ExtendedMathematics Topic:Algebra-2 Year:May2013-May2023 Paper-4 Answers

Question 1

(a) (i)	$x \ge 5$	1	-1 once for strict inequalities in (i) to (iii)
(ii)	$y \ge 11$	1	
(iii)	$x + y \ge 20$	1	
(b)	$4x + 8y \le 160$ and divide by 4		If there is a final inequality it must be the given one
(c) (i)	x = 5 ruled	1	Must be on correct grid line
	y = 11 ruled	1	Must be on correct grid line
	x + y = 20 ruled	2	B1 for one axis intercept correct when extended if necessary but not parallel to an axis
	x + 2y = 40 ruled	2	B1 for one axis intercept correct when extended if necessary but not parallel to an axis
	Correct shading of unwanted region	1 dep	Dependent on 6 marks earned for the boundaries
(ii)	29	2	M1 for $x + y$ evaluated where (x, y) is a point in their quadrilateral and x and y are integers

(i)	final answer $\frac{25-8x}{20}$	2	M1 for $\frac{5 \times 5 - 4 \times 2x}{5 \times 4}$ or better seen
(ii)	final answer $\frac{2x^2+5x+9}{2(x-2)}$	3	B1 for $2x^2 + 6x - x - 3$ soi
	3(x+3)		and B1 for denom $3(x+3)$ or $3x+9$ seen

Question 3 final answer $\frac{7}{2x+3}$ www **B1** for 7(x+3) in numerator 4 and **B2** for (2x+3)(x+3) in denominator or SC1 for (2x + a)(x + b) where a and b are integers and a + 2b = 9 or ab = 9After B1 scored, SC1 for final answer $\frac{7}{2(x+1.5)}$ or $\frac{3.5}{x+1.5}$ Question 4 $\frac{x}{x+3}$ cao **(a)** 3 **B1** for (x+3)(x-3)**B1** for x(x-3) $\frac{3}{2}$ and -5**(b)** M2 for 15(x+1) - 20x = 2x(x+1)7 or M1 for multiplication by one denominator only 15(x+1) - 20xor x(x + 1)and **B2** for $2x^2 + 7x - 15 = 0$ or **B1** for 15x + 15 - 20x or $2x^2 + 2x$ and M2 for (2x-3)(x+5) or their correct factors or formula or **M1** for (2x + a)(x + b)where ab = -15 or a + 2b = 7**A1** for $x = \frac{3}{2}$ and -5Question 5 **M2** for $\frac{5(2x-1)-2(3x+1)}{2\times 5}$ $\frac{4x-7}{10}$ final answer nfww 3 or $\frac{5(2x-1)}{5\times 2} - \frac{2(3x+1)}{5\times 2}$ or M1 for attempt to convert to common denominator of 10 or multiple of 10 with one error in numerator Question 6

$\frac{2x-1}{2(x-3)} \text{ or } \frac{2x-1}{2x-6}$ final answer find find answer for a final answer for a final field of the field o	(2.	2 for $2(x + 3)(x - 3)$ or $(2x - 6)(x + 3)$ or (x + 6)(x - 3) seen • M1 for $2(x^2 - 9)$ seen
(a) $y=2$ oe y=2x oe	1 2	M1 for $y = kx$, $k \neq 0$ or gradient 2 soi
$y = -\frac{1}{2}x + 5$ oe	2	M1 for gradient $-\frac{1}{2}$ soi or $y = kx + 5$ oe or $x + 2y = k$ $k \neq 0$ oe
		If L^2 and L^3 both correct but interchanged then SC3
(b) $y \ge 2$ oe $y \le 2x$ oe		
$y \le -\frac{1}{2}x + 5 $ oe	3	B1 for each correct inequality, allow in any order After 0 scored, SC1 for all inequalities reversed
(c) (i) 4 [bushes], 3 [trees]	2	M1 for any correct trial using integer coordinates in region or $30x + 200y = 720$ seen
(ii) 2 [bushes], 4 [trees]	2	M1 for any correct trial using integer coordinates in region
860	1	
Question 7		
132		M1 for $y = k\sqrt{x}$ oe or $\sqrt{x = ky}$ oe A1 for k = 6 oe or better or for k = 0.1666 to 0.167 [k = 6 implies M1A1] oe

20 with supporting algebraic working

6

B2 for
$$\frac{x}{2.5} + \frac{x - 14.5}{0.5} = 19$$
 oe
or B1 for $\frac{x}{2.5}$ or $\frac{x - 14.5}{.5}$
M1dep on B2 for first completed correct move
to clear both fractions
M1 for second completed correct move to
collect terms in x to a single term

collect terms in *x* to a single term M1 for third completed correct move to collect numeric term[s] leading to ax = bSC1 for 20 with no algebraic working

$$7 \times 2 + (2x - 3)(x + 4) = 2(x + 4)$$
MIAllow if bracket[s] omitted but recovers $2x^2 + 8x - 3x - 12$ or better seenB1 $2x^2 + 3x - 6 = 0$ A1Question 10with no errors seen and brackets correctly
expanded on both sides
and no omission of bracketsQuestion 10 $\frac{x-1}{x+5}$ as final answer nfww4B3 for $(x - 1)(x - 2)$ and $(x + 5)(x - 2)$
or B2 for $(x - 1)(x - 2)$ or $(x + 5)(x - 2)$
or SC1 for $(x + a)(x + b)$ where
 $a + b = 3$ or -3 or $ab = 2$ or -10 Question 11(i) $\frac{x^8}{3}$ final answer(ii) $15x^7y^3$ final answer2(iii) $16x^8$ final answer2Question 12 $\frac{x + 5}{x^2}$ or $\frac{1}{x} + \frac{5}{x^2}$ final answer $x > 0.5$ oe final answer nfww3B2 nfww for 0.5 with no/incorrect inequality or
equals sign as answer
or M2 for $7x + 15x > 6 + 5$ or better
or $M1$ for $6 - 15x$ seen

