Extended Mathematics

Topic : Geometry
Year :May 2013 -May 2022
Paper -2
Questions

Question 1

6
$3 \quad$ M2 for $3 \times \sqrt[3]{\frac{288 \pi}{36 \pi}}$
or M1 for $3 \times \sqrt[3]{\frac{288 \pi}{36 \pi}}$ or $3 \times \sqrt[3]{\frac{36 \pi}{288 \pi}}$

Question 2

(a)	95
(b)	
	77

B1 for [angle] $A C D=58^{\circ}$ or [angle] $B A C=19^{\circ}$ or [angle] $A N B=103^{\circ}$ or [angle] $C A E=66^{\circ}$

Question 3
40.3 or 40.31 to 40.32

Question 4
(a)
(b)

Equidistant from A and B (or C and D or $A D$ and $B C$)	1

Question 5

105

Question 6
(a) 24
(b) 24

Question 6
(b) 24

2 M1 for 180-55-50
or B1 for 55 or 75 seen in the correct angle inside the triangle

$\mathbf{2}$	M1 for $M O C=48$
M1 for $A C M=66$	
or	
B1 for 48 - their $\mathbf{(a)}$	

Question 7

52
Question 8
decagon
Question 9
(a) 110
(b) 79

Question 10
125

B1 for 55 or 125 in any other correct position on diagram or M1 for 180-55

Question 11
48

Question 12
(a)
(b)
74
8.69 69

Question 13 576
$2 \mid$ M1 for 15^{2} or $\left(\frac{1}{15}\right)^{2}$ or $\frac{1}{15^{2}}$ or $\sqrt{10800}$ or $\frac{1}{\sqrt{10800}}$

Question 14
(a) \mid correct working

2
$\left\lvert\, \begin{aligned} & \text { B2 for } \sqrt[3]{\frac{1}{8}}=\frac{1}{2} \text { or } \sqrt[3]{8}=2 \text { AND } \frac{10}{2}=5 \text { oe and } \frac{4}{2}=2 \\ & \text { oe } \\ & \text { or } \\ & \text { B1 for } \sqrt[3]{\frac{1}{8}} \text { or } \sqrt[3]{8} \text { or } 8=2^{3} \text { or } \frac{1}{8}=\left(\frac{1}{2}\right)^{3}\end{aligned}\right.$
(b) 147 or 146.5 to $146.6 \ldots$

$4 |$| M3 for $\frac{7}{8} \times \frac{1}{3} \times \pi \times 4^{2} \times 10$ |
| :--- |
| or |
| M1 for $\frac{1}{3} \times \pi \times 4^{2} \times 10$ |
| and |
| M1 for $\frac{1}{3} \times \pi \times 2^{2} \times 5$ |
| and |
| M1 for subtracting their volumes |

Question 15
(a)
(b) 35
Questio 16

160

Question 17
108
Angle at centre is twice angle at circumference oe
Question 18
9.13 or 9.127 to 9.1271

$$
3 \begin{array}{l|l}
3 & \text { M2 for } 180-\frac{360}{18} \text { or } \frac{180 \times(18-2)}{18} \text { oe } \\
\text { or M1 for } 180 \times(18-2) \text { or } \frac{360}{18}
\end{array}
$$

Question 19

(a)	35
(b)	10.8

$\mathbf{2}$	$\begin{array}{l}\text { M1 for }[Z=] 180-88-57 \text { or } V W X=57 \\ \text { or } Y Z X=35\end{array}$
$\mathbf{2}$	M1 for $\frac{A C}{7.2}=\frac{12.6}{8.4} \mathrm{oe}$

Question 20

(a)	68
(b)	

1
2 M1 for $\frac{360}{n}=24$ or $(n-2) 180=156 n$

Question 21

$$
37
$$

Question 22
Parallel
Same length
Question 23

(a)	7.5
(b)	12 cao

$2 \left\lvert\, \begin{aligned} & \mathbf{M} \\ & \text { or } \\ & \text { in }\end{aligned}\right.$

