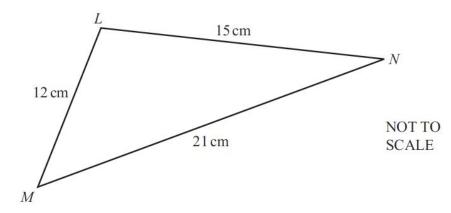
Extended Mathematics

Topic: Trigonometry


Year:May 2013-May 2023

Paper -4 Questions

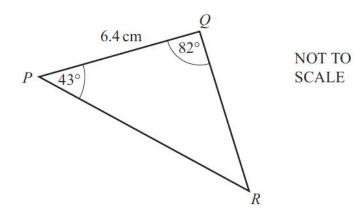
Question 1

estion 1

(a)

The diagram shows triangle LMN with LM = 12 cm, LN = 15 cm and MN = 21 cm.

(i) Calculate angle *LMN*. Show that this rounds to 44.4°, correct to 1 decimal place.


Answer(a)(i)

[4]

(ii) Calculate the area of triangle LMN.

Answer(a)(ii) cm² [2]

(b)

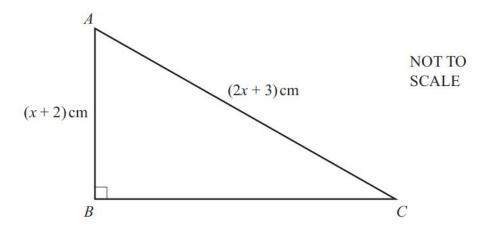
The diagram shows triangle PQR with PQ = 6.4 cm, angle $PQR = 82^{\circ}$ and angle $QPR = 43^{\circ}$. Calculate the length of PR.

$$Answer(b) PR = \dots cm [4]$$

Question 2

The diagram shows quadrilateral KLMN.

KL = 45 cm, LN = 32 cm, angle $KLN = 100^{\circ}$ and angle $NLM = 67^{\circ}$.


(i) Calculate the length KN.

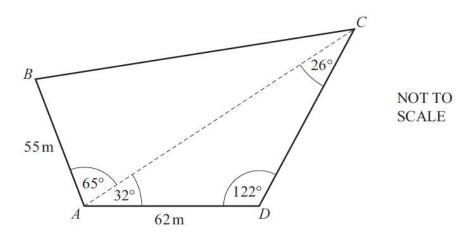
(ii) The area of triangle LMN is $324 \, \text{cm}^2$.

Calculate the length LM.

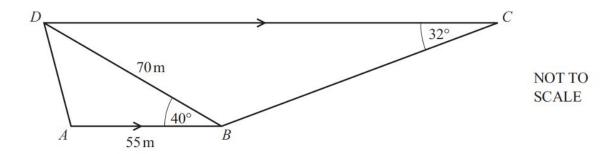
Answer (i)
$$LM = \dots$$
 cm [3]

Question 3

In triangle ABC, AB = (x + 2) cm and AC = (2x + 3) cm.


$$\sin ACB = \frac{9}{16}$$

Find the length of BC.


Question 4

A field, ABCD, is in the shape of a quadrilateral.

A footpath crosses the field from A to C.

(a)	Use the sine rule to calculate the distance AC and show that it rounds to 119.9 m, correct to 1 decimal place.
	Answer(a)
	[3]
(b)	Calculate the length of BC.
	$Answer(b) BC = \dots m [4]$
(c)	Calculate the area of triangle ACD.
	$Answer(c) \qquad \qquad m^2 [2]$
(d)	The field is for sale at \$4.50 per square metre.
	Calculate the cost of the field.
0	Answer(d) \$
Ques	8 2.4 m C
	NOT TO
	6.46 m SCALE 1.8 m
A	8.6 m
The	e diagram shows the cross section, ABCD, of a ramp.
(a)	Calculate angle <i>DBC</i> .
	$Answer(a) \text{ Angle } DBC = \dots [2]$
(b)	(i) Show that BD is exactly 3 m.
	Answer(b)(i)
	[2]
	(ii) Use the cosine rule to calculate angle ABD.
	Answer(b)(ii) Angle ABD =[4]
(c)	The ramp is a prism of width 4 m.
	Calculate the volume of this prism.
	$Answer(c) \dots m^{3} [3]$

The diagram shows a school playground ABCD.

ABCD is a trapezium.

AB = 55 m, BD = 70 m, angle $ABD = 40^{\circ}$ and angle $BCD = 32^{\circ}$.

(a) Calculate AD.

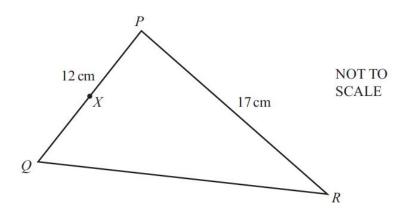
$$Answer(a) AD = \dots m [4]$$

(b) Calculate BC.

$$Answer(b) BC = \dots m [4]$$

(c) (i) Calculate the area of the playground ABCD.

(ii) An accurate plan of the school playground is to be drawn to a scale of 1:200.


Calculate the area of the school playground on the plan. Give your answer in cm².

(d) A fence, BD, divides the playground into two areas.

Calculate the shortest distance from A to BD.

$$Answer(d) \hspace{1cm} m \hspace{1cm} [2]$$

(a)

The diagram shows triangle PQR with PQ = 12 cm and PR = 17 cm. The area of triangle PQR is 97 cm² and angle QPR is acute.

(i) Calculate angle QPR.

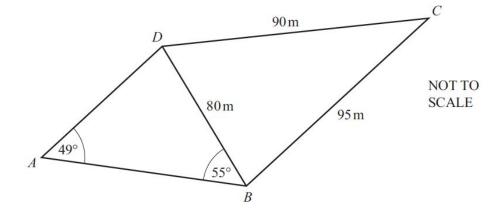
$$Answer(a)(i) Angle QPR = [3]$$

(ii) The midpoint of PQ is X.

Use the cosine rule to calculate the length of XR.

$$Answer(a)(ii) XR = \dots cm [4]$$

(b)


Calculate the value of *a*.

$$Answer(b) \ a = \dots [4]$$

(c) $\sin x = \cos 40^{\circ}, \ 0^{\circ} \le x \le 180^{\circ}$

Find the two values of x.

Answer(c)
$$x =$$
 or $x =$ [2]

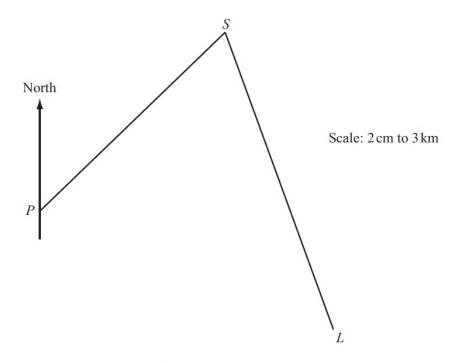
The diagram shows a quadrilateral ABCD. Angle $BAD = 49^{\circ}$ and angle $ABD = 55^{\circ}$. BD = 80 m, BC = 95 m and CD = 90 m.

(a) Use the sine rule to calculate the length of AD.

$$Answer(a) AD = \dots m [3]$$

(b) Use the cosine rule to calculate angle *BCD*.

$$Answer(b)$$
 Angle $BCD =$ [4]


(c) Calculate the area of the quadrilateral ABCD.

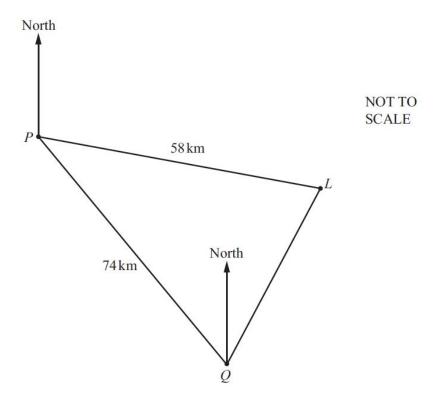
(d) The quadrilateral represents a field.

Corn seeds are sown across the whole field at a cost of \$3250 per hectare.

Calculate the cost of the corn seeds used.

1 hectare = $10000 \,\mathrm{m}^2$

In the scale drawing, P is a port, L is a lighthouse and S is a ship. The scale is 2 centimetres represents 3 kilometres.


(a) Measure the bearing of S from P.

(b) Find the actual distance of S from L.

(c) The bearing of L from S is 160° .

Calculate the bearing of S from L.

(d) Work out the scale of the map in the form 1:n.

A ship sails from port P to port Q.

Q is 74 km from P on a bearing of 142°.

A lighthouse, L, is 58 km from P on a bearing of 110°.

(a) Show that the distance LQ is 39.5 km correct to 1 decimal place.

Answer(a)

[5]

(b) Use the sine rule to calculate angle *PQL*.

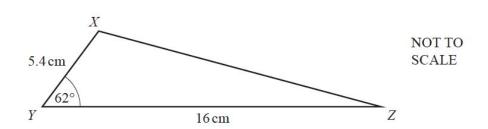
$$Answer(b)$$
 Angle $PQL = ...$ [3]

(c) Find the bearing of

(i) P from Q,

(ii) L from Q.

(4)	The chie 4	1-00 2	harres	and 1	5 minutas	to ani1	4100	7.4.1	faran	Dto	0
(a)	The ship t	akes 2	nours	and 1.	5 minutes	to sail	the	/4 Km	from	PIO	U.

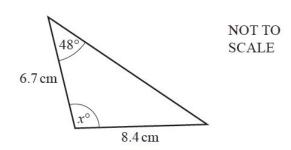

Calculate the average speed in knots.

