Extended Mathematics

Topic: Mensuration

Year :May 2013 -May 2023

Paper -4 Answers

\sim	. •		-
Oue	ct1	0	n I

Quesi	.1011	1		
(a)		3080	2	M1 for $\frac{1}{2} \times 7 \times 22 \times 40$
(b)		46.2 or 46.18 to 46.2 www	4	M3 for $\sqrt{7^2 + 22^2 + 40^2}$ or M2 for $7^2 + 22^2 + 40^2$ soi by 2133 or M1 for correct Pythagoras on one face
(c)		8.7 or 8.7 to 8.72 www	3	$\mathbf{M2} \text{ for sin}^{-1} \frac{}{their(b)}$ oe
(d)	•	217	3	M1 for $\frac{4}{3} \times \pi \times 1.5^3$ soi by 14.1 to 14.14
				and M1 dep for their (a) ÷ their 14.14 soi by 218. Dependent on M1 earned
(e)	(i)	25.13875 final answer	2	B1 for 4.55 and 11.05 seen or 25.13875 seen and then spoiled
	(ii)	25.14	1FT	Strict FT their (e)(i) correct to 4s.f. if rounding is possible
Quest	ion 2	2		
(i)	636	60 or 6361 to 6363	2	M1 for $\pi \times 45^2$
(ii)	165	5 or 164.9 to 165	2	M1 for $\frac{210}{360} \times 2\pi \times 45$
Quest	ion .	3	atp	reP
(a)		371 or 371.1	4	M3 for $(6 \times 4 \times 12) + (2 \times 6 \times 0.5 \times 4 \times 4 \times \sin 60)$ oe or M2 for area of 1 or 2 hexagons
(i)		740 or 1743.6 to 1744.2	4	or M1 for area of one relevant triangle or trapezium or rectangle within hexagon M3 for $\frac{12000}{4} \div (\pi \times 0.74^2)$ oe or SC2 for figs 174[3] or 174[4]
(ii)	8	7 cao www 5	5	B4 for 87.39 to 87.43 or M3 for $[r=]$ $\sqrt{\frac{figs 12}{\pi \times figs 5}}$ oe

(a)	329.7 to 330	3	M2 for $\frac{1}{2}\pi(12^2 + 8.75^2 - 3.25^2)$ oe or M1 for $\frac{1}{2}\pi12^2$ or $\frac{1}{2}\pi8.75^2$ or $\frac{1}{2}\pi3.25^2$ SC2 for answer 1318 to 1320
(b)	2970 or 2967 to 2969.[]	4	M3 for $\frac{1}{2}\pi(24 + 17.5 + 6.5) \times 35 + their$ (a) or M2 for $\frac{1}{2}\pi(24 + 17.5 + 6.5) \times 35$ or M1 for $\frac{1}{2}\pi \times 24$ or $\frac{1}{2}\pi \times 17.5$ or $\frac{1}{2}\pi \times 6.5$ SC3 for 3955 to 3960 dep on SC2 in (a)
(c)	11.5 or 11.6 or 11.53 to 11.55	3FT	M1 for their (a) × 35 A1 for 11500 or 11530 to 11550
(d) (i)	$\frac{r}{h} = \frac{20}{40}$ or $\frac{r}{20} = \frac{h}{40}$	1	Accept 20: 40 = r : h leading to $40r = 20h$ [$r = h/2$] $\frac{20}{40} = \frac{1}{2}$ and $\frac{r}{h} = \frac{1}{2}$
(ii)	35.3 or 35.31 to 35.34	3	M2 for $\sqrt[3]{\frac{their 11545 \times 12}{\pi}}$ oe or $2 \times their r$ or M1 for their $11545 = \frac{1}{3} \times \pi \times \left(\frac{h}{2}\right)^2 \times h$ oe
			or their 11545 = $\frac{1}{3} \times \pi \times r^2 \times 2r$ oe

Question 5

(a)
$$9-2x$$
, $7-2x$ oe
(b) $x(9-2x)(7-2x)$ $4x^3-32x^2+63x$

B1 for each, accept in any order

M1FT

A1 Correct expansion and simplification with no errors

(a) (i)
$$90 \div (42/360 \times \pi \times 8^2)$$
 o.e. M3

3.836 to 3.837

(ii) $131 \text{ or } 130.75 \text{ to } 130.9 \text{ nfww}$

5

M2 for $42/360 \times \pi \times 8^2 \times h = 90$

or M1 for $42/360 \times \pi \times 8^2$

M2 for $42/360 \times \pi \times 2 \times 8 \times 3.84$ oe [22.48 to 22.53]

or M1 for $42/360 \times \pi \times 2 \times 8$ oe soi [5.86 to 5.87]

and M1 for $2 \times (8 \times 3.84)$ [61.37 to 61.44]

and M1 for $2 \times (42/360 \times \pi \times 8^2)$ [46.88 to 47]

(b)	2.42	or 2.416	to 2.419
(\mathbf{D})	2.72	01 2.710	10 2.41)

M1 for $\pi \times 5 \times 13$ implied by answer in range 204.1 to 204.3

3 M2 for
$$\sqrt{13^2 - 5^2}$$
 or states 5, 12, 13 triangle or M1 for $13^2 = 5^2 + h^2$ or better

2 M1 for
$$\frac{1}{3} \times \pi \times 5^2 \times their$$
 (a) (ii) implied by answer in range 314 to 314.3

(iv)
$$3.14 \times 10^{-4}$$
 or 3.141 to 3.142×10^{-4}

2FT FT their (a) (iii) ÷ 100³ correctly evaluated and given in standard form to 3 sig figs or better or M1 FT for their (a) (iii) ÷ 100³ or SC1 for conversion of their m³ into standard form only if negative power

4 M3 for
$$\frac{10\pi}{26\pi} \times 360$$
 oe or $\frac{\pi \times 5 \times 13$ or their (a) (i) $\pi \times 13^2$ or M2 for a correct fraction without $\times 360$ or M1 for $\pi \times 2 \times 13$ oe [81.6 to 81.8] seen or $\pi \times 13^2$ oe [530.6 to 531.2] seen

- (a) (i) 204 or 204.2 to 204.23
- 2 M1 for $\pi \times 5 \times 13$ implied by answer in range 204.1 to 204.3

(ii) 12 cao

- 3 M2 for $\sqrt{13^2 5^2}$ or states 5, 12, 13 triangle or M1 for $13^2 = 5^2 + h^2$ or better
- (iii) 314 or 314.1 to 314.2
- 2 M1 for $\frac{1}{3} \times \pi \times 5^2 \times their$ (a) (ii) implied by answer in range 314 to 314.3
- (iv) 3.14×10^{-4} or 3.141 to 3.142×10^{-4}
- **2FT** FT their (a) (iii) ÷ 100³ correctly evaluated and given in standard form to 3 sig figs or better or M1 FT for their (a) (iii) ÷ 100³ or SC1 for conversion of their m³ into standard form only if negative power

(b) 138 or 138.3 to 138.5

4 M3 for $\frac{10\pi}{26\pi} \times 360$ oe or $\frac{\pi \times 5 \times 13 \text{ or their (a)(i)}}{\pi \times 13^2} \times 360 \text{ oe}$

Question 8

(a) [r=] 2.30[9...]

B2 for [r =] 2.31 **or M2** for 4 tan 30

(b) 333 or 332.5 to 332.6

M3 for $0.5 \times 8 \times 8 \times \sin 60 \times 12$ oe or M2 for $0.5 \times 8 \times 8 \times \sin 60$ oe or M1 for *their* triangle area \times 12 shown

Question 9

(a) (i) 2412 to 2413....

