## Multiple-Choice

- 1. If the function f is defined by f(x) = 3x + 2, and if f(a) = 17, what is the value of a?
  - (A) 5
  - (B) 9
  - (C) 10
  - (D) 11
- 2. A function f is defined such that f(1) = 2, f(2) = 5, and f(n) = f(n-1) f(n-2) for all integer values of f0 greater than 2. What is the value of f3?
  - (A) -8
  - (B) -2
  - (C) 2
  - (D) 8



- 3. The graph of y = f(x) is shown above. If  $-4 \le x \le 10$ , for how many values of x does f(x) = 2?
  - (A) None
  - (B) One
  - (C) Two
  - (D) Three
- 4. If function *f* is defined by f(x) = 5x + 3, then which expression represents 2f(x) 3?
  - (A) 10x 3
  - (B) 10x + 3
  - (C) 10x
  - (D) 3
- 5. If the function *k* is defined by  $k(h) = (h + 1)^2$ , then k(x 2) =
  - (A)  $x^2 x$
  - (B)  $x^2 2x$

- (C)  $x^2 2x + 1$
- (D)  $x^2 + 2x 1$

| x    | 1 | 2 | 3 | 4  | 5  |
|------|---|---|---|----|----|
| f(x) | 3 | 4 | 5 | 6  | 7  |
| x    | 3 | 4 | 5 | 6  | 7  |
| g(x) | 4 | 6 | 8 | 10 | 12 |

- 6. The accompanying tables define functions f and g. What is g(f(3))?
  - (A) 4
  - (B) 6
  - (C) 8
  - (D) 10
- 7. In 2014, the United States Postal Service charged \$0.48 to mail a first-class letter weighing up to 1 oz. and \$0.21 for each additional ounce. Based on these rates, which function would determine the cost, in dollars, *c*(*z*), of mailing a first-class letter weighing *z* ounces where *z* is an integer greater than 1?
  - (A) c(z) = 0.48z + 0.21
  - (B) c(z) = 0.21z + 0.48
  - (C) c(z) = 0.48(z 1) + 0.21
  - (D) c(z) = 0.21(z 1) + 0.48



- 8. Based on the graphs of functions f and g shown in the accompanying figure, for which values of x between -3 and 3 is  $f(x) \ge g(x)$ ?
  - I.  $-2 \le x \le 0$
  - II.  $0 \le x \le 1$
  - III.  $1 \le x \le 3$
  - (A) I only
  - (B) II only
  - (C) III only
  - (D) I and II

- f(2n) = 4f(n) for all integers n
- f(3) = 9
- 9. If function *f* satisfies the above two conditions for all positive integers *n*, which equation could represent function *f* ?
  - (A) f(n) = 9
  - (B)  $f(n) = n^2$
  - (C) f(n) = 3n
  - (D) f(n) = 2n + 3



- 10. If in the accompanying figure (p, q) lies on the graph of y = f(x) and  $0 \le p \le 5$ , which of the following represents the set of corresponding values of q?
  - (A)  $-5 \le q \le 15$
  - (B)  $-5 \le q \le 10$
  - (C)  $-5 \le q \le 5$
  - (D)  $5 \le q \le 10$



- 11. The accompanying figure shows the graph of y = f(x). If function g is defined by g(x) = f(x + 4), then g(-1) could be
  - (A) -2
  - (B) 3
  - (C) 4
  - (D) 5

| x | f(x) | g(x) |
|---|------|------|
| 1 | 2    | 3    |
| 2 | 4    | 5    |
| 3 | 5    | 1    |
| 4 | 3    | 2    |
| 5 | 1    | 4    |

**Questions 12–13** refer to the accompanying table, which gives the values of functions f and g for integer values of x from 1 to 5, inclusive.

- 12. According to the table, if f(5) = p, what is the value of g(p)?
  - (A) 1
  - (B) 2
  - (C) 3
  - (D) 4
- 13. Function h is defined by h(x) = 2f(x) 1, where function f is defined in the accompanying table. What is the value of g(k) when h(k) = 5?
  - (A) 1
  - (B) 2
  - (C) 3
  - (D) 4

| х    | 0  | 1 | 4 | 5 |
|------|----|---|---|---|
| f(x) | -2 | 5 | 0 | 2 |

| x    | 0 | 2  | 3 | -4 |
|------|---|----|---|----|
| g(x) | 2 | -1 | 1 | 5  |

- 14. Some values of functions f and g are given by the tables above. What is the value of g(f(5))?
  - (A) -1
  - (B) 1
  - (C) 2
  - (D) 5
- 15. In 2012, a retail chain of fast food restaurants had 68 restaurants in California and started to expand nationally by adding 9 new restaurants each year thereafter. At this rate, which of the following functions *f* represent the number of restaurants there will be in this retail chain *n* years after 2012 assuming none of these restaurants close?
  - (A)  $f(n) = 2{,}012 + 9n$
  - (B) f(n) = 9 + 68n
  - (C) f(n) = 68 + 9(n 2,012)
  - (D) f(n) = 68 + 9n
- 16. According to market research, the number of magazine subscriptions that can be sold can be estimated using the function

$$n(p) = \frac{5,000}{4p-k},$$

where n is the number of thousands of subscriptions sold, p is the price in dollars for each individual subscription, and k is some constant. If 250,000 subscriptions were sold at \$15 for each subscription, how many subscriptions could be sold if the price were set at \$20 for each subscription?

- (A) 50,000
- (B) 75,000
- (C) 100,000
- (D) 125,000

## Grid-In

1. Let *h* be the function defined by  $h(x) = x + 4^x$ . What is the value of  $h\left(-\frac{1}{2}\right)^2$ ?



- 2. The above figure shows the graph of y = f(x) where c is a nonzero constant. If f(w + 1.7) = 0 and w > 0, what is a possible value of w?
- 3. Let the function f be defined by  $f(x) = x^2 + 12$ . If n is a positive number such that f(3n) = 3f(n), what is the value of n?



4. Let the functions f and g be defined by the graphs in the accompanying diagram. What is the value of f(g(3))?

**Questions 5 and 6** Let the function *f* be defined by the graph below.



- 5. What is the integer value of 2f(-1) + 3f(1)?
- 6. If *n* represents the number of different values of *x* for which f(x) = 2 and *m* represents the number of different values of *x* for which f(x) = 4, what is the value of *mn*?
- 7. Let *g* be the function defined by g(x) = x 1. If  $\frac{1}{2}g(c) = 4$ , what is the value of g(2c)?



8. The figure above shows the graph of function h. If function f is defined by f(x) = h(2x) + 1, what is the value of f(-1)?