Extended Mathematics

Topic: Trigonometry

Year :May 2013-May 2023

Paper-2
Questions
Question 1

Triangle $A B C$ has a height of 8 cm and an area of $42 \mathrm{~cm}^{2}$.
Calculate the length of $B C$.
\qquad
Question 2

NOT TO SCALE

The diagram shows a triangular prism of length 12 cm .
Triangle $A B C$ is a cross section of the prism.
Angle $B A C=90^{\circ}, A C=6 \mathrm{~cm}$ and $A B=5 \mathrm{~cm}$.

Question 3

Calculate the length h.
Give your answer correct to 2 significant figures.

$$
\text { Answer } h=
$$

Question 4

In triangle $A B C, A B=6 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and angle $B C A=65^{\circ}$.
Calculate
(a) angle $C A B$,

$$
\text { Answer(a) Angle } C A B=
$$

(b) the area of triangle $A B C$.
\qquad

Question 5

NOT TO
SCALE
$A B C D$ is a kite.
The diagonals $A C$ and $B D$ intersect at X.
$A C=12 \mathrm{~cm}, B D=20 \mathrm{~cm}$ and $D X: X B=3: 2$.
(a) Calculate angle $A B C$.

$$
\begin{equation*}
\text { Answer(a) Angle } A B C= \tag{3}
\end{equation*}
$$

(b) Calculate the area of the kite.

Answer(b) \qquad cm^{2} [2]

Question 6

NOT TO
SCALE
$A B C D E F G H$ is a cuboid.
$A B=4 \mathrm{~cm}, B C=3 \mathrm{~cm}$ and $A G=12 \mathrm{~cm}$.
Calculate the angle that $A G$ makes with the base $A B C D$.

Question 7

Calculate $P R$.

Answer $P R=$

Question 8

The diagram shows a pyramid on a square base $A B C D$ with diagonals, $A C$ and $B D$, of length 8 cm . $A C$ and $B D$ meet at M and the vertex, P, of the pyramid is vertically above M.
The sloping edges of the pyramid are of length 6 cm .
Calculate
(a) the perpendicular height, $P M$, of the pyramid,

$$
\text { Answer(a) } P M=
$$

(b) the angle between a sloping edge and the base of the pyramid.

Question 9

Calculate the length of $A B$.
Answer $A B=$ \qquad cm [2]

Question 10

The diagram shows a rectangle $A B C E$.
D lies on $E C$.

Calculate the area of the shaded region.
Answer
cm^{2} [7]

Question 11

A triangle has sides of length $2 \mathrm{~cm}, 8 \mathrm{~cm}$ and 9 cm .
Calculate the value of the largest angle in this triangle.

Question 12

NOT TO
SCALE

The diagram shows a sand pit in a child's play area.
The shape of the sand pit is a sector of a circle of radius 2.25 m and sector angle 56°.
(a) Calculate the area of the sand pit.

Answer(a)
m^{2} [2]
(b) The sand pit is filled with sand to a depth of 0.3 m .

Calculate the volume of sand in the sand pit.
Answer(b)

Question 13

Triangle $A B C$ is isosceles with $A B=A C$.
Angle $B A C=110^{\circ}$ and the area of the triangle is $85 \mathrm{~cm}^{2}$.
Calculate $A C$.

$$
\begin{equation*}
\text { Answer } A C= \tag{3}
\end{equation*}
$$

Question 14

The diagram shows a rectangular playground $A B C D$ on horizontal ground.
A vertical flagpole $C F, 6$ metres high, stands in corner C.
$A B=18 \mathrm{~m}$ and $B C=15 \mathrm{~m}$.
Calculate the angle of elevation of F from A.
Answer
Question 15

The area of triangle $P Q R$ is $38.5 \mathrm{~cm}^{2}$.
Calculate the length $Q R$.

$$
\text { Answer } Q R=
$$

Question 16

Use the sine rule to calculate $B C$.
Answer $B C=$ \qquad cm [3]
Question 17

Calculate the value of x.