[1 knot = 1.85 km/h]

(e) Calculate the shortest distance from the lighthouse to the path of the ship.

Question 11

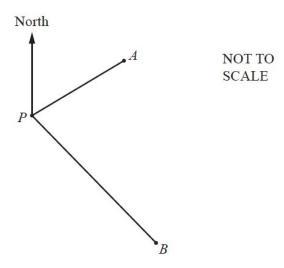
(a)



Show that the area of triangle XYZ is 38.1 cm², correct to 1 decimal place.

Answer(a)

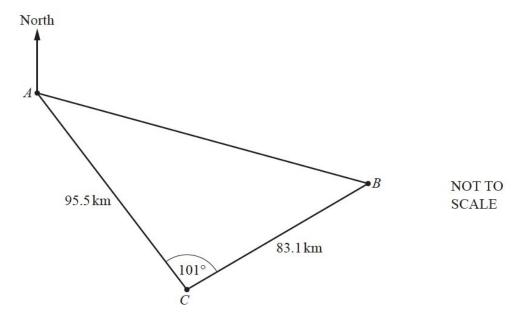
[2]


(b)

Calculate the value of x.

$$Answer(b) x = \dots [4]$$

(c)



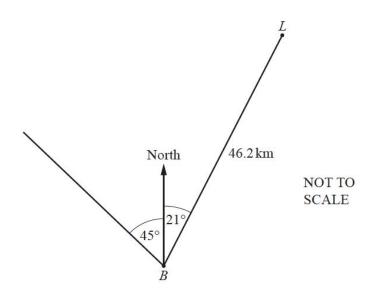
Ship A is 180 kilometres from port P on a bearing of 063°. Ship B is 245 kilometres from P on a bearing of 146°.

Calculate AB, the distance between the two ships.

Question 12

The diagram shows the positions of two ships, A and B, and a coastguard station, C.

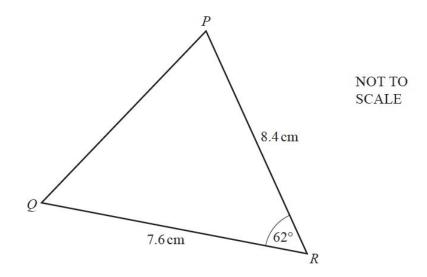
(a) Calculate the distance, AB, between the two ships. Show that it rounds to 138 km, correct to the nearest kilometre.


Answer(a)

[4]

(b) The bearing of the coastguard station C from ship A is 146° .

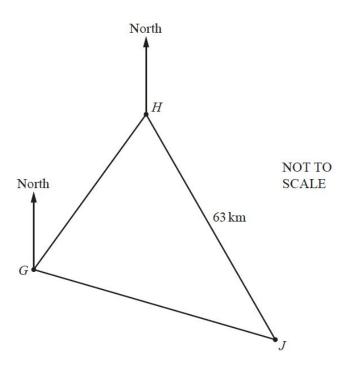
Calculate the bearing of ship B from ship A.


(c)

At noon, a lighthouse, L, is 46.2km from ship B on the bearing 021°. Ship B sails north west.

Calculate the distance ship B must sail from its position at noon to be at its closest distance to the lighthouse.

(a)


In the triangle PQR, QR = 7.6 cm and PR = 8.4 cm. Angle $QRP = 62^{\circ}$.

Calculate

(i) PQ,

(ii) the area of triangle PQR.

(b)

The diagram shows the positions of three small islands G, H and J.

The bearing of H from G is 045°.

The bearing of J from G is 126°.

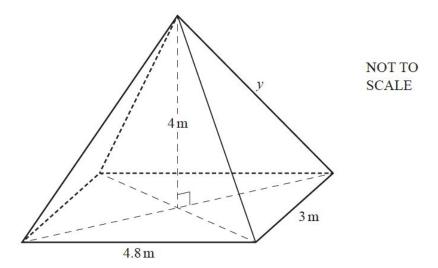
The bearing of J from H is 164° .

The distance HJ is 63 km.

Calculate the distance GJ.

$$Answer(b) GJ = \dots km [5]$$

Question 14


- (a) Andrei stands on level horizontal ground, 294 m from the foot of a vertical tower which is 55 m high.
 - (i) Calculate the angle of elevation of the top of the tower.

(ii) Andrei walks a distance x metres directly towards the tower. The angle of elevation of the top of the tower is now 24.8° .

Calculate the value of x.

$$Answer(a)(ii) x = \dots [4]$$

(b) The diagram shows a pyramid with a horizontal rectangular base.

The rectangular base has length 4.8 m and width 3 m and the height of the pyramid is 4 m.

Calculate

(i) y, the length of a sloping edge of the pyramid,

Answer(b)(i)
$$y =$$
 m [4]

(ii) the angle between a sloping edge and the rectangular base of the pyramid.

The diagram shows some distances between Mumbai (M), Kathmandu (K), Dhaka (D) and Colombo (C).

(a) Angle $CKD = 65^{\circ}$.

Use the cosine rule to calculate the distance CD.

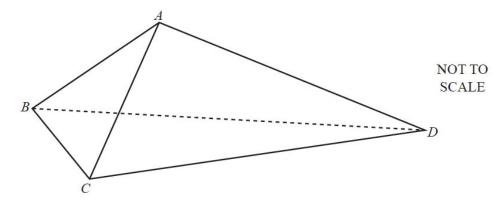
$$Answer(a) CD = \dots km [4]$$

(b) Angle $MKC = 40^{\circ}$.

Use the sine rule to calculate the acute angle *KMC*.

$$Answer(b)$$
 Angle $KMC = ...$ [3]

(c) The bearing of K from M is 050° .


Find the bearing of M from C.

(b)	A plane from	Colombo to N	fumbai leaves at	21.15 and the	iourney takes 2	hours 24 minutes.
(u)	A plane nom	COLOMBOO 10 IV.	rumibar leaves a	1 21 13 and the	louinev takes 2	nours 24 minutes.

(i) Find the time the plane arrives at Mumbai.

(ii) Calculate the average speed of the plane.

Question 16

The diagram shows a tent ABCD.

The front of the tent is an isosceles triangle ABC, with AB = AC.

The sides of the tent are congruent triangles ABD and ACD.

(a) $BC = 1.2 \,\mathrm{m}$ and angle $ABC = 68^{\circ}$.

Find AC.

$$Answer(a) AC = \dots m[3]$$

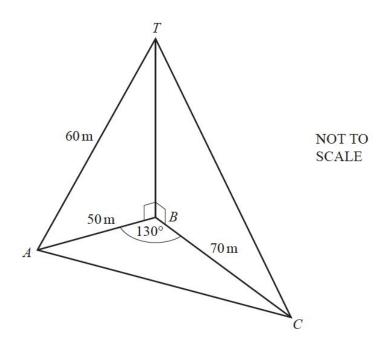
(b) $CD = 2.3 \,\text{m} \text{ and } AD = 1.9 \,\text{m}.$

Find angle ADC.

(c) The floor of the tent, triangle BCD, is also an isosceles triangle with BD = CD.

Calculate the area of the floor of the tent.

Answer(()	 	m ² [4]


(d) When the tent is on horizontal ground, A is a vertical distance 1.25 m above the ground.

Calculate the angle between AD and the ground.

Answer(d)[3]

Question 17

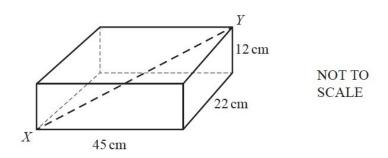
(a)

A, B and C are points on horizontal ground.

BT is a vertical pole.

 $AT = 60 \,\text{m}$, $AB = 50 \,\text{m}$, $BC = 70 \,\text{m}$ and angle $ABC = 130^{\circ}$.

(i) Calculate the angle of elevation of T from C.

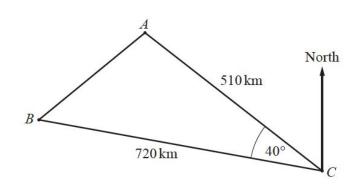

(ii) Calculate the length AC.

 $Answer(a)(ii) AC = \dots m [4]$

(iii) Calculate the area of triangle ABC.

Answer(a)(iii) m² [2]

(b)



A cuboid has length 45 cm, width 22 cm and height 12 cm.

Calculate the length of the straight line XY.

 $Answer(b) XY = \dots \qquad cm [4]$

Question 18

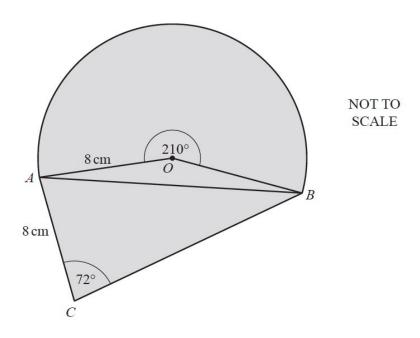
NOT TO SCALE

A plane flies from A to C and then from C to B. $AC = 510 \,\mathrm{km}$ and $CB = 720 \,\mathrm{km}$. The bearing of C from A is 135° and angle $ACB = 40^\circ$.

- (a) Find the bearing of
 - (i) B from C,

.....[2]

(ii) C from B.


.....[2]

(b) Calculate AB and show that it rounds to 464.7km, correct to 1 decimal place.

[4]

(c) Calculate angle ABC.

Question 19

The diagram shows a design for a logo made from a sector and two triangles. The sector, centre O, has radius 8 cm and sector angle 210°. AC = 8 cm and angle $ACB = 72^{\circ}$.

