AP ${ }^{\circledR}$ Calculus BC 2011 Free-Response Questions

Abstract

About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 1900, the College Board was created to expand access to higher education. Today, the membership association is made up of more than 5,900 of the world's leading educational institutions and is dedicated to promoting excellence and equity in education. Each year, the College Board helps more than seven million students prepare for a successful transition to college through programs and services in college readiness and college success - including the SAT ${ }^{\circ}$ and the Advanced Placement Program ${ }^{\circ}$. The organization also serves the education community through research and advocacy on behalf of students, educators and schools.

© 2011 The College Board. College Board, Advanced Placement Program, AP, AP Central, SAT and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation Service and inspiring minds are trademarks owned by the College Board. All other products and services may be trademarks of their respective owners. Visit the College Board on the Web: www.collegeboard.org. Permission to use copyrighted College Board materials may be requested online at: www.collegeboard.org/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.org.
AP Central is the official online home for the AP Program: apcentral.collegeboard.com.

2011 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC
 SECTION II, Part A

Time- $\mathbf{3 0}$ minutes
Number of problems- 2

A graphing calculator is required for these problems.

1. At time t, a particle moving in the $x y$-plane is at position $(x(t), y(t))$, where $x(t)$ and $y(t)$ are not explicitly given. For $t \geq 0, \frac{d x}{d t}=4 t+1$ and $\frac{d y}{d t}=\sin \left(t^{2}\right)$. At time $t=0, x(0)=0$ and $y(0)=-4$.
(a) Find the speed of the particle at time $t=3$, and find the acceleration vector of the particle at time $t=3$.
(b) Find the slope of the line tangent to the path of the particle at time $t=3$.
(c) Find the position of the particle at time $t=3$.
(d) Find the total distance traveled by the particle over the time interval $0 \leq t \leq 3$.

WRITE ALL WORK IN THE EXAM BOOKLET.

2011 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

t (minutes)	0	2	5	9	10
$H(t)$ (degrees Celsius)	66	60	52	44	43

2. As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for $0 \leq t \leq 10$, where time t is measured in minutes and temperature $H(t)$ is measured in degrees Celsius. Values of $H(t)$ at selected values of time t are shown in the table above.
(a) Use the data in the table to approximate the rate at which the temperature of the tea is changing at time $t=3.5$. Show the computations that lead to your answer.
(b) Using correct units, explain the meaning of $\frac{1}{10} \int_{0}^{10} H(t) d t$ in the context of this problem. Use a trapezoidal sum with the four subintervals indicated by the table to estimate $\frac{1}{10} \int_{0}^{10} H(t) d t$.
(c) Evaluate $\int_{0}^{10} H^{\prime}(t) d t$. Using correct units, explain the meaning of the expression in the context of this problem.
(d) At time $t=0$, biscuits with temperature $100^{\circ} \mathrm{C}$ were removed from an oven. The temperature of the biscuits at time t is modeled by a differentiable function B for which it is known that $B^{\prime}(t)=-13.84 e^{-0.173 t}$. Using the given models, at time $t=10$, how much cooler are the biscuits than the tea?

WRITE ALL WORK IN THE EXAM BOOKLET.

END OF PART A OF SECTION II

2011 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC
 SECTION II, Part B

Time- 60 minutes
Number of problems-4

No calculator is allowed for these problems.

3. Let $f(x)=e^{2 x}$. Let R be the region in the first quadrant bounded by the graph of f, the coordinate axes, and the vertical line $x=k$, where $k>0$. The region R is shown in the figure above.
(a) Write, but do not evaluate, an expression involving an integral that gives the perimeter of R in terms of k.
(b) The region R is rotated about the x-axis to form a solid. Find the volume, V, of the solid in terms of k.
(c) The volume V, found in part (b), changes as k changes. If $\frac{d k}{d t}=\frac{1}{3}$, determine $\frac{d V}{d t}$ when $k=\frac{1}{2}$.

2011 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

Graph of f
4. The continuous function f is defined on the interval $-4 \leq x \leq 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above. Let $g(x)=2 x+\int_{0}^{x} f(t) d t$.
(a) Find $g(-3)$. Find $g^{\prime}(x)$ and evaluate $g^{\prime}(-3)$.
(b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \leq x \leq 3$. Justify your answer.
(c) Find all values of x on the interval $-4<x<3$ for which the graph of g has a point of inflection. Give a reason for your answer.
(d) Find the average rate of change of f on the interval $-4 \leq x \leq 3$. There is no point $c,-4<c<3$, for which $f^{\prime}(c)$ is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem.

WRITE ALL WORK IN THE EXAM BOOKLET.

2011 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

5. At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{d W}{d t}=\frac{1}{25}(W-300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.
(a) Use the line tangent to the graph of W at $t=0$ to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t=\frac{1}{4}$).
(b) Find $\frac{d^{2} W}{d t^{2}}$ in terms of W. Use $\frac{d^{2} W}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t=\frac{1}{4}$.
(c) Find the particular solution $W=W(t)$ to the differential equation $\frac{d W}{d t}=\frac{1}{25}(W-300)$ with initial condition $W(0)=1400$.

WRITE ALL WORK IN THE EXAM BOOKLET.

