A-level

Topic : Logarithm and Exponential

May 2013-May 2023

Answers

Question 1

EITHER: State or imply $\ln y=\ln A-k x^{2} \quad$ B1
Substitute values of $\ln y$ and x^{2}, and solve for k or $\ln A \quad$ M1
Obtain $k=0.42$ or $A=2.80 \quad$ A1
Solve for $\ln A$ or $k \quad$ M1
Obtain $A=2.80$ or $k=0.42 \quad \mathrm{~A} 1$
OR1: State or imply $\ln y=\ln A-k x^{2} \quad$ B1
Using values of $\ln y$ and x^{2}, equate gradient of line to $-k$ and solve for $k \quad$ M1
Obtain $k=0.42 \quad \mathrm{~A} 1$
Solve for $\ln A \quad$ M1
Obtain $A=2.80 \quad \mathrm{~A} 1$
OR2: Obtain two correct equations in k and A and substituting $y-$ and $x^{2}-$ values in
$y=A \mathrm{e}^{-k x^{2}}$
B1
Solve for k
M1
Obtain $k=0.42$
A1
Solve for A
M1
Obtain $A=2.80$

Question 2

Use law for the logarithm of a product, quotient or power
Use $\ln \mathrm{e}=1$ or $\exp (\mathrm{l})=3$
Obtain correct equation free of logarithms in any form, e.g. $\frac{y+1}{y}=\mathrm{e} x^{3}$
Rearrange as $y=\left(\mathrm{e} x^{3}-1\right)^{-1}$, or equivalent
Question 3
EITHER: State or imply non-modular equation $2^{2}\left(3^{x}-1\right)^{2}=\left(3^{x}\right)^{2}$, or pair of equations

$$
2\left(3^{x}-1\right)= \pm 3^{x}
$$

Obtain $3^{x}=2$ and $3^{x}=\frac{2}{3}\left(\right.$ or $\left.3^{x+1}=2\right)$
OR: Obtain $3^{x}=2$ by solving an equation or by inspection B1
Obtain $3^{x}=\frac{2}{3}$ (or $3^{x+1}=2$) by solving an equation or by inspection
Use correct method for solving an equation of the form $3^{x}=a\left(\right.$ or $\left.3^{x+1}=a\right)$, where $a>0 \quad$ M1
Obtain final answers 0.631 and -0.369

Question 4

Apply at least one logarithm property correctly
*M1
Obtain $\frac{(x+4)^{2}}{x}=x+a$ or equivalent without logarithm involved
Rearrange to express x in terms of a
Obtain $\frac{16}{a-8}$ or equivalent

Question 5

(i) Use law for the logarithm for a product or quotient or exponentiation AND for a power
Obtain $(4 x-5)^{2}(x+1)=27$
Obtain given equation correctly $16 x^{3}-24 x^{2}-15 x-2=0$
A1

B1
(ii) Obtain $x=2$ is root or $(x-2)$ is a factor, or likewise with $x=-\frac{1}{4}$

Divide by $(x-2)$ to reach a quotient of the form $16 x^{2}+k x$ M1
Obtain quotient $16 x^{2}+8 x+1$
A1
Obtain $(x-2)(4 x+1)^{2}$ or $(x-2),(4 x+1),(4 x+1)$
(iii) State $x=2$ only

A1
A1

Remove logarithms and obtain $5-\mathrm{e}^{-2 x}=\mathrm{e}^{\frac{1}{2}}$, or equivalent
Obtain a correct value for $\mathrm{e}^{-2 x}$, $\mathrm{e}^{2 x}$, e^{-x} or e^{x}, e.g. $\mathrm{e}^{2 x}=1 /\left(5-\mathrm{e}^{\frac{1}{2}}\right)$
Use correct method to solve an equation of the form $\mathrm{e}^{2 x}=a, \mathrm{e}^{-2 x}=a, \mathrm{e}^{x}=a$ or $\mathrm{e}^{-x}=a$ where $a>0$. [The M1 is dependent on the correct removal of logarithms.]
Obtain answer $x=-0.605$ only.

