Extended Mathematics Topic : Algebra -2 Year :May 2013 -May 2023 Paper - 2 Questions Booklet

Question 1

Rearrange $y = \sqrt{8 + \frac{4}{x}}$ to make x the subject.

Question 2

Write as a single fraction in its simplest form.

$$\frac{x+3}{x-3} - \frac{x-1}{x+1}$$

Answer[4]Question 3Solve 3n + 23 < n + 41.Question 4The mass, m, of a sphere varies directly with the cube of its radius, r.m = 160 when r = 2.Find m when r = 5.Question 5Solve 5 = 52 + 0, for integravely equal of r

Solve 6x + 3 < x < 3x + 9 for **integer** values of *x*.

Answer $x = \dots |4|$

y is inversely proportional to x^3 . y = 5 when x = 2.

Find *y* when x = 4.

Question 6

Answer $y = \dots$ [3]

Write as a single fraction in its simplest form.

	$\frac{2}{x+3} + \frac{3}{x+2}$	
	Answer	
Question 8		
<i>t</i> varies inversely as the square root of $t = 3$ when $u = 4$.	и.	
Find t when $u = 49$.		
	Answer $t =$	
Question 9		
Write $(27x^{12})^{\frac{1}{3}}$ in its simplest form.		
	Answer	
Question 10		
Solve the inequality.		
	$3x - 1 \le 11x + 2$	
Question 11	Answer	[2]
(a) Simplify $(64q^{-2})^{\frac{1}{2}}$.		
	Answer(a)	[2]
(b) $5^7 \div 5^9 = p^2$		
Find <i>p</i> .		
	Answer(b) $p =$	
Question 12		
<i>m</i> varies directly as the cube of <i>x</i> . m = 200 when $x = 2$.		
Find m when $x = 0.4$.		
	Answer $m =$	[3]

Solve the inequality.

$$\frac{x}{2} + \frac{x-2}{3} < 5$$

Answer $v = \dots$ [3]

.....[3]

Question 14

The speed, v, of a wave is inversely proportional to the square root of the depth, d, of the water. v = 30 when d = 400.

Find v when d = 25.

Question 15

Rearrange the formula to make x the subject.

 $y = x^2 + 4$

Answer x =

Answer

Answer(a) x =

Question 16

Write as a single fraction in its simplest form.

 $3-\frac{t+2}{t-1}$

Question 17

(a) $3^x = \sqrt[4]{3^5}$

Find the value of x.

(b) Simplify $(32y^{15})^{\frac{2}{5}}$.

Question 18

Make b the subject of the formula.

$$c = \sqrt{a^2 + b^2}$$

y varies as the cube root of $(x + 3)$. When $x = 5$, $y = 1$. Find the value of y when $x = 340$. Question 20 Solve the inequality. 5t + 23 < 17 - 2t Question 21 Simplify. $3x^2y^3 \times x^4y$ Question 22 (a) Simplify $(3125t^{125})^{\frac{1}{3}}$. (b) Find the value of p when $3^p = \frac{1}{9}$. Answer(a)
Answer $y =$ [3]Question 20 $5t + 23 < 17 - 2t$ Answer[2]Question 21 $3x^2y^3 \times x^4y$ Answer[2]Question 22(a) Simplify $(3125t^{125})^{\frac{1}{5}}$.[2]
Question 20 Solve the inequality. 5t + 23 < 17 - 2t Answer
Solve the inequality. 5t + 23 < 17 - 2t Answer
5t + 23 < 17 - 2t Answer
Answer [2] Question 21 $3x^2y^3 \times x^4y$ Question 22 (a) Simplify $(3125t^{125})^{\frac{1}{5}}$. Answer(a) [2]
Question 21 Simplify. Question 22 (a) Simplify $(3125t^{125})^{\frac{1}{5}}$. Answer(a)
$3x^2y^3 \times x^4y$ Question 22 (a) Simplify $(3125t^{125})^{\frac{1}{5}}$. Answer(a)
Question 22 (a) Simplify $(3125t^{125})^{\frac{1}{5}}$. Answer(a)
Question 22 (a) Simplify $(3125t^{125})^{\frac{1}{5}}$. Answer(a)
Answer(a)[2]
(b) Find the value of p when $3^p = \frac{1}{2}$.
$Answer(b) p = \dots [1]$
(c) Find the value of w when $x^{72} \div x^w = x^8$.
$Answer(c) w = \dots [1]$ Question 23
w varies inversely as the square root of x .
When $x = 4$, $w = 4$.
Find w when $x = 25$.
$ator Answer w = \dots [3]$
Question 24
$V = \frac{1}{3}Ah$
(a) Find <i>V</i> when $A = 15$ and $h = 7$.
$Answer(a) V = \dots \qquad [1]$
(b) Make <i>h</i> the subject of the formula.
$Answer(b) h = \dots [2]$

(a)
$$(2^{24})^{\frac{1}{2}} = p^4$$

Find the value of p.

 $Answer(a) p = \dots [2]$

(b) Simplify
$$\frac{q^2 + q^2}{q^{\frac{1}{4}} \times q^{\frac{1}{4}}}$$
.

Question 26

Solve the inequality for positive integer values of x.

$$\frac{21+x}{5} > x+1$$

Question 27

Write as a single fraction in its simplest form.

$$\frac{2}{x} - \frac{2}{x+1}$$
Answer [3]

Question 28

Make *x* the subject of the formula.