2011 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

6. Let $f(x)=\sin \left(x^{2}\right)+\cos x$. The graph of $y=\left|f^{(5)}(x)\right|$ is shown above.
(a) Write the first four nonzero terms of the Taylor series for $\sin x$ about $x=0$, and write the first four nonzero terms of the Taylor series for $\sin \left(x^{2}\right)$ about $x=0$.
(b) Write the first four nonzero terms of the Taylor series for $\cos x$ about $x=0$. Use this series and the series for $\sin \left(x^{2}\right)$, found in part (a), to write the first four nonzero terms of the Taylor series for f about $x=0$.
(c) Find the value of $f^{(6)}(0)$.
(d) Let $P_{4}(x)$ be the fourth-degree Taylor polynomial for f about $x=0$. Using information from the graph of $y=\left|f^{(5)}(x)\right|$ shown above, show that $\left|P_{4}\left(\frac{1}{4}\right)-f\left(\frac{1}{4}\right)\right|<\frac{1}{3000}$.

WRITE ALL WORK IN THE EXAM BOOKLET.

END OF EXAM

$A P$

AP $^{\circledR}$ Calculus BC 2012 Free-Response Questions

About the College Board

The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 1900, the College Board was created to expand access to higher education. Today, the membership association is made up of more than 5,900 of the world's leading educational institutions and is dedicated to promoting excellence and equity in education. Each year, the College Board helps more than seven million students prepare for a successful transition to college through programs and services in college readiness and college success - including the SAT ${ }^{\circ}$ and the Advanced Placement Program ${ }^{\circ}$. The organization also serves the education community through research and advocacy on behalf of students, educators, and schools.
© 2012 The College Board. College Board, Advanced Placement Program, AP, AP Central, SAT, and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation Service and inspiring minds are trademarks owned by the College Board. All other products and services may be trademarks of their respective owners. Visit the College Board on the Web: www.collegeboard.org. Permission to use copyrighted College Board materials may be requested online at: www.collegeboard.org/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.org.
AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

2012 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC

SECTION II, Part A
Time- $\mathbf{3 0}$ minutes
Number of problems-2

A graphing calculator is required for these problems.

t (minutes)	0	4	9	15	20
$W(t)$ (degrees Fahrenheit)	55.0	57.1	61.8	67.9	71.0

1. The temperature of water in a tub at time t is modeled by a strictly increasing, twice-differentiable function W, where $W(t)$ is measured in degrees Fahrenheit and t is measured in minutes. At time $t=0$, the temperature of the water is $55^{\circ} \mathrm{F}$. The water is heated for 30 minutes, beginning at time $t=0$. Values of $W(t)$ at selected times t for the first 20 minutes are given in the table above.
(a) Use the data in the table to estimate $W^{\prime}(12)$. Show the computations that lead to your answer. Using correct units, interpret the meaning of your answer in the context of this problem.
(b) Use the data in the table to evaluate $\int_{0}^{20} W^{\prime}(t) d t$. Using correct units, interpret the meaning of $\int_{0}^{20} W^{\prime}(t) d t$ in the context of this problem.
(c) For $0 \leq t \leq 20$, the average temperature of the water in the tub is $\frac{1}{20} \int_{0}^{20} W(t) d t$. Use a left Riemann sum with the four subintervals indicated by the data in the table to approximate $\frac{1}{20} \int_{0}^{20} W(t) d t$. Does this approximation overestimate or underestimate the average temperature of the water over these 20 minutes? Explain your reasoning.
(d) For $20 \leq t \leq 25$, the function W that models the water temperature has first derivative given by $W^{\prime}(t)=0.4 \sqrt{t} \cos (0.06 t)$. Based on the model, what is the temperature of the water at time $t=25$?

2012 AP $^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

2. For $t \geq 0$, a particle is moving along a curve so that its position at time t is $(x(t), y(t))$. At time $t=2$, the particle is at position $(1,5)$. It is known that $\frac{d x}{d t}=\frac{\sqrt{t+2}}{e^{t}}$ and $\frac{d y}{d t}=\sin ^{2} t$.
(a) Is the horizontal movement of the particle to the left or to the right at time $t=2$? Explain your answer. Find the slope of the path of the particle at time $t=2$.
(b) Find the x-coordinate of the particle's position at time $t=4$.
(c) Find the speed of the particle at time $t=4$. Find the acceleration vector of the particle at time $t=4$.
(d) Find the distance traveled by the particle from time $t=2$ to $t=4$.

END OF PART A OF SECTION II

CALCULUS BC
 SECTION II, Part B
 Time- 60 minutes
 Number of problems-4

No calculator is allowed for these problems.

Graph of f
3. Let f be the continuous function defined on $[-4,3]$ whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x)=\int_{1}^{x} f(t) d t$.
(a) Find the values of $g(2)$ and $g(-2)$.
(b) For each of $g^{\prime}(-3)$ and $g^{\prime \prime}(-3)$, find the value or state that it does not exist.
(c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.
(d) For $-4<x<3$, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.