Question 24
6

Question 25
4140
$3 \quad$ M2 for $4.5 \times \sqrt[3]{\frac{128}{54}}$ oe or better
M1 for $\sqrt[3]{\frac{128}{54}}$ or $\sqrt[3]{\frac{54}{128}}$ oe or $\frac{54}{128}=\left(\frac{4.5}{x}\right)^{3}$ oe

$2 |$| M1 for $(25-2) \times 180$ or $25 \times\left(180-\frac{360}{25}\right)$ |
| :--- | :--- |

Question 26

(a)	12
(b)	12.8

$\mathbf{2}$	M1 for $\frac{7.2}{x}=\frac{15}{25}$ oe or better eg $7.2 \times \frac{25}{15}$
$\mathbf{3}$	$\mathbf{M 2}$ for $16 \times \sqrt[3]{\frac{192}{375}}$ oe
or	
M1 for $\sqrt[3]{\frac{192}{375}}$ or $\sqrt[3]{\frac{375}{192}}$ oe or $\left(\frac{16}{y}\right)^{3}=\frac{375}{192}$ oe	

Question 27
6.24 or 6.244 to 6.245

Question 28
0.3

Question 29

$3 |$| $\mathbf{3} 2$ for $\sqrt{8^{2}-5^{2}}$ |
| :--- | :--- |
| or M1 for $8^{2}=5^{2}+x^{2}$ or better |

2 M1 for $\frac{k \times 50000 \times 50000}{100000 \times 100000}$ oe
If zero scored $\mathbf{S C 1}$ for figs 3

Parallelogram
Question 30

(a)	47
(b)	117
(c)	244
Question	31

64000

Question 32
9.1 oe
$2 \quad$ M1 for $\frac{5.2}{P Q}=\frac{12.4}{21.7}$ oe

Question 33
(a)
(b)

$$
\begin{array}{|l|l}
\mathbf{2} & \text { M1 for } \frac{9}{k}=\frac{6+4.8}{6} \text { oe } \\
\mathbf{3} & \text { M2 for } \sqrt[3]{\frac{2592}{1500}} \times 20 \text { oe } \\
\text { or M1 for } \sqrt[3]{\frac{2592}{1500}} \text { or } \sqrt[3]{\frac{1500}{2592}}
\end{array}
$$

Question 34

(a)	72
(b)	123
Question 35	

$$
110
$$

Question 36
62 on answer line or clearly identified as $\angle A C B$

and

two correct supporting reasons

Question 37

3 B2 for $A D C=25$
or $\mathbf{B 1}$ for $A E C=135$ or $C A E=25$

4 B1 for $\angle A O B=124$ or for their $\angle A O B \div 2$
or
other appropriate correct angle one step from $<A C B$
B1 for any correct reason
e.g. isosceles triangle or angles in triangle $=180$

B1 for a different correct reason leading directly to $<A C B$
e.g. angle at circumference is $1 / 2$ angle at centre oe B1 for 62

45

Question 38

460

Question 39
145

M2 for $(6-2) \times 180-5 \times 115$
or M1 for $(6-2) \times 180$
Alt method
M2 for $180-(360-5 \times(180-115))$
or M1 for $360-5 \times(180-115)$

Question 40

(a)	112
(b)	56

Question 41
[$a=] 70$
[$b=$] 40
2
B1 for each

Question 42

(a)	
(b)	
9	

$|$| $\mathbf{1}$ | |
| :--- | :--- |
| $\mathbf{2}$ | $\mathbf{M 1}$ for $360 \div 40$ oe
 or |
| $\frac{180(n-2)}{n}=140$ oe | |

