Extended Mathematics

Topic : Geometry

Year :May 2013 -May 2023

Paper -4

Answers

Question 1

•			
(a) (i)	27	1	
(ii)	54	1	
(iii)	153	1	
(b) (i)	59.6 or 59.57 www	4	M2 for $45^2 + 32^2 - 2 \times 45 \times 32 \times \cos 100$ or M1 for implicit cos rule and A1 for 3549
(ii)	22.[0] or 21.99 www	3	M2 for $324 \div (\frac{1}{2} \times 32 \times \sin 67)$ or M1 for $[324 =] \frac{1}{2} \times 32 \times x \times \sin 67$
(iii)	81[.0]	2	B1 for 2^2 or $(\frac{1}{2})^2$ oe seen or $\frac{1}{2} \times 16 \times \frac{1}{2}$ their(b)(ii) \times sin67
Question 2	2		

(e) $AB = BC$ 1 isw comments or reasons $TA = TC$ $TB = TB$ 1	(a)	227 or 226.95 to 227.01	2	M1 for $\pi \times 8.5^2$
Dep on their $b < 8.5$ 30.2 or 30.3 or 30.24 to 30.27 3 M2 for $\frac{360 - 4 \times 39}{360} \times 2 \times \pi \times 8.5$ oe or M1 for $\frac{a}{360} \times 2 \times \pi \times 8.5$ oe where $0 < a < 360$ Implied by 5.78 to 5.79 or 11.5 to 11.6 or 23.1 to 23.15 or 23.1 or 23.2 or 41.83 to 41.84 or 41.8 (e) $AB = BC$ $TA = TC$ $TB = TB$ 1 isw comments or reasons	(b)	5.35	1	
or M1 for $\frac{a}{360} \times 2 \times \pi \times 8.5$ oe where $0 < a < 360$ Implied by 5.78 to 5.79 or 11.5 to 11.6 or 23.1 to 23.15 or 23.1 or 23.2 or 41.83 to 41.84 or 41.8 (e) $AB = BC$	(c)	39.0[0] to 39.0[1]	2	, , , , , , , , , , , , , , , , , , , ,
where $0 < a < 360$ Implied by 5.78 to 5.79 or 11.5 to 11.6 or 23.1 to 23.15 or 23.1 or 23.2 or 41.83 to 41.84 or 41.8 (e) $AB = BC$ $TA = TC$ $TB = TB$ is w comments or reasons	(d)	30.2 or 30.3 or 30.24 to 30.27	13	300
(e) $AB = BC$ 1 isw comments or reasons $TA = TC$ $TB = TB$ 1				
TA = TC $TB = TB$ 1				
If 0 scored SC1 for "all three sides the same" oe [SSS] and no mention of angles	(e)	TA = TC	1	If 0 scored SC1 for "all three sides the same"

(a) (i)	118	2
(ii)	31	1FT
(iii)	22	1FT
(b)	32	4
(c) (i)	Opposite angles [cyclic quad] add to 180	
(ii)	68	3
(d)	5.75	3

M1 for $(3 \times 180 - 2 \times 110 - 84)$ [÷ 2] or better

FT $| FT (180 - their (i)) \div 2 |$

FT $84-2 \times their$ (ii) or $2 \times their$ (ii) -40, only if positive answer and less than 84

B2 for 360 - 3y = 2(4y + 4) oe and **B1** for 11y = 352

B1 for 11y = 352 oe or

M1 for angle at centre = $2 \times$ angle at circumference soi

M1 for [angle PRS =] $102 \div 3 \times 2$ and

M1 for angle PQS = angle PRS or angle PRQ = angle PSQ

M2 for $6.9 \times \sqrt{\frac{5}{7.2}}$ oe

or

M1 for evidence of ratio of areas = $(\text{ratio of sides})^2$

or
$$sf = 1.2$$

(a) 31.4 3 M2 for
$$\frac{15.7}{\sin 30}$$
 or M1 for correct implicit statement (b) $[\sin E =] \frac{15.7 \times \sin 52}{16.5}$ M2 M1 for correct implicit statement 48.573... A1 $[\angle ACE =] 180 - 52 - 48.57$ M1 $[= 79.43]$

	[∠ECD =] 40.57		A1	
(ii)	15.3 or 15.27 to 15.281	www	4	M2 for $[(DE)^2 =] 16.5^2 + 23.4^2 - 2 \times 16.5 \times 23.4\cos(40.6 \text{ or } 40.57)$ or M1 for full correct implicit statement A1 for 233 to 234
(d)	466 or 466.34 to 466.5		4	M1 for 0.5 × 15.7 × <i>their</i> 31.4 sin(90 – 30) oe
				M1 for 0.5 × 15.7 × 16.5 sin(128 – their 48.6 or 48.57) oe
				M1 for 0.5 × 16.5 × 23.4 sin (40.6 or 40.57) oe
Question 5				
(a)	48 and 84	2	B1 for each	nair

