A-level

Topic: Trigonometry

May 2013-May 2023

Answer

(i)	Use	e or imply $R = 5$ relevant trigonometry to find α	B1 M1	
	Obt	$ain \alpha = 0.6435$	A 1	[3]
(ii)	(a)	Carry out appropriate method to find one value in given range Obtain 1.80	M1 A1	
		Carry out appropriate method to find second value in given range Obtain 5.77 and no other value	M1 A1	[4]
	(b)	Express integrand as $k \sec^2(\theta - \text{their } \alpha)$ for any constant k	M1	
		Integrate to obtain result $k \tan(\theta - \text{their } \alpha)$	A1	F27
		Obtain correct answer $2 \tan(\theta - 0.6435)$	A1	[3]
Que	stior	12		
(i)		Use $\cos (A + B)$ formula to express the given expression in terms of $\cos x$ and $\sin x$	M1	
		Collect terms and reach $\frac{\cos x}{\sqrt{2}} - \frac{3}{\sqrt{2}} \sin x$, or equivalent	A1	
		Obtain $R = 2.236$	A1	
		Use trig formula to find α	M1	
		Obtain $\alpha = 71.57^{\circ}$ with no errors seen	A1	[5]
(ii)		Evaluate \cos^{-1} (2/2.236) to at least 1 d.p. (26.56° to 2 d.p., use of $R = \sqrt{5}$ gives		
(11)		26.57°)	В1√	
		Carry out an appropriate method to find a value of x in the interval $0^{\circ} < x < 360^{\circ}$	M1	
		Obtain answer, e.g. $x = 315^{\circ}$ (315.0°)	A1	
		Obtain second answer, e.g. 261.9° and no others in the given interval	A1	[4]
Que	stion	13		
Ob	tain a	rect tan 2A formula and cot $x = 1/\tan x$ to form an equation in $\tan x$ correct horizontal equation in any form a equation in $\tan^2 x$ for x	M1 A1 M1	
		nswer, e.g. 40.2°	A1	
Ob	tain s	econd answer, e.g. 139.8°, and no other in the given interval	A1√	[5]

- (i) State R = 2Use trig formula to find α Obtain $\alpha = \frac{1}{6}\pi$ with no errors seen

 A1 [3]

 (ii) Substitute denominator of integrand and state integral $k \tan (x \alpha)$ M1*
 - State correct indefinite integral $\frac{1}{4} \tan \left(x \frac{1}{6} \pi \right)$ A1 $^{\uparrow}$ Substitute limits
 Obtain the given answer correctly

 A1 [4]

Question 5

- (i) Use Pythagoras M1
 Use the sin2A formula M1
 Obtain the given result A1 [3]
- (ii) Integrate and obtain a $k \ln \sin \theta$ or $m \ln \cos \theta$ term, or obtain integral of the form $p \ln \tan \theta$ M1*

 Obtain indefinite integral $\frac{1}{2} \ln \sin \theta \frac{1}{2} \ln \cos \theta$, or equivalent, or $\frac{1}{2} \ln \tan \theta$ A1

 Substitute limits correctly

 Obtain the given answer correctly having shown appropriate working A1 [4]

- (i) Use $\sec \theta = \frac{1}{\cos \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$ B1

 Use $\sin 2\theta = 2\sin \theta \cos \theta$ and to form a horizontal equation in $\sin \theta$ and $\cos \theta$ or fractions with common denominators

 Obtain given equation $2\sin \theta + 4\cos \theta = 3$ correctly

 A1 [3]
- (ii) State or imply $R = \sqrt{20}$ or 4.47 or equivalent
 Use correct trigonometry to find α Obtain 63.43 or 63.44 with no errors seen

 M1
 [3]
- (iii) Carry out a correct method to find one value in given range
 Obtain 74.4° (or 338.7°)
 Carry out a correct method to find second value in given range
 Obtain 338.7° (or 74.4°) and no others between 0° and 360°

 A1 [4]

- (i) State $\sin 2\alpha = 2\sin \alpha \cos \alpha$ and $\sec \alpha = 1/\cos \alpha$ B1 Obtain $2\sin \alpha$ B1 [2]
- (ii) Use $\cos 2\beta = 2\cos^2\beta 1$ or equivalent to produce correct equation in $\cos\beta$ B1 Solve three-term quadratic equation for $\cos\beta$ M1 Obtain $\cos\beta = \frac{1}{3}$ only A1 [3]

Question 8

Use $\cos(A+B)$ formula to obtain an equation in $\cos x$ and $\sin x$ M1

Use trig formula to obtain an equation in $\tan x$ (or $\cos x$ or $\sin x$) M1

Obtain $\tan x = \sqrt{3} - 4$, or equivalent (or find $\cos x$ or $\sin x$) A1

Obtain answer $x = -66.2^{\circ}$ A1

Obtain answer $x = 113.8^{\circ}$ and no others in the given interval A1

[Ignore answers outside the given interval. Treat answers in radians as a misread (-1.16, 1.99).]

Question 9

- (i) Use $\tan(A \pm B)$ formula and obtain an equation in $\tan x$ M1

 Using $\tan 60^\circ = \sqrt{3}$, obtain a horizontal equation in $\tan x$ in any correct form

 Reduce the equation to the given form

 A1

 3
- (ii) Solve the given quadratic for $\tan x$ M1 Obtain a correct answer, e.g. $x = 21.6^{\circ}$ A1 Obtain a second answer, e.g. $x = 128.4^{\circ}$, and no others

- (i) Use $\sin(A+B)$ formula to express $\sin 3\theta$ in terms of trig. functions of 2θ and θ Use correct double angle formulae and Pythagoras to express $\sin 3\theta$ in terms of $\sin \theta$ Obtain a correct expression in terms of $\sin \theta$ in any form
 Obtain the given identity

 A1

 [4]
- (ii) Substitute for x and obtain the given answer B1 [1]
- (iii) Carry out a correct method to find a value of x M1 Obtain answers 0.322, 0.799, -1.12 A1 + A1 [4]