Question 7

Use law of the logarithm of a quotient or product or $2=\log _{10} 100$
Remove logarithms and obtain $x+9=100 x$, or equivalent
Obtain answer $x=\frac{1}{11}$

Question 8

Use law of the logarithm of a power
Obtain a correct linear equation in any form, e.g. $x=(x-2) \ln 3$
Obtain answer $x=22.281$

B1

Question 9

Use law for the logarithm of a power at least once
*M1
A1
M1 dep *M
A1
[4]

Solve a linear equation for x

Question 10

Use laws of indices correctly and solve for u
M1
Obtain u in any correct form, e.g. $u=\frac{16}{16-1}$
Use correct method for solving an equation of the form $4^{x}=a$, where $a>0$
Obtain answer $x=0.0466$

Question 11

Use law for the logarithm of a product, quotient or power
Obtain a correct equation free of logarithms, e.g. $\frac{x+4}{x^{2}}=4$
Solve a 3-term quadratic obtaining at least one root
Obtain final answer $x=1.13$ only
Question 12
State or imply $1+u=u^{2}$
Solve for u
Obtain root $\frac{1}{2}(1+\sqrt{5})$, or decimal in $[1.61,1.62]$
Use correct method for finding x from a positive root
Obtain $x=0.438$ and no other answer
Question 13
Use law of the logarithm of a power, quotient or product
M1
Remove logarithms and obtain a correct equation in x, e.g. $x^{2}+4=4 x^{2}$
Obtain final answer $x=2 / \sqrt{3}$, or exact equivalent

A1
A1

A1

B1

M1
A1

Question 14

(i) EITHER: State or imply non-modular equation $(2(x-1))^{2}=(3 x)^{2}$, or pair of linear equations
$2(x-1)= \pm 3 x$
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain answers $x=-2$ and $x=\frac{2}{5}$

OR: Obtain answer $x=-2$ by inspection or by solving a linear equation
Obtain answer $x=\frac{2}{5}$ similarly
(ii) Use correct method for solving an equation of the form $5^{x}=a$ or $5^{x+1}=a$, where $a>0$ Obtain answer $x=-0.569$ only

Question 15

Use law of the logarithm of a product, power or quotient M1*
Obtain a correct linear equation, e.g. $(3 x-1) \ln 4=\ln 3+x \ln 5 \quad$ A1
Solve a linear equation for x DM1*
Obtain answer $x=0.975$
Question 16
(i) State or imply $y \ln 3=(2-x) \ln 4$

State that this is of the form $a y=b x+c$ and thus a straight line, or equivalent
State gradient is $-\frac{\ln 4}{\ln 3}$, or exact equivalent
(ii) Substitute $y=2 x$ and solve for x, using a \log law correctly at least once

Obtain answer $x=\ln 4 / \ln 6$, or exact equivalent

Question 17

Solve for 3^{x} and obtain $3^{x}=\frac{18}{7}$
Use correct method for solving an equation of the form $3^{x}=a$, where $a>0$
Obtain answer $x=0.8603$ d.p. only

Question 18

Use law of the logarithm of a quotient
Remove logarithms and obtain a correct equation, e.g. $\mathrm{e}^{z}=\frac{y+2}{y+1}$
Obtain answer $y=\frac{2-\mathrm{e}^{z}}{\mathrm{e}^{z}-1}$, or equivalent

Question 19

Remove logarithm and obtain $1+2^{x}=\mathrm{e}^{2}$	B1	
Use correct method to solve an equation of the form $2^{x}=a$, where $a>0$		M1
Obtain answer $x=2.676$	Total:	A1

Question 20
i) \quad Remove logarithms correctly and obtain $\mathrm{e}^{x}=\frac{1-y}{y}$

Obtain the given answer $y=\frac{\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}}$ following full working	Total:	B1
	(ii)	State integral $k \ln \left(1+\mathrm{e}^{-x}\right)$ where $k= \pm 1$
State correct integral $-\ln \left(1+\mathrm{e}^{-x}\right)$	$*$ M1	
	Use limits correctly	A1
Obtain the given answer $\ln \left(\frac{2 \mathrm{e}}{\mathrm{e}+1}\right)$ following full working	DM1	

Question 21

Use law of the logarithm of a power or a quotient	M1
Remove logarithms and obtain a correct equation in x. e.g. $x^{2}+1=\mathrm{e} x^{2}$	A1
Obtain answer 0.763 and no other	A1

Question 22

Rearrange as $3 u^{2}+4 u-4=0$, or $3 \mathrm{e}^{2 x}+4 \mathrm{e}^{x}-4=0$, or equivalent	B1
Solve a 3-term quadratic for e^{x} or for u	M1
Obtain $\mathrm{e}^{x}=\frac{2}{3}$ or $u=\frac{2}{3}$	A1
Obtain answer $x=-0.405$ and no other	A1