Question 29

Write as a single fraction, in its simplest form.

$$\frac{3}{2x} + \frac{2x}{3} + 3 + 2x$$

Answer x

 $y = (x - 4)^2 + 6$

.....[3]

Question 30

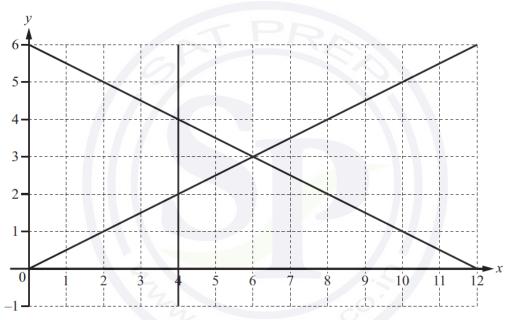
y varies inversely as (x + 5). y = 6 when x = 3.

Find *y* when x = 7.

Answer $y = \dots$ [3]

Make *x* the subject of the formula.

 $y = 2 + \sqrt{x - 8}$


Answer
$$x = \dots$$
 [3]

Question 32

Write as a single fraction in its simplest form.

$$\frac{3}{2x-1} - \frac{1}{x+2}$$

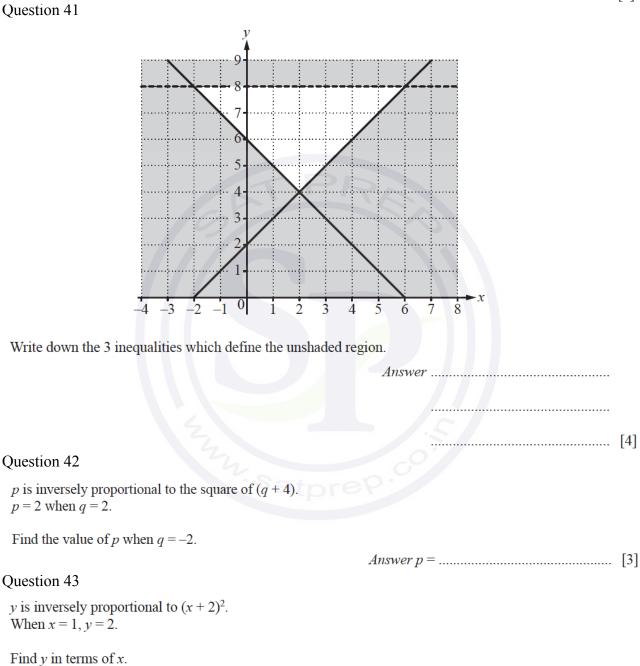
By shading the **unwanted** regions of the grid, find and label the region R which satisfies the following four inequalities.

$$y \ge 0 \qquad x \ge 4 \qquad 2y \le x \qquad 2y + x \le 12$$
[3]

Question 34

The cost of a circular patio, C, varies as the square of the radius, *r* metres. C = 202.80 when r = 2.6.

Calculate the cost of a circular patio with r = 1.8.


Make *r* the subject of this formula. $v = \sqrt[3]{p+r}$ Answer $r = \dots$ [2] Question 36 (a) Simplify (i) x^0 , (ii) $m^4 \times m^3$, (iii) $(8p^6)^{\frac{1}{3}}$. Answer(a)(iii) [2] **(b)** $243^x = 3^2$ Find the value of x. Answer(b) x =Question 37 x varies directly as the cube root of y. x = 6 when y = 8. Find the value of x when y = 64. Answer x Question 38 Simplify. (a) $12x^{12} \div 3x^3$ **(b)** $(256y^{256})^{\frac{1}{8}}$ Question 39

Write as a single fraction in its simplest form.

$$\frac{3}{x+2} - \frac{4}{2x-5}$$

$$81^{x} = 3$$

Find the value of *x*.

Answer $x = \dots$ [1]

Answer $y = \dots$ [2]

Simplify.

$$\left(\frac{x^{64}}{16y^{16}}\right)^{\frac{1}{4}}$$

Question 45

Answer $a = \dots$ [3]

Make *a* the subject of the formula $s = ut + \frac{1}{2}at^2$.

Question 46

Write the following as single fractions.

(a)
$$x + \frac{x}{2}$$

.....[3]

Answer(b)

Answer y

(b) $x + \frac{2}{x}$

Question 47

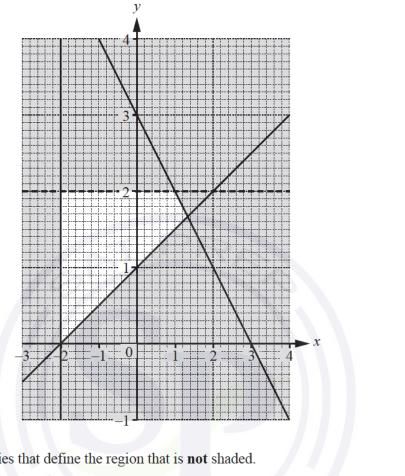
y is directly proportional to the square of (x - 1). y = 63 when x = 4.

Find the value of y when x = 6.

Question 48

Make x the subject of the formula.

 $y = ax^2 + b$


Question 49

V is directly proportional to the cube of (r + 1). When r = 1, V = 24.