\sim	· •	1 4
()ne	stion	14
Que	Stion	11

(a)	4x + 10y < 80		1	With no errors seen	
(b)	y > x		1		
	$y \le 6$ or $y < 7$		1	Accept $0 \le y \le 6$ or $0 < y \le 6$ or $0 \le y < 7$ or $0 < y < 7$	
(c)	ruled broken line through (5, 6) to (10,4))	B2	SC1 for correct only at (5, 6) or (10, 4)	
	ruled broken line $y = x$ ruled solid line $y = 6$ or broken $y = 7$		B1 B1	Must be consistent with <i>their</i> (b)	
	correct region indicated		B 1	1.0	
(d)	76		2	SC1 for (4, 6) indicated or	
				4x+10y evaluated for (x, y) in <i>their</i> region, x, y integers	
Question	15	, '			
$\frac{3x^2 + 5x - 14}{(3x - 5)(x - 1)}$ final answer 3		3		1 for denom $(3x-5)(x-1)$ oe isw and 1 for $3x^2 + 6x - 5x - 10$ soi	
Question	16				
$\frac{27x^6}{64}$	final answer 2 B1 for 2 [out of 3] elements correct in the right form in final answer or final answer contains 27 and 64 and $x^{[-]6}$ or $\frac{3x^2}{4}$ seen or $\frac{729x^{12}}{4096}$ seen				

Question	17
----------	----

(a) (i)	$x \ge 100$ final answer	1		
(ii)	$y \ge 120$ final answer	1		
(iii)	$x + y \leq 300$ final answer	1		
(iv)	$40x + 80y \ge 16000$ or $0.4x + 0.8y \ge 160$	M1	with no errors seen but isw substitution of values after correct inequality	
(b)	x = 100 ruled	B 1		
	y = 120 ruled	B1	RAI	
	x + y = 300 ruled	B 1		
	x + 2y = 400 ruled	B2	Allow B1 for line with negative gradient passing through (400, 0) or (0, 200) when extended	
	Correct shading	B 1	Dep on all previous marks earned Condone any clear indication of the required region	
(c)	200	2	M1 for $x = 100$ and $y = 200$ selected or for $x \times 0.4 + y \times 0.8$ oe evaluated where (x, y) is an integer point in <i>their</i> [unshaded] region	
Question 18				
1+				

$\frac{At}{t+r}$	final answer oe nfww	4	B1 for $t(A-x) = xr$ or $tA - tx = xr$
			or $A = \frac{xr}{t} + x$
			 M1 for correctly completing multiplication by <i>t</i> (eliminating any bracket) and <i>x</i> terms isolated M1 for correct factorisation M1 dep for correct division

$$\frac{13x+8}{(x-4)(3x-2)} \text{ final answer nfww} \begin{vmatrix} 3 \\ 3 \\ 3 \end{vmatrix} B1 \text{ for } 6(3x-2)-5(x-4) \text{ or better seen} \\ B1 \text{ for } (x-4)(3x-2) \text{ os seen as denom} \\ or SC2 \text{ for final answer} \frac{13x-32}{(x-4)(3x-2)} \end{vmatrix}$$
Question 20

6, 7

3

B2 for answer of 6 or 7

OR

SC2 for final answer of 5, 6, 7 or

6, 7, 8

OR

SC2 for final answer of 5, 6, 7 or

6, 7, 8

OR

SC2 for final answer of 5, 6, 7, 7

OR

SC2 for final answer of 5, 6, 7, 8

Question 21

 $t = -2 \text{ nfww}$

5

M1 for $2(t+3)(t+3) - t^2$ or better seen

M1 for $2(t+3)(t+3) - t^2$ or better seen

M1 for denominator[s] $t(t+3)$ isw or for

 $t(t+3)$ isw on RHS

M1 dep for $2t^2 + 12t + 18 - t^2 = t^2 + 3t$ oe dependent on both numerators and denominator

