A-level

Topic: Logarithm and Exponential

May 2013-May 2023

Answers

Ouestion 1

Questio	n I		
EITHE	R: State or imply $\ln y = \ln A - kx^2$ Substitute values of $\ln y$ and x^2 , and solve for k or $\ln A$ Obtain $k = 0.42$ or $A = 2.80$ Solve for $\ln A$ or k Obtain $A = 2.80$ or $k = 0.42$	B1 M1 A1 M1	
OR1:	State or imply $\ln y = \ln A - kx^2$ Using values of $\ln y$ and x^2 , equate gradient of line to $-k$ and solve for k Obtain $k = 0.42$ Solve for $\ln A$ Obtain $A = 2.80$	B1 M1 A1 M1	
OR2:	Obtain two correct equations in k and A and substituting y — and x^2 — values in $y = Ae^{-kx^2}$ Solve for k Obtain $k = 0.42$ Solve for A Obtain $A = 2.80$	B1 M1 A1 M1	[5]
Questio	n 2		
	w for the logarithm of a product, quotient or power $e = 1$ or $exp(1) = 3$	M1 M1	
Obtain	correct equation free of logarithms in any form, e.g. $\frac{y+1}{y} = ex^3$	A1	
Rearra	nge as $y = (ex^3 - 1)^{-1}$, or equivalent	A1	[4]
Questio	n 3		
EITHE	R: State or imply non-modular equation $2^2(3^x-1)^2 = (3^x)^2$, or pair of equations		
	$2(3^x-1)=\pm 3^x$	M1	
	Obtain $3^x = 2$ and $3^x = \frac{2}{3}$ (or $3^{x+1} = 2$)	A1	
OR:	Obtain $3^x = 2$ by solving an equation or by inspection	B1	
	Obtain $3^x = \frac{2}{3}$ (or $3^{x+1} = 2$) by solving an equation or by inspection	B1	
	rect method for solving an equation of the form $3^x = a$ (or $3^{x+1} = a$), where $a > 0$ final answers 0.631 and -0.369	M1 A1	[4]

Apply at least one logarithm property correctly

*M1

Obtain $\frac{(x+4)^2}{x} = x + a$ or equivalent **without logarithm** involved

A1

Rearrange to express x in terms of aM1 d*M

Obtain $\frac{16}{a-8}$ or equivalent

A1 [4]

Question 5

- (i) Use law for the logarithm for a product or quotient or exponentiation AND for a power M1

 Obtain $(4x 5)^2(x + 1) = 27$ Obtain given equation correctly $16x^3 24x^2 15x 2 = 0$ A1 [3]
- (ii) Obtain x = 2 is root or (x 2) is a factor, or likewise with $x = -\frac{1}{4}$ Divide by (x 2) to reach a quotient of the form $16x^2 + kx$ Obtain quotient $16x^2 + 8x + 1$ Al

 Obtain $(x 2)(4x + 1)^2$ or (x 2), (4x + 1), (4x + 1)Al [4]
- (iii) State x = 2 only A1 [1]

Question 6

Remove logarithms and obtain $5 - e^{-2x} = e^{\frac{1}{2}}$, or equivalent

Obtain a correct value for e^{-2x} , e^{2x} , e^{-x} or e^{x} , e.g. $e^{2x} = 1/(5 - e^{\frac{1}{2}})$ B1

Use correct method to solve an equation of the form $e^{2x} = a$, $e^{-2x} = a$, $e^{x} = a$ or $e^{-x} = a$ where a > 0. [The M1 is dependent on the correct removal of logarithms.]

Obtain answer x = -0.605 only.

A1

4

Question 7

Use law of the logarithm of a quotient or product or $2 = \log_{10} 100$ M1

Remove logarithms and obtain x + 9 = 100x, or equivalent

Obtain answer $x = \frac{1}{11}$ A1

3

Question 8

Use law of the logarithm of a power M1
Obtain a correct linear equation in any form, e.g. $x = (x-2) \ln 3$ A1
Obtain answer x = 22.281 A1 [3]

