Extended Mathematics

Topic: Algebra -2

Year : May 2013 - May 2024

Paper - 2

Questions Booklet

<u> </u>	-
Ouestion	- 1
Oucsuon	- 1

Rearrange $y = \sqrt{8 + \frac{4}{x}}$ to make x the subject. Answer x =Question 2 Write as a single fraction in its simplest form. Ouestion 3 Solve 3n + 23 < n + 41. Answer Question 4 The mass, m, of a sphere varies directly with the **cube** of its radius, r. m = 160 when r = 2. Find m when r = 5.[3] Question 5 Solve 6x + 3 < x < 3x + 9 for **integer** values of x. Question 6 y is inversely proportional to x^3 . y = 5 when x = 2. Find y when x = 4.

Answer $y = \dots$ [3]

Write as a single fraction in its simplest form.

Solve the inequality.

$$\frac{x}{2} + \frac{x-2}{3} < 5$$

Question 14

The speed, v, of a wave is inversely proportional to the square root of the depth, d, of the water. v = 30 when d = 400.

Find v when d = 25.

Answer
$$v = \dots [3]$$

Question 15

Rearrange the formula to make x the subject.

$$y = x^2 + 4$$

$$Answer x =$$
 [2]

Question 16

Write as a single fraction in its simplest form.

$$3 - \frac{t+2}{t-1}$$

Question 17

(a)
$$3^x = \sqrt[4]{3^5}$$

Find the value of x.

$$Answer(a) x =$$
 [1]

(b) Simplify $(32y^{15})^{\frac{2}{5}}$.

Question 18

Make b the subject of the formula.

$$c = \sqrt{a^2 + b^2}$$

$$Answer b = \dots$$
 [3]

y varies as the cube root of (x + 3). When x = 5, y = 1.

Find the value of y when x = 340.

Answer
$$y = \dots$$
 [3]

Question 20

Solve the inequality.

$$5t + 23 < 17 - 2t$$

Question 21

Simplify.

$$3x^2y^3 \times x^4y$$

Question 22

(a) Simplify $(3125t^{125})^{\frac{1}{5}}$

(b) Find the value of p when $3^p = \frac{1}{9}$.

$$Answer(b) p = \dots [1]$$

(c) Find the value of w when $x^{72} \div x^w = x^8$.

$$Answer(c) w = \dots [1]$$

Question 23

w varies inversely as the square root of x. When x = 4, w = 4.

Find w when x = 25.

$$Answer w = \dots [3]$$

Question 24

$$V = \frac{1}{3}Ah$$

(a) Find V when A = 15 and h = 7.

$$Answer(a) V = \dots [1]$$

(b) Make h the subject of the formula.

Answer(b)
$$h =$$
 [2]

(a)
$$(2^{24})^{\frac{1}{2}} = p^4$$

Find the value of p.

$$Answer(a) p = \dots [2]$$

(b) Simplify
$$\frac{q^2 + q^2}{q^{\frac{1}{4}} \times q^{\frac{1}{4}}}$$
.

Question 26

Solve the inequality for positive integer values of x.

$$\frac{21+x}{5} > x+1$$

Answer[4]

Question 27

Write as a single fraction in its simplest form.

$$\frac{2}{x} - \frac{2}{x+1}$$

Answer[3]

Question 28

Make x the subject of the formula.

$$y = (x - 4)^2 + 6$$

Question 29

Write as a single fraction, in its simplest form.

$$\frac{3}{2x} + \frac{2x}{3} + 3 + 2x$$

Question 30

y varies inversely as (x + 5).

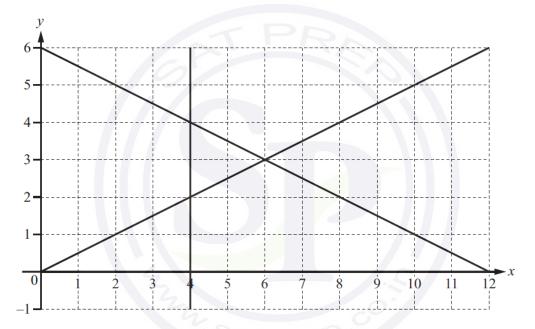
y = 6 when x = 3.

Find y when x = 7.

$$Answer y = \dots [3]$$

Make x the subject of the formula.

$$y = 2 + \sqrt{x - 8}$$


Answer
$$x = \dots$$
 [3]

Question 32

Write as a single fraction in its simplest form.

$$\frac{3}{2x-1} - \frac{1}{x+2}$$

Question 33

By shading the $\mathbf{unwanted}$ regions of the grid, find and label the region R which satisfies the following four inequalities.

$$y \ge 0 \qquad x \ge 4 \qquad 2y \le x \qquad 2y + x \le 12$$
 [3]

Question 34

The cost of a circular patio, C, varies as the square of the radius, C metres. C = 202.80 when C = 2.6.

Calculate the cost of a circular patio with r = 1.8.

Make r the subject of this formula.

$$v = \sqrt[3]{p+r}$$

Answer $r = \dots$ [2]

Question 36

- (a) Simplify
 - (i) x^0 ,

Answer(a)(i)[1]

(ii) $m^4 \times m^3$,

Answer(a)(ii)[1]

(iii) $(8p^6)^{\frac{1}{3}}$.

(b) $243^x = 3^2$

Find the value of x.

$Answer(b) x = \dots [2]$

Question 37

x varies directly as the cube root of y. x = 6 when y = 8.

