A-level

Topic: Trigonometry

May 2013-May 2023

Questions

Question 1

- (i) Express $4\cos\theta + 3\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. Give the value of α correct to 4 decimal places.
- (ii) Hence

(a) solve the equation
$$4\cos\theta + 3\sin\theta = 2$$
 for $0 < \theta < 2\pi$, [4]

(b) find
$$\int \frac{50}{(4\cos\theta + 3\sin\theta)^2} d\theta.$$
 [3]

Question 2

- (i) By first expanding $\cos(x + 45^\circ)$, express $\cos(x + 45^\circ) (\sqrt{2}) \sin x$ in the form $R \cos(x + \alpha)$, where R > 0 and $0^\circ < \alpha < 90^\circ$. Give the value of R correct to 4 significant figures and the value of α correct to 2 decimal places. [5]
- (ii) Hence solve the equation

$$\cos(x + 45^{\circ}) - (\sqrt{2})\sin x = 2,$$

for
$$0^{\circ} < x < 360^{\circ}$$
.

Question 3

Solve the equation
$$\tan 2x = 5 \cot x$$
, for $0^{\circ} < x < 180^{\circ}$. [5]

Question 4

- (i) Express $(\sqrt{3})\cos x + \sin x$ in the form $R\cos(x \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$, giving the exact values of R and α .
- (ii) Hence show that

$$\int_{\frac{1}{6\pi}}^{\frac{1}{2\pi}} \frac{1}{\left((\sqrt{3})\cos x + \sin x\right)^2} \, \mathrm{d}x = \frac{1}{4}\sqrt{3}.$$
 [4]

Question 5

(i) Prove that
$$\cot \theta + \tan \theta = 2 \csc 2\theta$$
. [3]

(ii) Hence show that
$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \csc 2\theta \, d\theta = \frac{1}{2} \ln 3.$$
 [4]

(i) Given that
$$\sec \theta + 2 \csc \theta = 3 \csc 2\theta$$
, show that $2 \sin \theta + 4 \cos \theta = 3$. [3]

- (ii) Express $2 \sin \theta + 4 \cos \theta$ in the form $R \sin(\theta + \alpha)$ where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α correct to 2 decimal places. [3]
- (iii) Hence solve the equation $\sec \theta + 2 \csc \theta = 3 \csc 2\theta$ for $0^{\circ} < \theta < 360^{\circ}$. [4]

Question 7

(i) Simplify
$$\sin 2\alpha \sec \alpha$$
. [2]

(ii) Given that $3\cos 2\beta + 7\cos \beta = 0$, find the exact value of $\cos \beta$. [3]

Question 8

Solve the equation

$$\cos(x + 30^\circ) = 2\cos x,$$

giving all solutions in the interval $-180^{\circ} < x < 180^{\circ}$.

Question 9

(i) Show that the equation

$$\tan(x - 60^\circ) + \cot x = \sqrt{3}$$

can be written in the form

$$2\tan^2 x + (\sqrt{3})\tan x - 1 = 0.$$
 [3]

(ii) Hence solve the equation

$$\tan(x - 60^\circ) + \cot x = \sqrt{3},$$

for
$$0^{\circ} < x < 180^{\circ}$$
.

Ouestion 10

(i) By first expanding $\sin(2\theta + \theta)$, show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta. \tag{4}$$

- (ii) Show that, after making the substitution $x = \frac{2\sin\theta}{\sqrt{3}}$, the equation $x^3 x + \frac{1}{6}\sqrt{3} = 0$ can be written in the form $\sin 3\theta = \frac{3}{4}$.
- (iii) Hence solve the equation

$$x^3 - x + \frac{1}{6}\sqrt{3} = 0,$$

giving your answers correct to 3 significant figures. [4]

[5]

(i) Show that
$$\cos(\theta - 60^\circ) + \cos(\theta + 60^\circ) \equiv \cos \theta$$
. [3]

(ii) Given that
$$\frac{\cos(2x - 60^\circ) + \cos(2x + 60^\circ)}{\cos(x - 60^\circ) + \cos(x + 60^\circ)} = 3$$
, find the exact value of $\cos x$. [4]

Ouestion 12

- (i) Express $3 \sin \theta + 2 \cos \theta$ in the form $R \sin(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, stating the exact value of R and giving the value of α correct to 2 decimal places. [3]
- (ii) Hence solve the equation

$$3\sin\theta + 2\cos\theta = 1$$
,

for
$$0^{\circ} < \theta < 180^{\circ}$$
.