Question 23

Plot the four points and draw straight line	B1
State or imply that $\ln y=\ln C+x \ln a$	B1
Carry out a completely correct method for finding $\ln C$ or $\ln a$	M1
Obtain answer $C=3.7$	$\mathbf{A 1}$
Obtain answer $a=1.5$	$\mathbf{A 1}$
	$\mathbf{5}$

Question 24

Use law for the logarithm of a power or a quotient on the given equation	M1

Use $\log _{2} 8=3$ or $2^{3}=8$	M1

Obtain $x^{2}-8 x-8=0$, or horizontal equivalent	A1
Solve a 3-term quadratic equation	M1
Obtain final answer $x=8.90$ only	A1
	$\mathbf{5}$

Question 25

Use law for the logarithm of a product, quotient or power	M1
Obtain a correct equation free of logarithms, e.g. $4\left(x^{4}-4\right)=x^{4}$	A1
Solve for x	M1
Obtain answer $x=1.52$ only	A1
	$\mathbf{4}$

Question 26

State or imply $u^{2}=u+5$, or equivalent in 5^{x}	B1
Solve for u, or 5^{x}	M1
Obtain root $\frac{1}{2}(1+\sqrt{21})$, or decimal in $[2.79,2.80]$	A1
Use correct method for finding x from a positive root	M1
Obtain answer $x=0.638$ and no other answer	A1

Question 27

Rearrange the equation in the form $a \mathrm{e}^{2 x}=b$ or $a \mathrm{e}^{x}=b \mathrm{e}^{-x}$	M1
Obtain correct equation in either form with $a=2$ and $b=5$	A1
Use correct method to solve for x	M1
Obtain answer $x=0.46$	A1
	$\mathbf{4}$
Question 28	

Question 28

Substitute and obtain 3-term quadratic $3 u^{2}+4 u-1=0$, or equivalent	B1
Solve a 3 term quadratic for u	M1
Obtain root $(\sqrt{7}-2) / 3$, or decimal in $[0.21,0.22]$	A1
Use correct method for finding x from a positive value of e^{x}	M1
Obtain answer $x=-1.536$ only	A1
	$\mathbf{5}$

Question 29

(i)	Use law for the logarithm of a product or quotient	M1
	Use $\log _{10} 100=2$ or $10^{2}=100$	M1
Obtain $x^{2}-4 x-100=0$, or equivalent	A1	
		$\mathbf{3}$
(ii)	Solve a 3-term quadratic equation	M1
	Obtain answer 12.2 only	A1
	$\mathbf{2}$	

Question 30
State or imply $u^{2}-u-12(=0)$, or equivalent in 3^{x}

Solve for u, or for 3^{x}, and obtain root 4	Bl
Use a correct method to solve an equation of the form $3^{x}=a$ where $\mathrm{a}>0$	Ml
Obtain final answer $x=1.26$ only	Al
	4

Question 31

Use law of the logarithm of a product or quotient	Ml
Use law of the logarithm of power twice	Ml
Obtain a correct linear equation in x, e.g. $(3-2 x) \ln 5=\ln 4+x \ln 7$	Al
Obtain answer $x=0.666$	Al
	4

Question 32

State $1+\mathrm{e}^{2 y}=\mathrm{e}^{x}$	B1
Make y the subject	M1
Obtain answer $y=\frac{1}{2} \ln \left(\mathrm{e}^{x}-1\right)$	A1
	$\mathbf{3}$

Question 33

Remove logarithms and state $4-3^{x}=\mathrm{e}^{1.2}$, or equivalent	B1
Use correct method to solve an equation of the form $3^{x}=a$, where $a>0$.	M1
Obtain answer $x=-0.351$ only	A1
Question 34	M1
Reduce the equation to a horizontal equation in $3^{3 x}, 3^{3 x+1}$ or 27^{x}	A1
Simplify and reach $3\left(3^{3 x}\right)=5,3\left(27^{x}\right)=5$, or equivalent	M1
Use correct method for finding x from a positive value of $3^{3 x}, 3^{3 x+1}$ or 27^{x}	A1
Obtain answer $x=0.155$	$\mathbf{4}$

Question 35

Use law of logarithm of a power and sum and remove logarithms	M1
Obtain a correct equation in any form, e.g. $3(2 x+5)=(x+2)^{2}$	A1
Use correct method to solve a 3-term quadratic, obtaining at least one root	M1
Obtain final answer $x=1+2 \sqrt{3}$ or $1+\sqrt{12}$ only	A1
	$\mathbf{4}$