(i)	<u>Either</u>	Use $\cos(A \pm B)$ correctly at least once	M1	
		State correct complete expansion	A1	
		Confirm given answer $\cos \theta$ with explicit use of $\cos 60^{\circ} = \frac{1}{2}$	A1	
		SR: "correct" answer from sign errors in both expansions is B1 only		
	<u>Or</u>	Use correct $\cos A + \cos B$ formula	M1	
		State correct result e.g. $2\cos\left(\frac{2\theta}{2}\right)\cos\left(\frac{-120}{2}\right)$	A1	
		Confirm given answer $\cos \theta$ with explicit use of $\cos(\pm 60^{\circ}) = \frac{1}{2}$	A1	[3]
(ii)	State or	imply $\frac{\cos 2x}{\cos x} = 3$	B1	
		quation $2\cos^2 x - 3\cos x - 1 = 0$ three-term quadratic equation for $\cos x$	B1 M1	
	Obtain -	$\frac{1}{4}(3-\sqrt{17})$ or exact equivalent and, finally, no other	A1	[4]
Que	stion 12			
(i)	State R =	$=\sqrt{13}$	B1	
		formula to find α	M1	
	Obtain a	z = 33.69° with no errors seen	A1	[3]
(ii)	Evaluate	$\sin^{-1}(1/\sqrt{13})$ to at least 1 d.p. (16.10° to 2 d.p.)	B1 √	
	Carry ou	t an appropriate method to find a value of θ in the interval $0^{\circ} < \theta < 180^{\circ}$	M1	
	Obtain a	nswer θ = 130.2° and no other in the given interval	A1	[3]
Que	stion 13			
		an $2A$ and $\cot A$ formulae to form an equation in $\tan x$	M1	
		ect equation in any form	A1	
		ion to the form $\tan^2 x + 6\tan x - 3 = 0$, or equivalent term quadratic in $\tan x$ for x , as in Q1.	A1 M1	
		r, e.g. 24.9° (24.896)	A1	
Obt	ain second	d answer, e.g. 98.8 (98.794) and no others in the given interval	A1	6
Que	stion 14			
Use	$tan(A \pm B)$	3) and obtain an equation in tan $ heta$ and tan ϕ	M1*	
		oughout for tan $ heta$ or for tan ϕ	dep M1*	
		$\theta - \tan \theta - 4 = 0$ or $3 \tan^2 \phi - 5 \tan \phi - 2 = 0$, or 3-term equivalent	A1	
		n quadratic and find an angle	M1	
		er $\theta = 135^{\circ}$, $\phi = 63.4^{\circ}$ er $\theta = 53.1^{\circ}$, $\phi = 161.6^{\circ}$	A1 A1	[6]
		· · · · · · · · · · · · · · · · · · ·		r ~ 1

State or imply $\sin A \times \cos 45 + \cos A \times \sin 45 = 2\sqrt{2} \cos A$ Divide by $\cos A$ to find value of $\tan A$	B1 M1	
Obtain $\tan A = 3$	A1	
Use identity $\sec^2 B = 1 + \tan^2 B$	B1	
Solve three-term quadratic equation and find $\tan B$	M1	
Obtain $\tan B = \frac{3}{2}$ only	A1	
Substitute numerical values in $\frac{\tan A - \tan B}{1 + \tan A \tan B}$	M1	
Obtain $\frac{3}{11}$	A1	[8]
Question 16		
Use $tan(A \pm B)$ formula and obtain an equation in tan θ	M1	
Using $\tan 45^{\circ} = 1$, obtain a horizontal equation in $\tan \theta$ in any correct form	A1	
Reduce the equation to $7 \tan^2 \theta - 2 \tan \theta - 1 = 0$, or equivalent	A1	
Solve a 3-term quadratic for $\tan \theta$	M 1	
Obtain a correct answer, e.g. $\theta = 28.7^{\circ}$	A1	
Obtain a second answer, e.g. $\theta = 165.4^{\circ}$, and no others	A1	[6]
Question 17		
Correctly restate the equation in terms of $\sin \theta$ and $\cos \theta$		B1
Using Pythagoras obtain a horizontal equation in $\cos \theta$		M1
Reduce the equation to a correct quadratic in $\cos \theta$, e.g. $3\cos^2 \theta - \cos \theta - 2 = 0$		A1
Solve a 3-term quadratic for $\cos \theta$		M1
Obtain answer $\theta = 131.8^{\circ}$ only		A1
		[5]
Question 18		

(i)	EITHER: Express $\cos 4\theta$ in terms of $\cos 2\theta$ and/or $\sin 2\theta$ Use correct double angle formulae to express LHS in terms of $\sin \theta$ and/or $\cos \theta$ Obtain a correct expression in terms of $\sin \theta$ alone Reduce correctly to the given form	B1 M1 A1 A1	
	OR: Use correct double angle formula to express RHS in terms of $\cos 2\theta$ Express $\cos^2 2\theta$ in terms of $\cos 4\theta$ Obtain a correct expression in terms of $\cos 4\theta$ and $\cos 2\theta$ Reduce correctly to the given form	M1 B1 A1 A1	[4]
(ii)	Use the identity and carry out a method for finding a root Obtain answer 68.5° Obtain a second answer, e.g. 291.5° Obtain the remaining answers, e.g. 111.5° and 248.5°, and no others in the given	M1 A1 A1√	
	interval	A1 √	[4]
Ques	tion 19		
(i)	State answer $R = 3$ Use trig formula to find Obtain $\alpha = 41.81^{\circ}$ with no errors seen		B1 M1 A1 [3]
(ii)	Evaluate $\cos^{-1}(0.4)$ to at least 1 d.p. (66.42°to 2 d.p.) Carry out an appropriate method to find a value of x in the given range Obtain answer 216.5° only [Ignore answers outside the given interval.]		B1√ M1 A1 [3]
Ques	tion 20		
EITH	ER: Correctly restate the equation in terms of $\sin\theta$ and $\cos\theta$ Correct method to obtain a horizontal equation in $\sin\theta$ Reduce the equation to a correct quadratic in any form, e.g. $3\sin^2\theta - \sin\theta - 2 = 0$ Solve a three-term quadratic for $\sin\theta$ Obtain final answer $\theta = -41.8^{\circ}$ only [Ignore answers outside the given interval.]	B1 M1 A1 M1 A1	
OR 1	Square both sides of the equation and use $1 + \tan^2 \theta = \sec^2 \theta$ Correct method to obtain a horizontal equation $\sin \theta$ Reduce the equation to a correct quadratic in any form, e.g. $9\sin^2 \theta - 6\sin \theta - 8 = 0$ Solve a three-term quadratic for $\sin \theta$ Obtain final answer $\theta = -41.8^{\circ}$ only	B1 M1 A1 M1 A1	
OR 2	Multiply through by $(\sec\theta + \tan\theta)$ Use $\sec^2\theta - \tan^2\theta = 1$ Obtain $1 = 3 + 3\sin\theta$ Solve for $\sin\theta$ Obtain final answer $\theta = -41.8^{\circ}$ only	M1 B1 A1 M1 A1	[5]

(i)	EITHER:	Use $\tan 2A$ formula to express LHS in terms of $\tan \theta$ Express as a single fraction in any correct form Use Pythagoras or $\cos 2A$ formula Obtain the given result correctly		M1 A1 M1 A1	
	OR:	Express LHS in terms of $\sin 2\theta$, $\cos 2\theta$, $\sin \theta$ and $\cos \theta$ Express as a single fraction in any correct form Use Pythagoras or $\cos 2A$ formula or $\sin(A - B)$ formula Obtain the given result correctly		M1 A1 M1 A1	[4]
(ii)	Integrate a	nd obtain a term of the form $a \ln(\cos 2\theta)$ or $b \ln(\cos \theta)$ (or secant equivalents)		M1*	
	Obtain inte	egral $-\frac{1}{2}\ln(\cos 2\theta) + \ln(\cos \theta)$, or equivalent		A1	
		limits correctly (expect to see use of <u>both</u> limits) given answer following full and correct working		DM1 A1	[4]
Oues	tion 22				
_				I	
		formula to obtain an equation in $ an \theta$ only at horizontal equation	M1 A1		
		ation as a quadratic in $\tan \theta$, e.g. $3 \tan^2 \theta + 2 \tan \theta - 1 = 0$ ual requirements for solution of quadratic)	A1 M1		