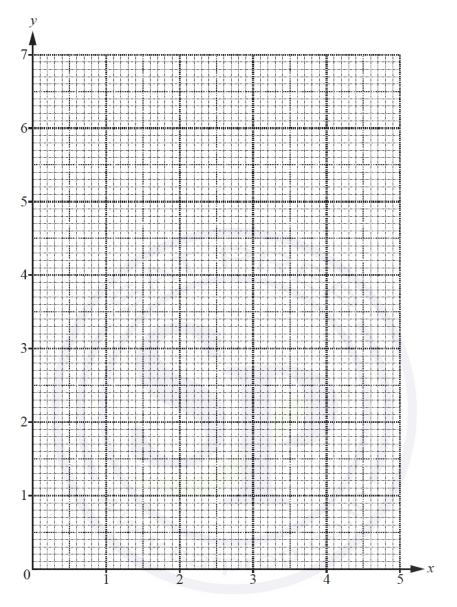
Work out the value of *V* when r = 2.

Answer $V = \dots$ [3]

Answer $x = \dots$ [3]

Find the four inequalities that define the region that is **not** shaded.

	[5]
Question 51	[.]
Simplify.	
(a) $x^3y^4 \times x^5y^3$	
	 [2]
(b) $(3p^2m^5)^3$	
	 [2]


Question 53

Solve the inequality.

$$6n + 3 > 8n$$

.....[2]

y 5 4 R 3 2 1 0 2 3 4 5 1 Find four inequalities that define the region, R, on the grid. _____[4] Question 54 y is directly proportional to $(x + 2)^2$. When x = 8, y = 250. Find *y* when x = 4. *y* =[3] Question 55 Simplify. $(32x^{10})^{\frac{3}{5}}$

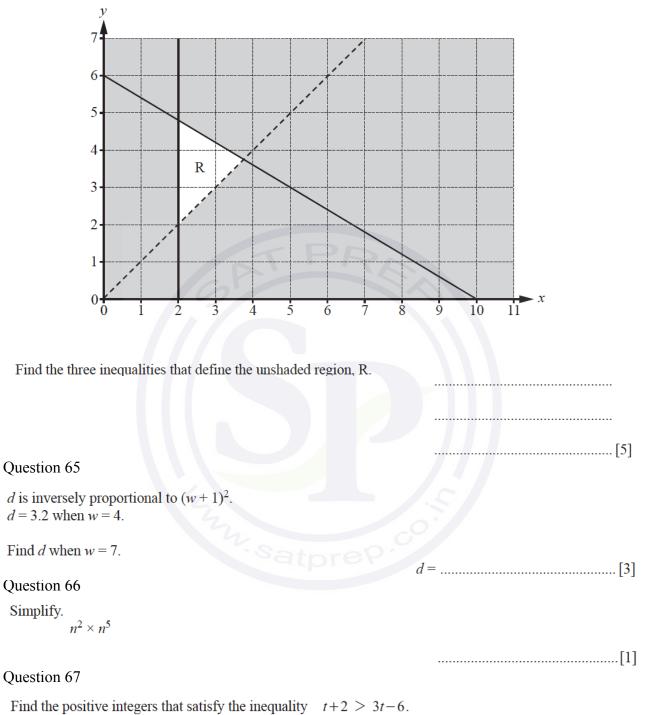
The region R satisfies these inequalities.

 $y \le 2x \qquad \qquad 3x + 4y \ge 12 \qquad \qquad x \le 3$

On the grid, draw and label the region R that satisfies these inequalities. Shade the **unwanted** regions.

Question 57

Make p the subject of the formula.


$$rp + 5 = 3p + 8r$$

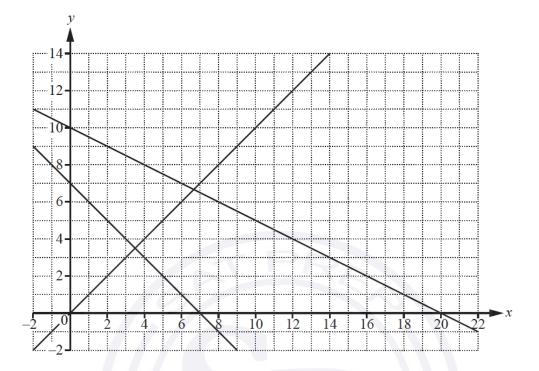
$$p = \dots [3]$$

[5]

Question 58	
Solve the inequality $\frac{x}{3} + 5 > 2$.	
Question 59	[2]
Simplify.	
$\left(\frac{1}{2}x^{\frac{2}{3}}\right)^3$	
	[2]
Question 60	
y is directly proportional to the positive square root of x. When $x = 9$, $y = 12$.	
Find y when $x = \frac{1}{4}$.	
Oraștina (1	<i>y</i> =[3]
Question 61	
Simplify $(16p^{16})^{\frac{1}{4}}$.	[2]
Question 62	[2]
Solve the inequality. $n+7 < 5n-8$	
Question 63	[2]
$y = \frac{qx}{p}$	
Write x in terms of p , q and y .	
	<i>x</i> =[2]

14

.....[3]


Simplify.