Question 13

Solve the equation
$$\cot 2x + \cot x = 3$$
 for $0^{\circ} < x < 180^{\circ}$. [6]

Question 14

The angles θ and ϕ lie between 0° and 180°, and are such that

$$tan(\theta - \phi) = 3$$
 and $tan \theta + tan \phi = 1$.

Find the possible values of θ and ϕ .

[6]

Question 15

The angles A and B are such that

$$\sin(A + 45^{\circ}) = (2\sqrt{2})\cos A$$
 and $4\sec^2 B + 5 = 12\tan B$.

Without using a calculator, find the exact value of tan(A - B).

[8]

Question 16

Express the equation $\tan(\theta + 45^\circ) - 2\tan(\theta - 45^\circ) = 4$ as a quadratic equation in $\tan \theta$. Hence solve this equation for $0^\circ \le \theta \le 180^\circ$.

Question 17

By expressing the equation $\csc \theta = 3 \sin \theta + \cot \theta$ in terms of $\cos \theta$ only, solve the equation for $0^{\circ} < \theta < 180^{\circ}$. [5]

Question 18

(i) Prove the identity
$$\cos 4\theta - 4\cos 2\theta = 8\sin^4 \theta - 3$$
. [4]

(ii) Hence solve the equation

$$\cos 4\theta = 4\cos 2\theta + 3$$
,

for
$$0^{\circ} \le \theta \le 360^{\circ}$$
. [4]

- (i) Express $(\sqrt{5})\cos x + 2\sin x$ in the form $R\cos(x \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α correct to 2 decimal places. [3]
- (ii) Hence solve the equation

$$(\sqrt{5})\cos\frac{1}{2}x + 2\sin\frac{1}{2}x = 1.2,$$

for
$$0^{\circ} < x < 360^{\circ}$$
.

Ouestion 20

Express the equation $\sec \theta = 3 \cos \theta + \tan \theta$ as a quadratic equation in $\sin \theta$. Hence solve this equation for $-90^{\circ} < \theta < 90^{\circ}$.

Question 21

- (i) Prove the identity $\tan 2\theta \tan \theta = \tan \theta \sec 2\theta$. [4]
- (ii) Hence show that $\int_0^{\frac{1}{6}\pi} \tan \theta \sec 2\theta \, d\theta = \frac{1}{2} \ln \frac{3}{2}.$ [4]

Question 22

Express the equation $\cot 2\theta = 1 + \tan \theta$ as a quadratic equation in $\tan \theta$. Hence solve this equation for $0^{\circ} < \theta < 180^{\circ}$.

Question 23

- (i) Express $8\cos\theta 15\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, stating the exact value of R and giving the value of α correct to 2 decimal places. [3]
- (ii) Hence solve the equation

$$8\cos 2x - 15\sin 2x = 4$$
,

for
$$0^{\circ} < x < 180^{\circ}$$
.

Question 24

- (i) By first expanding $2\sin(x 30^\circ)$, express $2\sin(x 30^\circ) \cos x$ in the form $R\sin(x \alpha)$, where R > 0 and $0^\circ < \alpha < 90^\circ$. Give the exact value of R and the value of α correct to 2 decimal places.
- (ii) Hence solve the equation

$$2\sin(x-30^{\circ})-\cos x=1$$
,

for
$$0^{\circ} < x < 180^{\circ}$$
.