Find the value of x when y = 64.

$$Answer x =$$
 [3]

Question 38

Simplify.

(a) $12x^{12} \div 3x^3$

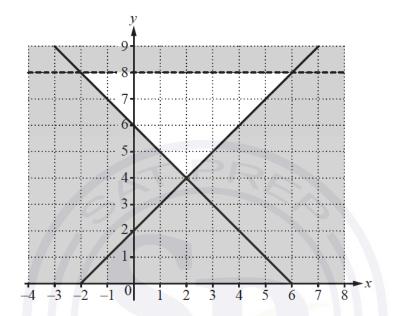
Answer(a)[2]

(b) $(256y^{256})^{\frac{1}{8}}$

Answer(b)[2]

Question 39

Write as a single fraction in its simplest form.


$$\frac{3}{x+2} - \frac{4}{2x-5}$$

$$81^{x} = 3$$

Find the value of x.

Question 41

Write down the 3 inequalities which define the unshaded region.

Answer

.....[4

Question 42

p is inversely proportional to the square of (q + 4). p = 2 when q = 2.

Find the value of p when q = -2.

$$Answer p = \dots [3]$$

Question 43

y is inversely proportional to $(x + 2)^2$. When x = 1, y = 2.

Find y in terms of x.

Answer
$$y = \dots$$
 [2]

Simplify.

$$\left(\frac{x^{64}}{16y^{16}}\right)^{\frac{1}{4}}$$

Question 45

Make a the subject of the formula $s = ut + \frac{1}{2}at^2$.

Answer
$$a = \dots$$
 [3]

Question 46

Write the following as single fractions.

(a)
$$x + \frac{x}{2}$$

(b)
$$x + \frac{2}{x}$$

Question 47

y is directly proportional to the square of (x - 1). y = 63 when x = 4.

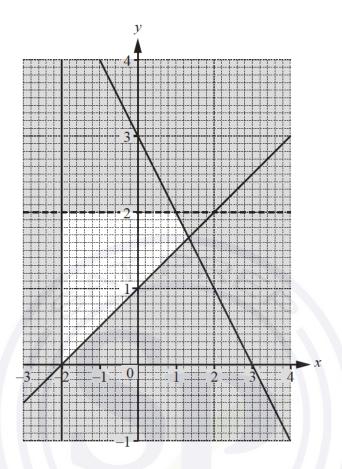
Find the value of y when x = 6.

$$Answer y = \dots [3]$$

Question 48

Make x the subject of the formula.

$$y = ax^2 + b$$


$$Answer x = \dots [3]$$

Question 49

V is directly proportional to the cube of (r + 1). When r = 1, V = 24.

Work out the value of V when r = 2.

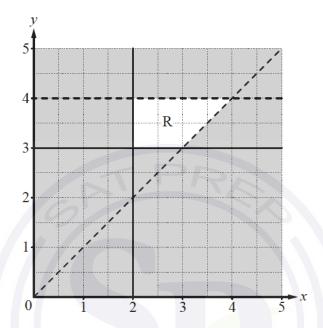
Answer
$$V = \dots$$
 [3]

Find the four inequalities that define the region that is **not** shaded.

)	 	 	
	 	 	 [5]

Question 51

Simplify.


(a)
$$x^3y^4 \times x^5y^3$$

Solve the inequality.

$$6n + 3 > 8n$$

Question 53

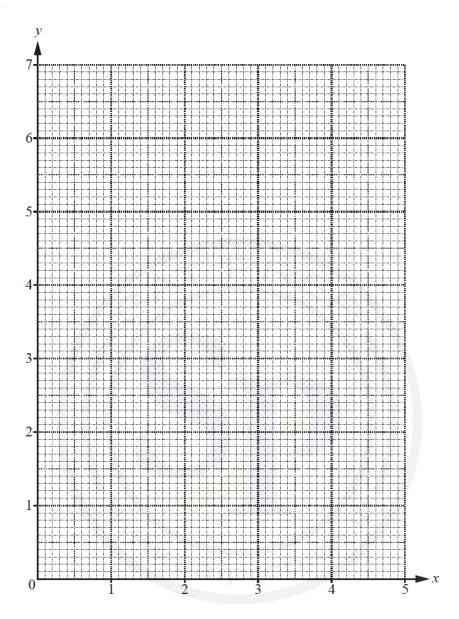
Find four inequalities that define the region, R, on the grid.

••••	•••	••••	••••	 	 	 	
		••••	••••	 	 	 	
				 		 	[4]
••••		• • • • •	••••	 	 	 	[4]

Question 54

y is directly proportional to $(x + 2)^2$. When x = 8, y = 250.

Find y when x = 4.


$$y =$$
.....[3]

Question 55

Simplify.

$$(32x^{10})^{\frac{3}{5}}$$

.....[2]

The region R satisfies these inequalities.

$$y \leqslant 2x \qquad 3x + 4y \geqslant 12 \qquad x \leqslant 3$$

On the grid, draw and label the region R that satisfies these inequalities. Shade the **unwanted** regions.

[5]

Question 57

Make p the subject of the formula.

Solve the inequality $\frac{x}{3} + 5 > 2$.

Question 59

Simplify.

$$\left(\frac{1}{2}x^{\frac{2}{3}}\right)^3$$

Question 60

y is directly proportional to the positive square root of x. When x = 9, y = 12.