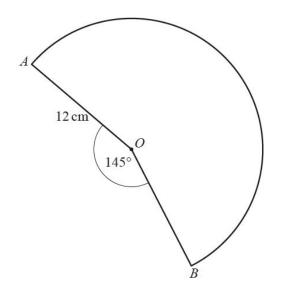
(a) Show that angle $OAB = 15^{\circ}$.

1	L	Calculata	tha	Langth	oftha	atroight	lima	1D
(U)	Calculate	une	lengin	or the	straight	mie.	AD.

$$AB = \dots$$
 cm [4]

(c) Calculate angle ABC.

Angle
$$ABC =$$
 [3]


(d) Calculate the total area of the logo design.

(e) The logo design is an enlargement with scale factor 4 of the actual logo.

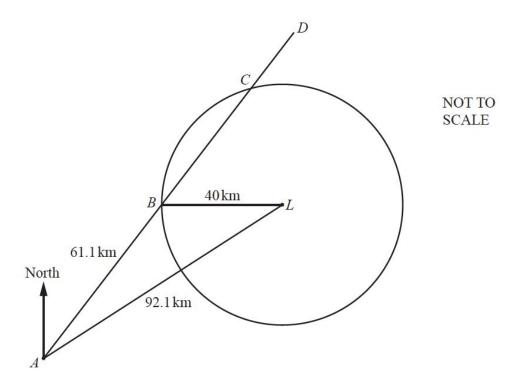
Calculate the area of the actual logo.

.....cm² [2]

Question 20

NOT TO SCALE

The diagram shows a sector, centre O, and radius 12 cm.


(a) Calculate the area of the sector.

(b) The sector is made into a cone by joining *OA* to *OB*.

Calculate the volume of the cone.

[The volume, V, of a cone with base radius r and height h is $V = \frac{1}{3}\pi r^2 h$.]

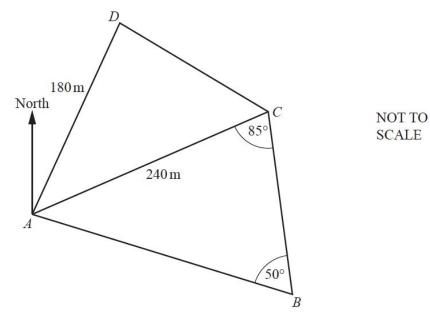
c	m^3 [6]
	m [o

The diagram shows the position of a port, A, and a lighthouse, L. The circle, centre L and radius 40 km, shows the region where the light from the lighthouse can be seen. The straight line, ABCD, represents the course taken by a ship after leaving the port.

When the ship reaches position *B* it is due west of the lighthouse.

$$AL = 92.1 \,\mathrm{km}$$
, $AB = 61.1 \,\mathrm{km}$ and $BL = 40 \,\mathrm{km}$.

(a) Use the cosine rule to show that angle $ABL = 130.1^{\circ}$, correct to 1 decimal place.


(b) Calculate the bearing of the lighthouse, L, from the port, A.

(c) The ship sails at a speed of 28 km/h.

Calculate the length of time for which the light from the lighthouse can be seen from the ship. Give your answer correct to the nearest minute.

..... h min [5]

[4]

The diagram shows a field, ABCD.	
$AD = 180 \mathrm{m}$ and $AC = 240 \mathrm{m}$.	
Angle $ABC = 50^{\circ}$ and angle $ACB = 85^{\circ}$	٥.

(a)	Use	the	sine	rule	to	cal	lcui	late	AB
-----	-----	-----	------	------	----	-----	------	------	----

$$AB = \dots m [3]$$

(b) The area of triangle $ACD = 12000 \,\mathrm{m}^2$.

Show that angle $CAD = 33.75^{\circ}$, correct to 2 decimal places.

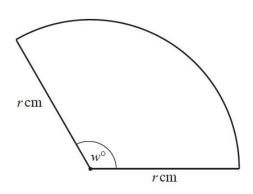
[3]

(c) Calculate BD.

$$BD = \dots m [5]$$

(d) The bearing of D from A is 030° .

Find the bearing of

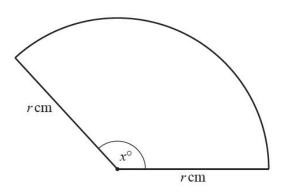

(i) B from A,

.....[1]

(ii) A from B.

.....[2]

(a)

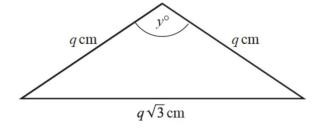

NOT TO SCALE

The area of this sector is r^2 square centimetres.

Find the value of w.

w =.....[3]

(b)

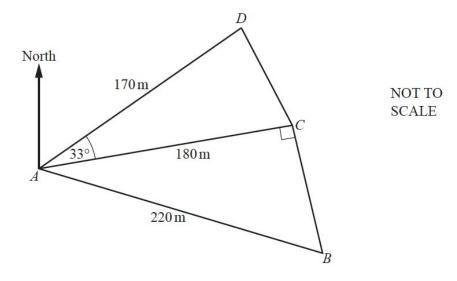

NOT TO SCALE

The perimeter of this sector is $2r + \frac{7\pi r}{10}$ centimetres.

Find the value of x.

$$x =$$
.....[3]

(c)


NOT TO SCALE

The perimeter of the isosceles triangle is $2q + q\sqrt{3}$ centimetres.

F	ind	the	va	lue	of	ν.

y =[4]

Question 24

The diagram shows five straight footpaths in a park. $AB = 220 \,\text{m}$, $AC = 180 \,\text{m}$ and $AD = 170 \,\text{m}$. Angle $ACB = 90^{\circ}$ and angle $DAC = 33^{\circ}$.

(a) Calculate BC.

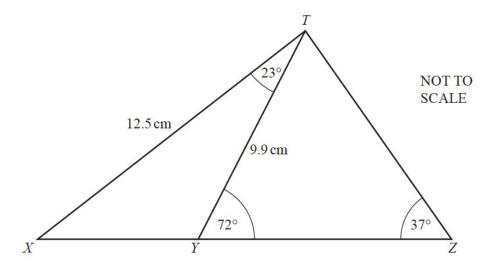
$$BC = \dots m[3]$$

(b) Calculate CD.

(c) Calculate the shortest distance from D to AC.

	m [2]

(d) The bearing of D from A is 047° .

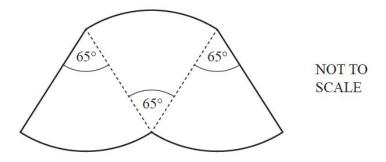

Calculate the bearing of B from A.

 [3	
-	

(e) Calculate the area of the quadrilateral ABCD.

m ² [3	m	$^{2}[3]$
-------------------	---	-----------

(a) In triangle TXZ, TX = 12.5 cm and angle $TZX = 37^{\circ}$. Y is a point on the line XZ such that TY = 9.9 cm, angle $XTY = 23^{\circ}$ and angle $TYZ = 72^{\circ}$.


(i) Calculate XY.

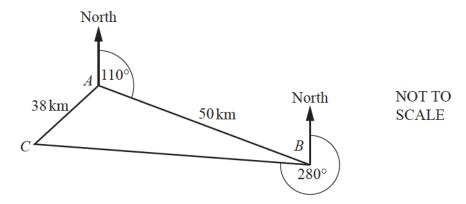
$$XY =$$
 cm [4]

(ii) Calculate TZ.

$$TZ = \dots$$
 cm [3]

(b) The diagram shows a shape made up of three identical sectors of a circle, each with sector angle 65°. The perimeter of the shape is 20.5 cm.

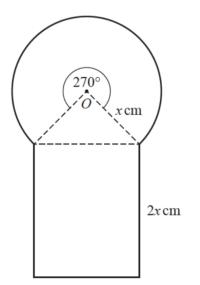
Calculate the radius of the circle.


.....cm [4]

ABC is a triangular field on horizontal ground.
There is a vertical pole BQ at B .
$AB = 525 \mathrm{m}$, $BC = 872 \mathrm{m}$ and angle $ABC = 104^{\circ}$.

(a)	Us	e the cosine rule to calculate the distance AC .
		$AC = \dots m [4]$
(b)	Th	e angle of elevation of Q from C is 1.0° .
	Sh	owing all your working, calculate the angle of elevation of Q from A .
		[4]
(c)	(i)	Calculate the area of the field.
		m^2 [2]
	(ii)	The field is drawn on a map with the scale 1:20000.
		Calculate the area of the field on the map in cm ² .

.....cm² [2]



(i) Find the bearing of A from B.

			[2]
(ii)	Calculate angle <i>BAC</i> .		
		Angle $BAC = \dots$	[5]

(iii) A road is built from A to join the straight road BC.Calculate the shortest possible length of this new road.

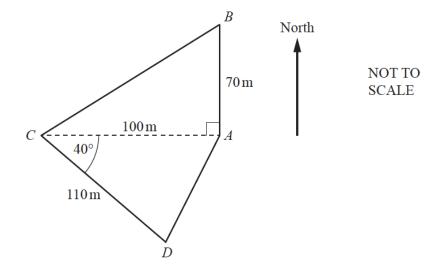
..... km [3]

NOT TO SCALE

The diagram shows a sector of a circle, a triangle and a rectangle.

The sector has centre O, radius x cm and angle 270°.

The rectangle has length 2x cm.


The total area of the shape is kx^2 cm².

(a) Find the value of k.

$$k = \dots [5]$$

(b) Find the value of x when the total area is $110 \, \text{cm}^2$.

$$x =$$
.....[2]

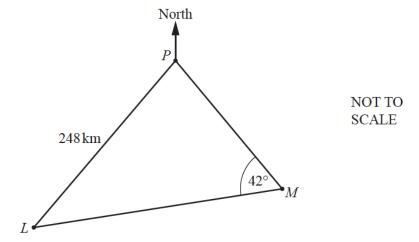
The diagram shows a field ABCD.

