## Subject – Math (Standard Level) Topic - Calculus Year - Nov 2011 – Nov 2019 Paper -1

| evidence of anti-differentiation<br>e.g. $\int f'(x)$ , $\int (3x^2 + 2) dx$ | (MI) |                 |
|------------------------------------------------------------------------------|------|-----------------|
| $f(x) = x^3 + 2x + c$ (seen anywhere, including the answer)                  | AIAI |                 |
| Attempt to substitute (2,5)<br>e.g. $f(2) = (2)^3 + 2(2), 5 = 8 + 4 + c$     | (M1) |                 |
| finding the value of $c$<br>e.g. $5=12+c$ , $c=-7$                           | (AI) |                 |
| $f(x) = x^3 + 2x - 7$                                                        | AI   | N5<br>[6 marks] |

|                 | AI    | finding $f'(x) = \frac{1}{2}x$                                                                          | (a) |
|-----------------|-------|---------------------------------------------------------------------------------------------------------|-----|
|                 |       | -                                                                                                       | (u) |
|                 | (M1)  | attempt to find $f'(4)$                                                                                 |     |
|                 | A1    | correct value $f'(4) = 2$                                                                               |     |
| N2              | A1    | correct equation in any form $(-2)(n-4) = 2n-2$                                                         |     |
| [4 marks]       |       | e.g. $y-6=2(x-4), y=2x-2$                                                                               |     |
|                 |       | area = $\int_{2}^{12} \frac{90}{3x+4} dx$                                                               | (b) |
|                 | AIAI  | correct integral<br>e.g. $30\ln(3x+4)$                                                                  |     |
|                 | (M1)  | substituting limits and subtracting<br>e.g. $30\ln(3\times12+4) - 30\ln(3\times2+4), 30\ln40 - 30\ln10$ |     |
|                 | (A1)  | correct working $e.g.  30(\ln 40 - \ln 10)$                                                             |     |
|                 | (A1)  | correct application of $\ln b - \ln a$<br>e.g. $30 \ln \frac{40}{10}$                                   |     |
| N4<br>[6 marks] | AI    | area = 30 ln 4                                                                                          |     |
|                 | (M1)  | valid approach<br><i>e.g.</i> sketch, area $h = \text{area } g$ , 120 + <b>their</b> answer from (b)    | (c) |
| N3<br>[3 marks] | A2    | $area = 120 + 30\ln 4$                                                                                  |     |
| [13 marks]      | Total |                                                                                                         |     |

| (a) $f'(x) = 6e^{6x}$                                                                                                                                                         | AI        | N1<br>[1 mark]  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|
| (b) (i) evidence of valid approach<br>e.g. $f'(0)$ , $6e^{6\times 0}$                                                                                                         | (M1)      |                 |
| correct manipulation $e.g.  6e^0, \ 6 \times 1$                                                                                                                               | AI        |                 |
| m = 6                                                                                                                                                                         | AG        | NØ              |
| (ii) evidence of finding $f(0)$<br>e.g. $y = e^{6(0)}$                                                                                                                        | (M1)      |                 |
| b=1                                                                                                                                                                           | AI        | N2<br>[4 marks] |
| (c) $y = 6x + 1$                                                                                                                                                              | <i>A1</i> | N1<br>[1 mark]  |
|                                                                                                                                                                               | Tota      | l [6 marks]     |
| Question 4                                                                                                                                                                    |           |                 |
| correct integration, $2 \times \frac{1}{2} \ln(2x+5)$                                                                                                                         | AlAl      | !               |
| e: Award AI for $2 \times \frac{1}{2}$ (=1) and AI for $\ln(2x+5)$ .                                                                                                          |           |                 |
| evidence of substituting limits into integrated function and subtracting<br>e.g. $\ln(2 \times 5 + 5) - \ln(2 \times 0 + 5)$<br>correct substitution<br>e.g. $\ln 15 - \ln 5$ | (M1)      | )               |
| correct substitution<br>e.g. $\ln 15 - \ln 5$                                                                                                                                 | Al        | !               |
| correct working                                                                                                                                                               | (A1)      | )               |
| <i>e.g.</i> $\ln \frac{15}{5}$ , $\ln 3$                                                                                                                                      |           |                 |
| <i>k</i> = 3                                                                                                                                                                  | Al        | N3              |
|                                                                                                                                                                               |           | [6 marks]       |

| (a) | $s'(t) = 1 - 2\cos 2t$                                                                                       | A1A2      | N3              |
|-----|--------------------------------------------------------------------------------------------------------------|-----------|-----------------|
| Not | te: Award A1 for 1, A2 for $-2\cos 2t$ .                                                                     |           |                 |
|     |                                                                                                              |           | [3 marks]       |
| (b) | evidence of valid approach<br><i>e.g.</i> setting $s'(t) = 0$                                                | (M1)      |                 |
|     | correct working<br>e.g. $2\cos 2t = 1$ , $\cos 2t = \frac{1}{2}$                                             | <i>A1</i> |                 |
|     | $2t = \frac{\pi}{3}, \frac{5\pi}{3}, \dots$                                                                  | (A1)      |                 |
|     | $t = \frac{5\pi}{6}$                                                                                         | <i>A1</i> | N3              |
|     |                                                                                                              |           | [4 marks]       |
| (c) | evidence of valid approach <i>e.g.</i> choosing a value in the interval $\frac{\pi}{6} < t < \frac{5\pi}{6}$ | (M1)      |                 |
|     | correct substitution<br>e.g. $s'\left(\frac{\pi}{2}\right) = 1 - 2\cos\pi$                                   | Al        |                 |
|     |                                                                                                              | AI        |                 |
|     | $s'\left(\frac{\pi}{2}\right) = 3$ $s'(t) > 0$                                                               | AG        | N0<br>[3 marks] |

(d) evidence of approach using s or integral of s' (M1) e.g.  $\int s'(t) dt; s\left(\frac{5\pi}{6}\right), s\left(\frac{\pi}{6}\right); \left[t - \sin 2t\right]_{\frac{\pi}{6}}^{\frac{5\pi}{6}}$ 

substituting values and subtracting

e.g. 
$$s\left(\frac{5\pi}{6}\right) - s\left(\frac{\pi}{6}\right), \left(\frac{\pi}{6} - \frac{\sqrt{3}}{2}\right) - \left(\frac{5\pi}{6} - \left(-\frac{\sqrt{3}}{2}\right)\right)$$

correct substitution

(M1)

*e.g.*  $\frac{5\pi}{6} - \sin\frac{5\pi}{3} - \left[\frac{\pi}{6} - \sin\frac{\pi}{3}\right], \left(\frac{5\pi}{6} - \left(-\frac{\sqrt{3}}{2}\right)\right) - \left(\frac{\pi}{6} - \frac{\sqrt{3}}{2}\right)$ 

distance is 
$$\frac{2\pi}{3} + \sqrt{3}$$
  
Note: Award A1 for  $\frac{2\pi}{3}$ , A1 for  $\sqrt{3}$ .  
[5 marks]  
Total [15 marks]

| (a) | correct derivatives <b>applied</b> in quotient rule $1, -4x+5$                                                                                                                     | (AI)AIAI |                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|
| No  | te: Award (A1) for 1, A1 for $-4x$ and A1 for 5, only if it is clear candid are using the quotient rule.                                                                           | dates    |                 |
|     | correct substitution into quotient rule<br><i>e.g.</i> $\frac{1 \times (-2x^2 + 5x - 2) - x(-4x + 5)}{(-2x^2 + 5x - 2)^2}, \frac{-2x^2 + 5x - 2 - x - 4x + 5}{(-2x^2 + 5x - 2)^2}$ | A1       |                 |
|     | correct working<br>e.g. $\frac{-2x^2 + 5x - 2 - (-4x^2 + 5x)}{(-2x^2 + 5x - 2)^2}$                                                                                                 | (A1)     |                 |
|     | (-2x <sup>2</sup> + 5x - 2)<br>expression clearly leading to the answer<br>e.g. $\frac{-2x^2 + 5x - 2 + 4x^2 - 5x}{(-2x^2 + 5x - 2)^2}$                                            | A1       |                 |
|     | $f'(x) = \frac{2x^2 - 2}{(-2x^2 + 5x - 2)^2}$                                                                                                                                      | AG       | N0<br>[6 marks] |
| (b) | evidence of attempting to solve $f'(x) = 0$                                                                                                                                        | (M1)     | [0 mu k3]       |
|     | <i>e.g.</i> $2x^2 - 2 = 0$<br>evidence of correct working<br><i>e.g.</i> $x^2 = 1, \frac{\pm\sqrt{16}}{4}, 2(x-1)(x+1)$                                                            | Al       |                 |
|     | correct solution to quadratic<br>e.g. $x = \pm 1$                                                                                                                                  | (A1)     |                 |
|     | correct <i>x</i> -coordinate $x = -1$ (may be seen in coordinate form $\left(-1, \frac{1}{9}\right)$ )                                                                             | Al       | N2              |
|     | attempt to substitute $-1$ into $f$ (do not accept any other value)<br>e.g. $f(-1) = \frac{-1}{-2 \times (-1)^2 + 5 \times (-1) - 2}$                                              | (M1)     |                 |
|     | correct working<br>e.g. $\frac{-1}{-2-5-2}$                                                                                                                                        | Al       |                 |
|     | -2-5-2<br>correct <i>y</i> -coordinate $y = \frac{1}{9}$ (may be seen in coordinate form $\left(-1, \frac{1}{9}\right)$ )                                                          | Al       | N2              |
|     |                                                                                                                                                                                    |          | [7 marks]       |

[7 marks]

(c) recognizing values between max and min

$$\frac{1}{9} < k < 1 \qquad A2 \qquad N3$$

[3 marks]

#### Total [16 marks]

### Question 7

(a) correct integration A1A1 e.g.  $\frac{x^2}{2} - 4x$ ,  $\left[\frac{x^2}{2} - 4x\right]_4^{10}$ ,  $\frac{(x-4)^2}{2}$ Notes: In the first 2 examples, award A1 for each correct term. In the third example, award A1 for  $\frac{1}{2}$  and A1 for  $(x-4)^2$ .

substituting limits into their integrated function and subtracting (in any order) (M1)

e.g. 
$$\left(\frac{10^2}{2} - 4(10)\right) - \left(\frac{4^2}{2} - 4(4)\right), 10 - (-8), \frac{1}{2}(6^2 - 0)$$
  
 $\int_4^{10} (x - 4) dx = 18$   
[4 marks]

(b) attempt to substitute either limits or the function into volume formula (M1) e.g.  $\pi \int_{4}^{10} f^2 dx$ ,  $\int_{a}^{b} (\sqrt{x-4})^2$ ,  $\pi \int_{4}^{10} \sqrt{x-4}$ 

**Note:** Do not penalise for missing  $\pi$  or dx.

correct substitution (accept absence of dx and 
$$\pi$$
) (A1)  
e.g.  $\pi \int_{4}^{10} \left(\sqrt{x-4}\right)^2$ ,  $\pi \int_{4}^{10} (x-4) dx$ ,  $\int_{4}^{10} (x-4) dx$ 

volume = 
$$18\pi$$
 A1 N2

[3 marks]

Total [7 marks]

(R1)

| (a) | $f'(x) = 3ax^2 - 12x$                                                          | AIAI      | N2              |
|-----|--------------------------------------------------------------------------------|-----------|-----------------|
| Not | te: Award A1 for each correct term.                                            |           |                 |
|     |                                                                                |           | [2 marks]       |
| (b) | setting <b>their</b> derivative equal to 3 (seen anywhere)<br>e.g. $f'(x) = 3$ | A1        |                 |
|     | attempt to substitute $x = 1$ into $f'(x)$<br>e.g. $3a(1)^2 - 12(1)$           | (M1)      |                 |
|     | correct substitution into $f'(x)$<br>e.g. $3a-12$ , $3a=15$                    | (A1)      |                 |
|     | <i>a</i> = 5                                                                   | <i>A1</i> | N2<br>[4 marks] |
|     |                                                                                | Tota      | l [6 marks]     |

| (a) | METHOD 1                                                                                                           |          |           |
|-----|--------------------------------------------------------------------------------------------------------------------|----------|-----------|
|     | evidence of choosing quotient rule                                                                                 | (M1)     |           |
|     | $e.g.  \frac{u'v - uv'}{v^2}$                                                                                      |          |           |
|     | evidence of correct differentiation (must be seen in quotient rule)                                                | (A1)(A1) |           |
|     | <i>e.g.</i> $\frac{d}{dx}(6x) = 6$ , $\frac{d}{dx}(x+1) = 1$                                                       |          |           |
|     | correct substitution into quotient rule                                                                            | A1       |           |
|     | e.g $\frac{(x+1)6-6x}{(x+1)^2}, \frac{6x+6-6x}{(x+1)^2}$                                                           |          |           |
|     | $f'(x) = \frac{6}{(x+1)^2}$                                                                                        | A1       | N4        |
|     |                                                                                                                    |          | [5 marks] |
|     | METHOD 2                                                                                                           |          |           |
|     | evidence of choosing product rule                                                                                  | (M1)     |           |
|     | e.g. $6x(x+1)^{-1}$ , $uv' + vu'$                                                                                  |          |           |
|     | evidence of correct differentiation (must be seen in product rule)                                                 | (A1)(A1) |           |
|     | e.g. $\frac{\mathrm{d}}{\mathrm{d}x}(6x) = 6$ , $\frac{\mathrm{d}}{\mathrm{d}x}(x+1)^{-1} = -1(x+1)^{-2} \times 1$ |          |           |

correct working

e.g. 
$$6x \times -(x+1)^{-2} + (x+1)^{-1} \times 6$$
,  $\frac{-6x+6(x+1)}{(x+1)^2}$ 

$$f'(x) = \frac{6}{(x+1)^2}$$
 A1 N4  
[5 marks]

*A1* 

#### (b) METHOD 1

evidence of choosing chain rule

*e.g.* formula, 
$$\frac{1}{\left(\frac{6x}{x+1}\right)} \times \left(\frac{6x}{x+1}\right)'$$
  
correct reciprocal of  $\frac{1}{\left(\frac{6x}{x+1}\right)}$  is  $\frac{x+1}{6x}$  (seen anywhere) *A1*

(M1)

*A1* 

correct substitution into chain rule

e.g. 
$$\frac{1}{\left(\frac{6x}{x+1}\right)} \times \frac{6}{(x+1)^2}, \left(\frac{6}{(x+1)^2}\right) \left(\frac{x+1}{6x}\right)$$

working that clearly leads to the answer A1  
e.g. 
$$\left(\frac{6}{(x+1)}\right)\left(\frac{1}{6x}\right), \left(\frac{1}{(x+1)^2}\right)\left(\frac{x+1}{x}\right), \frac{6(x+1)}{6x(x+1)^2}$$

$$g'(x) = \frac{1}{x(x+1)}$$

$$AG \qquad N0$$
[4 marks]

### METHOD 2

| attempt to subtract logs                                                       | (M1) |           |
|--------------------------------------------------------------------------------|------|-----------|
| e.g. $\ln a - \ln b$ , $\ln 6x - \ln(x+1)$                                     |      |           |
| correct derivatives (must be seen in correct expression)                       | AIA1 |           |
| <i>e.g.</i> $\frac{6}{6x} - \frac{1}{x+1}, \frac{1}{x} - \frac{1}{x+1}$        |      |           |
| working that clearly leads to the answer                                       | A1   |           |
| e.g. $\frac{x+1-x}{x(x+1)}, \frac{6x+6-6x}{6x(x+1)}, \frac{6(x+1-x)}{6x(x+1)}$ |      |           |
| $g'(x) = \frac{1}{x(x+1)}$                                                     | AG   | NØ        |
| Salprey                                                                        |      | [4 marks] |

(c) valid method using integral of h(x) (accept missing/incorrect limits or missing dx)

e.g. area = 
$$\int_{\frac{1}{5}}^{k} h(x) dx$$
,  $\int \left(\frac{1}{x(x+1)}\right)$ 

recognizing that integral of derivative will give original function (R1)  $\int \left(\frac{1}{x(x+1)}\right) dx = \ln\left(\frac{6x}{x+1}\right)$ e.g.