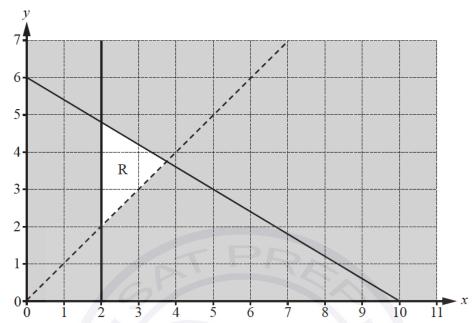
Find y when $x = \frac{1}{4}$.

Question 61

Simplify $(16p^{16})^{\frac{1}{4}}$.

Question 62

Solve the inequality.


$$n+7 < 5n-8$$

Question 63

$$y = \frac{qx}{p}$$

Write x in terms of p, q and y.

.....[2]

Find	the	three	inean	alities	that	define	the	unshaded	region	R
T IIIG	uic	шсс	megu	antics	шаі	dellie	uic	unsnaucu	ICZIOII.	11.

•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
•		 																															
																																4	5

Question 65

d is inversely proportional to $(w + 1)^2$. d = 3.2 when w = 4.

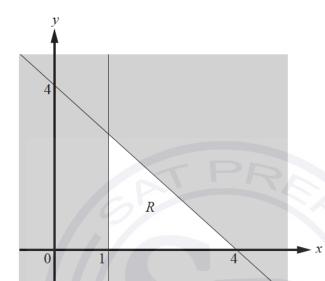
Find d when w = 7.

Question 66

Simplify. $n^2 \times n^5$

.....[1]

Question 67


Find the positive integers that satisfy the inequality t+2 > 3t-6.

.....[3]

Simplify.

$$36y^5 \div 4y^2$$

Question 69

.....[2]

NOT TO SCALE

Write down the three inequalities that define the unshaded region, R.

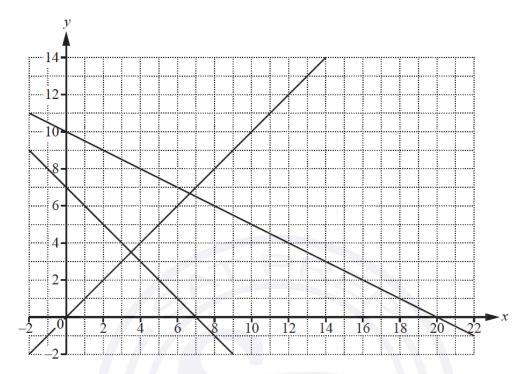
.....

Question 70

$$y = p^2 + qr$$

(a) Find y when p = -5, q = 3 and r = -7.

$$y =$$
[2]


(b) Write p in terms of q, r and y.

Question 71

y is directly proportional to the square root of (x + 2). When x = 7, y = 2.

Find y when x = 98.

Write as a single fraction. $1 - \frac{2}{p} - \frac{3}{t}$	
Question 73	[2]
Simplify. $(36x^{16})^{\frac{1}{2}}$	
Question 74 Work out.	[2]
(a) $t^{24} \div t^4$	
(b) $(x^5)^2$	[1]
(c) $(81m^8)^{\frac{3}{4}}$	[1]
Question 75	[2]
y is inversely proportional to x^2 . When $x = 5$, $y = 16$.	
Find y when $x = 10$.	
Question 76	$y = \dots [3]$
Simplify.	
(a) $6w^0$	[1]
(b) $5x^3 - 3x^3$	[1]
(c) $3y^6 \times 5y^{-2}$	[1]
Question 77	
(a) Solve the inequality. $x+13 \ge 3x+7$	[2]
(b) List the positive integers that satisfy the inequality in p	
	[11]

By shading the unwanted regions of the grid above, find and label the region R that satisfies the following four inequalities.

$$x \ge 0$$
 $x + y \ge 7$ $y \ge x$ $x + 2y \le 20$ [3]

Question 79

y is inversely proportional to x^2 . When x = 2, y = 8.

Find y in terms of x.

$$y = \dots [2]$$

Question 80

Simplify.

$$\left(\frac{8}{a^{12}}\right)^{\frac{1}{3}}$$

Question 81

Make *a* the subject of the formula.

$$x = y + \sqrt{a}$$

$$a = \dots [2]$$

.....[2]

(a) Simplify. $(16x^{16})^{\frac{3}{4}}$

.....[2]

(b) $2p^{\frac{3}{2}} = 54$

Find the value of p.

$$p = \dots [2]$$

Question 83

y is inversely proportional to $\sqrt{1+x}$. When x = 8, y = 2.

Find y when x = 15.

Question 84

Write as a single fraction in its simplest form.

$$\frac{2x-1}{3} - \frac{2}{x+1}$$

.....[3]

Question 85

Make q the subject of the formula $p = 2q^2$.

$$q = \dots$$
 [2]

Question 86

Work out.

(a) $125^{\frac{2}{3}}$

Γ1**1**

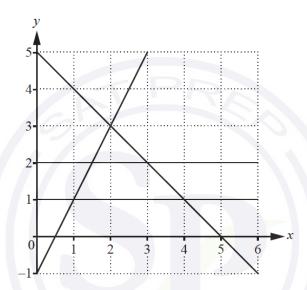
Question 87

Solve the inequality.

$$3n-11 > 5n-18$$

.....[2]

Write as a single fraction in its simplest form.


(a)
$$\frac{x^2 - 3x}{x^2 - 9}$$

.....[3]

(b)
$$\frac{3}{x-4} + \frac{2}{2x+5}$$

.....[3]

Question 89

By shading the unwanted regions of the grid, find and label the region R that satisfies the following four inequalities.

$$y \leqslant 2 \qquad \qquad y \geqslant 1 \qquad \qquad y \leqslant 2x - 1 \qquad \qquad y \leqslant 5 - x \tag{3}$$

Question 90

h is directly proportional to the square root of p. h = 5.4 when p = 1.44.