Use law for the logarithm of a power at least once Obtain correct linear equation, e.g. $5x\text{In}2 = (2x+1)\text{In}3$ Solve a linear equation for x Obtain $x = 0.866$	*M1 A1 M1 dep *M A1	1 [4]
Question 10		
Use laws of indices correctly and solve for <i>u</i>	M1	
Obtain <i>u</i> in any correct form, e.g. $u = \frac{16}{16-1}$	A1	
Use correct method for solving an equation of the form $4^x = a$, where $a > 0$ Obtain answer $x = 0.0466$	M1 A1	[4]
Question 11		
Use law for the logarithm of a product, quotient or power	M1	
Obtain a correct equation free of logarithms, e.g. $\frac{x+4}{x^2} = 4$	A1	
Solve a 3-term quadratic obtaining at least one root Obtain final answer $x = 1.13$ only	M1 A1	4
Question 12		
State or imply $1+u=u^2$ Solve for u	B1 M1	
Obtain root $\frac{1}{2}(1+\sqrt{5})$, or decimal in [1.61, 1.62]	A1	
Use correct method for finding x from a positive root Obtain $x = 0.438$ and no other answer	M1 A1	[5]
Question 13		
Use law of the logarithm of a power, quotient or product	M1	
Remove logarithms and obtain a correct equation in x, e.g. $x^2 + 4 = 4x^2$	A1	
Obtain final answer $x = 2 / \sqrt{3}$, or exact equivalent	A1	[3]

(i)	EITHER: State or imply non-modular equation $(2(x-1))^2 = (3x)^2$, or pair of linear equations
	$2(x-1) = \pm 3x$

B1

Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations
Obtain answers
$$x = -2$$
 and $x = \frac{2}{5}$

M1 A1

OR: Obtain answer
$$x = -2$$
 by inspection or by solving a linear equation

(**B**1 **B2**)

Obtain answer
$$x = \frac{2}{5}$$
 similarly

[3]

(ii) Use correct method for solving an equation of the form
$$5^x = a$$
 or $5^{x+1} = a$, where $a > 0$
Obtain answer $x = -0.569$ only

M1**A1** [2]

Question 15

Use law of the logarithm of a product, power or quotient
Obtain a correct linear equation, e.g.
$$(3x-1)\ln 4 = \ln 3 + x \ln 5$$

M1* **A1**

Solve a linear equation for x

DM1*

Obtain answer x = 0.975

A1 [4]

Question 16

(i) State or imply
$$y \ln 3 = (2 - x) \ln 4$$

B1

State that this is of the form ay = bx + c and thus a straight line, or equivalent

B1

State gradient is
$$-\frac{\ln 4}{\ln 3}$$
, or exact equivalent

[3]

B1

(ii) Substitute y = 2x and solve for x, using a log law correctly at least once Obtain answer $x = \ln 4 / \ln 6$, or exact equivalent

M1**A1** [2]

Question 17

Solve for
$$3^x$$
 and obtain $3^x = \frac{18}{7}$

B1

Use correct method for solving an equation of the form $3^x = a$, where a > 0Obtain answer x = 0.860 3 d.p. only

M1 $\mathbf{A1}$

Question 18

M1

Remove logarithms and obtain a correct equation, e.g. $e^z = \frac{y+2}{y+1}$

A1

Obtain answer
$$y = \frac{2 - e^z}{e^z - 1}$$
, or equivalent

A1

[3]

[3]

Remo	ove logarithm and obtain $1 + 2^x = e^2$	B1
Use c	correct method to solve an equation of the form $2^x = a$, where $a > 0$	M1
Obtai	in answer $x = 2.676$	A1
	Total:	3
Questi	ion 20	
(i)	Remove logarithms correctly and obtain $e^x = \frac{1-y}{y}$	B1
	Obtain the given answer $y = \frac{e^{-x}}{1 + e^{-x}}$ following full working	B1
	Total:	2
(ii)	State integral $k \ln(1 + e^{-x})$ where $k = \pm 1$	*M1
	State correct integral $-\ln(1+e^{-x})$	
	Use limits correctly	DM1
	Obtain the given answer $\ln\left(\frac{2e}{e+1}\right)$ following full working	A1
	Total:	4
Quest	ion 21	
Use la	nw of the logarithm of a power or a quotient	M1
Remo	eve logarithms and obtain a correct equation in x. e.g. $x^2 + 1 = ex^2$	A1
Obtain	n answer 0.763 and no other	A1
Questi	ion 22	
Rear	range as $3u^2 + 4u - 4 = 0$, or $3e^{2x} + 4e^x - 4 = 0$, or equivalent	B1
Solve	e a 3-term quadratic for e^x or for u	M1
Obta	in $e^x = \frac{2}{3}$ or $u = \frac{2}{3}$	A1
Obta	in answer $x = -0.405$ and no other	A1

