to 4 d.p. to justify 1.43 to 2 d.p., or show there is a sign change in the
 - interval (1.425, 1.435) **A1** [3]

Question 18

- (i) Use correct quotient or chain rule Μ1 Obtain correct derivative in any form **A1** Obtain the given answer correctly **A1** [3]
- (ii) State a correct equation, e.g. $-e^{-a} = -\cos ec \ a \cot a$ **B1** Rearrange it correctly in the given form **B1** [2]
- (iii) Calculate values of a relevant expression or pair of expressions at x = 1 and x = 1.5**M**1 Complete the argument correctly with correct calculated values **A1** [2]
- (iv) Use the iterative formula correctly at least once **M**1 Obtain final answer 1.317 **A1** Show sufficient iterations to 5 d.p. to justify 1.317 to 3 d.p., or show there is a sign change in the interval (1.3165, 1,3175) **A1** [3]

Ouestion 19

- (i) Use the product rule **M**1 Obtain correct derivative in any form **A1** Equate 2-term derivative to zero and obtain the given answer correctly **A1** [3]
- (ii) Use calculations to consider the sign of a relevant expression at p = 2 and p = 2.5, or compare values of relevant expressions at p=2 and p=2.5**M**1 Complete the argument correctly with correct calculated values **A1**

	(iii) Use the iterative formula correctly at least once Obtain final answer 2.15 Show sufficient iterations to 4 d.p. to justify 2.15 to 2 d.p., or show there is a sign change in the interval (2.145,2.155)				
Ques	tion 20				
(i)	Make recognizable sketch of a relevant graph Sketch the other relevant graph and justify the given statement		B1 B1	[2]	
(ii)	Use calculations to consider the value of a relevant expression at $x = 1.4$ and $x = 1.6$, or the values of relevant expressions at $x = 1.4$ and $x = 1.6$ Complete the argument correctly with correct calculated values		M1 A1	[2]	
(iii)	State $x = 2\sin^{-1}\left(\frac{3}{x+3}\right)$ Rearrange this in the form $\csc\frac{1}{2}x = \frac{1}{3}x + 1$ If working in reverse, need $\sin\frac{x}{2} = \left(\frac{3}{x+3}\right)$ for first B1		B1 B1	[2]	
(iv)	Use the iterative formula correctly at least once Obtain final answer 1.471 Show sufficient iterations to 5 d.p. to justify 1.471 to 3 d.p., or show there is a sign change in the interval (1.4705, 1.4715)		M1 A1	[3]	
Ques	tion 21			•	
(i)	Differentiate both equations and equate derivatives Obtain equation $\cos a - a \sin a = -\frac{k}{a^2}$ State $a \cos a = \frac{k}{a}$ and eliminate k Obtain the given answer showing sufficient working	M1* A1 + A DM1 A1	1 1	[5]	
(ii)	Show clearly correct use of the iterative formula at least once Obtain answer 1.077 Show sufficient iterations to 5 d.p. to justify 1.077 to 3 d.p., or show there is a sign change in the interval (1.0765, 1.0775)	M1 A1		[3]	
(iii)	Use a correct method to determine k Obtain answer $k = 0.55$	M1 A1		[2]	

Obtain final answer 1.374

Quest	ion 22	
(i)	Sketch a relevant graph, e.g. $y = e^{-\frac{1}{2}x}$	B1
	Sketch a second relevant graph, e.g. $y = 4 - x^2$, and justify the given statement	B1
	Total:	2
(ii)	Calculate the value of a relevant expression or values of a pair of expressions at $x = -1$ and $x = -1.5$	M1
	complete the argument correctly with correct calculated values	A1
	Total:	2
(iii)	Use the iterative formula correctly at least once	M1
	Obtain final answer – 1.41	A1
	Show sufficient iterations to 4 d.p. to justify -1.41 to 2 d.p., or show there is a sign change in the interval $(-1.415, -1.405)$	A1
	Total:	3
Questi	ion 23	
(i)	Use correct sector formula at least once and form an equation in r and x	M1
	Obtain a correct equation in any form	A1
	Rearrange in the given form	A1
	Total:	3
(ii)	Calculate values of a relevant expression or expressions at $x = 1$ and $x = 1.5$	M1
	Complete the argument correctly with correct calculated values	A1
	Total:	2
(iii)	Use the iterative formula correctly at least once	M1

Show sufficient iterations to 5 d.p. to justify 1.374 to 3 d.p., or show there is a sign change in the interval (1.3745, 1.3755)

A1

A1

3

Total:

(i)	Use correct product rule	M1
	Obtain correct derivative in any form $\left(y' = 2x\cos 2x - 2x^2\sin 2x\right)$	A1
	Equate to zero and derive the given equation	A1
	Total:	3
(ii)	Use the iterative formula correctly at least once e.g. $0.5 \rightarrow 0.55357 \rightarrow 0.53261 \rightarrow 0.54070 \rightarrow 0.53755$	M1
	Obtain final answer 0.54	A1
	Show sufficient iterations to 4 d.p. to justify 0.54 to 2 d.p., or show there is a sign change in the interval (0.535, 0.545)	A1
	Total:	3
(iii)	Integrate by parts and reach $ax^2 \sin 2x + b \int x \sin 2x dx$	*M1
	Obtain $\frac{1}{2}x^2 \sin 2x - \int 2x \cdot \frac{1}{2} \sin 2x dx$	A1
	Complete integration and obtain $\frac{1}{2}x^2 \sin 2x + \frac{1}{2}x \cos 2x - \frac{1}{4}\sin 2x$, or equivalent	A1
	Substitute limits $x = 0$, $x = \frac{1}{4}\pi$, having integrated twice	DM1
	Obtain answer $\frac{1}{32}(\pi^2 - 8)$, or exact equivalent	A1
	Total:	5

(i)	Calculate the value of a relevant expression or expressions at $x = 2.5$ and at another relevant value, e.g. $x = 3$	
	Complete the argument correctly with correct calculated values	A1
	Total:	2
(ii)	State a suitable equation, e.g. $x = \pi + \tan^{-1}(1/(1-x))$ without suffices	B1
	Rearrange this as $\cot x = 1 - x$, or commence working <i>vice versa</i>	B1
	Total:	2
iii)	Use the iterative formula correctly at least once	M1
	Obtain final answer 2.576 only	A1
	Show sufficient iterations to 5 d.p. to justify 2.576 to 3 d.p., or show there is a sign change in the interval (2.5755, 2.5765)	A1
	Total:	3
Quest	tion 26	
(i)	Calculate value of a relevant expression or expressions at $x = 2$ and $x = 3$	M1
	Complete the argument correctly with correct calculated values	A1
		2
(ii)	Use an iterative formula correctly at least once	M1
	Show that (B) fails to converge	A1
	Using (A), obtain final answer 2.43	A1
	Show sufficient iterations to justify 2.43 to 2 d.p., or show there is a sign change in (2.425, 2.435)	A1
		4

)(i)	Integrate by parts and reach $ax^{\frac{3}{2}} \ln x + b \int x^{\frac{3}{2}} \cdot \frac{1}{x} dx$	*M1
	Obtain $\frac{2}{3}x^{\frac{3}{2}}\ln x - \frac{2}{3}\int x^{\frac{1}{2}} dx$	A1
	Obtain integral $\frac{2}{3}x^{\frac{3}{2}}\ln x - \frac{4}{9}x^{\frac{3}{2}}$, or equivalent	A1
	Substitute limits correctly and equate to 2	DM1
	Obtain the given answer correctly AG	A1
		5
(ii)	Evaluate a relevant expression or pair of expressions at $x = 2$ and $x = 4$	M1
	Complete the argument correctly with correct calculated values	A1
		2
(iii)	Use the iterative formula correctly at least once	M1
	Obtain final answer 3.031	A1
	Show sufficient iterations to 5 d.p. to justify 3.031 to 3 d.p., or show there is a sign change in the interval (3.0305, 3.0315)	A1
		1