Question 43
B
Question 44
46.3 or 46.29 to 46.30

Question 45
25

Question 46
6.35 or 6.349 to 6.350
$3 \quad$ M2 for $\frac{8}{h}=\sqrt[3]{\frac{0.5}{0.25}}$ oe
or M1 for $\left(\frac{8}{h}\right)^{3}=\frac{0.5}{0.25}$ oe
or for $\sqrt[3]{\frac{0.5}{0.25}}$ or $\sqrt[3]{\frac{0.25}{0.5}}$ oe

Question 47

$$
[x=] 55
$$

$[y=] 125$
1
1FT correct or FT (180 - their $x)$

Question 48
42
2 M1 for $Q=90$ or $W P Q=90-42$ or $W P Q=48$
Question 49

150	3

3 M2 for $\left(\frac{1}{0.512}\right)^{\frac{2}{3}}$ oe or $\left(\frac{0.512}{1}\right)^{\frac{2}{3}}$ oe or M1 for scale factor $\left(\frac{1}{0.512}\right)^{\frac{1}{3}}$ oe or $\left(\frac{0.512}{[1]}\right)^{\frac{1}{3}}$ oe
Question 50

(a)	10	$\mathbf{2}$	M1 for $5 x+6 x+7 x=180$ oe or $\frac{180}{5+6+7}$ or B1 for angles 50,60 and 70
(b)	70	$\mathbf{1 F T}$	FT $7 \times$ their (\boldsymbol{a}) provided $0<$ their answer <180

Question 51

$[w=] 40$	$\mathbf{1}$	
$[x=] 95$	$\mathbf{2}$	B1 for angle $A B C=85$ or their $w+$ their $C B D=85$
$[y=] 45$	$\mathbf{2}$	B1 for angle $C B D=45$ or angle $A C D=$ their w or $y=$ their $C B D$

Question 52

(a)	Similar	$\mathbf{1}$	
(b)	5.6	$\mathbf{2}$	M1 for $\frac{4}{8}=\frac{2.8}{A X}$ oe
(c)	$\frac{y}{4}$ oe	$\mathbf{1}$	

Question 53

110	$\mathbf{1}$	
70	$\mathbf{1}$	

Question 54

(a)	$[u=] 35$	$\mathbf{1}$					
	$[v=] 110$	$\mathbf{2}$	$\mathbf{B 1}$ for $A C B$ or $A D B=35$	$⿻$	(b)	75	$\mathbf{2}$
:---	:---	:---					
B1 for 150							
		or M1 for $\frac{360-210}{2}$					

Question 55
165

3 M2 for $\frac{360}{8}+\frac{360}{3}$ oe or M1 for [exterior angle of octagon $=$] $\frac{360}{8}$ or [exterior angle of triangle $=] \frac{360}{3}$ oe

Question 56
76.9 or 76.94 to 76.95

Question 57
[$w=] 54$
[$x=$] 126
$[y=] 60$

Question 58

3 M2 for $90 \div \sqrt[3]{\frac{160}{100}}$ or $90 \times \sqrt[3]{\frac{100}{160}}$
or $\mathbf{M 1}$ for $\sqrt[3]{\frac{160}{100}}$ soi or $\sqrt[3]{\frac{100}{160}}$ soi or
$\left(\frac{h}{90}\right)^{3}=\frac{100}{160} \mathrm{oe}$

3
B2 for $x=6$
or
M1 for $29 x+x=180$ oe and M1 for $360 \div 6$ or $360 \div$ their x or $180(n-2)=$ their $x \times 29 n$

3 B1 for [$w=$] 54
B1 for $[x=] 126$
If $\mathbf{B 0} \mathbf{B 0}$ for first two B marks then $\mathbf{B 1}$ for
their $w+$ their $x=180$
B1 for $[y=] 60$ or for
their $w+$ their $x+$ their $y=240$

