A-level

Topic :Numerical Equation and Solution
 May 2013-May 2023
 Questions

Question 1

$$
V=\frac{1}{k}\left(80-80 \mathrm{e}^{-k t}\right) .
$$

It is observed that $V=500$ when $t=15$, so that k satisfies the equation

$$
k=\frac{4-4 \mathrm{e}^{-15 k}}{25}
$$

Use an iterative formula, based on this equation, to find the value of k correct to 2 significant figures. Use an initial value of $k=0.1$ and show the result of each iteration to 4 significant figures.

Question 2

The sequence of values given by the iterative formula

$$
x_{n+1}=\frac{x_{n}\left(x_{n}^{3}+100\right)}{2\left(x_{n}^{3}+25\right)}
$$

with initial value $x_{1}=3.5$, converges to α.
(i) Use this formula to calculate α correct to 4 decimal places, showing the result of each iteration to 6 decimal places.
(ii) State an equation satisfied by α and hence find the exact value of α.

Question 3

The diagram shows the curves $y=\mathrm{e}^{2 x-3}$ and $y=2 \ln x$. When $x=a$ the tangents to the curves are parallel.
(i) Show that a satisfies the equation $a=\frac{1}{2}(3-\ln a)$.
(ii) Verify by calculation that this equation has a root between 1 and 2 .
(iii) Use the iterative formula $a_{n+1}=\frac{1}{2}\left(3-\ln a_{n}\right)$ to calculate a correct to 2 decimal places, showing the result of each iteration to 4 decimal places.

Question 4

In the diagram, A is a point on the circumference of a circle with centre O and radius r. A circular arc with centre A meets the circumference at B and C. The angle $O A B$ is θ radians. The shaded region is bounded by the circumference of the circle and the arc with centre A joining B and C. The area of the shaded region is equal to half the area of the circle.
(i) Show that $\cos 2 \theta=\frac{2 \sin 2 \theta-\pi}{4 \theta}$.
(ii) Use the iterative formula

$$
\theta_{n+1}=\frac{1}{2} \cos ^{-1}\left(\frac{2 \sin 2 \theta_{n}-\pi}{4 \theta_{n}}\right),
$$

with initial value $\theta_{1}=1$, to determine θ correct to 2 decimal places, showing the result of each iteration to 4 decimal places.

Question 5

It is given that $\int_{0}^{p} 4 x \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x=9$, where p is a positive constant.
(i) Show that $p=2 \ln \left(\frac{8 p+16}{7}\right)$.
(ii) Use an iterative process based on the equation in part (i) to find the value of p correct to 3 significant figures. Use a starting value of 3.5 and give the result of each iteration to 5 significant figures.

Question 6

(i) By sketching each of the graphs $y=\operatorname{cosec} x$ and $y=x(\pi-x)$ for $0<x<\pi$, show that the equation

$$
\begin{equation*}
\operatorname{cosec} x=x(\pi-x) \tag{3}
\end{equation*}
$$

has exactly two real roots in the interval $0<x<\pi$.
(ii) Show that the equation $\operatorname{cosec} x=x(\pi-x)$ can be written in the form $x=\frac{1+x^{2} \sin x}{\pi \sin x}$.
(iii) The two real roots of the equation $\operatorname{cosec} x=x(\pi-x)$ in the interval $0<x<\pi$ are denoted by α and β, where $\alpha<\beta$.
(a) Use the iterative formula

$$
x_{n+1}=\frac{1+x_{n}^{2} \sin x_{n}}{\pi \sin x_{n}}
$$

to find α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(b) Deduce the value of β correct to 2 decimal places.