2012 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

x	1	1.1	1.2	1.3	1.4
$f^{\prime}(x)$	8	10	12	13	14.5

4. The function f is twice differentiable for $x>0$ with $f(1)=15$ and $f^{\prime \prime}(1)=20$. Values of f^{\prime}, the derivative of f, are given for selected values of x in the table above.
(a) Write an equation for the line tangent to the graph of f at $x=1$. Use this line to approximate $f(1.4)$.
(b) Use a midpoint Riemann sum with two subintervals of equal length and values from the table to approximate $\int_{1}^{1.4} f^{\prime}(x) d x$. Use the approximation for $\int_{1}^{1.4} f^{\prime}(x) d x$ to estimate the value of $f(1.4)$. Show the computations that lead to your answer.
(c) Use Euler's method, starting at $x=1$ with two steps of equal size, to approximate $f(1.4)$. Show the computations that lead to your answer.
(d) Write the second-degree Taylor polynomial for f about $x=1$. Use the Taylor polynomial to approximate $f(1.4)$.

2012 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

5. The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time $t=0$, when the bird is first weighed, its weight is 20 grams. If $B(t)$ is the weight of the bird, in grams, at time t days after it is first weighed, then

$$
\frac{d B}{d t}=\frac{1}{5}(100-B) .
$$

Let $y=B(t)$ be the solution to the differential equation above with initial condition $B(0)=20$.
(a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your reasoning.
(b) Find $\frac{d^{2} B}{d t^{2}}$ in terms of B. Use $\frac{d^{2} B}{d t^{2}}$ to explain why the graph of B cannot resemble the following graph.

(c) Use separation of variables to find $y=B(t)$, the particular solution to the differential equation with initial condition $B(0)=20$.

2012 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

6. The function g has derivatives of all orders, and the Maclaurin series for g is $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+3}=\frac{x}{3}-\frac{x^{3}}{5}+\frac{x^{5}}{7}-\cdots$.
(a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g.
(b) The Maclaurin series for g evaluated at $x=\frac{1}{2}$ is an alternating series whose terms decrease in absolute value to 0 . The approximation for $g\left(\frac{1}{2}\right)$ using the first two nonzero terms of this series is $\frac{17}{120}$. Show that this approximation differs from $g\left(\frac{1}{2}\right)$ by less than $\frac{1}{200}$.
(c) Write the first three nonzero terms and the general term of the Maclaurin series for $g^{\prime}(x)$.

STOP
END OF EXAM

AP $^{\circledR}$ Calculus BC 2013 Free-Response Questions

Abstract

About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 1900, the College Board was created to expand access to higher education. Today, the membership association is made up of more than 6,000 of the world's leading educational institutions and is dedicated to promoting excellence and equity in education. Each year, the College Board helps more than seven million students prepare for a successful transition to college through programs and services in college readiness and college success - including the SAT ${ }^{\circ}$ and the Advanced Placement Program. The organization also serves the education community through research and advocacy on behalf of students, educators, and schools. © 2013 The College Board. College Board, Advanced Placement Program, AP, AP Central, SAT, and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation Service and inspiring minds are trademarks owned by the College Board. All other products and services may be trademarks of their respective owners. Visit the College Board on the Web: www.collegeboard.org. Permission to use copyrighted College Board materials may be requested online at: www.collegeboard.org/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.org.
AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

2013 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

CALCULUS BC

SECTION II, Part A
Time- $\mathbf{3 0}$ minutes
Number of problems- 2

A graphing calculator is required for these problems.

1. On a certain workday, the rate, in tons per hour, at which unprocessed gravel arrives at a gravel processing plant is modeled by $G(t)=90+45 \cos \left(\frac{t^{2}}{18}\right)$, where t is measured in hours and $0 \leq t \leq 8$. At the beginning of the workday $(t=0)$, the plant has 500 tons of unprocessed gravel. During the hours of operation, $0 \leq t \leq 8$, the plant processes gravel at a constant rate of 100 tons per hour.
(a) Find $G^{\prime}(5)$. Using correct units, interpret your answer in the context of the problem.
(b) Find the total amount of unprocessed gravel that arrives at the plant during the hours of operation on this workday.
(c) Is the amount of unprocessed gravel at the plant increasing or decreasing at time $t=5$ hours? Show the work that leads to your answer.
(d) What is the maximum amount of unprocessed gravel at the plant during the hours of operation on this workday? Justify your answer.

2013 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

2. The graphs of the polar curves $r=3$ and $r=4-2 \sin \theta$ are shown in the figure above. The curves intersect when $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$.
(a) Let S be the shaded region that is inside the graph of $r=3$ and also inside the graph of $r=4-2 \sin \theta$. Find the area of S.
(b) A particle moves along the polar curve $r=4-2 \sin \theta$ so that at time t seconds, $\theta=t^{2}$. Find the time t in the interval $1 \leq t \leq 2$ for which the x-coordinate of the particle's position is -1 .
(c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time $t=1.5$.

END OF PART A OF SECTION II

2013 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

CALCULUS BC
 SECTION II, Part B
 Time- 60 minutes
 Number of problems-4

No calculator is allowed for these problems.

t (minutes)	0	1	2	3	4	5	6
$C(t)$ (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

3. Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $t, 0 \leq t \leq 6$, is given by a differentiable function C, where t is measured in minutes. Selected values of $C(t)$, measured in ounces, are given in the table above.
(a) Use the data in the table to approximate $C^{\prime}(3.5)$. Show the computations that lead to your answer, and indicate units of measure.
(b) Is there a time $t, 2 \leq t \leq 4$, at which $C^{\prime}(t)=2$? Justify your answer.
(c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6} \int_{0}^{6} C(t) d t$. Using correct units, explain the meaning of $\frac{1}{6} \int_{0}^{6} C(t) d t$ in the context of the problem.
(d) The amount of coffee in the cup, in ounces, is modeled by $B(t)=16-16 e^{-0.4 t}$. Using this model, find the rate at which the amount of coffee in the cup is changing when $t=5$.