B2 Must be at least 4 figures shown **M1** for $\pi \times 8^2 \times 12$ oe

(ii) 2.41[0]

B1

3

(b)	1 min 24 s	4	B3 for 83.76 to 83.8[0] or 84 or 1.396 to 1.397 or 1.4 or 1 min 23.76 to 1 min 23.8 seen or M2 for $\frac{1}{3}\pi \times 4^2 \times 10 \div 2$ [80/3 π]
(c)	14	3	or M1 for $\frac{1}{3}\pi \times 4^2 \times 10$ [160/3 π or 167.5 to 167.6] M1 for $\frac{2410}{\frac{1}{3}\pi \times 4^2 \times 10}$ or $\frac{2410}{10}$
			their cone vol from part (b) A1 for 14.3 to 14.4

(i)	59 112 to 59 113 or 59 100 or 59 110	3	M2 for $\pi \times 21 \times (30^2 - 2^2)$ oe
	or 59 119 to 59 120 or 59 100 nfww		Or M1 for $\pi \times 21 \times 30^2$ or $\pi \times 21 \times 2^2$
(ii)	(a) 0.0125	1	
	(b) 7580 or 7582 or 7581 or 7583 nfww	4	M1 for 21 × 29.7 × their 0.0125 [=7.796 or 7.8[0]] and M1 for their (d)(i) ÷ (21 × 29.7 × their 0.0125) A1 for 7580 to 7583.2 (non integer) If 0 then SC1 for their (d)(i) ÷ (21 × 29.7 × 0.125)

(c) (i)
$$\frac{30}{360} \times \pi \times r^2 - \frac{1}{2} \times r^2 \times \sin 30 \text{ oe}$$
$$\frac{1}{12} \times \pi \times r^2 - \frac{1}{4} \times r^2$$
$$\frac{1}{4} r^2 \left(\frac{1}{3} \pi - 1\right)$$

M2 M1 for
$$\frac{30}{360} \times \pi \times r^2$$
 or $\frac{1}{2} \times r^2 \times \sin 30$

A1

A1 Dep on M2 A1 and no errors seen

(ii) 20.6 or 20.7 or 20.55 to 20.71

3 M2 for $[r^2 =] \frac{5}{\frac{1}{4}(\frac{1}{3}\pi - 1)}$ or M1 for one correct rearrangement step to rfrom $\frac{1}{4}r^2(\frac{1}{3}\pi - 1) = 5$

Question 12

2 M1 for
$$[AD^2 =]2.6^2 + 4.7^2$$
 oe or better

3 M2 for tan [
$$BCD =$$
] $\frac{4.7}{(17-11-2.6)}$ oe

or **B1** for 3.4 seen

2 M1 for
$$\frac{11+17}{2} \times 4.7$$
 oe

(b) 263.2 or 263

3FT | FT their (a)(iii) × 4 correctly evaluated M2 for their (a)(iii) × $\left(\frac{9.4}{4.7}\right)^2$ oe or $\left(\frac{9.4}{4.7}\right)^2$ (4.7)²

M1 for [scale factor =] $\left(\frac{9.4}{4.7}\right)^2$ or $\left(\frac{4.7}{9.4}\right)^2$ soi

(a) (i)
$$120 \times 55 \times 75 = 495000$$
 M1 $\div 1000 = 495$ M1

or
$$495[1] \times 1000 = 495000[ml]$$

(b) (i) 11

2 M1 for $495000 \div 750 \ [\div 60]$ oe [660] After 0 scored, SC1 for answer figs 11

(a) (i)
$$47.7 \text{ or } 47.74 \text{ to } 47.75$$
 $\mathbf{3}$ $\mathbf{M1} \text{ for [arc =] } 68 - 2 \times 24$ or $24 + 24 + \frac{x}{360} \times 2\pi \times 24 = 68$ $\mathbf{M1} \text{ for } [x =] \text{ their arc} \times 360 \div (2 \times \pi \times 24)$ (ii) $252 \text{ or } 252.3 \text{ to } 252.4...$ $\mathbf{6}$ $\mathbf{M1} \text{ for } r = \frac{20}{2\pi} \text{ or } \left(\frac{their 47.7}{360} \times 2 \times \pi \times 24\right) \div (2\pi)$ $\mathbf{A1} \text{ for } r = 3.18 \text{ or } 3.182 \text{ to } 3.183... \text{ or } \frac{10}{\pi}$ $\mathbf{M1} \text{ for } h^2 = 24^2 - their \, r^2$ $\mathbf{A1} \text{ for } h = 23.8 \text{ or } 23.78... \text{ to } 23.79$ $\mathbf{M1} \text{ dep on M1 earned for } V = \frac{1}{3}\pi \times their \, h \times their \, r^2$

(b)	139 or 139.3 to 139.4 nfww	5	M4 for $8^2 + \frac{1}{4}\pi \times 8^2 + \frac{1}{2}\pi \times \left(\frac{8}{2}\right)^2$
			or M1 for $\frac{1}{4}\pi \times 8^2$
			and M1 for $\frac{1}{2}\pi \times \left(\frac{8}{2}\right)^2$
Question	15		and M1 for 8^2 added to at least one term with π

$$\frac{1}{2}(x+4+3x+2)(x+1)=15$$
M1 Allow $\frac{1}{2}(4x+6)(x+1)=15$

$$4x^2+4x+6x+6=30$$
or $2x^2+2x+3x+3=15$
M1 Dep on 1st M1
$$2x^2+5x-12=0$$
A1 With no errors or omissions

Question 16

(a) 28.3 or 28.29...

(b) (i) 360 000

2 M1 for 180 000 ÷
$$(\pi \times 45^2)$$

3 M2 for $\frac{1}{2}(70+50) \times 40 \times 150$ oe or M1 for $\frac{1}{2}(70+50) \times 40$ oe or their area of ABCD × 150 dependent on their area being two dimensional

(ii) 360

1FT FT their (b)(i) ÷ 1000

(c) 3 h 20 min

3 M2 for 180 000 ÷ 15 ÷ 60 (implied by 200) or M1 for 180 000 ÷ 15 (implied by 12000) or correct conversion of their seconds into h and min

(d) (i) $\frac{h}{40} = \frac{\frac{1}{2}(x-50)}{10}$ oe M1 i.e. a correct statement from similar figures which must contain h, x and numbers

$$h = 2(x-50)$$
A1 Answer established with at least one more step and no errors or omissions

M1

(iv)	21.7 or 21.65 to 21.66	1FT	FT for $2(their (d)(iii) - 50)$ evaluated only if $x > 50$
(iii)	60.8 or 60.82 to 60.83	2	M1 for $(x^2 - 2500) \times 150 = 180000$ or better
Questi	on 17		
(a) (i	9π final answer	2	M1 for $\frac{135}{360} \times 2 \times \pi \times 12$ oe
(ii	(a) 4.5[0] or 4.497 to 4.504	2FT	FT their $9 \div 2$ M1 for $2\pi r = their \ 9\pi$ or $12\pi r = \frac{135}{360}\pi 12^2$ oe
	(b) 11.1 or 11.12[]	3FT	FT their $\sqrt{12^2 - their 4.5^2}$ to 3 sf or better
	SPT	P	(their 4.5 < 12) M2 for $\sqrt{12^2 - their 4.5^2}$ (their 4.5 < 12) or M1 for $12^2 = h^2 + their 4.5^2$ oe (their 4.5 < 12)
(b) (i	75 nfww	3	M2 for $l = \frac{35}{7} \times 15$ or $x = \frac{35}{7} \times 8$ oe or for 40 seen nfww or correct trig or Pythagoras' method leading to
	432		value rounding to 40.0 M1 for $\frac{l}{15} = \frac{35}{7}$ oe or $\frac{x}{8} = \frac{35}{7}$ oe or $\frac{l-35}{8} = \frac{35}{7}$ oe or $\frac{l-35}{l} = \frac{8}{15}$ oe
(ii)	2730 or 2730.0 to 2730.4 nfww		M2 dep for $\pi \times 15 \times their 75 - \pi \times 8 \times (their 75 - 35) [+ \pi \times 8^2]$ dep their 75 > 35 or 805π [2527.7 to 2530] nfww or 869π [2728.6 to 2731.2] nfww
			M1 for $\pi \times 15 \times their$ 75 or 1125 π [3532.5 to 3535.8] nfww seen or $\pi \times 8 \times (their$ 75 – 35) or 320 π [1004.8 to 1005.8] nfww seen or $\pi \times 8^2$ or 64π [200.9 to 201.2] nfww seen

(c) (i	$16r^3$	2	M1 for $[M =] k \times r^3$ or $1458 = k \times 4.5^3$ oe or $\frac{M}{1458} = \frac{r^3}{4.5^3}$ oe After M0, SC1 for 16 seen
(ii Questi	8:27 oe on 18	1	Must be numeric, e.g. 128:432
~	37.7 or 37.69 to 37.704 nfww	2	M1 for $6\pi + 4\pi \pm 2\pi$ oe

Q

(i)
 37.7 or 37.69 to 37.704 nfww
 2
 M1 for
$$6\pi + 4\pi \pm 2\pi$$
 oe

 (ii)
 12100, 12060, 12070, 12062.4 to 12065.6 nfww
 5
 SC4 for answer with figs 121 or 1206 to 1207

(a) | 43 200 | 3 | M2 for
$$0.5 \times (35 + 25) \times 12 \times 120$$
 oe or M1 for $0.5 \times (35 + 25) \times 12$ oe | Dep on a valid method for obtaining the width of 30 cm B1 for $0.5 \times (25 + 35)$ oe | FT for $\frac{19800}{their} \times 100$ | FT for $\frac{19800}{12 \times 1000} \times 100$ | FT for $\frac{19800}{12 \times 1000} \times 100$ | If zero scored then SC1 for figs 165 and B1 for converting their time (in hours) into hours and minutes | M2 for $\sqrt[3]{\frac{19800}{3\pi}}$ or | M1 for $\pi r^2 3r = 19800$ | M1 for πr^2