(i)	Sketch a relevant graph, e.g. $y = e^{2x}$	B1
	Sketch a second relevant graph, e.g. $y = 6 + e^{-x}$, and justify the given statement	B1
		2
(ii)	Calculate the value of a relevant expression or values of a pair of relevant expressions at $x = 0.5$ and $x = 1$	M1
	Complete the argument correctly with correct calculated values	A1
		2

iii)	State a suitable equation, e.g. $x = \frac{1}{3} \ln (1 + 6e^x)$	B1
	Rearrange this as $e^{2x} = 6 + e^{-x}$, or commence working <i>vice versa</i>	B1
		2

(i)	Integrate by parts and reach $lxe^{-\frac{1}{2}x} + m \int e^{-\frac{1}{2}x} dx$	M1*
	Obtain $-2xe^{\frac{1}{2}x} + 2\int e^{\frac{1}{2}x} dx$	A1
	Complete the integration and obtain $-2xe^{-\frac{1}{2}x} - 4e^{-\frac{1}{2}x}$, or equivalent	A1
	Having integrated twice, use limits and equate result to 2	M1(dep*)
	Obtain the given equation correctly	A1
		5
(ii)	Calculate values of a relevant expression or pair of expressions at $a = 3$ and $a = 3.5$	M1
	Complete the argument correctly with correct calculated values	A1
		2
(iii)	Use the iterative formula $a_{n+1} = 2\ln(a_n + 2)$ correctly at least once	M1
	Obtain final answer 3.36	A1
	Show sufficient iterations to 4 d.p. to justify 3.36 to 2 d.p., or show there is a sign change in the interval (3.355, 3.365)	A1
		3

i(i)	Use correct method for finding the area of a segment and area of semicircle and form an equation in θ	M1	e.g.	$\frac{\pi a^2}{4} = \frac{1}{2} a^2 \theta - \frac{1}{2} a^2 \theta $	$a^2 \sin \theta$	
	State a correct equation in any form	A1	Give	en answer so chec	k working carefull	у
	Obtain the given answer correctly	A1				
		3				
(ii)	Calculate values of a relevant expression or pair of expressions at $\theta = 2.2$ and $\theta = 2.4$	M1	e.g.	$f(\theta) = \frac{\pi}{2} + \sin \theta$	$\begin{cases} f(2.2) = 2.37\\ f(2.4) = 2.24 \end{cases}$	> 2.2 < 2.4
			or	$f(\theta) = \theta - \frac{\pi}{2} - \sin^2\theta$	$\begin{cases} f(2.2) = 2.37\\ f(2.4) = 2.24\\ n\theta \end{cases} \begin{cases} f(2.2) = -0\\ f(2.4) = +0 \end{cases}$.17<0 .15>0
	Complete the argument correctly with correct calculated values	A1				
		2				
(iii)	Use $\theta_{n+1} = \frac{1}{2}\pi + \sin \theta_n$ correctly at least once	M	1 e.g	2.2	2.3	2.4
	Obtain final answer 2.31	A	ı	2.3793	2.3165	2.2463
	Show sufficient iterations to 4 d.p. to justify 2.31 to 2 d.p. or show there is a sign change in the interval (2.305, 2.315)	A	1	2.2614	2.3054	2.3512
				2.3417	2.3129	2.2814
				2.2881	2.3079	2.3288
				2.3244		2.2970
				2.3000		2.3185
				2.3165		2.3041
				2.3054		2.3138
				2.3129		2.3072
	4	3	3			

l(i)	Use the quotient or product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain the given equation	A1
	Total:	3
(ii)	Sketch a relevant graph, e.g. $y = \ln x$	B1
	Sketch a second relevant graph, e.g. $y = 1 + \frac{3}{x}$, and justify the given statement	B1
	Total:	2
(iii)	Use iterative formula $x_{n+1} = \frac{3+x}{\ln x_n}$ correctly at least once	M1
	Obtain final answer 4.97	A1
	Show sufficient iterations to 4 d.p.to justify 4.97 to 2 d.p. or show there is a sign change in the interval (4.965, 4.975)	A1
	Total:	3
Quest	ion 32	
(i)	Sketch a relevant graph, e.g. $y = x^3$	B1
	Sketch a second relevant graph, e.g. $y = 3 - x$, and justify the given statement	B1
	72.50	2
(ii)	State or imply the equation $x = (2x^3 + 3)/(3x^2 + 1)$	B1
	Rearrange this in the form $x^3 = 3 - x$, or commence work <i>vice versa</i>	B1
		2
(iii)	Use the iterative formula correctly at least once	M1
	Obtain final answer 1.213	A1
	Show sufficient iterations to 5 d.p. or more to justify 1.213 to 3 d.p., or show there is a sign change in the interval (1.2125, 1.2135)	A1
		3

(i)	Use product rule on a correct expression	M1	Condone with $+\frac{x}{8-x}$ unless there is clear evidence of incorrect product rule.
	Obtain correct derivative in any form	A1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \ln\left(8 - x\right) - \frac{x}{8 - x}$
	Equate derivative to 1 and obtain $x = 8 - \frac{8}{\ln(8-x)}$	A1	Given answer: check carefully that it follows from correct working
			Condone the use of a for x throughout
		3	
(ii)	Calculate values of a relevant expression or pair of relevant expressions at $x = 2.9$ and $x = 3.1$	M1	$8 - \frac{8}{\ln 5.1} = 3.09 > 2.9$, $8 - \frac{8}{\ln 4.9} = 2.97 < 3.1$ Clear linking of pairs needed for M1 by this method (0.19 and -0.13)
	Complete the argument correctly with correct calculated values	A1	Note: valid to consider gradient at 2.9 (1.06) and 3.1 (0.95) and comment on comparison with 1
		2	

Question 34

(i)	Sketch a relevant graph, e.g. $y = x^3$	B1	
	Sketch a second relevant graph, e.g. $y = 3 - x$, and justify the given statement	B1	Consideration of behaviour for $x < 0$ is needed for the second B1
		2	
(ii)	State or imply the equation $x = (2x^3 + 3)/(3x^2 + 1)$	В1	
	Rearrange this in the form $x^3 = 3 - x$, or commence work <i>vice versa</i>	B1	
		2	
(iii)	Use the iterative formula correctly at least once	M1	
	Obtain final answer 1.213	A1	
	Show sufficient iterations to 5 d.p. or more to justify 1.213 to 3 d.p., or show there is a sign change in the interval (1.2125, 1.2135)	A1	
	atprev	3	

!(i)	Use the iterative formula correctly at least once	M1
	Obtain answer 1.3195	A1
	Show sufficient iterations to 6 d.p. to justify 1.3195 to 4 d.p., or show there is a sign change in (1.31945, 1.31955)	A1
		3
(ii)	State $x = \frac{2x^6 + 12x}{3x^5 + 8}$, or equivalent	В1
	State answer $\sqrt[5]{4}$, or exact equivalent	B1
		2

(i)	State at least one correct derivative	В1	$-2\sin\frac{1}{2}x$, $\frac{1}{(4-x)^2}$
	Equate product of derivatives to – 1	M1	or equivalent
	Obtain a correct equation, e.g. $2\sin\frac{1}{2}x = (4-x)^2$	A1	
	Rearrange correctly to obtain $a = 4 - \sqrt{2\sin\frac{a}{2}}$ AG	A1	
		4	
(ii)	Calculate values of a relevant expression or pair of expressions at $a = 2$ and $a = 3$	M1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Complete the argument correctly with correct calculated values	A1	
		2	
iii)	Use the iterative formula $a_{n+1} = 4 - \sqrt{(2\sin\frac{1}{2}a_n)}$ correctly at least once	M1	
	Obtain final answer 2.611	A1	
	Show sufficient iterations to 5 d.p. to justify 2.611 to 3 d.p., or show there is a sign change in the interval (2.6105, 2.6115)	A1	2, 2.70272, 2.60285, 2.61152, 2.61070, 2.61077 2.5, 2.62233, 2.60969, 2.61087, 2.61076 3, 2.58756, 2.61301, 2.61056, 2.61079 Condone truncation. Accept more than 5 dp
		3	
Ques	tion 37		