expanding to give quadratics

A1 for $9t + 18 = 0$ oe

Question 22

 $\frac{x^2 + 3x + 3}{(x+2)(x+1)}$ or $\frac{x^2 + 3x + 3}{x^2 + 3x + 2}$ final

answer

n fww

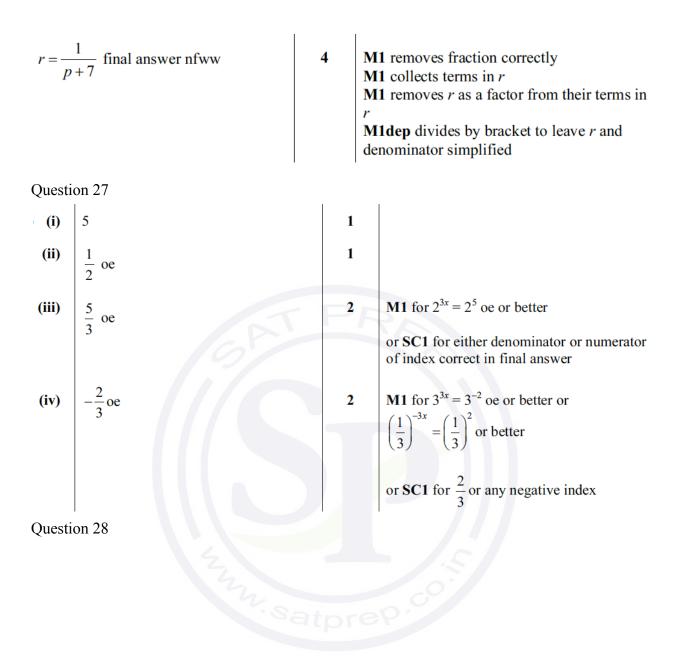
B1 for common denominator

 $= (x+2)(x+1)$ isw or $x^2 + 3x + 2$ isw

B1 for $2x^2 + 2x + 3x + 3$ or better

or $-x^2 - 2x$

or $x^2 + 3x + 3$


2			
(a) (i)	$x \ge 5 \text{ oe}$ $y \le 8 \text{ oe}$ $x + y \le 15 \text{ oe}$ $y > x \text{ oe or } y \ge x + 1$	4	Condone $5 \le x \le 15$ Condone $0 \le y \le 8$ B1 for each - 1 for first occurrence of strict inequalities used in first 3 inequalities
(ii)	x = 5 ruled y = 8 ruled x + y = 15 ruled y = x ruled broken line		Allow $y = x + 1$ ruled only after $y \ge x + 1$ in (a)(i)
	Correct region indicated	1dep	Dependent on all marks for lines earned Accept R written in correct quadrilateral or any other unambiguous indication or accept in triangle if $y = x + 1$ used and all marks for lines earned
(b)	78	2	B1 for $(7, 8)$ chosen or M1 for a calculation shown of the form 6x + 4.5y where (x, y) is clearly in <i>their</i> region and both x and y are integers

(a) 15 nfw
(b)
$$\frac{x+6}{x-2}$$
 nfw final answer
(b) $\frac{x+6}{x-2}$ nfw final answer
(c) $\frac{x}{W^2+1}$ nfw final answer
(c) $\frac{x}{W^2+1}$ nfw final answer
(c) $\frac{x}{W^2-1}$ nfw final answer

Question 25

 $x > \frac{12}{5}$ of final answer

2 B1 for $\frac{12}{5}$ oe in answer with incorrect or no sign or M1 for one correct step e.g. 5x > 9 + 3

	I	I
$5 \text{ and } -\frac{27}{2} \text{ oe}$	7	M2 for $12 \times 2(2x - 1) + (x + 3)(2x - 1) = 12 \times 3(x + 3)$ oe or M1 for a common denominator with 2 or more of the terms and B2 for $2x^2 + 17x - 135 [= 0]$ oe or B1 for $48x - 24$ or $2x^2 - x + 6x - 3$ or 36x + 108 or $2x^2 - x + 54x - 27$ or $132 - 12x$ or $37x + 111 - 2x^2 - 6x$ and M2 for $(2x + 27)(x - 5)$ or <i>their</i> correct factors or formula or M1 for $2x (x - 5) + 27(x - 5)$ or x (2x + 27) - 5(2x + 27) or $(2x + a)(x + b)$ where $ab = -135$ or a + 2b = 17
Question 29		
		M1 for Gr. 2x > 14 or better
$x \ge 3.5$ final and	swer 2	M1 for $6x - 2x \ge 14$ or better
Question 30	4	
<u> </u>	3	M1 for $1000 (x + 1) - 1000x$
$\frac{1}{x(x+1)}$ miai answer	3	M1 for denominator $x(x + 1)$
Question 31		

(i)		$y + y \ge 9$ oe $y \ge 2$ oe	1 1	If zero sco and $y > 2$	bred, SC1 for $x + y > 9$
(ii)		ully correct diagram with nwanted region shaded	4	B1 for 2 <i>x</i>	+3y = 24 ruled
				B1 for <i>x</i> +	y = 9 ruled
				B1 for <i>y</i> =	= 2 ruled
(iii)	20 [x [)	$ \begin{array}{l} 0 \\ c =] 7 \\ y =] 2 \end{array} $	1 1 1	If zero sco integers	bred, SC1 for $2x + 3y$ evaluated from
Questi	on 32			R	
(a)		x <10 oe		1	Accept $x \leq 9$
		$y \ge 2$ oe		1	Accept $y > 1$
(b)		$x + 3y \leq 21$ oe		1	Mark answer line isw
(c)		ruled broken line $x = 10$		B1	or ruled line $x = 9$
		ruled line $y = 2$		B1	or ruled broken line $y = 1$
		ruled line from (0, 7) to (21, 0)		B2	SC1 for line with negative gradient correct only at $(0, 7)$ or $(21, 0)$
		correct region indicated cao		1	
(d) (i	i)	4 2		1	.5
(ii	i)	20		1	
Questi	on 33		atp	rev	
$7x^2$ –	-12x -	$\frac{10}{-1}$ oe final answer nfww			or common denom $(2x-5)(x-1)$
(2x-	(5)(x -	-1)			oe isw for $x(x-1) + (3x+2)(2x-5)$ soi isw
				or $6x^2 - 15x + 4x - 10$ soi	
Questi	on 34		1	1	
)(i)	1			1	
(ii)	x^{10} fin	al answer		1	
(iii)	$9x^{16}$ f	inal answer		2 B1 for x	x^{12} or x^{16} or $(3x^8)^2$ seen
Question 35					