- (i) Express the equation $\cot \theta 2 \tan \theta = \sin 2\theta$ in the form $a \cos^4 \theta + b \cos^2 \theta + c = 0$, where a, b and c are constants to be determined. [3]
- (ii) Hence solve the equation $\cot \theta 2 \tan \theta = \sin 2\theta$ for $90^{\circ} < \theta < 180^{\circ}$. [2]

Ouestion 26

(i) Prove that if
$$y = \frac{1}{\cos \theta}$$
 then $\frac{dy}{d\theta} = \sec \theta \tan \theta$. [2]

(ii) Prove the identity
$$\frac{1+\sin\theta}{1-\sin\theta} \equiv 2\sec^2\theta + 2\sec\theta\tan\theta - 1.$$
 [3]

(iii) Hence find the exact value of
$$\int_0^{\frac{1}{4}\pi} \frac{1+\sin\theta}{1-\sin\theta} \, d\theta.$$
 [4]

Question 27

Prove the identity
$$\frac{\cot x - \tan x}{\cot x + \tan x} \equiv \cos 2x$$
. [3]

Question 28

(i) Prove the identity
$$\tan(45^\circ + x) + \tan(45^\circ - x) \equiv 2 \sec 2x$$
. [4]

(ii) Hence sketch the graph of
$$y = \tan(45^\circ + x) + \tan(45^\circ - x)$$
 for $0^\circ \le x \le 90^\circ$. [3]

Question 29

By expressing the equation $\tan(\theta + 60^\circ) + \tan(\theta - 60^\circ) = \cot\theta$ in terms of $\tan\theta$ only, solve the equation for $0^\circ < \theta < 90^\circ$.

Question 30

(i) Prove the identity
$$\tan(45^{\circ} + x) + \tan(45^{\circ} - x) \equiv 2 \sec 2x$$
. [4]

(ii) Hence sketch the graph of
$$y = \tan(45^\circ + x) + \tan(45^\circ - x)$$
 for $0^\circ \le x \le 90^\circ$. [3]

Question 31

(i) Using the expansions of cos(3x + x) and cos(3x - x), show that

$$\frac{1}{2}(\cos 4x + \cos 2x) \equiv \cos 3x \cos x.$$
 [3]

(ii) Hence show that
$$\int_{-\frac{1}{6}\pi}^{\frac{1}{6}\pi} \cos 3x \cos x \, dx = \frac{3}{8}\sqrt{3}$$
. [3]

(i) Given that
$$\sin(x - 60^\circ) = 3\cos(x - 45^\circ)$$
, find the exact value of $\tan x$. [4]

(ii) Hence solve the equation
$$\sin(x - 60^\circ) = 3\cos(x - 45^\circ)$$
, for $0^\circ < x < 360^\circ$. [2]

Question 33

Showing all necessary working, solve the equation $\cot \theta + \cot(\theta + 45^\circ) = 2$, for $0^\circ < \theta < 180^\circ$. [5]

Question 34

(i) By first expanding $(\cos^2 x + \sin^2 x)^3$, or otherwise, show that

$$\cos^6 x + \sin^6 x = 1 - \frac{3}{4}\sin^2 2x.$$
 [4]

(ii) Hence solve the equation

$$\cos^6 x + \sin^6 x = \frac{2}{3},$$

for
$$0^{\circ} < x < 180^{\circ}$$
.

Question 35

- (i) Express $\cos \theta + 2 \sin \theta$ in the form $R \cos(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. Give the exact values of R and $\tan \alpha$.
- (ii) Hence, showing all necessary working, show that $\int_0^{\frac{1}{4}\pi} \frac{15}{(\cos \theta + 2\sin \theta)^2} d\theta = 5.$ [5]

Question 36

- (i) Show that the equation $(\sqrt{2}) \csc x + \cot x = \sqrt{3}$ can be expressed in the form $R \sin(x \alpha) = \sqrt{2}$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$.
 - (ii) Hence solve the equation $(\sqrt{2}) \csc x + \cot x = \sqrt{3}$, for $0^{\circ} < x < 180^{\circ}$. [4]

Question 37

Showing all necessary working, solve the equation $\sin(\theta - 30^{\circ}) + \cos \theta = 2 \sin \theta$, for $0^{\circ} < \theta < 180^{\circ}$. [4]