Question 7

In the diagram, A is a point on the circumference of a circle with centre O and radius r. A circular arc with centre A meets the circumference at B and C. The angle $O A B$ is equal to x radians. The shaded region is bounded by $A B, A C$ and the circular arc with centre A joining B and C. The perimeter of the shaded region is equal to half the circumference of the circle.
(i) Show that $x=\cos ^{-1}\left(\frac{\pi}{4+4 x}\right)$.
(ii) Verify by calculation that x lies between 1 and 1.5 .
(iii) Use the iterative formula

$$
x_{n+1}=\cos ^{-1}\left(\frac{\pi}{4+4 x_{n}}\right)
$$

to determine the value of x correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 8

The equation $x=\frac{10}{\mathrm{e}^{2 x}-1}$ has one positive real root, denoted by α.
(i) Show that α lies between $x=1$ and $x=2$.
(ii) Show that if a sequence of positive values given by the iterative formula

$$
\begin{equation*}
x_{n+1}=\frac{1}{2} \ln \left(1+\frac{10}{x_{n}}\right) \tag{2}
\end{equation*}
$$

converges, then it converges to α.
(iii) Use this iterative formula to determine α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 9

It is given that $\int_{1}^{a} \ln (2 x) \mathrm{d} x=1$, where $a>1$.
(i) Show that $a=\frac{1}{2} \exp \left(1+\frac{\ln 2}{a}\right)$, where $\exp (x)$ denotes e^{x}.
(ii) Use the iterative formula

$$
a_{n+1}=\frac{1}{2} \exp \left(1+\frac{\ln 2}{a_{n}}\right)
$$

to determine the value of a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 10
(i) Sketch the curve $y=\ln (x+1)$ and hence, by sketching a second curve, show that the equation

$$
x^{3}+\ln (x+1)=40
$$

has exactly one real root. State the equation of the second curve.
(ii) Verify by calculation that the root lies between 3 and 4 .
(iii) Use the iterative formula

$$
x_{n+1}=\sqrt[3]{ }\left(40-\ln \left(x_{n}+1\right)\right)
$$

with a suitable starting value, to find the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
(iv) Deduce the root of the equation

$$
\left(\mathrm{e}^{y}-1\right)^{3}+y=40
$$

giving the answer correct to 2 decimal places.

Question 11

The diagram shows part of the curve with parametric equations

$$
x=2 \ln (t+2), \quad y=t^{3}+2 t+3 .
$$

(i) Find the gradient of the curve at the origin.
(ii) At the point P on the curve, the value of the parameter is p. It is given that the gradient of the curve at P is $\frac{1}{2}$.
(a) Show that $p=\frac{1}{3 p^{2}+2}-2$.
(b) By first using an iterative formula based on the equation in part (a), determine the coordinates of the point P. Give the result of each iteration to 5 decimal places and each coordinate of P correct to 2 decimal places.

Question 12

The diagram shows a circle with centre O and radius r. The tangents to the circle at the points A and B meet at T, and the angle $A O B$ is $2 x$ radians. The shaded region is bounded by the tangents $A T$ and $B T$, and by the minor arc $A B$. The perimeter of the shaded region is equal to the circumference of the circle.
(i) Show that x satisfies the equation

$$
\begin{equation*}
\tan x=\pi-x \tag{3}
\end{equation*}
$$

(ii) This equation has one root in the interval $0<x<\frac{1}{2} \pi$. Verify by calculation that this root lies between 1 and 1.3.
(iii) Use the iterative formula

$$
x_{n+1}=\tan ^{-1}\left(\pi-x_{n}\right)
$$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 13

It is given that $\int_{0}^{a} x \cos x \mathrm{~d} x=0.5$, where $0<a<\frac{1}{2} \pi$.
(i) Show that a satisfies the equation $\sin a=\frac{1.5-\cos a}{a}$.
(ii) Verify by calculation that a is greater than 1 .
(iii) Use the iterative formula

$$
a_{n+1}=\sin ^{-1}\left(\frac{1.5-\cos a_{n}}{a_{n}}\right)
$$

to determine the value of a correct to 4 decimal places, giving the result of each iteration to 6 decimal places.

Question 14

The equation $x^{3}-x^{2}-6=0$ has one real root, denoted by α.
(i) Find by calculation the pair of consecutive integers between which α lies.
(ii) Show that, if a sequence of values given by the iterative formula

$$
\begin{equation*}
x_{n+1}=\sqrt{ }\left(x_{n}+\frac{6}{x_{n}}\right) \tag{2}
\end{equation*}
$$

converges, then it converges to α.
(iii) Use this iterative formula to determine α correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 15