 $36y^5 \div 4y^2$

Question 69 NOT TO SCALE R 0 4 Write down the three inequalities that define the unshaded region, R.[4] Question 70 $y = p^2 + qr$ (a) Find y when p = -5, q = 3 and r = -7. *y* =[2] (b) Write p in terms of q, r and y. *p* =[2] Question 71 y is directly proportional to the square root of (x + 2). When x = 7, y = 2. Find *y* when x = 98.

y =[3]

Write as a single fraction. $1 - \frac{2}{p} - \frac{3}{t}$[2] Question 73 Simplify. $(36x^{16})^{\frac{1}{2}}$[2] Question 74 Work out. (a) $t^{24} \div t^4$[1] **(b)** $(x^5)^2$[1] (c) $(81m^8)^{\frac{3}{4}}$[2] Question 75 y is inversely proportional to x^2 When x = 5, y = 16. Find *y* when x = 10.[3] Question 76 Simplify. (a) $6w^0$[1] (b) $5x^3 - 3x^3$[1] (c) $3y^6 \times 5y^{-2}$ Question 77 (a) Solve the inequality. $x + 13 \ge 3x + 7$[2] (b) List the positive integers that satisfy the inequality in part (a).[1]

By shading the unwanted regions of the grid above, find and label the region R that satisfies the following four inequalities.

$$x \ge 0 \qquad x + y \ge 7 \qquad y \ge x \qquad x + 2y \le 20$$
[3]

Question 79

y is inversely proportional to x^2 . When x = 2, y = 8.

Find y in terms of x.

Question 80

Simplify.

$$\left(\frac{8}{a^{12}}\right)^{\frac{1}{3}}$$

.....[2]

Question 81

Make *a* the subject of the formula.

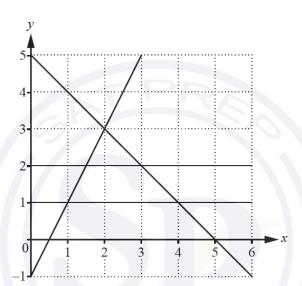
$$x = y + \sqrt{a}$$

a =[2]

(a) Simplify.
$$(16x^{16})^{\frac{3}{4}}$$

$$[2]$$
(h) $2p^{\frac{3}{2}} = 54$
Find the value of *p*.
Question 83
y is inversely proportional to $\sqrt{1+x}$.
When $x = 8$, $y = 2$.
Find *y* when $x = 15$.
Question 84
Write as a single fraction in its simplest form.
Question 85
Make *q* the subject of the formula $p = 2q^2$.
Question 86
Work out.
(a) $125^{\frac{3}{2}}$
(11)
Question 87

Solve the inequality. 3n-11 > 5n-18


.....[2]

Write as a single fraction in its simplest form.

(a)
$$\frac{x^2 - 3x}{x^2 - 9}$$

(b)
$$\frac{3}{x-4} + \frac{2}{2x+5}$$

Question 89

By shading the **unwanted** regions of the grid, find and label the region R that satisfies the following four inequalities.

$$y \leq 2 \qquad y \geq 1 \qquad y \leq 2x - 1 \qquad y \leq 5 - x \qquad [3]$$

Question 90

h is directly proportional to the square root of *p*. h = 5.4 when p = 1.44.

Find h when p = 2.89.

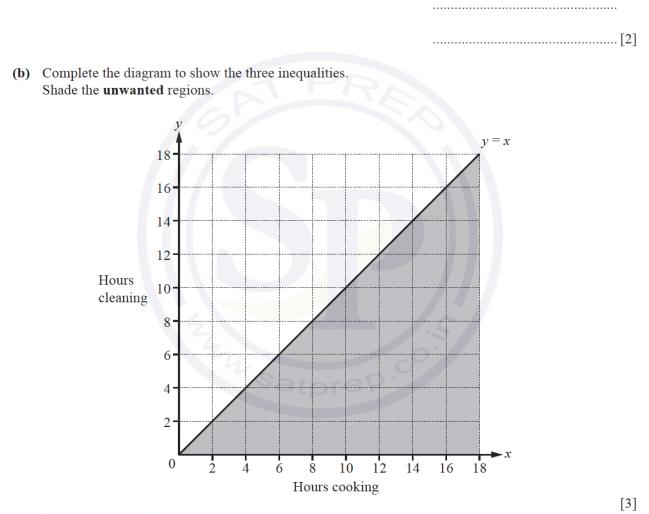
 $h = \dots [3]$

.....[3]

(a)
$$2^r = \frac{1}{16}$$

Find the value of r.

	<i>r</i> =[1]
(b) $3^t = \sqrt[5]{3}$	
Find the value of <i>t</i> .	
Question 92	<i>t</i> =[1]
$x^{\frac{2}{3}} \div x^{-\frac{4}{3}}$	
Question 93	[1]
$\left(\frac{8}{y^6}\right)^{-\frac{1}{3}}$	
	[2]
Question 94	
Make <i>x</i> the subject of the formula. $y = \sqrt{x^2 + 1}$	
Question 05	$x = \dots [3]$
Question 95	
Write as a single fraction in its simplest form. $\frac{x+1}{x} - \frac{y-1}{y}$	
x y	
Question 96	[3]
Find the integers which satisfy the inequality.	


 $-5 < 2n - 1 \le 5$

.....[3]

In one week, Neha spends x hours cooking and y hours cleaning. The time she spends cleaning is at least equal to the time she spends cooking. This can be written as $y \ge x$.

She spends no more than 16 hours in total cooking and cleaning. She spends at least 4 hours cooking.

(a) Write down two more inequalities in x and/or y to show this information.

(c) Neha receives \$10 for each hour she spends cooking and \$8 for each hour she spends cleaning.Work out the largest amount she could receive.