Question 18
Answer $x=$

NOT TO
SCALE
$O A B$ is the sector of a circle, centre O, with radius 8 cm and sector angle 30°. $B C$ is perpendicular to $O A$.

Calculate the area of the region shaded on the diagram.

Question 19

Calculate the value of x.

$$
\text { Answer } x=
$$

\qquad

Question 20

NOT TO
SCALE

The diagram shows a sector of a circle with radius 15 cm .
Calculate the perimeter of this sector.
Answer cm [3]

Question 21

Calculate the value of y.

$$
\begin{equation*}
\text { Answer } y= \tag{3}
\end{equation*}
$$

Question 22

NOT TO
SCALE

The diagram shows a wooden prism of height 5 cm .
The cross section of the prism is a sector of a circle with sector angle 25°.
The radius of the sector is 15 cm .
Calculate the total surface area of the prism.

> Answer
\qquad cm^{2} [5]

Question 23

In the diagram, $A P$ is a tangent to the circle at P. O is the centre of the circle, angle $P A O=37^{\circ}$ and $A P=11 \mathrm{~cm}$.
(a) Write down the size of angle $O P A$.

$$
\begin{equation*}
\text { Answer(a) Angle } O P A= \tag{1}
\end{equation*}
$$

(b) Work out the radius of the circle.
\qquad

Question 24

Find the value of p.

$$
\begin{equation*}
p= \tag{4}
\end{equation*}
$$

Question 25

NOT TO
SCALE

The diagram shows a sector of a circle, centre O, radius 25 cm . The sector angle is 38°.

Calculate the length of the arc $A B$.
Give your answer correct to 4 significant figures.

$$
A B=
$$

\qquad cm [3]
Question 26

Calculate the area of this triangle.
\qquad

Question 27

NOT TO
SCALE

Calculate angle $B A C$.

$$
\begin{equation*}
\text { Angle } B A C= \tag{2}
\end{equation*}
$$

Question 28

(a) Calculate the area of triangle $A B C$.
(b) Calculate the length of $A C$.

Question 29

$$
A C=.
$$

\qquad cm [4]

$$
\begin{equation*}
k=. \tag{3}
\end{equation*}
$$

$A B$ is an arc of a circle, centre O, radius 9 cm . The length of the arc $A B$ is $6 \pi \mathrm{~cm}$. The area of the sector $A O B$ is $k \pi \mathrm{~cm}^{2}$.

Find the value of k.

Question 30
(a)

NOT TO
SCALE

Calculate the area of triangle $A B C$.
\qquad
(b)

The area of triangle $D E F$ is $2050 \mathrm{~mm}^{2}$.
Work out the value of x.

$$
\begin{equation*}
x= \tag{2}
\end{equation*}
$$

Question 31

NOT TO
SCALE

The diagram shows the cross section of part of a park bench.
It is made from a rectangle of length 32 cm and width 8 cm and a curved section.
The curved section is made from two concentric arcs with sector angle 125°.
The inner arc has radius 40 cm and the outer arc has radius 48 cm .
Calculate the area of the cross section correct to the nearest square centimetre.
\qquad cm^{2} [5]

Question 32

From the top of a building, 300 metres high, the angle of depression of a car, C, is 52°.

Calculate the horizontal distance from the car to the base of the building.

Question 33

NOT TO
SCALE

The diagram shows a cube of side length 8 cm .
(a) Calculate the length of the diagonal $B S$.

$$
B S=\ldots . \ldots \ldots . ~ c m ~[3] ~
$$

(b) Calculate angle $S B D$.

$$
\begin{equation*}
\text { Angle } S B D= \tag{2}
\end{equation*}
$$

Question 34

(a) Calculate the area of triangle $P Q R$.
\qquad
(b) Triangle $P Q R$ is enlarged by scale factor 4.5 .

Calculate the area of the enlarged triangle.
\qquad cm^{2} [2]

Question 35

The diagram shows a pyramid with a square base $A B C D$.
All the sloping edges of the pyramid are 20 cm long and $A C=17 \mathrm{~cm}$.