(a)	48 and 84 66 and 66	2	B1 for each pair
(b)	540	2	M1 for 3×180 or $(2 \times 5 - 4) \times 90$ or $5 \times (180 - 360 \div 5)$ oe
(c)	1620	2	M1 for $7 \times 360 - their 540 - 360$
(d) (i)	$2x+5+3y-20+4x-5+x+y-10 = 360 ext{ oe}$	1	Allow partial simplification but not $7x + 4y - 30 = 360$
(ii)	2x + 5 + 3y - 20 = 180	1	
(iii)	[x =] 30, [y =] 45 nfww	4	M1 for correct multiplication M1 for correct elimination A1 $x = 30$ or $y = 45$ If 0 scored SC1 for correct substitution to find the other variable
(iv)	65, 115, 115, 65	1	Accept in any order

Que	stion 6	j		
(a)	(i)	148	1	
	(ii)	122	2	B1 for 58 seen at <i>A</i> or 32 seen at <i>Y</i>
	(iii)	148	1	
	(iv)	106 nfww	3	B1 for [sum of interior angles =] 720 and M1 for $\frac{1}{2} \{ (their 720) - (p+q+t+90) \}$
		I		2

(b) (i)	63	2	B1 for angle $RPS = 27$ or 90 at P or at S seen or stated
(ii)	54	2	B1 for <i>their x</i> or 63 or letter <i>x</i> at <i>Q</i> seen or state

(a) (i)
$$5x + 14$$
 final answer

2 M1 for $5x + k$ or $kx + 14$

(ii) 14.2

3 M1 for $5x = 32 - 14$ FT their expression in (a)(i) A1FT for $x = 3.6$

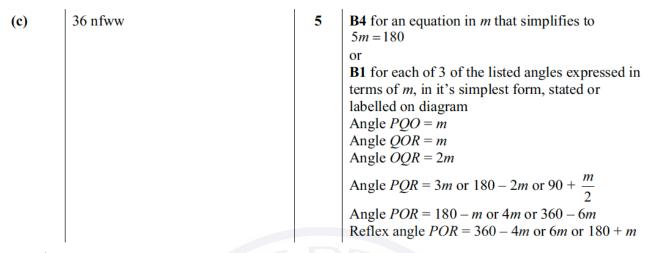
(b) $8a - 3b + 14 = 32.5$ or better $5a + 4b + 13.5 = 39.75$ or better

B1 $8a - 3b = 18.5$ $5a + 4b = 26.25$

Equates coefficients of either a or b	M1	or rearranges one of <i>their</i> equations to make <i>a</i> or <i>b</i> the subject
40a - 15b = 92.5 $40a + 32b = 210$ or		e.g. $a = \frac{3b + 18.5}{8}$
32a - 12b = 74 $15a + 12b = 78.75$		
Adds or subtracts to eliminate $47b = 117.5$ $47a = 152.75$	M1	Dep on previous method or correctly substitutes into the second equation e.g. $\frac{5(3b+18.5)}{8} + 4b = 26.25$
[a=] 3.25	A1	After M0 scored
[b=] 2.5	A1	SC1 for 2 correct values with no working or for two values that satisfy one of their original equations

(a) (i)	52 Angles in same segment	1 1dep	Accept same arc, same side of same chord
(ii)	104 Angle at centre is twice angle at circumference	1	Accept double, 2 × but not middle, edge
(iii)	Angle between tangent and radius = 90°	1	Accept right angle, perpendicular
(b) (i)	7.65 to 7.651	4 atp	M2 for $8.92 + 72 - 2 \times 8.9 \times 7 \times \cos 56$ or M1 for correct implicit formula and A1 for 58.5 to 58.6
(ii)	49.3 or 49.33 to 49.34	3	M2 for $[\sin BEC =] \frac{7 \sin 56}{their(\mathbf{b})(\mathbf{i})}$ oe or M1 for $\frac{\sin 56}{their(\mathbf{b})(\mathbf{i})} = \frac{\sin BEC}{7}$ oe

(a)	100 nfww	4	M3 for a correct calculation that would lead to the answer or B2 two correct relevant different size angles in <i>their</i> diagram or one relevant angle and total in <i>their</i> polygon or angle EDA + angle FAD = 140 or B1 for one relevant angle or total in <i>their</i> polygon
(b) (i)	50	2	B1 for angle $ADC = 80$ or angle $BAC = 30$ or angle $ADB = 50$ soi
(ii)	41	2FT	FT 91 – <i>their</i> (b)(i) B1 for angle <i>XBC</i> = 41
(iii)	Similar	1	
(c)	27.8 or 27.83	2	M1 for evidence of $\left(\frac{11}{10}\right)^2$ or 1.21 or $\left(\frac{10}{11}\right)^2$ or 0.826(4)
(d) (i)	60	3	M2 for $\frac{n}{10} = \frac{360}{n}$ oe
	3		e.g. $\frac{180(n-2)}{n} = 180 - \frac{n}{10}$
40.7	Th. sat	ore	or B1 for exterior sum = 360 or $180(n-2)$ seen
(ii)	174	2	M1 for $\frac{their\ n}{10}$ or $\frac{360}{their\ n}$ for their $n < 1800$