(a)	5.2[0] or 5.196	3	M2 for $[h^2=]$ 6 ² – 3 ² or better
			or M1 for $h^2 + 3^2 = 6^2$ or B1 for PR (or PQ or QR) = 6
(b) (i)	7.2[0] or 7.196	1FT	FT <i>their</i> (a) + 2
(ii)	62.4 or 62.35	5	M4 for $12 \times 6 \times \frac{1}{2}$ tan 60 oe
			or M3 for $6 \times \frac{1}{2} \tan 60$ oe or M2 for realising that $\frac{1}{2}$ base = $1 \times \tan 60$ oe
	GAT	PF	or B1 for angle 30 or 60 in correct position on diagram or in a calculation If 0 scored, SC1 for volume = an area × 12 seen
Question	21		

(a)	3	1	
(b) (i)	9900	3	M2 for $2(60 \times 35) + 2(60 \times 30) + 2(30 \times 35)$ oe or M1 for one correct rectangle
(ii)	0.99 oe	1FT	FT <i>their</i> (b)(i) ÷ 10 000
(c) (i)	75.7 or 75.66 to 75.67	4 ore	M3 for $\sqrt{60^2 + 30^2 + 35^2}$ oe could be in stages or M2 for $60^2 + 30^2 + 35^2$ oe or M1 for $60^2 + 30^2$ or $60^2 + 35^2$ or $35^2 + 30^2$ oe
(ii)	23.4 or 23.3 or 23.34 to 23.36	3	M2 for $\sin^{-1}(30 \div \sqrt{60^2 + 35^2 + 30^2})$ oe or for $\sin^{-1}(30 \div their(c)(i))$ or M1 for $\sin = 30 \div \sqrt{60^2 + 35^2 + 30^2}$ oe or for $\sin = 30 \div their(c)(i)$
(d) (i)	$30 \times 35 \times 60 \ [= 63\ 000]$	1	With no errors seen
(ii)	22.4 or 22.38 to 22.391	3	M2 for $\sqrt{\frac{63000}{40\pi}}$ oe or M1 for $40\pi r^2 = 63000$ oe

(a)	Attempt to use $18 - r$ in Pythagoras'	M1	
	$\begin{vmatrix} 144 = r^2 - 324 + 18r + 18r - r^2 \\ \text{oe} \end{vmatrix}$	B2	or B1 for $324 - 18r - 18r + r^2$
	468 = 36r oe	A1	Correct simplification with no errors
(b)	$[2 \times] \sin^{-1}\left(\frac{12}{13}\right)$ oe	M1	or $\cos = \left(\frac{13^2 + 13^2 - 24^2}{2 \times 13 \times 13}\right)$ or better or
	·S		$[180 -] 2 \times \sin^{-1}\left(\frac{5}{13}\right)$
	134.76	A1	Not 67.4×2
(c) (i)	332 or 332.1 to 332.2	3	M2 for $\frac{(360-134.8)}{360} \times \pi \times 13^2$
			or 134.8
			M1 for $\frac{134.8}{360} \times \pi \times 13^2$
(ii)	392 or 392.0 to 392.2	3	M2 for $\frac{1}{2} \times 24 \times 5 + their$ (c)(i) or $\frac{1}{2} \times 13^2 \times \sin 134.8 + their$ (c)(i)
			or
			M1 for $\frac{1}{2} \times 24 \times 5$ or $\frac{1}{2} \times 13^2 \times \sin 134.8$

(c) (i)	332 or 332.1 to 332.2	3	M2 for $\frac{(360-134.8)}{360} \times \pi \times 13^2$
		_	or M1 for $\frac{134.8}{360} \times \pi \times 13^2$
(ii)	392 or 392.0 to 392.2	3	M2 for $\frac{1}{2} \times 24 \times 5 + their$ (c)(i) or $\frac{1}{2} \times 13^2 \times \sin 134.8 + their$ (c)(i) or M1 for $\frac{1}{2} \times 24 \times 5$ or $\frac{1}{2} \times 13^2 \times \sin 134.8$
(iii)	15700 or 15670 to 15690	1FT	FT for answer to $40 \times their$ (c)(ii)
(d)	29.5 or 29.6 or 29.51 to 29.57	2FT	M1 for $\pi \times 13^2 \times h = their$ (c)(iii) or better

Question 2	•		
(i)	1.32	2	M1 for $0.8 \times 1.5 \times 1.1$
(ii)	0.725 or 0.7246 to 0.7247	2	M1 for $\pi r^2 \times 0.8 = their(\mathbf{a})(\mathbf{i})$ or $\pi r^2 = 1.5 \times 1.1$ oe
(iii)	0.513 to 0.518 nfww	5	M1 for $2(1.5 \times 1.1 + 1.5 \times 0.8 + 1.1 \times 0.8)$
			M1 for $[2 \times] \pi \times (their (a)(ii))^2$
			M2 for $\pi \times 2 \times (their (a)(ii)) \times 0.8$ or M1 for $\pi \times 2 \times (their (a)(ii))$

(a)) (i)	51.7	or 51.	.69 to	51.70
		1			

4 M3 for

$$(2 \times \frac{2}{3} \times \pi \times 13^3 + \pi \times 13^2 \times 25) \times 2.3 \ [\div 1000]$$
 oe

or **SC3** for figs 517 or figs 5169 to 5170...

or **M2** for
$$(2 \times \frac{2}{3} \times \pi \times 13^3 + \pi \times 13^2 \times 25)$$
 oe

OR

M1 for
$$2 \times \frac{2}{3} \times \pi \times 13^3$$
 seen

or $\pi \times 13^2 \times 25$ seen

M1indep for *their* volume $\times 2.3 \div 1000$

4 M3 for

$$(2 \times 2 \times \pi \times 13^2 + \pi \times 2 \times 13 \times 25)[\div 100^2] \times 4.7$$
 oe

or **SC3** for figs 196 or figs 1957 to 1958...

M2 for
$$(2 \times 2 \times \pi \times 13^2 + \pi \times 2 \times 13 \times 25)$$
 oe OR

M1 for $2 \times 2 \times \pi \times 13^2$ seen or $\pi \times 2 \times 13 \times 25$

M1indep for their area divided by 1002 soi

3 M2 for $x^3 = \frac{500}{\frac{2}{3}\pi}$ oe or better

or **M1** for
$$\frac{1}{3} \times \pi \times x^2 \times 2x = 500$$
 oe

3 M2 for $\frac{180}{A} = \left(\frac{180}{360}\right)^{\frac{2}{3}}$ oe

or **M1** for
$$\left(\sqrt[3]{\frac{360}{180}}\right)^{[2]}$$
 oe or $\left(\sqrt[3]{\frac{180}{360}}\right)^{[2]}$ oe seen

or
$$\frac{A^3}{180^3} = \frac{360^2}{180^2}$$

(a)(i)	94.2 or 94.3 or 94.24 to 94.26	2	M1 for $\pi \times 3 \times 10$
(a)(ii)	9.54 or 9.539	3	M2 for $\sqrt{10^2 - 3^2}$ or M1 for $h^2 + 3^2 = 10^2$ oe
(a)(iii)	89.9 or 89.90 to 89.92	2	M1 for $\frac{1}{3} \times \pi \times 3^2 \times their(\mathbf{a})(\mathbf{i}\mathbf{i})$
(b)	108 or 107.9 to 108.1 nfww	4	M3 for $\frac{\pi \times 3 \times 10}{\pi \times 10^2} \times 360$ oe or $\frac{their (\mathbf{a})(\mathbf{i})}{\pi \times 10^2} \times 360$ oe or $\frac{2 \times \pi \times 3}{2 \times \pi \times 10} \times 360$ oe or M2 for $\frac{x}{360} \times \pi \times 10^2 = their(\mathbf{a})(\mathbf{i})$ oe or $\frac{x}{360} \times 2 \times \pi \times 10 = 2 \times 3 \times \pi$ oe or M1 for $\frac{x}{360} \times \pi \times 10^2$ seen or $\frac{x}{360} \times 2 \times \pi \times 10$ seen
(c)	46.6 to 46.8	4	M3 for $\frac{their (\mathbf{b})}{360} \times \pi \times 10^2 - \frac{1}{2} \times 10 \times 10 \times \sin(their (\mathbf{b}))$ oe or M1 for $\frac{their (\mathbf{b})}{360} \times \pi \times 10^2$ or their (a)(i) soi and M1 for $\frac{1}{2} \times 10 \times 10 \times \sin(their (\mathbf{b}))$ soi

(a)(i)	17.5 or 17.46nfww	6	B3 for triangle height 3.46[4] or $\sqrt{12}$ oe or M2 for $\sqrt{4^2 - 2^2}$ or M1 for $h^2 + 2^2 = 4^2$ and M2 for $2 \times 7 + \frac{1}{2} \times 2 \times their \ h$ oe or M1 for $\frac{1}{2} \times 2 \times their \ h$
(a)(ii)	140 or 139.6 to 139.7	1FT	FT their (a) × 8
(b)(i)	2.62 or 2.618	3	M2 for $[r^2 =] \frac{280}{13\pi}$ oe
	6		or M1 for $280 = \pi \times r^2 \times 13$
(b)(ii)	10.2 or 10.20 or $10\frac{10}{49}$	3	M2 for $\frac{280}{14^3}$ [×100] oe
			or B1 for 2744 or 14 ³ seen