2013 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

Graph of f^{\prime}
4. The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.
(b) Determine the absolute minimum value of f on the closed interval $0 \leq x \leq 8$. Justify your answer.
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.

2013 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

5. Consider the differential equation $\frac{d y}{d x}=y^{2}(2 x+2)$. Let $y=f(x)$ be the particular solution to the differential equation with initial condition $f(0)=-1$.
(a) Find $\lim _{x \rightarrow 0} \frac{f(x)+1}{\sin x}$. Show the work that leads to your answer.
(b) Use Euler's method, starting at $x=0$ with two steps of equal size, to approximate $f\left(\frac{1}{2}\right)$.
(c) Find $y=f(x)$, the particular solution to the differential equation with initial condition $f(0)=-1$.

2013 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

6. A function f has derivatives of all orders at $x=0$. Let $P_{n}(x)$ denote the n th-degree Taylor polynomial for f about $x=0$.
(a) It is known that $f(0)=-4$ and that $P_{1}\left(\frac{1}{2}\right)=-3$. Show that $f^{\prime}(0)=2$.
(b) It is known that $f^{\prime \prime}(0)=-\frac{2}{3}$ and $f^{\prime \prime \prime}(0)=\frac{1}{3}$. Find $P_{3}(x)$.
(c) The function h has first derivative given by $h^{\prime}(x)=f(2 x)$. It is known that $h(0)=7$. Find the third-degree Taylor polynomial for h about $x=0$.

STOP
END OF EXAM

AP ${ }^{\circ}$ Calculus BC 2014 Free-Response Questions

© 2014 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board.
Visit the College Board on the Web: www.collegeboard.org.
AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

2014 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

CALCULUS BC
 SECTION II, Part A

Time- $\mathbf{3 0}$ minutes
Number of problems-2

A graphing calculator is required for these problems.

1. Grass clippings are placed in a bin, where they decompose. For $0 \leq t \leq 30$, the amount of grass clippings remaining in the bin is modeled by $A(t)=6.687(0.931)^{t}$, where $A(t)$ is measured in pounds and t is measured in days.
(a) Find the average rate of change of $A(t)$ over the interval $0 \leq t \leq 30$. Indicate units of measure.
(b) Find the value of $A^{\prime}(15)$. Using correct units, interpret the meaning of the value in the context of the problem.
(c) Find the time t for which the amount of grass clippings in the bin is equal to the average amount of grass clippings in the bin over the interval $0 \leq t \leq 30$.
(d) For $t>30, L(t)$, the linear approximation to A at $t=30$, is a better model for the amount of grass clippings remaining in the bin. Use $L(t)$ to predict the time at which there will be 0.5 pound of grass clippings remaining in the bin. Show the work that leads to your answer.

2014 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

2. The graphs of the polar curves $r=3$ and $r=3-2 \sin (2 \theta)$ are shown in the figure above for $0 \leq \theta \leq \pi$.
(a) Let R be the shaded region that is inside the graph of $r=3$ and inside the graph of $r=3-2 \sin (2 \theta)$. Find the area of R.
(b) For the curve $r=3-2 \sin (2 \theta)$, find the value of $\frac{d x}{d \theta}$ at $\theta=\frac{\pi}{6}$.
(c) The distance between the two curves changes for $0<\theta<\frac{\pi}{2}$. Find the rate at which the distance between the two curves is changing with respect to θ when $\theta=\frac{\pi}{3}$.
(d) A particle is moving along the curve $r=3-2 \sin (2 \theta)$ so that $\frac{d \theta}{d t}=3$ for all times $t \geq 0$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{6}$.

END OF PART A OF SECTION II

2014 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

CALCULUS BC
 SECTION II, Part B
 Time- 60 minutes
 Number of problems-4

No calculator is allowed for these problems.

Graph of f
3. The function f is defined on the closed interval $[-5,4]$. The graph of f consists of three line segments and is shown in the figure above. Let g be the function defined by $g(x)=\int_{-3}^{x} f(t) d t$.
(a) Find $g(3)$.
(b) On what open intervals contained in $-5<x<4$ is the graph of g both increasing and concave down? Give a reason for your answer.
(c) The function h is defined by $h(x)=\frac{g(x)}{5 x}$. Find $h^{\prime}(3)$.
(d) The function p is defined by $p(x)=f\left(x^{2}-x\right)$. Find the slope of the line tangent to the graph of p at the point where $x=-1$.