- (i) Show that the equation $(\sqrt{2}) \csc x + \cot x = \sqrt{3}$ can be expressed in the form $R \sin(x \alpha) = \sqrt{2}$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$.
- (ii) Hence solve the equation $(\sqrt{2}) \csc x + \cot x = \sqrt{3}$, for $0^{\circ} < x < 180^{\circ}$. [4]

Question 39

- (i) Given that $\sin(\theta + 45^\circ) + 2\cos(\theta + 60^\circ) = 3\cos\theta$, find the exact value of $\tan\theta$ in a form involving surds. You need not simplify your answer. [4]
- (ii) Hence solve the equation $\sin(\theta + 45^\circ) + 2\cos(\theta + 60^\circ) = 3\cos\theta$ for $0^\circ < \theta < 360^\circ$. [2]

Question 40

By first expressing the equation $\cot \theta - \cot(\theta + 45^{\circ}) = 3$ as a quadratic equation in $\tan \theta$, solve the equation for $0^{\circ} < \theta < 180^{\circ}$.

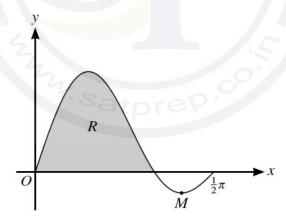
Question 41

- (i) By first expanding $\sin(2x + x)$, show that $\sin 3x = 3\sin x 4\sin^3 x$. [4]
- (ii) Hence, showing all necessary working, find the exact value of $\int_0^{\frac{1}{3}\pi} \sin^3 x \, dx$. [4]

Question 42

Showing all necessary working, solve the equation $\cot 2\theta = 2 \tan \theta$ for $0^{\circ} < \theta < 180^{\circ}$. [5]

Question 43



The diagram shows the curve $y = \sin 3x \cos x$ for $0 \le x \le \frac{1}{2}\pi$ and its minimum point M. The shaded region R is bounded by the curve and the x-axis.

By expanding $\sin(3x + x)$ and $\sin(3x - x)$ show that

$$\sin 3x \cos x = \frac{1}{2}(\sin 4x + \sin 2x).$$
 [3]

Let
$$f(\theta) = \frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta}$$
.

(i) Show that
$$f(\theta) = \tan \theta$$
. [3]

(ii) Hence show that
$$\int_{\frac{1}{6}\pi}^{\frac{1}{4}\pi} f(\theta) d\theta = \frac{1}{2} \ln \frac{3}{2}.$$
 [4]

Ouestion 45

(i) By first expanding
$$\cos(2x + x)$$
, show that $\cos 3x = 4\cos^3 x - 3\cos x$. [4]

(ii) Hence solve the equation
$$\cos 3x + 3\cos x + 1 = 0$$
, for $0 \le x \le \pi$. [2]

(iii) Find the exact value of
$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \cos^3 x \, dx$$
. [4]

Question 46

(i) Express $(\sqrt{6}) \sin x + \cos x$ in the form $R \sin(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 3 decimal places.

(ii) Hence solve the equation
$$(\sqrt{6}) \sin 2\theta + \cos 2\theta = 2$$
, for $0^{\circ} < \theta < 180^{\circ}$. [4]

Question 47

(i) By first expanding $\tan(2x + x)$, show that the equation $\tan 3x = 3 \cot x$ can be written in the form $\tan^4 x - 12 \tan^2 x + 3 = 0$.

(ii) Hence solve the equation
$$\tan 3x = 3 \cot x$$
 for $0^{\circ} < x < 90^{\circ}$.

Question 48

(a) Show that
$$\frac{\cos 3x}{\sin x} + \frac{\sin 3x}{\cos x} = 2 \cot 2x$$
. [4]

(b) Hence solve the equation
$$\frac{\cos 3x}{\sin x} + \frac{\sin 3x}{\cos x} = 4$$
, for $0 < x < \pi$. [3]

Question 49

Express the equation $\tan(\theta + 60^\circ) = 2 + \tan(60^\circ - \theta)$ as a quadratic equation in $\tan \theta$, and hence solve the equation for $0^\circ \le \theta \le 180^\circ$.

