A-level

Topic: Modulus

May 2013-May 2023

Answer

Question 1

Q 0.00	*******			
(i)	Either	State or imply non-modular equation $(4x-1)^2 = (x-3)^2$ or pair of		
		linear equations $4x-1=\pm(x-3)$	B1	
		Solve a three-term quadratic equation or two linear equations	M1	
		Obtain $-\frac{2}{3}$ and $\frac{4}{5}$	A1	
	<u>Or</u>	Obtain value $-\frac{2}{3}$ from inspection or solving linear equation	В1	
		Obtain value $\frac{4}{5}$ similarly	B2	[3]
(ii)	State or	imply at least $4^y = \frac{4}{5}$, following a positive answer from part (i)	В1√	
	Apply lo	ogarithms and use $\log a^b = b \log a$ property	M1	
	Obtain -	-0.161 and no other answer	A1	[3]
Ques	tion 2			
EITI	<i>HER</i> : Stat	e or imply non-modular equation $(x-2)^2 = \left(\frac{1}{3}x\right)^2$,		
	or p	air of equations $x-2=\pm\frac{1}{3}x$	M1	
		ain answer $x = 3$	A1	
	Obt	ain answer $x = \frac{3}{2}$, or equivalent	A1	
OR:	Obt	ain answer $x = 3$ by solving an equation or by inspection	В1	
	Stat	e or imply the equation $x - 2 = -\frac{1}{3}$, or equivalent	M1	

A1

[3]

Obtain answer $x = \frac{3}{2}$, or equivalent

EITHER: State or imply non-modular inequality
$$(4x + 3)^2 > x^2$$
, or corresponding equation or pair of equations $4x + 3 = \pm x$ M1
Obtain a critical value, e.g. -1 A1
Obtain a second critical value, e.g. $-\frac{3}{5}$ A1
State final answer $x < -1$, $x > -\frac{3}{5}$ A1

OR: Obtain critical value $x = -1$, by solving a linear equation or inequality, or from a graphical method or by inspection
Obtain the critical value $-\frac{3}{5}$ similarly
State final answer $x < -1$, $x > -\frac{3}{5}$ B1

Question 4

EITHER: State or imply non-modular inequality $(x + 2a)^2 > (3(x - a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 2a) = \pm 3(x - a)$ B1
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations for x Obtain critical values $x = \frac{1}{4}a$ and $x = \frac{5}{2}a$ A1
State answer $\frac{1}{4}a < x < \frac{5}{2}a$ A1

OR: Obtain critical value $x = \frac{3}{2}a$ from a graphical method, or by inspection, or by solving a linear equation or inequality Obtain critical value $x = \frac{3}{4}a$ similarly
State answer $\frac{1}{4}a < x < \frac{5}{2}a$ B1

Question 5

Either State or imply non-modular inequality $(3x - 1)^2 < (2x + 5)^2$ or corresponding quadratic equation or pair of linear equations $3x - 1 = \pm (2x + 5)$ B1
Solve a three-term quadratic or two linear equations $5x^2 - 26x - 24 < 0$ M1
Obtain $-\frac{4}{5}$ and 6
State $-\frac{4}{5} < x < 6$ A1

Or Obtain value 6 from graph, inspection or solving linear equation
Obtain value $-\frac{4}{5}$ similarly
State $-\frac{4}{5} < x < 6$ B1 [4]

EITHER:	State or imply non-modular inequality $(x-2)^2 > (2x-3)^2$, or corresponding equality Solve a 3-term quadratic, as in Q1.	uation	n В1 М1
	Obtain critical value $x = \frac{5}{3}$		A1
	State final answer $x < \frac{5}{3}$ only		A1
OR1:	State the relevant critical linear inequality $(2-x) > (2x-3)$, or corresponding equation Solve inequality or equation for x		B1 M1
	Obtain critical value $x = \frac{5}{3}$		A1
	State final answer $x < \frac{5}{3}$ only		A1
Question 7			
quadratic equation, o Make reaso	State or imply non-modular inequality $(2x-5)^2 > (3(2x+1))^2$, or corresponding or pair of linear equations $(2x-5) = \pm 3(2x+1)$ onable solution attempt at a 3-term quadratic, or solve two linear equations for x	B1 M1	
	ical values -2 and $\frac{1}{4}$	A1	
	answer $-2 < x < \frac{1}{4}$	A1	
linear	a critical value $x = -2$ from a graphical method, or by inspection, or by solving a		
	r inequality ical value $x = \frac{1}{4}$ similarly	B1 B2	
	answer $-2 < x < \frac{1}{4}$	B1	[4]
Question 8			
equation, o Make reaso Obtain crit	State or imply non-modular inequality $(2(x-2))^2 > (3x+1)^2$, or corresponding quadratic or pair of linear equations $2(x-2) = \pm (3x+1)$ onable solution attempt at a 3-term quadratic, or solve two linear equations for x ical values $x = -5$ and $x = \frac{3}{5}$ answer $-5 < x < \frac{3}{5}$	2	B1 M1 A1
equation or Obtain crit	n critical value $x = -5$ from a graphical method, or by inspection, or by solving a linear rinequality ical value $x = \frac{3}{5}$ similarly answer $-5 < x < \frac{3}{5}$		(B1 B2 B1)
[Do not con	$ndone \le for <.]$		[4]