Find h when p = 2.89.

$$h = \dots [3]$$

(a)
$$2^r = \frac{1}{16}$$

Find the value of r.

$$r = \dots [1]$$

(b)
$$3^t = \sqrt[5]{3}$$

Find the value of t.

$$t = \dots [1]$$

Question 92

$$x^{\frac{2}{3}} \div x^{-\frac{4}{3}}$$

Question 93

$$\left(\frac{8}{y^6}\right)^{-\frac{1}{3}}$$

Question 94

Make x the subject of the formula.

$$y = \sqrt{x^2 + 1}$$

$$x = \dots [3]$$

Question 95

Write as a single fraction in its simplest form.

$$\frac{x+1}{x} - \frac{y-1}{y}$$

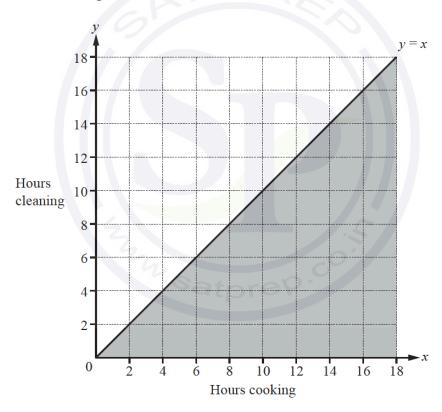
.....[3]

Question 96

Find the integers which satisfy the inequality.

$$-5 < 2n - 1 \leq 5$$

.....[3]


In one week, Neha spends x hours cooking and y hours cleaning. The time she spends cleaning is at least equal to the time she spends cooking. This can be written as $y \ge x$.

She spends no more than 16 hours in total cooking and cleaning. She spends at least 4 hours cooking.

(a) Write down two more inequalities in x and/or y to show this information.

.....[2]

(b) Complete the diagram to show the three inequalities. Shade the **unwanted** regions.

(c) Neha receives \$10 for each hour she spends cooking and \$8 for each hour she spends cleaning.

Work out the largest amount she could receive.

\$.....[2]

[3]

Write as a single fraction in its simplest form.

$$\frac{5}{x-3} + \frac{3}{x+7} + \frac{1}{2}$$

.....[4]

Question 99

y is inversely proportional to $(x+1)^2$. y = 50 when x = 0.2.

(a) Write y in terms of x.

$$y = \dots [2]$$

(b) Find the value of y when x = 0.5.

$$y =$$
.....[1]

Question 100

Simplify.

(a) $(m^5)^2$

.....[1]

(b) $4x^3y \times 5x^2y$

.....[2]

Question 101

y is inversely proportional to x. When x = 9, y = 8.

Find y when x = 6.

$$y =$$
 [3]

Question 102

$$2^p = \frac{1}{8^4}$$

Find the value of p.

$$p = \dots [2]$$

Question 103

Write as a single fraction in its simplest form.

$$\frac{1}{y-1} - \frac{1}{y}$$

.....[3]

y is directly proportional to $(x-1)^2$. When x = 3, y = 24.

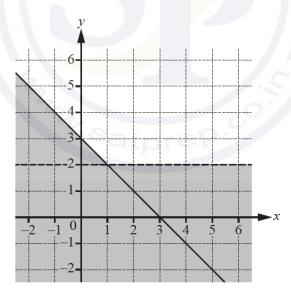
Find y when x = 6.

Question 105

(a) Find the value of $\left(\frac{1}{81}\right)^{-\frac{3}{4}}$.

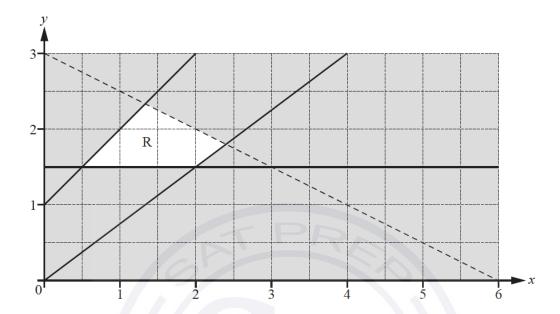
.....[1]

(b) Simplify. $\sqrt[3]{27t^{27}}$


.....[2

Question 106

$$A = (2\pi + y)x^2$$


Rearrange the formula to make x the subject.

Question 107

Find the two inequalities that define the region on the grid that is **not** shaded.

	•	•	•			•	•				•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•				
																																						3	3	

There are four inequalities that define the region R. One of these is $y \le x + 1$.

Find the other three inequalities.

				-						 									 					
			•																					
																					[4	1]	

Question 109

y is directly proportional to $(x-1)^2$. When x = 5, y = 4.

Find y when x = 7.

Question 110

Solve the inequality.

$$3n - 5 > 17 + 8n$$

$$3^{-q} \times \frac{1}{27} = 81$$

Find the value of q.

$$q = \dots [2]$$

Question 112

Write as a single fraction in its simplest form.

$$\frac{1}{x} - \frac{1}{x+1}$$

Question 113

y is directly proportional to the square root of x. When x = 9, y = 6.

Find y when x = 25.