-			
5(i)	Correct use of trigonometry to obtain $AB = 2r \cos x$	B1	AG
		1	/ 4 /
i(ii)	Use correct method for finding the area of the sector and the semicircle and form an equation in x	M1	$\frac{1}{2} \times \frac{1}{2} \pi r^2 = \frac{1}{2} (2r \cos x)^2 2x$
	Obtain $x = \cos^{-1} \sqrt{\frac{\pi}{16x}}$ correctly AG	ore(A1	Via correct simplification e.g. from $\cos^2 x = \frac{\pi}{16x}$
		2	
(iii)	Calculate values of a relevant expression or pair of expressions at $x=1$ and $x=1.5$ Must be working in radians	M1	$x = 1 1 \rightarrow 1.11 f(1) = 1.11$ $x = 1.5 1.5 \rightarrow 1.20 Accept f(1.5) = 1.20$ $f(x) = x - \cos^{-1} \sqrt{\frac{\pi}{16x}} : f(1) = -0.111., f(1.5) = 0.3$ $f(x) = \cos x - \sqrt{\frac{\pi}{16x}} : f(1) = 0.097., f(1.5) = -0.291.$ For $16x \cos^2 x - \pi f(1) = 1.529, f(1.5) = -3.02$
			Must find values. M1 if at least one value correct
	Correct values and complete the argument correctly	A1	
		2	

i(i)	State $b = 3$	B1	
		1	
(ii)	Commence division by $x - b$ and reach partial quotient $x^3 + kx^2$	M1	
	Obtain quotient $x^3 + x^2 + 3x + 2$	A1	There being no remainder
	Equate quotient to zero and rearrange to make the subject a	M1	
	Obtain the given equation	A1	
		4	
(iii)	Use the iterative formula $a_{n+1} = -\frac{1}{3}(2 + a_n^2 + a_n^3)$ correctly at least once	M1	
	Obtain final answer –0.715	A1	
	Show sufficient iterations to 5 d.p. to justify -0.715 to 3 d.p., or show there is a sign change in the interval (-0.7145, -0.7155)	A1	
		3	

Use correct product rule	M1	
Obtain correct derivative in any form $\frac{dy}{dx} = -2e^{-2x} \ln(x-1) + \frac{e^{-2x}}{x-1}$	A1	
Equate derivative to zero and derive $x = 1 + e^{\frac{1}{2(x-1)}} \text{ or } p = 1 + \frac{1}{2(p-1)}$	A1	AG
	3	
Calculate values of a relevant expression or pair of relevant expressions at $x = 2.2$ and $x = 2.6$	М1	
$f(x) = \ln(x-1) - \frac{1}{2(x-1)} \Rightarrow f(2.2) = -0.234, f(2.6) = 0.317$	1.5	
$f(x) = 2e^{-2x}\ln(x-1) + \frac{e^{-2x}}{x-1} \Rightarrow f(2.2) = 0.005, f(2.6) = -0.0017$	0	
Complete the argument correctly with correct calculated values	A1	
atpion	2	
Use the iterative process $p_{n+1} = 1 + \exp\left(\frac{1}{2(p_n - 1)}\right)$ correctly at least once	M1	
Obtain final answer 2.42	A1	
Show sufficient iterations to 4 d.p. to justify 2.42 to 2 d.p., or show there is a sign change in the interval (2.415, 2.425)	A1	
	3	

(i)	Commence integration by parts, reaching $ax \sin \frac{1}{3}x - b \int \sin \frac{1}{3}x dx$	*M1	
	Obtain $3x \sin \frac{1}{3}x - 3\int \sin \frac{1}{3}x dx$	A1	
	Complete integration and obtain $3x \sin \frac{1}{3}x + 9\cos \frac{1}{3}x$	A1	
	Substitute limits correctly and equate result to 3 in an integral of the form $px\sin\frac{1}{3}x + q\cos\frac{1}{3}x$	DM1	$3 = 3a\sin\frac{a}{3} + 9\cos\frac{a}{3}(-0) - 9$
	Obtain $a = \frac{4 - 3\cos\frac{a}{3}}{\sin\frac{a}{3}}$ correctly	A1	With sufficient evidence to show how they reach the given equation
		5	
(ii)	Calculate values at $a = 2.5$ and $a = 3$ of a relevant expression or pair of expressions.	M1	2.5 < 2.679 and 3 > 2.827 If using 2.679 and 2.827 must be linked explicitly to 2.5 and 3. Solving $f(a) = 0$, $f(2.5) = 0.179$. and $f(3) = -0.173$ or if $f(a) = a \sin \frac{1}{3}a + 3 \cos \frac{1}{3}a - 4 \Rightarrow f(2.5) = -0.13, f(3) = 0.145$
	Complete the argument correctly with correct calculated values	A1	Accept values to 1 sf. or better
		2	
(iii)	Use the iterative process $a_{n+1}=a_{n+1}\frac{4-3\cos\frac{1}{3}a_n}{\sin\frac{1}{3}a_n}$ correctly at least once	M1	
	Show sufficient iterations to at least 5 d.p. to justify 2.736 to 3d.p., or show a sign change in the interval (2.7355, 2.7365)	A1	
	Obtain final answer 2.736	A1	
	3	3	· \$ /

(i)	Sketch a relevant graph, e.g. $y = \ln(x+2)$	B1	
	Sketch a second relevant graph, e.g. $y = 4e^{-x}$, and justify the given statement	B1	Consideration of behaviour for $x < 0$ is needed for the second B1
		2	
(ii)	Calculate the values of a relevant expression or pair of expressions at $x = 1$ and $x = 1.5$	M1	
	Complete the argument correctly with correct calculated values	A1	
		2	
(iii)	Use the iterative formula correctly at least twice using output from a previous iteration	M1	
	Obtain final answer 1.23	A1	
	Show sufficient iterations to 4 d.p. to justify 1.23 to 2 d.p., or show there is a sign change in the interval (1.225, 1.235)	A1	
		3	

(a)	Sketch the graph $y = \sec x$	M1	
	Sketch the graph $y = 2 - \frac{1}{2}x$, and justify the given statement	A1	
		2	
(b)	Calculate the values of a relevant expression or pair of expressions at $x = 0.8$ and $x = 1$	М1	
	Complete the argument correctly with correct calculated values	A1	
		2	
(c)	Use the iterative formula correctly at least once	M1	
	Obtain final answer 0.88	A1	
	Show sufficient iterations to 4 d.p. to justify 0.88 to 2 d.p., or show there is a sign change in the interval (0.875, 0.885)	A1	
	T DE	3	

(a)	State or imply $AT = r \tan x$ or $BT = r \tan x$	B1
	Use correct area formula and form an equation in r and x	M1
	Rearrange in the given form	A1
		3
(b)	Calculate the values of a relevant expression or pair of expressions at $x = 1$ and $x = 1.4$	M1
	Complete the argument correctly with correct calculated values	A1
		2
(c)	Use the iterative formula correctly at least once	M1
	Obtain final answer 1.35	A1
	Show sufficient iterations to 4 d.p. to justify 1.35 to 2 d.p. or show there is a sign change in the interval (1.345, 1.355)	A1
	3, 0'	3