\$.....[2]

Write as a single fraction in its simplest form.

$$\frac{5}{x-3} + \frac{3}{x+7} + \frac{1}{2}$$

v =

.....[4]

.....[1]

.....[1]

.....[3]

 $p = \dots [2]$

.....[2]

Question 99

y is inversely proportional to $(x+1)^2$. y = 50 when x = 0.2.

(a) Write y in terms of x.

(b) Find the value of y when x = 0.5.

Question 100

Simplify.

- (a) $(m^5)^2$
- **(b)** $4x^3y \times 5x^2y$

Question 101

```
y is inversely proportional to x.
When x = 9, y = 8.
```

Find *y* when x = 6.

Question 102

$$2^p = \frac{1}{8^4}$$

Find the value of p.

Question 103

Write as a single fraction in its simplest form.

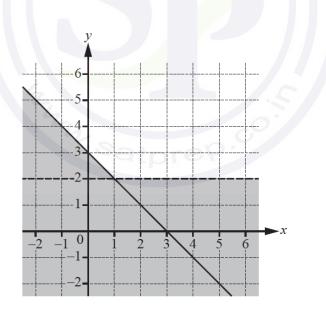
$$\frac{1}{y-1} - \frac{1}{y}$$
[3]

y =

y is directly proportional to $(x-1)^2$. When x = 3, y = 24.

Find *y* when x = 6.

Question 105


- (a) Find the value of $\left(\frac{1}{81}\right)^{-\frac{3}{4}}$.
- **(b)** Simplify. $\sqrt[3]{27t^{27}}$

Question 106

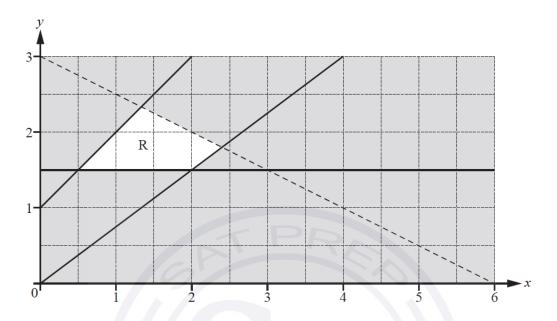
$$A = (2\pi + y)x^2$$

Rearrange the formula to make x the subject.

Question 107

Find the two inequalities that define the region on the grid that is **not** shaded.

.....[3]


y =[3]

.....[1]

.....[2]

.....[2]

x =

There are four inequalities that define the region R. One of these is $y \le x + 1$.

Find the other three inequalities.

Question 109

y is directly proportional to $(x-1)^2$. When x = 5, y = 4.

Find *y* when x = 7.

Question 110

Solve the inequality.

3n-5 > 17+8n

y =[3]

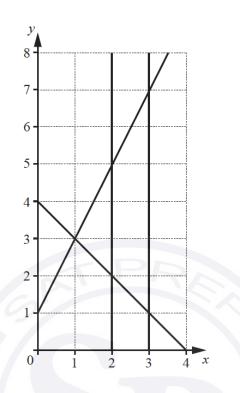
.....[4]

.....[2]

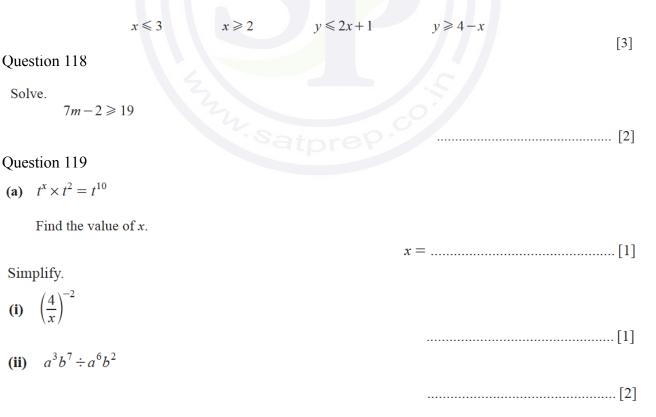
$$3^{-q} \times \frac{1}{27} = 81$$

Find the value of q.

q =[2]


Question 112

Write as a single fraction in its simplest form.


$\frac{1}{x}$ - $\frac{1}{x}$	$\frac{1}{x+1}$
	PR [3]
Question 113	
y is directly proportional to the square root of x. When $x = 9$, $y = 6$.	
Find y when $x = 25$.	
	<i>y</i> =[3]
Question 114	
(a) Simplify $\frac{w^2}{w^3}$.	
(b) Simplify $(3w^3)^3$.	[1]
Question 115	prep.
$A = \pi r l + \pi r^2$	
Rearrange this formula to make <i>l</i> the subject.	
Oresting 11(<i>l</i> =[2]
Question 116	

Make *m* the subject of the formula.

$$x = \frac{3m}{2-m}$$

By shading the **unwanted** regions of the grid, find and label the region R that satisfies the following four inequalities.

Write as a single fraction in its simplest form.

$$\frac{x-5}{3} + \frac{6}{x+2}$$

Question 121

Find the integer values of *n* that satisfy the inequality $15 \le 4n < 28$.

Question 122

y is inversely proportional to x^3 . When x = 2, y = 0.5.

Find y in terms of x.

