Part A-The use of a calculator is not allowed.

Find the derivative of each of the following functions.

1.
$$y = 6x^5 - x + 10$$

2.
$$f(x) = \frac{1}{x} + \frac{1}{\sqrt[3]{x^2}}$$

3.
$$y = \frac{5x^6 - 1}{x^2}$$

4.
$$y = \frac{x^2}{5x^6 - 1}$$

5.
$$f(x) = (3x-2)^5(x^2-1)$$

6.
$$y = \sqrt{\frac{2x+1}{2x-1}}$$

7.
$$y = 10 \cot(2x - 1)$$

8.
$$y = 3x \sec(3x)$$

9.
$$y = 10 \cos[\sin(x^2 - 4)]$$

10.
$$y = 8 \cos^{-1}(2x)$$

11.
$$y = 3e^5 + 4xe^x$$

12.
$$y = \ln(x^2 + 3)$$

Part B-Calculators are allowed.

13. Find
$$\frac{dy}{dx}$$
, if $x^2 + y^3 = 10 - 5xy$.

- 14. The graph of a function f on [1, 5] is shown in Figure 6.9-1. Find the approximate value of f'(4).
- 15. Let f be a continuous and differentiable function. Selected values of f are shown below. Find the approximate value of f' at x=2.

x	-1	0	1	2	3
f	6	5	6	9	14

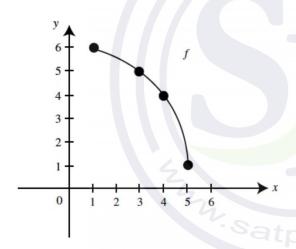


Figure 6.9-1

16. If
$$f(x) = x^5 + 3x - 8$$
, find $(f^{-1})'(-8)$.

17. Write an equation of the tangent to the curve $y = \ln x$ at x = e.

18. If
$$y = 2x \sin x$$
, find $\frac{d^2y}{dx^2}$ at $x = \frac{\pi}{2}$.

- 19. If the function $f(x) = (x-1)^{2/3} + 2$, find all points where f is not differentiable.
- 20. Write an equation of the normal line to the curve $x \cos y = 1$ at $\left(2, \frac{\pi}{3}\right)$.

21.
$$\lim_{x \to 3} \frac{x^2 - 3x}{x^2 - 9}$$

22.
$$\lim_{x \to 0^+} \frac{\ln(x+1)}{\sqrt{x}}$$

23.
$$\lim_{x\to 0} \frac{e^x - 1}{\tan 2x}$$

24.
$$\lim_{x\to 0} \frac{\cos(x)-1}{\cos(2x)-1}$$

$$25. \lim_{x \to \infty} \frac{5x + 2\ln x}{x + 3\ln x}$$