(a)	State $\cos p = \frac{k}{1+p}$	B1
	Differentiate both equations and equate derivatives at $x = p$	M1
	Obtain a correct equation in any form, e.g. $-\sin p = -\frac{k}{(1+p)^2}$	A1
	Eliminate k	M1
	Obtain the given answer showing sufficient working	A1
		5
(b)	Use the iterative formula correctly at least once	M1
	Obtain final answer $p = 0.568$	A1
	Show sufficient iterations to justify 0.568 to 3 d.p., or show there is a sign change in the interval (0.5675, 0.5685)	A1
	TPRA	3
(c)	Use a correct method to find k	M1
	Obtain answer $k = 1.32$	A1
		2

(a)	Sketch a relevant graph, e.g. $y = x^5$	B1
	Sketch a second relevant graph, e.g. $y = x + 2$ and justify the given statement	B1
		2
(b)	State a suitable equation, e.g. $x = \frac{4x^5 + 2}{5x^4 - 1}$	В1
	Rearrange this as $x^5 = 2 + x$ or commence working <i>vice versa</i>	B1
	13.	2
(c)	Use the iterative formula correctly at least once	M1
	Obtain final answer 1.267	A1
	Show sufficient iterations to 5 d.p. to justify 1.267 to 3 d.p., or show there is a sign change in the interval (1.2665, 1.2675)	A1
		3

(a)	Sketch a relevant graph, e.g. $y = \csc x$	B1	cosec x, U shaped, roughly symmetrical about $x = \frac{\pi}{2}$, $y(\frac{\pi}{2}) = 1$
			and domain at least $\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$.
	Sketch a second relevant graph, e.g. $y = 1 + e^{-\frac{1}{2}x}$, and justify the given statement	В1	Exponential graph needs $y(0) = 2$, negative gradient, always increasing, and $y(\pi) > 1$ Needs to mark intersections with dots, crosses, or say roots at points of intersection, or equivalent
		2	
(b)	Use the iterative formula correctly at least twice	M1	2, 2.3217, 2.2760, 2.2824 Need to see 2 iterations and following value inserted correctly
	Obtain final answer 2.28	A1	Must be supported by iterations
	Show sufficient iterations to at least 4 d.p. to justify 2.28 to 2 d.p., or show there is a sign change in the interval (2.275, 2.285)	A1	
		3	

(a)	Use correct product rule	M1	
	Obtain correct derivative in any form	A1	e.g. $\frac{dy}{dx} = \frac{1}{2\sqrt{x}}\cos x - \sqrt{x}\sin x$. Accept in a or in x
	Equate derivative to zero and obtain $\tan a = \frac{1}{2a}$	A1	Obtain given answer from correct working. The question says 'show that' so there should be an intermediate step e.g. $\cos x = 2x \sin x$. Allow $\tan x = \frac{1}{2x}$
		3	
)	Use the iterative process correctly at least once (get one value and go on to use it in a second use of the formula)	M1	Must be working in radians Degrees gives 1, 12.6039, 5.4133, M0
	Obtain final answer 3.29	A1	Clear conclusion
	Show sufficient iterations to at least 4 d.p.to justify 3.29, or show there is a sign change in the interval (3.285, 3.295)	A1	3, 3.3067, 3.2917, 3.2923 Allow more than 4d.p. Condone truncation.
	atpr	3	

(c)	State or imply the indefinite integral for the volume is $\pi \int (\sqrt{x} \cos x)^2 dx$	B1	[If π omitted, or 2π or $\frac{1}{2}\pi$ used, give B0 and follow through. 4/6 available]
	Use correct cos 2A formula, commence integration by parts and reach $x(ax+b\sin 2x)\pm \int ax+b\sin 2x dx$	*M1	Alternative: $\frac{x^2}{4} + \frac{x}{4}\sin 2x - \int \frac{1}{4}\sin 2x dx$
	Obtain $x(\frac{1}{2}x + \frac{1}{4}\sin 2x) - \int \frac{1}{2}x + \frac{1}{4}\sin 2x dx$, or equivalent	A1	
	Complete integration and obtain $\frac{1}{4}x^2 + \frac{1}{4}x\sin 2x + \frac{1}{8}\cos 2x$	A1	OE
	Substitute limits $x = 0$ and $x = \frac{1}{2}\pi$, having integrated twice	DM1	$\frac{\pi}{2} \left[\frac{\pi^2}{8} + 0 - \frac{1}{4} - 0 - 0 - \frac{1}{4} \right]$
	Obtain answer $\frac{1}{16}\pi(\pi^2-4)$, or exact equivalent	A1	CAO
		6	

(a)	Sketch a relevant graph, e.g. $y = \csc x$	B1	cosec x, U shaped, roughly symmetrical about $x = \frac{\pi}{2}$, $y\left(\frac{\pi}{2}\right) = 1$
			and domain at least $\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$.
	Sketch a second relevant graph, e.g. $y = 1 + e^{-\frac{1}{2}x}$, and justify the given statement	В1	Exponential graph needs $y(0) = 2$, negative gradient, always increasing, and $y(\pi) > 1$ Needs to mark intersections with dots, crosses, or say roots at points of intersection, or equivalent
		2	
(b)	Use the iterative formula correctly at least twice	M1	2, 2.3217, 2.2760, 2.2824 Need to see 2 iterations and following value inserted correctly
	Obtain final answer 2.28	A1	Must be supported by iterations
	Show sufficient iterations to at least 4 d.p. to justify 2.28 to 2 d.p., or show there is a sign change in the interval (2.275, 2.285)	A1	
	· Satr	3	0.

(a)	Calculate the values of a relevant expression or pair of expressions at $x = 1$ and $x = 1.5$ Complete the argument correctly with correct calculated values			
		2		
(b)	Use the iterative formula $x_{n+1} = \frac{e^{2x_n} + 1}{e^{2x_n} - 1}$, or equivalent, correctly at least once	M1		
	Obtain final answer 1.20	A1		
	Show sufficient iterations to 4 dp to justify 1.20 to 2 dp, or show there is a sign change in the interval (1.195,1.205)	A1		
		3		
(c)	Use quotient rule	M1		
	Obtain correct derivative in any form	A1		
	Equate derivative to -8 and obtain a quadratic in e^{2x}	M1		
	Obtain $2(e^{2x})^2 - 5e^{2x} + 2 = 0$	A1		
	Solve a 3-term quadratic in e^{2x} for x			
	Obtain answer $x = \frac{1}{2} \ln 2$, or exact equivalent, only	A1		

(a)	Sketch a relevant graph, e.g. $y = \cot \frac{1}{2}x$				
	Sketch a second relevant graph, e.g. $y = 1 + e^{-x}$, and justify the given statement	B1			
		2			
(b)	Calculate values of a relevant expression or pair of expressions at $x = 1$ and $x = 1.5$				
	Complete the argument correctly with correct calculated values				
		2			
(c)	Use the iterative formula correctly at least once	M1			
	Obtain final answer 1.34	A1			
	Show sufficient iterations to 4 d.p. to justify 1.34 to 2 d.p. or show there is a sign change in the interval (1.335, 1.345)	A1			
	3	3			

(a)	State or imply $CD = 2r - 2r \cos x$	B 1
	Using correct formulae for area of sector and trapezium, or equivalent, form an equation in r and x	M1
	Obtain $x = 0.9(2 - \cos x)\sin x$	A1
		3
(b)	Calculate the values of a relevant expression or pair of expressions at $x = 0.5$ and $x = 0.7$	M1
	Complete the argument correctly with correct values	A1
		2
(c)	State a suitable equation, e.g. $\cos x = \left(2 - \frac{x}{0.9 \sin x}\right)$	B1
	Rearrange this as $x = 0.9 \sin x (2 - \cos x)$	B1
	3	2
(d)	Use the iterative process correctly at least once	M1
	Obtain answer 0.62	A1
	Show sufficient iterations to at least 4 d.p.to justify 0.62 to 2 d.p., or show there is a sign change in the interval (0.615, 0.625)	A1
		3