State or imply non-modular inequality $(x-4)^2 < (2(3x+1))^2$, or corresponding quadratic equation, or pair of linear equations $x-4=\pm 2(3x+1)$	
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations for x	M1
Obtain critical values $x = -\frac{6}{5}$ and $x = \frac{2}{7}$	A1
State final answer $x < -\frac{6}{5}$, $x > \frac{2}{7}$	A1)
Question 10	
State or imply non-modular inequality $(2x+1)^2 < (3(x-2))^2$, or corresponding quadratic equation, or pair of linear equations $(2x+1) = \pm 3(x-2)$	(B1
Make reasonable solution attempt at a 3-term quadratic e.g. $5x^2 - 40x + 35 = 0$ or solve two linear equations for x	M1
Obtain critical values $x = 1$ and $x = 7$	A1
State final answer $x < 1$ and $x > 7$	A1)
Question 11	
State or imply non-modular inequality $(x-3)^2 < (3x-4)^2$, or corresponding equation	
Make reasonable attempt at solving a three term quadratic	M1
Obtain critical value $x = \frac{7}{4}$	A1
State final answer $x > \frac{7}{4}$ only	A1)

EITHER:	State or imply non-modular equation $3^{2}(2^{x}-1)^{2} = (2^{x})^{2}, \text{ or pair of equations}$ $3(2^{x}-1)=\pm 2^{x}$	M1
	Obtain $2^x = \frac{3}{2}$ and $2^x = \frac{3}{4}$ or equivalent	A1
OR:	Obtain $2^x = \frac{3}{2}$ by solving an equation	B1
	Obtain $2^x = \frac{3}{4}$ by solving an equation	B1
Use correct $2^x = a$, wh	method for solving an equation of the form here $a > 0$	M1
Obtain fina	I answers $x = 0.585$ and $x = -0.415$ only	A1
	4	4

State or imply non-modular inequality $2^2(2x-a)^2 < (x+3a)^2$, or corresponding quadratic equation, or pair of linear equations $2(2x-a) = \pm (x+3a)$	B1
Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1
Obtain critical values $x = \frac{5}{3}a$ and $x = -\frac{1}{5}a$	A1
State final answer $-\frac{1}{5}a < x < \frac{5}{3}a$ Question 14	A1
State or imply non-modular inequality $3^2(2x-1)^2 > (x+4)^2$, or corresponding quadratic equation, or pair of linear equations/inequalities $3(2x-1)=\pm(x+4)$	В1
Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1
Obtain critical values $x = \frac{7}{5}$ and $x = -\frac{1}{7}$	A1
State final answer $x > \frac{7}{5}$, $x < -\frac{1}{7}$	A1

State or imply non-modular inequality $(2x-3)^2 > 4^2(x+1)^2$, or corresponding quadratic equation, or pair of linear equations $(2x-3)=\pm 4(x+1)$	
Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1
Obtain critical values $x = -\frac{7}{2}$ and $x = -\frac{1}{6}$	A1
State final answer $-\frac{7}{2} < x < -\frac{1}{6}$	A1
Question 16	
State or imply non-modular inequality $(x+2)^2 > (3x-1)^2$, or corresponding quadratic equation, or pair of linear equations $2(x+2) = \pm (3x-1)$	B1
Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1
Obtain critical values $x = -\frac{3}{5}$ and $x = 5$	A1
State final answer $-\frac{3}{5} < x < 5$	
Question 17	
Find x-coordinate of intersection with $y = 3x - 4$	M1
Obtain $x = \frac{3}{2}$	A1
State final answer $x > \frac{3}{2}$ only	
Question 18	
State or imply non-modular inequality $(2x-1)^2 > 3^2(x+2)^2$, or corresponding quadratic equation, or pair of linear equations	В1
Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1
Obtain critical values $x = -7$ and $x = -1$	A1
State final answer $-7 \le x \le -1$	A1