NOT TO
SCALE

Calculate the height of the pyramid. \qquad cm [3]

Question 36

The diagram shows a cube $A B C D E F G H$ of side length 26 cm .

Calculate the angle between $A G$ and the base of the cube.

Question 37

Find the value of x.

$$
\begin{equation*}
x= \tag{3}
\end{equation*}
$$

Question 38

In a triangle $P Q R, P Q=8 \mathrm{~cm}$ and $Q R=7 \mathrm{~cm}$.
The area of this triangle is $17 \mathrm{~cm}^{2}$.
Calculate the two possible values of angle $P Q R$.
Angle $P Q R=$ \qquad or \qquad

Question 39

NOT TO
SCALE

Calculate $A C$.

$$
A C=
$$

\qquad m [3]
Question 40

Calculate the value of x.

Question 41

$A B C D$ is a rhombus with side length 10 cm .

Angle $A D C=40^{\circ}$.
$D A C$ is a sector of a circle with centre D.
$B A C$ is a sector of a circle with centre B.
Calculate the shaded area.

Question 42

The diagram shows a cuboid $A B C D E F G H$.
$A E=5 \mathrm{~cm}, E H=4 \mathrm{~cm}$ and $A G=13 \mathrm{~cm}$.
Calculate the angle between the line $A G$ and the base $E F G H$ of the cuboid.

Question 43

NOT TO
SCALE

The diagram shows a prism of length 4 cm .
The cross section is a right-angled triangle.
$B C=3 \mathrm{~cm}$ and $C Q=2 \mathrm{~cm}$.
Calculate the angle between the line $A Q$ and the base, $A B C D$, of the prism.
\qquad

Question 44

NOT TO
SCALE

The diagram shows a sector of a circle, centre O and radius 6 cm .
The sector angle is 30°.
The area of the shaded segment is $(k \pi-c) \mathrm{cm}^{2}$, where k and c are integers.
Find the value of k and the value of c.

$$
\begin{align*}
& k=\ldots \ldots . ~
\end{align*}
$$

Question 45

The area of a triangle is $528 \mathrm{~cm}^{2}$. The length of its base is 33 cm .

Calculate the perpendicular height of the triangle.

Question 46

The diagram shows a square-based pyramid $A B C D E$.
The diagonals of the square meet at M.
E is vertically above M.
$A B=B C=12 \mathrm{~cm}$ and $E M=9 \mathrm{~cm}$.
Calculate the angle between the edge $E C$ and the base, $A B C D$, of the pyramid.

Question 47

(a) Find the area of triangle $A B C$.
\qquad m^{2} [2]
(b) Calculate $A C$.

Question 48

$$
A C=\ldots \ldots \ldots . ~ m ~[2] ~[2] ~
$$

Calculate the value of x.
Question 49
A and B are two towns on a map.
The bearing of A from B is 140°.
Work out the bearing of B from A.

Question 50

Calculate angle $L M N$.

$$
\text { Angle } L M N=
$$

Question 51

Use the sine rule to find angle $A B C$.
Angle $A B C=$
Question 52

$$
A C=
$$

cm [2]

Question 53

NOT TO
SCALE

The diagram shows a triangular prism.
$A B=12 \mathrm{~cm}, B C=6 \mathrm{~cm}, P C=4 \mathrm{~cm}$, angle $B C P=90^{\circ}$ and angle $Q D C=90^{\circ}$.
Calculate the angle between $A P$ and the rectangular base $A B C D$.

Question 54

The diagram shows a sector of a circle with radius 6 cm and sector angle 72°.
The perimeter of this sector is $(p+q \pi) \mathrm{cm}$.
Find the value of p and the value of q.

$$
\begin{align*}
& p= \\
& q= \tag{3}
\end{align*}
$$

Question 55

NOT TO
 SCALE

The diagram shows a cuboid with dimensions $5.5 \mathrm{~cm}, 8 \mathrm{~cm}$ and 16.2 cm .
Calculate the angle between the line $A B$ and the horizontal base of the cuboid.