Question 114

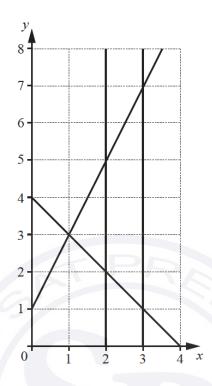
(a) Simplify
$$\frac{w^2}{w^3}$$
.

(b) Simplify $(3w^3)^3$.

(c) simplify (c.,)

$$A = \pi r l + \pi r^2$$

Rearrange this formula to make l the subject.


Question 116

Question 115

Make m the subject of the formula.

$$x = \frac{3m}{2 - m}$$

$$m = \dots$$
 [4]

By shading the **unwanted** regions of the grid, find and label the region R that satisfies the following four inequalities.

 $x \leq 3$

 $x \ge 2$

 $y \le 2x + 1$

 $y \ge 4 - x$

[3]

Question 118

Solve.

$$7m-2 \ge 19$$

Question 119

(a) $t^x \times t^2 = t^{10}$

Find the value of x.

$$x =$$
.....[1]

Simplify.

(i)
$$\left(\frac{4}{x}\right)^{-2}$$

(ii)
$$a^3b^7 \div a^6b^2$$

Write as a single fraction in its simplest form.

$$\frac{x-5}{3} + \frac{6}{x+2}$$

.....[3]

Question 121

Find the integer values of *n* that satisfy the inequality $15 \le 4n < 28$.

.....[3]

Question 122

y is inversely proportional to x^3 . When x = 2, y = 0.5.

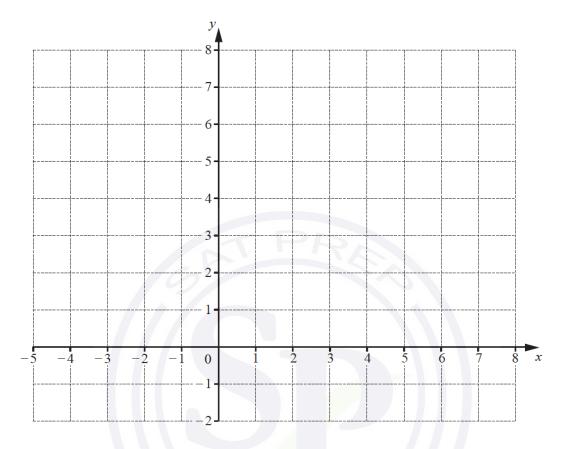
Find y in terms of x.

$$y =$$
 [2]

Question 123

(a) Find the value of *n* when $5^n = \frac{1}{125}$

$$n =$$
 [1]


(b) Simplify $\left(\frac{64}{m^3}\right)^{-\frac{1}{3}}$

Question 124

y is directly proportional to (x-4)When x = 16, y = 3.

Find y in terms of x.

$$y =$$
 [2]

By shading the **unwanted** regions of the grid, draw and label the region R which satisfies the following three inequalities.

$$y \leqslant 2 \qquad x < 3 \qquad y \leqslant x + 4 \tag{5}$$

Question 126

y is inversely proportional to the square of (x+1). y = 0.875 when x = 1.

Find y when x = 4.

$$y = \dots$$
 [3]

Question 127

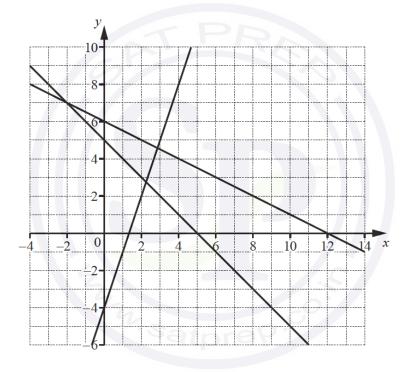
Complete this statement with an expression in terms of m.

$$18m^3 + 9m^2 + 14m + 7 = (9m^2 + 7)(\dots)$$
[2]

Rearrange this formula to make m the subject.

$$P = \frac{k+m}{m}$$

.....[4]


Question 129

Write as a single fraction in its simplest form.

$$\frac{2x}{x+3} + \frac{x+3}{x-5}$$

.....[3]

Question 130

 $y \leqslant -\frac{1}{2}x + 6 \qquad \qquad y \geqslant 3x - 4 \qquad \qquad x + y \geqslant 5$

- (a) By shading the **unwanted** regions of the grid, find and label the region R that satisfies the three inequalities. [2]
- **(b)** Find the largest value of x+y in the region R, where x and y are integers.

.....[1]

Simplify.

(a)
$$5m^2 \times 2m^3$$

(b)
$$(x^8)^3$$

Question 132

Write as a single fraction in its simplest form.

$$\frac{1}{x+2} - \frac{2}{3x-1}$$

......[3]

Question 133

(a) Simplify
$$(81y^{16})^{\frac{3}{4}}$$
.

(b)
$$2^3 = 4^p$$

Find the value of p.

$$p =$$
 [1

Question 134

y is inversely proportional to the square root of (x + 1). When x = 8, y = 2.

Find y when x = 99.

$$y =$$
 [3]

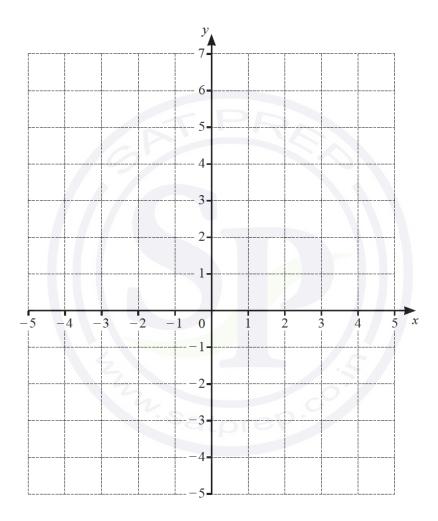
Question 135

Simplify.