A curve has parametric equations

$$
x=t^{2}+3 t+1, \quad y=t^{4}+1
$$

The point P on the curve has parameter p. It is given that the gradient of the curve at P is 4 .
(i) Show that $p=\sqrt[3]{(} 2 p+3)$.
(ii) Verify by calculation that the value of p lies between 1.8 and 2.0.
(iii) Use an iterative formula based on the equation in part (i) to find the value of p correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 16

The equation $x^{5}-3 x^{3}+x^{2}-4=0$ has one positive root.
(i) Verify by calculation that this root lies between 1 and 2 .
(ii) Show that the equation can be rearranged in the form

$$
\begin{equation*}
x=\sqrt[3]{\left(3 x+\frac{4}{x^{2}}-1\right)} \tag{1}
\end{equation*}
$$

(iii) Use an iterative formula based on this rearrangement to determine the positive root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 17

(i) By sketching a suitable pair of graphs, show that the equation

$$
\begin{equation*}
5 \mathrm{e}^{-x}=\sqrt{ } x \tag{2}
\end{equation*}
$$

has one root.
(ii) Show that, if a sequence of values given by the iterative formula

$$
\begin{equation*}
x_{n+1}=\frac{1}{2} \ln \left(\frac{25}{x_{n}}\right) \tag{2}
\end{equation*}
$$

converges, then it converges to the root of the equation in part (i).
(iii) Use this iterative formula, with initial value $x_{1}=1$, to calculate the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 18

The diagram shows the curve $y=\operatorname{cosec} x$ for $0<x<\pi$ and part of the curve $y=\mathrm{e}^{-x}$. When $x=a$, the tangents to the curves are parallel.
(i) By differentiating $\frac{1}{\sin x}$, show that if $y=\operatorname{cosec} x$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\operatorname{cosec} x \cot x$.
(ii) By equating the gradients of the curves at $x=a$, show that

$$
\begin{equation*}
a=\tan ^{-1}\left(\frac{\mathrm{e}^{a}}{\sin a}\right) \tag{2}
\end{equation*}
$$

(iii) Verify by calculation that a lies between 1 and 1.5 .
(iv) Use an iterative formula based on the equation in part (ii) to determine a correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 19

The curve with equation $y=x^{2} \cos \frac{1}{2} x$ has a stationary point at $x=p$ in the interval $0<x<\pi$.
(i) Show that p satisfies the equation $\tan \frac{1}{2} p=\frac{4}{p}$.
(ii) Verify by calculation that p lies between 2 and 2.5 .
(iii) Use the iterative formula $p_{n+1}=2 \tan ^{-1}\left(\frac{4}{p_{n}}\right)$ to determine the value of p correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 20
(i) By sketching a suitable pair of graphs, show that the equation

$$
\begin{equation*}
\operatorname{cosec} \frac{1}{2} x=\frac{1}{3} x+1 \tag{2}
\end{equation*}
$$

has one root in the interval $0<x \leqslant \pi$.
(ii) Show by calculation that this root lies between 1.4 and 1.6.
(iii) Show that, if a sequence of values in the interval $0<x \leqslant \pi$ given by the iterative formula

$$
x_{n+1}=2 \sin ^{-1}\left(\frac{3}{x_{n}+3}\right)
$$

converges, then it converges to the root of the equation in part (i).
(iv) Use this iterative formula to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 21

The diagram shows the curves $y=x \cos x$ and $y=\frac{k}{x}$, where k is a constant, for $0<x \leqslant \frac{1}{2} \pi$. The curves touch at the point where $x=a$.
(i) Show that a satisfies the equation $\tan a=\frac{2}{a}$.
(ii) Use the iterative formula $a_{n+1}=\tan ^{-1}\left(\frac{2}{a_{n}}\right)$ to determine a correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
(iii) Hence find the value of k correct to 2 decimal places.