(a)	Use correct quotient rule or correct product rule			
	Obtain correct derivative in any form			
	Equate derivative to zero and remove inverse tangent	M1		
	Obtain $a = \tan\left(\frac{2a}{1+a^2}\right)$ from correct working	A1		
		4		
'(b)	Calculate the value of a relevant expression or pair of expressions at $a = 1.3$ and $a = 1.5$			
	Complete the argument correctly with correct calculated values			
		2		
'(c)	Use the iterative process $a_{n+1} = \tan\left(\frac{2a_n}{1+a_n^2}\right)$ correctly at least twice	M1		
	Obtain final answer 1.39 Show sufficient iterations to at least 4 d.p. to justify 1.39 to 2 d.p. or show there is a sign change in the interval (1.385, 1.395)			
			·SatpreP·	3

(a)	State or imply equation of the form $\frac{dx}{dt} = k \frac{x}{20 - x}$	M1	
	Obtain $k = 19$	A1	AG
		2	
(b)	Separate variables and integrate at least one side	M1	
	Obtain terms $20 \ln x - x$ and $19t$, or equivalent	A1 A1	
	Evaluate a constant or use $t = 0$ and $x = 1$ as limits in a solution containing terms $a \ln x$ and bt	M1	
	Substitute $t = 1$ and rearrange the equation in the given form	A1	AG
		5	
(c)	Use $x_{n+1} = e^{0.9 + 0.05x_n}$ correctly at least once	M1	
	Obtain final answer $x = 2.83$	A1	
	Show sufficient iterations to 4 decimal places to justify 2.83 to 2 d.p. or show there is a sign change in the interval (2.825, 2.835)	A1	
		3	
(d)	Set $x = 20$ and obtain answer $t = 2.15$	B1	
		1	

(a)	Use chain rule	M1	Allow if not starting with the correct index.
	Obtain correct derivative in any form	A1	$e.g. \frac{dy}{dx} = \frac{\sec^2 x}{2\sqrt{\tan x}}$
	Use correct Pythagoras to obtain correct derivative in terms of tan x	A1	$e.g. \frac{dy}{dx} = \frac{1 + \tan^2 x}{2\sqrt{\tan x}}$
	Use a correct derivative to obtain $\frac{dy}{dx} = 1$ when $x = \frac{1}{4}\pi$	B1	Confirm the given statement from correct work. Should see at least $\frac{2}{2} = 1$.
	4	4	6
(b)	Equate answer to part (a) to 1 and obtain a quartic equation in t or $\tan x$	*M1	At least as far as $(1 + \tan^2 x)^2 = 4 \tan x$.
	Obtain correct answer, i.e. $t^4 + 2t^2 - 4t + 1 = 0$	A1	Or equivalent horizontal form.
	Commence division by $t-1$	DM1	As far as $t^3 + t^2 +$ by long division or inspection. Allow verification by multiplying given answer by $t - 1$.
	Obtain the given answer	A1	
		4	
(c)	Use the iterative process correctly with the given formula at least once	M1	Obtain one value and use that to obtain the next. Must be working in radians.
	Obtain final answer $a = 0.29$	A1	
	Show sufficient iterations to 4 d.p. to justify 0.29 to 2 d.p., or show there is a sign change in (0.285, 0.295)	A1	e.g. 0.3, 0.2854, 0.2894, 0.2883, 0.4, 0.2436, 0.2984, 0.2841, 0.2883, 0.2871, 0.5, 0.1776, 0.3103, 0.2805, 0.2893, 0.2868,
		3	

Commence integration and reach $a\sqrt{x}\ln x + b\int\sqrt{x}$. $\frac{1}{x}$ dx, or equivalent	*M1	
Obtain $2\sqrt{x} \ln x - \int 2\sqrt{x}$. $\frac{1}{x} dx$, or equivalent	A1	
Obtain integral $2\sqrt{x} \ln x - 4\sqrt{x}$, or equivalent	A1	
Substitute limits and equate result to 6	DM1	
Rearrange and obtain $a = \exp\left(\frac{1}{\sqrt{a}} + 2\right)$	A1	Obtain given answer from full and correct working.
	5	
Calculate the values of a relevant expression or pair of expressions at $a = 9$ and $a = 11$	M1	e.g. $\begin{cases} 9 < 10.31 \\ 11 > 9.99 \end{cases}$ or $1.31 > 0, -1.01 < 0$
Complete the argument correctly with correct values	A1	
TPA	2	
Use the iterative process $a_{n+1} = \exp(\frac{1}{\sqrt{a_n}} + 2)$ correctly at least once	M1	
Obtain answer 10.12	A1	
Show sufficient iterations to 4dp to justify 10.12 to 2dp, or show there is a sign change in the interval (10.115, 10.125)	A1	e.g. 10,10.1374,10.1156,10.1190, 9,10.3123,10.0886,10.1233,10.1178, 11,9.9893,10.1391,10.1153,10.1191,
	3	
	Obtain $2\sqrt{x} \ln x - \int 2\sqrt{x}$. $\frac{1}{x}$ dx, or equivalent Obtain integral $2\sqrt{x} \ln x - 4\sqrt{x}$, or equivalent Substitute limits and equate result to 6 Rearrange and obtain $a = \exp\left(\frac{1}{\sqrt{a}} + 2\right)$ Calculate the values of a relevant expression or pair of expressions at $a = 9$ and $a = 11$ Complete the argument correctly with correct values Use the iterative process $a_{n+1} = \exp\left(\frac{1}{\sqrt{a_n}} + 2\right)$ correctly at least once Obtain answer 10.12 Show sufficient iterations to 4dp to justify 10.12 to 2dp, or show there is a	Commence integration and reach $a\sqrt{x} \ln x + b \sqrt{x}$. $\frac{1}{x}$ dx, or equivalent Obtain $2\sqrt{x} \ln x - \sqrt{2}\sqrt{x}$. $\frac{1}{x}$ dx, or equivalent Obtain integral $2\sqrt{x} \ln x - 4\sqrt{x}$, or equivalent Substitute limits and equate result to 6 Rearrange and obtain $a = \exp\left(\frac{1}{\sqrt{a}} + 2\right)$ 5 Calculate the values of a relevant expression or pair of expressions at $a = 9$ and $a = 11$ Complete the argument correctly with correct values A1 Use the iterative process $a_{n+1} = \exp\left(\frac{1}{\sqrt{a_n}} + 2\right)$ correctly at least once Obtain answer 10.12 Show sufficient iterations to 4dp to justify 10.12 to 2dp, or show there is a sign change in the interval (10.115, 10.125)

(a)	Sketch a relevant graph, e.g. $y = 4 - x^2$	B1	Needs $(0, 4)$ or marks on axis and $(2, 0)$ or $(\pi, 0)$
	Sketch a second relevant graph, e.g. $y = \sec \frac{1}{2}x$, and justify the given statement	В1	Needs $(0, 1)$ or mark on axis and $(\pi, 0)$ Asymptote NOT required, but must NOT reach $x = \pi$. Sec graph must exist over at least interval $\left[0, \frac{3\pi}{4}\right]$ and quadratic graph over $[0, 2.5]$.
	TPE	2	
(b)	Calculate the value of a relevant expression or values of a pair of relevant expressions at $x = 1$ and $x = 2$.	M1	Need all 4 values or the 2 values correct for M1. Angles in degrees score M0.
	Complete the argument with correct calculated values	A1	
		2	
'(c)	Use the iterative process correctly at least twice	M1	
	Obtain final answer 1.60	A1	Must be 2 d.p.
	Show sufficient iterations to 4 d.p.to justify 1.60 to 2 d.p. or show there is a sign change in the interval (1.595, 1.605)	A1	7]]]
		3	