(a) (i)	66	1	
(ii)	24	1FT	FT 90 – their (a)(i)
(iii)	66	2FT	FT 90 – their (a)(ii) M1 for [BOD =] 180 – 48 or 180 – 2 × their (a)(ii)
(iv)	114	1FT	FT 180 – their (a)(iii)
(b)	83.6 or 83.60[]	2	M1 for $\frac{1}{2} \times 15 \times 15 \times \sin(180 - 48)$ oe or $\frac{1}{2} \times 15 \times 15 \times \sin(180 - 2 \times their (a)(ii))$ oe
(c)	Opposite angles add up to 180 OR Angle in a semicircle [=90]	P	RED

Question 12

(i)	42	2	B1 for $BAC = 90 - 48$
(ii)	111		B1 for 111 or 69 or <i>ACD</i> = 27 correctly placed on diagram or indicated

Ouestion 13

Question	13		
(a) (i)	Angle A is common to both triangles oe $ADB = ABC$	1	Accept $DAB = CAB$ oe
	Third angle of triangles equal oe	1dep	Dep on previous mark
(ii)	Similar	tpr	eP.
(iii)	8.25	2	M1 for $\frac{16}{12} = \frac{11}{BD}$ oe or better
(b) (i)	38	1	
(ii)	38	1	
(iii)	78	1	
(iv)	26	1	

(a) (i)	43	1	
(ii)	62	1	
	Isosceles triangle or <i>OYZ</i> is isosceles	1	
	Angle at centre is twice angle at circumference	1	
(iii)	30	2	M1 for $p + 5p = 180$ oe
	[Opposite angles of a]cyclic quadrilateral [add up to 180°]	1	L /s/
(b) (i)	1:2 oe	1	60.
(ii)	$OQ \\ MQ = NQ$	atpr	eb.
	OM = ON	1	
	Centre or O	1	Not origin

(a)	37 or [angle] BAD		1	
	[Angles in] same segment [are equal]		1dep	Dependent on 37 or [angle] BAD
(b)	74 or 2 [× angle] <i>BAD</i> or 2 [× angle] <i>BED</i>		1	
	Angle at <u>centre</u> is twice angle at <u>circumference</u>		1dep	Dependent on 2×37 or $2 \times [\times]$ angle BAD or $2 \times [\times]$ angle BED Must use the terms circumference, centre and angle
(c)	143 or 180 – [angle] <i>BAD</i> or 180 – [angle] <i>BED</i>	P	1	
	[Opposite angles of] cyclic quad [are supplementary]		1dep	Dependent on 180 – 37 or 180 – [angle] <i>BAD</i> or 180 – [angle] <i>BED</i>
Question 16				
(a)	[u =] 80 [v =] 160	1		
(b)	6.24 or 6.244 to 6.245	3	or M1 or B1	for $\sqrt{8^2 - 5^2}$ oe for $l^2 + 5^2 = 8^2$ oe for suitable right angled triangle drawn on correct side
(c)	5.05 or 5.052	tor	M1 fo	$r \frac{4.8}{2.5} = \frac{9.7}{MN}$ oe
(d)	4 nfww	4	M3 fo	$[x^n](x+1) = 4 \times \frac{5}{12}[x^n](x-1)$ oe, $n = 1, 2$
Question 17			or 3	
(a) (i)	$(6-2) \times 180$ or $(2 \times 6-4) \times 90$ or $(360 \div 6)$		M1	
	$(6-2) \times 180 \div 6$ or $(2 \times 6-4) \times 90 \div$ or $180 - (360 \div 6)$	- 6	M1de	dep on previous M1
(ii)	$1.73x$ or $x\sqrt{3}$ oe		3	M2 for $2x\sin 60$ or $2x\cos 30$ oe or for $\sqrt{x^2 + x^2 - 2 \times x \times x \times \cos 120}$ or M1 for $x\sin 60$ or $x\cos 30$ oe or for $x^2 + x^2 - 2 \times x \times x \times \cos 120$

(iii)	$(10-x)\sin 30$ seen oe	M1	
	$10 + 2((10 - x)\sin 30)$ oe	M1dep	dep on previous M1
	$10 + 10 - x$ or $10 + 2 \times \frac{1}{2} \times (10 - x)$	A1	with no errors or omissions seen
(b)	12.7 or 12.67 to 12.68 nfww	4	B3 for 7.32 to 7.33
			or M2 for $x = 20 \div (1+1.73)$ oe or M1 for $20 - x = their$ (a)(ii) oe

(a) (i)	27	1	
(ii)	3.89 or 3.888 to 3.889	2	M1 for $\frac{7}{EZ} = \frac{9}{5}$ oe
(b)	76 cao	3	B2 for $ABC = 104$ or $AOC = 152$ or $COD = 28$ or $OBA = 52$ and $OBC = 52$ or $BCD = 128$ and $OCB = 52$ or B1 for any one of $OBA, OBC, OCB = 52$ or $BCD = 128$
(c) (i)	90	1	
	angle in semicircle	1	1 / / /
(ii)	27	1	/ / /
	tangent [perpendicular to] radius	1	1.5
(iii)	rectangle	1	.0'