Question 22

(i) By sketching suitable graphs, show that the equation $\mathrm{e}^{-\frac{1}{2} x}=4-x^{2}$ has one positive root and one negative root.
(ii) Verify by calculation that the negative root lies between -1 and -1.5 .
(iii) Use the iterative formula $x_{n+1}=-\sqrt{ }\left(4-\mathrm{e}^{-\frac{1}{2} x_{n}}\right)$ to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 23

The diagram shows a semicircle with centre O, radius r and diameter $A B$. The point P on its circumference is such that the area of the minor segment on $A P$ is equal to half the area of the minor segment on $B P$. The angle $A O P$ is x radians.
(i) Show that x satisfies the equation $x=\frac{1}{3}(\pi+\sin x)$.
(ii) Verify by calculation that x lies between 1 and 1.5 .
(iii) Use an iterative formula based on the equation in part (i) to determine x correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 24

The diagram shows the curve $y=x^{2} \cos 2 x$ for $0 \leqslant x \leqslant \frac{1}{4} \pi$. The curve has a maximum point at M where $x=p$.
(i) Show that p satisfies the equation $p=\frac{1}{2} \tan ^{-1}\left(\frac{1}{p}\right)$.
(ii) Use the iterative formula $p_{n+1}=\frac{1}{2} \tan ^{-1}\left(\frac{1}{p_{n}}\right)$ to determine the value of p correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(iii) Find, showing all necessary working, the exact area of the region bounded by the curve and the x-axis.

Question 25

The equation $\cot x=1-x$ has one root in the interval $0<x<\pi$, denoted by α.
(i) Show by calculation that α is greater than 2.5 .
(ii) Show that, if a sequence of values in the interval $0<x<\pi$ given by the iterative formula $x_{n+1}=\pi+\tan ^{-1}\left(\frac{1}{1-x_{n}}\right)$ converges, then it converges to α.
(iii) Use this iterative formula to determine α correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 26

The equation $x^{3}=3 x+7$ has one real root, denoted by α.
(i) Show by calculation that α lies between 2 and 3 .

Two iterative formulae, A and B, derived from this equation are as follows:

$$
\begin{align*}
& x_{n+1}=\left(3 x_{n}+7\right)^{\frac{1}{3}}, \tag{A}\\
& x_{n+1}=\frac{x_{n}^{3}-7}{3} . \tag{B}
\end{align*}
$$

Each formula is used with initial value $x_{1}=2.5$.
(ii) Show that one of these formulae produces a sequence which fails to converge, and use the other formula to calculate α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 27

It is given that $\int_{1}^{a} x^{\frac{1}{2}} \ln x \mathrm{~d} x=2$, where $a>1$.
(i) Show that $a^{\frac{3}{2}}=\frac{7+2 a^{\frac{3}{2}}}{3 \ln a}$.
(ii) Show by calculation that a lies between 2 and 4 .
(iii) Use the iterative formula

$$
a_{n+1}=\left(\frac{7+2 a_{n}^{\frac{3}{2}}}{3 \ln a_{n}}\right)^{\frac{2}{3}}
$$

to determine a correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 28

(i) By sketching suitable graphs, show that the equation $\mathrm{e}^{2 x}=6+\mathrm{e}^{-x}$ has exactly one real root.
(ii) Verify by calculation that this root lies between 0.5 and 1 .
(iii) Show that if a sequence of values given by the iterative formula

$$
x_{n+1}=\frac{1}{3} \ln \left(1+6 \mathrm{e}^{x_{n}}\right)
$$

converges, then it converges to the root of the equation in part (i).

Question 29

The positive constant a is such that $\int_{0}^{a} x \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x=2$.
(i) Show that a satisfies the equation $a=2 \ln (a+2)$.
(ii) Verify by calculation that a lies between 3 and 3.5.
(iii) Use an iteration based on the equation in part (i) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 30

The diagram shows a triangle $A B C$ in which $A B=A C=a$ and angle $B A C=\theta$ radians. Semicircles are drawn outside the triangle with $A B$ and $A C$ as diameters. A circular arc with centre A joins B and C. The area of the shaded segment is equal to the sum of the areas of the semicircles.
(i) Show that $\theta=\frac{1}{2} \pi+\sin \theta$.
(ii) Verify by calculation that θ lies between 2.2 and 2.4.
(iii) Use an iterative formula based on the equation in part (i) to determine θ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 31