2014 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

t (minutes)	0	2	5	8	12
$v_{A}(t)$ (meters/minute)	0	100	40	-120	-150

4. Train A runs back and forth on an east-west section of railroad track. Train A's velocity, measured in meters per minute, is given by a differentiable function $v_{A}(t)$, where time t is measured in minutes. Selected values for $v_{A}(t)$ are given in the table above.
(a) Find the average acceleration of train A over the interval $2 \leq t \leq 8$.
(b) Do the data in the table support the conclusion that train A 's velocity is -100 meters per minute at some time t with $5<t<8$? Give a reason for your answer.
(c) At time $t=2$, train A 's position is 300 meters east of the Origin Station, and the train is moving to the east. Write an expression involving an integral that gives the position of train A, in meters from the Origin Station, at time $t=12$. Use a trapezoidal sum with three subintervals indicated by the table to approximate the position of the train at time $t=12$.
(d) A second train, train B, travels north from the Origin Station. At time t the velocity of train B is given by $v_{B}(t)=-5 t^{2}+60 t+25$, and at time $t=2$ the train is 400 meters north of the station. Find the rate, in meters per minute, at which the distance between train A and train B is changing at time $t=2$.

2014 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

5. Let R be the shaded region bounded by the graph of $y=x e^{x^{2}}$, the line $y=-2 x$, and the vertical line $x=1$, as shown in the figure above.
(a) Find the area of R.
(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=-2$.
(c) Write, but do not evaluate, an expression involving one or more integrals that gives the perimeter of R.

2014 AP $^{\oplus}$ CALCULUS BC FREE-RESPONSE OUESTIONS

6. The Taylor series for a function f about $x=1$ is given by $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n}}{n}(x-1)^{n}$ and converges to $f(x)$ for $|x-1|<R$, where R is the radius of convergence of the Taylor series.
(a) Find the value of R.
(b) Find the first three nonzero terms and the general term of the Taylor series for f^{\prime}, the derivative of f, about $x=1$.
(c) The Taylor series for f^{\prime} about $x=1$, found in part (b), is a geometric series. Find the function f^{\prime} to which the series converges for $|x-1|<R$. Use this function to determine f for $|x-1|<R$.

AP ${ }^{\oplus}$ Calculus BC 2015 Free-Response Questions

© 2015 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board.
Visit the College Board on the Web: www.collegeboard.org.
AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

2015 AP $^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

CALCULUS BC
SECTION II, Part A
Time- $\mathbf{3 0}$ minutes
Number of problems-2

A graphing calculator is required for these problems.

1. The rate at which rainwater flows into a drainpipe is modeled by the function R, where $R(t)=20 \sin \left(\frac{t^{2}}{35}\right)$ cubic feet per hour, t is measured in hours, and $0 \leq t \leq 8$. The pipe is partially blocked, allowing water to drain out the other end of the pipe at a rate modeled by $D(t)=-0.04 t^{3}+0.4 t^{2}+0.96 t$ cubic feet per hour, for $0 \leq t \leq 8$. There are 30 cubic feet of water in the pipe at time $t=0$.
(a) How many cubic feet of rainwater flow into the pipe during the 8-hour time interval $0 \leq t \leq 8$?
(b) Is the amount of water in the pipe increasing or decreasing at time $t=3$ hours? Give a reason for your answer.
(c) At what time $t, 0 \leq t \leq 8$, is the amount of water in the pipe at a minimum? Justify your answer.
(d) The pipe can hold 50 cubic feet of water before overflowing. For $t>8$, water continues to flow into and out of the pipe at the given rates until the pipe begins to overflow. Write, but do not solve, an equation involving one or more integrals that gives the time w when the pipe will begin to overflow.

2015 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

2. At time $t \geq 0$, a particle moving along a curve in the $x y$-plane has position $(x(t), y(t))$ with velocity vector $v(t)=\left(\cos \left(t^{2}\right), e^{0.5 t}\right)$. At $t=1$, the particle is at the point $(3,5)$.
(a) Find the x-coordinate of the position of the particle at time $t=2$.
(b) For $0<t<1$, there is a point on the curve at which the line tangent to the curve has a slope of 2 . At what time is the object at that point?
(c) Find the time at which the speed of the particle is 3.
(d) Find the total distance traveled by the particle from time $t=0$ to time $t=1$.

END OF PART A OF SECTION II

2015 AP $^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

CALCULUS BC
 SECTION II, Part B
 Time- 60 minutes
 Number of problems-4

No calculator is allowed for these problems.

t (minutes)	0	12	20	24	40
$v(t)$ (meters per minute)	0	200	240	-220	150

3. Johanna jogs along a straight path. For $0 \leq t \leq 40$, Johanna's velocity is given by a differentiable function v. Selected values of $v(t)$, where t is measured in minutes and $v(t)$ is measured in meters per minute, are given in the table above.
(a) Use the data in the table to estimate the value of $v^{\prime}(16)$.
(b) Using correct units, explain the meaning of the definite integral $\int_{0}^{40}|v(t)| d t$ in the context of the problem. Approximate the value of $\int_{0}^{40}|v(t)| d t$ using a right Riemann sum with the four subintervals indicated in the table.
(c) Bob is riding his bicycle along the same path. For $0 \leq t \leq 10$, Bob's velocity is modeled by $B(t)=t^{3}-6 t^{2}+300$, where t is measured in minutes and $B(t)$ is measured in meters per minute.
Find Bob's acceleration at time $t=5$.
(d) Based on the model B from part (c), find Bob's average velocity during the interval $0 \leq t \leq 10$.