Question 56

NOT TO
 SCALE

The diagram shows an equilateral triangle $A B C$ with sides of length 10 cm .
$A M N$ is a sector of a circle, centre A.
M is the mid-point of $A C$.
Work out the area of the shaded region.

Question 57

x° is an obtuse angle and $\sin x^{\circ}=0.43$.
Find the value of x.

$$
\begin{equation*}
x= \tag{2}
\end{equation*}
$$

Question 58

NOT TO

SCALE

The bearing of A from B is 227°.
Find the bearing of B from A. \qquad

Question 59

NOT TO
SCALE

Calculate
(a) $S R$,
$S R=$
cm [3]
(b) $R Q$.

$$
R Q=
$$

\qquad

Question 60

The bearing of Alexandria from Paris is 128°.
Calculate the bearing of Paris from Alexandria.

Question 61

NOT TO
SCALE

The diagram shows a sector of a circle with radius 6.2 cm and sector angle 217°.
Calculate the area of this sector.
\qquad

Question 62

NOT TO
SCALE
$A B C D E F G H$ is a cuboid.
$A B=18 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $C G=12 \mathrm{~cm}$.
Calculate the angle that the diagonal $A G$ makes with the base $A B C D$.
\qquad
Question 63

NOT TO
SCALE

Calculate the area of this triangle.

Question 64

The diagram shows a pyramid with a square base $A B C D$ of side length 8 cm .
The diagonals of the square, $A C$ and $B D$, intersect at M.
V is vertically above M and $V M=10 \mathrm{~cm}$.
Calculate the angle between $V A$ and the base.

Question 65

NOT TO
SCALE

The diagram shows a right-angled triangle.
Calculate the value of x.

$$
\begin{equation*}
x= \tag{2}
\end{equation*}
$$

Question 66
When $\sin x^{\circ}=0.36$, find
(a) the acute angle x°,
\qquad
(b) the obtuse angle x°.

Question 67

The bearing of P from B is 102°.
Find the bearing of B from P.
Question 68
\qquad

The diagram shows two sectors of circles with the same centre.
Calculate the shaded area.
\qquad cm^{2} [3]

Question 69

NOT TO
SCALE

Calculate the obtuse angle x in this triangle.

$$
\begin{equation*}
x= \tag{3}
\end{equation*}
$$

Question 70

NOT TO
SCALE

Calculate the area of the triangle.
\qquad cm^{2} [2]

Question 71

The diagram shows a right-angled triangle.
(a) Calculate the area.
\qquad cm^{2} [2]
(b) Calculate the perimeter.

Question 72

The diagram shows a pyramid with a square base $A B C D$.
The diagonals $A C$ and $B D$ intersect at M.
The vertex V is vertically above M.
$A B=11 \mathrm{~cm}$ and $A V=18.6 \mathrm{~cm}$.
Calculate the angle that $A V$ makes with the base.

Question 73

The total perimeter of a semicircle is 19.02 cm .
Calculate the radius of the semicircle.
\qquad

Question 74

Calculate the area of the sector of a circle with radius 65 mm and sector angle 42°.
Give your answer in square centimetres.
\qquad

Question 75

The bearing of X from Y is 274°.
Calculate the bearing of Y from X.

Question 76

The diagram shows a cuboid.
$A B=8 \mathrm{~cm}, A D=6 \mathrm{~cm}$ and $D H=6 \mathrm{~cm}$.
Calculate angle $H A F$.

Question 77

NOT TO

SCALE

The diagram shows a sector of a circle of radius 8 cm .
The length of the $\operatorname{arc} P Q$ is 6.4 cm .
Find the area of the sector.
\qquad cm^{2} [4]
Question 78

The bearing of B from A is 105°.
Find the bearing of A from B.
\qquad

Question 79

NOT TO
SCALE

The diagram shows cuboid $A B C D E F G H$ of length 20 cm and width 5.5 cm .
The volume of the cuboid is $495 \mathrm{~cm}^{3}$.
Find the angle between the line $A G$ and the base of the cuboid $A B C D$.