$\frac{2(x+3)}{x+10} \text{ or } \frac{2x+6}{x+10}$ final answer nfww		3	3 M2 for $(x + 10)(x - 3)$ or M1 for $(x + a)(x + b)$ where $ab = -30$ or $a + b = 7$		
Questic	on 36		I		
(a)	y > x		1		
	<i>x</i> ≥15		1		
	<i>y</i> < 50		1		
	$x + y \leq 70$		1		
(b)	Four correct ruled lines and correct region indicated	F	5	all lines ruled B1 for $y = x$ broken B1 for $x = 15$ B1 for $y = 50$ broken B1 for $x + y = 70$	
(c)	189		2	M1 for (21, 49) seen or for $2x + 3y$ written for a point (x, y) in <i>their</i> region where x and y are integers	
Questic	on 37			region where x and y are integers	
$[\pm]\sqrt{k}$	$\overline{s} - \overline{s}$ final answer	2	M	$1 \text{ for } t^2 = k - s$	
Questic	on 38				
$\frac{4x^2 - 7x - 8}{x(x+1)}$ or		3	M1 for $(x-8)(x+1)+3x \times x$ oe isw B1 for common denominator $x(x+1)$ oe isw		
$\frac{4x^2 - 7x - 8}{x^2 + x}$ final answer		atp			

3, 4, 5, 6 nfww

3 B2 for 3 correct or 4 correct and 1 extra or M2 for $n > \frac{18}{8}$ oe and $n \le 6$ or M1 for $18 < 8n [\le 30 + 3n]$ or $[18 - 3n <]5n \le 30$ seen

Quest	tion 40			
(i)	$x \ge 2$ $y \le 5$	oe		SC3 for $x > 2$ and $y < 5$ and $y > \frac{1}{2}x$
				OR B1 for $x \ge 2$
	$y \ge \frac{1}{2}x$	oe	4	B1 for $y \leq 5$ B2 for $y \ge \frac{1}{2}x$
				or M1 for $y \ge kx$ ($k \ge 0$) OR
				SC2 for all three boundary lines identified but with incorrect sign(s)
				If 0 scored SC1 for one or two correct boundary lines with incorrect sign(s)
)(ii)	(5, 4)		2	M1 for one trial of an integer point inside region or for $3x + 5y = 35$ drawn
Quest	tion 41			

)(i)	243 <i>p</i> ¹⁰ final answer	2	B1 for answer $243p^k$ or kp^{10} ($k \neq 0$)
(ii)	9 <i>xy</i> ⁴ final answer	2	B1 for answer with two correct elements
			in correct form of expression
(iii)	$\frac{m^2}{25}$ final answer	1	
Questi	on 42		

$$[x=]\frac{2m}{k+1}$$
4
M1 for $xk = 2m - x$ or $k = \frac{2m}{x} - 1$
M1 for $xk + x = 2m$ or $k+1 = \frac{2m}{x}$
M1 for $x(k+1) = 2m$

(i)
$$10e^{2}e^{3}$$
 final answer2**B1** for final answer with $10e^{2}e^{3}$ or $10e^{2}e^{3}$ or $ka^{3}c^{3}$ $ka^{3}c^{2}$ **B1** for final answer with $\frac{8a^{6}}{e^{k}}$ or $\frac{8a^{4}}{e^{k}}$ or (ii) $\frac{8a^{6}}{e^{2}}$ or $8e^{6}e^{-9}$ final answer2**B1** for final answer with $\frac{8a^{6}}{e^{k}}$ or $\frac{8a^{4}}{e^{k}}$ orQuestion 440.5 or $\frac{1}{2}$ 3**M1** for $y = \frac{k}{(x+2)^{2}}$ oeQuestion 453**M1** for $5 \times 2 - (x-5)(x-2)$ oe seen $\frac{7x-x^{2}}{2(x-2)}$ or $\frac{7x-x^{2}}{2x-4}$ oe final answer3**M1** for $5 \times 2 - (x-5)(x-2)$ oe seenQuestion 46 $P=1$ $\frac{1004}{100+TR}$ final answer3**M1** for $100A = 100P + PRT$
or for $A = P(1+\frac{RT}{100})$
M1 for $100A = P(100 + RT)$ or forQuestion 473**M1** for $y = \frac{k}{(x+3)^{2}}$ oe
or for $100A = P + PRT$ as first stepQuestion 4723**M1** for $y = \frac{k(x+3)^{2}}{(x+3)^{2}}$ oe
or for $100A = P(1+RT)$ affer
 $100A = P + PRT$ as first step

$$x > -5$$
 final answer3M1 for $3x - 6 < 7x + 14$ Question 49-1, 0, 1, 2 final answer3B2 for 3 correct values and no incorrect values or 4 correct values and one incorrect values or 4 correct values and one incorrect value or M2 for $-\frac{7}{4} < n \le 2$ oeQuestion 5000 (ii) a^{2} 1 (iii) $\frac{4y^{[1]}}{3x^{4}}$ final answer2B1 for 2 correct elements if in form $kc^{4}y^{m}$ (iii) $\frac{4y^{[1]}}{3x^{4}}$ final answerB2 for $(\frac{3x^{4}}{4y^{[0]}})^{[-1]}$ oe seenORB1 for $3x^{4}$ or $4y^{[1]}$ M1 for $(\frac{64y^{2}}{27x^{4}})^{[1]}$ oeIf 0 scored, SC1 for $\frac{64y^{[1]}}{2.7x^{4}}$ or $\frac{0.333x^{-4}}{0.25y^{-1}}$ seenQuestion 515.54M1 for $15x - 60 + x + 2 = 30$ FT their first stepor $3x - 12 + \frac{x + 2}{5} = 6$ If M0M0, SC1 for $3x - 12 + x + 2 = 30$ oeM1dep for $16x = 88$ FT their previous steps