State or imply non-modular inequality/equality $(2-5x)^2 >$, \geqslant , =, $2^2(x-3)^2$, or corresponding quadratic equation, or pair of linear equations $(2-5x) >$, \geqslant , =, $\pm 2(x-3)$	B1	Two correct linear equations only
Make reasonable attempt at solving a 3-term quadratic, or solve one linear equation, or linear inequality for x	M1	$21x^2 + 4x - 32 = (3x + 4)(7x - 8) = 0$ 2 - 5x or -(2 - 5x) with 2(x - 3) or -2(x - 3)
Obtain critical value $x = -\frac{4}{3}$	A1	
State final answer $x < -\frac{4}{3}$	A1	Do not accept $x < -1.33$ [Do not condone \leq for $<$ in the final answer.]
	4	

Question 20

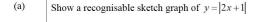
State or imply non-modular inequality/equality $(2-5x)^2 >$, \geqslant , =, $2^2(x-3)^2$, or corresponding quadratic equation, or pair of linear equations $(2-5x) >$, \geqslant , =, $\pm 2(x-3)$	B1	Two correct linear equations only
Make reasonable attempt at solving a 3-term quadratic, or solve one linear equation, or linear inequality for <i>x</i>	M1	$21x^{2} + 4x - 32 = (3x + 4)(7x - 8) = 0$ 2 - 5x or -(2 - 5x) with 2(x - 3) or -2(x - 3)
Obtain critical value $x = -\frac{4}{3}$	A1	
State final answer $x < -\frac{4}{3}$	A1	Do not accept $x < -1.33$ [Do not condone \leq for \leq in the final answer.]
	4	

State or imply non-modular inequality $(2x-1)^2 < 3^2(x+1)^2$, or corresponding quadratic equation	B1
Form and solve a 3-term quadratic in x	M1
Obtain critical values $x = -4$ and $x = -\frac{2}{5}$	A1
State final answer $x < -4$, $x > -\frac{2}{5}$	A1

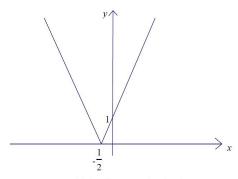
State or imply non-modular inequality $2^2(3x-1)^2 < (x+1)^2$, or corresponding quadratic equation, or pair of linear equations	B1
Form and solve a 3-term quadratic, or solve two linear equations for x	M1
Obtain critical values $x = \frac{3}{5}$ and $x = \frac{1}{7}$	A1
State final answer $\frac{1}{7} < x < \frac{3}{5}$	A1
AT PRAIL	
Alternative method for Question 1	
Obtain critical value $x = \frac{3}{5}$ from a graphical method, or by solving a linear equation or linear inequality	B1
Obtain critical value $x = \frac{1}{7}$ similarly	В2
State final answer $\frac{1}{7} < x < \frac{3}{5}$	B1
	4

(a)	Show a recognizable sketch graph of $y = 2x - 3 $	B1	
		1	
(b)	Find x-coordinate of intersection with $y = 3x + 2$	M1	
	Obtain $x = \frac{1}{5}$	A1	
	State final answer $x > \frac{1}{5}$ only	A1	
		2002228 I	

Solve the quadratic inequality $(2x-3)^2 < (3x+2)^2$, or corresponding equation	M1	
Obtain critical value $x = \frac{1}{5}$	A1	
State final answer $x > \frac{1}{5}$ only	A1	
	3	


State or imply non-modular inequality $(3x-a)^2 > 2^2(x+2a)^2$, or corresponding quadratic equation, or pair of linear equations or linear inequalities	B1	Need 2 ² seen or implied.
Make reasonable attempt to solve a 3-term quadratic, or solve two linear equations for x in terms of a	M1	$\left(5x^2 - 22ax - 15a^2 = 0\right)$
Obtain critical values $x = 5a$ and $x = -\frac{3}{5}a$ and no others	A1	OE Accept incorrect inequalities with correct critical values. Must state 2 values i.e. $\frac{a\pm b}{c}$ is not sufficient.
State final answer $x > 5a$, $x < -\frac{3}{5}a$	A1	Do not condone \geqslant for $>$ or \leqslant for $<$ in the final answer. $5a < x < -\frac{3}{5}a$ is $\mathbf{A0}$, 'and' is $\mathbf{A0}$.