Question 123

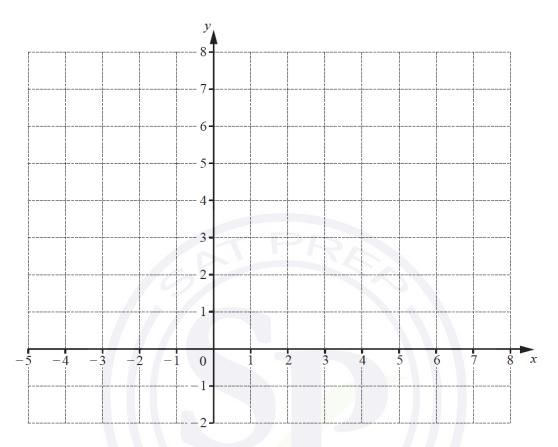
- (a) Find the value of *n* when $5^n = \frac{1}{125}$
- **(b)** Simplify $\left(\frac{64}{m^3}\right)^{-\frac{3}{2}}$

Question 124

y is directly proportional to (x-4). When x = 16, y = 3.

Find y in terms of x.

v = [2]


......[2]

.....[3]

.....[3]

- *y* =[2]
- [2]
- .5

v =

By shading the **unwanted** regions of the grid, draw and label the region R which satisfies the following three inequalities.

$$y \le 2$$
 $x < 3$ $y \le x+4$ [5]

Question 126

y is inversely proportional to the square of (x+1). y = 0.875 when x = 1.

Find *y* when x = 4.

Question 127

Complete this statement with an expression in terms of m.

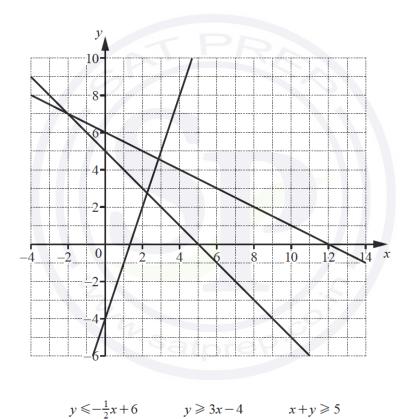
$$18m^{3} + 9m^{2} + 14m + 7 = (9m^{2} + 7)(\dots)$$
[2]

y = [3]

Rearrange this formula to make m the subject.

$$P = \frac{k+m}{m}$$

Question 129


Write as a single fraction in its simplest form.

$$\frac{2x}{x+3} + \frac{x+3}{x-5}$$

.....[3]

.....[4]

Question 130

- (a) By shading the **unwanted** regions of the grid, find and label the region *R* that satisfies the three inequalities. [2]
- (b) Find the largest value of x+y in the region R, where x and y are integers.

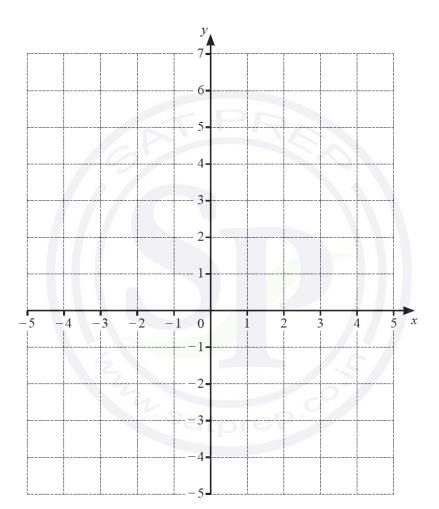
Simplify.

(a)
$$5m^2 \times 2m^3$$

Question 132

Write as a single fraction in its simplest form.

$\frac{1}{x+2} - \frac{2}{3x-1}$	
Question 133	[3]
(a) Simplify $(81y^{16})^{\frac{3}{4}}$.	
	[2]
(b) $2^3 = 4^p$	
Find the value of p .	
Question 134	$p = \dots $ [1]
<i>y</i> is inversely proportional to the square root of $(x + 1)$. When $x = 8$, $y = 2$.	
Find y when $x = 99$.	
Question 135	y = [3]
Simplify.	
(a) $t^{21} \div t^7$	
	[1]
(b) $(u^5)^5$	[1]


t is inversely proportional to the square of (x + 1). When x = 2, t = 5.

- (a) Write t in terms of x.
- (b) When t = 1.8, find the positive value of x.

Question 137

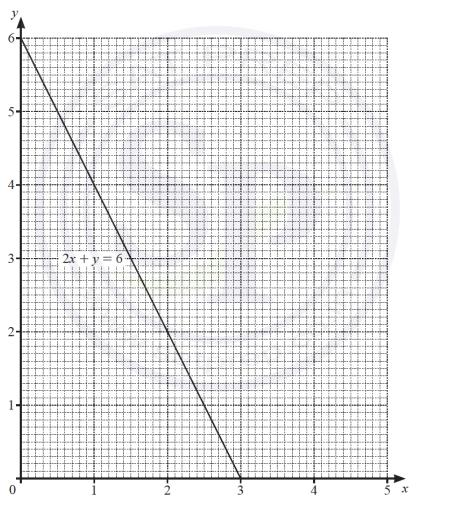
By shading the **unwanted** regions on the grid, draw and label the region R that satisfies the following inequalities.

$$-2 < x \le 3 \qquad \qquad y \le x+3$$

[4]

(a) $3^{-2} \times 3^x = 81$

Find the value of x.


(b)
$$x^{-\frac{1}{3}} = 32x^{-2}$$

Find the value of x.

