SAT PREP

Assignment : AP CALCULUS BC TEST (Differentiation)

- 1. At how many points on the interval [-5,5] is a tangent to $y = x + \cos x$ parallel to the secant line?
 - (A) none
- **(B)** 1
- **(C)** 2
- **(D)** 3
- **(E)** more than 3
- **2.** From the values of f shown, estimate f'(2).

\boldsymbol{x}	1.92	1.94	1.96	1.98	2.00
f(x)	6.00	5.00	4.40	4.10	4.00

- (A) -0.10
- **(B)** -0.20
- (C) -5
- **(D)** -10
- **(E)** -25

- 3. The graph of g' is shown here. Which of the following statements is (are) true of g at x = a?
 - I. *g* is continuous.
 - II. g is differentiable.
 - III. g is increasing.

- **(B)** III only (C) I and III only (A) I only
- (D) II and III only
- (E) I, II, and III
- $\mathbf{4.}$ A function f has the derivative shown. Which of the following statements must be false?

- (A) f is continuous at x = a.
- **(B)** f(a) = 0.
- (C) f has a vertical asymptote at x = a.
- **(D)** f has a jump discontinuity at x = a.
- (E) f has a removable discontinuity at x = a.

5. The table below shows some points on a function f that is both continuous and differentiable on the closed interval [2,10].

X	2	4	6	8	10
f(x)	30	25	20	25	30

- Which must be true?
- (A) f(x) > 0 for 2 < x < 10
- **(B)** f'(6) = 0
- (C) f'(8) > 0
- **(D)** The maximum value of f on the interval [2,10] is 30.
- (E) For some value of x on the interval [2,10] f'(x) = 0.

- **6.** If f is differentiable and difference quotients overestimate the slope of f at x = a for all h > 0, which must be true?
 - (A) f'(a) > 0
- **(B)** f'(a) < 0
- (C) f''(a) > 0

- **(D)** f''(a) < 0
- (E) none of these

Use this graph of y = f(x) for Questions 87 and 88.

- 7. f'(3) is most closely approximated by
 - (A) 0.3
- **(B)** 0.8
- (C) 1.5
- **(D)** 1.8
- **(E)** 2
- **8.** The rate of change of f(x) is least at $x \simeq$
 - (A) -3
- **(B)** -1.3
- (C) 0 (D) 0.7
- **9.** If $y = \sqrt{x^2 + 1}$, then the derivative of y^2 with respect to x^2 is

 - (A) 1 (B) $\frac{x^2+1}{2x}$ (C) $\frac{x}{2(x^2+1)}$ (D) $\frac{2}{x}$

- If $x = t^2 1$ and $y = t^4 2t^3$, then, when t = 1, $\frac{d^2y}{dx^2}$ is
 - (A) 1
- **(B)** -1
- $(\mathbf{C}) \quad 0$
- **(D)** 3

- $\lim_{x\to\infty} \frac{e^x}{x^{50}}$ equals 11
 - $(\mathbf{A}) \quad 0$
- **(B)**
- (C) $\frac{1}{50!}$ (D) ∞
- **(E)** none of these
- The graph in the xy-plane represented by $x = 3 + 2 \sin t$ and $y = 2 \cos t 1$, for $-\pi \le t \le \pi$, is
 - (A) a semicircle
- a circle **(B)**
- an ellipse **(C)**

- half of an ellipse **(D)**
- **(E)** a hyperbola

13 Water is poured into a conical reservoir at a constant rate. If h(t) is the rate of change of the depth of the water, then h is

(D) nonlinear and increasing

constant

- (\mathbf{E}) nonlinear and decreasing
- 14 At how many points on the interval [a,b] does the function graphed satisfy the Mean Value Theorem?

- (A) none
- **(B)**
- (C) 2
- **(D)**
- (E)

15

(A)

(B)

(C)

- (A) is 1
- **(B)** is 0
- (C)
- **(D)** oscillates between -1 and 1
 - (E) is none of these
- The table gives the values of a function f that is differentiable on the interval [0,1]:

$\boldsymbol{\mathcal{X}}$	0.10	0.20	0.30	0.40	0.50	0.60
f(x)	0.171	0.288	0.357	0.384	0.375	0.336

According to this table, the best approximation of f'(0.10) is

- (A) 0.12
- **(B)** 1.08
- **(C)** 1.17
- **(D)** 1.77
- **(E)** 2.88
- 17 Suppose $y = f(x) = 2x^3 3x$. If h(x) is the inverse function of f, then h'(-1) =
- (A) -1 (B) $\frac{1}{5}$ (C) $\frac{1}{3}$ (D) 1 (E) 3

- On the interval 1 < x < 2, f(x) equals 18
 - (A) -x-2
- **(B)** -x 3
- (C) -x-4
- **(D)**
- (E) x-2
- Over which of the following intervals does f'(x) equal zero? 19
 - I. (-6,-3)
- II. (-3,-1) III. (2,5)

- (A) I only
- (B) II only (C) I and II only
- (**D**) I and III only
- (E) II and III only
- **20** For -6 < x < -3, f'(x) equals $(A) \quad -\frac{3}{2} \qquad (B) \quad -1 \qquad (C) \quad 1 \qquad (D)$

- **(E)**
- 21 How many points of discontinuity does f'(x) have on the interval -6 < x < 7?
 - (A) none
- **(B)** 2
- **(C)**
- **(D)**
- (\mathbf{E}) 5
- 22 Which of the following statements about the graph of f'(x) is false?
 - (A) It consists of six horizontal segments.
 - **(B)** It has four jump discontinuities.
 - f'(x) is discontinuous at each x in the set $\{-3,-1,1,2,5\}$.
 - **(D)** f'(x) ranges from -3 to 2.
 - (E) On the interval -1 < x < 1, f'(x) = -3.