(a)	38	1	
	118	1	
	62	1FT	FT 180 – their y
(b)	69	3	B2 for $ACB = 42$ or B1 for $ADB = 42$ If zero scored, SC1 for $ACB = their ADB$
(c)	107	2	B1 for <i>QPS</i> = 73 or [reflex] <i>QOS</i> = 214

(a)	66[.0] or 66.03 to 66.04	2	$\mathbf{M1} \text{ for } \tan = \frac{9}{4} \text{ oe}$
(b)	$\sqrt{3^2 + 4^2}$ or $\frac{1}{2}\sqrt{6^2 + 8^2}$	M1	Any alternative method must be full and complete and result in exactly 5
(c)	60.9 or 60.94 to 60.95	2	M1 for $\tan = \frac{9}{5}$ oe
(d)	5.83 or 5.84 or 5.827 to 5.840	6	M1 for $[PB \text{ or } PC =]\sqrt{9^2 + 5^2} \text{ or } [XC =]\sqrt{9^2 + 5^2} - 7.5$ M1 for angle $BPX = 2 \times \text{invsin} \frac{3}{\text{their } PB}$ oe
	19		B1 for [PB or $PC = $] $\sqrt{106} = 10.29$ to 10.30 or $XC = 2.79$ to 2.8[0] or angle $BPX = 33.9$ or 33.86 to 33.90
			M2 for $\sqrt{(their\ PB)^2 + 7.5^2 - 2 \times their\ PB \times 7.5 \times \cos(their\ BPX)}$ oe
			or M1 for correct implicit equation

(a)(i)(a)	62 and Isosceles [triangle] and Angle at centre is twice angle at circumference oe	3 ore?	B2 for 62 and one correct reason or B1 for 62 with no/wrong reason or for angle $EOD = 124$ soi or for no/wrong angle with correct reason
(a)(i)(b)	62 and [Angles in] same segment oe or angle at centre is twice angle at circumference oe	2	2FT their (a)(i)(a) and correct reason B1FT for their (a)(i)(a) with no/wrong reason or for no/wrong angle with correct reason
(a)(ii)	8	3	M2 for $(180-109) - 28 - 35$ oe or M1 for [angle $AED =]180 - 109$ oe
)(b)(i)	24	3	x = ext angle B2 for [x =] 15 isw or M1 for x + 11x = 180 oe or for $\frac{180(n-2)}{[n]} = \frac{360}{[n]} \times 11$

(b)(ii)	3960	2	FT (<i>their</i> $24 - 2$) × 180 dep on (b)(i) an
			integer and > 6
			M1 for (<i>their</i> $24 - 2$) × 180 oe
			or their $24 \times 11 \times$ their 15 oe
			or 11 × 360

(a)	18	3	B2 for 20 nfww or M1 for $8x + x = 180$ or better
(b)	32	3	B1 for angle $DBC = 58$ B1 for angle $BCD = 90$
(c)(i)	24	2	B1 for angle $PRQ = 24$
(c)(ii)	29.4 or 29.40 to 29.41	3	M2 for $\frac{360-48}{360} \times 2 \times \pi \times 5.4$ or B2 for answer (minor arc) 4.52 or 4.523 to 4.524 or M1 for $\frac{48}{360} \times 2 \times \pi \times 5.4$

Question 23

'(a)	29	1	
(b)	128	2	FT 180 – 2 (55 – their (a)) M1 for angle <i>OCA</i> or angle <i>OAC</i> = 55 – their (a) soi
'(c)	64	1	FT <i>their</i> (b) ÷ 2
(d)	116	1	FT 180 – their (c)

(b)(i)	7.05 or 7.053	3	M2 for 12 × cos54 oe or M1 for implicit form or B1 for length of edge of pentagon = 14.1 to 14.11
(b)(ii)(a)) 22.8 or 22.81 to 22.83 nfww	3	If 0 scored, SC1 for right angle at M M2 for $\frac{their(\mathbf{b})(\mathbf{i})}{\cos 72}$ oe
			or M1 for implicit form oe or B1 for $AX = 36.9$ or 36.93 to 36.94
(b)(ii)(b)	SPT	B A	M2 for $\frac{1}{2} \times 12 \times their AX \times \sin 54$ oe or $\frac{1}{2} \times 12 \times their OX \times \sin 108$ oe or $\frac{1}{2} \times their AX \times their OX \times \sin 18$ or $\frac{1}{2} \times 12^2 \times \sin 72 + \text{area } OBX$ oe or $\frac{1}{2} \times 12^2 \times \sin 72 + \text{area } OMB + \text{area } MBX$ oe or M1 for a correct method to find area of one relevant triangle AOB , OMB , MBX , OBX or ONX seen
(a)	103	ator	M1 for angle ABC or angle $ACB = \frac{1}{2}(180 - 26)$ oe M1 for angle $ABF = 26$ or angle CBD
(b)	75	5	B4 for 105 at a or b or 73 at c and 32 at d or B3 for 58 at m or 58 at e and 17 at k or B2 for 32 at d and 90 soi at (c+k) or 32 at d and 17 at k or 73 at c or B1 for 90 soi at (c + k) or between tangent and radius or 32 at d or 17 at k