60

Question 59

$$
\begin{aligned}
& {[x=] 60} \\
& {[y=] 40}
\end{aligned}
$$

B1 for each or for two numbers that add to 100

Question 60

(a)	1480	$\mathbf{1}$	
(b)	30	$\mathbf{3}$	M2 for $10 \times \sqrt{\frac{3960}{440}}$ or $10 \div \sqrt{\frac{440}{3960}}$
	or M1 for $\sqrt{\frac{3960}{440}}$ or $\sqrt{\frac{440}{3960}}$ or $\left(\frac{h}{10}\right)^{2}=\frac{3960}{440}$ oe		

Question 61
54
3 M2 for $\frac{180 \times(5-2)}{5}$ or $180-\frac{360}{5}$
or M1 for $180 \times(5-2)$ or $\frac{360}{5}$
Question 62
101
Question 63
63
corresponding [angles]|
59
angles [in a] triangle [add up to]
180 oe
Question 64

(a)	similar	$\mathbf{1}$	
(b)	11.61	$\mathbf{3}$	M2 for $8.6 \times \sqrt{\frac{65.61}{36}}$
		or M1 for $\sqrt{\frac{65.61}{36}}$ or $\sqrt{\frac{36}{65.61}}$ 	or $\left(\frac{8.6}{B X}\right)^{2}=\frac{36}{65.61}$ oe

Question 65

(a)	5	$\mathbf{1}$	
(b)	1	$\mathbf{1}$	

Question 66

(a)	1.8	$\mathbf{2}$	M1 for $\frac{10}{8}=\frac{9}{A P}$ oe
(b)	10.3 or 10.31 to 10.32	$\mathbf{3}$	M2 for $13 \times \sqrt[3]{\frac{0.25}{0.5}}$ oe
		or M1 for $\sqrt[3]{\frac{0.5}{0.25}}$ oe or $\sqrt[3]{\frac{0.25}{0.5}}$ oe or $\frac{0.5}{0.25}=\left(\frac{13}{h}\right)^{3}$ oe	

Question 67

$$
\begin{aligned}
& {[w=] 95} \\
& {[x=] 85} \\
& {[y=] 48}
\end{aligned}
$$

B1 for each
If $\mathbf{B 0}$ scored for x and for y,
SC1 for their $x+$ their $y=133$

Question 68

7.5 nfww

Question 69

80

Question 70
94

3 M2 for $\left[O B^{2}=\right]\left(\frac{12}{2}\right)^{2}+4.5^{2}$ oe or $\mathbf{B 1}$ for recognition of right angle

2
M1 for $\left(\frac{12}{3}\right)^{2}$ or $\left(\frac{3}{12}\right)^{2}$ oe or $\frac{3^{2}}{5}=\frac{12^{2}}{A}$ oe

Question 73

Congruent
Question 74

1

3
B1 for angle $P B C=52$
B1 for $A P O$ or $B P C=55$ or $A P C$ or $O P B=125$
Question 75

Question 76
36
4 B1 for angle $K N L$ or $M N J=76$
B2 for angle $L J M$ or $L K M=68$ or B1 for angle $L M J=90$ or $L K J=90$ or $L C M=136$
($C=$ centre)
Question 77
4
Question 78
2.1

1
$2 \mid \mathbf{M 1}$ for $\frac{33.6 \times 25000^{2}}{100000^{2}}$ oe or answer figs 21
Question 79

(a)	Trapezium	$\mathbf{1}$	
(b)	Obtuse	$\mathbf{1}$	

Question 80

1500
3
M2 for $12 \div\left(\frac{20}{100}\right)^{3}$ oe
or M1 for $\left(\frac{20}{100}\right)^{3}$ or $\left(\frac{100}{20}\right)^{3}$ oe
OR
M1 for $\div 20^{3}$ oe
M1 for $\times 100^{3}$ oe
Question 81
100
Question 82