Plot the four points and draw straight line	
State or imply that $\ln y = \ln C + x \ln a$	
Carry out a completely correct method for finding $\ln C$ or $\ln a$	M1
Obtain answer $C = 3.7$	A1
Obtain answer $a = 1.5$	A1
	5
Question 24	
Use law for the logarithm of a power or a quotient on the given equation	M1
Use $\log_2 8 = 3$ or $2^3 = 8$	M1
Obtain $x^2 - 8x - 8 = 0$, or horizontal equivalent	A1
Solve a 3-term quadratic equation	M1
Obtain final answer $x = 8.90$ only	A1
	5
Question 25	'
Use law for the logarithm of a product, quotient or power	M1
Obtain a correct equation free of logarithms, e.g. $4(x^4 - 4) = x^4$	
Solve for x	
Obtain answer $x = 1.52$ only	A1
	4

State or imply $u^2 = u + 5$, or equivalent in 5^x	B1
Solve for u , or 5^x	M1
Obtain root $\frac{1}{2}(1+\sqrt{21})$, or decimal in [2.79, 2.80]	A1
Use correct method for finding x from a positive root	M1
Obtain answer $x = 0.638$ and no other answer	A1
Total:	5
Question 27	
Rearrange the equation in the form $ae^{2x} = b$ or $ae^x = be^{-x}$	M1
Obtain correct equation in either form with $a = 2$ and $b = 5$	A1
Use correct method to solve for <i>x</i>	M1
Obtain answer $x = 0.46$	A1
	4
Question 28	
Substitute and obtain 3-term quadratic $3u^2 + 4u - 1 = 0$, or equivalent	B1
Solve a 3 term quadratic for u	
Obtain root $(\sqrt{7}-2)/3$, or decimal in [0.21, 0.22]	
Use correct method for finding x from a positive value of e^x	M1
Obtain answer $x = -1.536$ only	A1
	5

(i)	Use law for the logarithm of a product or quotient	M1
	Use $\log_{10} 100 = 2$ or $10^2 = 100$	M1
	Obtain $x^2 - 4x - 100 = 0$, or equivalent	A1
		3
(ii)	Solve a 3-term quadratic equation	M1
	Obtain answer 12.2 only	A1
		2
	etion 30	
Stat	e or imply $u^2 - u - 12 = 0$, or equivalent in 3^x	B1
Sol	we for u , or for 3^x , and obtain root 4	B1
	a correct method to solve an equation of the form $3^x = a$ are a >0	M1
Obt	ain final answer $x = 1.26$ only	Al
Ques	etion 31	4
Use	law of the logarithm of a product or quotient	M1
Use	Use law of the logarithm of power twice	
	ain a correct linear equation in x, e.g. $-2x)\ln 5 = \ln 4 + x \ln 7$	Al
Obta	Obtain answer $x = 0.666$	
		4

State $1 + e^{2y} = e^x$	B1
Make y the subject	M1
Obtain answer $y = \frac{1}{2} \ln(e^x - 1)$	A1
	3
Question 33	
Remove logarithms and state $4-3^x = e^{1.2}$, or equivalent	B1
Use correct method to solve an equation of the form $3^x = a$, where $a > 0$.	M1
Obtain answer $x = -0.351$ only	A1
	3
Question 34	
Reduce the equation to a horizontal equation in 3^{3x} , 3^{3x+1} or 27^x	M1
Simplify and reach $3(3^{3x}) = 5$, $3(27^x) = 5$, or equivalent	
Use correct method for finding x from a positive value of 3^{3x} , 3^{3x+1} or 27^x	M1
Obtain answer $x = 0.155$	