)(i)	Angle ABC=52 nfww	B1	ALTERNATIVE [Reflex] angle $AOC = 256$
	Opposite angles in cyclic quad oe Angles in opposite segments	B1	Angle at centre=2 × angle at circumference/arc
	[Angle AOC=104] Angle at centre=2 × angle at circumference/arc nfww	B1	Angles around a point
(ii)	22 nfww	2	B1 for angle $OAC = 38$ or angle $CAD = 24$
(iii)	28	1	1.5
(iv)	36.6 or 36.62 to 36.63 nfww	tores	B2 for 7.4 or 17.42 to 17.43 or M2 for $9.6 \times 2 + \frac{104}{360} \times 2 \times \pi \times 9.6$ or M1 for $\frac{104}{360} \times 2 \times \pi \times 9.6$

(a)(i)	2a + a + 2b + 3b + 10 = 180 leading to $3a + 5b = 170$ without error or omission	1	
(a)(ii)	8a + 3a + 2b + b + 50 + 4b - 2a = 360 leading to $9a + 7b = 310$ without error or omission	1	
(a)(iii)	Correct method to eliminate one variable	M1	
	[a =]15 [b=]25	A2	A1 for each correct value If 0 scored, SC1 for two values that satisfy one of the equations or for two correct answers with no/incorrect working
(a)(iv)	30	1	
(b)	$-1.5 \text{ or } -1\frac{1}{2} \text{ or } -\frac{3}{2}$	2	M1 for $6x = -12 + 3$ or better
(c)	$\frac{3x+3}{2}$ oe final answer	3	M1 for $8x - 2y = 5x - 3$ or $4x - y = \frac{1}{2}(5x - 3)$ M1FT for isolating the y term correctly
(d)	$9x^6$	2	M1 for $(3x^3)^2$ or $(729x^{18})^{\frac{1}{3}}$ seen or for $9x^k$ or kx^6 as final answer
(e)	$\frac{x}{x-5}$ final answer nfww	3	M1 for $x(x+5)$ M1 for $(x-5)(x+5)$

(a)	[p =] 132 [q =] 77	3	B1 for 132 [= p] B2 for 77 [= q] or M1 for 180 – (55 + 48) oe or for <i>their</i> p-55
(b)	74	3	B2 for $5x - 10 = 360$ or M1 for x + (x + 5) + (2x - 25) + (x + 10) = 360 or for $5x - 10 = k$
(c)	175	3 P/	M2 for $180 - \frac{360}{72}$ or for $\frac{180(72-2)}{72}$ or M1 for $\frac{360}{72}$ or for $180(72-2)$
(d)	[u =] 30 [v =] 60 [w =] 60 [x =] 120 [v =] 40	6	B1 for 30 B1 for 60 B1 for 60 FT <i>their</i> v B1 for 120 FT $2 \times their w$ B2 for 40 or B1 for angle $BDC = 20$ or angle $ADO = 30$ or angle $ADB = 70$
(e)	26	atpre	B3 for $360 - 22 = 10x + 3x$ oe or better or for $5x + 1.5x = 180 - 11$ oe or better or M2 for $360 - (3x + 22) = 2 \times 5x$ oe or for $5x + \frac{1}{2}(3x + 22) = 180$ oe or SC2 for $360 + 22 = 10x + 3x$ oe or better or M1 for $180 - 5x$, $10x$ or $360 - (3x + 22)$ correctly placed on the diagram or identified or for angle $A +$ angle $C = 5x$

(a)	12	2	M1 for $150 = \frac{(n-2) \times 180}{n}$ or $\frac{360}{180 - 150}$ oe
3(b)(i)	45	2	B1 for angles at M or $K = 45$ or angle at $L = 90$
(b)(ii)	85	2	B1 for either angle in alt segment = 58
(b)(iii)	72	2	B1 for either angle at J or H =108 or angle at F =72
(c)	OA = OB = OC = OD Radii	B1	
	AB = CD chords equidistant from centre are equal	B1	RA
Questio	SSS implies congruent on 30	B1	
S(a)(i)	36	2	M1 for $\left(\frac{8}{12}\right)^2$ or $\left(\frac{12}{8}\right)^2$ oe
(a)(ii)	30	3	M2 for $320 \div 16 \times \frac{12}{8}$ oe or M1 for $320 \div 16$
(b)	3.375 cao	3	M2 for $\frac{\frac{4}{3}\pi \times 4.5^3}{\pi \times 6^2}$ or better or M1 for $\pi \times 6^2 \times h = \frac{4}{3} \times \pi \times 4.5^3$
(c)	3.63 or 3.627 to 3.628	3	M2 for $\frac{20^3}{40 \times \frac{4}{3}\pi}$ or M1 for $40 \times \frac{4}{3} \times \pi \times r^3 = 20^3$
(d)	$\frac{3x}{2} \text{ or } 1.5x \text{ or } 1\frac{1}{2}x$	3	B2 for $4R^2 = 9x^2$ oe or better or M1 for $4\pi R^2 = 2\pi x^2 + \pi \times 2x \times \frac{7x}{2}$