A1

A1

[6]

Question 23

Obtain answer, e.g. 18.4°

Obtain second answer, e.g. 135° , and no others in the given interval

(i)	State $R = 17$	B1
	Use trig formula to find α	M1
	Obtain $\alpha = 61.93^{\circ}$ with no errors seen	A1
	Total:	3
(ii)	Evaluate $\cos^{-1}(4/17)$ to at least 1d.p. (76.39° to 2 d.p.)	B1√
	Use a correct method to find a value of x in the interval $0^{\circ} < x < 180^{\circ}$	M1
	Obtain answer, e.g. $x = 7.2^{\circ}$	A1
	Obtain second answer, e.g. $x = 110.8^{\circ}$ and no others	A1
	[Ignore answers outside the given interval.]	
	[Treat answers in radians as a misread.]	
	Total:	4

(i)	Use $sin(A - B)$ formula and obtain an expression in terms of $sin x$ and co	os x	M1
	Collect terms and reach $\sqrt{3} \sin x - 2 \cos x$, or equivalent		A1
	Obtain $R = \sqrt{7}$		A1
	Use trig formula to find α		M1
	Obtain $\alpha = 49.11^{\circ}$ with no errors seen		A1
		Total:	5
(ii)	Evaluate $\sin^{-1}(1/\sqrt{7})$ to at least 1 d.p. (22.21° to 2 d.p.)		B1 FT
	Use a correct method to find a value of x in the interval $0^{\circ} < x < 180^{\circ}$		M1
	Obtain answer 71.3°		A1
	[ignore answers outside given range.]		
		Total:	3
Questi	ion 25		
(i)	Use correct formulae to express the equation in terms of $\cos \theta$ and $\sin \theta$		M1
	Use Pythagoras and express the equation in terms of $\cos \theta$ only		M1
	Obtain correct 3-term equation, e.g. $2\cos^4\theta + \cos^2\theta - 2 = 0$		A1
	2 - 1.5	Total:	3
(ii)	Solve a 3-term quadratic in $\cos^2 \theta$ for $\cos \theta$		M1
	Obtain answer $\theta = 152.1^{\circ}$ only		A1
		Total:	2

(i)	Use quotient or chain rule	M1
	Obtain given answer correctly	A1
	Total:	2
(ii)	EITHER: Multiply numerator and denominator of LHS by $1 + \sin \theta$	(M1
	Use Pythagoras and express LHS in terms of sec θ and $\tan \theta$	M1
	Complete the proof	A1)
	OR1: Express RHS in terms of $\cos \theta$ and $\sin \theta$	(M1
	Use Pythagoras and express RHS in terms of $\sin \theta$	M1
	Complete the proof	A1)

(iii)	Use the identity and obtain integral $2 \tan \theta + 2 \sec \theta - \theta$		B2
	Use correct limits correctly in an integral containing terms $a \tan \theta$ and $b \sec \theta$		M1
	Obtain answer $2\sqrt{2} - \frac{1}{4}\pi$		A1
	34.	Total:	4

Express the LHS in terms of either cos x and sin x or in terms of tan x	B1
Use Pythagoras	M1
Obtain the given answer	A1
Total:	3

(i)	Use correct $tan(A \pm B)$ formula and express the LHS in terms of $tan x$	M1
	Using tan 45° = 1 express LHS as a single fraction	A1
	Use Pythagoras or correct double angle formula	M1
	Obtain given answer	A1
		4
(ii)	Show correct sketch for one branch	B1
	Both branches correct and nothing else seen in the interval	B1
	Show asymptote at $x = 45^{\circ}$	B1
	T PR	3

Use correct $tan(A \pm B)$ formula and express LHS in terms of $tan \theta$	M1
Using $\tan 60^\circ = \sqrt{3}$ and $\cot \theta = 1/\tan \theta$, obtain a correct equation in $\tan \theta$ in any form	A1
Reduce the equation to one in $\tan^2 \theta$ only	M1
Obtain $11 \tan^2 \theta = 1$, or equivalent	A1
Obtain answer 16.8°	A1
	5

(i)	Use correct $tan(A \pm B)$ formula and express the LHS in terms of $tan x$	M1
	Using tan 45° = 1 express LHS as a single fraction	A1
	Use Pythagoras or correct double angle formula	M1
	Obtain given answer	A1
		4
(ii)	Show correct sketch for one branch	B1
	Both branches correct and nothing else seen in the interval	B1
	Show asymptote at $x = 45^{\circ}$	B1
	AT PRA	3

3(i)	State correct expansion of $\cos(3x+x)$ or $\cos(3x-x)$	B1
	Substitute in $\frac{1}{2}(\cos 4x + \cos 2x)$	M1
	Obtain the given identity correctly AG	A1
		3
(ii)	Obtain integral $\frac{1}{8}\sin 4x + \frac{1}{4}\sin 2x$	B1
	Substitute limits correctly	M1
	Obtain the given answer following full, correct and exact working AG	A1
		3

(i)	Use trig formulae and obtain an equation in $\sin x$ and $\cos x$	M1*
	Obtain a correct equation in any form	A1
	Substitute exact trig ratios and obtain an expression for tan x	M1(dep*)
	Obtain answer $\tan x = \frac{-(6+\sqrt{6})}{(6-\sqrt{2})}$ or equivalent	A1
	13//-5/	4
(ii)	State answer, e.g. 118.5°	B1
	State second answer, e.g. 298.5°	B1ft
		2

Use correct tan $(A \pm B)$ formula and obtain an equation in tan θ	M1
Obtain a correct equation in any form	Al
Reduce to $3 \tan^2 \theta = 1$, or equivalent	Al
Obtain answer $x = 30^{\circ}$	Al
Obtain answer $x = 150^{\circ}$	Al
OR: use correct $\sin(A \pm B)$ and $\cos(A \pm B)$ to form equation in $\sin \theta$ and $\cos \theta$ M1A1	
Reduce to $\tan^2 \theta = \frac{1}{3}$, $\sin^2 \theta = \frac{1}{4}$, $\cos^2 \theta = \frac{3}{4}$ or $\cot^2 \theta = 3$ A1 etc.	
	5

(i)	Attempt cubic expansion and equate to 1	M1
	Obtain a correct equation	A1
	Use Pythagoras and double angle formula in the expansion	M1
	Obtain the given result correctly	A1
	Total:	4
(ii)	Use the identity and carry out a method for finding a root	M1
	Obtain answer 20.9°	A1
	Obtain a second answer, e.g. 69.1°	A1FT
	Obtain the remaining answers, e.g. 110.9° and 159.1°, and no others in the given interval	A1FT
	Total:	4

(i)	Attempt cubic expansion and equate to 1	М1
	Obtain a correct equation	A1
	Use Pythagoras and double angle formula in the expansion	M1
	Obtain the given result correctly	A1
	Total:	4
(ii)	Use the identity and carry out a method for finding a root	M1
	Obtain answer 20.9°	A1
	Obtain a second answer, e.g. 69.1°	A1FT
	Obtain the remaining answers, e.g. 110.9° and 159.1°, and no others in the given interval	A1FT
	Total:	4
Questio	on 36	