Question 139

 $x = \dots \qquad [3]$

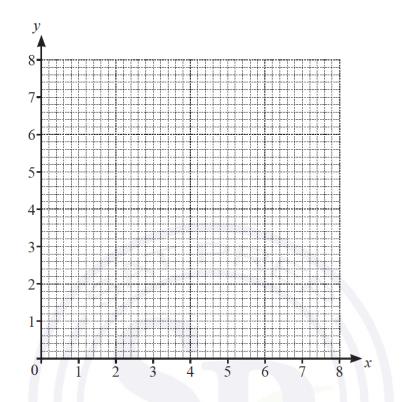
By shading the **unwanted** regions of the grid, find and label the region R that satisfies the following inequalities.

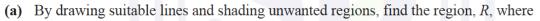
$$y \leqslant 5 \qquad 2x + y \ge 6 \qquad y \ge x + 1 \tag{4}$$

Solve the inequality.

 $\frac{x}{2} - 13 > 12 + 3x$

Question 141	[2]
Write $\frac{x}{2} - \frac{2x+4}{x+1}$ as a single fraction, in its simplest form.	
Question 142	[3]
y is inversely proportional to x^2 . When $x = 4, y = 2$.	
Find y when $x = \frac{1}{2}$.	<i>y</i> =
Question 143 $P = 2r + \pi r$	y —
Rearrange the formula to write r in terms of P and π .	
Question 144	r =
Simplify. $\left(\frac{x^3}{8}\right)^{-\frac{4}{3}}$	[2]
Question 145	p.00'
Simplify $2x^3 \times 3x^2$.	[0]
Question 146	[2]
<i>y</i> is directly proportional to the cube root of $(x+3)$. When $x = 5$, $y = \frac{2}{3}$.	
Find <i>y</i> when $x = 24$.	<i>y</i> =[3]


Question 147 Simplify.


- (a) $p^2 \times p^4$
- (b) $m^{15} \div m^5$ [1] (c) $(k^3)^5$
- $\sqrt[3]{y^2} = \sqrt[6]{x}$ and $y = \sqrt[n]{x}$.

Find the value of *n*.

Question 148

$$x \ge 2, \quad y \ge x \quad \text{and} \quad 2x + y \le 8.$$
 [5]

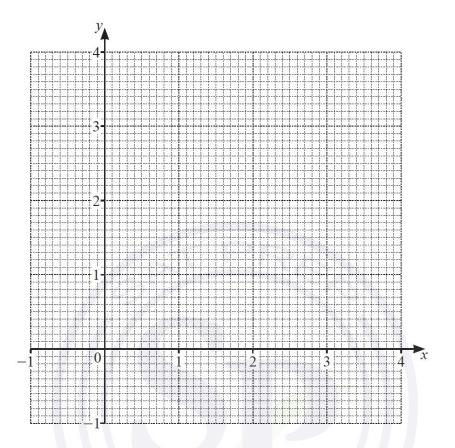
(b) Find the largest value of x+y in the region R.

Question 150

p is directly proportional to $(q+2)^2$. When q = 1, p = 1.

Find p when q = 10.

p = [3]


Question 151	
Simplify.	
(a) $(5x^4)^3$	
	[2]
(b) $(256x^{256})^{\frac{3}{8}}$	
0 (15)	
Question 152 Since $152 = 0.8 \times 1.4$	
Simplify $8t^8 \div 4t^4$.	[2]
Question 153	[2]
<i>m</i> is inversely proportional to the square of $(p-1)$. When $p = 4, m = 5$.	
Find m when $p = 6$.	
	<i>m</i> =
Question 154	
y is inversely proportional to the square root of x. When $y = 7$, $x = 2.25$.	
Write y in terms of x .	
Question 155	y =[2]
(a) Simplify. $(4xy^2)^3$	
	[2]
(b) $25 = 125^k$	
Find the value of <i>k</i> .	
	$k = \dots [1]$
Question 156	μ — [1]
wis increasely more actional to the accuracy must of a	

y is inversely proportional to the square root of x. When y = 7, x = 2.25.

Write y in terms of x.

(a) Simplify.
$$(4xy^2)^3$$

(b)
$$25 = 125^k$$

Find the value of k.
Question 158
Simplify. $a^2 \div a^6$
Question 159
Simplify. $2x^2 \times 5x^5$
Question 160
Simplify $(343x^9)^{\frac{2}{3}}$.
[2]

The region R satisfies these three inequalities.

 $y > 1 \qquad y < 2x + 2 \qquad x + y \leq 3$

By drawing three suitable lines, and shading unwanted regions, find and label the region *R*. [5]

Question 162

z is inversely proportional to the square of (y-2). When y = 5, z = 9.

Find z in terms of y.

x is an integer and $-3 \le 2x - 1 < 3$.

Find the values of x.

Question 164

Simplify $3x^3 \times 4x^4$.

Question 165

The force of attraction, F Newtons, between two magnets is inversely proportional to the square of the distance, d cm, between the magnets.

When d = 1.5, F = 48.

- (a) Find an expression for F in terms of d.
- (b) When the distance between the two magnets is doubled the new force is *n* times the original force.

F =

Work out the value of *n*.

n = [1]

Question 166

y is directly proportional to the square root of (x-3). When x = 28, y = 20.