(a)(i)	81° Angle at centre is twice angle at circumference oe	2	B1 for 81°
(a)(ii) (a)(iii)	Alternate segment [theorem] oe 123° Angles on a straight line [= 180] Opposite angles in a cyclic quadrilateral are supplementary oe	3	FT their (a)(i) B1FT for 81° FT their acute (a)(ii) + 42 B1 for each element
5(b)(i)	Angle PTU = angle PRQ corresponding Angle PUT = angle PQR corresponding Angle RPQ is common oe	M2	Accept in any order M1 for one correct pair with reason If 0 scored, SC1 for two correct pairs of equal angles identified with incorrect/no reasons
	Corresponding angles are equal oe	A1	
(b)(ii)(a)	4:7 oe	1	
(b)(ii)(b)	41.25 oe	3	M2 for $20 \times \left(\frac{7}{4}\right)^2$ oe or $20 \times \frac{7^2 - 4^2}{4^2}$ oe or M1 for $\left(\frac{7}{4}\right)^2$ or $\left(\frac{4}{7}\right)^2$ or $\frac{7^2 - 4^2}{4^2}$ or $\frac{4^2}{7^2 - 4^2}$

3(a)	[v =] 40 [w =] 80 [x =] 40 [y =] 100 [z =] 60	5	B1 for each FT angle z as 140 – their w
(b)	24	3	M2 for $360 - 11x = 2 \times 2x$ oe or M1 for $360 - 11x$ seen or obtuse angle $KOL = 2 \times 2x$ oe

(c)(i)	angle ADX = angle BCX oe same segment oe	M2	Accept in any order M1 for one correct pair with reason
	angle DAX = angle CBX oe same segment oe		If 0 scored, SC1 for two correct pairs of equal angles identified with incorrect/no reasons
	angle $AXD = BXC$ oe [vertically] opposite oe		Teasons
	corresponding angles are equal oe	A1	
(c)(ii)(a)	8.75 or 8 ³ / ₄	2	M1 for $\frac{8}{10} = \frac{7}{DX}$ oe
(c)(ii)(b)	81.8 or 81.78 to 81.79	4	M2 for $[\cos[BXC] =]\frac{5^2 + 7^2 - 8^2}{2 \times 5 \times 7}$ oe or M1 for $8^2 = 5^2 + 7^2 - 2 \times 5 \times 7 \times \cos()$ oe
	19		A1 for $\frac{10}{70}$ oe
Question	33		

(a)	38.6	3	M2 for $[2 \times] (8.5 + 0.05 + 10.7 + 0.05)$
			or M1 for 8.5 + 0.05 or 10.7 + 0.05
(b)(i)	8.86 or 8.863	2	M1 for $\frac{h}{9} = \sin 80$ or better oe
(b)(ii)	\angle CDF = 100 leading to \angle DCF = 40 Or \angle EDF = 80 leading to \angle DCF = 40	M1	Implied by 180 - $(100 + 40) = 40$ or $80 - 40$
	'two equal angles'	A1	With no incorrect work seen
(b)(iii)	66.5 or 66.45 to 66.47	3	M2 for $0.5(3 + 12) \times their$ (b)(i) or $12 \times their$ (b)(i) $-0.5 \times 9 \times 9 \times \sin 100$ oe
			or B1 for $DC = 9$ or $BC = 3$

(c)	130 nfww or 129.6 to 129.8	5 B1 for $\angle ACD = 21^{\circ}$ or $\angle CAD = 69^{\circ}$ Method 1 M2 for $\cos 21 = \frac{12}{AC}$ oe or M1 for $\angle ADC = 90$ soi M1 for $\pi(their\ AC/2)^2$ OR Method 2 M2 for $\frac{12}{sin138} = \frac{r}{sin21}$ oe or M1 for $\angle COD = 138$ soi	
(d) Quest	78.4 or 78.37 to 78.41	M1 for π (their r) ² M2 for $\frac{x}{360} \times 2 \times \pi \times 9.5 + 2 \times 9.5 = 4 \times 8 \text{ or}$ or M1 for $\frac{x}{360} \times 2 \times \pi \times 9.5$ After M0, SC1 for $9.5x + 19 = 32$ oe	è
(a)	1600	3 B2 for answer figs 16 or M2 for 90.72 ÷ (figs45 × figs3 × figs42) or M1 for volume = figs 45 × figs 3 × figs 42	isw
(b)	62.8 or 62.83 to 62.84	3 M2 for $\frac{\pi \times 10^2 \times 30}{15000} \times 100$ or M1 for $\pi \times 10^2 \times 30$	
l(c)	12.9[0]	3 B2 for 86 OR M2 for $\frac{98.9}{1 + \frac{15}{100}} \times 0.15$ oe or $98.9 - \frac{98.9}{1 + \frac{15}{100}}$ or M1 for $\left(1 + \frac{15}{100}\right)a = 98.9$ oe isw	oe
(d)	50	2 M1 for 3540 ÷ 70.8	

