Multiple-Choice

- 1. The fraction $\frac{x-2}{x^2+4x-21}$ is *not* defined when x=
 - (A) 2
 - (B) 7 or -3
 - (C) -7 or 3
 - (D) -7 or -3
- 2. If $\frac{a^2}{2} = 2a$, then a equals
 - (A) 0 or -2
 - (B) 0 or 2
 - (C) 0 or -4
 - (D) 0 or 4
- 3. If $(s-3)^2 = 0$, what is the value of (s+3)(s+5)?
 - (A) 48
 - (B) 24
 - (C) 15
 - (D) 0
- 4. If $k = 7 + \frac{8}{k}$, what is the value of $k^2 + \frac{64}{k^2}$?
 - (A) 33
 - (B) 49
 - (C) 64
 - (D) 65

$$\frac{18 - 3w}{w + 6} = \frac{w^2}{w + 6}$$

- 5. Which of the following represents the sum of all possible solutions to the equation above?
 - (A) -9
 - (B) -3
 - (C) 3
 - (D) 9

Equation (1):
$$2x^2 + 7x = 4$$

Equation (2):
$$(y-1)^2 = 9$$

- 6. If f is the greater of the two roots of Equation (1) and g is the lesser of the two roots of Equation (2), what is the value of the product $f \times g$?
 - (A) -4
 - (B) -1
 - (C) 2
 - (D) 8

- 7. If a, b, and c represent the set of all values of x that satisfy the equation above, what is the value of (a + b + c) + (abc)?
 - (A) -1
 - (B) 0
 - (C) 1
 - (D) 9
- 8. If $\frac{x^2}{3} = x$, then x =
 - (A) 0 or -3
 - (B) 3 only
 - (C) 0 only
 - (D) 0 or 3
- 9. By how much does the sum of the roots of the equation (x + 1)(x 3) = 0 exceed the product of its roots?
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 5
- 10. If $x^2 63x 64 = 0$ and p and n are integers such that $p^n = x$, which of the following CANNOT be a value for p?
 - (A) -8
 - (B) -4
 - (C) -1
 - (D) 4
- 11. If r > 0 and $r^t = 6.25r^{t+2}$, then r =
 - (A) $\frac{2}{5}$
 - (B) $\frac{4}{9}$
 - (C) $\frac{5}{8}$
 - (D) $\frac{3}{4}$

$$\frac{x}{2x-1} = \frac{2x+1}{x+2}$$

12. If m and n represent the solutions of the equation above, what is the value of m + n?

- (A) $-\frac{4}{3}$
- (B) $-\frac{3}{4}$
- (C) $\frac{2}{3}$
- (D) $\frac{5}{4}$

$$\frac{1}{(t-2)^2} = 6 + \frac{1}{(t-2)}$$

- 13. If *p* and *q* represent the solutions of the equation above, what is the value of $p \times q$?
 - (A) $-\frac{3}{2}$
 - (B) $\frac{7}{2}$
 - (C) $\frac{9}{4}$
 - (D) $\frac{15}{8}$

Grid-In

- 1. If $(4p + 1)^2 = 81$ and p > 0, what is a possible value of p?
- 2. If (x-1)(x-3) = -1, what is a possible value of x?
- 3. By what amount does the sum of the roots exceed the product of the roots of the equation (x 5)(x + 2) = 0?

$$(3k + 14)k = 5$$

4. If r and s represent the solutions of the equation above and r > s, what is the value of the difference r - s?

$$x^4 + 16 = 10x^2$$

5. If p and q are distinct roots of the equation above and pq > 0, what is the value of the product pq?

$$(2a-5)^2 = (4-3a)^2$$

6. What is the sum of the roots of the equation above?