(a)	$180-4 x$	$\mathbf{1}$	
(b)	$90-2 x$	$\mathbf{1}$	FT their $(\mathbf{a}) \div 2$ in its simplest form dep on expression in x in (a)
(c)	$90+x$	$\mathbf{2}$	FT $180-$ their $(\mathbf{b})-x$ oe dep on expression in x in (\mathbf{b}) then fully simplified M1 for $180-(90-2 x+x)$ oe or $180-$ their $(\mathbf{b})-x$ oe dep on expression in x in (b)

Question 83

Question 84

352

90

2| $\mathbf{M 1}$ for reflex angle $=2 \times 130$ or opposite angle of a cyclic quadrilateral shown $=50$

3 B2 for figs 352
or M1 for $\left(\frac{75}{30}\right)^{3}$ oe or $\left(\frac{30}{75}\right)^{3}$ oe OR
M2 for $5.5 \times\left(\frac{30}{75}\right)^{3} \times 1000$

Question 85
49000
3 M1 for $4.9 \times(10000000)^{2}$
M1 for $\div(100000)^{2}$
OR
M1 for $1 \mathrm{~cm}: 100 \mathrm{~km}$
M1 for $4.9 \times(\text { their } 100)^{2}$
OR
M2 for $(\sqrt{4.9} \times 10000000 \div 100000)^{2}$
or M1 for $\sqrt{4.9} \times 10000000 \div 100000$
Question 86

116°	B1	
alternate segment theorem	B1	
angles in opposite segments are supplementary or cyclic quadrilateral or angles at a point on a straight line	B1	

Question 87
165

Question 88
5
3 M2 for $8 \times \sqrt{\frac{52.5}{134.4}}$ oe
or M1 for $\sqrt{\frac{52.5}{134.4}}$ or $\sqrt{\frac{134.4}{52.5}}$ oe
Question 89
116
Question 90

(a)	49	$\mathbf{1}$	
(b)	98	$\mathbf{1}$	FT $2 \times$ their $\mathbf{(a)}$
(c)	20	$\mathbf{1}$	
(d)	70	$\mathbf{1}$	FT 90 - their $\mathbf{(c)}$

Question 91

25
2
B1 for 130 seen
or M1 for $50 \div 2$

Question 92
2
Question 93
Complete explanation with geometrical reasons
$1 \mid$

3 B1 for $R Q P=x^{\circ} Q R$ bisects angle $P Q B$
$\mathbf{B 1}$ for $R P Q=x^{\circ}$ alternate segment theorem
B1 for triangle $P Q R$ has two equal angles both less than 60 (so can't be equilateral) so must be isosceles

Question 94
16.6 or $16.64 \ldots$

5
M2 for $21 \times \frac{18}{13.5}=[A C]$ oe or M1 for scale factor $\frac{13.5}{18}$ or $\frac{18}{13.5}$ oe soi

Then Pythagoras method:
and M2 for $\sqrt{28^{2}+18^{2}}[\div 2]$

$$
\text { or } \sqrt{(\text { their } A C)^{2}+18^{2}}[\div 2]
$$

or M1 for $A D^{2}=28^{2}+18^{2}$

$$
\text { or } A D^{2}=(\text { their } A C)^{2}+18^{2}
$$

Question 95

$$
\begin{aligned}
& {[x=] 55} \\
& {[y=] 24}
\end{aligned}
$$

| $\mathbf{2}$ | $\mathbf{B} 1$ for each |
| ---: | ---: | ---: |

Question 96
7
3 M2 for $166+2 x=180$ or better or M1 for $97-3 x+69+5 x=180$ oe

Question 97

(a)	Kite	$\mathbf{1}$	
(b)	80	$\mathbf{2}$	M1 for $(180-82-58)$ or better

Question 98

Accurate triangle with correct construction arcs

2 B1 for accurate triangle with no/incorrect arcs or $\mathbf{S C} 1$ for accurate triangle with arcs with sides interchanged

Question 99
171
2 M1 for $180-(360 \div 40)$ oe or $\frac{(40-2) \times 180}{40}$ oe