ASA [implies congruent]

(a)	126 54 117	3	B1 for each
(b)	angle [in a] semicircle is 90	B1	Do not accept triangle for angle
	Allied, co-interior [add to 180]	B1	
	or		
	Angles in triangle [= 180] and alternate oe		
	32	B1	
(c)	109	2	B1 for 218 or 71 in correct places or correctly labelled
Ques	tion 36		
(a)	20		M1 for $\frac{360}{18}$ or $180 - \frac{16 \times 180}{18}$
(b)	4.5		M1 for $\frac{BE}{6.75} = \frac{5.2}{5.2 + 2.6}$ oe
(c)	5.8[0] or 5.798 to 5.799		3 M2 for $2 \times \sqrt[3]{\frac{780}{32}}$ oe or M1 for $\sqrt[3]{\frac{780}{32}}$ or $\sqrt[3]{\frac{32}{780}}$ or $\frac{2^3}{l^3} = \frac{32}{780}$
(d)	QN = NR [given]	В	1 0
	Two correct pairs of angles with reasons from	a to _B	or two correct pairs of angles with no/wrong
	angle PQN = angle SRN alternate		reasons
	angle QPN = angle RSN alternate		
	angle PNQ = angle SNR [vertically] opposite		

B1 dep on B1 B2

2(a)	52°	3	M1 for $180 - 2 \times 38$, implied by 104 M1 for <i>their AOB</i> \div 2
(b)(i)	80°	2	B1 for $FEC = 50$ or $FCE = 50$
b)(ii)	100°	1	FT 180 – their (i)

(a)(i)	and Angle at centre is twice angle at circumference oe	2	B1 for either
(a)(ii)	and Isosceles [triangle] and Opposite angles in a cyclic quadrilateral are supplementary	4	B2 for 117 or B1 for [angle OCD =] 28 B1dep for isosceles [triangle] and B1 for opposite angles in a cyclic quadrilateral are supplementary
(b)	24.9 or 24.94 to 24.95	5	B1 for angle $PQS = 42$ M2 for $QS = 5.9 \div \cos 42$ oe or M1 for $\cos 42 = \frac{5.9}{QS}$ oe M1 dep for their $SQ \times \pi$ oe

(a)(i)	683	3	M2 for $[2]((19.4 \times 9.2) + (5.7 \times 9.2) + (19.4 \times 5.7))$ oe or M1 for one of 19.4×9.2 or 5.7×9.2 or 19.4×5.7
(a)(ii)	1.93[0] or 1.932 to 1.933	3	M2 for $19.4 \times 9.2 \times 5.7 \times 1.9$ or M1 for $19.4 \times 9.2 \times 5.7$
(b)	39 375	3	M2 for $9000 \div 200 \times 175 \times 5$ or M1 for $9000 \div 200$ soi or for $\frac{175}{200}$ soi
(c)	10 th July	3	B2 for 4.1 to 4.2 or $4\frac{1}{6}$ or 4 days 1.5 hours Or M2 for answer 9^{th} July or 11^{th} July or M1 for $1500 \div (9 \times 40)$
(d)	167 or 166.9 to 167.0	3	B2 for answer with figs 167 or figs 1669 to 1670 or M1 for $\pi \times 22.5^2 \times 105$ oe If 0 scored SC1 for answer 668 or 667.9 to 668.1

(a)	15	2	M1 for $\frac{360}{180-156}$ or for $\frac{180(n-2)}{n} = 156$ oe
b)	38	2	B1 for $AOB = 76$
(c)	68	2	B1 for $RSP = 68$ or $RQP = 112$
(d)	Two pairs of equal angles identified with fully correct reasons	M3	M2 for one pair of equal angles identified with fully correct reasons $KMG = 90$ angle in semicircle and $OGH = 90$ angle between tangent and radius OR
	6P	F	KMG = OGH alternate segment OR $GOH = MGK alternate angles$ OR
			Angle FGM = angle GHO corresponding and angle $FGM = GKM$ alternate segment and angle H = angle K or M1 for KMG = 90, angle in semicircle
			or $OGH = 90$, angle between tangent and radius
	Two or three pairs of angles equal [so similar] oe	A1	Dep on M3 with no incorrect work seen

(a)
$$\frac{(12-2)\times180}{12} = 150$$
 oe or $180 - \frac{360}{12} = 150$ [= 150] Accept $\frac{(2\times12-4)\times90}{12} = 150$

(b)(i)
$$\frac{3}{\cos 75}$$
 oe or $\frac{6\sin 75}{\sin 30}$ M2 M1 for $\frac{3}{AO} = \cos 75$ oe or $\frac{r}{\sin 75} = \frac{6}{\sin 30}$