correct substitution and subtraction

e.g. 
$$\ln\left(\frac{6k}{k+1}\right) - \ln\left(\frac{6\times\frac{1}{5}}{\frac{1}{5}+1}\right), \ln\left(\frac{6k}{k+1}\right) - \ln(1)$$

setting their expression equal to ln 4

setting their expression equal to 
$$\ln 4$$
 (M1)  
e.g.  $\ln\left(\frac{6k}{k+1}\right) - \ln(1) = \ln 4$ ,  $\ln\left(\frac{6k}{k+1}\right) = \ln 4$ ,  $\int_{\frac{1}{5}}^{k} h(x) dx = \ln 4$ 

correct equation without logs

e.g. 
$$\frac{6k}{k+1} = 4$$
,  $6k = 4(k+1)$ 

correct working e.g. 6k = 4k + 4, 2k = 4

k = 2

**A1** N4

(M1)

*A1* 

*A1* 

(A1)

[7 marks]

Total [16 marks]

| (a)                | evidence of choosing product rule<br>eg  uv' + vu'                                                                                                            | (M1)        |                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|
|                    | correct derivatives (must be seen in the product rule) $\cos x$ , $2x$                                                                                        | (A1)(A1)    |                 |
|                    | $f'(x) = x^2 \cos x + 2x \sin x$                                                                                                                              | AI          | N4<br>[4 marks] |
| (b)                | substituting $\frac{\pi}{2}$ into <b>their</b> $f'(x)$                                                                                                        | (M1)        |                 |
|                    | $eg = f'\left(\frac{\pi}{2}\right), \left(\frac{\pi}{2}\right)^2 \cos\left(\frac{\pi}{2}\right) + 2\left(\frac{\pi}{2}\right) \sin\left(\frac{\pi}{2}\right)$ |             |                 |
|                    | correct values for <b>both</b> $\sin \frac{\pi}{2}$ and $\cos \frac{\pi}{2}$ seen in $f'(x)$                                                                  | (A1)        |                 |
|                    | $eg  0+2\left(\frac{\pi}{2}\right) \times 1$                                                                                                                  |             |                 |
|                    | $f'\left(\frac{\pi}{2}\right) = \pi$                                                                                                                          | Al          | N2              |
|                    |                                                                                                                                                               |             | [3 marks]       |
|                    |                                                                                                                                                               | Tota        | l [7 marks]     |
| Ques               | tion 11                                                                                                                                                       |             |                 |
| atte<br><i>eg</i>  | mpt to integrate which involves ln $\ln(2x-5)$ , $12\ln 2x-5$ , $\ln 2x$                                                                                      | (M          | 1)              |
| com                | rect expression (accept absence of C)                                                                                                                         |             |                 |
| eg                 | sect expression (accept absence of C)<br>$12\ln(2x-5)\frac{1}{2}+C$ , $6\ln(2x-5)$                                                                            | 1           | 12              |
| atte:<br><i>eg</i> | mpt to substitute (4, 0) into <b>their</b> integrated $f$<br>$0 = 6\ln(2 \times 4 - 5), 0 = 6\ln(8 - 5) + C$                                                  | (M          | 1)              |
| <i>C</i> =         | $-6\ln 3$                                                                                                                                                     | (A          | 1)              |
| f(:                | x) = 6 ln (2x-5) - 6 ln 3 $\left( = 6 ln \left( \frac{2x-5}{3} \right) \right)$ (accept 6 ln (2x-5) - ln 3 <sup>6</sup> )                                     | 2           | 11 N5           |
| No                 | te: Exception to the $FT$ rule. Allow full $FT$ on incorrect integration wh                                                                                   | ich must in | volve ln.       |

Total [6 marks]

(a) substitute 0 into f(M1)  $eg \ln(0+1), \ln 1$ 

$$f(0) = 0 \qquad A1 \qquad N2$$

$$[2 marks]$$

(b) 
$$f'(x) = \frac{1}{x^4 + 1} \times 4x^3$$
 (seen anywhere) A1A1

Note: Award A1 for  $\frac{1}{x^4+1}$  and A1 for  $4x^3$ .

| recognizing f increasing where $f'(x) > 0$ (seen anywhere) | <b>R</b> 1 |
|------------------------------------------------------------|------------|
| eg = f'(x) > 0, diagram of signs                           |            |
|                                                            |            |

attempt to solve 
$$f'(x) > 0$$
 (M1)  
eg  $4x^3 = 0$   $x^3 > 0$ 

f increasing for x > 0 (accept  $x \ge 0$ ) *A1* [5 marks]

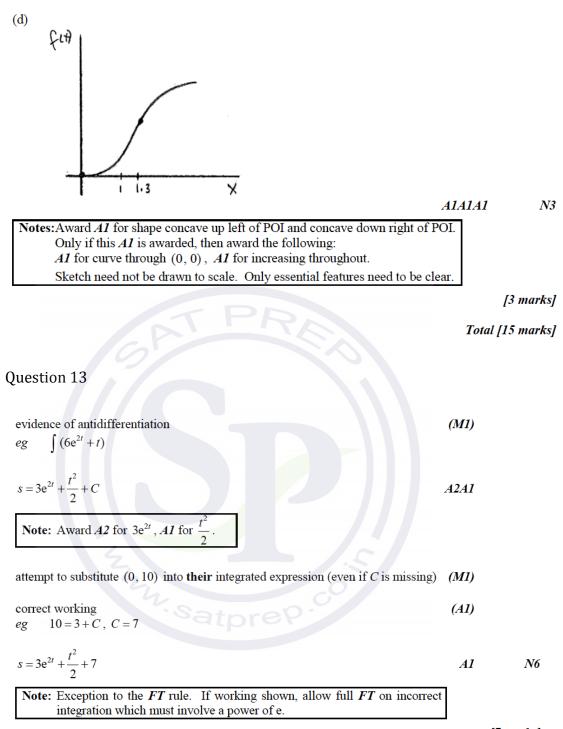
- substituting x = 1 into f''(c) (i) (A1)  $\frac{4(3-1)}{(1+1)^2}, \frac{4\times 2}{4}$ eg f''(1) = 2N2 *A1* 
  - (ii) valid interpretation of point of inflexion (seen anywhere) **R1** eg no change of sign in f''(x), no change in concavity, f' increasing both sides of zero

attempt to find 
$$f''(x)$$
 for  $x < 0$  (M1)

eg 
$$f''(-1)$$
,  $\frac{4(-1)^2(3-(-1)^4)}{((-1)^4+1)^2}$ , diagram of signs

| correct working leading to positive value                      | <i>A1</i> |    |
|----------------------------------------------------------------|-----------|----|
| eg  f''(-1) = 2, discussing signs of numerator and denominator |           |    |
|                                                                |           |    |
| there is no point of inflexion at $x = 0$                      | AG        | NO |

*N1* 



[7 marks]

(a)

attempt to find quarter circle area  $eg = \frac{1}{4}(4\pi), \frac{\pi r^2}{4}, \int_0^2 \sqrt{4-x^2} dx$ area of region  $= \pi$ (AI)  $\int_0^2 f(x) \, \mathrm{d}x = -\pi$ A2 *N3* [4 marks] (b) attempted set up with both regions (M1) shaded area – quarter circle ,  $3\pi - \pi$  ,  $3\pi - \int_0^2 f = \int_2^6 f$ eg  $\int_2^6 f(x) \, \mathrm{d}x = 2\pi$ A2 N2 [3 marks] Total [7 marks]

(M1)

 $f'(x) = \cos x + x - 2$ AlAlAl N3 (a) Note: Award A1 for each term.

[3 marks]

- recognize symmetry (M1) vertex, sketch eg 2 Z 5 2 0 g(4) = 5*A1* N3 [3 marks] (c) (i) *A1* **N1** h = 2substituting into  $g(x) = a(x-2)^2 + 3$  (not the vertex) (M1) (ii)  $5 = a(0-2)^2 + 3$ ,  $5 = a(4-2)^2 + 3$ eg working towards solution (AI) 5 = 4a + 3, 4a = 2eg  $a = \frac{1}{2}$ *A1* N2 [4 marks]
- recognizing g(0) = 5 gives the point (0, 5)(b) (R1)

| (d) | $g(x) = \frac{1}{2}(x-2)^{2} + 3 = \frac{1}{2}x^{2} - 2x + 5$<br>correct derivative of g<br>eg $2 \times \frac{1}{2}(x-2), x-2$ | AIAI |    |
|-----|---------------------------------------------------------------------------------------------------------------------------------|------|----|
|     | evidence of equating both derivatives<br>eg 	 f' = g'                                                                           | (M1) |    |
|     | correct equation<br>$eg  \cos x + x - 2 = x - 2$                                                                                | (A1) |    |
|     | working towards a solution<br>$eg  \cos x = 0$ , combining like terms                                                           | (A1) |    |
|     | $x = \frac{\pi}{2}$                                                                                                             | AI   | N0 |

Note: Do not award final A1 if additional values are given.

[6 marks]

Total [16 marks]



| (a) | g(3) = -18, f'(3) = 1, h''(2) = -6                                                                                                                   | AIAIAI    | N3<br>[3 marks] |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|
| (b) | h''(3) = 0                                                                                                                                           | (AI)      |                 |
|     | valid reasoning<br>eg $h''$ changes sign at $x = 3$ , change in concavity of h at $x = 3$                                                            | <i>R1</i> |                 |
|     | so P is a point of inflexion                                                                                                                         | AG        | N0<br>[2 marks] |
| (c) | writing $h(3)$ as a product of $f(3)$ and $g(3)$<br>eg $f(3) \times g(3), 3 \times (-18)$                                                            | <i>A1</i> |                 |
|     | h(3) = -54                                                                                                                                           | A1        | N1<br>[2 marks] |
| (d) | recognising need to find derivative of $h$<br>eg $h'$ , $h'(3)$                                                                                      | (R1)      |                 |
|     | attempt to use the product rule (do <b>not</b> accept $h' = f' \times g'$ )<br>eg $h' = fg' + gf'$ , $h'(3) = f(3) \times g'(3) + g(3) \times f'(3)$ | (M1)      |                 |
|     | correct substitution<br>eg $h'(3) = 3(-3) + (-18) \times 1$                                                                                          | (AI)      |                 |
|     | h'(3) = -27                                                                                                                                          | Al        |                 |
|     | attempt to find the gradient of the normal $eg = -\frac{1}{m}, -\frac{1}{27}x$                                                                       | (M1)      |                 |
|     | attempt to substitute <b>their</b> coordinates and <b>their</b> normal gradient into the equation of a line                                          | (M1)      |                 |

eq 
$$-54 = \frac{1}{27}(3) + b$$
,  $0 = \frac{1}{27}(3) + b$ ,  $y + 54 = 27(x-3)$ ,  $y - 54 = \frac{1}{27}(x+3)$ 

N4

*A1* 

correct equation in any form  $eg \qquad y+54 = \frac{1}{27}(x-3), \ y = \frac{1}{27}x-54\frac{1}{9}$ 

[7 marks]

Total [14 marks]

| (a) appropriate approach                                                                                                              | (M1)        |           |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| $eg \qquad 2\int f(x) ,  2(8)$                                                                                                        |             |           |
| $\int_{1}^{6} 2f(x) \mathrm{d}x = 16$                                                                                                 | <i>A1</i>   | N2        |
|                                                                                                                                       | [2          | marks]    |
| (b) appropriate approach<br>$eg \int f(x) + \int 2, 8 + \int 2$                                                                       | (M1)        |           |
| $\int 2dx = 2x  (\text{seen anywhere})$                                                                                               | (A1)        |           |
| substituting limits into <b>their</b> integrated function and subtracting (in any order)<br>eg $2(6)-2(1), 8+12-2$                    | (M1)        |           |
| $\int_{1}^{6} (f(x) + 2) dx = 18$                                                                                                     | A1          | N3        |
|                                                                                                                                       | [4          | marks]    |
|                                                                                                                                       | [Total 6    | marks]    |
| Question 18                                                                                                                           |             |           |
| recognising need to differentiate (seen anywhere)<br>$eg = f', 2e^{2x}$                                                               | <i>R1</i>   |           |
| attempt to find the gradient when $x=1$<br>eg $f'(1)$                                                                                 | (M1)        |           |
| eg f'(1)<br>$f'(1) = 2e^2$                                                                                                            | <i>(A1)</i> |           |
| attempt to substitute coordinates (in any order) into equation of a straight line<br>$eg = y - e^2 = 2e^2(x-1)$ , $e^2 = 2e^2(1) + b$ | (M1)        |           |
| correct working<br>eg $y-e^2=2e^2x-2e^2$ , $b=-e^2$                                                                                   | (A1)        |           |
| $y = 2e^2x - e^2$                                                                                                                     | A1          | N3        |
|                                                                                                                                       |             | [6 marta] |

[6 marks]

| (a)         | <b>METHOD 1</b><br>correct use of chain rule<br>$2\ln x + 1 + 2\ln x$                | A1A1 |                 |
|-------------|--------------------------------------------------------------------------------------|------|-----------------|
|             | $eg = \frac{2\ln x}{2} \times \frac{1}{x}, \frac{2\ln x}{2x}$                        |      |                 |
| No          | te: Award A1 for $\frac{2\ln x}{2}$ , A1 for $\times \frac{1}{x}$ .                  |      |                 |
|             | $f'(x) = \frac{\ln x}{x}$                                                            | AG   | N0<br>[2 marks] |
|             | METHOD 2                                                                             |      |                 |
|             | correct substitution into quotient rule, with derivatives seen                       | A1   |                 |
|             | $eg  \frac{2 \times 2\ln x \times \frac{1}{x} - 0 \times (\ln x)^2}{4}$              |      |                 |
|             | correct working                                                                      | A1   |                 |
|             | $eg = \frac{4\ln x \times \frac{1}{x}}{4}$                                           |      |                 |
|             | $f'(x) = \frac{\ln x}{x}$                                                            | AG   | NO              |
|             |                                                                                      |      | [2 marks]       |
| <b>(</b> b) | setting derivative = 0                                                               | (M1) |                 |
|             | $eg \qquad f'(x) = 0, \ \frac{\ln x}{x} = 0$                                         |      |                 |
|             | correct working                                                                      | (A1) |                 |
|             | $eg \qquad \ln x = 0, \ x = e^0$                                                     |      |                 |
|             | correct working<br>$eg  \ln x = 0, x = e^{0}$<br>x = 1<br>intercept when $f'(x) = 0$ | A1   | N2<br>[3 marks] |
| (c)         | intercept when $f'(x) = 0$                                                           | (M1) |                 |
|             | <i>p</i> = 1                                                                         | A1   | N2<br>[2 marks] |

(d) equating functions (M1)  $eg \quad f' = g, \ \frac{\ln x}{x} = \frac{1}{x}$ 

correct working(A1)
$$eg$$
 $\ln x = 1$ 

$$q=e$$
 (accept  $x=e$ )  
 $A1$  N2  
[3 marks]

(e) evidence of integrating and subtracting functions (in any order, seen anywhere)  $eg = \int_{-\infty}^{e} \left(\frac{1-\ln x}{dx}\right) dx, \int f' - g$ 

correct integration 
$$\ln x - \frac{(\ln x)^2}{2}$$
 A2

substituting limits into **their** integrated function and subtracting (in any order)

$$eg$$
  $(\ln e - \ln 1) - \left(\frac{(\ln e)^2}{2} - \frac{(\ln 1)^2}{2}\right)$ 

Note: Do not award M1 if the integrated function has only one term.

correct working  $eg \quad (1-0) - \left(\frac{1}{2} - 0\right), 1 - \frac{1}{2}$   $area = \frac{1}{2}$  A1AG N0

Notes: Candidates may work with two separate integrals, and only combine them at the end. Award marks in line with the markscheme.