2015 AP $^{\oplus}$ CALCULUS BC FREE-RESPONSE OUESTIONS

4. Consider the differential equation $\frac{d y}{d x}=2 x-y$.
(a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.

(b) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Determine the concavity of all solution curves for the given differential equation in Quadrant II. Give a reason for your answer.
(c) Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(2)=3$. Does f have a relative minimum, a relative maximum, or neither at $x=2$? Justify your answer.
(d) Find the values of the constants m and b for which $y=m x+b$ is a solution to the differential equation.

2015 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE OUESTIONS

5. Consider the function $f(x)=\frac{1}{x^{2}-k x}$, where k is a nonzero constant. The derivative of f is given by $f^{\prime}(x)=\frac{k-2 x}{\left(x^{2}-k x\right)^{2}}$.
(a) Let $k=3$, so that $f(x)=\frac{1}{x^{2}-3 x}$. Write an equation for the line tangent to the graph of f at the point whose x-coordinate is 4 .
(b) Let $k=4$, so that $f(x)=\frac{1}{x^{2}-4 x}$. Determine whether f has a relative minimum, a relative maximum, or neither at $x=2$. Justify your answer.
(c) Find the value of k for which f has a critical point at $x=-5$.
(d) Let $k=6$, so that $f(x)=\frac{1}{x^{2}-6 x}$. Find the partial fraction decomposition for the function f.

Find $\int f(x) d x$.

2015 AP $^{\oplus}$ CALCULUS BC FREE-RESPONSE OUESTIONS

6. The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^{n}=x-\frac{3}{2} x^{2}+3 x^{3}-\cdots+\frac{(-3)^{n-1}}{n} x^{n}+\cdots$ and converges to $f(x)$ for $|x|<R$, where R is the radius of convergence of the Maclaurin series.
(a) Use the ratio test to find R.
(b) Write the first four nonzero terms of the Maclaurin series for f^{\prime}, the derivative of f. Express f^{\prime} as a rational function for $|x|<R$.
(c) Write the first four nonzero terms of the Maclaurin series for e^{x}. Use the Maclaurin series for e^{x} to write the third-degree Taylor polynomial for $g(x)=e^{x} f(x)$ about $x=0$.

AP ${ }^{\circ}$ Calculus BC 2016 Free-Response Questions

© 2016 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board.
Visit the College Board on the Web: www.collegeboard.org.
AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

2016 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC

SECTION II, Part A
Time- $\mathbf{3 0}$ minutes
Number of problems- 2

A graphing calculator is required for these problems.

t (hours)	0	1	3	6	8
$R(t)$ (liters / hour)	1340	1190	950	740	700

1. Water is pumped into a tank at a rate modeled by $W(t)=2000 e^{-t^{2} / 20}$ liters per hour for $0 \leq t \leq 8$, where t is measured in hours. Water is removed from the tank at a rate modeled by $R(t)$ liters per hour, where R is differentiable and decreasing on $0 \leq t \leq 8$. Selected values of $R(t)$ are shown in the table above. At time $t=0$, there are 50,000 liters of water in the tank.
(a) Estimate $R^{\prime}(2)$. Show the work that leads to your answer. Indicate units of measure.
(b) Use a left Riemann sum with the four subintervals indicated by the table to estimate the total amount of water removed from the tank during the 8 hours. Is this an overestimate or an underestimate of the total amount of water removed? Give a reason for your answer.
(c) Use your answer from part (b) to find an estimate of the total amount of water in the tank, to the nearest liter, at the end of 8 hours.
(d) For $0 \leq t \leq 8$, is there a time t when the rate at which water is pumped into the tank is the same as the rate at which water is removed from the tank? Explain why or why not.

2016 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

2. At time t, the position of a particle moving in the $x y$-plane is given by the parametric functions $(x(t), y(t))$, where $\frac{d x}{d t}=t^{2}+\sin \left(3 t^{2}\right)$. The graph of y, consisting of three line segments, is shown in the figure above. At $t=0$, the particle is at position $(5,1)$.
(a) Find the position of the particle at $t=3$.
(b) Find the slope of the line tangent to the path of the particle at $t=3$.
(c) Find the speed of the particle at $t=3$.
(d) Find the total distance traveled by the particle from $t=0$ to $t=2$.

END OF PART A OF SECTION II

2016 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC
 SECTION II, Part B
 Time-60 minutes
 Number of problems-4

No calculator is allowed for these problems.

3. The figure above shows the graph of the piecewise-linear function f. For $-4 \leq x \leq 12$, the function g is defined by $g(x)=\int_{2}^{x} f(t) d t$.
(a) Does g have a relative minimum, a relative maximum, or neither at $x=10$? Justify your answer.
(b) Does the graph of g have a point of inflection at $x=4$? Justify your answer.
(c) Find the absolute minimum value and the absolute maximum value of g on the interval $-4 \leq x \leq 12$. Justify your answers.
(d) For $-4 \leq x \leq 12$, find all intervals for which $g(x) \leq 0$.

2016 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

4. Consider the differential equation $\frac{d y}{d x}=x^{2}-\frac{1}{2} y$.
(a) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y.
(b) Let $y=f(x)$ be the particular solution to the given differential equation whose graph passes through the point $(-2,8)$. Does the graph of f have a relative minimum, a relative maximum, or neither at the point $(-2,8)$? Justify your answer.
(c) Let $y=g(x)$ be the particular solution to the given differential equation with $g(-1)=2$. Find $\lim _{x \rightarrow-1}\left(\frac{g(x)-2}{3(x+1)^{2}}\right)$. Show the work that leads to your answer.
(d) Let $y=h(x)$ be the particular solution to the given differential equation with $h(0)=2$. Use Euler's method, starting at $x=0$ with two steps of equal size, to approximate $h(1)$.