(a)
$$t^{21} \div t^7$$

(b)
$$(u^5)^5$$

t is inversely proportional to the square of (x + 1). When x = 2, t = 5.


(a) Write t in terms of x.

$$t = \dots$$
 [2]

(b) When t = 1.8, find the positive value of x.

$$x =$$
 [2]

Question 137

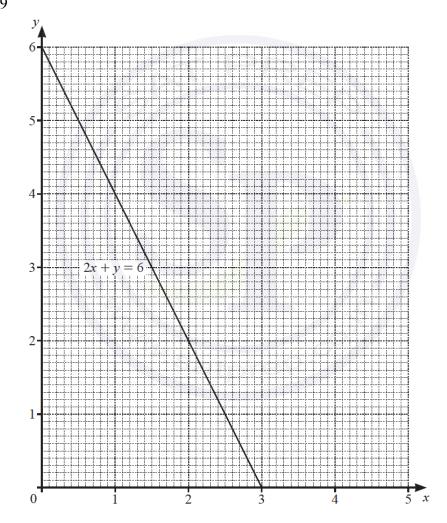
By shading the unwanted regions on the grid, draw and label the region R that satisfies the following inequalities.

$$-2 < x \le 3 \qquad \qquad y \le x + 3$$

[4]

(a)
$$3^{-2} \times 3^x = 81$$

Find the value of x.


$$x =$$
 [2

(b)
$$x^{-\frac{1}{3}} = 32x^{-2}$$

Find the value of x.

$$x =$$
 [3]

Question 139

By shading the unwanted regions of the grid, find and label the region R that satisfies the following inequalities.

$$y \le 5 \qquad 2x + y \ge 6 \qquad y \ge x + 1 \tag{4}$$

Solve the inequality.

$$\frac{x}{2} - 13 > 12 + 3x$$

.....[2]

Question 141

Write $\frac{x}{2} - \frac{2x+4}{x+1}$ as a single fraction, in its simplest form.

.....[3]

Question 142

y is inversely proportional to x^2 .

When
$$x = 4$$
, $y = 2$.

Find *y* when $x = \frac{1}{2}$.

Question 143

$$P = 2r + \pi r$$

Rearrange the formula to write r in terms of P and π .

$$r = \dots$$
 [2]

Question 144

Simplify.

$$\left(\frac{x^3}{8}\right)^{-\frac{4}{3}}$$

[2]

Question 145

Simplify $2x^3 \times 3x^2$.

.....[2]

Question 146

y is directly proportional to the cube root of (x+3).

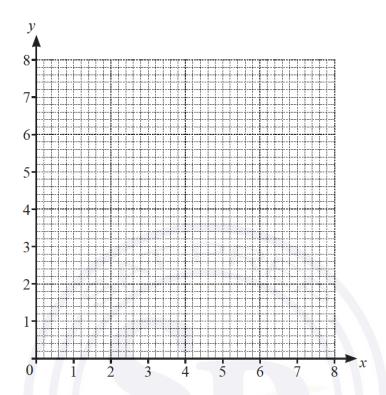
When
$$x = 5$$
, $y = \frac{2}{3}$.

Find y when x = 24.

$$y =$$
 [3]

Simplify.

(a)
$$p^2 \times p^4$$


(b)
$$m^{15} \div m^5$$

(c)
$$(k^3)^5$$

Question 148

$$\sqrt[3]{y^2} = \sqrt[6]{x}$$
 and $y = \sqrt[n]{x}$.

Find the value of n.

(a) By drawing suitable lines and shading unwanted regions, find the region, R, where

$$x \ge 2$$
, $y \ge x$ and $2x + y \le 8$. [5]

(b) Find the largest value of x+y in the region R.

.....[1]

Question 150

p is directly proportional to $(q+2)^2$. When q = 1, p = 1.

Find p when q = 10.

 $p = \dots [3]$

Question 151		
Simplify.		
(a) $(5x^4)^3$	[7]	1
(b) $(256x^{256})^{\frac{3}{8}}$	[2]	_
Question 152 Simplify $8t^8 \div 4t^4$.	[2]]
Question 153	[2]]
m is inversely proportional to the square of $(p-1)$. When $p = 4$, $m = 5$.		
Find m when $p = 6$.		
	m = [3]	
Question 154		
y is inversely proportional to the square root of x. When $y = 7$, $x = 2.25$.		
Write y in terms of x .		
Question 155	<i>y</i> =[2]
(a) Simplify. $(4xy^2)^3$		
	[2]
(b) $25 = 125^k$		
Find the value of k .		
Question 156	k =[1]]
y is inversely proportional to the square root of x. When $y = 7$, $x = 2.25$.		