Obta	Use law of logarithm of a power and sum and remove logarithms				
Out	Obtain a correct equation in any form, e.g. $3(2x+5)=(x+2)^2$				
Use	correct method to solve a 3-term quadratic, obtaining at least one root	M1			
Obta	ain final answer $x = 1 + 2\sqrt{3}$ or $1 + \sqrt{12}$ only	A1			
		4			
Ques	tion 36				
Use la	w of the logarithm of a product or power	M1			
Obtain	a correct linear inequality in any form, e.g. $\ln 2 + (1 - 2x) \ln 3 < x \ln 5$	A1			
Solve	for x	M1			
Obtain	$\frac{\ln 6}{\ln 45}$	A1			
State o	tion 37 or imply $2 \ln y = \ln A + kx$ tute values of $\ln y$ and x , or equate gradient of line to k , and solve for k	B1			
	ate values of my and a, or equate gradient of the to n, and solve for n	M1			
Obtain	k=0.80	M1			
Solve	k = 0.80	A1			
Solve to Obtain	$k = 0.80$ for $\ln A$	A1 M1			
Solve to Obtain	for $\ln A$ $A = 3.31$	A1 M1			
Solve to Obtain	for $\ln A$ $A = 3.31$ tion 38	A1 M1 A1			
Solve to Obtain	for $\ln A$ $A = 3.31$ tion 38 Remove logarithms correctly and state $1 + e^{-x} = e^{-2x}$, or equivalent	A1 M1 A1			
Solve : Obtain Quest (a)	for $\ln A$ $A = 3.31$ tion 38 Remove logarithms correctly and state $1 + e^{-x} = e^{-2x}$, or equivalent	A1 M1 A1 B1 B1			
Obtain Quest (a)	for $\ln A$ $A = 3.31$ tion 38 Remove logarithms correctly and state $1 + e^{-x} = e^{-2x}$, or equivalent Show equation is $u^2 + u - 1 = 0$, where $u = e^x$, or equivalent	A1 M1 A1 B1 B1 2			
Solve to Obtain	for $\ln A$ $A = 3.31$ tion 38 Remove logarithms correctly and state $1 + e^{-x} = e^{-2x}$, or equivalent Show equation is $u^2 + u - 1 = 0$, where $u = e^x$, or equivalent	A1 M1 A1 B1 B1 C2 M1			

State or imply $\log_{10} 10 = 1$		$\log_{10} 10^{-1} = -1$
Use law of the logarithm of a power, product or quotient		
Obtain a correct equation in any form, free of logs	A1	e.g. $(2x+1)/(x+1)^2 = 10^{-1}$ or $10(2x+1)/(x+1)^2 = 10^0$ or 1 or $x^2 + 2x + 1 = 20x + 10$
Reduce to $x^2 - 18x - 9 = 0$, or equivalent	A1	
Solve a 3-term quadratic	M1	
Obtain final answers $x = 18.487$ and $x = -0.487$	A1	Must be 3 d.p. Do not allow rejection.
	6	

Question 40

State that $1 + e^{-3x} = e^2$	B1	With no errors seen to that point
Use correct method to solve an equation of the form $e^{-3x} = a$, where $a > 0$, for x or equivalent	M1	$(e^{-3x} = 6.389)$ Evidence of method must be seen.
Obtain answer $x = -0.618$ only	A1	Must be 3 decimal places
Question 41		

Question 41

State or imply $\log_{10} 10 = 1$	B1	$\log_{10} 10^{-1} = -1$
Use law of the logarithm of a power, product or quotient	M1	
Obtain a correct equation in any form, free of logs	A1	e.g. $(2x + 1)/(x + 1)^2 = 10^{-1}$ or $10(2x + 1)/(x + 1)^2 = 10^0$ or 1 or $x^2 + 2x + 1 = 20x + 10$
Reduce to $x^2 - 18x - 9 = 0$, or equivalent	A1	////
Solve a 3-term quadratic	M1	1.7
Obtain final answers $x = 18.487$ and $x = -0.487$	A1	Must be 3 d.p. Do not allow rejection.
7	6	-0'/

Use law of the logarithm of a product or power	M1
Obtain a correct equation free of logarithms, e.g. $3(x^3 - 3) = x^3$	A1
Obtain $x = 1.65$	A1
	3