((a)	Calculate	the area	of the	field A	BCD
١	64	Carculate	the area	or the	110101	$D \cup D$

.....m² [3]

(b) Calculate the perimeter of the field *ABCD*.

..... m [5]


(c) Calculate the shortest distance from A to CD.

.....m [2]

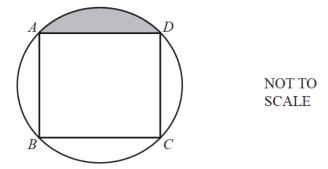
(d) B is due north of A.

Find the bearing of C from B.

.....[3]

The diagram shows two ports, L and P, and a buoy, M. The bearing of L from P is 201° and LP = 248 km. The bearing of M from P is 127°. Angle PML = 42°.

(a) Use the sine rule to calculate LM.


- **(b)** A ship sails directly from L to P.
 - (i) Calculate the shortest distance from M to LP.

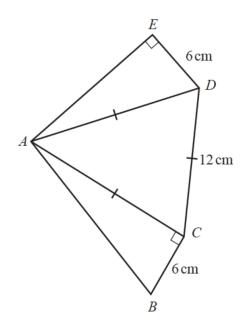
..... km [3]

(ii) The ship leaves L at 2045 and travels at a speed of 40 km/h.

Calculate the time the next day that the ship arrives at P.

.....[3]

The vertices of a square ABCD lie on the circumference of a circle, radius 8 cm.


(a) Calculate the area of the square

	cm^2	[2]
--	-----------------	-----

(b) (i) Calculate the area of the shaded segment.

(ii) Calculate the perimeter of the shaded segment.

(a)

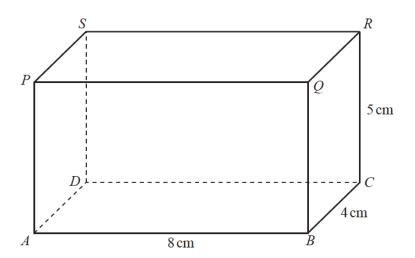
NOT TO SCALE

In the pentagon ABCDE, angle ACB = angle AED = 90°. Triangle ACD is equilateral with side length 12 cm. DE = BC = 6 cm.

(i) Calculate angle *BAE*.

Angle
$$BAE =$$
 [4]

(ii) Calculate AB.


$$AB = \dots$$
 cm [2]

(iii) Calculate AE.

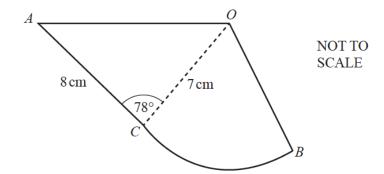
$$AE =$$
 cm [3]

(iv) Calculate the area of the pentagon.

(b)

NOT TO SCALE

The diagram shows a cuboid.


AB = 8 cm, BC = 4 cm and CR = 5 cm.

(i) Write down the number of planes of symmetry of this cuboid.

.....[1]

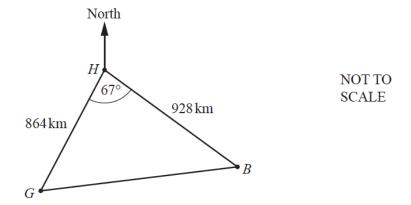
(ii) Calculate the angle between the diagonal AR and the plane BCRQ.

.....[4]

The diagram shows a design made from a triangle AOC joined to a sector OCB. AC = 8 cm, OB = OC = 7 cm and angle $ACO = 78^{\circ}$.

- (a) Use the cosine rule to show that OA = 9.47 cm, correct to 2 decimal places. [4]
- **(b)** Calculate angle *OAC*.

(c) The perimeter of the design is 29.5 cm.

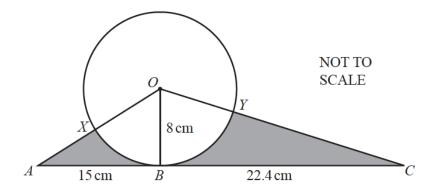

Show that angle $COB = 41.2^{\circ}$, correct to 1 decimal place.

[5]

(d) Calculate the total area of the design.

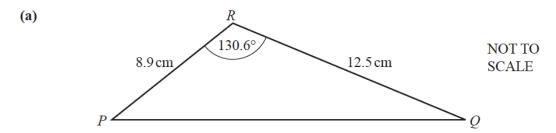
..... cm² [4]

The diagram shows the positions of three cities, Geneva (G), Budapest (B) and Hamburg (H).

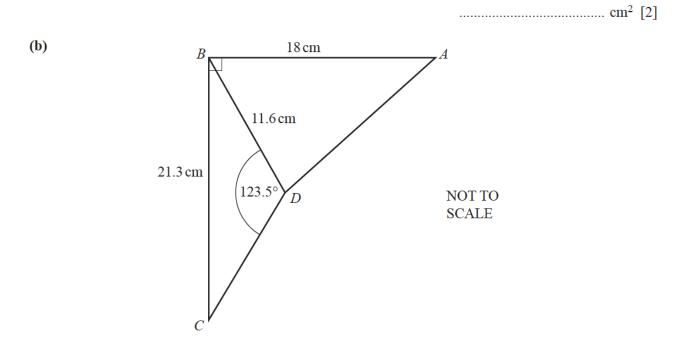


(a) A plane flies from Geneva to Hamburg. The flight takes 2 hours 20 minutes.

Calculate the average speed in kilometres per hour.


- km/h [2]
- (b) Use the cosine rule to calculate the distance from Geneva to Budapest.
 - km [4]

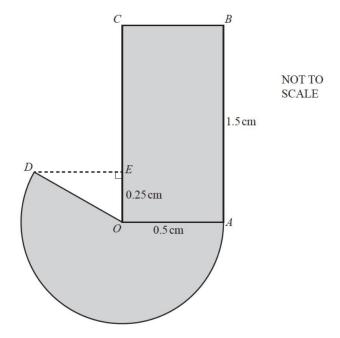
- (c) The bearing of Budapest from Hamburg is 133°.
 - (i) Find the bearing of Hamburg from Budapest.
-[2]
- (ii) Calculate the bearing of Budapest from Geneva.
-[4]



The diagram shows a circle, centre <i>O</i> .
The straight line ABC is a tangent to the circle at B .
OB = 8 cm, AB = 15 cm and BC = 22.4 cm.
AO crosses the circle at X and OC crosses the circle at Y.

			_		_		
- 1	(a)) Cal	cula	ta ar	പപ	VO	V
•	\boldsymbol{a}	, Cai	Cuna	ic ai	IZIC	$\Lambda \mathbf{U}$	1

Calculate the area of triangle PQR.



In the diagram, AB = 18 cm, BC = 21.3 cm and BD = 11.6 cm. Angle $BDC = 123.5^{\circ}$ and angle ABC is a right angle.

(i) Calculate angle BCD.

(ii) Calculate AD.

$$AD =$$
 cm [5]

The diagram shows a company logo made from a rectangle and a major sector of a circle. The circle has centre O and radius OA.

OA = OD = 0.5 cm and AB = 1.5 cm.

E is a point on OC such that OE = 0.25 cm and angle $OED = 90^{\circ}$.

(a) Calculate the perimeter of the logo.

..... cm [5]

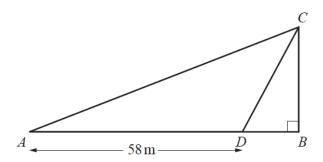
(b) Calculate the area of the logo.

..... cm² [3]

- (c) A mathematically similar logo is drawn. The area of this logo is 77.44 cm².
 - (i) Calculate the radius of the major sector in this logo.
- cm [3]

(ii) A gold model is made.

This model is a prism with a cross-section of area $77.44 \,\mathrm{cm}^2$.


This gold model is 15 mm thick.

One cubic centimetre of gold has a mass of 19 grams.

Calculate the mass of the gold model in kilograms.

1	kg [3]
---	------	----

(a)

NOT TO SCALE

In the diagram, BC is a vertical wall standing on horizontal ground AB.

D is the point on AB where $AD = 58 \,\mathrm{m}$.

The angle of elevation of C from A is 26° .

The angle of elevation of C from D is 72° .

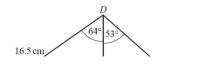
- (i) Show that AC = 76.7 m, correct to 1 decimal place.
- (ii) Calculate BD

[5]

(b) Triangle EFG has an area of $70 \,\mathrm{m}^2$.

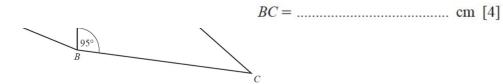
EF: FG = 1: 2 and angle $EFG = 40^{\circ}$.

(i) Calculate EF.


EF= m [4]

(ii) A different triangle PQR also has an area of $70 \,\mathrm{m}^2$. PQ: QR = 1: 2 and PQ = EF.

Find angle *PQR*.

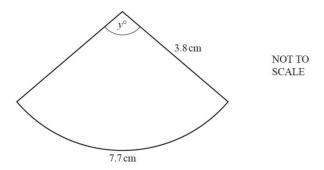

Angle
$$PQR = \dots$$
 [1]

(a)

NOT TO

(ii) Find BC.

The diagram shows two triangles ABD and BCD.