Question 36

Use law of the logarithm of a product or power	M1
Obtain a correct linear inequality in any form, e.g. $\ln 2+(1-2 x) \ln 3<x \ln 5$	A1
Solve for x	M1
Obtain $x>\frac{\ln 6}{\ln 45}$	A1
	4

Question 37

State or imply $2 \ln y=\ln A+k x$	B1
Substitute values of $\ln y$ and x, or equate gradient of line to k, and solve for k	M1
Obtain $k=0.80$	A1
Solve for $\ln A$	M1
Obtain $A=3.31$	A1

Question 38

(a)	Remove logarithms correctly and state $1+\mathrm{e}^{-x}=\mathrm{e}^{-2 x}$, or equivalent	B1
	Show equation is $u^{2}+u-1=0$, where $u=\mathrm{e}^{x}$, or equivalent	B1
		$\mathbf{2}$
(b)	Solve a 3-term quadratic for u	M1
	Obtain root $\frac{1}{2}(-1+\sqrt{5})$, or decimal in $[0.61,0.62]$	A1
Use correct method for finding x from a positive root	M1	
Obtain answer $x=-0.481$ only	A1	

Question 39

State or imply $\log _{10} 10=1$	$\mathbf{B 1}$	$\log _{10} 10^{-1}=-1$
Use law of the logarithm of a power, product or quotient	M1	
Obtain a correct equation in any form, free of logs	A1	e.g. $(2 x+1) /(x+1)^{2}=10^{-1}$ or $10(2 x+1) /(x+1)^{2}=10^{0}$ or 1 or $x^{2}+2 x+1=20 x+10$
Reduce to $x^{2}-18 x-9=0$, or equivalent	A1	
Solve a 3-term quadratic	M1	
Obtain final answers $x=18.487$ and $x=-0.487$	$\mathbf{A 1}$	Must be 3 d.p. Do not allow rejection.
	$\mathbf{6}$	

Question 40

State that $1+\mathrm{e}^{-3 x}=\mathrm{e}^{2}$	B1	With no errors seen to that point
Use correct method to solve an equation of the form $\mathrm{e}^{-3 x}=a$, where $a>0$, for x or equivalent	M1	$\left(\mathrm{e}^{-3 x}=6.389 \ldots\right)$ Evidence of method must be seen.
Obtain answer $x=-0.618$ only	A1	Must be 3 decimal places

Question 41

State or imply $\log _{10} 10=1$	B1	$\log _{10} 10^{-1}=-1$
Use law of the logarithm of a power, product or quotient	M1	
Obtain a correct equation in any form, free of logs	A1	e.g. $(2 x+1) /(x+1)^{2}=10^{-1}$ or $10(2 x+1) /(x+1)^{2}=10^{0}$ or 1 or $x^{2}+2 x+1=20 x+10$
Reduce to $x^{2}-18 x-9=0$, or equivalent	A1	
Solve a 3-term quadratic	M1	
Obtain final answers $x=18.487$ and $x=-0.487$	$\mathbf{A 1}$	Must be 3 d.p. Do not allow rejection.
	$\mathbf{6}$	

Question 42

Use law of the logarithm of a product or power	M1
Obtain a correct equation free of logarithms, e.g. $3\left(x^{3}-3\right)=x^{3}$	A1
Obtain $x=1.65$	A1
	$\mathbf{3}$

Question 43

State or imply $u^{2}-3 u-1=0$, or equivalent in 4^{x}	B1
Solve for u or 4^{x}	M1
Obtain root $\frac{1}{2}(3+\sqrt{13})$, or decimal in $[3.30,3.31]$	A1
Use correct method for finding x from a positive root	$\mathbf{M 1}$
Obtain answer $x=0.862$ and no other	$\mathbf{A 1}$

Question 44

(a)	State or imply $\ln x=\ln A-y \ln 3$	B1
$\begin{array}{l}\text { State that the graph of } y \text { against } \ln x \text { has an equation that is linear in } y \text { and } \\ \ln x, \text { or has an equation of the standard form ' } y=m x+c^{\prime} \text { and is thus a } \\ \text { straight line }\end{array}$	B1	
State that the gradient is $-\frac{1}{\ln 3}$	B1	
(b)	Substitute $\ln x=0, y=1.3$ and use correct method to solve for A	M1
Obtain answer $A=4.17$ only	A1	
	$\mathbf{2}$	

Question 45

Reduce to a 3-term quadratic $u^{2}+6 u-1=0 \mathrm{OE}$	B1
Solve a 3-term quadratic for u	M1
Obtain root $\sqrt{10}-3$	A1
Obtain answer $x=-1.818$ only	A1
Reject $-\sqrt{10}-3$ correctly	B1