The curve with equation $y=\frac{\ln x}{3+x}$ has a stationary point at $x=p$.
(i) Show that p satisfies the equation $\ln x=1+\frac{3}{x}$.
(ii) By sketching suitable graphs, show that the equation in part (i) has only one root.
(iii) It is given that the equation in part (i) can be written in the form $x=\frac{3+x}{\ln x}$. Use an iterative formula based on this rearrangement to determine the value of p correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 32
(i) By sketching a suitable pair of graphs, show that the equation $x^{3}=3-x$ has exactly one real root.
(ii) Show that if a sequence of real values given by the iterative formula

$$
x_{n+1}=\frac{2 x_{n}^{3}+3}{3 x_{n}^{2}+1}
$$

converges, then it converges to the root of the equation in part (i).
(iii) Use this iterative formula to determine the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 33

The equation of a curve is $y=x \ln (8-x)$. The gradient of the curve is equal to 1 at only one point, when $x=a$.
(i) Show that a satisfies the equation $x=8-\frac{8}{\ln (8-x)}$.
(ii) Verify by calculation that a lies between 2.9 and 3.1.
(iii) Use an iterative formula based on the equation in part (i) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 34

(i) By sketching a suitable pair of graphs, show that the equation $x^{3}=3-x$ has exactly one real root.
(ii) Show that if a sequence of real values given by the iterative formula

$$
x_{n+1}=\frac{2 x_{n}^{3}+3}{3 x_{n}^{2}+1}
$$

converges, then it converges to the root of the equation in part (i).
(iii) Use this iterative formula to determine the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 35

The sequence of values given by the iterative formula

$$
x_{n+1}=\frac{2 x_{n}^{6}+12 x_{n}}{3 x_{n}^{5}+8}
$$

with initial value $x_{1}=2$, converges to α.
(i) Use the formula to calculate α correct to 4 decimal places. Give the result of each iteration to 6 decimal places.
(ii) State an equation satisfied by α and hence find the exact value of α.

Question 36

The diagram shows the curves $y=4 \cos \frac{1}{2} x$ and $y=\frac{1}{4-x}$, for $0 \leqslant x<4$. When $x=a$, the tangents to the curves are perpendicular.
(i) Show that $a=4-\sqrt{ }\left(2 \sin \frac{1}{2} a\right)$.
(ii) Verify by calculation that a lies between 2 and 3 .
(iii) Use an iterative formula based on the equation in part (i) to determine a correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 37

In the diagram, A is the mid-point of the semicircle with centre O and radius r. A circular arc with centre A meets the semicircle at B and C. The angle $O A B$ is equal to x radians. The area of the shaded region bounded by $A B, A C$ and the arc with centre A is equal to half the area of the semicircle.
(i) Use triangle $O A B$ to show that $A B=2 r \cos x$.
(ii) Hence show that $x=\cos ^{-1} \sqrt{\left(\frac{\pi}{16 x}\right)}$.
(iii) Verify by calculation that x lies between 1 and 1.5 .
(iv) Use an iterative formula based on the equation in part (ii) to determine x correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 38

The diagram shows the curve $y=x^{4}-2 x^{3}-7 x-6$. The curve intersects the x-axis at the points $(a, 0)$ and $(b, 0)$, where $a<b$. It is given that b is an integer.
(i) Find the value of b.
(ii) Hence show that a satisfies the equation $a=-\frac{1}{3}\left(2+a^{2}+a^{3}\right)$.
(iii) Use an iterative formula based on the equation in part (ii) to determine a correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 39

The curve with equation $y=\mathrm{e}^{-2 x} \ln (x-1)$ has a stationary point when $x=p$.
(i) Show that p satisfies the equation $x=1+\exp \left(\frac{1}{2(x-1)}\right)$, where $\exp (x)$ denotes e^{x}.
(ii) Verify by calculation that p lies between 2.2 and 2.6.
(iii) Use an iterative formula based on the equation in part (i) to determine p correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 40
It is given that $\int_{0}^{a} x \cos \frac{1}{3} x \mathrm{~d} x=3$, where the constant a is such that $0<a<\frac{3}{2} \pi$.
(i) Show that a satisfies the equation

$$
\begin{equation*}
a=\frac{4-3 \cos \frac{1}{3} a}{\sin \frac{1}{3} a} . \tag{5}
\end{equation*}
$$

(ii) Verify by calculation that a lies between 2.5 and 3 .
(iii) Use an iterative formula based on the equation in part (i) to calculate a correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 41