(a)(i)	50890 or 50893 to 50900.4	2	M1 for $\pi \times 18^2 \times 50$
(a)(ii)	20.5 or 20.52 to 20.534	PR ores	B2 for answer 29.5 or 29.46 to 29.48 OR M2 for $(50900 - 30000) \div (\pi \times 18^2)$ oe or M1 for $(\text{figs } 50.9 - \text{figs } 30) \div (\pi \times \text{ figs } 18^2)$ or M1 for $(50900 - 30000) = (\pi \times 18^2)h$ oe OR alternative method M2 for $50 - \frac{30000}{\pi \times 18^2}$ oe M1 for figs $30 = \pi \times \text{figs } 18^2 \times (50 - h)$ oe or for $\frac{\text{figs } 30}{\pi \times \text{figs } 18^2}$ oe OR alternative method M2 for $\frac{(50.9 - 30)}{50.9} \times 50$ oe or M1 for $\frac{(50.9 - 30)}{50.9} \times 50$ oe or M1 for $\frac{(\text{figs } 50.9 - \text{figs } 30)}{\text{figs } 50.9} \times 50$ oe
(a)(iii)	334 nfww	4	M2 for figs $30 \div \frac{2}{3}\pi \times 3.5^3$ oe or M1 for $\frac{1}{2} \times \frac{4}{3}\pi \times 3.5^3$ oe and B1 for 30 000
(b)(i)	3.28[6] or 3.29	3	M2 for $[r^2 =] \frac{95 \times 3}{8.4\pi}$ oe or M1 for $\frac{1}{3}\pi \times r^2 \times 8.4 [= 95]$
(b)(ii)	93.1 to 93.6	4	M3 for $\pi \times 3.3 \times \sqrt{3.3^2 + 8.4^2}$

(a)(ii)

2.58 or 2.580 to 2.581

6(a)(i)	25.5 or 25.46	2	M1 for $\pi \times 5^2 \times h = 2000$ oe
(a)(ii)	9.85 or 9.847	3	M2 for $[r^3=] 2000 \div \left(\frac{2}{3}\pi\right)$ oe
			or M1 for $\frac{2}{3}\pi r^3 = 2000$ oe
(a)(iii)	952 or 952.4	3	M2 for $[6 \times] \sqrt[3]{2000}^2$ or M1 for $\sqrt[3]{2000}$ or 6 times <i>their</i> area of one face
(b)(i)	22.5 or 22.49	2	M1 for $\frac{1}{2} \times 7 \times 10 \times \sin 40$
(b)(ii)	$\sqrt{(10^2 + 7^2 - 2 \times 10 \times 7 \cos 40) + 7} + 10$	М3	M2 for $10^2 + 7^2 - 2 \times 10 \times 7 \cos 40$ or M1 for correct implicit cosine rule
	23.46	A2	A1 for 6.46 or 41.7 to 41.8
(c)	64.9 or 64.92 to 64.94	3	M2 for $28.2 - 2 \times 9 = \frac{c}{360} \times 2 \times \pi \times 9$ oe
			or M1 for $\frac{c}{360} \times 2 \times \pi \times 9$ soi
Questio	n 30		
(a)(i)	1070 or 1072	M or	
			12 for $\frac{2}{3}\pi r^3$ 12 M1 for $\pi r^2 2r - \frac{4}{3}\pi r^3$

B2 for $r^3 = \frac{36 \times 3}{2\pi}$ or better or M1 for $\pi \times r^2 \times 2 \times r - \frac{4}{3} \times \pi \times r^3 = 36$ oe

(b)(i)	4.24 or 4.241 to 4.242	4 M3 for $(\pi \times 5^2 + \pi \times 5 \times \sqrt{5^2 + 12^2})$ or M2 for $\pi \times 5 \times \sqrt{5^2 + 12^2}$ or M1 for $5^2 + 12^2$ or $\pi \times 5^2$
(b)(ii)	64 cao final answer	3 M2 for $\frac{[k\pi] \times 5^2 \times 12}{[k\pi] \times 1.25^2 \times 3}$ or M1 for $\frac{1}{3} \times \pi \times 5^2 \times 12$ or $\frac{1}{3} \times \pi \times 1.25^2 \times 3$
Questio	n 31	
(a)	204 or 203.5 to 203.6 nfww	4 M2 for $\pi \times 1.5^2 \times 8 \times 60 \times 60$ or M1 for $\pi \times 1.5^2$
		M1 for dividing <i>their</i> volume by 1000
		If 0 scored SC1 for an answer figs 204 or figs 2035 to 2036 without working
(b)(i)	$\pi \times 6 \times 12 + \pi \times 6^2 = 108\pi$	M2 M1 for $\pi \times 6 \times 12$
(b)(ii)	[x =] 5.2[0] or 5.196	4 B2 or M1 for $4\pi x^2 = 108\pi$ seen
	[y =] 6	B2 or M1 for $\frac{1}{2}(4\pi y^2) + \pi y^2$ or better seen
Questio	n 32	
(a)	4.79 or 4.788 to 4.789	$\begin{array}{c c} 3 & \mathbf{M2} \text{ for } \sqrt[3]{\frac{230 \times 3}{2 \times \pi}} \text{ oe} \\ \end{array}$
	124.	or M1 for $230 = \frac{2}{3} \times \pi \times r^3$ oe If 0 scored SC1 for answer $3.8[0]$
(b)(i)	8.7[0] or 8.702 to 8.704	3 M2 for $(300-230) \div (1.6^2 \pi)$
		or M1 for $\pi \times 1.6^2 \times h$
(b)(ii)	6.4	3 M2 for $1.6 \times \sqrt[3]{\frac{19200}{300}}$ oe
		or M1 for sf $\sqrt[3]{\frac{19200}{300}}$ or $\sqrt[3]{\frac{300}{19200}}$ oe
		or for $\left(\frac{1.6}{r}\right)^3 = \frac{300}{19200}$

(a)(i)	$75000 \times 60 \times 20$ oe	M1	Allow \times 1200 for \times 60 \times 20
(a)(ii)	16.4 or 16.36	3	M2 for $\frac{9 \times 10^7 \times 100}{1000 \times 55 \times 10^4}$ oe or B2 for answer 0.164 or 0.1636 or B1 for answer figs 164 or 1636 or M1 for figs 9 ÷ figs 55
(a)(iii)	28.3 or 28.27 to 28.28	3	M2 for $\frac{76}{360} \times 2\pi \times 8.5 + 2 \times 8.5$ oe or M1 for $\frac{76}{360} \times 2\pi \times 8.5$ oe
(b)(i)	3770 or 3769 to 3770	2	M1 for $\frac{1}{3} \times \pi \times 10^2 \times 36$
(b)(ii)	3.68 or 3.683 to 3.684	tore	M3 for $[r^3 =] \frac{1}{2} \times their$ (b)(i) $\times \frac{3}{4\pi \times 9}$ oe or M2 for $\frac{4\pi r^3}{3} + \frac{4\pi (2r)^3}{3} = \frac{1}{2} \times their$ (b)(i) or for $\frac{4\pi r^3}{3} = \frac{1}{1+8} \times \frac{1}{2} \times their$ (b)(i) or M1 for $\frac{4\pi r^3}{3} + \frac{4\pi (2r)^3}{3}$ or $\frac{1}{2} \times \frac{\pi \times 10^2 \times 36}{3}$ or $\frac{1}{2}$ their (b)(i) seen or ratio of vols = 1 : 2 ³ oe seen

(a)(i)	$[h =] 253.8 \div 18 \div \left(\frac{6}{2}\right) \text{ or}$ $[h =] \frac{253.8 \times 2}{6 \times 18} \text{ or}$ $[h =] \frac{253.8}{18 \times \frac{6}{2}}$	3	For M3 no errors at any stage M2 for $253.8 = \frac{1}{2} \times 6 \times h \times 18$ oe (no previous errors) or M1 for triangle area = $\frac{1}{2} \times 6 \times h$ soi
(a)(ii)	38.1 or 38.06 to 38.08	2	M1 for $\tan = \frac{4.7}{6}$ oe
(b)	358 or 357.9 to 358	6	M1 for $6^2 + 4.7^2$ M1 for $\sqrt{6^2 + 4.7^2} \times 18 \ [\times 2]$ M1 for $6 \times 18 \ [\times 2]$ M1 for 4.7×18 M1 for $2 \times \frac{1}{2} \times 6 \times 4.7$ oe