Stat	e or imply $u^2 - 3u - 1 = 0$, or equivalent in 4^x	B1
Sol	we for u or 4^x	M1
Obt	ain root $\frac{1}{2}(3+\sqrt{13})$, or decimal in [3.30, 3.31]	A1
Use	correct method for finding x from a positive root	M1
Obt	ain answer $x = 0.862$ and no other	A1
		5
Quest	ion 44	
(a)	State or imply $\ln x = \ln A - y \ln 3$	B1
	State that the graph of y against $\ln x$ has an equation that is <i>linear</i> in y and $\ln x$, or has an equation of the standard form ' $y = mx + c$ ' and is thus a straight line	B1
	State that the gradient is $-\frac{1}{\ln 3}$	B1
	·satpreP·	3
(b)	Substitute $\ln x = 0$, $y = 1.3$ and use correct method to solve for A	M1
	Obtain answer $A = 4.17$ only	A1
		2

Reduce to a 3-term quadratic $u^2 + 6u - 1 = 0$ OE		
Solve a 3-term quadratic for u		
	A1	
	A1	
Reject $-\sqrt{10}-3$ correctly		
	B1	
	M1	
Obtain answer $x = -1.818$		
Show sufficient iterations to at least 4 d.p. to justify $x = -1.818$		
coot	B1	
3D.CO.	5	
M1		
A1		
M1		
A1		
S	stify $x = -1.818$ root M1 A1 M1	

Use law of the logarithm of a product, a quotient or power	*M1	$e.g. \ln(7^x) = x \ln 7$
Obtain a correct linear equation in any form	A1	e.g. $\ln 3 + (1-x) \ln 2 = x \ln 7$
Solve a linear equation for <i>x</i>	DM1	
Obtain answer $x = \frac{\ln 6}{\ln 14}$	A1	Maximum 3 out of 4 available if final answer not in required form e.g. 0.67 ISW once correct answer seen.

State or imply $n \ln x + 2 \ln y = \ln C$	B1	
Substitute values of $\ln y$ and $\ln x$, or equate gradient of line to $\pm \frac{1}{2}n$, but not $\pm n$,	M1	Using lnx and lny values
and solve for n		
Obtain $n = 0.8[0]$ or $0.8[00]$ or $\frac{4}{5}$	A1	
Solve for C	M1	Using $\ln x$ and $\ln y$ values in equation of correct form, that is $\ln C$ not C . Allow $C = e^{2.668}$.
Obtain $C = 14.41$	A1	Must be 2 d.p.
Alternative method for question 3		
Obtain two correct equations in n and C by substituting x and y values in the given equation	B1	$(2.886)^n \times (2.484)^2 = C \text{ and } (1.363)^n \times (3.353)^2 = C$
Solve for <i>n</i>	M1	Using x and y values
Obtain $n = 0.8[0]$ or $0.8[00]$ or $4/5$	A1	$\left(\frac{2.886}{1.363}\right)^n \times \left(\frac{2.484}{3.353}\right)^2 = 1$ leading to $n = 0.7995$
Solve for C	M1	Using x and y values
Obtain C = 14.41	A1	Must be 2 d.p.
1001	5	

(a)	Use law of logarithm of a power	M1	$\log_3(2x+1) = 1 + \log_3(x-1)^2$
	Use log ₃ 3=1	В1	$\log_3(2x+1) = \log_3 3 + 2\log_3(x-1)$ $\left[\log_3\left(\frac{2x+1}{(x-1)^2}\right) = \log_3 3 \text{or} \left(\frac{2x+1}{(x-1)^2}\right) = 3\right]$ SC For candidates scoring M0 B0 due to combining logs before dealing with coefficient 2, and confusing coefficients, allow $\log_3() = c$ leading to $() = 3^c$ B1.
	Obtain $3x^2 - 8x + 2 = 0$ or $1.5x^2 - 4x + 1 = 0$	A1 3	OE 3 terms only and = 0 required.
(b)	Solve 3-term quadratic equation from part 3(a) or restart to find <i>y</i>	M1	$y = \frac{4 \pm \sqrt{10}}{6}$ or $y = 1.1937$ or $y = 0.1396$ $(x = 2.3874 \text{ or } x = 0.2792)$ May solve for x but must find $y = \frac{x}{2}$ to gain M1.
	Obtain answer 1.19	A1	CAO. 2 dp required.
		2	