(i)	Rearrange in the form $\sqrt{3} \sin x - \cos x = \sqrt{2}$	B1
	State <i>R</i> = 2	B1
	Use trig formulae to obtain a	M1
	Obtain $\alpha = 30^{\circ}$ with no errors seen	Al
	3	4
(ii)	Evaluate $\sin^{-1}\left(\frac{\sqrt{2}}{R}\right)$	Blft
	Carry out a correct method to find a value of x in the given interval	M1
	Obtain answer $x = 75^{\circ}$	Al
	Obtain a second answer e.g. $x = 165^{\circ}$ and no others [Treat answers in radians as a misread. Ignore answers outside the given interval.]	Alft
		4

Use trig formula and obtain an equation in $\sin\theta$ and $\cos\theta$	M1*
Obtain an equation in $\tan \theta$	M1(dep*)
Obtain $\tan \theta = 1/(4-\sqrt{3})$, or equivalent	Al
Obtain final answer $\theta = 23.8^{\circ}$ and no others in range	Al
	
	4

(i)	Rearrange in the form $\sqrt{3} \sin x - \cos x = \sqrt{2}$	B1
	State $R = 2$	B1
	Use trig formulae to obtain a	M1
	Obtain $\alpha = 30^{\circ}$ with no errors seen	Al
		4
(ii)	Evaluate $\sin^{-1}\left(\frac{\sqrt{2}}{R}\right)$	Blft
	Carry out a correct method to find a value of x in the given interval	Ml
	Obtain answer $x = 75^{\circ}$	Al
	Obtain a second answer e.g. $x = 165^{\circ}$ and no others [Treat answers in radians as a misread. Ignore answers outside the given interval.]	Alft
		4

(1)	Use trig formulae and obtain an equation in $\sin \theta$ and $\cos \theta$	MI
	Obtain a correct equation in any form	Al
	Substitute exact trig ratios and obtain an expression for $\tan \theta$	M1
	Obtain answer $\tan \theta = \frac{2\sqrt{2}-1}{1-\sqrt{6}}$, or equivalent	Al
		4
(ii)	State answer, e.g. $\theta = 128.4^{\circ}$	Bl
	State second answer, e.g. $\theta = 308.4^{\circ}$	B1 ft
		2
Ques	ation 40	

Use correct trig formula and obtain an equation in $\tan \theta$	M1
Obtain a correct horizontal equation in any form	Al
Reduce to $2\tan^2\theta + 3\tan\theta - 1 = 0$	Al
Solve 3-term quadratic and find a value of θ	M1
Obtain answer 15.7°	Al
Obtain answer 119.(3)°	Al
	6

(i)	State correct expansion of $\sin(2x+x)$		B1
	Use trig formulae and Pythagoras to express $\sin 3x$ in terms of	f sin x	Ml
	Obtain a correct expression in any form		Al
	Obtain $\sin 3x = 3\sin x - 4\sin^3 x$ correctly	AG	Al
			4
ii)	Use identity, integrate and obtain $-\frac{3}{4}\cos x + \frac{1}{12}\cos 3x$		B1 B1
	Use limits correctly in an integral of the form $a \cos x + b \cos 3x$, where $ab \neq 0$		M1
	Obtain answer $\frac{5}{24}$		Al
			4
Questi			
	correct trig formulae to obtain an equation in $\tan \theta$ or valent (e.g all in $\sin \theta$ or all in $\cos \theta$)		*M1
Obtai	n a correct simplified equation		Al
Solve	e for θ		DM1
Obtai	n answer 24.1° (or 155.9°)		Al
Obtai	n second answer		Al
			5

(i)	State correct expansion of $\sin(3x+x)$ or $\sin(3x-x)$	B1	B0 If their formula retains \pm in the middle
	Substitute expansions in $\frac{1}{2}(\sin 4x + \sin 2x)$	M1	
	Obtain $\sin 3x \cos x = \frac{1}{2} (\sin 4x + \sin 2x)$ correctly	Al	Must see the $\sin 4x$ and $\sin 2x$ or reference to LHS and RHS for A1 AG
		3	
(ii)	Integrate and obtain $-\frac{1}{8}\cos 4x - \frac{1}{4}\cos 2x$	B1 B1	
	Substitute limits $x = 0$ and $x = \frac{1}{3}\pi$ correctly	M1	In their expression
	Obtain answer $\frac{9}{16}$	Al	From correct working seen.
		4	
)(iii)	State correct derivative $2\cos 4x + \cos 2x$	Bl	
	Using correct double angle formula, express derivative in terms of $\cos 2x$ and equate the result to zero	MI	
	Obtain $4\cos^2 2x + \cos 2x - 2 = 0$	Al	
	Solve for x or 2x (could be labelled x) $\left(\cos 2x = \frac{-1 \pm \sqrt{33}}{8}\right)$	MI	Must see working if solving an incorrect quadratic The roots of the correct quadratic are -0.843 and 0.593 Need to get as far as $x =$ The wrong value of x is 0.468 and can imply M1 if correct quadratic seen Could be working from a quartic in $\cos x$: $16\cos^4 x - 14\cos^2 x + 1 = 0$
	Obtain answer $x = 1.29$ only	Al	
		5	

(1)	Use double angle formulae and express entire fraction in terms of $\sin\theta$ and $\cos\theta$	MI
	Obtain a correct expression	Al
	Obtain the given answer	Al
		3
(ii)	State integral of the form $\pm \ln \cos \theta$	M1*
	Use correct limits correctly and insert exact values for the trig ratios	DM1
	Obtain a correct expression, e.g. $-\ln \frac{1}{\sqrt{2}} + \ln \frac{\sqrt{3}}{2}$	Al
	Obtain the given answer following full and exact working	Al
		4

(i)	Use $cos(A + B)$ formula to express $cos3x$ in terms of trig functions of $2x$ and x	M1
	Use double angle formulae and Pythagoras to obtain an expression in terms of cost only	M1
	Obtain a correct expression in terms of cos x in any form	Al
	Obtain $\cos 3x = 4\cos^3 x - 3\cos x$	Al
		4
(ii)	Use identity and solve cubic $4\cos^3 x = -1$ for x	M1
	Obtain answer 2.25 and no other in the interval	Al
	AT PRAIS	2
Ques	tion 46	ı
(i)	State $R = \sqrt{7}$	B1
	Use correct trig formulae to find a	M1
	Obtain $\alpha = 22.208^{\circ}$	Al
		3
(ii)	Evaluate $\sin^{-1}\left(\frac{2}{\sqrt{7}}\right)$ to at least 1 d.p.	B1FT
	·SatpreP	
	Use correct method to find a value of θ in the interval	M1
	Obtain answer, e.g. 13.4°	Al
	Obtain second answer, e.g. 54.3° and no extras in the given interval	Al
		4