(a)	Commence integration and reach $ax^3 \ln x + b \int x^3 \cdot \frac{1}{x} dx$	*M1	OE Allow omission of dx.
	Obtain $\frac{1}{3}x^3 \ln x - \frac{1}{3}\int x^3 \cdot \frac{1}{x} dx$	A1	OE Allow omission of dx.
	Complete integration and obtain $\frac{1}{3}x^3 \ln x - \frac{1}{9}x^3$	A1	Allow $-\frac{1}{3}\left(\frac{1}{3}x^3\right)$.
	Use limits correctly and equate to 4, having integrated twice	DM1	$\frac{1}{3}a^3 \ln a - \frac{1}{9}a^3 - (0 - \frac{1}{9}) = 4 \text{ allow one sign error OR one}$ $\text{numerical error, but 0 may be absent or expressed as } \frac{a^3}{3} \ln 1.$ $\text{Allow } -\frac{1}{3}\left(\frac{1}{3}ax^3\right) \text{ and } -\frac{1}{3}\left(\frac{1}{3}\right).$
	Obtain given result correctly	A1	$a = \left(\frac{35}{3\ln a - 1}\right)^{\frac{1}{3}} AG$ After substitution, any errors even if corrected A0. Need to see at least one line of working between substitution and the given answer.
		5	
(b)	Calculate the values of a relevant expression or pair of expressions at $a = 2.4$ and $a = 2.8$ All values must be correct for M1 (numerical question)	M1	
	Justify the given statement with correct calculated values	A1	2.4 < 2.7(8) and $2.8 > 2.5(6)$ sign change here insufficient OR $-0.3(8)$ and $0.2(4) < 0, > 0$ or change of sign.
		2	
(c)	Use the iterative process $a_{n+1} = \left(\frac{35}{3 \ln a_n - 1}\right)^{\frac{1}{3}}$ correctly at least twice	M1	
	Obtain final answer $a = 2.64$	A1	Must be 2 dp.
	Show sufficient iterations to 4 dp to justify 2.64 to 2 dp, or show there is a sign change in (2.635, 2.645)	A1	2.635 $(35/(3\ln a - 1))^{1/3} - a = 0.0029(4) > 0$ 2.645 $(35/(3\ln a - 1))^{1/3} - a = -0.012 < 0$
	·satpr	3	·

(a)	Sketch a relevant graph, e.g. $y = \ln x$	B1	2
	Sketch a second relevant graph, e.g. $y = 3x - x^2$, and justify the given statement by marking the root on the sketch or by use of a suitable comment	В1	$\ln(x)$: sketch should imply y-axis is an asymptote. Through $(1,0)$ if marked. Correct shape. $3x-x^2$: Symmetrical. Through $(0,0)$ and $(3,0)$ if marked. If $\ln(x)$ correct accept parabola for +ve y only. If $\ln(x)$ incorrect then need parabola in 3 quadrants.
		2	
(b)	Calculate the values of a relevant expression or pair of expressions at $x = 2$ and $x = 2.8$	M1	Allow for a smaller interval. At least one value correct if comparing with 0. If using pairs then the pairing must be clear.
	Complete the argument correctly with correct calculated values	A1	e.g. $0.693 < 2$ and $1.03 > 0.56$ or $1.307 > 0, -0.47 < 0$ using $\sqrt{3x - \ln x}$ $0.304 > 0, -0.085 < 0$. Need to have calculated values to at least 2 sf.
		2	
(c)	Use the iterative process correctly at least once	M1	
	Obtain final answer 2.63	A1	
	Show sufficient iterations to at least 4 dp to justify 2.63 to 2 dp or show there is a sign change in the interval (2.625, 2.635)	A1	SC Allow M1 A1 A0 to a candidate who starts at a point in the interval and reaches a premature conclusion
		3	
O114	stion 59		

(a)	Use correct product rule	M1	Condone incorrect / missing chain rule
	Obtain correct derivative in any form	A1	$dx = \sqrt{\sin x}$
	34		$2y\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\sin x + x^2\cos x$
	Equate derivative to zero and obtain an equation in tan x or tan a	M1	
	Obtain $tan a = -\frac{1}{2}a$ correctly	A1	AG
		4	
(b)	Calculate the value of a relevant expression or pair of expressions at $a = 2$ and $a = 2.5$	M1	Must be working in radians At least one correct
	Complete the argument correctly with correct calculated values	A1	e.g. $-1 > -2.18$ and $-1.25 < -0.747$
		2	
(c)	State a suitable equation, e.g. $x = \pi - \tan^{-1} \left(\frac{1}{2} x \right)$	B1	A correct equation without subscripts or quote $\tan \theta = -\tan (\pi - \theta)$
	Using $tan(A\pm B)$ formula, or otherwise, rearrange this as $tan x = -\frac{1}{2}x$	B1	Complete argument correctly
		2	

(d)	Use the iterative process correctly at least once	M1	Must be working in radians
	Obtain answer $a = 2.29$	A1	
	Show sufficient iterations to 4 dp to justify 2.29 to 2 dp or show there is a sign change in the interval (2.285, 2.295)	A1	e.g. 2.25, 2.2974, 2.2871, 2.2893, 2.2888,
		3	

•			
(a)	Use quotient or product rule	M1	
	Obtain correct derivative in any form	A1	
	Equate derivative at $x = p$ to zero and obtain the given equation	A1	
		3	
(b)	Evaluate a relevant expression or pair of relevant pair of expressions at $p = 2.5$ and $p = 3$	M1	
	Complete the argument with correct calculated values	A1	
	TPR	2	
c)	Use the iterative formula $p_{n+1} = 3(1 - e^{-p_n})$ correctly at least once	M1	
	Obtain final answer $p = 2.82$	A1	
	Show sufficient iterations to 4 d.p.to justify 2.82 to 2 d.p., or show there is a sign change in the interval (2.815, 2.825)	A1	
		3	

(a)	State or imply angle $AOC = \pi - 2\theta$	B1	Might be seen on the printed diagram.
	Use correct formulae for the area of a sector and triangle, or of a segment, and find the area of the shaded region	M1	$\frac{1}{2}r^2(\pi - 2\theta) - \frac{1}{2}r^2\sin(\pi - 2\theta) \text{ or}$ $\frac{1}{2}\pi r^2 - \left[\frac{1}{2}r^2(2\theta) + \frac{1}{2}r^2\sin(\pi - 2\theta)\right]$ M0 if subtraction the wrong way round.
	Equate to $\frac{1}{6}\pi r^2$ and obtain a correct equation in any form	A1	e.g. $\frac{1}{6}\pi r^2 = \frac{1}{2}r^2(\pi - 2\theta) - \frac{1}{2}r^2\sin(\pi - 2\theta)$.
	Obtain $\theta = \frac{1}{3}(\pi - 1.5\sin 2\theta)$ correctly	A1	AG Condone if state / imply $\sin(\pi - 2\theta) = \sin 2\theta$.
	atple	4	
(b)	Evaluate a relevant expression or pair of expressions at θ = 0.5 and θ = 0.7	M1	Allow work on a smaller interval. Need to evaluate for both limits, with at least one correct. When using $x = f(x)$ embedded values are not sufficient e.g. $f(0.5)$ is accepted but $\frac{1}{3}(\pi - 1.5 \sin 2 \times 0.5) =$ is not.
	Complete the argument correctly with correct calculated values	A1	e.g. $0.5 < 0.626, 0.7 > 0.554$ or $0.126 > 0, -0.146 < 0$ If using pairs then the pairing must be clear. Need to see the inequalities or an appropriate comment. Need to see values calculated to at least 2 sf.
		2	