Alternative method for Question 2

Rearrange to obtain a correct iterative formula	B1
Use the iterative process at least twice	M1
Obtain answer $x=-1.818$	A1
Show sufficient iterations to at least 4 d.p. to justify $x=-1.818$	A1
Clear explanation of why there is only one real root	$\mathbf{B 1}$
	$\mathbf{5}$

Question 46

Use laws of indices correctly and solve for 4^{x}	M1	
Obtain correct solution in any form, e.g. $4^{x}=\frac{256}{15}$	A1	
Use a correct method for solving an equation of the form $4^{x}=a$, where $a>0$	M1	
Obtain answer 2.047	A1	$\mathbf{4}$

Use law of the logarithm of a product, a quotient or power	$* \mathbf{M 1}$	e.g. $\ln \left(7^{x}\right)=x \ln 7$
Obtain a correct linear equation in any form	A1	e.g. $\ln 3+(1-x) \ln 2=x \ln 7$
Solve a linear equation for x	DM1	
Obtain answer $x=\frac{\ln 6}{\ln 14}$	A1	Maximum 3 out of 4 available if final answer not in required form e.g. $0.67 \ldots .$. ISW once correct answer seen.

Question 48

State or imply $n \ln x+2 \ln y=\ln C$	B1	
Substitute values of $\ln y$ and $\ln x$, or equate gradient of line to $\pm \frac{1}{2} n$, but not $\pm n$, and solve for n	M1	Using $\ln x$ and $\ln y$ values
$\text { Obtain } n=0.8[0] \text { or } 0.8[00] \text { or } \frac{4}{5}$	A1	
Solve for C	M1	Using $\ln x$ and $\ln y$ values in equation of correct form, that is $\ln C$ not C. Allow $\mathrm{C}=\mathrm{e}^{2.668}$.
Obtain $C=14.41$	A1	Must be 2 d.p.

Alternative method for question 3

Obtain two correct equations in n and C by substituting x and y values in the given equation	$\mathbf{B 1}$	$(2.886)^{n} \times(2.484)^{2}=C$ and $(1.363)^{n} \times(3.353)^{2}=C$
Solve for n	M1	Using x and y values
Obtain $n=0.8[0]$ or $0.8[00]$ or $4 / 5$	A1	$\left(\frac{2.886}{1.363}\right)^{n} \times\left(\frac{2.484}{3.353}\right)^{2}=1$ leading to $n=0.7995$
Solve for C	M1	Using x and y values
Obtain $C=14.41$	A1	Must be 2 d.p.
	$\mathbf{5}$	

Question 49

(a)	Use law of logarithm of a power	M1	$\log _{3}(2 x+1)=1+\log _{3}(x-1)^{2}$
	Use $\log _{3} 3=1$	B1	$\begin{aligned} & \log _{3}(2 x+1)=\log _{3} 3+2 \log _{3}(x-1) \\ & {\left[\log 3\left(\frac{2 x+1}{(x-1)^{2}}\right)=\log _{3} 3 \text { or }\left(\frac{2 x+1}{(x-1)^{2}}\right)=3\right]} \end{aligned}$ SC For candidates scoring M0 B0 due to combining logs before dealing with coefficient 2 , and confusing coefficients, allow $\log _{3}(\ldots)=c$ leading to $(\ldots)=3^{c} \quad \mathbf{B} 1$.
	Obtain $3 x^{2}-8 x+2=0$ or $1.5 x^{2}-4 x+1=0$	A1	OE 3 terms only and $=0$ required.
		3	
(b)	Solve 3-term quadratic equation from part 3(a) or restart to find y	M1	$\begin{aligned} & y=\frac{4 \pm \sqrt{10}}{6} \text { or } y=1.1937 \ldots \text { or } y=0.1396 \ldots \\ & (x=2.3874 \text { or } x=0.2792) \end{aligned}$ May solve for x but must find $y=\frac{x}{2}$ to gain M1.
	Obtain answer 1.19	A1	CAO. 2 dp required.
		2	

Question 50

Use law of the logarithm of a product, power or quotient or a law of indices (on an expression that is relevant to the question) $a>0$, or for solving $\mathrm{e}^{x}=b \quad(b>0)$ if they have already taken the square root

Obtain answer $x=0.203$	A1	CAO. The question requires 3 d.p. Answer only with no working shown is $0 / 4$.
	$\mathbf{4}$	

Question 51

Use law of the logarithm of a product or a quotient or a power	*M1	A1
Obtain a correct linear equation in any form	e.g. $\ln 2+(2 x-1) \ln 3=(x+1) \ln 4$ or $\log _{2} 2+(2 x-1) \log _{2} 3=(2 x+2) \log _{2} 2$	
Solve for x	DM1	Allow for unsimplified expression $x=\ldots$ Allow M1 M1 for $x=1.45$ from $6^{2 x-1}=4^{x+1}$
Obtain answer $x=2.21$	A1	The question asks for 2 dp..