(i)	Use $tan (A + B)$ formula to express the LHS in terms of $tan 2x$ and $tan x$	M1
	Using the $\tan 2A$ formula, express the entire equation in terms of $\tan x$	M1
	Obtain a correct equation in tan x in any form	Al
	Obtain the given form correctly	Al
		4
(ii)	Use correct method to solve the given equation for x	M1
	Obtain answer, e.g. $x = 26.8^{\circ}$	Al
	Obtain second answer, e.g. $x = 73.7^{\circ}$ and no other	Al
	TPRA	3
Quest	ion 48	·
(a)	Express LHS correctly as a single fraction	B1
	Use $\cos(A\pm B)$ formula to simplify the numerator	M1
	Use sin 2A formula to simplify the denominator	M1
	Obtain the given result.	Al
		4
(b)	Obtain an equation in $\tan 2x$ and use correct method to solve for x	M1
	Obtain answer, e.g. 0.232	Al
	Obtain second answer, e.g. 1.80	Al
		3
Quest	ion 49	
Use tan	$(A\pm B)$ formula and obtain an equation in $ an heta$	M1
Using t	$\tan 60^{\circ} = \sqrt{3}$, obtain a horizontal equation in $\tan \theta$ in any correct form	Al
Reduce	the equation to $3 \tan^2 \theta + 4 \tan \theta - 1 = 0$, or equivalent	Al
Solve a	3-term quadratic for $\tan \theta$	M1
Obtain	a correct answer, e.g. 12.1°	Al
Obtain	a second correct answer, e.g. 122.9°, and no others in the given interval	Al
		6

(a)	State $R = \sqrt{7}$	B1
	Use trig formulae to find $lpha$	M1
	Obtain $\alpha = 57.688^{\circ}$	A1
		3
(b)	Evaluate $\cos -1\left(\frac{1}{\sqrt{7}}\right)$ to at least 3 d.p. (67.792°)	B1 FT
	(FT is on their R)	
	Use correct method to find a value of θ in the interval	M1
	Obtain answer, e.g. 5.1°	A1
	Obtain second answer, e.g.117.3°, only	A1
		4

Use tan 2A formula to express RHS in terms of tan θ	M1
Use $\tan{(A \pm B)}$ formula to express LHS in terms of $\tan{\theta}$	M1
Using tan 45° = 1, obtain a correct horizontal equation in any form	A1
Reduce equation to $2 \tan^2 \theta + \tan \theta - 1 = 0$	A1
Solve a 3-term quadratic and find a value of θ	M1
Obtain answer $\theta = 26.6^{\circ}$ and no other	A1
	6

(a)	State $R = \sqrt{15}$	B1
	Use trig formulae to find a	M1
	Obtain $\alpha = 50.77$	A1
		3
(b)	Evaluate $\beta = \cos^{-1} \frac{2.5}{\sqrt{15}}$ (49.797° to 4 d.p.)	B1 FT
	Use correct method to find a value of $\frac{x}{3}$ in the interval	M1
	Obtain answer rounding to $x = 301.6^{\circ}$ to 301.8°	A1
	Obtain second answer rounding to $x = 2.9(0)^{\circ}$ to $2.9(2)^{\circ}$ and no others in the interval	A1
		4

(a)	Use correct $tan(A+B)$ formula and obtain an equation in $tan \theta$	M1
	Use $\tan 60^{\circ} = \sqrt{3}$ and obtain a correct horizontal equation in any form	A1
	Reduce to $\tan^2 \theta + 3\sqrt{3} \tan \theta - 2 = 0$ correctly	A1
		3
(b)	Solve the given quadratic to obtain a value for $ heta$	M1
	Obtain one correct answer e.g. $\theta = 19.8^{\circ}$	A1
	Obtain second correct answer $\theta = 100.2^{\circ}$ and no others in the given interval	A1
		3

(a)	State $R = \sqrt{15}$	B1
	Use trig formulae to find a	M1
	SatureP.co.	
	Obtain $\alpha = 50.77$	A1
		3

(b)	Evaluate $\beta = \cos^{-1} \frac{2.5}{\sqrt{15}}$ (49.797° to 4 d.p.)	B1 FT
	Use correct method to find a value of $\frac{x}{3}$ in the interval	M1
	Obtain answer rounding to $x = 301.6^{\circ}$ to 301.8°	A1
	Obtain second answer rounding to $x = 2.9(0)^{\circ}$ to $2.9(2)^{\circ}$ and no others in the interval	A1
	T PA	4

(a)	State $R = \sqrt{11}$	B1
	Use trig formulae to find α	M1
	Obtain $\alpha = 37.09^{\circ}$	A1
		3
(b)	Evaluate $\sin^{-1}\left(\frac{1}{\sqrt{11}}\right)$ to at least 2 dp (17.5484°)	B1 FT
	Use correct method to find a value of θ in the interval	M1
	Obtain answer, e.g. 62.7°	A1
	Use a correct method to obtain a second answer	M1
	Obtain second answer, e.g. 170.2°, and no other in the interval	A1
		5

Use correct trig formulae to obtain an equation in $\tan x$	*M1
Using $\tan 45^{\circ} = 1$, obtain a horizontal equation in $\tan x$ in any form	DM1
Reduce the equation to $\tan^2 x + \tan x - 1 = 0$, or 3-term equivalent	A1
Solve a 3-term quadratic in $\tan x$, for x	M1
Obtain answer, e.g. $x = 31.7^{\circ}$	A1
Obtain second answer, e.g. $x = 121.7^{\circ}$, and no other in the interval	A1
T PR	6

(a)	Use double angle formula to express $\tan 4\theta$ in terms of $\tan 2\theta$		
	Use double angle formula to express result in terms of $\tan \theta$	M1	
	Obtain a correct equation in $\tan \theta$ in any form	A1	
	Obtain the given answer	A1	
	12 - 15	4	
(b)	Solve for $\tan \theta$ and obtain a value of θ	M1	
	Obtain answer, e.g. 53.5°	A1	
	Obtain second answer, e.g. 126.5° and no other in the interval	A1	

(a) Express the LHS in terms of $\cos 2\theta$ and $\sin 2\theta$		B1
	Use correct double angle formulae to express the LHS in terms of $\cos\theta$ and $\sin\theta$	M1
	Obtain $\tan \theta$ from correct working	A1
(b)	State integral of the form $\mp \ln \cos \theta$ or $\pm \ln \sec \theta$	*M1
	Use correct limits correctly and insert exact values for the trigonometric ratios	DM1
	Obtain a correct expression, e.g. $-\ln \frac{1}{2} + \ln \frac{1}{\sqrt{2}}$	A1
	Obtain $\frac{1}{2} \ln 2$ from correct working	A1
		4
Quest	ion 59	
(a)	Use correct double angle formula or <i>t</i> -substitution twice	M1
	Obtain $\frac{1-\cos 2\theta}{1+\cos 2\theta} = \tan^2 \theta$ from correct working	A1
	·satpreP·	2
(b)	Express $\tan^2 \theta$ in terms of $\sec^2 \theta$	M1
	Integrate and obtain terms $\tan \theta - \theta$	A1
	Substitute limits correctly in an integral of the form $a \tan \theta + b\theta$, where $ab \neq 0$	M1
	Obtain answer $\frac{2}{3}\sqrt{3} - \frac{1}{6}\pi$	A1
		4