(i) By sketching a suitable pair of graphs, show that the equation $\ln (x+2)=4 \mathrm{e}^{-x}$ has exactly one real root.
(ii) Show by calculation that this root lies between $x=1$ and $x=1.5$.
(iii) Use the iterative formula $x_{n+1}=\ln \left(\frac{4}{\ln \left(x_{n}+2\right)}\right)$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 42
(a) By sketching a suitable pair of graphs, show that the equation $\sec x=2-\frac{1}{2} x$ has exactly one root in the interval $0 \leqslant x<\frac{1}{2} \pi$.
(b) Verify by calculation that this root lies between 0.8 and 1 .
(c) Use the iterative formula $x_{n+1}=\cos ^{-1}\left(\frac{2}{4-x_{n}}\right)$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 43

The diagram shows a circle with centre O and radius r. The tangents to the circle at the points A and B meet at T, and angle $A O B$ is $2 x$ radians. The shaded region is bounded by the tangents $A T$ and $B T$, and by the minor arc $A B$. The area of the shaded region is equal to the area of the circle.
(a) Show that x satisfies the equation $\tan x=\pi+x$.
(b) This equation has one root in the interval $0<x<\frac{1}{2} \pi$. Verify by calculation that this root lies between 1 and 1.4.
(c) Use the iterative formula

$$
x_{n+1}=\tan ^{-1}\left(\pi+x_{n}\right)
$$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 44

The diagram shows the curves $y=\cos x$ and $y=\frac{k}{1+x}$, where k is a constant, for $0 \leqslant x \leqslant \frac{1}{2} \pi$. The curves touch at the point where $x=p$.
(a) Show that p satisfies the equation $\tan p=\frac{1}{1+p}$.
(b) Use the iterative formula $p_{n+1}=\tan ^{-1}\left(\frac{1}{1+p_{n}}\right)$ to determine the value of p correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
(c) Hence find the value of k correct to 2 decimal places.

Question 45
(a) By sketching a suitable pair of graphs, show that the equation $x^{5}=2+x$ has exactly one real root.
(b) Show that if a sequence of values given by the iterative formula

$$
x_{n+1}=\frac{4 x_{n}^{5}+2}{5 x_{n}^{4}-1}
$$

converges, then it converges to the root of the equation in part (a).
(c) Use the iterative formula with initial value $x_{1}=1.5$ to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 46

(a) By sketching a suitable pair of graphs, show that the equation $\operatorname{cosec} x=1+\mathrm{e}^{-\frac{1}{2} x}$ has exactly two roots in the interval $0<x<\pi$.
(b) The sequence of values given by the iterative formula

$$
x_{n+1}=\pi-\sin ^{-1}\left(\frac{1}{\mathrm{e}^{-\frac{1}{2} x_{n}}+1}\right),
$$

with initial value $x_{1}=2$, converges to one of these roots.
Use the formula to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 47

The diagram shows the curve $y=\sqrt{x} \cos x$, for $0 \leqslant x \leqslant \frac{3}{2} \pi$, and its minimum point M, where $x=a$. The shaded region between the curve and the x-axis is denoted by R.
(a) Show that a satisfies the equation $\tan a=\frac{1}{2 a}$.
(b) The sequence of values given by the iterative formula $a_{n+1}=\pi+\tan ^{-1}\left(\frac{1}{2 a_{n}}\right)$, with initial value $x_{1}=3$, converges to a.

Use this formula to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(c) Find the volume of the solid obtained when the region R is rotated completely about the x-axis. Give your answer in terms of π.

Question 48

(a) By sketching a suitable pair of graphs, show that the equation $\operatorname{cosec} x=1+\mathrm{e}^{-\frac{1}{2} x}$ has exactly two roots in the interval $0<x<\pi$.
(b) The sequence of values given by the iterative formula

$$
x_{n+1}=\pi-\sin ^{-1}\left(\frac{1}{\mathrm{e}^{-\frac{1}{2} x_{n}}+1}\right),
$$

with initial value $x_{1}=2$, converges to one of these roots.
Use the formula to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 49
Let $\mathrm{f}(x)=\frac{\mathrm{e}^{2 x}+1}{\mathrm{e}^{2 x}-1}$, for $x>0$.
(a) The equation $x=\mathrm{f}(x)$ has one root, denoted by a.