(b)(ii)(a	a) 72.8 or 72.9 or 72.82 to 72.89	2	M1 for $2 \times \pi \times 11.6$
(b)(ii)(l	b) 12.1 or 12.06 to 12.08	2	M1 for [6+] their (b)(ii)(a) ÷ 12 oe
(c)	806 or 807 or 805.9 to 807.4		B2 for 402.9 to 403.7 OR
			M2 for $\frac{1}{2} \times 6 \times 11.6 \times \sin 75 \times 12 \times 2$ oe
			or M1 for $\frac{1}{2} \times 6 \times 11.6 \times \sin 75 \left[\times k \right]$ oe

PMR = MSR = right angle[s] or 90° B1

PRM = MRS same angle

AAA oe

OR

MPR = SMR 3rd angle of triangle

(b)(i) 5.5

2 M1 for
$$\frac{x}{4.5} = \frac{9.9}{8.1}$$
 oe

(b)(ii) 16.7 or 16.73 to 16.74

2 M1 for $25 \times \left(\frac{8.1}{9.9}\right)^2$ oe

or $25 \times \left(\frac{4.5}{their}, 5.5\right)^2$ oe

(a)	PQR = 90 angle in semi-circle	B1		
	PRQ = 61 angle sum of triangle $[= 180]$	B1		
	PSQ = 61 angle in same segment	B1	If 0 so	cored SC1 for $PSQ = PRQ$ [= 61] soi
(b)	57	4	B1 fo	rABT = 98
			B1 fo	TAB or ATB = 41
			B1 fo	rBTC = 41 or TBC = 82 or ATC = 82 soi
Quest	ion 44			
(a)	$[\cos B =] \frac{9.5^2 + 7.7^2 - 10^2}{2 \times 9.5 \times 7.7} \text{ oe}$		M2 N	M1 for $10^2 = 9.5^2 + 7.7^2 - 2 \times 9.5 \times 7.7 \cos B$ oe or better
	70.206 to 70.207 or 70.21 to 70.22		A2	$\frac{2477}{7315}$ oe or 0.339 or 0.3386
(b)(i)	140.4		1	
(b)(ii)	19.8		1 I	TT (180 – their (b)(i)) ÷ 2
b)(iii)	70.2		1 I	T 90 – their (b)(ii)
(c)	5.31 or 5.314 to 5.315			12 for $\frac{5}{\cos their(\mathbf{b})(\mathbf{ii})}$ oe r M1 for $\frac{5}{r} = \cos(their(\mathbf{b})(\mathbf{ii}))$ oe
(d)	38.8 or 38.9 or 38.78 to 38.85	atp	N	13 for $\frac{0.5 \times 9.5 \times 7.7 \times \sin 70.2}{\pi \times (their (c))^2} [\times 100]$ 11 for $0.5 \times 9.5 \times 7.7 \times \sin 70.2$ 11 for $\pi \times (their (c))^2$
Quest	ion 45			
)(i)	58		1	
(ii)	106		1	
(iii)	47		2	B1 for $PRQ = 27$ or B1FT for SPR , either = 48

or = 106 - their (b)(i) or **B1FT** for RPQ = their (b)(i) - 11

Radius perpendicular to tangent	1	
Tangents to circle from a/same point oe	1	
RHS	1	
68 angles on a [straight] line add up/sum to 180 <u>oe</u>	1	
56 [base angles of] isosceles triangle	1	
OBC = BOT Alternate angles	1	Angles and reason required and dependent on <i>OBC</i> and <i>BOT</i> correct
Question 47	PF	R

)(i)	118	1	
)(ii)	X is 8.3 cm from B	2	M1 for $(332 \div 200) \times 5$ oe
(iii)	1:4000	2	M1 for 200 \div 5 or 200 \times 100, both soi

(a)	111	3	M2 for $180 - \frac{180 - 42}{2}$ oe or $42 + \frac{180 - 42}{2}$ oe or M1 for $\frac{180 - 42}{2}$ oe
(b)	150	3	M1 for $k \div (3 + 4 + 5) [\times p]$ where $p = 1, 3, 4$ or 5 or $\frac{5}{12}$ oe B1 for 360 used
(c)	3/5 cao nfww		B3 for $\frac{72}{120}$ or B2 for $[d =]$ 72 or $[h =]$ 120 or M1 for 360 ÷ 5 oe isw or 180 – (360 ÷ 6) isw or for $(6-2) \times 180$ [÷ 6]
(d)	x + 2x - 5 + x + 20 + 3x - 40 = 360	M1	Accept equivalent equation e.g. $7x - 25 = 360$
	7x = 360 + 5 - 20 + 40 or better	M1	FT their equation, accept e.g. $7x = 385$
	x = 55	B1	
	55 and 125 or 105 and 75	B1dep	Dep on M1M1B1 Accept $55 + 3 \times 55 - 40 = 180$ or $2 \times 55 - 5 + 55 + 20 = 180$ If B0 scored, SC1 for 55, 75, 105 and 125
	Opposite angles sum to 180 oe [so <i>PQRS</i> is a cyclic quadrilateral]	A1	Dep on M1M1B1B1
(e)	48.7 or 48.69 to 48.70	3	M2 for $\frac{360-50}{360} \times 2 \times \pi \times 9$ oe
			or M1 for $\frac{50}{360} \times 2 \times \pi \times 9$ oe