(a)	Use correct trig expansions and obtain an equation in $\sin x$ and $\cos x$	*M1
	Use correct exact trig ratios for 30° in their expansion	B1 FT
	Obtain an equation in tan x	DM1
	Obtain $\tan x = \frac{2 - \sqrt{3}}{1 - 2\sqrt{3}}$ from correct working	A1
		4
(b)	Obtain answer in the given interval, e.g.173.8°	B1
	Obtain a second answer and no other in the given interval, e.g. 353.8°	B1
		2

(a)	Use $\cos(A-B)$ formula and obtain an expression in terms of $\sin x$ and $\cos x$	M1	
	Collect terms and reach $2 \cos x + \sqrt{3} \sin x$	A1	747
	State $R = \sqrt{7}$	A1	1.5
	Use trig formula to find α	M1	-0'
	Obtain $\alpha = 40.89^{\circ}$	A1	
		5	
(b)	Use correct method to find x	M1	
	Obtain answer $x = 220.9^{\circ}$	A1	
		2	

Use double angle formula and obtain an equation in $\sin \theta$	M1	
Reduce to $6\sin^2\theta + \sin\theta - 5 = 0$, or 3-term equivalent	A1	
Solve a 3-term quadratic in $\sin \theta$ and calculate θ	M1	
Obtain answer, e.g. 56.4°	A1	
Obtain second and third answers, e.g. 123.6° and 270° and no others in the given interval	A1	Ignore answers outside the interval. Treat answers in radians as a misread.
	5	

Question 63

(a)	Expand the square and equate to 1	B1	
	Use correct double angle formula	M1	Need to see $\frac{4}{2}$ or $\sin 2\theta = 2\sin\theta\cos\theta$ stated.
	Obtain $\cos^4 \theta + \sin^4 \theta = 1 - \frac{1}{2}\sin^2 2\theta$	A1	Obtain the given result correctly.
		3	
(b)	Use the identity and carry out a method for finding a root	M1	$\left(1 - \frac{1}{2}\sin^2 2\theta = \frac{5}{9}\right)$
	Obtain answer 35.3°	A1	Must be correct if overspecified: 35.264
	Obtain a second answer, e.g. 54.7°	A1 FT	[e.g 90° – their 35.3°] Do not FT if mixing degrees and radians.
	Obtain the remaining answers, e.g. 144.7° and 125.3° and no others in the given interval	A1 FT	[e.g. 180° – and 180° –] Ignore answers outside the given interval. Treat answers in radians as a misread. (0.615, 0.955, 2.19, 2.53) Do not FT if mixing degrees and radians.
		4	

(a)	Use correct trig formulae and express equation in terms of $\tan \theta$	M1	
	Obtain a correct equation in $\tan \theta$ in any form	A1	e.g. $\frac{1 - \tan^2 \theta}{2 \tan \theta} + \frac{1}{\tan \theta} = 2$
	Reduce to $\tan^2\theta + 4\tan\theta - 3 = 0$, or 3-term equivalent	A1	
		3	
(b)	Solve a 3-term quadratic for $\tan \theta$ and calculate θ	M1	$\left(\tan\theta = -2 \pm \sqrt{7}\right)$
	Obtain answer, e.g. 0.573	A1	Must be 3 d.p.
	Obtain second answer, e.g. 1.783 and no other	A1	Ignore answers outside the given interval. Treat answers in degrees as a misread. (32.9°,102.1°)
		3	

(a)	State $R = \sqrt{34}$	B1	
	Use trig formulae to find α	M1	$\tan \alpha = \frac{3}{5} \text{ or } \sin \alpha = \frac{3}{\sqrt{34}} \text{ or } \cos \alpha = \frac{5}{\sqrt{34}}$.
	Obtain $\alpha = 0.54$	A1	30.96° scores M1A0 .
		3	
(b)	State greatest value 34	B1 FT	Their R^2 .
	State least value 0	B1	
		2	

C		
Use correct $tan(A+B)$ formula and obtain an equation in $tan \alpha$ and $tan \beta$	M1	$\frac{\tan + \tan}{1 \tan \tan} = 2$
Substitute throughout for $ an lpha$ or for $ an eta$	M1	$\frac{3\tan + \tan}{1 \cdot 3\tan^2} = 2$
Obtain $3\tan^2\beta + 2\tan\beta - 1 = 0$ or $\tan^2\alpha + 2\tan\alpha - 3 = 0$	A1	OE e.g. $6 \tan^2 \beta + 4 \tan \beta - 2 = 0$ or $\frac{2}{3} \tan^2 \alpha + \frac{4}{3} \tan \alpha - 2 = 0$
Solve a 3-term quadratic and find an angle	M1	
Obtain answer $\alpha = 45^{\circ}$, $\beta = 18.4^{\circ}$	A1	$\frac{\pi}{4}$ or 0.785, 0.322
Obtain answer α =108.4°, β =135°	A1	1.89, $\frac{3\pi}{4}$ or 2.36. Answer in radians, max. A1A0 or vice versa. Ignore answers outside $[0^{\circ}, 180^{\circ}]$
	6	SC: If A0A0 allow SC B1 for both α 's or both β 's

Use correct double-angle formula to obtain an equation in $\cos\theta$	M1	e.g. $3(2\cos^2\theta - 1) = 3\cos\theta + 2$
Obtain $6\cos^2\theta - 3\cos\theta - 5 = 0$, or 3-term equivalent	A1	M1 A0 is scored if they use any correct formula for $\cos 2\theta$ and make a subsequent error.
Solve a 3-term quadratic in $\cos \theta$ for θ	M1	As far as $\theta = \cos^{-1}\left(\frac{3-\sqrt{129}}{12}\right)$ if quadratic correct.
Obtain a correct answer, e.g. 134.1 °	A1	Accept greater accuracy e.g. 134.1456, 225.8544.
Obtain a second answer, e.g. 225.9° and no other in $[0^{\circ}, 360^{\circ}]$	A1 FT	Treat answers in radians (2.34 and 3.94) as a misread. Ignore answers outside [0°, 360°]. The FT is for 360° minus the first answer.
SPTP	R	Special Ruling : If they have an incorrect quadratic that leads legitimately to 4 solutions for θ , allow FT for 360° minus an answer in $(0^{\circ},180^{\circ})$. More than 4 solutions is maximum M1 A0 M1 A0 A0. If <i>their</i> equation should have 4 solutions and the candidate only gives 3 solutions then M1 A0 M1 A0 A0. Mis-read leading to a quadratic with 4 solutions could score maximum M1 A0 M1 A1 A1 or M1 A0 M1 A1 A0 if extra/missing solution.
	5	