(i)
$$1.991 \times 10^3$$

(i) 1.991×10^3
(ii) $\frac{2(s-ut)}{r^2}$ or final answer
Question 53
 $\frac{3x+3}{2}$ or final answer nfww
Question 55
 $\frac{x}{x-5}$ final answer nfww
Question 55
 $\frac{x}{x-5}$ final answer nfww
Question 56
(ii) $\frac{m-7}{5}$ or final answer
(iii) $\frac{1}{(\pm)}\sqrt{\frac{y^2-h}{2}}$ or $(\pm)\sqrt{\frac{h-y^2}{2}}$ or

9(a)	$ \begin{array}{l} x + y \ge 6 \text{ oe} \\ y \le x \text{ oe} \\ x \le 8 \end{array} $	3	B1 for each
9(b)	$4x + 6y \leqslant 60$	1	
9(c)	Correct region indicated cao	6	B1 for $x + y = 6$ ruled and long enough B1 for $x = y$ ruled and long enough B1 for $x = 8$ ruled and long enough B2 for $2x + 3y = 30$ ruled and long enough or B1 for ruled line through (0, 10) or (15, 0) but not $y = 10$ or $x = 15$
(d)(i)	6, 6	Pı	
(d)(ii)	34	2	M1 for trying $4x + 6y$ with $(4, 3)$ or $(5, 2)$ or $(6, 1)$ or $(7, 0)$
Questic	on 58		

(a)	n - 5 + 3n + 10 > 105 or better	B1	
	n > 25 final answer	B2	M1 for 4 <i>n</i> > 100
(b)	4.8	3	M1 for $y = \frac{k}{x^2}$ or better M1 for $[y =]\frac{their k}{5^2}$ OR
	The second		M2 for $y \times 5^2 = 7.5 \times 4^2$
Questic	on 59	pre	
(a)	$\frac{10x}{(x-3)(x+2)} \text{ or } \frac{10x}{x^2 - x - 6}$ final answer	4	M1 for common denominator $(x-3)(x+2)$ isw M1 for $(x+3)(x+2)-(x-2)(x-3)$ isw B1 for correct numerator in terms of x only
(b)	14	2	M1 for $12 - \frac{k}{2} = 5$ or $2^{\frac{k}{2}} = \frac{2^{12}}{2^5}$ oe or $\frac{4096}{32}$ or $12 - 5$ or $2^{12} \div 2^{\frac{14}{2}}$ [= 32] seen

$$[x=]\frac{3}{y-1}$$
 final answer

 $m \ge 3.4$ oe final answer

Question 62

3 M1 for xy = 3 + xM1 for xy - x = 3 or $x - \frac{x}{y} = \frac{3}{y}$ M1 for factorising and dividing

2 M1 for $12 + 5 \le 8m - 3m$ or better or $3m - 8m \le -5 - 12$ or better

Z			
(a)	$y \ge x$ oe	1	
(b)	$2.25x + 1.5y \le 22.5$ oe	M1	
	One step shown to $3x + 2y \leq 30$	A1	RA
(c)	y = 10 ruled	1	Broken line
	3x + 2y = 30 ruled	B2	Solid line B1 for line passing through (0, 15) or (10, 0)
	y = x ruled	B1	Solid line
	Correct region indicated	B1	
(d)	412	2	M1 for (4, 9) identified or for evaluation $40x + 28y$ for an integer point in the region ($x > 0$ and $y > 0$)
Quest	tion 63		
75.6			11 for $5.2 \times 7 + \frac{1}{2} \times 1.6 \times 7^2$
Quest	tion 64		
9x ⁶			1 for $9x^k$ or kx^6
Quest	ion 65	I	
2, 3, 4, 5			2 B1 for 3 correct and no extra or 4 correct and one extra or M1 for $1 \le x \le 5$

(x-1)	$\frac{4x+5}{x^2-x-1}$ final answer on 67			A1 for $3(2x + 1) - 2(x - 1)$ oe isw A1 for $(x - 1)(2x + 1)$ oe isw
x > 7.5 Questio $27x^6y^{12}$ Questio	2	2 B1 for $12+3 < 5x - 3x$ oe 2 B1 for two of 27, x^6 and y^{12} correct		
0.5 or $\frac{1}{2}$ Question 67		3 M2 for $4 = 6x + 2x$ or better or M1 for $2(2 - x) = 6x$ oe		
	$-2 < x \leq 1$			B1 for $-2 < x$ or $x \leq 1$
'(b)(i)	$(x+2)^2-3$		2	M1 for $(x+2)^2 + k$
(b)(ii)	$\left(x+2\right)^2=3$		M1	FTdep their (b)(i) for $k < 0$
	-3.73 or -3.732 and -0.268 or -0.2679		B1	.5
(b)(iii)	(-2, -3)	tor	2	FT their $(x+2)^2 - 3$ B1 for each coordinate
(b)(iv)	Correct sketch		2	Parabola with minimum point in correct quadrant and both <i>x</i> -intercepts negative and positive <i>y</i> -intercept B1 for parabola with minimum point.