[5 marks]

Total [15 marks]

(M1)

(M1)

(a) substituting for 
$$(f(x))^2$$
 (may be seen in integral) A1  
eg  $(x^2)^2, x^4$ 

correct integration, 
$$\int x^4 dx = \frac{1}{5}x^5$$
 (A1)

substituting limits into **their integrated** function and subtracting (in any order)(M1)  

$$eg = \frac{2^5}{5} - \frac{1}{5}, \frac{1}{5}(1-4)$$
  
 $\int_1^2 (f(x))^2 dx = \frac{31}{5}$  (= 6.2)  
A1 N2  
[4 marks]

(b) attempt to substitute limits or function into formula involving  $f^2$  (M1) eg  $\int_1^2 (f(x))^2 dx$ ,  $\pi \int x^4 dx$ 

$$\frac{31}{5}\pi \ (=6.2\pi)$$

$$A1 \ N2 \ [2 marks]$$

$$Total \ [6 marks]$$

correct integration (ignore absence of limits and "+C") (A1)  

$$eg = \frac{\sin(2x)}{2}, \int_{\pi}^{a} \cos 2x = \left[\frac{1}{2}\sin(2x)\right]_{\pi}^{a}$$

substituting limits into **their** integrated function and subtracting (in any order) (M1)  $eg = \frac{1}{2}\sin(2a) - \frac{1}{2}\sin(2\pi)$ ,  $\sin(2\pi) - \sin(2a)$ 

$$\sin\left(2\pi\right)=0$$

setting **their** result from an integrated function equal to 
$$\frac{1}{2}$$
 M1

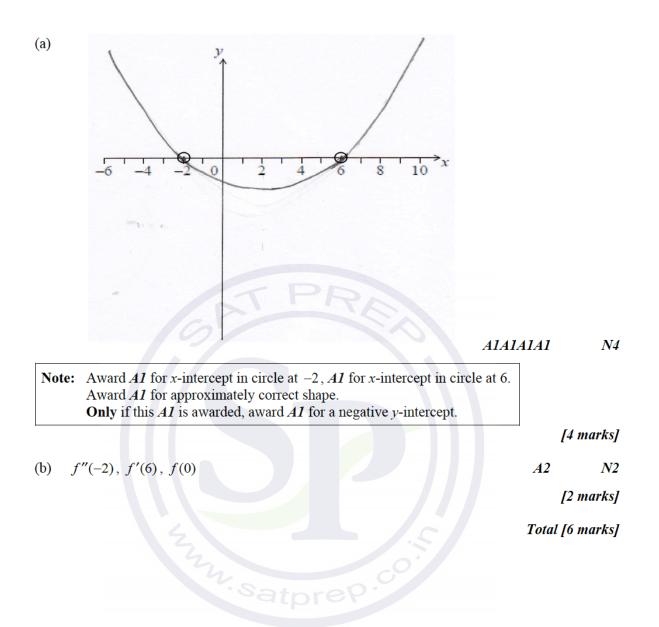
(A1)

eg 
$$\frac{1}{2}\sin 2a = \frac{1}{2}, \sin(2a) = 1$$
  
recognizing  $\sin^{-1}1 = \frac{\pi}{2}$  (A1)  
eg  $2a = \frac{\pi}{2}, a = \frac{\pi}{4}$  (A1)  
eg  $\frac{\pi}{2} + 2\pi, 2a = \frac{5\pi}{2}, a = \frac{\pi}{4} + \pi$  (A1)  
 $a = \frac{5\pi}{4}$  (A1) N3  
[7 marks]

(a) 
$$f'(x) = 3px^2 + 2px + q$$
 A2 N2  
Note: Award A1 if only 1 error.

$$[2 \text{ marks}]$$
(b) evidence of discriminant (must be seen explicitly, not in quadratic formula) (MI)  
eg  $b^2 - 4ac$   
correct substitution into discriminant (may be seen in inequality) AI  
eg  $(2p)^2 - 4 \times 3p \times q$ ,  $4p^2 - 12pq$   
 $f'(x) \ge 0$  then  $f'$  has two equal roots or no roots (RI)  
recognizing discriminant less or equal than zero  
eg  $\Delta \le 0$ ,  $4p^2 - 12pq \le 0$   
correct working that clearly leads to the required answer  
eg  $p^2 - 3pq \le 0$ ,  $4p^2 \le 12pq$   
 $p^2 \le 3pq$   
Question 23  
evidence of anti-differentiation  
eg  $h(x) = 2\sin 2x + c$ ,  $\frac{4\sin 2x}{2}$   
attempt to substitute  $\left(\frac{\pi}{12}, 5\right)$  into their equation  
eg  $2\sin\left(2 \times \frac{\pi}{12}\right) + c = 5$ ,  $2\sin\left(\frac{\pi}{6}\right) = 5$   
correct working  
eg  $2\left(\frac{1}{2}\right) + c = 5$ ,  $c = 4$   
 $h(x) = 2\sin 2x + 4$   
AI N5

Total [6 marks]



| (a) | derivative of $2x$ is 2 (must be seen in quotient rule)                                                                                       | (A1)        |                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|
|     | derivative of $x^2 + 5$ is $2x$ (must be seen in quotient rule)                                                                               | (A1)        |                 |
|     | correct substitution into quotient rule<br>$eg = \frac{(x^2+5)(2)-(2x)(2x)}{(x^2+5)^2}, \frac{2(x^2+5)-4x^2}{(x^2+5)^2}$                      | AI          |                 |
|     | correct working which clearly leads to given answer<br>$eg = \frac{2x^2 + 10 - 4x^2}{(x^2 + 5)^2}, \frac{2x^2 + 10 - 4x^2}{x^4 + 10x^2 + 25}$ | <i>A1</i>   |                 |
|     | $f'(x) = \frac{10 - 2x^2}{(x^2 + 5)^2}$                                                                                                       | AG          | NØ              |
|     | TPRA                                                                                                                                          |             | [4 marks]       |
| (b) | valid approach using substitution or inspection                                                                                               | (M1)        |                 |
|     | eg $u = x^2 + 5$ , $du = 2xdx$ , $\frac{1}{2}\ln(x^2 + 5)$                                                                                    |             |                 |
|     | $\int \frac{2x}{x^2 + 5} \mathrm{d}x = \int \frac{1}{u} \mathrm{d}u$                                                                          | <b>(A1)</b> |                 |
|     | $\int \frac{1}{u} \mathrm{d}u = \ln u + c$                                                                                                    | (AI)        |                 |
|     | ln(x <sup>2</sup> +5)+c                                                                                                                       | Al          | N4<br>[4 marks] |
|     |                                                                                                                                               |             |                 |

(c) correct expression for area

$$eg \quad \left[\ln\left(x^2+5\right)\right]_{\sqrt{5}}^q, \ \int_{\sqrt{5}}^q \frac{2x}{x^2+5}dx$$

substituting limits into **their** integrated function and subtracting (in either order) (M1)

$$eg = \ln(q^2+5) - \ln\left(\sqrt{5}^2+5\right)$$

correct working

eg 
$$\ln(q^2+5) - \ln 10$$
,  $\ln \frac{q^2+5}{10}$ 

equating their expression to ln7 (seen anywhere) (M1)

eg 
$$\ln(q^2+5) - \ln 10 = \ln 7$$
,  $\ln \frac{q^2+5}{10} = \ln 7$ ,  $\ln(q^2+5) = \ln 7 + \ln 10$ 

correct equation without logs

 $\frac{q^2+5}{10} = 7, \ q^2+5 = 70$ 

(A1)

*A1* 

(A1)

 $q^2 = 65$ 

eg

 $q = \sqrt{65}$ 

**Note:** Award  $A\theta$  for  $q = \pm \sqrt{65}$ .

[7 marks]

*N3* 

Total [15 marks]

(A1)

substitution of limits or function

$$eg \qquad A = \int_0^4 f(x) \ , \int \frac{x}{x^2 + 1} dx$$

correct integration by substitution/inspection

$$\frac{1}{2}\ln(x^2+1)$$
substituting limits into **their** integrated function and subtracting (in any order) (M1)

$$eg = \frac{1}{2} \left( \ln (4^2 + 1) - \ln (0^2 + 1) \right)$$

correct working

correct working A1  
eg 
$$\frac{1}{2}(\ln(4^2+1) - \ln(0^2+1)), \frac{1}{2}(\ln(17) - \ln(1)), \frac{1}{2}\ln 17 - 0$$
  
 $A = \frac{1}{2}\ln(17)$  A1 N3

Note: Exception to FT rule. Allow full FT on incorrect integration involving a ln function.

[6 marks]

(AI)

A2



attempt to set up integral (accept missing or incorrect limits and missing dx)  $eg = \int_{\frac{3\pi}{2}}^{\frac{b}{2}} \cos x \, dx$ ,  $\int_{a}^{b} \cos x \, dx$ ,  $\int_{\frac{3\pi}{2}}^{b} f \, dx$ ,  $\int \cos x$ correct integration (accept missing or incorrect limits) (A1)

$$eg \quad \left[\sin x\right]_{\frac{3\pi}{2}}^{b}, \ \sin x$$

substituting correct limits into their integrated function and subtracting (in any order) (M1)

eg 
$$\sin b - \sin\left(\frac{3\pi}{2}\right)$$
,  $\sin\left(\frac{3\pi}{2}\right) - \sin b$ 

$$\sin\left(\frac{3\pi}{2}\right) = -1 \quad \text{(seen anywhere)} \tag{A1}$$

setting their result from an integrated function equal to  $\left(1 - \frac{\sqrt{3}}{2}\right)$  M1

 $eg \quad \sin b = -\frac{\sqrt{3}}{2}$ 

evaluating 
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \text{ or } \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$$
 (A1)

eg 
$$b = \frac{\pi}{3}, -60^{\circ}$$
  
identifying correct value  
eg  $2\pi - \frac{\pi}{3}, 360 - 60$   
 $b = \frac{5\pi}{3}$   
[8 marks]

| (a) | f''(x) = 6x - 2k                                                                                                       | A1A1        | N2                            |
|-----|------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|
|     |                                                                                                                        |             | [2 marks]                     |
| (b) | substituting $x = 1$ into $f''$<br>eg $f''(1), 6(1) - 2k$                                                              | (M1)        |                               |
|     | recognizing $f''(x) = 0$ (seen anywhere)<br>correct equation<br>eg  6-2k=0                                             | М1<br>А1    |                               |
|     | <i>k</i> = 3                                                                                                           | AG          | N0<br>[3 marks]               |
| (C) | correct substitution into $f'(x)$<br>eg $3(-2)^2 - 6(-2) - 9$                                                          | (A1)        |                               |
|     | f'(-2) = 15                                                                                                            | A1          | N2<br>[2 marks]               |
| (d) | recognizing gradient value (may be seen in equation)<br>eg $a=15$ , $y=15x+b$                                          | M1          |                               |
|     | attempt to substitute $(-2, 1)$ into equation of a straight line<br>eg $1=15(-2)+b$ , $(y-1)=m(x+2)$ , $(y+2)=15(x-1)$ | М1          |                               |
|     | correct working<br>eg $31=b$ , $y=15x+30+1$                                                                            | (A1)        |                               |
|     | y = 15x + 31                                                                                                           | A1          | N2<br>[4 marks]               |
| (e) | METHOD 1 (2 <sup>nd</sup> derivative)                                                                                  |             |                               |
|     | recognizing $f'' < 0$ (seen anywhere)<br>substituting $x = -1$ into $f''$<br>eg $f''(-1)$ , $6(-1)-6$                  | R1<br>(M1)  |                               |
|     | f''(-1) = -12                                                                                                          | A1          |                               |
|     | therefore the graph of $f$ has a local maximum when $x = -1$                                                           | AG          | NO                            |
|     | METHOD 2 (1 <sup>st</sup> derivative)                                                                                  |             |                               |
|     | recognizing change of sign of $f'(x)$ (seen anywhere)<br>eg sign chart $\xleftarrow{+}{}$                              | R1          |                               |
|     | correct value of $f'$ for $-1 < x < 3$<br>eg $f'(0) = -9$                                                              | A1          |                               |
|     | correct value of $f'$ for $x$ value to the left of $-1$<br>eg $f'(-2) = 15$                                            | A1          |                               |
|     | therefore the graph of $f$ has a local maximum when $x = -1$                                                           | AG<br>Total | N0<br>[3 marks]<br>[14 marks] |
|     |                                                                                                                        |             |                               |

| (a) | METHOD 1                                                                                                    |                                         |             |
|-----|-------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|
|     | choosing quotient rule                                                                                      | (M1)                                    |             |
|     | eg $\frac{vu'-uv'}{v^2}$                                                                                    | . ,                                     |             |
|     | $v^2$                                                                                                       |                                         |             |
|     |                                                                                                             |                                         |             |
|     | $(\ln x)' = \frac{1}{x}$ , seen in rule                                                                     | (A1)                                    |             |
|     | correct substitution into the quotient rule                                                                 | (A1)                                    |             |
|     | $r \times \frac{1}{2} - \ln r \times 1$                                                                     |                                         |             |
|     | $eg  \frac{x \times \frac{1}{x} - \ln x \times 1}{x^2}$                                                     |                                         |             |
|     | $1 - \ln r$                                                                                                 |                                         |             |
|     | $g'(x) = \frac{1 - \ln x}{x^2}$                                                                             | A1                                      | N4          |
|     | *                                                                                                           |                                         |             |
|     | METHOD 2                                                                                                    |                                         |             |
|     | choosing product rule                                                                                       | (M1)                                    |             |
|     | eg $uv' + vu'$                                                                                              |                                         |             |
|     | one correct derivative, seen in rule                                                                        | (A1)                                    |             |
|     | $eg  (\ln x)' = \frac{1}{x}, \ -x^{-2}$                                                                     |                                         |             |
|     | correct substitution into the product rule                                                                  | (A1)                                    |             |
|     | eg $\ln x(-x^{-2}) + x^{-1}\left(\frac{1}{x}\right), \frac{1}{x^2} - \frac{\ln x}{x^2}$                     | . ,                                     |             |
|     |                                                                                                             |                                         |             |
|     | $g'(x) = \frac{1 - \ln x}{x^2}$                                                                             | A1                                      | N4          |
|     | $g(x) = \frac{1}{x^2}$                                                                                      | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |             |
|     |                                                                                                             |                                         | [4 marks]   |
| (b) | attempt to use substitution or inspection<br>eg $u = \ln x$ so $\frac{du}{dt} = \frac{1}{u}$ , $\int u  du$ | (M1)                                    |             |
| ( ) | eg $u = \ln x$ so $\frac{du}{dx} = \frac{1}{x}$ , $\int u  du$                                              | . ,                                     |             |
|     | eg $u = \lim x$ so $\frac{dx}{dx} = \frac{dx}{x}$ , $\int u  du$                                            |                                         |             |
|     | $(\ln x)^2$                                                                                                 |                                         |             |
|     | $\int g(x) dx = \frac{(\ln x)^2}{2} + C  \text{(accept absence of } +C\text{)}$                             | A2                                      | N3          |
|     | -                                                                                                           |                                         | [3 marks]   |
|     |                                                                                                             |                                         |             |
|     |                                                                                                             | Tota                                    | l [7 marks] |
|     |                                                                                                             |                                         |             |