Ouestion 68

Use correct $\cos \left(A-B\right)$ formula to obtain an equation in $\cos \theta$ and $\sin \theta$	B1	$\cos\theta\cos60 + \sin\theta\sin60 = 3\sin\theta$
Use trigonometric formula and substitute values for $\cos 60$ and $\sin 60$ to obtain an equation in $\tan \theta$ (or $\cos \theta$ or $\sin \theta$)	M1	Allow $\frac{1}{2}$ and $\frac{\sqrt{3}}{2}$ interchanged. $\frac{1}{2} + \frac{\sqrt{3}}{2} \tan \theta = 3 \tan \theta$ $\frac{1}{4} \cos^2 \theta = \left(3 - \frac{\sqrt{3}}{2}\right) \left(3 - \frac{\sqrt{3}}{2}\right) (1 - \cos^2 \theta)$ $\frac{1}{4} (1 - \sin^2 \theta) = \left(3 - \frac{\sqrt{3}}{2}\right) \left(3 - \frac{\sqrt{3}}{2}\right) \sin^2 \theta$
Obtain $\tan \theta = \frac{1}{6 - \sqrt{3}}$ or $\tan \theta = \frac{6 + \sqrt{3}}{33}$ or 0.2343, $\cos \theta = \frac{3\frac{\sqrt{3}}{2}}{\sqrt{10 - 3\sqrt{3}}}$ or 0.9736 or $\sin \theta = \frac{\frac{1}{2}}{\sqrt{10 - 3\sqrt{3}}}$ or 0.2281	A1	OE
Obtain answer, e.g. $\theta = 13.2^{\circ}$	A1	May be more accurate, allow value rounding to 13.2°. $\theta = 13.1867^{\circ}$.
Obtain second answer, e.g. $\theta = 193.2^{\circ}$ and no others in the given interval	A1 FT	May be more accurate. Allow value rounding to 193.2°. FT is on previous value of θ , must have scored M1. Note if θ is negative (e.g. -13.2): $-13.2 + 180 = 166.8 \text{ A0}$ but $-13.2 + 360 = 346.8 \text{ A1}$ FT. Ignore answers outside the given interval. Treat answers in radians as a misread. 0.23015, 3.3717.

Use correct trigonometric formulae to form an equation in tanx	*M1	$e.g. \frac{1 - \tan^2 x}{\tan x} + \frac{3}{\tan x} = 5$
Obtain a correct linear equation in any form	A1	$1 - \tan^2 x + 3 = 5 \tan x$
Reduce equation to a 3-term quadratic	A1	$\tan^2 x + 5 \tan x - 4 = 0$, or 3-term equivalent
Solve a 3-term quadratic in $\tan x$ and obtain a value of x	DM1	
Obtain answer, e.g. $x = 35.1^{\circ}$	A1	
Obtain second answer, e.g. $x = 99.9^{\circ}$, and no other in $(0^{\circ}, 180^{\circ})$	A1	Ignore answers outside $(0^{\circ}, 180^{\circ})$. Treat answers in radians $(0.612, 1.74)$ as a misread.

(a)	Rearrange and obtain $4\cos x - \sin x = \sqrt{5}$	B1	
	State $R = \sqrt{17}$	B1	
	Use trig formulae to find α	M1	
	Obtain $\alpha = 14.04^{\circ}$	A1	
		4	
(b)	(\(\sqrt{5} \)	B1 FT	FT their R.

Evaluate $\cos^{-1}\left(\frac{\sqrt{5}}{\sqrt{17}}\right)$	B1 FT	FT their R.
Carry out a correct method to find a value of x in the given interval	M1	
Obtain answer, e.g. 21.6°	A1	
Obtain a second answer, e.g. 144.4° and no other in the interval	A1	Treat answers in radians as a misread. Ignore answers outside the given interval.
7.	4	5/

(a)	State $R = \sqrt{17}$	B1	Allow if working from an incorrect expansion but not from decimals.
	Use correct trig formulae to find α (Correct expansion and correct expression for trig ratio for α)	M1	NB: $\cos \alpha = 4$ and $\sin \alpha = 1$ scores M0A0. M0 for incorrect expansion of $\cos(x - \alpha)$ M1 for correct expression for trig ratio for α and no errors seen.
	Obtain $\alpha = 14.04^{\circ}$	A1	2 d.p. required Allow M1A1 for correct answer with no working shown. Correct answer from incorrect working (e.g. $\tan^{-1}\left(-\frac{1}{4}\right)$) is awarded M0A0. $180^{\circ} - \tan^{-1}\left(-\frac{1}{4}\right)$ is awarded M1
		3	
(b)	Evaluate $\cos^{-1}\left(\frac{3}{\sqrt{17}}\right)$ to at least 1 d.p. (43.3138°)	B1 FT	FT their R. Accept awrt 43.3° or awrt 316.7° Can be implied by subsequent working.
	Use correct method to find a value of x in the interval	M1	Must be working with $2x$ and their α .
	Obtain answer, e.g. 14.6°	A1	Accept overspecified answers but they need to be correct. (14.6388 and 151.3249).
	Use a correct method to find a second answer in the interval	M1	Must be working with $2x$, their α and 360° – their 43.3 .
	Obtain second answer in the interval, e.g. 151.3 $^{\circ}$, and no other in the interval	A1	Ignore answers outside the given interval. Treat answers in radians (0.255 and 2.64) as a misread.
T		5	

Use correct $tan(A+B)$ formula and obtain an equation in $tan x$ or an equation in $cos x$ and $sin x$	M1	e.g. $\frac{\tan x + \tan 45^{\circ}}{1 - \tan x \tan 45^{\circ}} = \frac{2}{\tan x}$ Allow if 2 in denominator $\operatorname{or} \frac{\sin x \cos 45^{\circ} + \cos x \sin 45^{\circ}}{\cos x \cos 45^{\circ} - \sin x \sin 45^{\circ}} = \frac{2 \cos x}{\sin x}.$
Obtain correct 3 term equation $\tan^2 x + 3\tan x - 2 = 0$, or equivalent	A1	or $3\sin x \cos x = 2\cos^2 x - \sin^2 x$
Solve a 3-term quadratic in tan x and obtain a value for x	M1	1.5
Obtain answer, e.g. 29.3 °	A1	29.316
Obtain second answer, e.g. 105.7° and no other	CA1	105.583 Ignore answers outside the given interval. Treat answers in radians as a misread.
	5	

(a)	Express $\cos 4\theta$ in terms of $\cos 2\theta$ and/or $\sin 2\theta$	B1	
	Express $\cos 2\theta$ in terms of $\cos \theta$ and/or $\sin \theta$	B1	Anywhere
	Expand to obtain a correct expression in terms of $\cos\theta$	B1	e.g. $2(2\cos^2\theta - 1)^2 - 1 + 4(2\cos^2\theta - 1) + 3$
	Reduce correctly to $\cos 4\theta + 4\cos 2\theta + 3 = 8\cos^4 \theta$	B1	AG
		4	
(b)	Use the identity and carry out method to calculate a root	M1	$8\cos^4\theta - 3 = 4$
	Obtain answer, e.g. 14.7 °	A1	
	Obtain second answer, e.g.165.3 $^{\circ}$, and no other in the given interval	A1 FT	Ignore answers outside the given interval. Treat answers in radians as a misread.
		3	