Find y when x = 39.

y = [3]

(a) Simplify fully. $(4ab^5)^4$

(c)
$$8l^2 \div 3^t = 9$$

Find the value of *t*.
Question 168
Simplify fully.
 $(243y^{10})^{\frac{3}{5}}$ [2]

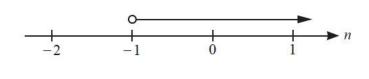
Question 169 Simplify.

 $32g^{32} \div 4g^4$

- (a) Write 243×27^{2n} as a single power of 3 in terms of *n*.
- $k = 2 \times 3^2 \times p^3$, where p is a prime number greater than 3. (b) Write $6k^2$ as a product of prime factors in terms of *p*. Question 171 (a) Simplify. $\frac{\frac{2}{x^3}}{\frac{8}{x^3}}$[1] **(b)** $16 = 64^k$ Find the value of k. k =(c) Solve. $3^{3x} \times \left(\frac{1}{9}\right)^{4-3x} = 3$[3] x =Question 172 y is inversely proportional to the square root of (x-2). When x = 4.25, y = 12. Find x when y = 3.

x = [3]

y is inversely proportional to the square root of (x + 4). When x = 5, y = 2.


Find *y* when x = 77.

220

Question 174

Mrs Kohli buys a jacket, 2 shirts and a hat. The jacket costs \$*x*. The shirts each cost \$24 less than the jacket and the hat costs \$16 less than the jacket. Mrs Kohli spends exactly \$100.

Write down an equation in terms of x . Solve this equation to find the cost of the jacket.		
	\$[3]	
Question 175		
(a) Simplify $h^2 \times h^5$.		
	[1]	
(b) Simplify $\left(\frac{7}{x}\right)^{-3}$.		
(c) $a^8 \div a^p = a^2$		
Find the value of <i>p</i> .		
rind the value of p.		
	p = [1]	

Write down the inequality, in terms of n, shown by the number line.

Question 177

$$m^{-\frac{1}{4}} = 27m^{-1}$$

Find the value of m.

y is	ation 178 inversely proportional to the cube of $(x-1)$. 9.45 when $x = 3$.	<i>m</i> =	[3]
Fine	dy when $x = 4$.		
		<i>y</i> =	[3]
	plify.		
	$y^3 \div y^5$.5	[1]
(b)	7x ⁰ SatoreP		[1]
Ques	ation 180		
(a)	y is directly proportional to the cube root of $(x+1)$. When $x = 7$, $y = 1$.		
	Find the value of y when $x = 124$.		
		<i>y</i> =	[3]
(b)	F is inversely proportional to the square of d .		
	Explain what happens to F when d is halved.		
			[1]

Find the value of p when $6^p \times 6^4 = 6^{28}$.

p = [1]

Question 182 w is proportional to the square root of y. y is inversely proportional to x. When x = 4, y = 16 and w = 8.

Find w in terms of x.

 $w = \dots \qquad [3]$ Question 183 $x^{2} + 8x + 10 = (x + p)^{2} + q$ (a) Find the value of p and the value of q. p q =(b) Solve. $x^2 + 8x + 10 = 30$ x =Question 184 Simplify fully $(216y^{216})^{\frac{2}{3}}$. Question 185 $4^{x} = \frac{1}{64}$ Find the value of x.

Question 186 Write as a single fraction in its simplest form.

$$\frac{4}{2x-3} \div \frac{2x^2 + 14x}{2x^2 + 11x - 21}$$

......[4]

y is proportional to the square of (x-7). When x = 12, y = 2.

Find *y* when x = 17.

y = [3]

Question 188

Solve $\frac{4}{x+1} + \frac{2}{2x-5} = 3.$

You must show all your working.

 $x = \dots$ or $x = \dots$ [7] Question 189 Simplify fully. (a) $(81x^{16})^{\frac{3}{4}}$ **(b)** $\left(\frac{1}{y^2}\right)^{-\frac{1}{2}}$ Question 190 y is inversely proportional to \sqrt{x} and x is directly proportional to w^2 When w = 12, y = 12. Find y in terms of w. Question 191 Simplify $(3125x^{3125})^{\frac{1}{5}}$. Question 192 Simplify $18x^{18} \div 9x^9$.

Question 193 Simplify. $\frac{5x^2 - 19x + 12}{x^2 - 9}$	
Question 194 y is inversely proportional to x^2 . When $x = 3, y = 2$.	[4]
Find <i>y</i> when $x = 2$.	
	<i>y</i> =[3]
Question 195	
Simplify $(3125w^{3125})^{\frac{1}{5}}$.	
Question 196	
Simplify. $\frac{2x^2 + 5x - 12}{4x^2 - 9}$	
Question 197	
y is inversely proportional to the cube root of $(x + 5)$. When $x = 3$, $y = 12$.	
Find y when $x = 22$.	
	<i>y</i> =[3]
Question 198	

Question 198 Rearrange the formula to make *m* the subject.

$$R = \frac{2(m-k)}{m}$$

m =[4]

Write as a single fraction in its simplest form.

$$\frac{5}{3x+2} + \frac{4}{2x-1}$$

Question 200

m is inversely proportional to the square of (t+2). m = 0.64 when t = 3.

Find *m* when t = 8.

Question 201

Make *x* the subject of the formula.

$$c = \frac{3x}{2x-5}$$

 $x = \dots \qquad [4]$

Question 202

y is directly proportional to the square of (x + 3). When x = 2, y = 5.

Find *y* when x = 1.

y =[3]

.....[3]