(a) 
$$f'(x) = -2e^{-2x}$$
,  $f''(x) = 4e^{-2x}$ ,  $f^{(3)}(x) = -8e^{-2x}$   
(b)  $f^{(n)}(x) = (-2)^n e^{-2x}$  (accept  $(-1)^n 2^n e^{-2x}$ ,  $(-2)^n f(x)$ )  
(a)  $f^{(n)}(x) = (-2)^n e^{-2x}$  (b)  $f^{(n)}(x) = (-2)^n e^{-2x}$  (c)  $f^{(n)}(x) = (-2)^$ 

| recognizing derivative<br>eg $f'(x), f'(0) = 3$                                                                                  | (M1) |           |
|----------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| correct derivative $3ax^2 + b$                                                                                                   | A1A1 |           |
| <i>b</i> = 3                                                                                                                     | A1   | N2        |
| recognizing inverse relationship (seen anywhere)<br>eg (1, 7), $f(1) = 7$ , swapping x and y and substituting (7, 1)             | (M1) |           |
| correct equation<br>eg $a+b=7$ , $a+3=7$                                                                                         | A1   |           |
| substituting their b<br>eg $ax^3+3x$ , $a+3=7$                                                                                   | (M1) |           |
| <i>a</i> = 4                                                                                                                     | A1   | N2        |
| <b>Notes:</b> If working shown, award relevant marks for $4x^3 + 3x$ .<br>If no working shown, award <b>N4</b> for $4x^3 + 3x$ . |      |           |
|                                                                                                                                  |      | [8 marks] |

| (a) | valid reasoning (M1) $eg  f' \leq 0$ , derivative is negative                                                                                                                                                             |                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|     | correct interval, from 0 to $d$ , with any combination of $\leq$ or $<$ <b>A2</b> eg $0 < x < d$ , $0 \leq x \leq d$                                                                                                      | N3<br>[3 marks] |
| (b) | (i) recognizing that $f' = 0$ (M1)<br>eg $x = a$ , $x = 0$                                                                                                                                                                |                 |
|     | x = d A1                                                                                                                                                                                                                  | N2              |
|     | Note: Do not award A1 if additional answers given.                                                                                                                                                                        |                 |
|     | (ii) complete valid reasoning for min (may be seen in (i)) $eg$ sign of $f'$ changes from negative to positive, labelled sign diagram                                                                                     | N1              |
|     | f' - o +                                                                                                                                                                                                                  |                 |
|     | Ca                                                                                                                                                                                                                        |                 |
|     |                                                                                                                                                                                                                           | [3 marks]       |
| (c) | recognizing two enclosed regions (M1) $eg$ area $a$ to $0 + area 0$ to $d$                                                                                                                                                |                 |
|     | correct expression for area (may be seen in equation, accept absence of dx) A1<br>eg $\int_{a}^{0} f'(x) dx - \int_{0}^{d} f'(x) dx$ , $\int_{a}^{d}  f'(x)  dx$ , $[f(x)]_{a}^{0} + [f(x)]_{d}^{0}$                      |                 |
|     | equating integral expression to15 (must have limits, may be seen<br>after integration)<br>eg $\int_{a}^{0} f'(x) dx + \left  \int_{0}^{d} f'(x) dx \right  = 15, \int_{a}^{0} f'(x) dx + \int_{0}^{d} f'(x) dx = 15$ (M1) |                 |
|     | recognizing integral of $f'$ is $f'$ (seen anywhere) (M1)                                                                                                                                                                 |                 |
|     | $eg  \int f'(x)  \mathrm{d}x = f(x) + C$                                                                                                                                                                                  |                 |
|     | considers Fundamental Theorem of Calculus (M1)<br>eg $\int_{a}^{b} f'(x) dx = f(b) - f(a)$                                                                                                                                |                 |
|     | correct equation in terms of $f$<br>eg $(f(0)-f(a))-(f(d)-f(0))=15, 2f(0)-f(a)-f(d)=15$ A1                                                                                                                                |                 |
|     | correct simplification (A1)<br>eg $2f(0)-3-(-1)=15$ , $2f(0)=17$                                                                                                                                                          |                 |
|     | f(0) = 8.5 A1                                                                                                                                                                                                             | N2<br>[8 marks] |
|     | Total                                                                                                                                                                                                                     | [14 marks]      |
|     |                                                                                                                                                                                                                           |                 |

evidence of antidifferentiation (M1)  
eg 
$$f = \int f'$$
  
correct integration (accept absence of C) (A1)(A1)  
 $f(x) = \frac{6x^3}{3} - 5x + C, 2x^3 - 5x$   
attempt to substitute (2, -3) into their integrated expression (must have C) M1  
eg  $2(2)^3 - 5(2) + C = -3, 16 - 10 + C = -3$   
Note: Award M0 if substituted into original or differentiated function.  
correct working to find C  
eg  $16 - 10 + C = -3, 6 + C = -3, C = -9$   
 $f(x) = 2x^3 - 5x - 9$   
A1 N4  
[6 marks]

### (a) METHOD 1

|     | f'(5) = 0                                                                                                                                                                           | (A1)                      |                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|
|     | valid reasoning including reference to the graph of $f'$<br>eg $f'$ changes sign from negative to positive at $x = 5$ , labelled sign chart                                         | <b>R1</b><br>for <i>f</i> | ,               |
|     | so <i>f</i> has a local minimum at $x = 5$                                                                                                                                          | AG                        | N0              |
| Not | te: It must be clear that any description is referring to the graph of $f'$ , simply giving the conditions for a minimum without relating them to $f'$ does not get the <b>R1</b> . |                           |                 |
|     | METHOD 2                                                                                                                                                                            |                           |                 |
|     | f'(5) = 0                                                                                                                                                                           | A1                        |                 |
|     | valid reasoning referring to second derivative $eg = f''(5) > 0$                                                                                                                    | R1                        |                 |
|     | so $f$ has a local minimum at $x = 5$                                                                                                                                               | AG                        | N0<br>[2 marks] |
| (b) | attempt to find relevant interval $eg$ $f'$ is decreasing, gradient of $f'$ is negative, $f'' < 0$                                                                                  | (M1)                      |                 |
|     | 2 < x < 4                                                                                                                                                                           | A1                        | N2              |
| Not | tes: If no other working shown, award <b>M1A0</b> for incorrect inequalities such as $2 \le x \le 4$ .                                                                              |                           | <b>[0</b>       |
|     | 2                                                                                                                                                                                   |                           | [2 marks]       |
| (c) | <b>METHOD 1 (one integral)</b><br>correct application of Fundamental Theorem of Calculus<br>$eg = \int_{0}^{6} f'(x) dx = f(6) - f(0), \ f(6) = 14 + \int_{0}^{6} f'(x) dx$         | (A1)                      |                 |
|     | attempt to link definite integral with areas<br>eg $\int_{0}^{6} f'(x) dx = -12 - 6.75 + 6.75$ , $\int_{0}^{6} f'(x) dx = \text{Area } A + \text{Area } B + \text{Area } C$         | (M1)                      |                 |
|     | correct value for $\int_0^6 f'(x) dx$                                                                                                                                               | (A1)                      |                 |
|     | $eg \qquad \int_0^6 f'(x) \mathrm{d}x = -12$                                                                                                                                        |                           |                 |
|     | correct working<br>eg $f(6) - 14 = -12$ , $f(6) = -12 + f(0)$                                                                                                                       | A1                        |                 |
|     | f(6) = 2                                                                                                                                                                            | A1                        | N3              |

### METHOD 2 (more than one integral)

(d)

| correct application of Fundamental Theorem of Calculus<br>eg $\int_0^2 f'(x) dx = f(2) - f(0)$ , $f(2) = 14 + \int_0^2 f'(x)$        | (A1) |                 |
|--------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|
| attempt to link definite integrals with areas<br>eg $\int_0^2 f'(x) dx = 12, \int_2^5 f'(x) dx = -6.75, \int_2^6 f'(x) = 0$          | (M1) |                 |
| correct values for integrals<br>eg $\int_0^2 f'(x) dx = -12$ , $\int_5^2 f'(x) dx = 6.75$ , $f(6) - f(2) = 0$                        | (A1) |                 |
| one correct intermediate value<br>eg $f(2) = 2$ , $f(5) = -4.75$                                                                     | A1   |                 |
| f(6) = 2                                                                                                                             | A1   | N3<br>[5 marks] |
| correct calculation of $g(6)$ (seen anywhere)<br>eg $2^2$ , $g(6) = 4$                                                               | A1   |                 |
| choosing chain rule or product rule<br>eg $g'(f(x))f'(x), \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}, f(x)f'(x) + f'(x)f(x)$ | (M1) |                 |
| correct derivative<br>eg $g'(x) = 2f(x)f'(x), f(x)f'(x) + f'(x)f(x)$                                                                 | (A1) |                 |
| correct calculation of $g'(6)$ (seen anywhere)<br>eg 2(2)(16), $g'(6) = 64$                                                          | A1   |                 |
| attempt to substitute their values of $g'(6)$ and $g(6)$ into<br>equation of a line<br>eg $2^2 = (2 \times 2 \times 16)6 + b$        | (M1) |                 |
| correct equation in any form<br>eg $y-4=64(x-6), y=64x-380$                                                                          | A1   | N2              |
|                                                                                                                                      |      | [6 marks]       |

[Total 15 marks]

| (a) | recognition that the <i>x</i> -coordinate of the vertex is $-1.5$ (seen anywhere)<br>eg axis of symmetry is $-1.5$ , sketch, $f'(-1.5) = 0$ | (M1)               |                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
|     | correct working to find the zeroes<br>eg $-1.5 \pm 4.5$                                                                                     | A1                 |                 |
|     | x = -6 and $x = 3$                                                                                                                          | AG                 | N0<br>[2 marks] |
| (b) | METHOD 1 (using factors)                                                                                                                    |                    |                 |
|     | attempt to write factors<br>eg $(x-6)(x+3)$                                                                                                 | (M1)               |                 |
|     | correct factors<br>eg $(x-3)(x+6)$                                                                                                          | A1                 |                 |
|     | q = 3, r = -18                                                                                                                              | A1A1               | N3              |
|     | METHOD 2 (using derivative or vertex)                                                                                                       |                    |                 |
|     | valid approach to find $q$                                                                                                                  | (M1)               |                 |
|     | eg $f'(-1.5) = 0, -\frac{q}{2a} = -1.5$                                                                                                     |                    |                 |
|     | q = 3                                                                                                                                       | A1                 |                 |
|     | correct substitution<br>eg $3^2 + 3(3) + r = 0$ , $(-6)^2 + 3(-6) + r = 0$                                                                  | A1                 |                 |
|     | r = -18<br>q = 3, r = -18                                                                                                                   | A1                 | N3              |
|     |                                                                                                                                             |                    | 115             |
|     | METHOD 3 (solving simultaneously)                                                                                                           |                    |                 |
|     | valid approach setting up system of two equations<br>eg $9+3q+r=0$ , $36-6q+r=0$                                                            | (M1)               |                 |
|     | one correct value                                                                                                                           | •                  |                 |
|     | eg  q = 3, r = -18                                                                                                                          | A1                 |                 |
|     | correct substitution<br>eg $3^2 + 3(3) + r = 0$ , $(-6)^2 + 3(-6) + r = 0$ , $3^2 + 3q - 18 = 0$ , $36 - 6q - 1$                            | <b>A1</b><br>8 = 0 |                 |
|     | second correct value                                                                                                                        | A1                 |                 |
|     | eg $q = 3, r = -18$                                                                                                                         |                    |                 |
|     | q = 3, r = -18                                                                                                                              |                    | N3              |
|     |                                                                                                                                             |                    | [4 marks]       |
|     |                                                                                                                                             |                    |                 |

Total [6 marks]

| (a) | recognizing $f'(x) = 0$                                                                 | (M1)  |                         |
|-----|-----------------------------------------------------------------------------------------|-------|-------------------------|
|     | correct working                                                                         | (A1)  |                         |
|     | eg  6-2x=0 $x=3$                                                                        | A1    | N2                      |
|     |                                                                                         |       | [3 marks]               |
| (b) | evidence of integration $6 - 2x$                                                        | (M1)  |                         |
|     | $eg \qquad \int f', \ \int \frac{6-2x}{6x-x^2} dx$                                      |       |                         |
|     | using substitution                                                                      | (A1)  |                         |
|     | eg $\int \frac{1}{u} du$ where $u = 6x - x^2$                                           |       |                         |
|     | correct integral                                                                        | A1    |                         |
|     | $eg  \ln(u) + c, \ \ln(6x - x^2)$                                                       |       |                         |
|     | substituting $(3, \ln 27)$ into their integrated expression (must have c)               | (M1)  |                         |
|     | eg $\ln(6\times 3-3^2)+c = \ln 27$ , $\ln(18-9)+\ln k = \ln 27$                         |       |                         |
|     | correct working                                                                         | (A1)  |                         |
|     | $eg  c = \ln 27 - \ln 9$                                                                |       |                         |
|     | EITHER                                                                                  |       |                         |
|     | $c = \ln 3$                                                                             | (A1)  |                         |
|     | attempt to substitute their value of c into $f(x)$<br>eg $f(x) = \ln(6x - x^2) + \ln 3$ | (M1)  |                         |
|     |                                                                                         |       |                         |
|     | $f(x) = \ln\left(3\left(6x - x^2\right)\right)$                                         | A1    | N4                      |
|     | OR                                                                                      |       |                         |
|     | attempt to substitute their value of $c$ into $f(x)$                                    | (M1)  |                         |
|     | eg $f(x) = \ln(6x - x^2) + \ln 27 - \ln 9$                                              |       |                         |
|     | correct use of a log law                                                                | (A1)  |                         |
|     | eg $f(x) = \ln(6x - x^2) + \ln(\frac{27}{9}), f(x) = \ln(27(6x - x^2)) - \ln 9$         |       |                         |
|     | $f(x) = \ln\left(3\left(6x - x^2\right)\right)$                                         | A1    | N4                      |
|     |                                                                                         |       | [8 marks]               |
| (c) | <i>a</i> = 3                                                                            | A1    | N1                      |
|     | correct working                                                                         | A1    |                         |
|     | $eg  \frac{\ln 27}{\ln 3}$                                                              |       |                         |
|     | correct use of log law                                                                  | (A1)  |                         |
|     | $eg  \frac{3\ln 3}{\ln 3}, \ \log_3 27$                                                 | ()    |                         |
|     | $\ln 3$ , $\log_3 2$ ,                                                                  |       |                         |
|     | <i>b</i> = 3                                                                            | A1    | N2<br>[4 marks]         |
|     |                                                                                         | Total | [4 marks]<br>[15 marks] |
|     |                                                                                         |       |                         |

|                 | (M1)                                    | choosing chain rule                                                                                                                    | (a) |
|-----------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----|
|                 |                                         | eg $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}, \ u = 4x + 5, \ u' = 4$                                                        |     |
|                 | A2                                      | correct derivative of $f$                                                                                                              |     |
|                 |                                         | eg $\frac{1}{2}(4x+5)^{-\frac{1}{2}} \times 4, f'(x) = \frac{2}{\sqrt{4x+5}}$                                                          |     |
| N2              | A1                                      | $f'(1) = \frac{2}{3}$                                                                                                                  |     |
| [4 marks]       |                                         | 3                                                                                                                                      |     |
|                 | (M1)                                    | recognize that $g'(x)$ is the gradient of the tangent                                                                                  | (b) |
|                 |                                         | eg  g'(x) = m                                                                                                                          |     |
| N2              | A1                                      | g'(1) = 3                                                                                                                              |     |
| [2 marks]       |                                         |                                                                                                                                        |     |
|                 | (M1)                                    | recognize that R is on the tangent                                                                                                     | (c) |
|                 |                                         | eg $g(1) = 3 \times 1 + 6$ , sketch                                                                                                    |     |
| N2<br>[2 marks] | A1                                      | g(1) = 9                                                                                                                               |     |
| [2              |                                         |                                                                                                                                        |     |
|                 | A1                                      | $f(1) = \sqrt{4+5}$ (= 3) (seen anywhere)                                                                                              | (d) |
|                 | A1                                      | $h(1) = 3 \times 9 (= 27)$ (seen anywhere)                                                                                             |     |
|                 | (M1)                                    | choosing product rule to find $h'(x)$                                                                                                  |     |
|                 |                                         | eg $uv' + u'v$                                                                                                                         |     |
|                 | (A1)                                    | correct substitution to find $h'(1)$                                                                                                   |     |
|                 |                                         | correct substitution to find $h'(1)$<br>eg $f(1) \times g'(1) + f'(1) \times g(1)$                                                     |     |
|                 | A1                                      | $h'(1) = 3 \times 3 + \frac{2}{3} \times 9 \ (=15)$                                                                                    |     |
|                 |                                         | EITHER                                                                                                                                 |     |
|                 |                                         | attempt to substitute coordinates (in any order) into the equation of a                                                                |     |
|                 | (M1)                                    | straight line<br>eg $y-27 = h'(1)(x-1), y-1 = 15(x-27)$                                                                                |     |
| N2              | A1                                      | y - 27 = 15(x - 1)                                                                                                                     |     |
| 112             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                                                                                                        |     |
|                 |                                         | OR                                                                                                                                     |     |
|                 | (M1)                                    | attempt to substitute coordinates (in any order) to find the <i>y</i> -intercept<br>eg $27 = 15 \times 1 + b$ , $1 = 15 \times 27 + b$ |     |
| N2              | A1                                      | y = 15x + 12                                                                                                                           |     |
| [7 marks]       |                                         |                                                                                                                                        |     |