Question 74

(a)	State <i>R</i> = 13	B1	Allow if $\sqrt{(12^2 + (-5)^2)}$ seen.
	Use correct trig formulae to find $\alpha = \tan^{-1}(\pm 5/12) = \cos^{-1}(\pm 12/13) = \sin^{-1}(\pm 5/13)$	M1	$\cos(\alpha) = 12$ and $\sin(\alpha) = 5$ M0 However, $\sin(\alpha)/\cos(\alpha) = 5/12$ or $-5/12$ with no error seen, or $\tan(\alpha) = 5/12$ or $-5/12$ quoted then allow.
	Obtain $\alpha = 0.395$	A1	CWO If negative sign seen when finding R then A0 here. If degrees 22.6 A0 MR. Only penalise degrees once in (a) and (b). Note $\alpha = 0.39479$
		3	
(b)	$\cos^{-1}\left(\frac{6}{R}\right)$	B1FT	SOI 1.0910 FT <i>their</i> incorrect <i>R</i> .
	Use correct method to find a value of $2x$ in the interval	M1	$2x = \cos^{-1}\left(\frac{6}{R}\right) + \alpha \text{ or } 2\pi - \cos^{-1}\left(\frac{6}{R}\right) + \alpha.$ Allow if $\cos(2x + 0.395)$ seen
	Obtain answer, e.g. $x = 0.743$ or 0.742	A1	42.5 or 42.6 degrees.
	Obtain second answer, e.g. $x = 2.79$ and no others in the interval	A1	159.8, 159.9 or 160.0 degrees all possible depending whether using 3 dp or 4 dp.
	atp	4	

(a)	Expand $\cos(x-60^\circ)$ correctly and evaluate $3\cos x + 2\cos(x-60^\circ)$ to obtain $4\cos x + \sqrt{3}\sin x$ or unsimplified coefficients	В1	Need to see $A \cos x + B \sin x$ with A and B correct A may be 4 or 3 + 2 cos 60 and B may be $\sqrt{3}$ or 2 sin 60.
	State $R = \sqrt{19} [R \cos \alpha = 4 R \sin \alpha = \sqrt{3}]$	B1 FT	Follow through <i>their</i> 4 and $\sqrt{3}$. If coefficients are 3 and 2 then B0. $R = \sqrt{19}$ from $R = 4.36$ B0 but 4.36 seen after $\sqrt{19}$ ISW.
	Use correct trig formulae for their expansion to find α e.g. $\alpha = \tan^{-1} \frac{\sqrt{3}}{4}$ or $\cos^{-1} \frac{4}{\sqrt{19}}$ or $\sin^{-1} \frac{\sqrt{3}}{\sqrt{19}}$	M1	If $\sin \alpha = \sqrt{3} \cos \alpha = 4$ seen then M0 A0. If $\tan \alpha = 23.41^{\circ}$ M0 A0 but can recover if $\alpha = 23.41^{\circ}$ seen later. $\alpha = \tan^{-1} \frac{2}{3}$ M1 $(\alpha = 33.69^{\circ})$ but $\alpha = \tan^{-1} \frac{3}{2}$ M0
	Obtain $\alpha = 23.41^{\circ}$	A1	Allow if x instead of α .
		4	

(b)	$\cos^{-1}\left(\frac{2.5}{R}\right)$	B1 FT	SOI [55.0°]. Follow through their $\sqrt{19}$.
	Use a correct method to find a value of 2θ (not x) in the interval. Allow sign error in moving α to right side	M1	$2\theta = \cos \left(\frac{R}{R}\right) + 23.41^{\circ}$
			or $2\theta = 360^{\circ} - \cos^{-1}\left(\frac{2.5}{R}\right) + 23.41^{\circ}$ with R substituted.
	Obtain one correct answer e.g. 39.2°	A1	If working for M1 not seen then M1 implied by 39.2° or 164.2° Must be at least 1d.p.
	Obtain second correct answer e.g. 164.2° and no others in the interval	A1	Must be at least 1d.p. Ignore answers outside the given interval.
		4	

Question 70		
Use correct double angle formula to obtain an equation in $\cos\left(\frac{x}{2}\right)$ only	*M1	e.g. $2\left(2\cos^2\left(\frac{x}{2}\right)-1\right)-\cos\left(\frac{x}{2}\right)=1$.
Obtain a 3 term quadratic in $\cos\left(\frac{x}{2}\right)$,	A1	e.g. $4\cos^2\left(\frac{x}{2}\right) - \cos\left(\frac{x}{2}\right) - 3 = 0$. Allow $4\cos^2 u - \cos u - 3 = 0$. Condone $\frac{x}{2} = x$.
Obtain $\cos\left(\frac{x}{2}\right) = -\frac{3}{4} \text{ and } \cos\left(\frac{x}{2}\right) = 1$	A1	Allow answer in u e.g. $(4\cos u + 3)(\cos u - 1)$ and condone $\frac{x}{2} = x$.
Solve for the original x	DM1	Must see evidence of doubling, not halving.
Obtain $x = 0$ and 4.84 and no others in the interval	A1	Ignore any answers outside interval. Accept AWRT 4.84. Accept 1.54π. Must be in radians. 277.2 indicates M1 but is A0.
Alternative Method for Question 4		///
Use correct double angle formula to obtain an equation in $\cos x$ only	*M1	e.g. $2\cos x - 1 = \sqrt{\frac{\cos x + 1}{2}}$.
Obtain a 3 term quadratic in cos x,	A1	e.g. $8\cos^2 x - 9\cos x + 1 = 0$.
Obtain $\cos x = \frac{1}{8}$ and $\cos x = 1$	A1	
Solve for x	DM1	
Obtain answers $x = 0$ and 4.84 and no others in the interval	A1	Ignore any answers outside interval. Accept AWRT 4.84. Must be in radians. 277.2 is A0.
	5	

Use correct double angle formulae	M1	e.g. $2\sin\theta\cos\theta + \cos^2\theta - \sin^2\theta = 2\sin^2\theta$		
Obtain $\cos^2 \theta + 2\sin \theta \cos \theta - 3\sin^2 \theta = 0$ from full and correct working	A1	AG Check conclusion is complete and matches the working.		
	2			
Factorise to obtain $(\cos \theta - \sin \theta)(\cos \theta + 3\sin \theta) = 0$	B 1	OE		
Solve a quadratic in $\sin \theta$ and $\cos \theta$ to obtain a value for θ .	M1	$\tan\theta = 1 or \tan\theta = -\frac{1}{3} .$		
Obtain one correct value e.g. 45°	A1			
Obtain a second correct value e.g. 161.6° and no others in the interval	A1	Mark answers in radians (0.785 and 2.82) as a misread Accept awrt 161.6.		
Alternative Method 1				
Obtain $3\tan^2\theta - 2\tan\theta - 1 = 0$	B1			
Solve a 3 term quadratic in $\tan \theta$ to obtain a value for θ .	M1	$\tan\theta = 1 or \tan\theta = -\frac{1}{3} .$		
Obtain one correct value e.g. 45°	A1			
Obtain a second correct value e.g. 161.6° and no others in the interval	A1	Mark answers in radians (0.785 and 2.82) as a misread		
Alternative Method 2				
Obtain $(\cos\theta + \sin\theta)^2 = (2\sin\theta)^2$	B1			
Solve to obtain a value for θ .	M1	$\tan\theta = 1 \text{ or } \tan\theta = -\frac{1}{3}.$		
Obtain one correct value e.g. 45°	A1			
Obtain a second correct value e.g. 161.6° and no others in the interval	A1	Mark answers in radians (0.785 and 2.82) as a misread		
	4			