Ouestion 50

(a) Express $\sqrt{2}\cos x - \sqrt{5}\sin x$ in the form $R\cos(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the exact value of R and the value of α correct to 3 decimal places. [3]

(b) Hence solve the equation
$$\sqrt{2}\cos 2\theta - \sqrt{5}\sin 2\theta = 1$$
, for $0^{\circ} < \theta < 180^{\circ}$. [4]

By first expressing the equation

$$\tan \theta \tan(\theta + 45^\circ) = 2 \cot 2\theta$$

as a quadratic equation in $\tan \theta$, solve the equation for $0^{\circ} < \theta < 90^{\circ}$.

[6]

[3]

Question 52

- (a) Express $\sqrt{6}\cos\theta + 3\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places.
- **(b)** Hence solve the equation $\sqrt{6}\cos\frac{1}{3}x + 3\sin\frac{1}{3}x = 2.5$, for $0^{\circ} < x < 360^{\circ}$. [4]

Question 53

(a) Show that the equation $\tan(\theta + 60^\circ) = 2 \cot \theta$ can be written in the form

$$\tan^2\theta + 3\sqrt{3}\tan\theta - 2 = 0.$$
 [3]

(b) Hence solve the equation $\tan(\theta + 60^\circ) = 2 \cot \theta$, for $0^\circ < \theta < 180^\circ$.

Question 54

- (a) Express $\sqrt{6}\cos\theta + 3\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places. [3]
- **(b)** Hence solve the equation $\sqrt{6}\cos\frac{1}{3}x + 3\sin\frac{1}{3}x = 2.5$, for $0^{\circ} < x < 360^{\circ}$. [4]

Question 55

- (a) Express $\sqrt{7} \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places. [3]
- **(b)** Hence solve the equation $\sqrt{7} \sin 2\theta + 2 \cos 2\theta = 1$, for $0^{\circ} < \theta < 180^{\circ}$. [5]

Question 56

By first expressing the equation $\tan(x + 45^\circ) = 2 \cot x + 1$ as a quadratic equation in $\tan x$, solve the equation for $0^\circ < x < 180^\circ$.

Ouestion 57

- (a) By first expanding $\tan(2\theta + 2\theta)$, show that the equation $\tan 4\theta = \frac{1}{2} \tan \theta$ may be expressed as $\tan^4 \theta + 2 \tan^2 \theta 7 = 0$.
- **(b)** Hence solve the equation $\tan 4\theta = \frac{1}{2} \tan \theta$, for $0^{\circ} < \theta < 180^{\circ}$. [3]

Question 58

Prove that $\csc 2\theta - \cot 2\theta = \tan \theta$. [3]

Prove that
$$\frac{1-\cos 2\theta}{1+\cos 2\theta} \equiv \tan^2 \theta$$
. [2]

Question 60

(a) Given that
$$\cos(x - 30^\circ) = 2\sin(x + 30^\circ)$$
, show that $\tan x = \frac{2 - \sqrt{3}}{1 - 2\sqrt{3}}$. [4]

(b) Hence solve the equation

$$\cos(x - 30^\circ) = 2\sin(x + 30^\circ),$$

for
$$0^{\circ} < x < 360^{\circ}$$
.

Question 61

(a) By first expanding $\cos(x - 60^\circ)$, show that the expression

$$2\cos(x-60^\circ)+\cos x$$

can be written in the form $R\cos(x - \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the exact value of R and the value of α correct to 2 decimal places. [5]

(b) Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ takes its least possible value. [2]

Question 62

Solve the equation
$$\sin \theta = 3\cos 2\theta + 2$$
, for $0^{\circ} \le \theta \le 360^{\circ}$. [5]

Question 63

(a) By first expanding $(\cos^2 \theta + \sin^2 \theta)^2$, show that

$$\cos^4 \theta + \sin^4 \theta \equiv 1 - \frac{1}{2}\sin^2 2\theta.$$
 [3]

(b) Hence solve the equation

$$\cos^4\theta + \sin^4\theta = \frac{5}{9},$$

for
$$0^{\circ} < \theta < 180^{\circ}$$
. [4]

(a) Show that the equation

$$\cot 2\theta + \cot \theta = 2$$

can be expressed as a quadratic equation in $\tan \theta$.