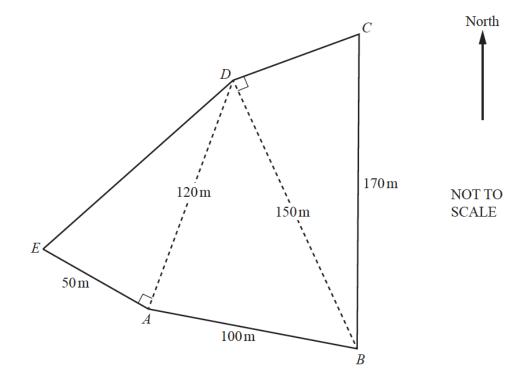

 $AD = 16.5 \,\mathrm{cm}$ and $BD = 12.4 \,\mathrm{cm}$.

Angle $ADB = 64^{\circ}$, angle $BDC = 53^{\circ}$ and angle $DBC = 95^{\circ}$.

(i) Find AB.

$$AB =$$
 cm [4]

(b)


The diagram shows a sector of a circle of radius $3.8\,\mathrm{cm}$. The arc length is $7.7\,\mathrm{cm}$.

(i) Calculate the value of y.

<i>y</i> =	[2]
------------	-----

(ii) Calculate the area of the sector.

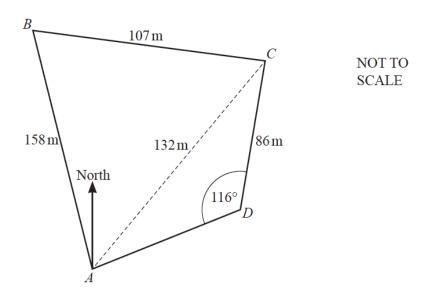
cm ²	[2]
-----------------	-----

The diagram shows a field ABCDE.

(a)	Calculate	the perimeter	of the	field <i>ABCDE</i> .
-----	-----------	---------------	--------	----------------------

Angle
$$ABD = \dots$$
 [4]

(ii) The point C is due north of the point B.

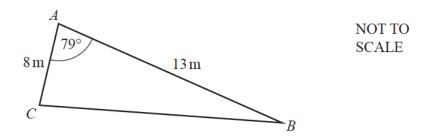

Find the bearing of D from B.

	[2]
--	-----

Continue on the next page...

(d) Calculate the area of the field ABCDE.Give your answer in hectares.[1 hectare = 10000 m²]

hectares [4													/	/	2																																						,	5	S				E	(ľ	ľ	1	ľ	ì	a	2		į	t	1	,	٠	0	C	((((,					Ĉ	(((((ľ	l	l	l	l	l	l	1	1	1	1)	h	b	ŀ	1																																						
------------	---	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	--	--	--	---	---	--	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

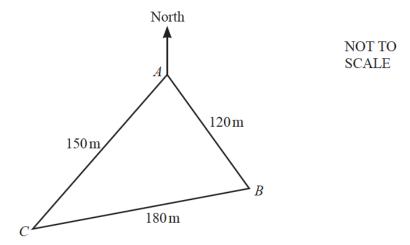


The diagram shows a field, ABCD, on horizontal ground.

(a) There is a vertical post at C. From B, the angle of elevation of the top of the post is 19° .

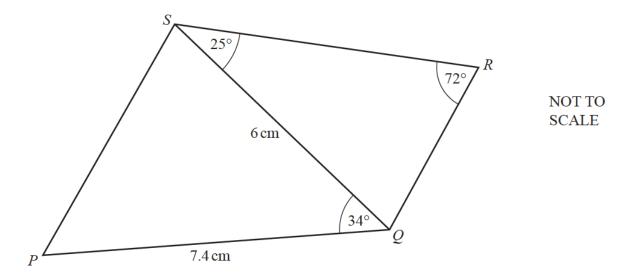
	Find the height of the post.	[2]
(b)	Use the cosine rule to find angle <i>BAC</i> .	[2]
(c)	Use the sine rule to find angle <i>CAD</i> .	Angle $BAC = \dots $ [4]
	Calculate the area of the field.	Angle $CAD = $ [3]
. ,		m² [3]
(e)	The bearing of D from A is 070°. Find the bearing of A from C .	

......[2]



The diagram shows triangle ABC.

(i) Use the cosine rule to calculate BC.


(ii) Use the sine rule to calculate angle ACB.

Angle
$$ACB = \dots$$
 [3]

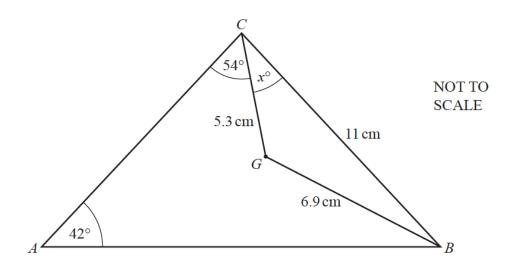
The diagram shows a triangular field, ABC, on horizontal ground.

(a)	Olav runs from A to B at a constant speed of 4 m. He then runs at a constant speed from C to A . His average speed for the whole journey is $3.6 \mathrm{m}$	/s and then from B to C at a constant speed of $3 \mathrm{m/s}$.
	Calculate his speed when he runs from C to A .	
		m/s [3
(b)	Use the cosine rule to find angle <i>BAC</i> .	
		Angle $BAC = \dots $ [4]
(c)	The bearing of C from A is 210° .	
	(i) Find the bearing of B from A .	
		[1]
	(ii) Find the bearing of A from B .	[2]
(d)	D is the point on AC that is nearest to B .	[2]
	Calculate the distance from D to A .	
	Calculate the distance from D to A.	m [2]

The diagram shows a quadrilateral PQRS formed from two triangles, PQS and QRS.

Calculate

(i)
$$QR$$
,


(ii) *PS*,

$$QR = \dots cm [3]$$

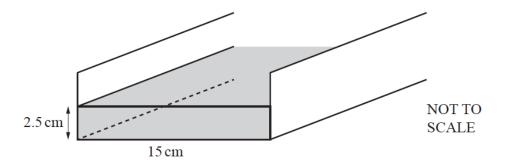
$$PS =$$
 cm [3]

(iii) the area of quadrilateral PQRS.

(a)

The diagram shows triangle ABC with point G inside.

$$CB = 11 \text{ cm}, CG = 5.3 \text{ cm} \text{ and } BG = 6.9 \text{ cm}.$$

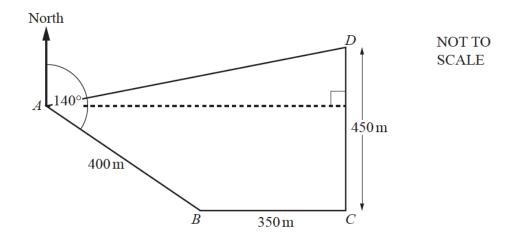

Angle $CAB = 42^{\circ}$ and angle $ACG = 54^{\circ}$.

(i) Calculate the value of x.

$$x = \dots [4]$$

(ii) Calculate AC

(b)


Water flows at a speed of 20 cm/s along a rectangular channel into a lake.

The width of the channel is 15 cm.

The depth of the water is 2.5 cm.

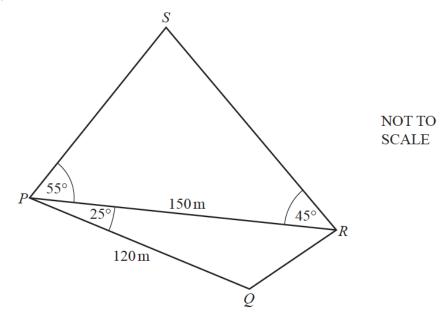
Calculate the amount of water that flows from the channel into the lake in 1 hour. Give your answer in litres.

litres [4]
----------	----

The diagram shows a field ABCD. The bearing of B from A is 140° . C is due east of B and D is due north of C. $AB = 400 \,\text{m}$, $BC = 350 \,\text{m}$ and $CD = 450 \,\text{m}$.

(a) Find the bearing of D from B.

.....[2]


(b) Calculate the distance from D to A.

..... m [6]

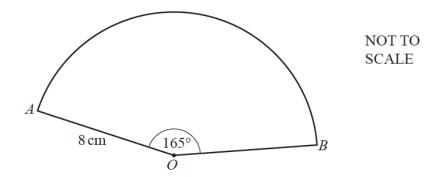
(c) Jono runs around the field from *A* to *B*, *B* to *C*, *C* to *D* and *D* to *A*. He runs at a speed of 3 m/s.

Calculate the total time Jono takes to run around the field. Give your answer in minutes and seconds, correct to the nearest second.

.....s [4]

The diagram shows two triangles.

(a) Calculate QR.


$$QR = \dots m [3]$$

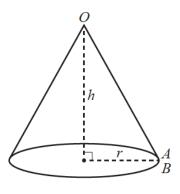
(b) Calculate RS.

$$RS = \dots m [4]$$

(c) Calculate the total area of the two triangles.

m^2 [3	3
----------	---

The diagram shows a sector of a circle with centre O, radius 8 cm and sector angle 165°.


(a) Calculate the total perimeter of the sector.

(b) The surface area of a sphere is the same as the area of the sector.

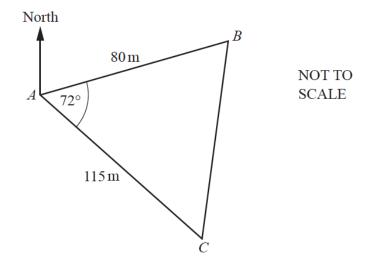
Calculate the radius of the sphere. [The surface area, A, of a sphere with radius r is $A = 4\pi r^2$.]

......cm [4]

(c)

NOT TO SCALE

A cone is made from the sector by joining OA to OB.


(i) Calculate the radius, r, of the cone.