2016 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

5. The inside of a funnel of height 10 inches has circular cross sections, as shown in the figure above. At height h, the radius of the funnel is given by $r=\frac{1}{20}\left(3+h^{2}\right)$, where $0 \leq h \leq 10$. The units of r and h are inches.
(a) Find the average value of the radius of the funnel.
(b) Find the volume of the funnel.
(c) The funnel contains liquid that is draining from the bottom. At the instant when the height of the liquid is $h=3$ inches, the radius of the surface of the liquid is decreasing at a rate of $\frac{1}{5}$ inch per second. At this instant, what is the rate of change of the height of the liquid with respect to time?

2016 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

6. The function f has a Taylor series about $x=1$ that converges to $f(x)$ for all x in the interval of convergence. It is known that $f(1)=1, f^{\prime}(1)=-\frac{1}{2}$, and the nth derivative of f at $x=1$ is given by $f^{(n)}(1)=(-1)^{n} \frac{(n-1)!}{2^{n}}$ for $n \geq 2$.
(a) Write the first four nonzero terms and the general term of the Taylor series for f about $x=1$.
(b) The Taylor series for f about $x=1$ has a radius of convergence of 2 . Find the interval of convergence. Show the work that leads to your answer.
(c) The Taylor series for f about $x=1$ can be used to represent $f(1.2)$ as an alternating series. Use the first three nonzero terms of the alternating series to approximate $f(1.2)$.
(d) Show that the approximation found in part (c) is within 0.001 of the exact value of $f(1.2)$.

STOP
END OF EXAM

2017

AP Calculus BC Free-Response Questions

CALCULUS BC
 SECTION II, Part A

Time- $\mathbf{3 0}$ minutes
Number of questions- $\mathbf{2}$

A GRAPHING CALCULATOR IS REQUIRED FOR THESE QUESTIONS.

h (feet)	0	2	5	10
$A(h)$ (square feet)	50.3	14.4	6.5	2.9

1. A tank has a height of 10 feet. The area of the horizontal cross section of the tank at height h feet is given by the function A, where $A(h)$ is measured in square feet. The function A is continuous and decreases as h increases. Selected values for $A(h)$ are given in the table above.
(a) Use a left Riemann sum with the three subintervals indicated by the data in the table to approximate the volume of the tank. Indicate units of measure.
(b) Does the approximation in part (a) overestimate or underestimate the volume of the tank? Explain your reasoning.
(c) The area, in square feet, of the horizontal cross section at height h feet is modeled by the function f given by $f(h)=\frac{50.3}{e^{0.2 h}+h}$. Based on this model, find the volume of the tank. Indicate units of measure.
(d) Water is pumped into the tank. When the height of the water is 5 feet, the height is increasing at the rate of 0.26 foot per minute. Using the model from part (c), find the rate at which the volume of water is changing with respect to time when the height of the water is 5 feet. Indicate units of measure.

2017 AP $^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

2. The figure above shows the polar curves $r=f(\theta)=1+\sin \theta \cos (2 \theta)$ and $r=g(\theta)=2 \cos \theta$ for $0 \leq \theta \leq \frac{\pi}{2}$. Let R be the region in the first quadrant bounded by the curve $r=f(\theta)$ and the x-axis. Let S be the region in the first quadrant bounded by the curve $r=f(\theta)$, the curve $r=g(\theta)$, and the x-axis.
(a) Find the area of R.
(b) The ray $\theta=k$, where $0<k<\frac{\pi}{2}$, divides S into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of k.
(c) For each $\theta, 0 \leq \theta \leq \frac{\pi}{2}$, let $w(\theta)$ be the distance between the points with polar coordinates $(f(\theta), \theta)$ and $(g(\theta), \theta)$. Write an expression for $w(\theta)$. Find w_{A}, the average value of $w(\theta)$ over the interval $0 \leq \theta \leq \frac{\pi}{2}$.
(d) Using the information from part (c), find the value of θ for which $w(\theta)=w_{A}$. Is the function $w(\theta)$ increasing or decreasing at that value of θ ? Give a reason for your answer.

END OF PART A OF SECTION II

CALCULUS BC
 SECTION II, Part B
 Time- $\mathbf{1}$ hour
 Number of questions-4

NO CALCULATOR IS ALLOWED FOR THESE QUESTIONS.

3. The function f is differentiable on the closed interval $[-6,5]$ and satisfies $f(-2)=7$. The graph of f^{\prime}, the derivative of f, consists of a semicircle and three line segments, as shown in the figure above.
(a) Find the values of $f(-6)$ and $f(5)$.
(b) On what intervals is f increasing? Justify your answer.
(c) Find the absolute minimum value of f on the closed interval $[-6,5]$. Justify your answer.
(d) For each of $f^{\prime \prime}(-5)$ and $f^{\prime \prime}(3)$, find the value or explain why it does not exist.