(a)(i)	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 5.6^3$	M1	- /.5
	367.8 to 367.9	A1	-0°
(a)(ii)	3.06 or 3.060 to 3.061	tpr4	M1 for 0.8×368 [= 294.4] M2 for $[r^2 =] \frac{their \ 294.4}{10\pi}$ oe or M1 for $\pi r^2 \times 10 = their \ 294.4$ oe
(b)(i)	44[.0] or 43.98 to 43.99 nfww	5	B2 for [slant height =] $\frac{25}{4}$ oe or M1 for [l^2 =] 6^2 + 1.75 ² oe M2 for $\pi \times 1.75 \times their l + \pi \times 1.75^2$ or M1 for $\pi \times 1.75 \times their l$ or $\pi \times 1.75^2$

(b)(ii)(a	$SF = \frac{1}{4} \text{ oe soi}$	I	B1
	$\frac{1}{3}\pi \times 1.75^{2} \times 6 - \frac{1}{3}\pi \times their \ 0.4375^{2} \times 1.5$ OR $\frac{1}{3}\pi \times 1.75^{2} \times 6 \times \left(1 - \left(\frac{1}{4}\right)^{3}\right) \text{ oe}$	5 M	M2 M1 for $\frac{1}{3}\pi \times 1.75^2 \times 6$ or $\frac{1}{3}\pi \times their 0.4375^2 \times 1.5$ OR M1 for $1 - \left(\frac{1}{4}\right)^3$ oe
	18.94 or 18.939 to18.944	A	A1
(b)(ii)(t	95 final answer	P	3 B2 for 94.5 or 94.69 to 94.722 OR M2 for $18.9 \times 10^3 \div 200$ oe or M1 for 18.9×10^3 or $200 \div 10^3$ or figs $189\div 200$ or $18.9\div$ figs 2
Questio	n 36		or ngo 105 200 of 10.5 ngo 2
(a)(i)	18[.0] or 17.99 to 18.00	3	M2 for $\sqrt[3]{\frac{24430 \times 3}{4\pi}}$ oe or M1 for $\frac{4}{3}\pi r^3 = 24430$
(a)(ii)	447 or 446.8 to 446.9	3	M2 for $\pi \times 50^2 \times 60 - 24430$ oe or M1 for $\pi \times 50^2 \times 60$ oe
(b)	4 [hours] 30 [mins] nfww	atpr	B3 for 16200 or 4.5 or 270 or M2 for $\frac{\text{figs } 18 \times \text{figs } 15 \times \text{figs } 12}{\text{figs } 2}$ oe or M1 for figs $18 \times \text{figs } 15 \times \text{figs } 12$ oe
(c)	12.5 or 12.50	3	M2 for $17 \times \sqrt{\frac{159.5}{295}}$ oe or M1 for $\sqrt{\frac{159.5}{295}}$ or $\sqrt{\frac{295}{159.5}}$ seen or for $\frac{159.5}{295} = \frac{x^2}{17^2}$ oe

(a)	10	1	
(b)	6.2[0] or 6.203 to 6.204	3	M2 for $[x^3 =]1000 \div \frac{4}{3}\pi$ oe or better
			or M1 for $\frac{4}{3}\pi x^3 = 1000$
(c)	7.82 or 7.815 to 7.816	4	B3 for $[x^3 =]1000 \div \frac{1}{3}\pi \div 2$ oe or better or M1 for $(x\sqrt{5})^2 - x^2$ soi by $4x^2$ or $2x$
			M1dep for $\frac{1}{3}\pi \times x^2 \times theirh[=1000]$
(d)	$6\frac{2}{3}$ or 6.67 or 6.666 to 6.667	4	B3 for $[x^3 =]1000 \div \frac{27}{8}$ oe or $\frac{3x}{2} = 10$ or
			better or M2 for $\frac{1}{2} \times x \times \frac{x}{2} \times \frac{27x}{2} = 1000$ oe
			or M1 for $\frac{1}{2} \times x \times \frac{x}{2}$ If 0 scored, SC2 for answer 5.29 or
			5.291
Quest	ion 38		///
(a)	4.73 or 4.730 to 4.731	3	M2 for $3 \times 1.2 + \pi \times 0.6^2$ oe
	2		or M1 for $\pi \times 0.6^2$ or $\frac{1}{2} \times \pi \times 0.6^2$ or
	12/2		3×1.2
(b)	946 or 946.0 to 946.2	tpre ₃	M2 for their (a) \times 0.2 \times 1000 oe or M1 for their (a) \times 0.2 or 20 implied by figs 946[0] to 9462
(c)	1.28 or 1.29 or 1.284 to 1.290	3	M2 for $\frac{(1007 - their(\mathbf{b})) \div 1000}{their(\mathbf{a})} \times 100$ oe
			or for $\frac{1007 - their(\mathbf{b})}{their(\mathbf{b})} \times 20$ oe
			or M1 for figs $\frac{1007 - their(\mathbf{b})}{their(\mathbf{a})}$ or

(i)	81	3	M2 for $\frac{A}{36} = \left(\sqrt[3]{\frac{2187}{648}}\right)$ oe or better
			or for $A \times \frac{648}{36} \times \sqrt[3]{\frac{2187}{648}} = 2187$ oe
			or better $A^3 = 2187^2$
			or M1 for $\frac{A^3}{36^3} = \frac{2187^2}{648^2}$ oe
			or $\sqrt[3]{\frac{2187}{648}}$ or $\sqrt[3]{\frac{648}{2187}}$
(ii)	8.05 or 8.051 to 8.052	3	M2 for $\left[r^3 = \right] \frac{2187 \times 3}{4 \times \pi}$ oe
	GA		or M1 for $\frac{4\pi r^3}{3} = 2187$
			SC2 for $\frac{648 \times 3}{4 \times \pi}$ or SC1 for $\frac{4\pi r^3}{3} = 648$

(a)
$$452 \text{ or } 452.2 \text{ to } 452.4...$$

2 $\mathbf{M1} \text{ for } \left[\frac{1}{2} \times \right] \frac{4}{3} \times \pi \times 6^3$

cm³

1 (b)(i)(a) $400 \text{ or } 399.6 \text{ to } 399.9$

6 $\mathbf{B3} \text{ for } [CD =] \sqrt{72.96}$
or $[CBD =] 58.7 \text{ or } 58.66 \text{ to } 58.67$
or $\mathbf{M2} \text{ for } \sqrt{10^2 - 5.2^2} \text{ oe or } \left[\frac{5.2}{10}\right] \text{ oe}$
or $\mathbf{M1} \text{ for } (CD)^2 + 5.2^2 = 10^2 \text{ oe or } \cos[CBD] = \frac{5.2}{10} \text{ oe}$
or $\sin[CDB] = \frac{5.2}{10} \text{ oe}$
or $\sin[CDB] = \frac{5.2 \times their\ CD}{2} \text{ oe}$
or $\frac{1}{2} \times 5.2 \times 10 \times \sin(their\ CBD) \text{ oe}$
M1 for their area $\times 18$ oe

(b)(i)(b)	14.6 or 14.62 to 14.63	4	M3 for sin $BEC = \frac{5.2}{\sqrt{10^2 + 18^2}}$ oe or M2 for $[BE=] \sqrt{10^2 + 18^2}$ oe seen or $[EC=] \sqrt{18^2 + 10^2 - 5.2^2}$ oe seen or M1 for $[BE^2=] 10^2 + 18^2$ oe seen or $[EC^2=] 18^2 + 10^2 - 5.2^2$ seen
(b)(ii)	125 or 124.9 to 125.0	3 PA	B2 for 55[.0] seen or M2 for $180 - \tan^{-1}\left(\frac{10}{7}\right)$ oe or $\cos EGB = \frac{11^2 + (10^2 + 7^2) - (10^2 + 18)^2}{2 \times 11 \times \sqrt{10^2 + 7^2}}$ oe or M1 for $\tan[\] = \left(\frac{10}{7}\right)$ oe or for $(10^2 + 18^2) = 11^2 + (10^2 + 7^2) - 2 \times 11 \times \sqrt{10^2 + 7^2}$ cos EGB oe
Question 4	1		

(a)(i)	955 or 955.0 to 955.2	2	M1 for $2 \times \pi \times 8 \times 19$ oe
(a)(ii)	812 or 811.7 to 811.9	2	FT their (i) × 0.85 M1 for their (i) × 0.85 or their (i) × 85
(b)(i)	$\frac{\frac{4}{3} \times \pi \times 6^3}{1}$ or cancelling clearly	M2	M1 for $\frac{4}{3} \times \pi \times 6^3 = \frac{1}{3} \times \pi \times 8^2 \times h$
	$\frac{1}{3} \times \pi \times 8^{2}$ seen to reach 13.5	tpre	P.C
(b)(ii)	15.7 or 15.69	2	M1 for $8^2 + 13.5^2$ or better
b)(iii)	394 or 395 or 394.3 to 394.6	1	FT $\pi \times 8 \times their$ (b)(ii)