 $r = \dots$ cm [2]

(ii) Calculate the volume of the cone.

[The volume, V, of a cone with radius r and height h is $V = \frac{1}{3}\pi r^2 h$.]

..... cm³ [4]

The diagram shows the positions of three points A, B and C in a field.

(a) Show that BC is 118.1 m, correct to 1 decimal place.

[3]

(b) Calculate angle ABC.

Angle
$$ABC = \dots [3]$$

(c) The bearing of C from A is 147°.

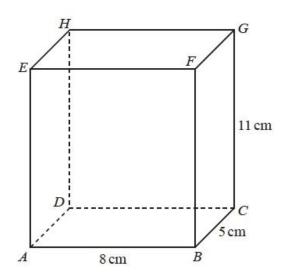
Find the bearing of

(i) A from B,

.....[3]

(ii) B from C

.....[2]


(d) Mitchell takes 35 seconds to run from A to C.

Calculate his average running speed in kilometres per hour.

..... km/h [3]

(e) Calculate the shortest distance from point B to AC.

..... m [3]

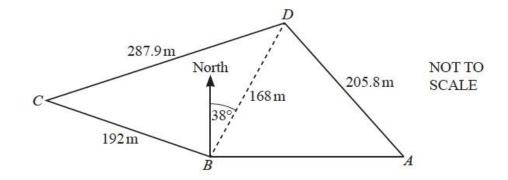
NOT TO SCALE

ABCDEFGH is a cuboid. AB = 8 cm, BC = 5 cm and CG = 11 cm.

(a) Work out the volume of the cuboid.

..... cm³ [2]

(b) Ivana has a pencil of length 13 cm.


Does this pencil fit completely inside the cuboid? Show how you decide.

[4]

(c) (i) Calculate angle CAB.

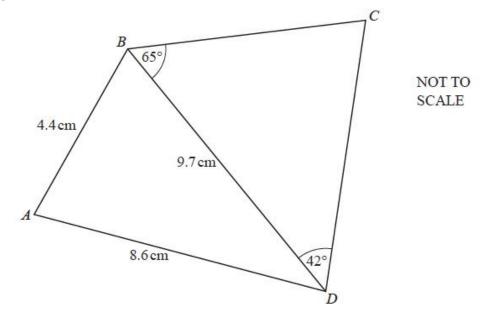
(ii) Calculate angle GAC.

Angle
$$GAC = \dots$$
 [2]

The diagram shows a field, ABCD, on horizontal ground. $BC = 192 \,\text{m}$, $CD = 287.9 \,\text{m}$, $BD = 168 \,\text{m}$ and $AD = 205.8 \,\text{m}$.

- (a) (i) Calculate angle CBD and show that it rounds to 106.0°, correct to 1 decimal place.
 - (ii) The bearing of D from B is 038° .

 Find the bearing of C from B.

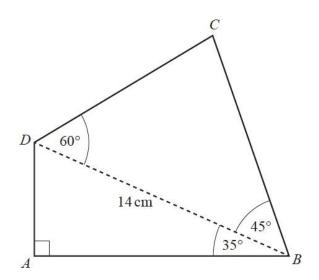

 [1]

 (iii) A is due east of B.
- (b) (i) Calculate the area of triangle *BCD*. _______ m² [2]
 - (ii) Tomas buys the triangular part of the field, *BCD*. The cost is \$35 750 per hectare.

Calculate the bearing of D from A.

Calculate the amount he pays. Give your answer correct to the nearest \$100. $[1 \text{ hectare} = 10000 \text{ m}^2]$

do.																																				- 1	10	·	
7		_											_							_																	2	Z	
*	 ۰	•	•	•	۰	•	•	•	7		•	•	•	•	•	•	•		ď	-	-	•	•			•	•	7	ō	•	-	•	•	•	•	- 1		٠,	

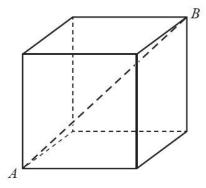

(a) Calculate angle ADB.

(b) Calculate DC.

(c) Calculate the shortest distance from C to BD.

..... cm [3]

(a)



NOT TO SCALE

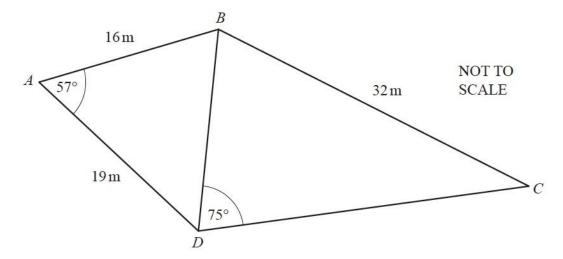
Calculate the perimeter of the quadrilateral ABCD.

								 												C	1	n	1		[1	
																								- 1	_		-

(b)

NOT TO SCALE

The diagram shows a cube.


The length of the diagonal AB is 8.5 cm.

(i) Calculate the length of an edge of the cube.

cm [3	cm [3]
-------	--------

(ii) Calculate the angle between AB and the base of the cube.

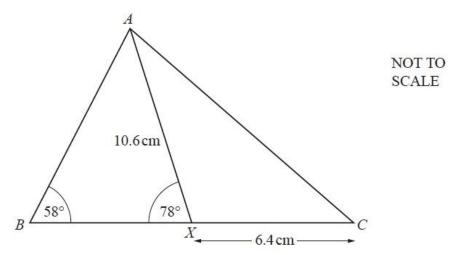
	[2]

The diagram shows a quadrilateral ABCD made from two triangles, ABD and BCD.

(a) Show that $BD = 16.9 \,\mathrm{m}$, correct to 1 decimal place.

[3]

(b) Calculate angle *CBD*.


Angle $CBD = \dots$ [4]

(c) Find the area of the quadrilateral ABCD.

..... m² [3]

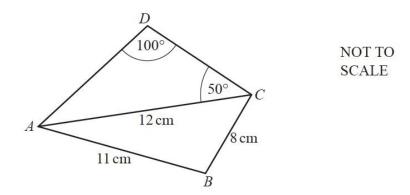
(d) Find the shortest distance from B to AD.

..... m [3]

The diagram shows triangle ABC.

X is a point on BC.

AX = 10.6 cm, XC = 6.4 cm, angle $ABC = 58^{\circ}$ and angle $AXB = 78^{\circ}$.


(a) Calculate AC.

(b) Calculate BX.

$$BX = \dots$$
 cm [4]

(c) Calculate the area of triangle ABC.

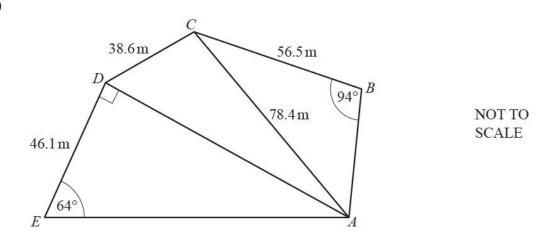
	cm^2	[3]
--	--------	-----

(a)	Calculate AD
(00)	Carculate 11D

$$AD =$$
 cm [3]

(b) Calculate angle BAC and show that it rounds to 40.42° , correct to 2 decimal places.

[4]


(c) Calculate the area of the quadrilateral ABCD.

..... cm² [3]

(d) Calculate the shortest distance from B to AC.

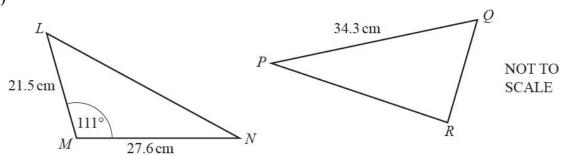
..... cm [3]

(a)

ABCDE is a pentagon.

(i) Calculate AD and show that it rounds to 94.5 m, correct to 1 decimal place.

[2]


(ii) Calculate angle BAC.

Angle
$$BAC = \dots [3]$$

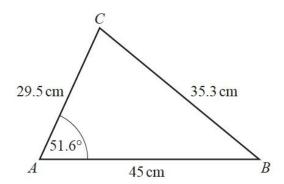
(iii) Calculate the largest angle in triangle CAD.

.....[4]

(b)

Triangle PQR has the same area as triangle LMN.

Calculate the shortest distance from R to the line PQ.


..... cm [3]

Solve the equation $\tan x = 11.43$ for $0^{\circ} \le x \le 360^{\circ}$.

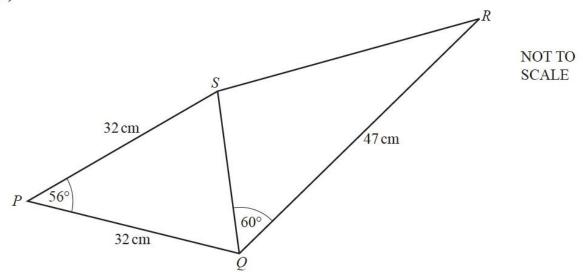
$$x = \dots \text{ or } x = \dots$$
 [2]

Question 59

(a)

NOT TO SCALE

In triangle ABC, AB = 45 cm, AC = 29.5 cm, BC = 35.3 cm and angle $CAB = 51.6^{\circ}$.

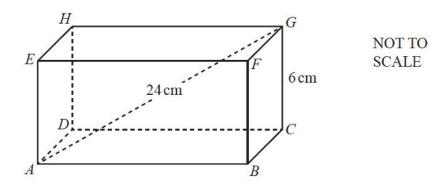

(i) Calculate angle ABC.

Angle
$$ABC = \dots$$
 [3]

(ii) Calculate the area of triangle ABC.

Continue on the next page...