Use law of the logarithm of a product, power or quotient or a law of indices (on an expression that is relevant to the question)	M1	e.g. $\ln(e^{2x} + 3) - \ln 3 = \ln\left(\frac{e^{2x} + 3}{3}\right)$ or $e^{(2x + \ln 3)} = e^{2x}e^{\ln 3}$
State a correct equation without logs (in any form)	A1	e.g. $3 + e^{2x} = 3e^{2x}$
Carry out correct method to solve an equation of the form $e^{2x} = a$, where $a > 0$, or for solving $e^x = b$ $(b > 0)$ if they have already taken the square root	M1	Allow for $x = \frac{1}{2} \ln \frac{3}{2}$. M1 can be implied by correct answer.
Obtain answer $x = 0.203$	A1	CAO. The question requires 3 d.p. Answer only with no working shown is 0/4.
12	4	

Use law of the logarithm of a product or a quotient or a power	*M1	
Obtain a correct linear equation in any form	A1	e.g. $\ln 2 + (2x-1)\ln 3 = (x+1)\ln 4$ or $\log_2 2 + (2x-1)\log_2 3 = (2x+2)\log_2 2$
Solve for <i>x</i>	DM1	Allow for unsimplified expression $x =$ Allow M1 M1 for $x = 1.45$ from $6^{2x-1} = 4^{x+1}$.
Obtain answer $x = 2.21$	A1	The question asks for 2 dp.

Use law for the logarithm of a product, quotient or power	M1	
Remove logarithms and state a correct equation, e.g. $x(2x-1) = (x+1)^2$	A1	
Solve a 3-term quadratic obtaining at least one root	M1	
Obtain answer 3.303 only	A1	
	4	

Question 53

Use law of the logarithm of a power or product	M1	Ignoring the 3 or the 5 is not a misread.
Obtain a correct linear equation in any form, e.g. $(3x-1)\ln 2 = \ln 5 + (1-x)\ln 3$	A1	Condone invisible brackets if they are used correctly later.
Solve for x	M1	Get as far as $x =$ Condone minor slips in the processing e.g. sign errors and losing a term that had been there, but award M0 for a fundamental error e.g. $3x\ln 2 + x\ln 3 = 3x\ln 6$ or ignoring the 3 or the 5 completely. Condone working in decimals.
Obtain final answer $x = \frac{\ln 30}{\ln 24}$	A1	Do not ISW
Question 54		

Use law of the logarithm of a quotient or express x as $\ln e^x$	M1	$x = \ln[(2y - 3)/(y + 4)]$ or $\ln e^x = \ln(2y - 3) - \ln(y + 4)$.
Remove logarithms and obtain a correct equation e.g. $e^x = \frac{2y-3}{y+4}$	A1	
Obtain answer $y = \frac{3 + 4e^x}{2 - e^x}$	A1	OE ISW
	3	/ 4 /

Use exponentials or law for the logarithm of a product, quotient or power	M1*	$e^{\ln(5+x)} = e^{5+\ln x}$ insufficient.
	00	Need e.g. $\ln\left(\frac{x+5}{x}\right) = 5$ or $\ln(x+5) = \ln(e^5) + \ln x$
		or $\ln(x+5) = \ln(e^5x)$ or $x+5 = e^{5+\ln x}$ or $x+5 = e^5 e^{\ln x}$ and others.
Correctly remove logarithms	DM1	
Obtain a correct equation in x	A1	e.g. $\frac{x+5}{x} = e^5$ (or 148.4) or $x + 5 = xe^5$.
Obtain 0.034	A1	CAO Final answer must be 3d.p.
	4	

Use law of the logarithm of a power, quotient or product	M1	Must be used correctly on a correct term. e.g. M1 for $2 \ln x = \ln x^2$ but M0 for $2 \ln x - \ln 2 = 2 \ln \frac{x}{2}$. M0 for $\ln(2x^2 - 3) = \ln 2x^2 - \ln 3$ $= \ln 2 + 2 \ln x - \ln 3$.
Remove logarithms and obtain a correct equation in x	A1	e.g. $2x^2 - 3 = \frac{x^2}{2}$.
Obtain final answer $x = \sqrt{2}$ only	A1	If $x = -\sqrt{2}$ is mentioned, it must be rejected.
	3	

$3(e^{2x})^2 - 5(e^{2x}) - 4 = 0$	B1	OE Form 3 term quadratic in e^{2x} .
$e^{2x} = \frac{5 \pm \sqrt{73}}{6}, x = \frac{1}{2} \ln \left(\frac{5 + \sqrt{73}}{6} \right)$	M1	Use correct method to solve for x.
x = 0.407	A1	Only
	3	