(c)	567	3	M2 for $\frac{168}{V} = \left(\frac{80}{180}\right)^{\frac{3}{2}}$ oe or better
			or M1 for $\left(\frac{180}{80}\right)^{\frac{1}{2}}$ or $\left(\frac{80}{180}\right)^{\frac{1}{2}}$ oe seen or better
(d)	51.3 or 51.34	3	M2 for $\tan = \frac{5}{4}$ oe or M1 for recognition of angle <i>PBX</i>
Questio	on 42		
)(i)	8.7[0] or 8.695	PF	B3 for $\sqrt{980}$ oe or 31.3 or 31.30 or M3 for $40 - \sqrt{20^2 + 18^2 + 16^2}$ oe or M2 for $20^2 + 18^2 + 16^2$ oe or M1 for any correct attempt at 2-dimensional Pythagoras' e.g. $18^2 + 16^2$
(ii)	30.7 or 30.73 to 30.74	3	M2 for $[\sin =] \frac{16}{\sqrt{20^2 + 18^2 + 16^2}}$ oe or B1 for identifying angle <i>GAC</i>
Questic	on 43		
(a)	32.9 or 32.91 to 32.92	2	M1 for $\pi \times 1.65 \times 4.7 + \pi \times 1.65^2$

(a)	32.9 or 32.91 to 32.92	2	M1 for $\pi \times 1.65 \times 4.7 + \pi \times 1.65^2$
(b)	69.4 or 69.44 to 69.45	2	M1 for $\cos = 1.65 \div 4.7$ oe
(c)(i)	12.5 or 12.54 to 12.55	pre	M3 for $\frac{1}{3} \times \pi \times 1.65^2 \times \sqrt{4.7^2 - 1.65^2}$ oe or M2 for $\sqrt{4.7^2 - 1.65^2}$ oe or for $4.7 \times \sin(their (\mathbf{b}))$ oe or M1 for $1.65^2 + h^2 = 4.7^2$ oe or for $\frac{h}{4.7} = \sin(their (\mathbf{b}))$ oe
(c)(ii)	41 nfww	4	B3 for 41.7 to 41.9 or M2 for $\frac{4}{3} \times \pi \times 5^3 \div their$ 12.5 or M1 for $\frac{4}{3} \times \pi \times 5^3$

(a)	187	2	M1 for $220 \times \left(1 - \frac{15}{100}\right)$ oe or B1 for 33 seen
(b)	19.8	3	M2 for 29.7 × $\sqrt[3]{\frac{0.4}{1.35}}$ oe or M1 for $\sqrt[3]{\frac{0.4}{1.35}}$ or $\sqrt[3]{\frac{1.35}{0.4}}$ oe seen or for $\frac{29.7^3}{x^3} = \frac{1.35}{0.4}$ oe
(c)	12.4 or 12.44	3	M1 for $90 \times 75 \times h = 7 \times \text{figs } 12$
	AT		B1 for $1000 \text{ cm}^3 = 1 \text{ litre soi}$

(a)	315 or 314.5 to 315.0	tore	M1 for $\tan 70 = \frac{\text{height}}{\frac{1}{2}(8-5)}$ oe or better seen M1dep for $\frac{1}{2}(8+5) \times \text{their}$ height or better seen dep on trig attempt for height M2 for $12 \times \frac{\frac{1}{2}(8-5)}{\cos 70}$ oe or better seen or M1 for $\frac{\frac{1}{2}(8-5)}{\cos 70}$ oe or better seen M1 for 8×12 oe isw and 5×12 oe isw
(b)(i)	$8 - \frac{1}{2}(8 - 5)$ or $5 + \frac{1}{2}(8 - 5)$	M1	
(b)(ii)	13.6 or 13.64 to 13.65	2	M1 for $12^2 + (6.5)^2$ oe
(b)(iii)	16.8 or 16.9 or 16.79 to 16.91 nfww	2	M1 for identifying angle <i>GAX</i> from a diagram or from working or better

(a)(i)	$\frac{53}{360} \times \pi \times 9.5^2$	M1		
	41.74 to 41.75	A1		
(a)(ii)	5.9[0] or 5.899 to 5.903	4	M2 fo	or $OA^2 = \frac{1}{3} \times 41.7$ oe or $\frac{1}{2} \times OA^2 \times \sin 53 = \frac{1}{3} \times 41.7$ oe or $\frac{1}{2} \times OA \times OB \times \sin 53 = \frac{1}{3} \times 41.7$ seen or
(b)	396 or 397 or 396.4 to 396.6	6	or M1 M2 fo	or $[r=]$ $\left(\frac{60}{360} \times 2 \times \pi \times 24\right) \div 2\pi$ oe or better for $2\pi r = \frac{60}{360} \times 2 \times \pi \times 24$ oe or $\sqrt{24^2 - a^2}$ for $h^2 + a^2 = 24^2$ or $\frac{1}{3}\pi \times their \ r^2 \times their \ h$
Questio	n 47			
(a)(i)	1200		1	/ / /
(a)(ii)(a	900		3	M2 for $[2 \times] (20 \times 12 + 20 \times 5 + 12 \times 5)$ or M1 for 20×12 or 20×5 or 12×5
(a)(ii)(t	0) 0.19	atpr	et	FT 152 ÷ their 800
(b)	$\frac{3x}{2}$ or $1.5x$			B2 for $r^3 = \frac{27x^3[\pi]}{8[\pi]}$ or better or M1 for $\frac{4}{3}\pi r^3 = \pi x^2 \times \frac{9x}{2}$

(c)	13.6 or 13.59 to 13.61	7	If chord is AB and O is centre of the cross section M2 for $2 \times \cos^{-1} \left(\frac{20-5}{20} \right)$ oe or M1 for $\cos = \frac{20-5}{20}$ oe
			M1 for $\frac{theirAOB}{360} \times \pi \times 20^2$ or $\frac{1}{2} (20)^2 \left(\frac{82.8\pi}{180} \right)$
			M1 for $\frac{1}{2} \times 20^2 \times \sin(their\ AOB)$ oe
			M1 for their area \times 150
			M1 for their volume ÷ 1000
Questio	n 48		
(a)	[L=] 11.8	5	M1 for $L = 2W$ oe soi

(a)	[L =] 11.8 [W =] 5.9 [H =] 7.1	5	M1 for $L = 2W$ oe soi M1 for $W + 2H = 20.1$ oe M1 for $2L + 2H = 37.8$ oe B1 for at least one correct answer
(b)(i)	0.559 to 0.56[0]	B4	M2 for $\frac{1}{3} \times 18 \times 15 \times \sqrt{24^2 - 18^2}$ isw conversion or M1 for $h^2 + 18^2 = 24^2$ oe or better M1 for figs $800 \div$ figs <i>their</i> volume isw
	g/cm³ or g cm⁻³ final answer	B1) -
(b)(ii)	34.1 or 34.11 to 34.12	4	M3 for tan [] = $\frac{\sqrt{24^2 - 18^2}}{\sqrt{18^2 + 15^2}}$ oe or M2 for $\sqrt{18^2 + 15^2}$ isw or $\sqrt{24^2 + 15^2}$ isw or M1 for $18^2 + 15^2$ isw or $24^2 + 15^2$ isw or M1 for indicating required angle is EBD

(a)	1350 or 1354	6	M2 for $20^2 - 13^2$ or M1 for $BC^2 + 13^2 = 20^2$ A1 for $\sqrt{231}$ or 15.2 or 15.19 to 15.20 M1 for 20×24 and 13×24 and their 15.2×24 M1 for $[\frac{1}{2} \times]$ their 15.2×13
(b)	2370 or 2369 to 2371 cao	1	
(c)	24.6 or 24.58 to 24.59	4 P/	M3 for sin [] = $\frac{13}{\sqrt{20^2 + 24^2}}$ oe or M2 for $\sqrt{20^2 + 24^2}$ or $\sqrt{24^2 + 20^2 - 13^2}$ or M1 for $AF^2 = 20^2 + 24^2$ or $24^2 + 20^2 - 13^2$ or M1 for correct angle identified

(a) 2.64 or 2.638...