(a)(i)	7 ¹¹ cao	1	
(a)(ii)	7 ¹⁰ cao	1	
(a)(iii)	7^2 cao	1	If answers 11, 10 and 2 in (a) then allow SC1 in this part
(b)	$1000x^9y^{12}$ final answer	3	B2 for correct answer seen or answer of the form $1000x^9y^k$ or $1000x^ky^{12}$ or kx^9y^{12} or B1 for answer with one correct element in product or $(10x^3y^4)^{[3]}$ seen
(c)(i)	108	2	M1 for $[540 =] 2^2 [\times] 3^3 [\times] 5$ or B1 for 108 oe not in prime factor form e.g. $2^2 \times 3 \times 9$
(c)(ii)	30 240	2	M1 for $(540 \times 2^5 \times 3^3 \times 7) \div$ their (c)(i) oe
	0		or B1 for answer 30 240 oe not in prime factor form e.g. $2^5 \times 3^3 \times 35$
(c)(iii)	98	2	B1 for 592 704 seen or $2^6 \times 3^3 \times 7^3$ seen or 2×7^2 oe seen
(d)(i)	(x-7)(x+4) final answer	2	M1 for $x(x - 7) + 4(x - 7)$ or x(x + 4) - 7 (x + 4) or better or for $(x + a)(x + b)$ where $ab = -28$ or $a + b = -3$
(d)(ii)	(a+2b)(11a+14b) final answer	2	M1 for $(a + 2b) (7(a + 2b) + 4a)$ or $(a + pb)(11a + qb)$ where $pq = 28$ or $11p + q = 36$ If 0 scored, SC1 for $a + 2b (11a + 14b)$
(e)	$[y=]\frac{5x-1}{2}$ of final answer		B2 for $2x - 1 = -2x + 2y - x$ oe or B1 for $9^x = 3^{2x}$ or better M1dep for correct rearrangement of <i>their</i> 5 term 'linear' equation in y and x to make y the subject

Question 72	
$\frac{2x^2 + 12x - 5}{x(x-1)} \text{ or } \frac{2x^2 + 12x - 5}{x^2 - x}$	B1 for common denominator $x(x-1)$ oe B1 for $(x-1)(x+5)+x(x+8)$ or better
final answer	

'(a)	87	3	M2 for $3c + 4c = 587 + 22$ or better or M1 for $3c + 2(2c - 11)$ [= 587 or 5.87]
(b)	1.1[0]	3	M2 for $22w + 22 = 42w$ or better or M1 for $\frac{22}{w} = \frac{42}{w+1}$ oe OR B2 for number of bottles = 20 or M1 for $Nw = 22$ and $N(w+1) = 42$
(c)(i)	$\frac{9}{x} + \frac{5}{2x+1} = 2.5$ oe	M2	M1 for $\frac{9}{x}$ or $\frac{5}{2x+1}$
	9(2x+1) + 5x = 2.5x(2x+1) oe or $\frac{9(2x+1) + 5x}{x(2x+1)}$ [= 2.5 oe]	M1	Correctly clearing fractions, or correctly collecting into a single fraction FT <i>their</i> expression dep on two fractions both with algebraic denominators
	All brackets expanded leading to $10x^2 - 41x - 18 = 0$ with no errors or omissions	A1	
'(c)(ii)	(2x-9)(5x+2) or $\frac{-(-41) \pm \sqrt{(-41)^2 - 4(10)(-18)}}{2(10)}$	M2	B1 for $(ax+b)(cx+d)$ with $ac = 10$ and $bd = -18$ or ad + bc = -41 or $\sqrt{(-41)^2 - 4(10)(-18)}$ or $\frac{-(-41) + \sqrt{q}}{2(10)}$ oe or $\frac{-(-41) - \sqrt{q}}{2(10)}$ oe or both or M1 for $\left(x - \frac{41}{20}\right)^2 - \frac{18}{10} - \left(\frac{41}{20}\right)^2 = 0$ or better
	10	A2	A1 for $[x =] \frac{9}{2}$ oe or M1 for $2 \times their$ positive root + 1

(a)(i)	$\frac{12}{x}$ or $12 \div x$ final answer	1	
(a)(ii)	$\frac{12}{x-4}$ - their $\frac{12}{x}$ = 1.5 oe	M1	Accept 3 or more term equivalents
	$\frac{12x - 12(x - 4) = 1.5x(x - 4)}{\text{or}}$ $\frac{12x - 12(x - 4)}{x(x - 4)} = 1.5$	M1	Correctly clearing fractions, or correctly collecting into a 'single fraction' FT <i>their</i> expression dep on two fractions both with algebraic denominators
	$12x - 12x + 48 = 1.5x^2 - 6x$	M1	Correctly multiplying <i>their</i> two sets of brackets FT <i>their</i> expression dep on two fractions both with algebraic denominators or first M1 given
	$[1.5x^2 - 6x - 48 = 0]$	A1	One further step either 3 term equation or division throughout by 1.5 leading to solution
(a)(iii)	$x^{2} - 4x - 32 = 0$ $(x + 4)(x - 8)$	M2	With no errors or omissions seen, dep on M3 M1 for $(x + a)(x + b)$ where $ab = -32$ or $a + b = -4$ or for $x(x + 4) - 8(x + 4)$ or $x(x - 8) + 4(x - 8)$
	-4 and 8	B1	
(a)(iv)	3	2	FT $\frac{12}{their 8 - 4}$ M1 for $\frac{12}{their 8 - 4}$ or $\frac{12}{their 8} + 1.5$ oe
	² u.sa	tpre	or for answer $\frac{12}{their 8}$
(b)	69.6	3	M2 for $\frac{430 \text{ to } 440}{6+0.25}$ or $\frac{440-5}{6 \text{ to } 6.5}$ oe
			or M1 for $440 + 5$ oe or $440 - 5$ oe or $6 + 0.25$ oe or $6 - 0.25$ oe seen