Question52

Use law for the logarithm of a product, quotient or power	M1	
Remove logarithms and state a correct equation, e.g. $x(2 x-1)=(x+1)^{2}$	A1	
Solve a 3-term quadratic obtaining at least one root	M1	$\mathbf{A 1}$
Obtain answer 3.303 only	$\mathbf{4}$	

Question 53

Use law of the logarithm of a power or product	M1	Ignoring the 3 or the 5 is not a misread.
Obtain a correct linear equation in any form, e.g. $(3 x-1) \ln 2=\ln 5+(1-x) \ln 3$	A1	Condone invisible brackets if they are used correctly later.
Solve for x	A1	Get as far as $x=\ldots$. Condone minor slips in the processing e.g. sign errors and losing a term that had been there, but award M0 for a fundamental error e.g. $3 x \ln 2+x \ln 3=3 x \ln 6$ or ignoring the 3 or the 5 completely. Condone working in decimals.
Obtain final answer $x=\frac{\ln 30}{\ln 24}$	Do not ISW	

Question 54

Use law of the logarithm of a quotient or express x as $\ln \mathrm{e}^{x}$	$\mathbf{M 1}$	$x=\ln [(2 y-3) /(y+4)]$ or $\left.\ln \mathrm{e}^{x}=\ln (2 y-3)-\ln (y+4)\right]$.
Remove logarithms and obtain a correct equation e.g. $\mathrm{e}^{x}=\frac{2 y-3}{y+4}$	A1	
Obtain answer $y=\frac{3+4 \mathrm{e}^{x}}{2-\mathrm{e}^{x}}$	A1	OE ISW
	$\mathbf{3}$	

Question 55

Use exponentials or law for the logarithm of a product, quotient or power	M1 *	$\mathrm{e}^{\ln (5+x)}=\mathrm{e}^{5+\ln x}$ insufficient. Need e.g. $\ln \left(\frac{x+5}{x}\right)=5$ or $\ln (x+5)=\ln \left(\mathrm{e}^{5}\right)+\ln x$ or $\ln (x+5)=\ln \left(\mathrm{e}^{5} x\right)$ or $x+5=\mathrm{e}^{5+\ln x}$ or $x+5=\mathrm{e}^{5} \mathrm{e}^{\ln x}$ and others.
Correctly remove logarithms	DM1	
Obtain a correct equation in x	A1	e.g. $\frac{x+5}{x}=\mathrm{e}^{5}$ (or $\left.148.4 \ldots\right)$ or $x+5=x \mathrm{e}^{5}$.
Obtain 0.034	A1	CAO Final answer must be $3 \mathrm{~d} . \mathrm{p}$.

Question 56

Use law of the logarithm of a power, quotient or product	M1	Must be used correctly on a correct term. e.g. M1 for $2 \ln x=\ln x^{2}$ but M0 for $2 \ln x-\ln 2=2 \ln \frac{x}{2}$. M0 for $\ln \left(2 x^{2}-3\right)=\ln 2 x^{2}-\ln 3$ $=\ln 2+2 \ln x-\ln 3$.
Remove logarithms and obtain a correct equation in x	A1	e.g. $2 x^{2}-3=\frac{x^{2}}{2}$.
Obtain final answer $x=\sqrt{2}$ only	A1	If $x=-\sqrt{2}$ is mentioned, it must be rejected.
	$\mathbf{3}$	

Question 57

$3\left(\mathrm{e}^{2 x}\right)^{2}-5\left(\mathrm{e}^{2 x}\right)-4=0$	B1	OE Form 3 term quadratic in $\mathrm{e}^{2 x}$.
$\mathrm{e}^{2 x}=\frac{5 \pm \sqrt{73}}{6}, x=\frac{1}{2} \ln \left(\frac{5+\sqrt{73}}{6}\right)$	M1	Use correct method to solve for x.
$x=0.407$	$\mathbf{A 1}$	Only
	$\mathbf{3}$	