State or imply non-modular equation $4^2 (5^x - 1)^2 = (5^x)^2$ or pair of equations $4(5^x - 1) = \pm 5^x$	M1		
Obtain $5^x = \frac{4}{3}$ and $5^x = \frac{4}{5}$ (or $5^{x+1} = 4$)	A1		
Use correct method for solving an equation of the form $5^x = a$, or $5^{x+1} = b$ where $a > 0$, or $b > 0$	M1		
Obtain answers $x = 0.179$ and $x = -0.139$	A1		
Alternative method for question 1			


B1	
B1	
M1	
A1	7
4	
	B1 M1 A1

State or imply non-modular inequality $(2x+3)^2 > 3^2(x+2)^2$, or corresponding quadratic equation, or pair of linear equations	B1	
Make a reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1	Quadratic formula or $(5x + 9)(x + 3)$
Obtain critical values $x = -3$ and $x = -\frac{9}{5}$	A1	OE
State final answer $-3 < x < -\frac{9}{5}$ or $x > -3$ and $x < -\frac{9}{5}$	A1	[Do not condone ≤ for < in the final answer.] No ISW

or B1 e.g. $(6x+2a)^2 = (2x+3a)^2$ or $32x^2 + 12xa - 5a^2 = 0$
2(3x + a) = (2x + 3a) and -2(3x + a) = (2x + 3a)
Apply general rules for solving quadratic equation by formula or by factors. Instead of $x = \{\text{formula}\}\$, have $\{\text{formula}\} = 0$ and try to solve for a then M0
A1
A1 Do not condone \leq for \leq in the final answer. Do not ISW. SC Set a to value, (say $a = 1$), after initial B1 gained, then $-\frac{5}{2} < x < \frac{1}{4}$ B1 maximum 2 out of 4.
Do not ISW.

B1

Ignore y = 3x + 5 if also drawn on the sketch.

Solve the quadratic inequality $(3x+5)^2 < (2x+1)^2$, or corresponding	
equation	

M1
$$5x^2 + 26x + 24 < 0$$

Obtain critical value
$$x = -\frac{6}{5}$$

Ignore -4 if seen.

State final answer
$$x < -\frac{6}{5}$$
 only

A1

A1

Question 29

State or imply non-modular inequality $(5x-3)^2 < 2^2(3x-7)^2$, or
corresponding quadratic equation, or pair of linear equations $(5x - 3) = \pm 2(3x - 7)$
$\pm 2(3x + 1)$

B1
$$11x^2 - 138x + 187 > 0$$
.

Solve a 3-term	quadratic,	or so	lve	two	linear	equations	for x

M1 If no working is shown, the M1 is implied by the correct roots for an incorrect quadratic.

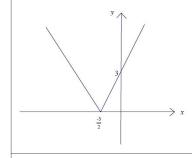
Obtain critical values
$$x = \frac{17}{11}$$
 and $x = 11$

A1 Accept 1.55 or better.

State **final** answer
$$x < \frac{17}{11}$$
, $x > 11$

Strict inequality required.

In set notation, allow notation for open sets but not for closed sets e.g. accept $\left(-\infty,\frac{17}{11}\right)\cup\left(11,\infty\right)$ or


$$(-\infty, \frac{17}{11}[\,\cup\,]11, \infty)$$
 but not $(-\infty, \frac{17}{11}] \cup [11, \infty)$.

Allow 'or' but not 'and'.

Accept
$$\cup$$
. Final A0 for $\frac{17}{11} > x > 11$.

Exact values expected but ISW if exact inequalities seen followed by decimal approx.

(a)

B1 Show a recognizable sketch graph of y = |2x + 3|.

(Ignore any attempt to sketch y = 3x + 8).

Straight lines. Vertex in approximately correct position on x axis. Symmetry.

(b) Find x-coordinate of intersection with y = 3x + 8

Obtain
$$x = -\frac{11}{5}$$

State final answer $x > -\frac{11}{5}$ only A1 (x > -2.2) Do not condone \geqslant for >.

Alternative Method 1

Solve the linear inequality $3x+8>-(2x+3)$, or corresponding linear equation	M1	
Obtain critical value $x = -\frac{11}{5}$	A1	
State final answer $x > -\frac{11}{5}$ only	A1	$(x > -2.2)$ Do not condone \geqslant for $>$.

1

M1

A1

Alternative Method 2

Solve the quadratic inequality $(3x+8)^2 > (2x+3)^2$, or corresponding quadratic equation	(M1)	$5x^2 + 36x + 55$.
Obtain critical value $x = -\frac{11}{5}$	(A1)	Ignore -5 if seen.
State final answer $x > -\frac{11}{5}$ only	(A1)	$(x > -2.2)$ Do not condone \geqslant for $>$.
4	3	5