[3]

(b) Hence solve the equation $\cot 2\theta + \cot \theta = 2$, for $0 < \theta < \pi$, giving your answers correct to 3 decimal places. [3]

Question 65

- (a) Express $5 \sin x 3 \cos x$ in the form $R \sin(x \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. Give the exact value of R and give α correct to 2 decimal places.
- (b) Hence state the greatest and least possible values of $(5 \sin x 3 \cos x)^2$. [2]

Question 66

The angles α and β lie between 0° and 180° and are such that

$$tan(\alpha + \beta) = 2$$
 and $tan \alpha = 3 tan \beta$.

Find the possible values of α and β .

[6]

Question 67

Solve the equation
$$\cos(\theta - 60^\circ) = 3\sin\theta$$
, for $0^\circ \le \theta \le 360^\circ$.

[5]

Question 68

Solve the equation $3\cos 2\theta = 3\cos \theta + 2$, for $0^{\circ} \le \theta \le 360^{\circ}$.

[5]

Ouestion 69

Solve the equation
$$2 \cot 2x + 3 \cot x = 5$$
, for $0^{\circ} < x < 180^{\circ}$.

[6]

Ouestion 70

- (a) Show that the equation $\sqrt{5} \sec x + \tan x = 4$ can be expressed as $R \cos(x + \alpha) = \sqrt{5}$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the exact value of R and the value of α correct to 2 decimal places. [4]
- (b) Hence solve the equation $\sqrt{5} \sec 2x + \tan 2x = 4$, for $0^{\circ} < x < 180^{\circ}$. [4]

Question 71

- (a) Express $4\cos x \sin x$ in the form $R\cos(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places. [3]
- (b) Hence solve the equation $4\cos 2x \sin 2x = 3$ for $0^{\circ} < x < 180^{\circ}$. [5]

Question 72

Solve the equation $tan(x + 45^{\circ}) = 2 \cot x$ for $0^{\circ} < x < 180^{\circ}$.

[5]

- (a) Prove the identity $\cos 4\theta + 4\cos 2\theta + 3 = 8\cos^4 \theta$. [4]
- **(b)** Hence solve the equation $\cos 4\theta + 4\cos 2\theta = 4$ for $0^{\circ} \le \theta \le 180^{\circ}$. [3]

Question 74

- (a) Express $5 \sin \theta + 12 \cos \theta$ in the form $R \cos(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. [3]
- (b) Hence solve the equation $5 \sin 2x + 12 \cos 2x = 6$ for $0 \le x \le \pi$. [4]

Question 75

- (a) Express $3\cos x + 2\cos(x 60^\circ)$ in the form $R\cos(x \alpha)$, where R > 0 and $0^\circ < \alpha < 90^\circ$. State the exact value of R and give α correct to 2 decimal places. [4]
- **(b)** Hence solve the equation

$$3\cos 2\theta + 2\cos(2\theta - 60^\circ) = 2.5$$

for
$$0^{\circ} < \theta < 180^{\circ}$$
. [4]

Question 76

Solve the equation
$$2\cos x - \cos\frac{1}{2}x = 1$$
 for $0 \le x \le 2\pi$. [5]

Question 77

(a) Show that the equation $\sin 2\theta + \cos 2\theta = 2\sin^2 \theta$ can be expressed in the form

$$\cos^2 \theta + 2\sin \theta \cos \theta - 3\sin^2 \theta = 0.$$
 [2]

(b) Hence solve the equation $\sin 2\theta + \cos 2\theta = 2\sin^2 \theta$ for $0^\circ < \theta < 180^\circ$. [4]