| (a) | correct substitution into the formula for volume<br>eg $36 = y \times x \times x$                                                                                                   | A1         |                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|
|     | valid approach to eliminate y (may be seen in formula/substitution)<br>eg $y = \frac{36}{x^2}, xy = \frac{36}{x}$                                                                   | <b>M</b> 1 |                 |
|     | correct expression for surface area<br>eg $xy + xy + xy + x^2 + x^2$ , area = $3xy + 2x^2$                                                                                          | A1         |                 |
|     | correct expression in terms of x only<br>eg $3x\left(\frac{36}{x^2}\right) + 2x^2$ , $x^2 + x^2 + \frac{36}{x} + \frac{36}{x} + \frac{36}{x}$ , $2x^2 + 3\left(\frac{36}{x}\right)$ | A1         |                 |
|     | $A(x) = \frac{108}{x} + 2x^2$                                                                                                                                                       | AG         | N0<br>[4 marks] |
|     | $A'(x) = -\frac{108}{x^2} + 4x, \ 4x - 108x^{-2}$<br>e: Award <b>A1</b> for each term.                                                                                              | A1A1       | N2              |
| not |                                                                                                                                                                                     |            | [2 marks]       |
| (c) | recognizing that minimum is when $A'(x) = 0$                                                                                                                                        | (M1)       |                 |
|     | correct equation<br>eg $-\frac{108}{x^2} + 4x = 0$ , $4x = \frac{108}{x^2}$                                                                                                         | (A1)       |                 |
|     | correct simplification<br>eg $-108+4x^3=0$ , $4x^3=108$                                                                                                                             | (A1)       |                 |
|     | correct working $eg x^3 = 27$                                                                                                                                                       | (A1)       |                 |
|     | height = 3 (m) (accept $x = 3$ )                                                                                                                                                    | A1         | N2              |
|     |                                                                                                                                                                                     |            | [5 marks]       |

| (d) | attempt to find area using their height<br>eg $\frac{108}{3}$ + 2(3) <sup>2</sup> , 9+9+12+12+12 | (M1) |    |
|-----|--------------------------------------------------------------------------------------------------|------|----|
|     | minimum surface area $\!=\!54m^2$ (may be seen in part (c))                                      | A1   |    |
|     | attempt to find the number of tins<br>eg $\frac{54}{10}$ , 5.4                                   | (M1) |    |
|     | 6 (tins)                                                                                         | (A1) |    |
|     | \$120                                                                                            | A1   | N3 |

[5 marks]

Total [16 marks]

| Ques | tion 3 | PR                                                                                                                                        |      |                 |
|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|
| (a)  | (i)    | recognizing the need to find the gradient when $x = 0$ (seen anywhere)<br>eg $f'(0)$                                                      | R1   |                 |
|      |        | correct substitution<br>$f'(0) = \frac{2a^2 - 4(0)}{\sqrt{a^2 - 0}}$                                                                      | (A1) |                 |
|      |        | f'(0) = 2a                                                                                                                                | (A1) |                 |
|      |        | correct equation with gradient $2a$ (do not accept equations of the form $L = 2ax$ )<br>eg $y = 2ax$ , $y-b = 2a(x-a)$ , $y = 2ax-2a^2+b$ | A1   | N3              |
|      | (ii)   | METHOD 1                                                                                                                                  |      |                 |
|      |        | attempt to substitute $x = a$ into their equation of <i>L</i><br>eg $y = 2a \times a$                                                     | (M1) |                 |
|      |        | $b = 2a^2$                                                                                                                                | A1   | N2              |
|      |        | METHOD 2                                                                                                                                  |      |                 |
|      |        | equating gradients                                                                                                                        | (M1) |                 |
|      |        | eg $\frac{b}{a} = 2a$                                                                                                                     |      |                 |
|      |        | $b = 2a^2$                                                                                                                                | A1   | N2<br>[6 marks] |

#### **METHOD 1** (b)

recognizing that area =  $\int_0^a f(x) dx$  (seen anywhere) **R1** valid approach using substitution or inspection (M1)

eg 
$$\int 2x\sqrt{u}dx$$
,  $u = a^2 - x^2$ ,  $du = -2xdx$ ,  $\frac{2}{3}(a^2 - x^2)^{\frac{3}{2}}$ 

correct working (A1)  
eg 
$$\int 2x\sqrt{a^2 - x^2} dx = \int -\sqrt{u} du$$

$$\int -\sqrt{u} du = -\frac{u^{\frac{3}{2}}}{\frac{3}{2}}$$
(A1)

$$\int f(x)dx = -\frac{2}{3}\left(a^2 - x^2\right)^{\frac{3}{2}} + c$$
(A1)

substituting limits and subtracting

eg 
$$A_{R} = -\frac{2}{3}(a^{2}-a^{2})^{\frac{3}{2}} + \frac{2}{3}(a^{2}-0)^{\frac{3}{2}}, \frac{2}{3}(a^{2})^{\frac{3}{2}}$$

$$A_R = \frac{2}{3}a^3 \qquad \qquad \text{AG} \qquad \text{NO}$$

# METHOD 2

| recognizing that area = $\int_0^a f(x) dx$ (seen anywhere) | R1   |
|------------------------------------------------------------|------|
| valid approach using substitution or inspection            | (M1) |

eg 
$$\int 2x\sqrt{u}dx$$
,  $u = a^2 - x^2$ ,  $du = -2xdx$ ,  $\frac{2}{3}(a^2 - x^2)^{\frac{3}{2}}$ 

correct working

correct working (A1)  
eg 
$$\int 2x\sqrt{a^2 - x^2} dx = \int -\sqrt{u} du$$

$$\int -\sqrt{u}du = -\frac{u^2}{\frac{3}{2}} \tag{A1}$$

new limits for u (even if integration is incorrect) 1 [ a 3<sup>70</sup>

eg 
$$u = 0$$
 and  $u = a^2$ ,  $\int_0^{a^2} u^{\frac{1}{2}} du$ ,  $\left[ -\frac{2}{3} u^{\frac{3}{2}} \right]_{a^2}^{a^2}$   
substituting limits and subtracting

eg 
$$A_R = -\left(0 - \frac{2}{3}a^3\right), \frac{2}{3}(a^2)^{\frac{2}{2}}$$
  
 $A_R = \frac{2}{3}a^3$  AG NO

[6 marks]

A1

(A1)

A1

#### (C) **METHOD 1**

valid approach to find area of triangle

eg 
$$\frac{1}{2}(OQ)(PQ)$$
,  $\frac{1}{2}ab$ 

correct substitution into formula for  $\mathit{A}_{\!\mathit{T}}$  (seen anywhere) (A1)

$$eg \qquad A_T = \frac{1}{2} \times a \times 2a^2, \ a^3$$

valid attempt to find k (must be in terms of a) (M1)

eg 
$$a^3 = k\frac{2}{3}a^3, \ k = \frac{a^3}{\frac{2}{3}a^3}$$

 $k = \frac{3}{2}$ A1 N2

(M1)

(M1)

### METHOD 2

valid approach to find area of triangle

METHOD 2(M1)
$$eg \int_{0}^{a} (2ax) dx$$
(M1) $eg \left[ax^{2}\right]_{0}^{a}, a^{3}$ (A1) $eg \left[ax^{2}\right]_{0}^{a}, a^{3}$ (M1) $eg a^{3} = k\frac{2}{3}a^{3}, k = \frac{a^{3}}{\frac{2}{3}a^{3}}$ (M1) $eg a^{3} = k\frac{2}{3}a^{3}, k = \frac{a^{3}}{\frac{2}{3}a^{3}}$ (M1) $k = \frac{3}{2}$ (M1) $fd marks$ [4 marks]Total [16 marks]

| Question 40<br>evidence of integration<br>$eg \int f'(x) dx$                                                                                                               | [10tai 0 marnoj<br>(M1) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| correct integration (accept missing <i>C</i> )<br>eg $\frac{1}{2} \times \frac{\sin^4(2x)}{4}, \frac{1}{8}\sin^4(2x) + C$                                                  | (A2)                    |
| substituting initial condition into their integrated expression (must have + <i>C</i> )<br>eg $1 = \frac{1}{8}\sin^4\left(\frac{\pi}{2}\right) + C$                        | M1                      |
| Note: Award <i>MO</i> if they substitute into the original or differentiated function.<br>recognizing $sin\left(\frac{\pi}{2}\right) = 1$<br>eg $1 = \frac{1}{8}(1)^4 + C$ | (A1)                    |
| $C = \frac{7}{8}$                                                                                                                                                          | (A1)                    |
| $f(x) = \frac{1}{8}\sin^4(2x) + \frac{7}{8}$                                                                                                                               | A1 N5                   |
|                                                                                                                                                                            | [7 marks]               |

(a) (i) 
$$f'(x) = -\sin x$$
,  $f''(x) = -\cos x$ ,  $f^{(3)}(x) = \sin x$ ,  $f^{(4)}(x) = \cos x$  A2 N2

(ii) valid approach

A2

A2

eg recognizing that 19 is one less than a multiple of 4,  $f^{(19)}(x) = f^{(3)}(x)$ 

$$f^{(19)}(x) = \sin x$$
 A1 N2

(b) (i) 
$$g'(x) = kx^{k-1}$$
  
 $g''(x) = k(k-1)x^{k-2}, g^{(3)}(x) = k(k-1)(k-2)x^{k-3}$  A1A1 N2

#### (ii) METHOD 1

correct working that leads to the correct answer, involving the correct expression for the 19th derivative

eg 
$$k(k-1)(k-2) \dots (k-18) \times \frac{(k-19)!}{(k-19)!}, {}_{k}P_{19}$$
  
 $p = 19 (\text{accept} \frac{k!}{(k-19)!} x^{k-19})$  A1 N1

#### METHOD 2

correct working involving recognizing patterns in coefficients of first three derivatives (may be seen in part (b)(i)) leading to a general rule for 19th coefficient

eg 
$$g'' = 2! \binom{k}{2}, \ k(k-1)(k-2) = \frac{k!}{(k-3)!}, \ g^{(3)}(x) = {}_{k}P_{3}(x^{k-3}),$$
  
 $g^{(19)}(x) = 19! \binom{k}{19}, \ 19! \times \frac{k!}{(k-19)! \times 19!}, \ {}_{k}P_{19}$   
 $p = 19 \ (\text{accept} \ \frac{k!}{(k-19)!} x^{k-19})$  A1 N1  
[5 marks]

(c) (i) valid approach using product rule (M1) eg uv' + vu',  $f^{(19)}g^{(20)} + f^{(20)}g^{(19)}$ 

correct 20th derivatives (must be seen in product rule) (A1)(A1)

eg 
$$g^{(20)}(x) = \frac{21!}{(21-20)!}x, f^{(20)}(x) = \cos x$$

$$h'(x) = \sin x (21!x) + \cos x \left(\frac{21!}{2}x^2\right) \left(\operatorname{accept\,sin} x \left(\frac{21!}{1!}x\right) + \cos x \left(\frac{21!}{2!}x^2\right)\right) A1 \qquad N:$$

(A1)

(ii) substituting  $x = \pi$  (seen anywhere)

eg 
$$f^{(19)}(\pi)g^{(20)}(\pi) + f^{(20)}(\pi)g^{(19)}(\pi), \sin \pi \frac{21!}{1!}\pi + \cos \pi \frac{21!}{2!}\pi^2$$

evidence of one correct value for  $\sin \pi$  or  $\cos \pi$  (seen anywhere) (A1) eg  $\sin \pi = 0$ ,  $\cos \pi = -1$ 

evidence of correct values substituted into  $h'(\pi)$  A1 eg  $21!(\pi)\left(0-\frac{\pi}{2!}\right), 21!(\pi)\left(-\frac{\pi}{2}\right), 0+(-1)\frac{21!}{2}\pi^2$ 



| Quest  | 1011 42                                                                                                                  |       |           |
|--------|--------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| (a)    | valid approach to set up integration by substitution/inspection<br>eg $u = x^2 - 1$ , $du = 2x$ , $\int 2xe^{x^2 - 1}dx$ | (M1)  |           |
|        | correct expression<br>$eg = \frac{1}{2} \int 2x e^{x^2 - 1} dx$ , $\frac{1}{2} \int e^u du$                              | (A1)  |           |
|        | $\frac{1}{2}e^{x^2-1}+c$                                                                                                 | A2    | N4        |
| Note   | es: Award <b>A1</b> if missing "+ <i>c</i> ".                                                                            |       | [4 marks] |
| (b)    | substituting $x = -1$ into their answer from (a)                                                                         | (M1)  |           |
|        | $eg = \frac{1}{2}e^0, \frac{1}{2}e^{1-1} = 3$                                                                            |       |           |
|        | correct working<br>eg $\frac{1}{2} + c = 3$ , $c = 2.5$                                                                  | (A1)  |           |
|        | $f(x) = \frac{1}{2}e^{x^2 - 1} + 2.5$                                                                                    | A1    | N2        |
|        | 2                                                                                                                        |       | [3 marks] |
|        |                                                                                                                          | Total | [7 marks] |
| Questi | ion 43                                                                                                                   |       |           |

(a) (i) -2

(ii) gradient of normal = 
$$\frac{1}{2}$$
 (A1)

attempt to substitute their normal gradient and coordinates of P (in any order)

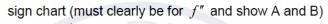
eg 
$$y-4 = \frac{1}{2}(x-3), \ 3 = \frac{1}{2}(4) + b, \ b = 1$$
  
 $y-3 = \frac{1}{2}(x-4), \ y = \frac{1}{2}x+1, \ x-2y+2 = 0$  A1 N3

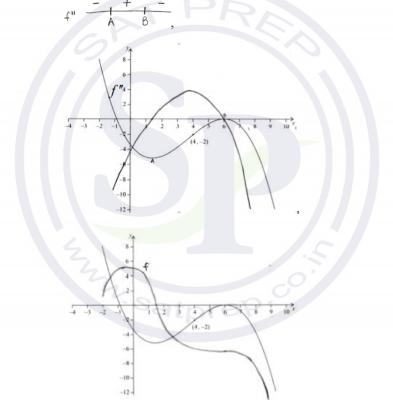
[4 marks]

N2

(b) correct answer and valid reasoning

answer: eg graph of f is concave up, concavity is positive (between 4 < x < 5) reason: eg slope of f' is positive, f' is increasing, f'' > 0,





**Note:** The reason given must refer to a specific function/graph. Referring to "the graph" or "it" is not sufficient.

[2 marks] Total [6 marks]

N1

A1

(M1)

A2

(a) valid approach to set up integration by substitution/inspection (M1)  $u = x^2 - 1$ , du = 2x,  $\int 2xe^{x^2 - 1}dx$ eg correct expression (A1)  $eg = \frac{1}{2}\int 2x e^{x^2 - 1} dx , \frac{1}{2}\int e^u du$  $\frac{1}{2}e^{x^2-1}+c$ A2 N4 **Notes:** Award **A1** if missing "+c". [4 marks] (b) substituting x = -1 into their answer from (a) (M1) eg  $\frac{1}{2}e^0$ ,  $\frac{1}{2}e^{1-1}=3$ correct working (A1) eg  $\frac{1}{2} + c = 3, c = 2.5$  $f(x) = \frac{1}{2}e^{x^2-1} + 2.5$ A1 N2 [3 marks] Total [7 marks]

