Multiple-Choice

- 1. The path traveled by a roller coaster is modeled by the equation $y = 27 \sin 13x + 30$ where y is measured in meters. What is the number of meters in the maximum altitude of the roller coaster?
 - (A) 13
 - (B) 27
 - (C) 30
 - (D) 57

- 2. The <u>unit</u> circle above has radius \overline{OC} , angle AOB measures w radians, \overline{BA} is tangent to circle O at A, and \overline{CD} is perpendicular to the x-axis. The length of which line segment represents $\sin w$?
 - $(A) \overline{OD}$
 - (B) *CD*
 - (C) \overline{AB}
 - (D) \overline{OB}
- 3. If x is an acute angle, which expression is *not* equivalent to $\cos x$?
 - (A) $-\cos(-x)$
 - (B) $\left(\frac{\pi}{2} x\right)$
 - (C) $-\cos(x + \pi)$
 - (D) $\cos(x-2\pi)$

- 4. In the figure above, θ is an angle in standard position and its terminal side passes through the point $P\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ on the unit circle. What is a possible value of θ ?
 - (A) $\frac{2}{3}\pi$
 - (B) $\frac{5}{6}\pi$
 - (C) $\frac{7}{6}\pi$
 - (D) $\frac{4}{3}\pi$

- 5. In the unit circle above, an angle that measures 4 radians intercepts arc *AB*. What is the length of major arc *AB*?
 - (A) $\frac{\pi}{2}$
 - (B) 4
 - (C) $\frac{\pi + 2}{4}$
 - (D) $\frac{4}{\pi}$
- 6. If θ is an angle in standard position and its terminal side passes through the point $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$ on the unit circle, then a possible value of θ is

- (A) $\frac{7\pi}{6}$
- (B) $\frac{4\pi}{3}$
- (C) $\frac{5\pi}{3}$
- (D) $\frac{11\pi}{6}$
- 7. What are the coordinates of the image of the point (1, 0) on the terminal side of an angle after a clockwise rotation of $\frac{\pi}{6}$ radians?
 - (A) $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$
 - (B) $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$
 - (C) $\left(-\frac{\sqrt{3}}{2}, 1\right)$
 - (D) $\left(\frac{1}{2}, -\frac{1}{2}\right)$
- 8. What are the coordinates of the image of the point (1, 0) on the terminal side of an angle after a counterclockwise rotation of $\frac{3}{4}\pi$ radians?
 - (A) $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$
 - (B) $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
 - (C) $(-\sqrt{2}, 1)$
 - (D) $\left(-\frac{1}{2}, \frac{1}{2}\right)$
- 9. Which of the following expressions is equivalent to $\frac{\sin^2 x}{1 + \cos x}$?
 - (A) $1 \sin x$
 - (B) $1 \cos x$
 - (C) $\sin x + \cos x$
 - (D) $\sin x \cos x$

- 10. In the unit circle above, the ordered pair (x, y) represents a point P where the terminal side intersects the unit circle, as shown in the accompanying figure. If $\theta = -\frac{\pi}{3}$ radians, what is the value of y?
 - (A) $-\frac{\sqrt{3}}{2}$
 - (B) $-\frac{\sqrt{2}}{2}$
 - (C) -√3
 - (D) $-\frac{1}{2}$
- 11. If x is a positive acute angle and $\cos x = a$, an expression for $\tan x$ in terms of a is
 - (A) $\frac{1-a}{a}$
 - (B) $\sqrt{1-a^2}$
 - (C) $\frac{\sqrt{1-a^2}}{a}$
 - (D) $\frac{1}{1-a}$