(a)(i)	4.5, $4\frac{1}{2}$ or $\frac{9}{2}$	3	M1 for $8x - 12 = 24$ or $2x - 3 = 6$ M1 for reaching $ax = b$ correctly FT <i>their</i> first step
(a)(ii)	$x > -\frac{4}{3}$ or $x > -1\frac{1}{3}$ final answer	2	M1 for $6x > 6 - 14$ or $x + \frac{14}{6} > 1$
(b)	$[y=] \sqrt[3]{\frac{2x^3 - V}{3}}$ of final answer	3	M1 for isolating term in y M1 for division by 3 or FT <i>their</i> first step M1 for cube root or FT <i>their</i> previous step to the final answer
(c)	$4n^2 - 20n + 12$	M2	B1 for $4n^2 - 10n - 10n + 25$
	$\begin{array}{c} 4(n^2 - 5n + 3) \\ \text{or} \\ \text{correct explanation linked to} \\ \text{expression} \end{array}$	A1	with no errors seen e.g. 4, [–]20 and 12 are all multiples of 4 or divides each term or each coefficient by 4
(d)(i)	p = -3 and $q = 23$	3	B2 for $23 - 2(x - 3)^2$ OR M1 for $[q] - 2x^2 - 4px - 2p^2$ or $-2(x - 3)^2$ seen B1 for either $p = -3$ or $q = 23$ or FT $q = 5 + 2(their p)^2$
(d)(ii)	(3, 23)	1	FT their (d)(i)
(e)	69	2	M1 for figs 13^2 oe

(a)(i)	$\frac{10}{3}$ or $3\frac{1}{3}$ or $3.33[3]$	3	M1 for $42 - 12x = 3x - 8$ oe or for $7 - 2x = \frac{3x}{6} - \frac{8}{6}$ oe M1 for reaching $ax = b$ correctly FT <i>their</i> first step
(a)(ii)	$-2.5 \text{ or } -2\frac{1}{2} \text{ or } -\frac{5}{2}$	3	M1 for $3 \times 2x = 2(x - 5)$ oe M1 for reaching $ax = b$ correctly FT <i>their</i> first step
·(b)(i)	2(x+12y)(x-12y) final answer		B2 for $(2x + 24y)(x - 12y)$ or $(2x - 24y)(x + 12y)$ or for $2(x + 12y)(x - 12y)$ seen OR M2 for $k(x + 12y)(x - 12y)$ or M1 for $2(x^2 - 144y^2)$
(b)(ii) .(c)	(5x-8)(x+5) final answer $4x^2 - 17x + 9 [= 0]$ oe	2 B1	M1 for $5x(x + 5) - 8(x + 5)$ or $x (5x - 8) + 5(5x - 8)$ or for $(5x + a)(x + b)$ where $ab = -40$ or a + 5b = 17
	$\frac{[]17 \pm \sqrt{([-]17)^2 - 4(4)(9)}}{2 \times 4}$	rep	FT their 3 term quadratic B1FT for $\sqrt{([-]17)^2 - 4(4)(9)}$ or better or $\left(x - \frac{17}{8}\right)^2$ oe or $\sqrt{\frac{([-]17)^2 - 4(4)(9)}{4}}$ or better and B1FT for $\frac{[]17 + \sqrt{q}}{2(4)}$ or $\frac{[]17 - \sqrt{q}}{2(4)}$ or better or $\frac{17}{8} + \sqrt{\frac{145}{64}}$ oe or $\frac{17}{8} - \sqrt{\frac{145}{64}}$ oe or $\frac{[]17}{2} + \sqrt{q}}{4}$ or $\frac{[]17}{2} - \sqrt{q}}{4}$
	0.62 and 3.63 cao	B2	B1 for each SC1 for 0.6[0] or 0.619 to 0.620 and 3.6[0] or 3.6301 to 3.6302 or 0.62 and 3.63 seen in working or -0.62 and-3.63 as final answers

(a)	$\frac{12}{x} + \frac{26}{x+10} = 2.8$ oe isw	3	B2 for $\frac{12}{x} + \frac{26}{x+10}$ oe isw OR B1 for $\frac{26}{x+10}$ seen B1 for time = 2.8 or $\frac{168}{60}$ or $2\frac{48}{60}$ oe
(b)	12(x+10) + 26x = 2.8x(x+10) or better	M2	FT <i>their</i> time, provided 2 algebraic fractions one in x and other in $\pm x \pm 10$ M1 for $12(x+10)+26x$ seen or better
	$12x + 120 + 26x = 2.8x^2 + 28x$	M1	FT their equation dep on M2
	$2.8x^{2} - 10x - 120 = 0 \text{ oe}$ or $30x + 300 + 65x = 7x^{2} + 70x \text{ or}$ better leading to $7x^{2} - 25x - 300 = 0$	A1	with no errors or omissions
(c)	$\frac{[]25\pm\sqrt{([-]25)^2-4\times7\times-300}}{2\times7}$ oe	B2	B1 for $\sqrt{([-]25)^2 - 4(7)(-300)}$ or better or for $\frac{[]25 + \sqrt{q}}{2 \times 7}$ or $\frac{[]25 - \sqrt{q}}{2 \times 7}$
	– 5 and 8.57 or 8.571	B2	B1 for each or SC1 for final answers 5 and -8.57
(d)	84 to 84.01	2 atp	FT $\frac{720}{their \text{ positive answer}}$ to 3 sf or better M1 for $\frac{12}{their \text{ positive answer}} [\times 60]$ oe