#### (a) METHOD 1 (using x-intercept)

determining that 3 is an *x*-intercept

eg 
$$x-3=0$$
,  $3$ 

valid approach

valid approach (M1)  
eg 
$$3-2.5, \frac{p+3}{2}=2.5$$

p=2

(b)

# N2

(M1)

A1

### **METHOD 2 (expanding** f(x))

| correct expansion (accept absence of <i>a</i> )<br>eg $ax^2 - a(3+p)x + 3ap$ , $x^2 - (3+p)x + 3p$                                                    | (A1)         |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|
| valid approach involving equation of axis of symmetry<br>eg $\frac{-b}{2a} = 2.5$ , $\frac{a(3+p)}{2a} = \frac{5}{2}$ , $\frac{3+p}{2} = \frac{5}{2}$ | (M1)         |                 |
| <i>p</i> = 2                                                                                                                                          | A1           | N2              |
| METHOD 3 (using derivative)                                                                                                                           |              |                 |
| correct derivative (accept absence of <i>a</i> )<br>eg $a(2x-3-p), 2x-3-p$                                                                            | (A1)         |                 |
| valid approach<br>eg $f'(2.5) = 0$                                                                                                                    | ( <b>M1)</b> |                 |
| valid approach<br>eg $f'(2.5) = 0$<br>p = 2                                                                                                           | A1           | N2<br>[3 marks] |
| attempt to substitute (0, -6)<br>eg $-6 = a(0-2)(0-3)$ , $0 = a(-8)(-9)$ , $a(0)^2 - 5a(0) + 6a = -6$                                                 | (M1)         |                 |
| correct working $eg -6 = 6a$                                                                                                                          | (A1)         |                 |
| <i>a</i> = -1                                                                                                                                         | A1           | N2<br>[3 marks] |

### (c) METHOD 1 (using discriminant)

| recognizing tangent intersects curve once                                                                                   | (M1)       |                 |
|-----------------------------------------------------------------------------------------------------------------------------|------------|-----------------|
| recognizing one solution when discriminant $= 0$                                                                            | M1         |                 |
| attempt to set up equation<br>eg $g = f$ , $kx - 5 = -x^2 + 5x - 6$                                                         | (M1)       |                 |
| rearranging their equation to equal zero<br>eg $x^2 - 5x + kx + 1 = 0$                                                      | (M1)       |                 |
| correct discriminant (if seen explicitly, not just in quadratic formula) eg $(k-5)^2 - 4$ , $25 - 10k + k^2 - 4$            | A1         |                 |
| correct working                                                                                                             | (A1)       |                 |
| eg $k-5=\pm 2$ , $(k-3)(k-7)=0$ , $\frac{10\pm\sqrt{100-4\times 21}}{2}$                                                    |            |                 |
| <i>k</i> = 3, 7                                                                                                             | A1A1       | NO              |
| METHOD 2 (using derivatives)                                                                                                |            |                 |
| attempt to set up equation<br>eg $g = f$ , $kx - 5 = -x^2 + 5x - 6$                                                         | (M1)       |                 |
| recognizing derivative/slope are equal eg $f' = m_T$ , $f' = k$                                                             | (M1)       |                 |
| correct derivative of $f$ (A1)<br>eg $-2x+5$                                                                                |            |                 |
| attempt to set up equation in terms of either $x$ or $k$                                                                    | <b>M</b> 1 |                 |
| eg $(-2x+5)x-5 = -x^2+5x-6$ , $k\left(\frac{5-k}{2}\right)-5 = -\left(\frac{5-k}{2}\right)^2+5\left(\frac{5-k}{2}\right)-5$ | - 6        |                 |
| rearranging their equation to equal zero<br>eg $x^2 - 1 = 0$ , $k^2 - 10k + 21 = 0$                                         | (M1)       |                 |
| correct working                                                                                                             | (A1)       |                 |
| eg $x = \pm 1$ , $(k-3)(k-7) = 0$ , $\frac{10 \pm \sqrt{100 - 4 \times 21}}{2}$                                             |            |                 |
| <i>k</i> = 3, 7                                                                                                             | A1A1       | N0<br>[8 marks] |
|                                                                                                                             | Total [    | 14 marks]       |

valid approach

eg 
$$\int f' dx$$
,  $\int \frac{3x^2}{(x^3+1)^5} dx$ 

correct integration by substitution/inspection

eg 
$$f(x) = -\frac{1}{4}(x^3+1)^{-4} + c, \frac{-1}{4(x^3+1)^4}$$

correct substitution into their integrated function (must include c)

eg 
$$1 = \frac{-1}{4(0^3 + 1)^4} + c, -\frac{1}{4} + c = 1$$

Note: Award **M0** if candidates substitute into f' or f''.

$$c = \frac{5}{4}$$

$$f(x) = -\frac{1}{4} (x^{3} + 1)^{-4} + \frac{5}{4} \left( = \frac{-1}{4 (x^{3} + 1)^{4}} + \frac{5}{4}, \frac{5 (x^{3} + 1)^{4} - 1}{4 (x^{3} + 1)^{4}} \right)$$
(A1)
(A1)

[6 marks]

N4

h'(8) = 14

| (a) | expressing $h(1)$ as a product of $f(1)$ and $g(1)$<br>eg $f(1) \times g(1)$ , 2(9)                                       | (A1)               |
|-----|---------------------------------------------------------------------------------------------------------------------------|--------------------|
|     | h(1) = 18                                                                                                                 | A1 N2<br>[2 marks] |
| (b) | attempt to use product rule (do not accept $h' = f' \times g'$ )<br>eg $h' = fg' + gf'$ , $h'(8) = f'(8)g(8) + g'(8)f(8)$ | (M1)               |
|     | correct substitution of values into product rule<br>eg $h'(8) = 4(5) + 2(-3), -6 + 20$                                    | (A1)               |

[Total 5 marks]

(M1)

A2

М1

| (a) | (i)         | f'(x) = 2x                                                                                               | A1   | N1              |
|-----|-------------|----------------------------------------------------------------------------------------------------------|------|-----------------|
|     | (ii)        | attempt to substitute $x = -k$ into their derivative                                                     | (M1) |                 |
|     |             | gradient of $L$ is $-2k$                                                                                 | A1   | N2<br>[3 marks] |
| (b) | MET         | THOD 1                                                                                                   |      |                 |
|     |             | mpt to substitute coordinates of A and their gradient equation of a line $k^2 = -2k(-k) + b$             | (M1) |                 |
|     | corr<br>eg  | ect equation of <i>L</i> in any form<br>$y-k^2 = -2k(x+k)$ , $y = -2kx-k^2$                              | (A1) |                 |
|     | valio<br>eg | y = 0                                                                                                    | (M1) |                 |
|     | corr<br>eg  | ect substitution into <i>L</i> equation<br>$-k^2 = -2kx - 2k^2$ , $0 = -2kx - k^2$                       | A1   |                 |
|     | corr<br>eg  | ect working $2kx = -k^2$                                                                                 | A1   |                 |
|     | <i>x</i> =  | $-\frac{k}{2}$                                                                                           | AG   | NO              |
|     | MET         | THOD 2                                                                                                   |      |                 |
|     | valio<br>eg | gradient = $\frac{y_2 - y_1}{x_2 - x_1}$ , $-2k = \frac{\text{rise}}{\text{run}}$                        | (M1) |                 |
|     | reco        | gnizing $y = 0$ at B                                                                                     | (A1) |                 |
|     | attei<br>eg | mpt to substitute coordinates of A and B into slope formula $\frac{k^2 - 0}{-k - x}, \frac{-k^2}{x + k}$ | (M1) |                 |
|     | corr        | ect equation<br>$\frac{k^2 - 0}{-k - x} = -2k,  \frac{-k^2}{x + k} = -2k,  -k^2 = -2k(x + k)$            | A1   |                 |
|     |             | ect working $2kx = -k^2$                                                                                 | A1   |                 |
|     | <i>x</i> =  | $-\frac{k}{2}$                                                                                           | AG   | NO              |

(c) valid approach to find area of triangle

eg 
$$\frac{1}{2}(k^2)\left(\frac{k}{2}\right)$$

area of ABC = 
$$\frac{k^3}{4}$$
 A1 N2

(M1)

# (d) **METHOD 1** ( $\int f$ - triangle)

valid approach to find area from 
$$-k$$
 to 0 (M1)  
eg  $\int_{-k}^{0} x^2 dx$ ,  $\int_{0}^{-k} f$ 

correct integration (seen anywhere, even if **M0** awarded) A1  
eg 
$$\frac{x^3}{3}, \left[\frac{1}{3}x^3\right]_{-k}^0$$

substituting their limits into their integrated function and subtracting (M1)  
eg 
$$0 - \frac{(-k)^3}{3}$$
, area from  $-k$  to 0 is  $\frac{k^3}{3}$ 

Note: Award MO for substituting into original or differentiated function.

| attempt to find area of <i>R</i>                                                                                 | (M1) |
|------------------------------------------------------------------------------------------------------------------|------|
| eg $\int_{-k}^{0} f(x)  \mathrm{d}x - \mathrm{triangle}$                                                         |      |
| correct working for R                                                                                            | (A1) |
| $eg = \frac{k^3}{3} - \frac{k^3}{4}, R = \frac{k^3}{12}$                                                         |      |
| correct substitution into triangle = $pR$                                                                        | (A1) |
| eg $\frac{k^3}{4} = p\left(\frac{k^3}{3} - \frac{k^3}{4}\right), \ \frac{k^3}{4} = p\left(\frac{k^3}{12}\right)$ |      |
| p = 3                                                                                                            | A1   |

N2

# METHOD 2 ( $\int (f-L)$ )

valid approach to find area of R

eg 
$$\int_{-k}^{-\frac{k}{2}} x^2 - (-2kx - k^2) dx + \int_{-\frac{k}{2}}^{0} x^2 dx, \int_{-k}^{-\frac{k}{2}} (f - L) + \int_{-\frac{k}{2}}^{0} f$$

correct integration (seen anywhere, even if *M0* awarded)

eg 
$$\frac{x^3}{3} + kx^2 + k^2x$$
,  $\left[\frac{x^3}{3} + kx^2 + k^2x\right]_{-k}^{-\frac{1}{2}} + \left[\frac{x^3}{3}\right]_{-k}^{0}$ 

substituting their limits into their integrated function and subtracting (M1)

(M1)

A2

N2

$$eg \quad \left(\frac{\left(-\frac{k}{2}\right)^{3}}{3} + k\left(-\frac{k}{2}\right)^{2} + k^{2}\left(-\frac{k}{2}\right)\right) - \left(\frac{(-k)^{3}}{3} + k(-k)^{2} + k^{2}(-k)\right) + (0) - \left(\frac{\left(-\frac{k}{2}\right)^{3}}{3}\right)$$

Note: Award MO for substituting into original or differentiated function.

correct working for 
$$R$$
 (A1)  
eg  $\frac{k^3}{24} + \frac{k^3}{24}, -\frac{k^3}{24} + \frac{k^3}{4} - \frac{k^3}{2} + \frac{k^3}{3} - k^3 + k^3 + \frac{k^3}{24}, R = \frac{k^3}{12}$  (A1)  
eg  $\frac{k^3}{4} = p\left(\frac{k^3}{24} + \frac{k^3}{24}\right), \frac{k^3}{4} = p\left(\frac{k^3}{12}\right)$   
 $p = 3$  (A1)  
 $P = 3$  [7 marks]  
[Total 17 marks]

| attempt to find the area of OABC<br>eg OA×OC, $x \times f(x)$ , $f(x) \times (-x)$           | (M1) |          |
|----------------------------------------------------------------------------------------------|------|----------|
| correct expression for area in one variable<br>eg area = $x(15-x^2)$ , $15x-x^3$ , $x^3-15x$ | (A1) |          |
| valid approach to find maximum <b>area</b> (seen anywhere)<br>eg $A'(x) = 0$                 | (M1) |          |
| correct derivative<br>eg $15-3x^2$ , $(15-x^2)+x(-2x)=0$ , $-15+3x^2$                        | A1   |          |
| correct working<br>eg $15 = 3x^2$ , $x^2 = 5$ , $x = \sqrt{5}$                               | (A1) |          |
| $x = -\sqrt{5}$ (accept A( $-\sqrt{5}, 0$ ))                                                 | A2   | N3       |
|                                                                                              | l    | 7 marks] |



| Ques | uon 50                                                                                                                                                                                                                         |          |                 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|
| (a)  | f'(x) = 2x - 1                                                                                                                                                                                                                 | A1A1     |                 |
|      | correct substitution<br>eg $2(1)-1, 2-1$                                                                                                                                                                                       | A1       |                 |
|      | f'(1) = 1                                                                                                                                                                                                                      | AG       | N0<br>[3 marks] |
| (b)  | correct approach to find the gradient of the normal $eg = \frac{-1}{f'(1)}$ , $m_1m_2 = -1$ , slope = $-1$                                                                                                                     | (A1)     |                 |
|      | attempt to substitute correct normal gradient and coordinates<br>into equation of a line<br>eg = y-0 = -1(x-1), $0 = -1+b$ , $b = 1$ , $L = -x+1$                                                                              | (M1)     |                 |
|      | y = -x + 1                                                                                                                                                                                                                     | A1       | N2<br>[3 marks] |
| (C)  | equating expressions<br>eg $f(x) = L$ , $-x+1 = x^2 - x$                                                                                                                                                                       | (M1)     |                 |
|      | correct working (must involve combining terms)<br>eg $x^2-1=0$ , $x^2=1$ , $x=1$                                                                                                                                               | (A1)     |                 |
|      | x = -1 (accept $Q(-1, 2)$ )                                                                                                                                                                                                    | A2       | N3<br>[4 marks] |
| (d)  | valid approach $g = \int L - f  \int_{-1}^{1} (1 - x^2)  dx$ , splitting area into triangles and integrals                                                                                                                     | (M1)     |                 |
|      | correct integration<br>eg $\left[x - \frac{x^3}{3}\right]_{-1}^{1}, -\frac{x^3}{3} - \frac{x^2}{2} + \frac{x^2}{2} + x$                                                                                                        | (A1)(A1) |                 |
| Note | substituting their limits into their integrated function and subtracting<br>(in any order)<br>eg $1-\frac{1}{3}-\left(-1-\frac{-1}{3}\right)$<br>e: Award <b>M0</b> for substituting into original or differentiated function. | (M1)     |                 |
|      |                                                                                                                                                                                                                                |          |                 |
|      | $area = \frac{4}{3}$                                                                                                                                                                                                           | A2       | N3              |
|      |                                                                                                                                                                                                                                |          | [6 marks]       |
|      |                                                                                                                                                                                                                                | Total    | [16 marks]      |

Total [16 marks]

| (a) |                                        | ognize that $f'(x)$ is the gradient of the tangent at $x$                                                            | (M1)       |                 |
|-----|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------|-----------------|
|     | eg<br>f'(                              | f'(x) = m<br>2) = 3 (accept m = 3)                                                                                   | A1         | N2              |
|     |                                        | pgnize that $f(2) = y(2)$<br>$f(2) = 3 \times 2 + 1$                                                                 | (M1)       |                 |
|     | f(2                                    | (2) = 7                                                                                                              | A1         | N2<br>[4 marks] |
| (b) | recognize                              | that the gradient of the graph of $g$ is $g'(x)$                                                                     | (M1)       |                 |
|     | choosing                               | chain rule to find $g'(x)$                                                                                           | (M1)       |                 |
|     | $eg = \frac{\mathrm{d}y}{\mathrm{d}u}$ | $\times \frac{\mathrm{d}u}{\mathrm{d}x}, \ u = x^2 + 1, \ u' = 2x$                                                   |            |                 |
|     | g'(x) = f                              | $(x^2+1) \times 2x$                                                                                                  | A2         |                 |
|     | $g'(1) = 3 \times$                     | 2                                                                                                                    | A1         |                 |
|     | g'(1) = 6                              |                                                                                                                      | AG         | N0<br>[5 marks] |
| (c) | at Q, $L_1 =$                          | <i>L</i> <sub>2</sub> (seen anywhere)                                                                                | (M1)       |                 |
|     | recognize<br>eg m=                     | that the gradient of $L_2$ is $g'(1)$ (seen anywhere)                                                                | (M1)       |                 |
|     | finding g                              | (1) (seen anywhere)<br>(1) = $f(2)$ , $g(1) = 7$                                                                     | (A1)       |                 |
|     | into equat                             | b substitute gradient and/or coordinates<br>tion of a straight line<br>g(1) = 6(x-1), y-1 = g'(1)(x-7), 7 = 6(1) + b | <b>M</b> 1 |                 |
|     | correct eq                             | uation for $L_2$                                                                                                     |            |                 |
|     | eg y-                                  | $7 = 6(x-1), \ y = 6x+1$                                                                                             | A1         |                 |
|     |                                        | brking to find Q<br>the y-intercept, $3x = 0$                                                                        | (A1)       |                 |
|     | <i>y</i> =1                            |                                                                                                                      | A1         | N2<br>[7 marks] |
|     |                                        |                                                                                                                      |            |                 |