Question 80
Solve $3 \tan x=-4$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

$$
\begin{equation*}
x=\ldots \ldots \ldots \ldots \ldots . \text { or } x= \tag{3}
\end{equation*}
$$

Question 81

$O A B$ is the sector of a circle, centre O.
$O B=8 \mathrm{~cm}$ and angle $A O B=30^{\circ}$.
$B P$ is perpendicular to $O A$.
(a) Calculate $A P$.

$$
A P=
$$

\qquad cm [3]
(b) Work out the area of the shaded region $A P B$.
\qquad

Question 82

Solve the equation $\tan x=2$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

$$
x=. ~ o r ~ x=,
$$

Question 83

(a) Calculate the value of x.

$$
\begin{equation*}
x=. \tag{3}
\end{equation*}
$$

(b) Calculate the area of the triangle.
\qquad cm^{2}

Question 84

Calculate the area of this sector of a circle.
\qquad cm^{2}

Question 85

NOT TO
SCALE

The diagram shows a cuboid $P Q R S T U V W$.
$P V=17.2 \mathrm{~cm}$
The angle between the line $P V$ and the base $T U V W$ of the cuboid is 43°.
Calculate PT.

$$
P T=
$$

\qquad cm [3]

Question 86

The diagram shows a pyramid $V A B C D$ with a rectangular base.
V is vertically above M, the intersection of the diagonals $A C$ and $B D$.
$A B=12 \mathrm{~cm}, B C=10 \mathrm{~cm}$ and $V C=14 \mathrm{~cm}$.
Calculate the angle that $V C$ makes with the base $A B C D$.

Question 87

On a map, the positions of the towns L, M and N form an equilateral triangle.
The bearing of M from L is 103°.
Work out the bearing of L from N.

Question 88

The shortest distance from B to $A C$ is 12.8 cm .

Calculate $B C$.

$$
B C=
$$

Question 89

Find all the solutions of $4 \sin x=3$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

Question 90
(a) Sketch the graph of $y=\tan x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

(b) Solve the equation $5 \tan x=1$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

$$
\begin{equation*}
x=\ldots \ldots \ldots \ldots o r ~ x= \tag{2}
\end{equation*}
$$

Question 91
$\tan x=\sqrt{3}$ and $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
Find all the possible values of x.
\qquad

Question 92

NOT TO
SCALE

The diagram shows a triangular prism.
Angle $B P C=90^{\circ}$.
(a) Calculate $A C$.

$$
\begin{equation*}
A C= \tag{3}
\end{equation*}
$$

(b) Calculate the angle between $A C$ and the base $A B P Q$.

Question 93

The diagram shows a sector of a circle, centre O, radius 12.6 cm .
Calculate the perimeter of the shaded segment.
\qquad

Question 94

Solve the equation $7 \sin x+2=0$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
\qquad
Question 95

The diagram shows a pyramid $A B C D E$.
The pyramid has a square horizontal base $A B C D$ with side 5 cm .
The vertex E is vertically above the centre O of the base.
The height $O E$ of the pyramid is 9 cm .
Calculate the angle that $E C$ makes with the base $A B C D$.

Question 96
Solve $3(2+\cos x)=5$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

Question 97

The diagram shows some land in the shape of a triangle $A B C$.
Houses are built on this land.
Each house requires $400 \mathrm{~m}^{2}$ of land.
Find the greatest number of houses that can be built on this land.
\qquad
Question 98

Calculate the value of x.

$$
\begin{equation*}
x= \tag{2}
\end{equation*}
$$

Question 99

The scale drawing shows the positions of two towns, P and Q. The scale is 1 cm represents 4 km .

(a) Find the actual distance between town P and town Q.
\qquad km [2]
(b) Measure the bearing of town Q from town P.
(c) Town X is 28 km from town P on a bearing of 140°.

On the scale drawing, mark the position of town X.