(a)	1, 2, 3	2	M1 for $15 - 8 > 5n - 3n$ oe	
		_	If 0 scored, B1 for 2 correct answers and no others or 3 correct answers with one extra value	
(b)(i)	$10y + 8x \leq 80$ oe final answer	3	B1 for each	
	x > 4 oe final answer			
	2y > x - 4 oe final answer		If 0 scored, SC1 for	
			10y + 8x < 80 oe final answer	
			and	
			$x \ge 4$ oe final answer	
			and	
			$2y \ge x - 4$ oe final answer	
(b)(ii)	23 final answer	2	M1 for 7 and 2 selected soi	
Question 79				

a) $x^2 - x - 30[=0]$	B3	M1 for $(2x+1)(x-1) - x^2 = 29$ oe B1 for $(2x+1)(x-1) = 2x^2 - 2x + x - 1$ oe soi
(x-6)(x+5) oe	M1	or correct factors for <i>their</i> 3 term quadratic equation or for correct substitution into quadratic formula or correctly completing the square for <i>their</i> 3 term quadratic equation
x = 6 cao	B1	
12 or $2 \times their x$ evaluated or $k = 2x$ stated	B1 FT	
(i) $(y+1)^3 - y^3 = 5$ oe	M1	
$(y+1)^3 = y^3 + 3y^2 + 3y + 1$ soi	B2	B1 for $(y+1)^2 = y^2 + y + y + 1$ oe soi
$Completion to 3y^2 + 3y - 4 = 0$	A1	With no errors or omissions
$\frac{-3 \pm \sqrt{3^2 - 4(3)(-4)}}{2 \times 3}$	B2	or B1 for $\sqrt{3^2 - 4(3)(-4)}$ or for $\frac{-3 + }{2 \times 3}$ or $\frac{-3 - }{2 \times 3}$
0.44	B2	B1 for 0.758 or 0.7583

(a)(i)	6	3	B2 for $4x + 6 = 30$ or better or M1 for $x + x + 7 + 2x - 1$ [= 30]
(a)(ii)	21	3	M2 for $(555 - their x \times 15 - their (x + 7) \times 18) \div their (2x - 1)$ or M1 for their x × 15 or their (x + 7) × 18
(b)(i)	8	2	M1 for isolating the term in w or correctly removing all fractions e.g. $\frac{3w}{16} = 1 + \frac{1}{2}$ or better or $3w - 16 = 8$
(b)(ii)	-3	2	M1 for $2^{-y} = 8$ or $2^{y} = \frac{1}{8}$ or $2^{-y} = their w$ or better
(c)(i)	$[p=]$ $\frac{1}{2}$ oe $[q=]$ 1	2	B1 for each If zero scored, SC1 for 2 values satisfying one of the original equations
c)(ii)	$\begin{bmatrix} u = 3 & and & 150 \\ [v =] & 0 & and & 360 \end{bmatrix}$	4	B1 for each OR SC1 for sin $u = their p$ and cos $v = their q$ SC1 if their two different angles for u sum to 180 or if their different two angles for v sum to 360
Quest	tion 81		
	14	I .	

p^{14} final answer	1
(ii) $6m^4$ final answer	2 B1 for $6m^k$ or km^4 in final answer or correct answer seen and spoil
(iii) $\frac{4}{3x^3y^9}$ or $\frac{4x^{-3}y^{-9}}{3}$ final answer	3 B2 for correct answer seen and spoilt or 2 correct elements in final answer or B1 for one of $\frac{4}{3}$ or $\frac{3}{4}$ oe or x^3 or y^9 seen
Question 82	
(a)(i) $27x^6y^{12}$ final answer (a)(ii) $\frac{x^{24}y^{12}}{64}$ final answer	2 B1 for two terms correct in answer e.g. 27 x^6y^k or 27 x^ky^{12} or kx^6y^{12} or for correct answer seen then spoilt 3 B2 for final answer with two correct elements or final answer $\frac{64}{x^{24}y^{12}}$ or $\frac{64^{-1}}{x^{-24}y^{-12}}$ or better or for correct answer seen or B1 for 64 or x^{24} or y^{12} seen in final answer or final answer $\frac{k}{x^{-24}y^{-12}}$ or M1 for first correct step seen $eg\left(\frac{x^{16}y^8}{16}\right)^{\left[\frac{3}{2}\right]}$ or $\left(\frac{4}{x^8y^4}\right)^{\left[-3\right]}$ or $\left(\frac{4096}{x^{48}y^{24}}\right)^{\left[-\frac{1}{2}\right]}$

(b)(i)	(x+3)(x-3) final answer		1	
(b)(ii)	$\frac{x+3}{2y+5}$ final answer		3	M2 for $(x-3)(2y+5)$ or M1 for $2y(x-3) + 5(x-3)$ or $x (2y+5) - 3(2y+5)$
Questio	on 83			
:(a)	$y \leq 7 \text{ oe}$ x + y < 14 oe $y > \frac{2}{3}x \text{ oe}$		3 B1 fo	or each
(b)	x = 4 solid y = 7 solid x + y = 14 dashed $y = \frac{2}{3}x \text{ dashed}$	М	4 B1 fo	or each
	correct shading everywhere but region R	A	the o	ep (dependent on M4 or B1B1B1B0 where nly error is wrong use of solid/dashed lines) hading the correct side of 3 of the 4 lines.
(c)	4 dresses and 3 shirts		1	
(d)	106	atp	regio or B1	for $10x + 6y$ evaluated for (x, y) in <i>their</i> n R for (7, 6) 0 scored, SC1 for answer 112 or 116