[Total: 16 marks]

|                | (A1) | correct equation for volume<br>eg $\pi r^2 h = 20\pi$                                                                             |
|----------------|------|-----------------------------------------------------------------------------------------------------------------------------------|
| Ni<br>[2 marks | A1   | $h = \frac{20}{r^2}$                                                                                                              |
|                |      |                                                                                                                                   |
|                | (M1) | attempt to find formula for cost of parts<br>eg $10 \times \text{two circles}, 8 \times \text{curved side}$                       |
|                | A1   | correct expression for cost of two circles in terms of <i>r</i> (seen anywhere)<br>eg $2\pi r^2 \times 10$                        |
|                | (A1) | correct expression for cost of curved side (seen anywhere)<br>eg $2\pi r \times h \times 8$                                       |
|                | A1   | correct expression for cost of curved side in terms of $r$<br>eg $8 \times 2\pi r \times \frac{20}{r^2}$ , $\frac{320\pi r}{r^2}$ |
| N              | AG   | $C = 20\pi r^2 + \frac{320\pi}{r}$                                                                                                |
| [4 marks       |      | r                                                                                                                                 |
|                | (R1) | recognize $C' = 0$ at minimum<br>eg $C' = 0, \frac{dC}{dr} = 0$                                                                   |
|                | A1A1 | correct differentiation (may be seen in equation)<br>$C' = 40\pi r - \frac{320\pi}{r^2}$                                          |
|                | A1   | correct equation<br>eg $40\pi r - \frac{320\pi}{r^2} = 0, \ 40\pi r = \frac{320\pi}{r^2}$                                         |
|                | (A1) | correct working<br>eg $40r^3 = 320$ , $r^3 = 8$                                                                                   |
|                | A1   | r = 2  (m)                                                                                                                        |
|                |      | attempt to substitute <b>their</b> value of <i>r</i> into <i>C</i>                                                                |
|                | (M1) | eg $20\pi \times 4 + 320 \times \frac{\pi}{2}$                                                                                    |
|                | (A1) | correct working<br>eg $80\pi + 160\pi$                                                                                            |
| N              | A1   | $240\pi$ (cents)                                                                                                                  |

[Total: 15 marks]

(a) 
$$2x^3 - \frac{3x^2}{2} + c \left( \operatorname{accept} \frac{6x^3}{3} - \frac{3x^2}{2} + c \right)$$
 A1A1 N2  
Notes: Award A1A0 for both correct terms if  $+c$  is omitted.  
Award A1A0 for one correct term  $g \ 2x^3 + c$ .  
Award A1A0 if both terms are correct, but candidate attempts further working to solve for c.  
[2 marks]  
(b) substitution of limits or function  
 $eg \ \int_1^2 f(x) dx, \left[ 2x^3 - \frac{3x^2}{2} \right]_1^2$   
substituting limits into their integrated function and subtracting  
 $eg \ \frac{6 \times 2^3}{3} - \frac{3 \times 2^2}{2} - \left( \frac{6 \times 1^3}{3} - \frac{3 \times 1^2}{2} \right)$   
Note: Award M0 if substituted into original function.  
 $correct working$   
 $eg \ \frac{6 \times 8}{3} - \frac{3 \times 4}{2} - \frac{6 \times 1}{3} + \frac{3 \times 1}{2}, (16 - 6) - \left(2 - \frac{3}{2}\right)$   
 $\frac{19}{2}$   
A1 N3  
[4 marks]  
[Total: 6 marks]

(a) evidence of integration (M1)  
eg 
$$\int f'(x)$$
  
correct integration (accept absence of C) (A1)(A1)  
eg  $x^3 + \frac{18}{2}x^2 + C$ ,  $x^3 + 9x^2$   
attempt to substitute  $x = -1$  into their  $f = 0$  (must have C) M1  
eg  $(-1)^3 + 9(-1)^2 + C = 0$ ,  $-1 + 9 + C = 0$ 

| <b>Note:</b> Award <i>M0</i> if they substitute into original or differentiated function         |      |                 |
|--------------------------------------------------------------------------------------------------|------|-----------------|
| correct working<br>eg $8+C=0$ , $C=-8$                                                           | (A1) |                 |
| $f(x) = x^3 + 9x^2 - 8$                                                                          | A1   | N5<br>[6 marks] |
| (b) <b>METHOD 1</b> (using 2 <sup>nd</sup> derivative)                                           |      |                 |
| recognizing that $f'' = 0$ (seen anywhere)                                                       | M1   |                 |
| correct expression for $f''$<br>eg $6x+18$ , $6p+18$                                             | (A1) |                 |
| correct working $6p+18=0$                                                                        | (A1) |                 |
| <i>p</i> = -3                                                                                    | A1   | N3              |
| METHOD 2 (using 1 <sup>st</sup> derivative)                                                      |      |                 |
| recognizing the vertex of $f'$ is needed<br>eg $-\frac{b}{2a}$ (must be clear this is for $f'$ ) | (M2) |                 |
| correct substitution                                                                             | (A1) |                 |
| eg $\frac{-18}{2\times3}$                                                                        |      |                 |
| p = -3                                                                                           | A1   | N3<br>[4 marks] |

| (c) | valid attempt to use $f''(x)$ to determine concavity<br>eg $f''(x) < 0$ , $f''(-2)$ , $f''(-4)$ , $6x + 18 \le 0$ , <b>+</b> | (M1) |        |
|-----|------------------------------------------------------------------------------------------------------------------------------|------|--------|
|     | correct working<br>eg $6x+18 < 0$ , $f''(-2) = 6$ , $f''(-4) = -6$ ,                                                         | (A1) |        |
|     | $f$ concave down for $x < -3$ (do not accept $x \le -3$ )                                                                    | A1   | N2     |
|     |                                                                                                                              | [3   | marks] |

### Total [13 marks]

# Question 55

| recognizing the need to find $h'$                                                                                                  | (M1) |    |
|------------------------------------------------------------------------------------------------------------------------------------|------|----|
| recognizing the need to find $h'(3)$ (seen anywhere)                                                                               | (M1) |    |
| evidence of choosing chain rule<br>eg $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}, f'(g(3)) \times g'(3), f'(g) \times g'$ | (M1) |    |
| correct working<br>eg $f'(7) \times 4$ , $-5 \times 4$                                                                             | (A1) |    |
| h'(3) = -20                                                                                                                        | (A1) |    |
| evidence of taking <b>their</b> negative reciprocal for normal $eg -\frac{1}{h'(3)}, m_1m_2 = -1$                                  | (M1) |    |
| gradient of normal is $\frac{1}{20}$                                                                                               | A1   | N4 |

Total [7 marks]

### Ouestion 56

(a) correct working (A1)  
eg 
$$\int \frac{1}{2x-1} dx$$
,  $\int (2x-1)^{-1}$ ,  $\frac{1}{2x-1}$ ,  $\int \left(\frac{1}{\sqrt{u}}\right)^2 \frac{du}{2}$   
 $\int (f(x))^2 dx = \frac{1}{2} \ln (2x-1) + c$  A2 N3  
Note: Award A1 for  $\frac{1}{2} \ln (2x-1)$ .  
(b) attempt to substitute either limits or the function into formula involving  $f^2$   
(accept absence of  $\pi / dx$ ) (M1)  
eg  $\int_1^g y^2 dx$ ,  $\pi \int \left(\frac{1}{\sqrt{2x-1}}\right)^2 dx$ ,  $\left[\frac{1}{2} \ln (2x-1)\right]_1^g$   
substituting limits into their integral and subtracting (in any order) (M1)  
eg  $\frac{\pi}{2} (\ln (17) - \ln (1))$ ,  $\pi \left(0 - \frac{1}{2} \ln (2 \times 9 - 1)\right)$   
correct working involving calculating a log value or using log law (A1)  
eg  $\ln (1) = 0$ ,  $\ln \left(\frac{17}{1}\right)$   
 $\frac{\pi}{2} \ln 17$  (accept  $\pi \ln \sqrt{17}$ ) A1 N3  
Note: Full FT may be awarded as normal, from their incorrect answer in part (a), however, do not award the final two A marks unless they involve logarithms.  
[4 marks]  
Total [7 marks]

[4 marks]

Total [7 marks]

| Ques | tion 57                                                                                                                              |      |                 |
|------|--------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|
| (a)  | valid approach                                                                                                                       | (M1) |                 |
|      | eg $f(0), 0^3 - 2(0)^2 + a(0) + 6, f(0) = 6, (0, y)$                                                                                 |      |                 |
|      | (0, 6) (accept $x = 0$ and $y = 6$ )                                                                                                 | A1   | N2<br>[2 marks] |
| (b)  | (i) $f' = 3x^2 - 4x + a$                                                                                                             | A2   | N2              |
|      | (ii) valid approach $eg f'(0)$                                                                                                       | (M1) |                 |
|      | correct working<br>eg $3(0)^2 - 4(0) + a$ , slope = $a$ , $f'(0) = a$                                                                | (A1) |                 |
|      | attempt to substitute gradient and coordinates into linear equation<br>eg $y-6 = a(x-0), y-0 = a(x-6), 6 = a(0)+c, L = ax+6$         | (M1) |                 |
|      | correct equation<br>eg $y = ax + 6$ , $y - 6 = ax$ , $y - 6 = a(x - 0)$                                                              | A1   | N3              |
|      |                                                                                                                                      |      | [6 marks]       |
| (c)  | valid approach to find intersection<br>eg $f(x) = L$                                                                                 | (M1) |                 |
|      | correct equation<br>eg $x^3 - 2x^2 + ax + 6 = ax + 6$                                                                                | (A1) |                 |
|      | correct working<br>eg $x^3 - 2x^2 = 0$ , $x^2(x-2) = 0$                                                                              | (A1) |                 |
|      | x = 2 at Q                                                                                                                           | (A1) |                 |
|      | valid approach to find minimum<br>eg $f'(x) = 0$                                                                                     | (M1) |                 |
|      | correct equation<br>eg $3x^2 - 4x + a = 0$                                                                                           | (A1) |                 |
|      | substitution of <b>their</b> value of x at Q into <b>their</b> $f'(x) = 0$ equation<br>eg $3(2)^2 - 4(2) + a = 0$ , $12 - 8 + a = 0$ | (M1) |                 |
|      | a = -4                                                                                                                               | A1   | NO              |
|      |                                                                                                                                      |      | [8 marks]       |
|      |                                                                                                                                      |      |                 |

Total [16 marks]

valid approach to find x-intercept

eg 
$$f(x) = 0$$
,  $\frac{6-2x}{\sqrt{16+6x-x^2}} = 0$ ,  $6-2x = 0$ 

x-intercept is 3

valid approach using substitution or inspection (M1)

eg 
$$u = 16 + 6x - x^2$$
,  $\int_0^3 \frac{6 - 2x}{\sqrt{u}} dx$ ,  $du = 6 - 2x$ ,  $\int \frac{1}{\sqrt{u}}$ ,  
 $u = \sqrt{16 + 6x - x^2}$ ,  $\frac{du}{dx} = (6 - 2x) \frac{1}{2} (16 + 6x - x^2)^{\frac{1}{2}}$ ,  $\int 2 du$ 

correct integration

eg 
$$\int \frac{1}{\sqrt{u}} du = 2u^{\frac{1}{2}}, \int 2 du = 2u$$

both correct limits for u

eg 
$$u = 16$$
 and  $u = 25$ ,  $\int_{16}^{25} \frac{1}{\sqrt{u}} du$ ,  $\left[ 2u^{\frac{1}{2}} \right]_{16}^{25}$ ,  $u = 4$  and  $u = 5$ ,  $\int_{4}^{5} 2 du$ ,  $\left[ 2u \right]_{4}^{5}$ 

substituting **both** of **their** limits for *u* (do not accept 0 and 3) into **their** integrated function and subtracting (M1)

eg 
$$2\sqrt{25} - 2\sqrt{16}$$
,  $10 - 8$ 

e: Award *M0* if they substitute into original or differentiated function, or if they have not attempted to find limits for *u*.

area = 2

N2

Total [8 marks]

A1

(M1)

(A1)

(A2)

(A1)

| Quesi | 1011 39                                                                                                                                                                                          |        |                 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|
| (a)   | evidence of choosing chain rule<br>eg $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ , $u = x^3 + x$ , $u' = 3x^2 + 1$                                                                     | (M1)   |                 |
|       | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2} \left( x^3 + x \right)^{\frac{1}{2}} \left( 3x^2 + 1 \right) \left( = \frac{3}{2} \sqrt{x^3 + x} \left( 3x^2 + 1 \right) \right)$                 | A2     | N3<br>[3 marks] |
| (b)   | integrating by inspection from (a) or by substitution                                                                                                                                            | (M1)   |                 |
|       | eg $\frac{2}{3}\int \frac{3}{2}(3x^2+1)\sqrt{x^3+x}  dx, \ u = x^3+x, \ \frac{du}{dx} = 3x^2+1, \ \int u^{\frac{1}{2}}, \ \frac{u^{\frac{3}{2}}}{1.5}$                                           |        |                 |
|       | correct integrated expression in terms of x                                                                                                                                                      | A2     | N3              |
|       | eg $\frac{2}{3}(x^3+x)^{\frac{3}{2}}+C$ , $\frac{(x^3+x)^{1.5}}{1.5}+C$                                                                                                                          |        |                 |
|       |                                                                                                                                                                                                  |        | [3 marks]       |
| (c)   | integrating and subtracting functions (in any order)<br>eg $\int g - f$ , $\int f - \int g$                                                                                                      | (M1)   |                 |
|       | correct integral (including limits, accept absence of $dx$ )                                                                                                                                     | A1     | N2              |
|       | eg $\int_0^1 (g-f) dx$ , $\int_0^1 6 - 3x^2 \sqrt{x^3 + x} - \sqrt{x^3 + x} dx$ , $\int_0^1 g(x) - \int_0^1 f(x)$                                                                                |        | [2 marks]       |
| (d)   | recognizing $\sqrt{x^3 + x}$ is a common factor (seen anywhere,<br>may be seen in part (c))<br>eg $(-3x^2 - 1)\sqrt{x^3 + x}$ , $\int 6 - (3x^2 + 1)\sqrt{x^3 + x}$ , $(3x^2 - 1)\sqrt{x^3 + x}$ | (N     | 11)             |
|       | correct integration                                                                                                                                                                              | (A1)(A | (1)             |

eg 
$$6x - \frac{2}{3}(x^3 + x)^{\frac{3}{2}}$$

substituting limits into their integrated function and subtracting (in any order) (M1)

eg 
$$6 - \frac{2}{3}(1^3 + 1)^{\frac{3}{2}}, \quad 0 - \left[6 - \frac{2}{3}(1^3 + 1)^{\frac{3}{2}}\right]$$

correct working (A1) eg  $6 - \frac{2}{3} \times 2\sqrt{2}$ ,  $6 - \frac{2}{3} \times \sqrt{4} \times \sqrt{2}$ area of  $R = 6 - \frac{4\sqrt{2}}{3} \left( = 6 - \frac{2}{3}\sqrt{8}, \quad 6 - \frac{2}{3} \times 2^{\frac{3}{2}}, \quad \frac{18 - 4\sqrt{2}}{3} \right)$  A1