Write y in terms of x.

y = [2]

(a) Simplify. $(4xy^2)^3$

.....[2]

(b) $25 = 125^k$

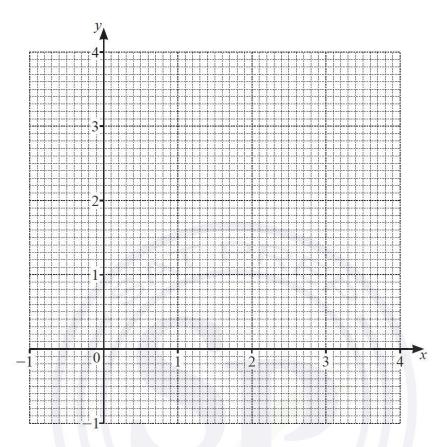
Find the value of k.

k =	 [1]

Question 158

Simplify. $a^2 : a$

$$a^2 \div a^6$$


Question 159

Simplify.

$$2x^2 \times 5x^5$$

Question 160

Simplify $\left(343x^9\right)^{\frac{2}{3}}$.

The region R satisfies these three inequalities.

$$y > 1 \qquad y < 2x + 2 \qquad x + y \le 3$$

By drawing three suitable lines, and shading unwanted regions, find and label the region R. [5]

Question 162

z is inversely proportional to the square of (y-2). When y = 5, z = 9.

Find z in terms of y.

$$z = \dots$$
 [2]

Question 163 x is an integer and $-3 \le 2x - 1 < 3$. Find the values of x.[2] Question 164 Simplify $3x^3 \times 4x^4$[2] Question 165 The force of attraction, F Newtons, between two magnets is inversely proportional to the square of the distance, dcm, between the magnets. When d = 1.5, F = 48. (a) Find an expression for F in terms of d.[2] **(b)** When the distance between the two magnets is doubled the new force is *n* times the original force. Work out the value of n. Question 166 y is directly proportional to the square root of (x-3). When x = 28, y = 20. Find y when x = 39.

y = [3]

(a) Simplify fully.
$$(4ab^5)^4$$

	[2]
•••••	

(b)
$$2p^{\frac{1}{3}} = 6$$

Find the value of p.

(c)
$$81^2 \div 3^t = 9$$

Find the value of t.

$$t = \dots$$
 [2]

Question 168

Simplify fully.

$$(243y^{10})^{\frac{3}{5}}$$

Question 169

Simplify.

$$32g^{32} \div 4g^4$$

(a) Write 243×27^{2n} as a single power of 3 in terms of n.

.....[2]

(b) $k = 2 \times 3^2 \times p^3$, where p is a prime number greater than 3.

Write $6k^2$ as a product of prime factors in terms of p.

.....[2]

Question 171

(a) Simplify.

$$\frac{x^{\frac{2}{3}}}{x^{\frac{8}{3}}}$$

.....[1]

(b) $16 = 64^k$

Find the value of k.

$$k = \dots$$
 [1]

(c) Solve.

$$3^{3x} \times \left(\frac{1}{9}\right)^{4-3x} = 3$$

$$x = \dots$$
 [3]

Question 172

y is inversely proportional to the square root of (x-2). When x = 4.25, y = 12.

Find x when y = 3.

$$x = \dots$$
 [3]

y is inversely proportional to the square root of (x + 4). When x = 5, y = 2.

Find y when x = 77.

Question 174

Mrs Kohli buys a jacket, 2 shirts and a hat.

The jacket costs \$x.

The shirts each cost \$24 less than the jacket and the hat costs \$16 less than the jacket.

Mrs Kohli spends exactly \$100.

Write down an equation in terms of x.

Solve this equation to find the cost of the jacket.

Question 175

(a) Simplify $h^2 \times h^5$.

 $(c) a^8 \div a^p = a^2$

Find the value of p.

$$p = \dots$$
 [1]

Write down the inequality, in terms of n, shown by the number line.

.....[1]

Question 177

$$m^{-\frac{1}{4}} = 27m^{-1}$$

Find the value of m.

 $m = \dots [3]$

Question 178

y is inversely proportional to the cube of (x-1). y = 9.45 when x = 3.

Find y when x = 4.

 $y = \dots [3]$

Question 179

Simplify.

(a)
$$y^3 \div y^5$$

[17]

(b)
$$7x^0$$

.....[1]

Question 180

(a) y is directly proportional to the cube root of (x+1). When x = 7, y = 1.

Find the value of y when x = 124.

y = [3]

(b) F is inversely proportional to the square of d.

Explain what happens to F when d is halved.

.....[1]

Find the value of p when $6^p \times 6^4 = 6^{28}$.

	Γ1
$p-\dots$	11
P	

Question 182

w is proportional to the square root of y. y is inversely proportional to x. When x = 4, y = 16 and w = 8.

Find w in terms of x.

$$w = \dots [3]$$

Question 183

$$x^{2} + 8x + 10 = (x+p)^{2} + q$$

(a) Find the value of p and the value of q.

$$q = \dots$$
 [2]

(b) Solve.

$$x^2 + 8x + 10 = 30$$

$$x = \dots$$
 or $x = \dots$ [2]

Question 184

Simplify fully $(216y^{216})^{\frac{2}{3}}$.

Question 185

$$4^x = \frac{1}{64}$$

Find the value of x.

$$x =$$
 [1]

Question 186

Write as a single fraction in its simplest form.

$$\frac{4}{2x-3} \div \frac{2x^2 + 14x}{2x^2 + 11x - 21}$$

y is proportional to the square of (x-7). When x = 12, y = 2.

Find y when x = 17.

$$y =$$
 [3]

Question 188

Solve $\frac{4}{x+1} + \frac{2}{2x-5} = 3$.

You must show all your working.

$$x = \dots$$
 or $x = \dots$ [7]

Question 189

Simplify fully.

(a)
$$(81x^{16})^{\frac{3}{4}}$$

(b)
$$\left(\frac{1}{y^2}\right)^{-\frac{1}{2}}$$

Question 190

y is inversely proportional to \sqrt{x} and x is directly proportional to w^2 . When w = 12, y = 12.