(b)

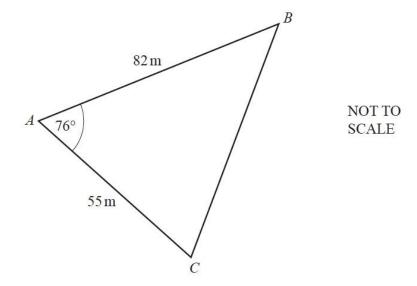

The diagram shows a quadrilateral PQRS formed from two triangles, PQS and QRS. Triangle PQS is isosceles, with PQ = PS = 32 cm and angle $SPQ = 56^{\circ}$. QR = 47 cm and angle $SQR = 60^{\circ}$.

(i) Calculate SR.

$$SR = \dots cm [4]$$

(ii) Calculate the shortest distance from P to SQ.

	. cm	[3]
--	------	-----


The diagram shows a cuboid ABCDEFGH. CG = 6 cm, AG = 24 cm and AB = 2BC.

(a) Calculate AB.

$$AB = \dots$$
 cm [4]

(b) Calculate the angle between AG and the base ABCD.

.....[3]

The diagram shows a field ABC.

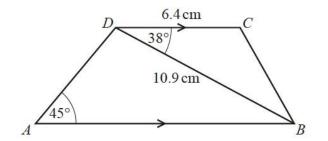
(a) Calculate BC.

$$BC = \dots m [3]$$

(b) Calculate angle ACB.

Angle
$$ACB = \dots$$
 [3]

(c) A gate, G, lies on AB at the shortest distance from C.


Calculate AG.

$$AG = \dots m [3]$$

(d) A different triangular field PQR has the same area as ABC. $PQ = 90 \,\text{m}$ and $QR = 60 \,\text{m}$.

Work out the two possible values of angle PQR.

Angle
$$PQR = \dots$$
 or [5]

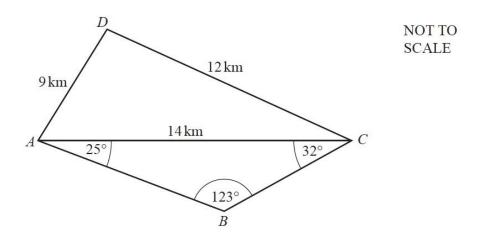
NOT TO SCALE

ABCD is a trapezium with DC parallel to AB. DC = 6.4 cm, DB = 10.9 cm, angle $CDB = 38^{\circ}$ and angle $DAB = 45^{\circ}$.

(a) Find CB.

$$CB =$$
 cm [3]

(b) (i) Find angle ADB.


Angle
$$ADB = \dots$$
 [1]

(ii) Find AB.

$$AB = \dots$$
 cm [3]

(c) Calculate the area of the trapezium.

2	
 cm ²	[3]

(a) Calculate angle ACD.

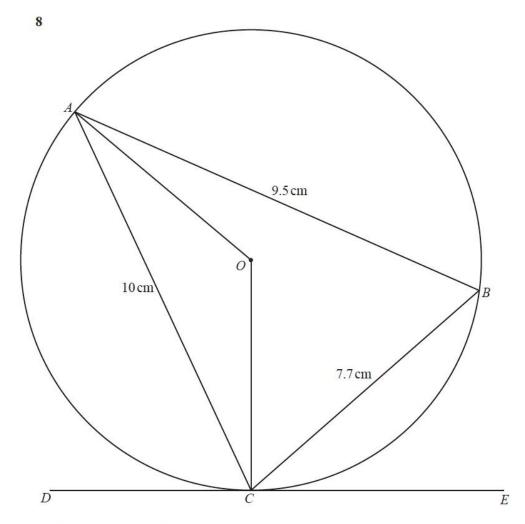
Angle
$$ACD = \dots$$
 [4]

(b) Show that $BC = 7.05 \,\mathrm{km}$, correct to 2 decimal places.

[3]

(c) Calculate the shortest distance from B to AC.

.....km [3]


(d) Calculate the length of the straight line BD.

$$BD = \dots km [4]$$

(e) C is due east of A.

Find the bearing of D from C.

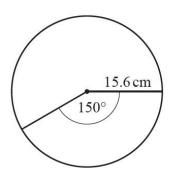
.....[2]

NOT TO SCALE

A, B and C are points on the circle, centre O. DE is a tangent to the circle at C. AC = 10 cm, AB = 9.5 cm and BC = 7.7 cm.

(a) Show that angle $ABC = 70.2^{\circ}$, correct to 1 decimal place.

[4]


Continue on the next page...

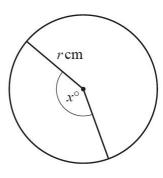
(b) Fin	d	
(i)	angle AOC	
(ii)	angle ACO	Angle <i>AOC</i> = [1]
(iii)	angle ACD.	Angle <i>ACO</i> = [1]
(c) Cal	culate the radius, OC, of the circle.	Angle <i>ACD</i> = [1]
		<i>OC</i> = cm [3]
(d) Ca	lculate the area of triangle ABC as a percer	ntage of the area of the circle.
		% [4]

(a) The lengths of the sides of a triangle are 11.4 cm, 14.8 cm and 15.7 cm, all correct to 1 decimal place.

Calculate the upper bound of the perimeter of the triangle.

(b)

NOT TO SCALE


The diagram shows a circle, radius 15.6 cm.

The angle of the minor sector is 150°.

Calculate the area of the minor sector.

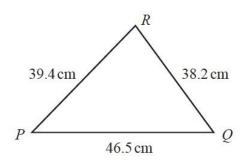
..... cm² [2]

(c)

NOT TO SCALE

The diagram shows a circle, radius r cm and minor sector angle x° .

The **perimeter** of the major sector is three times the **perimeter** of the minor sector.

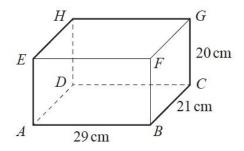

Show that $x = \frac{90(\pi - 2)}{\pi}$.

- (a) On the diagram, sketch the graph of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$. [2]
- **(b)** Solve the equation $5\sin x + 4 = 0$ for $0^{\circ} \le x \le 360^{\circ}$.

$$x = \dots$$
 or $x = \dots$ [3]

(a)

NOT TO SCALE


(i) Calculate angle QPR.

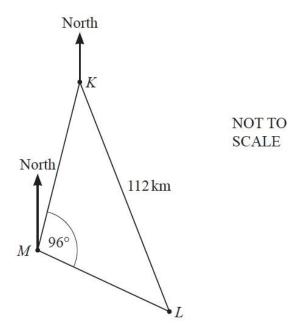
Angle
$$QPR = \dots$$
 [4]

(ii) Find the shortest distance from Q to PR.

 cm	[3]
 CIII	[]

(b) The diagram shows a cuboid.

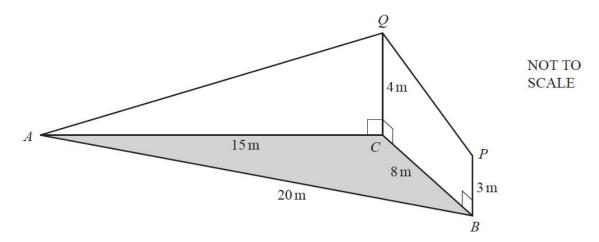
NOT TO SCALE


(i) Calculate the length AG.

$$AG = \dots$$
 cm [3]

(ii) Calculate the angle between AG and the base ABCD.

	[3	,
--	----	---


(c)

The diagram shows the positions of a lighthouse, L, and two ships, K and M. The bearing of L from K is 155° and $KL = 112 \,\mathrm{km}$. The bearing of K from M is 010° and angle $KML = 96^{\circ}$.

Find the bearing and distance of ship M from the lighthouse, L.

Bearing		
Distance	km	[5]

The diagram shows triangle ABC on horizontal ground. $AC = 15 \,\mathrm{m}$, $BC = 8 \,\mathrm{m}$ and $AB = 20 \,\mathrm{m}$.

BP and CQ are vertical poles of different heights. $BP = 3 \,\mathrm{m}$ and $CQ = 4 \,\mathrm{m}$.

AQ and PQ are straight wires.

(a) Show that angle $ACB = 117.5^{\circ}$, correct to 1 decimal place.

(b) Calculate the area of triangle *ABC*.

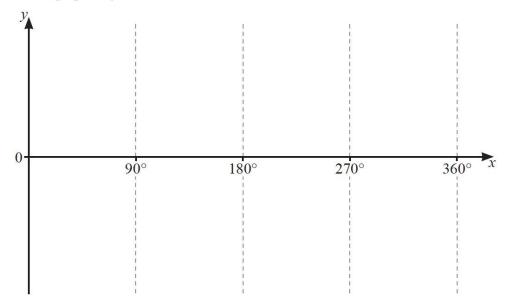
..... m² [2]

[4]

(c) Calculate the length of AQ.

..... m [2]

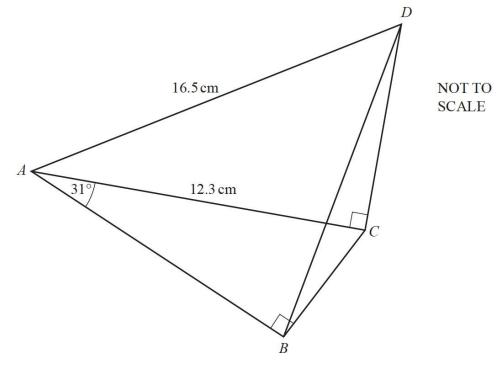
(d) Calculate the angle of elevation of Q from P.


.....[3]

(e) Another straight wire connects A to the midpoint of PQ.

Calculate the angle between this wire and the horizontal ground.