[6 marks]

N3

Total [14 marks]

| <b>L</b> |                                                                                                             |      |                 |
|----------|-------------------------------------------------------------------------------------------------------------|------|-----------------|
| (a)      | evidence of valid approach<br>eg sketch of triangle with sides 3 and 5, $\cos^2 \theta = 1 - \sin^2 \theta$ | (M1) |                 |
|          |                                                                                                             |      |                 |
|          | correct working                                                                                             | (A1) |                 |
|          | eg missing side is 4 (may be seen in sketch), $\cos \theta = \frac{4}{5}$ , $\cos \theta = -\frac{4}{5}$    |      |                 |
|          | $\tan\theta = -\frac{3}{4}$                                                                                 | A2   | N4              |
|          | 4                                                                                                           | 72   |                 |
|          |                                                                                                             |      | [4 marks]       |
| (b)      | correct substitution of either gradient or origin into equation of line (do not accept $y = mx + b$ )       | (A1) |                 |
|          | eg $y = x \tan \theta$ , $y - 0 = m(x - 0)$ , $y = mx$                                                      |      |                 |
|          | $y = -\frac{3}{4}x$                                                                                         | A1   | N2              |
| Note     | e: Award <b>A1A0</b> for $L = -\frac{3}{4}x$ .                                                              |      |                 |
|          |                                                                                                             |      | [2 marks]       |
| (c)      | $\frac{d}{dx}\left(\frac{-3x}{4}\right) = -\frac{3}{4}$ (seen anywhere, including answer)                   | A1   |                 |
|          | choosing product rule<br>eg $uv' + vu'$                                                                     | (M1) |                 |
|          | correct derivatives (must be seen in a correct product rule)<br>eg $\cos x$ , $e^x$                         | A1A1 |                 |
|          | $f'(x) = e^{x} \cos x + e^{x} \sin x - \frac{3}{4} \left( = e^{x} (\cos x + \sin x) - \frac{3}{4} \right)$  | A1   | N5<br>[5 marks] |
|          |                                                                                                             |      | - •             |

(d) valid approach to equate their gradients (M1)  
eg 
$$f' = \tan \theta$$
,  $f' = -\frac{3}{4}$ ,  $e^x \cos x + e^x \sin x - \frac{3}{4} = -\frac{3}{4}$ ,  
 $e^x (\cos x + \sin x) - \frac{3}{4} = -\frac{3}{4}$   
correct equation without  $e^x$  (A1)  
eg  $\sin x = -\cos x$ ,  $\cos x + \sin x = 0$ ,  $\frac{-\sin x}{\cos x} = 1$   
correct working (A1)  
eg  $\tan \theta = -1$ ,  $x = 135^\circ$ 

$$x = \frac{3\pi}{4}$$
 (do not accept 135°) A1 N1

Note: Do not award the final A1 if additional answers are given.

[4 marks]

Total [15 marks]



| (a)                                                                                                                                                                               | correct working                                                                                                                                                                                                                              | (A1)                                   |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|
| ()                                                                                                                                                                                | eg $\sin\left(\frac{\pi}{4}x\right) = 1, \ \sqrt{x}\left(1 - \sin\left(\frac{\pi}{4}x\right)\right) = 0$                                                                                                                                     |                                        |                   |
|                                                                                                                                                                                   | $\sin\left(\frac{\pi}{2}\right) = 1$ (seen anywhere)                                                                                                                                                                                         | (A1)                                   |                   |
|                                                                                                                                                                                   | correct working (ignore additional values)                                                                                                                                                                                                   | (A1)                                   |                   |
|                                                                                                                                                                                   | eg $\frac{\pi}{4}x = \frac{\pi}{2}, \ \frac{\pi}{4}x = \frac{\pi}{2} + 2\pi$                                                                                                                                                                 |                                        |                   |
|                                                                                                                                                                                   | <i>x</i> = 2, 10                                                                                                                                                                                                                             | A1A1                                   | N1N1<br>[5 marks] |
| (b)                                                                                                                                                                               | correct working<br>eg $d=10-2$ , $a+b=2$ , $a+2b=10$                                                                                                                                                                                         | (A1)                                   |                   |
|                                                                                                                                                                                   | valid approach<br>eg $2+(n-1)8$ , $a+2(2-a)=10$ , $b = \text{common difference}$                                                                                                                                                             | (M1)                                   |                   |
|                                                                                                                                                                                   | a = -6, b = 8 (accept $-6 + 8n$ )                                                                                                                                                                                                            | A1A1                                   | N2N2<br>[4 marks] |
| (c)                                                                                                                                                                               | valid approach<br>eg first intersection at $x = 0, n = 20$                                                                                                                                                                                   | (M1)                                   |                   |
|                                                                                                                                                                                   | correct working<br>eg $-6+8\times 20$ , $2+(20-1)\times 8$ , $u_{20} = 154$                                                                                                                                                                  | A1                                     |                   |
|                                                                                                                                                                                   | $P(154, \sqrt{154})$ (accept $x = 154$ and $y = \sqrt{154}$ )                                                                                                                                                                                | A1A1                                   | N3                |
|                                                                                                                                                                                   |                                                                                                                                                                                                                                              | 1                                      | [4 marks]         |
| (d)                                                                                                                                                                               | valid attempt to find upper boundary                                                                                                                                                                                                         | (M1)                                   |                   |
|                                                                                                                                                                                   | eg half way between $u_{20}$ and $u_{21}$ , $u_{20} + \frac{d}{2}$ , $154 + 4$ , $-2 + 8n$ , at leas                                                                                                                                         | st two                                 |                   |
|                                                                                                                                                                                   | values of new sequence {6, 14,}                                                                                                                                                                                                              |                                        |                   |
|                                                                                                                                                                                   | upper boundary at $x = 158$ (seen anywhere)                                                                                                                                                                                                  | (A1)                                   |                   |
|                                                                                                                                                                                   | correct integral expression (accept missing $dx$ )                                                                                                                                                                                           | A1A1                                   | N4                |
|                                                                                                                                                                                   | $eg \int_{0}^{158} \left( \sqrt{x} \sin\left(\frac{\pi}{4}x\right) + \sqrt{x} \right) dx, \int_{0}^{158} (g+f) dx), \int_{0}^{158} \sqrt{x} \sin\left(\frac{\pi}{4}x\right) dx + \int_{0}^{158} \sqrt{x} \sin\left(\frac{\pi}{4}x\right) dx$ | $-\int_0^{158} -\sqrt{x}  \mathrm{d}x$ | ;                 |
| <b>Note:</b> Award <b>A1</b> for two correct limits and <b>A1</b> for correct integrand. The <b>A1</b> for correct integrand may be awarded independently of all the other marks. |                                                                                                                                                                                                                                              |                                        |                   |

[4 marks]

Total [17 marks]

(a) recognizing relationship between v and s

eg 
$$\int v = s$$
,  $s' = v$   
 $s(4) - s(2) = 9$  A1 N2  
[2 marks]

(b) correctly interpreting distance travelled in first 2 seconds (seen anywhere, including part (a) or the area of 15 indicated on diagram) (A1)

eg 
$$\int_0^2 v = 15, s(2) = 15$$

valid approach to find total distance travelled

(M1)

(M1)

eg sum of 3 areas, 
$$\int_0^4 v + \int_4^5 v$$
, shaded areas in diagram between 0 and 5

**Note:** Award **M0** if only  $\int_0^5 |v|$  is seen.

total distance travelled = 33 (m)

correct working towards finding distance travelled between 2 and 5 (seen anywhere including within total area expression or on diagram) (A1)

eg 
$$\int_{2}^{4} v - \int_{4}^{5} v$$
,  $\int_{2}^{4} v = \int_{4}^{5} |v|$ ,  $\int_{4}^{5} v dt = -9$ ,  $s(4) - s(2) - [s(5) - s(4)]$ ,

(A1)

A1 N2

[5 marks]

Total [7 marks]

equal areas  
equal areas  
correct working using 
$$s(5) = s(2)$$
  
eg  $15+9-(-9), 15+2[s(4)-s(2)], 15+2(9), 2 \times s(4)-s(2), 48-15$ 

recognizing to integrate

$$eg \qquad \int f', \ \int 2e^{-3x} dx, \ du = -3$$

correct integral (do not penalize for missing +C)

eg 
$$-\frac{2}{3}e^{-3x} + C$$
  
substituting  $\left(\frac{1}{3}, 5\right)$  (in any order) into their integrated expression (must have  $+C$ ) M1  
eg  $-\frac{2}{3}e^{-3(1/3)} + C = 5$ 

Note: Award MO if they substitute into original or differentiated function.

$$f(x) = -\frac{2}{3}e^{-3x} + 5 + \frac{2}{3}e^{-1} \text{ (or any equivalent form, eg } -\frac{2}{3}e^{-3x} + 5 - \frac{2}{-3e}) \text{ A1 } \text{ N4}$$

[5 marks]

(M1)

(A2)



(a) 
$$B(a, 0)$$
 (accept  $B(q+1, 0)$ )

A2 N2 [2 marks]

(b)

Note: There are many approaches to this part, and the steps may be done in any order. Please check working and award marks in line with the markscheme, noting that candidates may work with the equation of the line before finding a.

#### FINDING a

| valid attempt to find an expression for $a$ in terms of $q$ | (M1) |
|-------------------------------------------------------------|------|
| $g(0) = a , p^0 + q = a$                                    |      |
| a = q + 1                                                   | (A1) |

### FINDING THE EQUATION OF $L_1$

#### EITHER

| attempt to substitute tangent gradient and coordinates<br>into equation of straight line | (M1) |
|------------------------------------------------------------------------------------------|------|
| eg $y-0 = f'(a)(x-a), y = f'(a)(x-(q+1))$                                                |      |
| correct equation in terms of $a$ and $p$                                                 | (A1) |

correct equation in terms of a and p1

$$eg \quad y-0 = \frac{1}{\ln(p)}(x-a)$$

#### OR

attempt to substitute tangent gradient and coordinates to find b

eg 
$$0 = \frac{1}{\ln(p)}(a) + b$$

$$b = \frac{-a}{\ln(p)}$$
(A1)

**THEN** (must be in terms of **both** p and q)

$$y = \frac{1}{\ln p}(x - q - 1), \ y = \frac{1}{\ln p}x - \frac{q + 1}{\ln p}$$
 A1 N3

**Note:** Award **A0** for final answers in the form  $L_1 = \frac{1}{\ln p} (x - q - 1)$ .

[5 marks]

(M1)

**Note:** There are many approaches to this part, and the steps may be done in any order. Please check working and award marks in line with the markscheme, noting that candidates may find q in terms of p before finding a value for p.

#### FINDING p

| valid approach to find the gradient of the tangent<br>eg $m_1m_2 = -1$ , $-\frac{1}{\frac{1}{\ln(\frac{1}{3})}}$ , $-\ln(\frac{1}{3})$ , $-\frac{1}{\ln p} = \frac{1}{\ln(\frac{1}{3})}$ | (M1) |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| correct application of log rule (seen anywhere)                                                                                                                                          | (A1) |   |
| eg $\ln\left(\frac{1}{3}\right)^{-1}$ , $-(\ln(1) - \ln(3))$                                                                                                                             |      |   |
| correct equation (seen anywhere)<br>eg $\ln p = \ln 3$ , $p = 3$                                                                                                                         | A1   |   |
| FINDING q                                                                                                                                                                                |      |   |
| correct substitution of $(-2, -2)$ into $L_2$ equation<br>eg $-2 = (\ln p)(-2) + q + 1$                                                                                                  | (A1) |   |
| $q = 2 \ln p - 3$ , $q = 2 \ln 3 - 3$ (seen anywhere)                                                                                                                                    | A1   |   |
| FINDING L <sub>1</sub>                                                                                                                                                                   |      |   |
| correct substitution of their $p$ and $q$ into their $L_1$                                                                                                                               | (A1) |   |
| eg $y = \frac{1}{\ln 3} (x - (2\ln 3 - 3) - 1)$                                                                                                                                          |      |   |
| $y = \frac{1}{\ln 3}(x - 2\ln 3 + 2), y = \frac{1}{\ln 3}x - \frac{2\ln 3 - 2}{\ln 3}$                                                                                                   | A1   | I |
| <b>Note:</b> Award <b>A0</b> for final answers in the form $L_1 = \frac{1}{\ln 2}(x - 2\ln 3 + 2)$ .                                                                                     |      |   |

Award AU for final answers in the form  $L_1 = \frac{1}{\ln 3} (x - 2\ln 3 + 2)$ .

[7 marks]

N2

Total [14 marks]

(d)

(a) 
$$y = 12 - 4x$$
 A1 N1

[1 mark]

(b) correct substitution into volume formula  
eg 
$$3x \times x \times y$$
,  $x \times 3x \times (12 - x - 3x)$ ,  $(12 - 4x)(x)(3x)$  (A1)

$$V = 3x^{2}(12 - 4x) \left(= 36x^{2} - 12x^{3}\right)$$
 A1 N2

**Note:** Award **A0** for unfinished answers such as  $3x^2(12-x-3x)$ .

(c) 
$$\frac{dV}{dx} = 72x - 36x^2$$
 A1A1 N2

**Note:** Award **A1** for 72x and **A1** for  $-36x^2$ .

[2 marks]

N2

[2 marks]

- (i) valid approach to find maximum eg  $V' = 0, 72x - 36x^2 = 0$ correct working eg  $x(72 - 36x), \frac{-72 \pm \sqrt{72^2 - 4 \cdot (-36) \cdot 0}}{2(-36)}, 36x = 72, 36x(2-x) = 0$  x = 2Note: Award A1 for x = 2 and x = 0.
  - (ii) valid approach to explain that *V* is maximum when x = 2 (M1) eg attempt to find *V*", sign chart (must be labelled *V*') correct value/s eg  $V''(2) = 72 - 72 \times 2$ , V'(a) where a < 2 and V'(b) where b > 2

correct reasoning P''(2) < 0, V' is positive for x < 2 and negative for x > 2

**Note:** Do not award **R1** unless **A1** has been awarded. V is maximum when x = 2

AG N0 [7 marks]

A1

(e) correct substitution into their expression for volume eg  $3 \times 2^2 (12 - 4 \times 2), 36 (2^2) - 12 (2^3)$  $V = 48 \text{ (cm}^3)$ 

A1 N1 [2 marks]

Total [14 marks]

| (a) | correct substitution into $b^2 - 4ac$<br>eg $(5k)^2 - 4(2)(3k^2 + 2), (5k)^2 - 8(3k^2 + 2)$ | (A1) |    |
|-----|---------------------------------------------------------------------------------------------|------|----|
|     | correct expansion of each term<br>eg $25k^2 - 24k^2 - 16$ , $25k^2 - (24k^2 + 16)$          | A1   |    |
|     | $k^2 - 16$                                                                                  | AG   | NO |

[2 marks]

М1

(b) valid approach m1eg  $f'(x) > 0, f'(x) \ge 0$ 

recognizing discriminant <0 or  $\leq 0$ eg D < 0,  $k^2 - 16 \leq 0$ ,  $k^2 < 16$ 

| two correct values for <i>k</i> /endpoints (even if inequalities are incorrect) | (A1)            |
|---------------------------------------------------------------------------------|-----------------|
| eg $k = \pm 4, k < -4 \text{ and } k > 4,  k  < 4$                              |                 |
|                                                                                 |                 |
| correct interval                                                                | A1 N2           |
| eg $-4 < k < 4, -4 \le k \le 4$                                                 |                 |
|                                                                                 | [4 marks]       |
|                                                                                 | Total [6 marks] |
|                                                                                 |                 |
|                                                                                 |                 |