4 M3 for
$$[R^2 =]\frac{\pi \times 2.4^2 + \pi \times 2.4 \times 6.3}{\pi + 2\pi}$$
 oe or M2 for $\pi \times 2.4^2 + \pi \times 2.4 \times 6.3 = \pi R^2 + \frac{1}{2} \times 4\pi R^2$ or M1 for $[\pi \times 2.4^2] + \pi \times 2.4 \times 6.3$ oe or $[\pi R^2] + \frac{1}{2} \times 4\pi R^2$ oe
$$\text{M3 for } \frac{1}{3} \times \pi \times 7.6^2 \times 16 \times \left(1 - \left(\frac{16 - 12}{16}\right)^3\right)$$
 or $\frac{1}{3} \times \pi \times 7.6^2 \times 16 - \frac{1}{3} \times \pi \times 1.9^2 \times (16 - 12)$ or M1 for $\frac{1}{3} \times \pi \times 7.6^2 \times 16$ or for $\frac{1}{3} \times \pi \times 7.6^2 \times 16$ or for $\frac{1}{3} \times \pi \times 7.6^2 \times 16$

(a)(i)	4.095	2	B1 for figs 4095
			or M1 for $\frac{525 \times 7.8}{1000}$
			1000
(a)(ii)	15	3	B2 for 35
		7000	OR
			M2 for $\frac{1}{2}(10+4) \times 5 \times L = 525$ oe
			M1 for $\frac{1}{2}(10+4)\times 5$ oe
			$\frac{1}{2}(10+4)\times 3 \text{ GC}$
(a)(iii)	455 or 454.9	6	M3 for their $[BD =]\sqrt{3^2 + 5^2} \times (their 15)$
			[×2]
			or
			B2 for $\sqrt{34}$ or 5.83 or 5.830 to 5.831
			or M1 for $5^2 + \left(\frac{1}{2}(10-4)\right)^2$
			and
			M1 for their 35×2
			M1 for (their 15) \times 10 and (their 15) \times 4
(a)(iv)	4200	3	M2 for $525 \times \left(\frac{10}{5}\right)^3$ oe
	3		
	34		or M1 for $\left(\frac{10}{5}\right)^3$ or $\left(\frac{5}{10}\right)^3$ oe
(b)	182.875 307.125 final answer	3	B2 for either seen
collists			
			or M1 for 10 ± 0.5 or 6 ± 0.5 or 4 ± 0.5 oe

(a)(i)	$\frac{16\pi}{3}$ or $5\frac{1}{3}\pi$ final answer	2	M1 for $\frac{1}{2} \times \frac{4}{3} \pi \times 2^3$ oe
(a)(ii)	2.4[0]	4	B3 for answer in range 2.396 to 2.40 OR
			M3 for their $\frac{16\pi}{3} + \pi \times 2^2 \times 5.2 +$
			$\frac{1}{3}\pi \times 2^2 \times h = \frac{88\pi}{3} \text{ oe}$
			or M2 for $\frac{88\pi}{3}$ - their $\frac{16\pi}{3}$ - $\pi \times 2^2 \times 5.2$
			oe or M1 for $\pi \times 2^2 \times 5.2$ oe
	ET	PF	or $\frac{1}{3}\pi \times 2^2 \times h$ oe soi
(a)(iii)	1 hour 38 min or 1 hour 37.8 min to 1 hour 37.9 min	3	B2 for 1.63[2] or 98 [mins] or 97.8 to 97.9] $88\pi \times 620$
			or M1 for $\frac{\frac{88\pi}{3} \times 620}{35000} [\times 60]$ oe
(b)	8.5[0] or 8.496 to 8.497	4	M3 for $[r=]$ $\sqrt{\frac{65}{\frac{140}{360}}\pi - \frac{1}{2}\sin 140}$ oe
			or M2 for $\frac{140}{360} \pi \times r^2 - \frac{1}{2} r^2 \times \sin 140 [=65]$
	3		oe
	34		or M1 for either area expression seen

(a)	3.5 oe	3	M1 for $2(x+x+3) = 20$ oe M1 for correct $ax = b$ for their linear equation
(b)	116.8 or 116.83 to 116.85 nfww	5	M2 for $\sin p = \frac{5\sin 20}{2.5}$ or M1 for $\frac{2.5}{\sin 20} = \frac{5}{\sin p}$ A1 for 43.2 or 43.15 to 43.17 M1dep for $180 - (20 + their 43.2)$
			After 0 scored, SC1 for length of side = 5
(c)	5.07 or 5.068 to 5.071	6	B3 for 7.41 or 7.412 to 7.413 or M2 for $r + r + \frac{40}{360} \times 2 \times \pi \times r = 20$ oe or M1 for $\frac{40}{360} \times 2 \times \pi \times r$ oe seen
			M2 for $2 \times 7.41 \times \sin 20$ oe or $7.41^2 + 7.41^2 - 2(7.41^2) \cos 40$ oe or $\frac{7.41 \sin 40}{\sin 70}$ oe or M1 for implicit version

'(a)	54[.0] or 53.99 to 54.03	6	M2 for $[h =]$ 95.4 × 3 ÷ $(\pi \times 2.4^2)$ oe or M1 for 95.4 = $\frac{1}{3} \times \pi \times 2.4^2 \times h$
			M2 for [slant ht, $l = \int \sqrt{(their h)^2 + 2.4^2}$ or M1 for $(their h)^2 + 2.4^2$
			M1 for $\frac{x}{360} \times 2 \times \pi \times their l = 2 \times \pi \times 2.4$ oe
			or $\frac{x}{360} \times \pi \times (their l)^2 = \pi \times 2.4 \times their l$
)(b)	14500 or 14470 to 14480	4	M3 for $200 \times 60 \times 24 \times \pi \times 4^2 [\div 1000]$ or $2 \times 60 \times 24 \times \pi \times 0.04^2 [\times 1000]$
	GP		or M2 for $200 \times \pi \times 4^2$ or for $2 \times \pi \times 0.04^2$
			or M1 for $\pi \times 4^2$ oe or $\pi \times 0.04^2$ seen oe isw
			or $1000 \text{ cm}^3 = 1$ litre soi or $1 \text{ m}^3 = 1000$ litres soi
			or for 24 × 60 seen oe
Questio	on 55		
(a)	31.5	3	M2 for $17.5 \times \sqrt{\frac{1134}{350}}$ oe
			or M1 for $\sqrt{\frac{1134}{350}}$ oe isw or $\sqrt{\frac{350}{1134}}$ oe isw
		atp	or for $\frac{1134}{350} = \left(\frac{x}{17.5}\right)^2$ oe
(b)	163.9375 or $163\frac{15}{16}$ final answer	2	B1 for $15 + 0.25$ or $10.5 + 0.25$ or better seen
(c)	40.5[0]	2	M1 for $x \times \left(1 - \frac{18}{100}\right) = \frac{166.05}{[5]}$ oe
(d)	\$2.23 final answer	3	B2 for 2.227 or 2.23 seen OR
			M2 for $57 - \frac{48.2}{0.88}$ oe
			or M1 for $\frac{48.2}{0.88}$ oe
			If 0 scored SC1 for 57×0.88 oe seen

Questio	11 50		
(a)(i)	4.455 to 4.456 [= 4.46]	2	M1 for $[r=] \frac{28}{2\pi}$ oe
(a)(ii)	1250 or 1247 to 1249.9	2	M1 for $20 \times \pi \times 4.46^2$ oe
(a)(iii)	66[.0] or 65.95 to 66.02	3	M2 for [tan] = $\frac{20}{2 \times 4.46}$ oe or B1 for identifying angle ANB on cylinder not on rectangle
(b)	11.8 or 11.82 to 11.83	5	M2 for $[r =] \sqrt[3]{\frac{310 \times 3}{2\pi}}$ oe or $[h =] \sqrt[3]{\frac{310 \times 3 \times 4}{\pi}}$ oe or M1 for $310 = \frac{1}{3}\pi \times r^2 \times 2r$ or $310 = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h$ M2 for $\sqrt{(their r)^2 + (2 \times their r)^2}$ oe
Questio	n 57		or M1 for $[l^2 =](their r)^2 + (2 \times their r)^2$ oe
(a)(i)(a)			M2 $(8-2)\times180$ 360 $(2\times8-4)\times90$
	$\frac{(8-2)\times 180}{8\times 2}$ oe		M1 for $\frac{(8-2)\times180}{8}$ or $\frac{360}{8}$ or $\frac{(2\times8-4)\times90}{8}$
(a)(i)(b)	174 or 173.8	atp	M3 for $\frac{1}{2} \times 6 \times OM$ oe or $\frac{1}{2} \times (OA)^2 \times \sin 45$ oe or $\frac{1}{2} \times 6 \times OA \times \sin 67.5$ oe where OA and OM are as in the M2 or M2 for $OM = 3 \times \tan 67.5$ oe or for $OA = \left(\frac{3}{\cos 67.5}\right)$ or $\frac{6 \times \sin 67.5}{\sin 45}$ oe or M1 for $\frac{OM}{3} = \tan 67.5$ oe or for $\frac{3}{OA} = \cos 67.5$ oe or for $\frac{\sin 45}{6} = \frac{\sin 67.5}{OA}$ oe
5(a)(ii)	193 or 193.0 to 193.1		3 M2 for $\pi \times \left(\frac{3}{\cos 67.5}\right)^2$ oe or M1 for $\frac{3}{r} = \cos 67.5$ or $\frac{\sin 45}{6} = \frac{\sin 67.5}{r}$