.....[5]


(a) Sketch the graph of $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$.

(b) Find x when $\tan x = \frac{1}{\sqrt{3}}$ and $0^{\circ} \le x \le 360^{\circ}$.

.....[2]

[2]

The diagram shows a quadrilateral ABCD.

AC = 12.3 cm and AD = 16.5 cm.

Angle $BAC = 31^{\circ}$, angle $ABC = 90^{\circ}$ and angle $ACD = 90^{\circ}$.

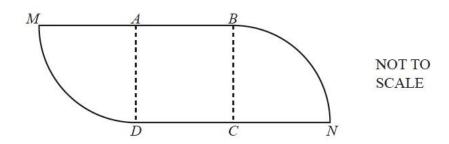
- (a) Show that AB = 10.54 cm, correct to 2 decimal places.
- **(b)** Show that angle $DAC = 41.80^{\circ}$ correct to 2 decimal places.

[2]

(c) Calculate BD.

BD =cm [3]

(d) Calculate angle CBD.


Angle CBD =[4]

(e) Calculate the shortest distance from C to BD.

..... cm [4]

[2]

(a)

The diagram shows a shape made from a square ABCD and two equal sectors of a circle. The square has side $11\,\mathrm{cm}$.

MAB and DCN are straight lines.

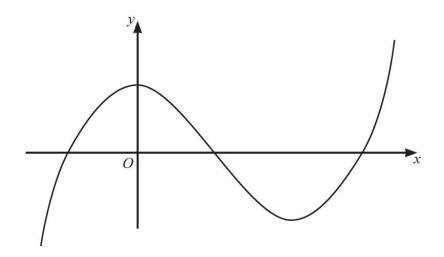
(i) Calculate the area of the shape.

..... cm² [3]

(ii) Calculate the perimeter of the shape.

..... cm [3]

(b)

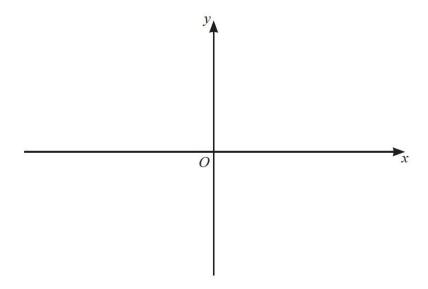

NOT TO SCALE

The diagram shows a cube ABCDEFGH of edge 7 cm.

Calculate the angle between AG and the base of the cube.

.....[4]

(a) The diagram shows the graph of a function.

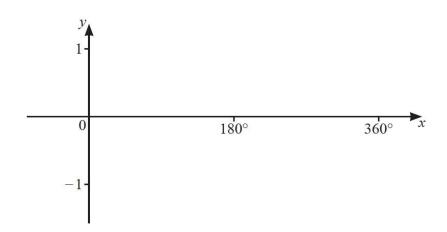


Put a ring around the word which correctly identifies the type of function.

reciprocal quadratic cubic exponential linear

[1]

(b) (i)



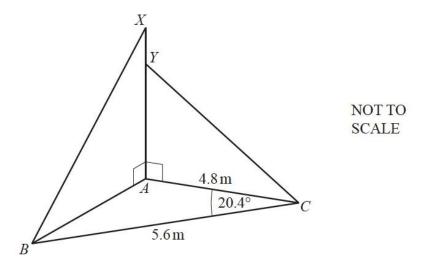
On the diagram, sketch the graph of $y = \frac{1}{2x}, x \neq 0$. [2]

(ii) Solve the equation $\frac{1}{2x} = 2x$.

x = and x = [2]

(c) (i)

On the diagram, sketch the graph of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$.


(ii) Solve the equation $3\sin x + 1 = 0$ for $0^{\circ} \le x \le 360^{\circ}$.

x = and x = [3]

[2]

Question 73

(a)

ABC is a scalene triangle on horizontal ground. AYX is a straight vertical post, held in place by two straight wires XB and YC. AC = 4.8 m, BC = 5.6 m and angle $ACB = 20.4^{\circ}$.

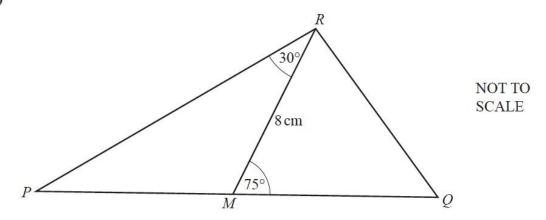
(i) Calculate AB.

Continue on the next page...

AB =	 m	[3]

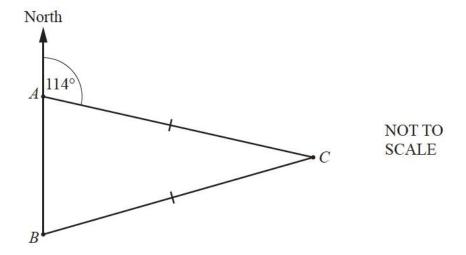
(ii) Angle $XBA = 64^{\circ}$.

Calculate AX.


$$AX =$$
 m [2]

(iii) $AY = 2.9 \,\text{m}$.

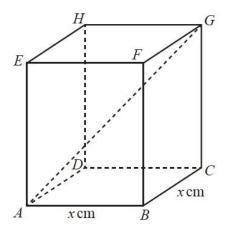
Calculate the area of triangle YAC.


..... m² [2]

(b)

In triangle PQR, M is the midpoint of PQ. RM = 8 cm, angle $PRM = 30^{\circ}$ and angle $RMQ = 75^{\circ}$.

Calculate PQ.

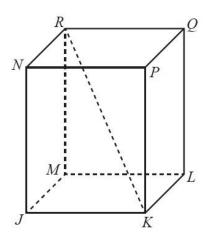


A, B and C are three towns and the bearing of C from A is 114°. B is due south of A and AC = BC.

Calculate the bearing of B from C.

[3

(a)


NOT TO SCALE

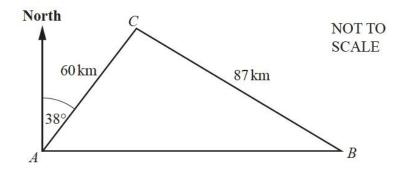
ABCDEFGH is a cuboid with a square base of side x cm. CG = 20 cm and AG = 28 cm.

Calculate the value of *x*.

x	=	Γ4 ⁻
2 L		

(b)

NOT TO SCALE


The diagram shows a different cuboid JKLMNPQR.

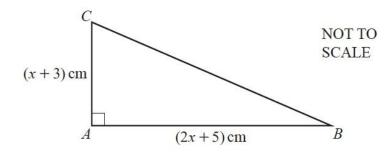
 $MR = 30 \,\mathrm{cm}$ correct to the nearest centimetre.

KR = 37 cm correct to the nearest centimetre.

Calculate the lower bound of the angle between KR and the base JKLM of the cuboid.

|--|

The diagram shows the straight roads between town A, town B and town C. $AC = 60 \,\mathrm{km}$, $CB = 87 \,\mathrm{km}$ and B is due east of A. The bearing of C from A is 038° .


- (a) Show that angle $ACB = 95.1^{\circ}$, correct to 1 decimal place.
- **(b)** Without stopping, a car travels from town A to town C then to town B, before returning directly to town A.

The total time taken for the journey is 3 hours 20 minutes.

Calculate the average speed of the car for this journey. Give your answer in kilometres per hour.

kn	ı/h	[6]
----	-----	-----

[5]

The diagram shows a right-angled triangle ABC.

(a) (i) The area of the triangle is $60 \,\mathrm{cm}^2$.

Show that $2x^2 + 11x - 105 = 0$.

[3]

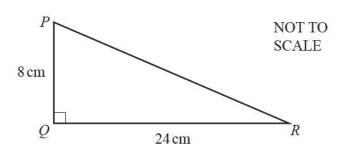
(ii) Solve by factorisation.

$$2x^2 + 11x - 105 = 0$$

 $x = \dots$ or $x = \dots$ [3]

(iii) Calculate angle ACB.

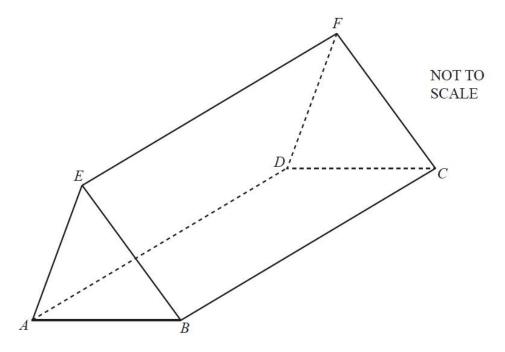
.....[3]


- (b) Triangle ABC is similar to triangle DEF. Triangle DEF has an area of 93.75 cm^2 .
 - (i) Find the size of the smallest angle of triangle DEF.

.....[1]

(ii) Find the length of the shortest side of triangle DEF.

..... cm [3]


(a)

(i) Calculate the area of triangle PQR.

2	Fai
cm-	17
 CIII	L-

(ii) Calculate angle PRQ.

The diagram shows a solid triangular prism *ABCDEF* of length 15 cm. AB = 6.4 cm, EB = 5.7 cm and the volume of the prism is 145 cm³.

(a) Show that angle $EBA = 32^{\circ}$, correct to the nearest degree.

(b) Find the length of EA.

cm [3]

(c) Calculate the shortest distance from E to AB.

cm [3]

(d) Calculate the angle BF makes with the base, ABCD, of the prism.

[4]

(e) The prism is made of plastic with density 938 kg/m³.

Calculate the mass of the prism in grams.

[Density = mass ÷ volume]