Question 100
107
4 B2 for $x=40$
or M1 for $2 x+x+60=180$ oe

M1 for correctly substituting their x into $4 x-87+y=180$ oe
or $4 x-87+x+60+y+2 x=360$ oe
Question 101
15

Question 102

107
$4 \quad \mathbf{B} 2$ for $x=40$
or M1 for $2 x+x+60=180$ oe
M1 for correctly substituting their x into $4 x-87+y=180$ oe
or $4 x-87+x+60+y+2 x=360$ oe

Question 103

Correct triangle constructed with $A C=5 \mathrm{~cm}$ and $B C=6.5 \mathrm{~cm}$ and intersecting arcs

3 B2 for correct triangle with no/incorrect arcs
or SC2 for accurate triangle with arcs but sides interchanged
or B1 for $6.5[\mathrm{~cm}]$ or $5[\mathrm{~cm}]$ soi

Question 104

(a)	1.84	$\mathbf{2}$	M1 for $\frac{1.61}{x}=\frac{2.8}{3.2}$ oe
(b)	9.20 or 9.204 to 9.205	$\mathbf{3}$	M2 for $11.5 \times \sqrt[3]{\frac{4}{7.8}}$ oe
or M1 for $\sqrt[3]{\frac{4}{7.8}}$ or $\sqrt[3]{\frac{7.8}{4}}$ oe seen			
or for $\frac{11.5^{3}}{x^{3}}=\frac{7.8}{4}$ oe			

Question 105
36
$2 \mathbf{M 1}$ for angle $E H G=72$
or for angle $E H F=47$ and $G H F=25$

Question 106

(a)	80	$\mathbf{2}$	B1 for angle $P Q T=50$
(b)	$[w=] 68$ $[x=] 36$	$\mathbf{3}$	B1 for 68 B2 for 36 or M1 for $3 x+2 x+68+112=360$ or better

Question 107

i(a)	Similar	$\mathbf{1}$	
(b)	4	$\mathbf{2}$	M1 for $\frac{12}{6}=\frac{8}{B X}$ oe or better
If $\mathbf{0}$ scored $\mathbf{S C 1}$ for answer 3.5			

(c)(i)	6.7265 or 6.73 or 6.726 to 6.727	$\mathbf{2}$	M1 for scale factor 2^{2} or $\left(\frac{1}{2}\right)^{2}$ oe soi
(c)(ii)	13.453 or 13.5 or 13.45 to 13.46	$\mathbf{1}$	FT their $(\mathbf{c})(\mathbf{i}) \times 2$

Question 108
130
2 M1 for $360-100$ or better

Question 109

Corresponding
1

Question 110

(a)	77.3 or 77.32 to $77.33 \ldots$	3	M2 for $\frac{360-60}{360} \times \pi \times 12.4 \times 2$ oe [$\pm n \times 12.4]$ or M1 for angle 60° or 300° soi or for $\frac{k}{360} \times \pi \times 12.4 \times 2$ oe $[\pm n \times 12.4]$
(b)	5.17 or 5.172 to $5.173 \ldots$	3	M2 for $\frac{74.5}{\pi} \times \frac{360}{360-41}=r^{2}$ oe or better or M1 for $74.5=\frac{360-41}{360} \times \pi r^{2}$ oe or for $\sqrt{\frac{74.5}{\pi} \times \frac{360}{k}}$ oe

Question 111

Congruent SAS
Congruent SSS
Not congruent None
Question 112
456 or $456.4 \ldots$

3 B1 for each correct row

4 M2 for $\frac{18.2}{\tan 62}$ oe
or M1 for $\tan 62=\frac{18.2}{x}$ oe
M1 for
$\frac{1}{2}(($ their trapezium base $)+15.4) \times 18.2$ oe

Question 113

3 M1 for correctly identifying 90° angle soi or $D A C / D C A=68$
M1 for [obtuse angle] $A O C$ identified as
$2 x$ soi
or $x=$ their $D A C / D C A$

Question 114

Accurate construction of rhombus with sides 6.5 cm and correct construction arcs.