Verify by calculation that a lies between 1 and 1.5.
(b) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(c) Find $\mathrm{f}^{\prime}(x)$. Hence find the exact value of x for which $\mathrm{f}^{\prime}(x)=-8$.

Question 50
(a) By sketching a suitable pair of graphs, show that the equation $\cot \frac{1}{2} x=1+\mathrm{e}^{-x}$ has exactly one root in the interval $0<x \leqslant \pi$.
(b) Verify by calculation that this root lies between 1 and 1.5 .
(c) Use the iterative formula $x_{n+1}=2 \tan ^{-1}\left(\frac{1}{1+\mathrm{e}^{-x_{n}}}\right)$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 51

The diagram shows a trapezium $A B C D$ in which $A D=B C=r$ and $A B=2 r$. The acute angles $B A D$ and $A B C$ are both equal to x radians. Circular arcs of radius r with centres A and B meet at M, the midpoint of $A B$.
(a) Given that the sum of the areas of the shaded sectors is 90% of the area of the trapezium, show that x satisfies the equation $x=0.9(2-\cos x) \sin x$.
(b) Verify by calculation that x lies between 0.5 and 0.7 .
(c) Show that if a sequence of values in the interval $0<x<\frac{1}{2} \pi$ given by the iterative formula

$$
\begin{equation*}
x_{n+1}=\cos ^{-1}\left(2-\frac{x_{n}}{0.9 \sin x_{n}}\right) \tag{2}
\end{equation*}
$$

converges, then it converges to the root of the equation in part (a).
(d) Use this iterative formula to determine x correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 52

The diagram shows the curve $y=\frac{\tan ^{-1} x}{\sqrt{x}}$ and its maximum point M where $x=a$.
(a) Show that a satisfies the equation

$$
\begin{equation*}
a=\tan \left(\frac{2 a}{1+a^{2}}\right) \tag{4}
\end{equation*}
$$

(b) Verify by calculation that a lies between 1.3 and 1.5 .
(c) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 53

A large plantation of area $20 \mathrm{~km}^{2}$ is becoming infected with a plant disease. At time t years the area infected is $x \mathrm{~km}^{2}$ and the rate of increase of x is proportional to the ratio of the area infected to the area not yet infected.

When $t=0, x=1$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=1$.
(a) Show that x and t satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{19 x}{20-x} . \tag{2}
\end{equation*}
$$

(b) Solve the differential equation and show that when $t=1$ the value of x satisfies the equation $x=\mathrm{e}^{0.9+0.05 x}$.
(c) Use an iterative formula based on the equation in part (b), with an initial value of 2, to determine x correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(d) Calculate the value of t at which the entire plantation becomes infected.

Question 54

The equation of a curve is $y=\sqrt{\tan x}$, for $0 \leqslant x<\frac{1}{2} \pi$.
(a) Express $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $\tan x$, and verify that $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ when $x=\frac{1}{4} \pi$.

The value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is also 1 at another point on the curve where $x=a$, as shown in the diagram.

(b) Show that $t^{3}+t^{2}+3 t-1=0$, where $t=\tan a$.
(c) Use the iterative formula

$$
a_{n+1}=\tan ^{-1}\left(\frac{1}{3}\left(1-\tan ^{2} a_{n}-\tan ^{3} a_{n}\right)\right)
$$

to determine a correct to 2 decimal places, giving the result of each iteration to 4 decimal places.

Question 55

The constant a is such that $\int_{1}^{a} \frac{\ln x}{\sqrt{x}} \mathrm{~d} x=6$.
(a) Show that $a=\exp \left(\frac{1}{\sqrt{a}}+2\right)$.
[$\exp (x)$ is an alternative notation for e^{x}.]
(b) Verify by calculation that a lies between 9 and 11 .
(c) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 56
(a) By sketching a suitable pair of graphs, show that the equation $4-x^{2}=\sec \frac{1}{2} x$ has exactly one root in the interval $0 \leqslant x<\pi$.
(b) Verify by calculation that this root lies between 1 and 2 .
(c) Use the iterative formula $x_{n+1}=\sqrt{4-\sec \frac{1}{2} x_{n}}$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 57
The constant a is such that $\int_{1}^{a} x^{2} \ln x \mathrm{~d} x=4$.
(a) Show that $a=\left(\frac{35}{3 \ln a-1}\right)^{\frac{1}{3}}$.
(b) Verify by calculation that a lies between 2.4 and 2.8 .
(c) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 58