(b)(i)	1.27 or 1.272 to 1.273	2	M1 for $\left[\frac{1}{2}\times\right]\pi \times 0.45^2 \times 4$ or $\frac{1}{2}\times\pi \times 0.45^2 \left[\times 4\right]$
(b)(ii)	742 or 743	6	M5 for a method leading to the volume of water
			e.g. $4 \times \left\{2 \times \frac{i m v \cos\left(\frac{0.15}{0.45}\right)}{360} \times \pi \times 0.45^{2} - \frac{1}{2} \times 0.45^{2} \times \sin\left(2 i m v \cos\left(\frac{0.15}{0.45}\right)\right)\right\} \text{ oe}$
			OR
			M2 $\left[2\times\right] \frac{inv\cos\left(\frac{0.15}{0.45}\right)}{360} \times \pi \times 0.45^2 \text{ oe}$ $90 - inv\cos\left(\frac{0.15}{0.15}\right)$
			or $[2\times]$ $\frac{90 - inv\cos\left(\frac{0.15}{0.45}\right)}{360} \times \pi \times 0.45^2$ oe or M1 for use of $\frac{\theta}{360} \times \pi \times 0.45^2$ oe
			M2 for $\frac{1}{2} \times 0.45^2 \times \sin\left(2inv\cos\left(\frac{0.15}{0.45}\right)\right)$ oe
Overti	on 50		or $\frac{1}{2} \times 0.15 \times 0.45 \times \sin\left(inv\cos\left(\frac{0.15}{0.45}\right)\right) [\times 2]$ oe
Questi	(26 : 50) (40)	Ma	

(a)	$\left(\frac{(36+50)\times 40}{2}\right) \times 120 \text{ oe}$ or $\left(\frac{(0.36+0.5)\times 0.4}{2}\right) \times 1.2 \text{ oe}$	M2	M1 for $\frac{(36+50)\times 40}{2}$ oe or $\frac{(0.36+0.5)\times 0.4}{2}$ oe
	206400 ÷ 1000 = 206.4 or 0.2064 × 1000 = 206.4 nfww	A1	Must see an explicit conversion
(b)	5 [minutes] 44 seconds	3	B2 for 344 [seconds] oe 5.73[mins] or M1 for figs206.4 ÷ figs 6 oe
(c)(i)	28[.0] or 27.96 to 27.97	3	M2 for $[r^2=]$ $\frac{\text{figs } 2064}{(figs 84)\pi}$ or M1 for $\pi r^2 \times figs 84 = \text{figs } 2064$
(c)(ii)	140 cao	2	M1 for $0.6h = 84$ oe ALT method M1 for $\pi \times (their (\mathbf{c})(\mathbf{i}))^2 \times h = figs 206400 \div 0.6$ oe
i(d)	128 or 127.7 to 127.8	4	B3 for $40^2 + 120^2 + 18^2$ oe OR B1 for horizontal length 18 soi M1 for any correct attempt at 2-dimensional Pythagoras' $18^2 + 120^2, 120^2 + 40^2, 18^2 + 40^2$

(a)(i)	1580 or 1583 to 1584	2	M1 for $\pi \times 6^2 \times 14$
(a)(ii)	452 or 452.3 to 452.4	2	M1 for $\left[\frac{1}{2}\right] \times \frac{4}{3} \times \pi \times 6^3$
(b)(i)	7.85 ÷ 1000 [= 0.00785]	M1	
(b)(ii)	16[.0] or 15.95 to 15.99	2	FT {their (a)(i) + their (a)(ii)} × 0.00785 evaluated to 3 sig fig or better M1 for (their (a)(i) + their (a)(ii)) × 0.00785
(c)(i)	16.2 or 16.21 to 16.23	3	M2 for $\frac{2000 - 50 \times \frac{4}{3} \times \pi \times 2^{3}}{2000} [\times 100]$ or for $\frac{50 \times \frac{4}{3} \times \pi \times 2^{3}}{2000} \times 100$ or M1 for $\frac{50 \times \frac{4}{3} \times \pi \times 2^{3}}{2000}$
(c)(ii)	6.87 or 6.870 to 6.872	1	FT $\sqrt[3]{2000 - their \left(50 \times \frac{4}{3} \times \pi \times 2^3\right)}$ evaluated to 3sf or better
(d)	$\frac{2}{3}$ oe	4	M1 for $[\pi](3R)^2 + [\pi]3R \times 9R$ oe M1 for $2[\pi]x^2 + 2[\pi]x \times 7x$ oe M1 for their area of cone = their area of
	Sit,		cylinder seen

(a)	$\frac{1}{-}\times \stackrel{4}{-}\times \pi \times 3^3$	М3	
	$[h=]\frac{\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3}{\pi \times 12^2}$ oe		
	leading to 0.125		
	or		
	$3 - \frac{\pi \times 12^2 \times 3 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3}{\pi \times 12^2} \text{ oe}$		
	$\pi \times 12^2$		M2 for $\pi \times 12^2 \times h = \frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3$ oe
	leading to 0.125		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			or for $\frac{\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3}{\pi \times 12^2 \times 3} = \frac{h}{3}$ oe
			or for $\frac{2}{\pi \times 12^2 \times 3} = \frac{2}{3}$ oe
			or M1 for $\pi \times 12^2 \times h$ or $\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3$ oe
			or $\pi \times 12^2 \times 3$
(b)	4.8[0] or 4.795 to 4.796	3	or $\pi \times 12 \times 5$ M2 for $\pi \times 12^2 \times (3 - 0.125) = \pi \times R^2 \times 18$ oe
			or
			$\pi \times 12^2 \times 3 - \frac{2}{3} \times \pi \times 3^3 = \pi \times R^2 \times 18$
			or B1 for $3 - 0.125$ or for 414π oe
(c)	10.5 or 10.47 to 10.49	3	4 × π × 2 ³ 20 × 15 ³
			M2 for $\frac{\frac{4}{3} \times \pi \times 3^3 - 30 \times 1.5^3}{\frac{4}{3} \times \pi \times 3^3}$ or $\frac{30 \times 1.5^3}{\frac{4}{3} \times \pi \times 3^3} \times 100$ oe
			or M1 for $\frac{4}{3} \times \pi \times 3^3 - 30 \times 1.5^3$ or $\frac{30 \times 1.5^3}{\frac{4}{3} \times \pi \times 3^3}$ oe
			$\frac{1}{3} \times \pi \times 3^3$
Quest	ion 61		

1.13 or 1.128 to 1.129

5 M4 for
$$4.5 \times \sqrt[3]{\frac{0.385 \times 8000}{195200}}$$
 oe

or $\sqrt[3]{\frac{4.5^3 \times 0.385 \times 8000}{195200}}$ oe

or M3 for $\sqrt[3]{\frac{0.385}{their24.4}}$ or $\sqrt[3]{\frac{their3080}{195200}}$

or $\frac{0.385}{their24.4} = \frac{l^3}{4.5^3}$ oe

or M2 for $\frac{their24.4}{0.385}$ or $\frac{0.385}{their24.4}$ oe

or B2 for 24.4 or 3080 seen

or M1 for 195 200 ÷ 8000
or for 0.385 × 8000

Question	n 62			
(a)(i)	251 or 251.3 to 251.4		2	M1 for $\frac{1}{3} \times \pi \times 4^2 \times 15$ oe
(a)(ii)	79.5 or 79.51		5	M3 for $\pi \times 4 \times \sqrt{4^2 + 15^2}$ oe or M2 for $\sqrt{15^2 + 4^2}$ oe or M1 for $[l^2 =]4^2 + 15^2$ oe or $\pi \times 4 \times their l$ M1 for their curved surface area their curved surface area $+ \pi \times 4^2$ [×100] oe
(b)(i)	13 min 20 sec		3	B2 for 800 or $\frac{40}{3}$ oe seen or M1 for figs 3 ÷ figs 375 or figs 3 ÷ 22 500
(b)(ii)	0.472 or 0.4715 to 0.4716		3	M2 for $\pi \times 0.45^2 \times h = 0.3$ or $\pi \times 45^2 \times h = 300000$ oe or M1 for $\pi \times \text{figs}45^2 \times h = \text{figs}3$ oe
Question	n 63			- ///
(a)(i)	96	2	M1 f	For $\frac{1}{2} \times 24 \times 8$
(a)(ii)	18.4 or 18.43	atpr	M1 f	For $\tan\left[x\right] = \frac{8}{24}$ oe
(b)	622 or 622.0 to 622.1	2	M1 f	or $\left[\frac{1}{2}\times\right] \pi \times 6^2 \times 11$ or $\frac{1}{2}\times \pi \times 6^2 [\times 11]$

(c)(i)	246 or 246.2 to 246.3	5	M4 for $15 \times 20 - 4 \times 4 - \frac{270}{360} \times \pi \times 4^2$ oe OR M2 for $\frac{270}{360} \times \pi \times 4^2$ oe or M1 for $k \times \pi \times 4^2$, where $k \le 1$ M1 for 15×20 or 4×4 oe
(c)(ii)	80.8 or 80.9 or 80.84 to 80.85	3	M1 for $15 + 20 + 11 + 16$ oe M1 for $\frac{3}{4} \times 2 \times \pi \times 4$ oe