2 B1 for accurate diagram with no/wrong arcs or for one triangle ($6.5 \mathrm{~cm}, 6.5 \mathrm{~cm}, 8 \mathrm{~cm}$) correctly constructed with correct arcs or for four correct arcs

Question 115
[$a=$] 59
[$b=$] 37
[c=] 84

3
B1 for each

If 0 scored
SC1 for their $(a+b+c)=180$ if $a, b, c>0$

Question 116

(a)	4		$\mathbf{1}$
(b)		$\mathbf{2}$	B1 for 2 or 3 correct lines drawn or for 4 correct lines and one wrong extra line

Question 117

40000

3 B2 for 1 cm to 0.4 km or 2.5 cm to 1 km or 1600000000
or M2 for $\sqrt{\frac{3 \times 10^{k}}{18.75}}$ oe where $k>5$
or M1 for $1 \mathrm{~cm}^{2}$ to $0.16 \mathrm{~km}^{2}$ or $6.25 \mathrm{~cm}^{2}$ to $1 \mathrm{~km}^{2}$
or for 3×10^{10} oe
or 1.875×10^{-9} oe
or 3×10^{6} oe and 1.875×10^{-3} oe

Question 118

240

Question 119
48

2 M1 for $360 \div(180-178.5)$ oe or for $\frac{180(n-2)}{n}=178.5 \mathrm{oe}$
$2 \mid$ B1 for 132 or 48 in the correct position on the diagram
or
M1 for 180-132

Question 120

(a)	55 Alternate segment theorem	$\mathbf{2}$	B1 for 55
(b)	Tangents from an external point are equal in length	$\mathbf{1}$	

Question 121
79 nfww
$3 \left\lvert\, \begin{aligned} & \text { M2 } \text { for } x+x+58+58+86=360 \text { oe } \\ & \text { or } 86-(180-2 \times 58) \text { implied by } \\ & C A B=22 \\ & \text { or } \mathbf{B} 1 \text { for } D C A=58 \\ & \text { or } B C A=x \\ & \text { or } D A C=64\end{aligned}\right.$
Question 122
correct triangle with arcs

Question 123
40°

Question 124
$A D C$ and $A D B$ and 90
$A D$
RHS
Question 125
DE

2 B1 for correct triangle with incorrect or no arcs or for two correct arcs. or a triangle with arcs but one side not in range

1
$3 \mid$ B1 for each correct line

1

Question 126
97

$$
\mathbf{2} \mid \mathbf{M 1} \text { for } 360-(73+129+75)
$$

Question 127
$P Q X$ and alternate
$P X Q$ and [vertically] opposite oe
ASA
$X B$

Question 128

$$
\begin{aligned}
& {[x=] 38} \\
& {[y=] 22}
\end{aligned}
$$

Question 129
162

3

3 B1 for $[x=] 38$ and
B2 for [$y=$] 22
or M1 for angle $A C B=$ their x
or angle $B A D=60$
or angle $C B A=120$
3 M2 for $\left(\frac{(5-2) \times 180}{4+5+5+7+9}\right) \times k$ where $k=1,4,5$,
7, 9
or M1 for $180 n \div(4+5+5+7+9)$ where
$n \geqslant 2$
or for $(5-2) \times 180 \mathrm{oe}$
Question 130

(a)	4.5 oe	$\mathbf{2}$	M1 for $\frac{8}{6}=\frac{6}{Q R}$ oe or better
(b)	135	$\mathbf{2}$	M1 for $\left(\frac{6}{8}\right)^{3}$ or $\left(\frac{8}{6}\right)^{3}$ or $\left(\frac{\text { their } 4.5}{6}\right)^{3}$ oe