(a) By sketching a suitable pair of graphs, show that the equation $\ln x=3 x-x^{2}$ has one real root.
(b) Verify by calculation that the root lies between 2 and 2.8 .
(c) Use the iterative formula $x_{n+1}=\sqrt{3 x_{n}-\ln x_{n}}$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 59

The curve $y=x \sqrt{\sin x}$ has one stationary point in the interval $0<x<\pi$, where $x=a$ (see diagram).
(a) Show that $\tan a=-\frac{1}{2} a$.
(b) Verify by calculation that a lies between 2 and 2.5 .
(c) Show that if a sequence of values in the interval $0<x<\pi$ given by the iterative formula $x_{n+1}=\pi-\tan ^{-1}\left(\frac{1}{2} x_{n}\right)$ converges, then it converges to a, the root of the equation in part (a).
(d) Use the iterative formula given in part (c) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 60

The curve with equation $y=\frac{x^{3}}{\mathrm{e}^{x}-1}$ has a stationary point at $x=p$, where $p>0$.
(a) Show that $p=3\left(1-\mathrm{e}^{-p}\right)$.
(b) Verify by calculation that p lies between 2.5 and 3 .
(c) Use an iterative formula based on the equation in part (a) to determine p correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 61

The diagram shows a semicircle with diameter $A B$, centre O and radius r. The shaded region is the minor segment on the chord $A C$ and its area is one third of the area of the semicircle. The angle $C A B$ is θ radians.
(a) Show that $\theta=\frac{1}{3}(\pi-1.5 \sin 2 \theta)$.
(b) Verify by calculation that $0.5<\theta<0.7$.
(c) Use an iterative formula based on the equation in part (a) to determine θ correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

Question 62

The equation of a curve is $y=\frac{x}{\cos ^{2} x}$, for $0 \leqslant x<\frac{1}{2} \pi$. At the point where $x=a$, the tangent to the curve has gradient equal to 12 .
(a) Show that $a=\cos ^{-1}\left(\sqrt[3]{\frac{\cos a+2 a \sin a}{12}}\right)$.
(b) Verify by calculation that a lies between 0.9 and 1 .
(c) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 63

The diagram shows a circle with centre O and radius r. The angle of the minor sector $A O B$ of the circle is x radians. The area of the major sector of the circle is 3 times the area of the shaded region.
(a) Show that $x=\frac{3}{4} \sin x+\frac{1}{2} \pi$.
(b) Show by calculation that the root of the equation in (a) lies between 2 and 2.5 .
(c) Use an iterative formula based on the equation in (a) to calculate this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 64

The diagram shows the part of the curve $y=x^{2} \cos 3 x$ for $0 \leqslant x \leqslant \frac{1}{6} \pi$, and its maximum point M, where $x=a$.
(a) Show that a satisfies the equation $a=\frac{1}{3} \tan ^{-1}\left(\frac{2}{3 a}\right)$.
(b) Use an iterative formula based on the equation in (a) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

Question 65

The equation $\cot \frac{1}{2} x=3 x$ has one root in the interval $0<x<\pi$, denoted by α.
(a) Show by calculation that α lies between 0.5 and 1 .
(b) Show that, if a sequence of positive values given by the iterative formula

$$
x_{n+1}=\frac{1}{3}\left(x_{n}+4 \tan ^{-1}\left(\frac{1}{3 x_{n}}\right)\right)
$$

converges, then it converges to α.
(c) Use this iterative formula to calculate α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 66
The constant a is such that $\int_{0}^{a} x \mathrm{e}^{-2 x} \mathrm{~d} x=\frac{1}{8}$.
(a) Show that $a=\frac{1}{2} \ln (4 a+2)$.
(b) Verify by calculation that a lies between 0.5 and 1 .
(c) Use an iterative formula based on the equation in (a) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