(c)	Use the iterative process $\theta_{n+1} = \frac{1}{3}(\pi - 1.5\sin 2\theta_n)$ correctly at least once	M1	i.e obtain one value and use that value to obtain a second value. Must be working in radians.
	Obtain final answer 0.586	A1	
	Show sufficient iterations to 5 d.p. to justify 0.586 to 3 d.p., or show there is a sign change in the interval (0.5855, 0.5865).	A1	0.5,0.62646,0.57225,0.59195,0.58416,0.58715, e.g. 0.58599,0.58644 0.6,0.58118,0.58833,0.58553,0.58661,0.58619,0.58636 0.7,0.55447,0.59958,0.58133,0.58827,0.58556, 0.58661,0.58620,0.58636 Allow working to more than 5 dp, but not less.
		3	

7(a)	Use correct product or quotient rule	M1	
	Obtain correct derivative in any form	A1	e.g. $\frac{dy}{dx} = \frac{\cos^2 x + 2x\sin x \cos x}{\cos^4 x}$ or
	TP		$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x + 2x\sec^2 x \tan x$
	Equate derivative at $x = a$ to 12 and obtain $a = \cos^{-1} \left(\sqrt[3]{\frac{\cos a + 2a \sin a}{12}} \right)$	A1	AG
		3	
'(b)	Evaluate a relevant expression or pair of expressions at $a = 0.9$ and $a = 1$	M1	Must be calculated in radians.
	Complete the argument correctly with correct calculated values	A1	$\begin{array}{c} \cos 0.9 = 0.622 > 0.553 & 0.9 < 0.985 & 0.0846 > 0 \\ \text{e.g.} & \cos 1 = 0.540 < 0.570 & \text{or} & 1 > 0.964 & \text{or} \\ \text{or could be looking at values of the gradient } 8.46 \& 14.1 \end{array}$
		2	
'(c)	Use the process $a_{n+1} = \cos^{-1}\left(\sqrt[3]{\frac{\cos a_n + 2a_n \sin a_n}{12}}\right)$ correctly at least once	M1	Must be working in radians.
	Obtain final answer 0.97	A1	/~/
	Show sufficient iterations to 4 d.p. to justify 0.97 to 2 d.p., or show there is a sign change in the interval (0.965, 0.975)	A1	e.g. 0.95, 0.9743, 0.9694, 0.9704
	12.	3	5

State or imply area of shaded segment $=\frac{1}{2}r^2x-\frac{1}{2}r^2\sin x$ BI OE $r^2\sin(x/2)\cos(x/2)$ Bo until changed to $(1/2)r^2\sin x$. State $\frac{1}{2}r^2(2\pi-x)=3\left(\frac{1}{2}r^2x-\frac{1}{2}r^2\sin x\right)$ MI OE Area of major sector = 3 times (area of minor sector – area triangle). Allow $r^2\sin(x/2)\cos(x/2)$. Obtain the given answer $x=\frac{3}{4}\sin x+\frac{1}{2}\pi$ after full and correct working AI AG Allow rectified slip if before penultimate line. (b) Calculate the values of a relevant expression or pair of expressions at $x=\frac{1}{2}x=1$	(a)	State or imply area of major sector = $\frac{1}{2}r^2(2\pi - x)$	B1	OE		
State $\frac{1}{2}r^{2}(2\pi-x)=3\left(\frac{1}{2}r^{2}x-\frac{2}{2}r^{2}\sin x\right)$ Area of major sector = 3 times (area of minor sector – area triangle). All obtain the given answer $x=\frac{3}{4}\sin x+\frac{1}{2}\pi$ after full and correct working 4 (b) Calculate the values of a relevant expression or pair of expressions at $x=2$ and $x=2.5$ 2 and $x=2.5$ 4 (c) Use the iterative formula correctly at least twice Obtain final answer 2.18 Show sufficient iterations to 4 d.p. to justify 2.18 to 2 d.p. or show there is a sign change in the interval (2.175, 2.185) All or sector = 3 times (area of minor sector – area triangle). All Degrees award 0/2 2 (c) Use the iterative formula correctly at least twice M1 Obtain final answer 2.18 Show sufficient iterations to 4 d.p. to justify 2.18 to 2 d.p. or show there is a sign change in the interval (2.175, 2.185) All 1 2 2.2528 2.1543(5) 2.0196(5) 2.1550 2.1972 2.1786 2.1560 2.1784 2.1863 2.1845 2.1863 2.1846 2.1831 2.1789 2.1830 2.1845 2.1863 2.1845 Degrees award 0/3		State or imply area of shaded segment = $\frac{1}{2}r^2x - \frac{1}{2}r^2\sin x$	B1	100	os(x/2) B0 until chan	ged to $(1/2)r^2 \sin x$.
Obtain the given answer $x = \frac{1}{4} \sin x + \frac{1}{2} \pi$ after full and correct working 4 (b) Calculate the values of a relevant expression or pair of expressions at $x = 2$ and $x = 2.5$ 2 and $x = 2.5$ M1 $x = 2$ $x = 2.5$ $(3/4) \sin x + (1/2)\pi 2.2(5277)$ 2.0(197) $2 < 2.2$ or 2.3 2.5 > 2.0 $x - (3/4) \sin x - (1/2)\pi$ $- 0.2(5277) < 0$ + 0.4(803) > 0 or change of sign Attempt both values and one correct for M1. Complete the argument correctly with correct calculated values A1 Degrees award $0/2$ 2 (c) Use the iterative formula correctly at least twice M1 Show sufficient iterations to 4 d.p. to justify 2.18 to 2 d.p. or show there is a sign change in the interval (2.175, 2.185) A1 $2 = 2.25$ 2.252 2.1530 2.1967 2.2465 2.1972 2.1786 2.1866 2.1831 2.1789 2.1830 2.1845 2.1831 2.1845 Degrees award $0/3$		State $\frac{1}{2}r^2(2\pi - x) = 3\left(\frac{1}{2}r^2x - \frac{1}{2}r^2\sin x\right)$	M1	Area of maj triangle).		rea of minor sector – area of
Calculate the values of a relevant expression or pair of expressions at $x = 2$ and $x = 2.5$ $2 \text{ and } x = 2.5$ $2 \text{ and } x = 2.5$ $2 \text{ and } x = 2.5$ $3 \text{ (3/4) } \sin x + (1/2)\pi 2.2(5277) 2.0(197)$ $2 < 2.2 \text{ or } 2.3 2.5 > 2.0$ $x - (3/4) \sin x - (1/2)\pi - 0.2(5277) < 0 \text{ or change of sign}$ Attempt both values and one correct for M1. Complete the argument correctly with correct calculated values A1 Degrees award $0/2$ Use the iterative formula correctly at least twice M1 Obtain final answer 2.18 Show sufficient iterations to 4 d.p. to justify 2.18 to 2 d.p. or show there is a sign change in the interval (2.175, 2.185) A1 $2 \text{ 2.252} \text{ 2.55} \text{ 2.5}$ $2.1530 \text{ 2.1967} \text{ 2.2465}$ $2.1972 \text{ 2.1786} \text{ 2.1786} \text{ 2.1560}$ $2.1865 \text{ 2.1865} \text{ 2.1960}$ $2.1830 \text{ 2.1845} \text{ 2.1863}$ 2.1845 Degrees award $0/3$		Obtain the given answer $x = \frac{3}{4}\sin x + \frac{1}{2}\pi$ after full and correct working	A1	AG Allow 1	rectified slip if before	penultimate line.
			4			
(c) Use the iterative formula correctly at least twice M1 Obtain final answer 2.18 Show sufficient iterations to 4 d.p. to justify 2.18 to 2 d.p. or show there is a sign change in the interval (2.175, 2.185) A1 2 2.25 2.5 2.2528 2.1543(5) 2.0196(5) 2.1530 2.1967 2.2465 2.1972 2.1786 2.1560 2.1784 2.1865 2.1960 2.1846 2.1831 2.1789 2.1830 2.1845 2.1863 2.1846 2.1831 2.1845 Degrees award 0/3	(b)		M1	$ \begin{array}{lll} (3/4) \sin x + (1/2)\pi & 2.2(5277) & 2.0(197) \\ 2 < 2.2 \text{ or } 2.3 & 2.5 > 2.0 \\ x - (3/4) \sin x - (1/2)\pi & & & + 0.4(803) > 0 \\ & & & & \text{or change of sign} \end{array} $		
Obtain final answer 2.18		Complete the argument correctly with correct calculated values	A1	Degrees award 0/2		
Obtain final answer 2.18 Show sufficient iterations to 4 d.p. to justify 2.18 to 2 d.p. or show there is a sign change in the interval (2.175, 2.185) A1 2 2.25 2.5 2.2528 2.1543(5) 2.0196(5) 2.1530 2.1967 2.2465 2.1972 2.1786 2.1560 2.1784 2.1865 2.1960 2.1784 2.1865 2.1960 2.1866 2.1831 2.1789 2.1830 2.1845 2.1863 2.1846 2.1831 2.1845 Degrees award 0/3			2			
Show sufficient iterations to 4 d.p. to justify 2.18 to 2 d.p. or show there is a sign change in the interval (2.175, 2.185) A1 2 2.2528 2.1543(5) 2.1967 2.1960 2.1784 2.1865 2.1784 2.1865 2.1830 2.1846 2.1830 2.1845 2.1846 2.1846 2.1845 Degrees award 0/3	c)	Use the iterative formula correctly at least twice	M1			
a sign change in the interval (2.175, 2.185) 2		Obtain final answer 2.18	A1			
			A1	2.2528 2.1530 2.1972 2.1784 2.1866 2.1830 2.1846	2.1543(5) 2.1967 2.1786 2.1865 2.1831 2.1845	2.0196(5) 2.2465 2.1560 2.1960 2.1789 2.1863 2.1831
			3			