The diagram shows an open rectangular box $A B C D E F G H$.
$A B=18.6 \mathrm{~cm}, B C=9 \mathrm{~cm}$ and $C G=14.5 \mathrm{~cm}$.
A straight stick $A G M$ rests against A and G and extends outside the box to M.
(a) Calculate the angle between the stick and the base of the box.
\qquad
(b) $A M=30 \mathrm{~cm}$.

Show that $G M=4.8 \mathrm{~cm}$, correct to 1 decimal place.

Question 101

NOT TO
SCALE

The diagram shows a rectangle $O P Q R$ with length 11 cm and width 4 cm .
$O Q$ is a diagonal and $O P X$ is a sector of a circle, centre O.
Calculate the percentage of the rectangle that is shaded.

Question 102

Solve the equation $3 \sin x+3=1$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

$$
\begin{equation*}
x=. \ldots \ldots \ldots . ~ o r ~ x= \tag{3}
\end{equation*}
$$

\qquad
Question 103
The bearing of B from A is x°.
The bearing of A from B is y°.
$x: y=2: 7$
Calculate the value of y.

Question 104

(a) Sketch the graph of $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

(b) Solve the equation $3 \sin x+1=0$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

$$
\begin{equation*}
x=\ldots . \ldots \text { or } x= \tag{3}
\end{equation*}
$$

Question 105

The bearing of B from A is 059°.
Work out the bearing of A from B.

Question 106

The diagram shows the positions of three ships A, B and C.
$A C=17.6 \mathrm{~km}, B C=12.8 \mathrm{~km}$ and angle $B A C=25^{\circ}$.
The bearing of C from B is 112° and angle $A B C$ is obtuse.
Calculate the bearing of B from A.
\qquad
Question 107

Sketch the graph of $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
Question 108
Solve $3-2 \sin x=\frac{13}{4}$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

$$
x=\ldots . \ldots \text { or } x=\ldots . \ldots \ldots
$$

Question 109

The diagram shows a right-angled triangle.
(a) Calculate the value of h.

$$
\begin{equation*}
h= \tag{3}
\end{equation*}
$$

(b) Find the perimeter of this triangle.

(a) On the diagram, sketch the graph of $y=\cos x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(b) Solve the equation $\cos x=-\frac{1}{2}$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
$x=$
or $x=$

Question 111

NOT TO
SCALE

Calculate the length $B C$.

$$
B C=
$$

\qquad
Question 112

NOT TO SCALE

The diagram shows a triangular prism $A B C D Q P$ of length 7 cm .
The cross-section is triangle $P A B$ with $P A=4 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and angle $P A B=90^{\circ}$.
Calculate the angle between the line $P C$ and the base $A B C D$.

Question 113

NOT TO
SCALE

The diagram shows a sector of a circle with centre O and radius 9 cm .
The length of the chord $P Q$ is 6 cm .
Calculate the length of the arc $P Q$.
\qquad cm [3]
Question 114
Solve the equation $5 \sin x=-3$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

Question 115

The diagram shows a triangle with an acute angle marked x°.
The area of the triangle is $2143 \mathrm{~cm}^{2}$.
Work out the value of x.

$$
x=
$$

Question 116

NOT TO SCALE

The diagram shows a shape, $A B C D$, formed by the sectors of two circles with the same centre O.
Both sector angles are $140^{\circ}, O C=3.2 \mathrm{~cm}$ and $C B=2.6 \mathrm{~cm}$.
The area of the shape is $k \pi \mathrm{~cm}^{2}$.
Find the value of k.

$$
\begin{equation*}
k= \tag{3}
\end{equation*}
$$

Question 117

(a) On the diagram, sketch the graph of $y=\cos x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

(b) Solve the equation $5 \cos x+3=0$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

$$
x=
$$

\qquad or $x=$

NOT TO
SCALE

The diagram shows the position of three towns, U, V and W.
U is due west of V and angle $U V W=125^{\circ}$.
Calculate the bearing of U from W.

