## SAT PREP

Assignment : AP CALCULUS BC TEST (Limit and Continuity)

Part A. Directions: Answer these questions without using your calculator.

| 1.  | $\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 4} $ i       | s                  |                                                                   |                |
|-----|---------------------------------------------------|--------------------|-------------------------------------------------------------------|----------------|
|     |                                                   |                    | (C) $-\frac{1}{2}$ (D) $-1$ (                                     | E) ∞           |
| 2.  | $\lim_{x\to\infty}\frac{4-x^2}{x^2-1}$ i          | S                  |                                                                   |                |
|     | (A) 1                                             | ( <b>B</b> ) 0     | (C) -4 (D) -1 (E)                                                 | ∞              |
| 3.  | $\lim_{x \to 3} \frac{x-3}{x^2 - 2x}$             | - 3 is             | 54 S                                                              |                |
|     | (A) 0                                             | ( <b>B</b> ) 1     | (C) $\frac{1}{4}$ (D) $\infty$ (E)                                | none of these  |
| 4.  | $\lim_{x\to 0}\frac{x}{x}$ is                     |                    |                                                                   |                |
|     | (A) 1                                             | (B) 0              | (C) $\infty$ (D) -1 (E)                                           | nonexistent    |
| 5.  | $\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4} $ i       | s                  |                                                                   |                |
|     | (A) 4                                             | ( <b>B</b> ) 0     | (C) 1 (D) 3 (E)                                                   | 00             |
| 6.  | $\lim_{x\to\infty}\frac{4-x^2}{4x^2-x}$           | $\overline{-2}$ is |                                                                   |                |
|     | (A) -2                                            | (B) $-\frac{1}{4}$ | (C) 1 (D) 2 (                                                     | E) nonexistent |
|     | $5x^3 +$                                          |                    |                                                                   |                |
| 7.  | $\lim_{x \to \infty} \frac{5x^3 + 1}{20x^2 + 10}$ |                    | (C) 0 (D) 3 (E                                                    |                |
|     |                                                   | ( <b>B</b> ) -1    | (C) $0$ (D) $3$ (E)                                               | ) ∞            |
| 8.  | $\lim_{x \to \infty} \frac{3x^2 + 27}{x^3 - 27}$  | is                 |                                                                   |                |
|     | (A) 3                                             | ( <b>B</b> ) ∞     | (C) 1 (D) -1 (E)                                                  | 0              |
| 9.  | $\lim_{x\to\infty}\frac{2^{-x}}{2^x}$ is          |                    |                                                                   |                |
|     | (A) -1                                            | <b>(B)</b> 1       | $(\mathbf{C})  0 \qquad (\mathbf{D})  \infty \qquad (\mathbf{E})$ | none of these  |
| 10. | $\lim_{x\to\infty}\frac{2^{-x}}{2^x}$ is          |                    |                                                                   |                |
|     | (A) –1                                            | ( <b>B</b> ) 1     | (C) 0 (D) $\infty$ (E)                                            | none of these  |

11.  $\lim_{x\to 0} \frac{\sin 5x}{x}$ (B)  $=\frac{1}{5}$  (C) =1 (D) =5(A) = 0(E) does not exist 12.  $\lim_{x \to 0} \frac{\sin 2x}{3x}$ (C) = 1 (D) =  $\frac{3}{2}$ (B)  $=\frac{2}{3}$ (A) = 0(E) does not exist 13. The graph of  $y = \arctan x$  has (A) vertical asymptotes at x = 0 and  $x = \pi$ (B) horizontal asymptotes at  $y = \pm \frac{\pi}{2}$ (C) horizontal asymptotes at y = 0 and  $y = \pi$ (D) vertical asymptotes at  $x = \pm \frac{\pi}{2}$ (E) none of these 14. The graph of  $y = \frac{x^2 - 9}{3x - 9}$  has (B) a horizontal asymptote at  $y = \frac{1}{3}$ (A) a vertical asymptote at x = 3(C) a removable discontinuity at x = 3(D) an infinite discontinuity at x = 3(E) none of these

15. 
$$\lim_{x \to 0} \frac{\sin x}{x^2 + 3x}$$
 is

(A) 1 (B) 
$$\frac{1}{3}$$
 (C) 3 (D)  $\infty$  (E)  $\frac{1}{4}$ 

Part B. Directions: Some of the following questions require the use of a graphing calculator.

- 1. The function  $f(x) = \begin{cases} x^2/x & (x \neq 0) \\ 0 & (x = 0) \end{cases}$ 
  - (A) is continuous everywhere
  - (B) is continuous except at x = 0
  - (C) has a removable discontinuity at x = 0
  - (D) has an infinite discontinuity at x = 0
  - (E) has x = 0 as a vertical asymptote

Q2 and Q6 are based on the function f shown in the graph and defined below:

- 2.  $\lim_{x\to 2} f(x)$ 
  - (C) equals 2 (A) equals 0 **(B)** equals 1
  - **(D)** does not exist **(E)** none of these
- **3.** The function *f* is defined on [-1,3]
  - (A) if  $x \neq 0$ (B) if  $x \neq 1$ if  $x \neq 2$ (C)
  - (D) if  $x \neq 3$ **(E)** at each x in [-1,3]
- 4. The function f has a removable discontinuity at

(A) x = 0**(B)** x = 1(C) x = 2**(D)** x = 3**(E)** none of these

5. On which of the following intervals is f continuous?

(A)  $-1 \le x \le 0$ **(B)** 0 < x < 1(C)  $1 \le x \le 2$ 

- (D)  $2 \le x \le 3$ (E) none of these
- 6. The function f has a jump discontinuity at

(A) 
$$x = -1$$
 (B)  $x = 1$  (C)  $x = 2$   
(D)  $x = 3$  (E) none of these

none of these

## Answer

Part A

- **1.** B
- D
  C
- 4. A
- 5. D
- 6. B
- 7. A
- **8.** E
- 9. C
- 10. D
- 11. D
- **12.** B
- **13.** B
- 14. C
- 15. B
- Part B
- **1.** A
- **2.** A
- **3.** E
- **4.** C
- 5. B
- 6. B