a)	Use correct product rule	M1	$\frac{\mathrm{d}}{\mathrm{d}x}(x^2)\cos(3x) + x^2\frac{\mathrm{d}}{\mathrm{d}x}(\cos 3x).$
	Obtain correct derivative in any form	A1	$e.g. 2x\cos 3x - 3x^2\sin 3x.$
	Equate derivative to zero and obtain $a = \frac{1}{3} \tan^{-1} \left(\frac{2}{3a} \right)$.	A1	AG Condone $a = \frac{1}{3} \tan^{-1} \frac{2}{3a}$. Must at least reach expression $2x = 3x^2 \tan(3x)$ or better before final answer to gain A1. Final answer must be in terms of a. Can work with x and switch to a at very end. Look for $\frac{2}{3}a$ or $\frac{2}{3}x$ in working not immediately corrected or as penultimate line A0.
		3	
(b)	Use the iterative process $a_{n+1} = \frac{1}{3} \tan^{-1} \left(\frac{2}{3a_n} \right)$ correctly at least twice during successive iterations in the numerous iterations	M1	Degrees 0/3.
	Obtain final answer 0.36	A1	Must be 2d.p.
	Show sufficient iterations to 4 or more d.p. to justify 0.36 to 2 d.p. or show there is a sign change in the interval (0.355, 0.365)	A1	Allow small errors in 4 th d.p. Allow errors at start if self corrects later.
	0.5 0.4 0.3 0.2 0.1 π/6 π/12 0.3091 0.3435 0.3826 0.4264 0.4740 0.3017 0.3989 0.3789 0.3650 0.3499 0.3339 0.3176 0.3820 0.3439 0.3513 0.3566 0.3625 0.3688 0.3754 0.3502 0.3649 0.3619 0.3599 0.3576 0.3552 0.3526 0.3624 0.3567 0.3578 0.3604 0.3614 0.3576 0.3580	3	

(a)	Calculate the values of a relevant expression or pair of expressions at $x = 0.5$ and $x = 1$	M1	Need to evaluate at both points, but M1 still available if one value incorrect. Use of degrees is M0. Correct use of a smaller interval is M1. If using $g(x) - f(x)$, there needs to be a clear indication of the comparison being made e.g. by listing values in a table. Embedded values 0.5 and 1 are not sufficient. 3.92 and 1.83 alone are not sufficient.
	Complete the argument correctly with conclusion about change of sign or change of inequalities and with correct calculated values. Can all be in symbols – an explanation in words is not required.	A1	e.g. 3.92 > 1.5, 1.83 < 3 or 2.42 > 0, -1.17 < 0.
		2	
(b)	State $x = \frac{1}{3} \left(x + 4 \tan^{-1} \frac{1}{3x} \right)$	M1	Or rearrange $\cot\left(\frac{x}{2}\right) = 3x$ as far as $2x = 4\tan^{-1}\left(\frac{1}{3x}\right)$
	Rearrange to the given equation $\cot\left(\frac{x}{2}\right) = 3x$	A1	Or continue rearrangement to $x = \frac{1}{3} \left(x + 4 \tan^{-1} \frac{1}{3x} \right)$ and
	Need intermediate step between $\frac{x}{2} = \tan^{-1} \frac{1}{3x}$ and $\cot \left(\frac{x}{2}\right) = 3x$		state iterative formula of $x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \frac{1}{3x_n} \right)$ AG
	2 3x (2)	2	
		_	

(c)	Use the iterative process correctly at least once	M1	Obtain one value and substitute that back in to obtain a second value. Working in degrees is M0.
	Obtain final answer 0.79	A1	Must be to 2 d.p.
	Show sufficient iterations to at least 4 d.p. to justify 0.79 to 2 d.p. or show there is a sign change in the interval (0.785, 0.795)	A1	e.g. 1, 0.7623, 0.8037, 0.7921, 0.7951, 0.7943, 0.7945 or 0.5, 0.9506, 0.7665, 0.8024, 0.7924, 0.7950, 0.7944, 0.7945 or 0.75, 0.8076, 0.7911, 0.7954, 0.7943, 0.7946, 0.7945. Condone truncation. Allow recovery. Condone minor differences in the final d.p.
		3	If they do the iteration in (b) but restate the conclusion here, no marks in (b) but could score 3/3 for (c) .

'(a)	Commence integration and reach $pxe^{-2x} + q\int e^{-2x}dx$	*M1	OE
	Obtain $-\frac{1}{2}xe^{-2x} + \frac{1}{2}\int e^{-2x} dx$	A1	OE
	Complete integration and obtain $-\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x}$	A1	
	Use limits correctly and equate to $\frac{1}{8}$, having integrated twice	DM1	$-\frac{1}{2}ae^{-2a} - \frac{1}{4}e^{-2a} + \frac{1}{4} = \frac{1}{8}.$
	Obtain $a = \frac{1}{2} \ln (4a + 2)$ correctly	A1	AG
		5	
(b)	Calculate the values of a relevant expression or pair of expressions at $a = 0.5$ and $a = 1$	M1	7-111
	Justify the given statement with correct calculated values	A1	e.g. 0.5 < 0.69, 1 > 0.89 0.193 > 0, -1.105 < 0 0.066 < 0.125, 0.148 > 0.125 if put limits in the integral. Condone if they use calculator for the definite integral.
		2	///
(c)	Use the iterative process $a_{n+1} = \frac{1}{2} \ln(4a_n + 2)$ correctly at least once.	M1	151
	Obtain final answer 0.84	A1	
	Show sufficient iterations to at least 4 d.p. to justify 0.84 to 2 d.p. or show that there is a sign change in (0.835, 0.845)	A1	e.g. 0.75, 0.8047, 0.8261, 0.8343, 0.8373, 0.8385 1, 0.8959, 0.8599, 0.8469, 0.8420, 0.8402 .
	atpie	3	