Find y in terms of w.

Question 191

Simplify $(3125x^{3125})^{\frac{1}{5}}$.

 [2]	1
 [4]	

Question 192

Simplify $18x^{18} \div 9x^9$.

Simplify.

$$\frac{5x^2 - 19x + 12}{x^2 - 9}$$

Question 194

y is inversely proportional to x^2 .

When x = 3, y = 2.

Find y when x = 2.

y = [3]

.....[4]

Question 195

Simplify $(3125w^{3125})^{\frac{1}{5}}$.

.....[2]

Question 196

Simplify.

$$\frac{2x^2 + 5x - 12}{4x^2 - 9}$$

Question 197

y is inversely proportional to the cube root of (x + 5). When x = 3, y = 12.

Find y when x = 22.

y = [3]

Question 198

Rearrange the formula to make m the subject.

$$R = \frac{2(m-k)}{m}$$

 $m = \dots [4]$

Write as a single fraction in its simplest form.

$$\frac{5}{3x+2} + \frac{4}{2x-1}$$

.....[3]

Question 200

m is inversely proportional to the square of (t+2). m = 0.64 when t = 3.

Find m when t = 8.

 $m = \dots [3]$

Question 201

Make *x* the subject of the formula.

$$c = \frac{3x}{2x - 5}$$

x = [4]

Question 202

y is directly proportional to the square of (x + 3). When x = 2, y = 5.

Find y when x = 1.

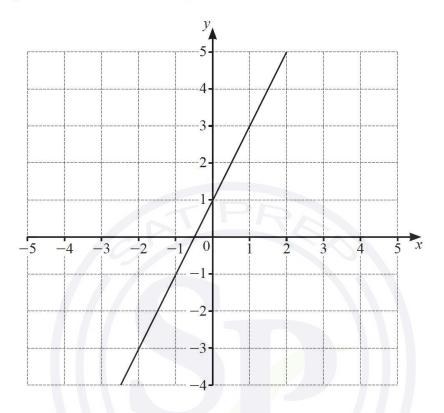
 $y = \dots$ [3]

Question 203

Simplify.

$$\frac{x-5}{x^2-25}$$

.....[2]


Question 204

$$T = \sqrt{3d - e}$$

Rearrange the formula to make d the subject.

d =[3]

The graph of y = 2x + 1 is drawn on the grid.

By shading the unwanted regions of the grid, find and label the region R which satisfies these inequalities.

$$y \ge 2x + 1$$
 $y \ge 1$ $4x + 3y < 12$ [4]

Question 206

$$P = \frac{2wy^2}{3}$$

Find the positive value of y when P = 108 and w = 8.

$$y =$$
 [3]

Question 207

Simplify.

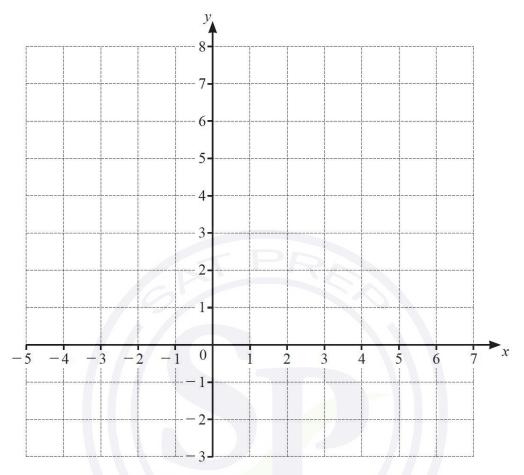
$$\frac{ax-2a-x+2}{a^2-1}$$

.....[4]

x is inversely proportional to the square root of w. When w = 16, x = 3.

Find x in terms of w.

$$x =$$
 [2]


Question 209

Write as a single fraction in its simplest form.

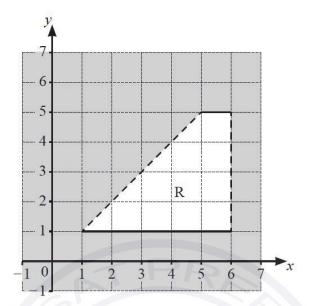
(a)
$$\frac{10x^2 - 60x}{x^2 - x - 30}$$

(b)
$$\frac{7}{x+3} + \frac{5}{8x-1}$$

By shading the **unwanted** regions of the grid, draw and label the region R which satisfies these inequalities.

$$y > 1 \qquad \qquad x \le 2 \qquad \qquad y \ge x + 2$$

[5]


Question 211

Solve.

$$4(2x-3) \ge 43 + 3x$$

.....[3]

Question 212	
y is inversely proportional to the square of $(x+3)$.	
When $x = 5$, $y = 0.375$.	
Find y in terms of x .	
	$y = \dots $ [2
Question 213	
Simplify.	
$\frac{pt - p - t + 1}{1 - t^2}$	
	[/1]
Question 214	[4]
Simplify.	
$\frac{2}{y+1} - \frac{3}{y}$	
Give your answer as a single fraction in its simplest form.	
	[3
Question 215	
(a) y is directly proportional to $(x-1)^2$. When $x = 4$, $y = 3$.	
Find y when $x = 7$.	
	<i>y</i> = [3
	y = [3
(b) m is inversely proportional to the square root of p .	
Explain what happens to the value of m when the value	of p is multiplied by 9.
	[1]

Find the inequalities that define the unshaded region, R.

______[4]