2017 AP $^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

4. At time $t=0$, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ at time $t=0$, and the internal temperature of the potato is greater than $27^{\circ} \mathrm{C}$ for all times $t>0$. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{d H}{d t}=-\frac{1}{4}(H-27)$, where $H(t)$ is measured in degrees Celsius and $H(0)=91$.
(a) Write an equation for the line tangent to the graph of H at $t=0$. Use this equation to approximate the internal temperature of the potato at time $t=3$.
(b) Use $\frac{d^{2} H}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time $t=3$.
(c) For $t<10$, an alternate model for the internal temperature of the potato at time t minutes is the function G that satisfies the differential equation $\frac{d G}{d t}=-(G-27)^{2 / 3}$, where $G(t)$ is measured in degrees Celsius and $G(0)=91$. Find an expression for $G(t)$. Based on this model, what is the internal temperature of the potato at time $t=3$?

2017 AP $^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS

5. Let f be the function defined by $f(x)=\frac{3}{2 x^{2}-7 x+5}$.
(a) Find the slope of the line tangent to the graph of f at $x=3$.
(b) Find the x-coordinate of each critical point of f in the interval $1<x<2.5$. Classify each critical point as the location of a relative minimum, a relative maximum, or neither. Justify your answers.
(c) Using the identity that $\frac{3}{2 x^{2}-7 x+5}=\frac{2}{2 x-5}-\frac{1}{x-1}$, evaluate $\int_{5}^{\infty} f(x) d x$ or show that the integral diverges.
(d) Determine whether the series $\sum_{n=5}^{\infty} \frac{3}{2 n^{2}-7 n+5}$ converges or diverges. State the conditions of the test used for determining convergence or divergence.

2017 AP $^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(0) & =1 \\
f^{(n+1)}(0) & =-n \cdot f^{(n)}(0) \text { for all } n \geq 1
\end{aligned}
$$

6. A function f has derivatives of all orders for $-1<x<1$. The derivatives of f satisfy the conditions above. The Maclaurin series for f converges to $f(x)$ for $|x|<1$.
(a) Show that the first four nonzero terms of the Maclaurin series for f are $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}$, and write the general term of the Maclaurin series for f.
(b) Determine whether the Maclaurin series described in part (a) converges absolutely, converges conditionally, or diverges at $x=1$. Explain your reasoning.
(c) Write the first four nonzero terms and the general term of the Maclaurin series for $g(x)=\int_{0}^{x} f(t) d t$.
(d) Let $P_{n}\left(\frac{1}{2}\right)$ represent the n th-degree Taylor polynomial for g about $x=0$ evaluated at $x=\frac{1}{2}$, where g is the function defined in part (c). Use the alternating series error bound to show that

$$
\left|P_{4}\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right|<\frac{1}{500}
$$

STOP
 END OF EXAM

AP Calculus BC Free-Response Questions

2018 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC
 SECTION II, Part A

Time- $\mathbf{3 0}$ minutes
Number of questions- $\mathbf{2}$

A GRAPHING CALCULATOR IS REQUIRED FOR THESE QUESTIONS.

1. People enter a line for an escalator at a rate modeled by the function r given by

$$
r(t)= \begin{cases}44\left(\frac{t}{100}\right)^{3}\left(1-\frac{t}{300}\right)^{7} & \text { for } 0 \leq t \leq 300 \\ 0 & \text { for } t>300\end{cases}
$$

where $r(t)$ is measured in people per second and t is measured in seconds. As people get on the escalator, they exit the line at a constant rate of 0.7 person per second. There are 20 people in line at time $t=0$.
(a) How many people enter the line for the escalator during the time interval $0 \leq t \leq 300$?
(b) During the time interval $0 \leq t \leq 300$, there are always people in line for the escalator. How many people are in line at time $t=300$?
(c) For $t>300$, what is the first time t that there are no people in line for the escalator?
(d) For $0 \leq t \leq 300$, at what time t is the number of people in line a minimum? To the nearest whole number, find the number of people in line at this time. Justify your answer.

2018 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

2. Researchers on a boat are investigating plankton cells in a sea. At a depth of h meters, the density of plankton cells, in millions of cells per cubic meter, is modeled by $p(h)=0.2 h^{2} e^{-0.0025 h^{2}}$ for $0 \leq h \leq 30$ and is modeled by $f(h)$ for $h \geq 30$. The continuous function f is not explicitly given.
(a) Find $p^{\prime}(25)$. Using correct units, interpret the meaning of $p^{\prime}(25)$ in the context of the problem.
(b) Consider a vertical column of water in this sea with horizontal cross sections of constant area 3 square meters. To the nearest million, how many plankton cells are in this column of water between $h=0$ and $h=30$ meters?
(c) There is a function u such that $0 \leq f(h) \leq u(h)$ for all $h \geq 30$ and $\int_{30}^{\infty} u(h) d h=105$. The column of water in part (b) is K meters deep, where $K>30$. Write an expression involving one or more integrals that gives the number of plankton cells, in millions, in the entire column. Explain why the number of plankton cells in the column is less than or equal to 2000 million.
(d) The boat is moving on the surface of the sea. At time $t \geq 0$, the position of the boat is $(x(t), y(t))$, where $x^{\prime}(t)=662 \sin (5 t)$ and $y^{\prime}(t)=880 \cos (6 t)$. Time t is measured in hours, and $x(t)$ and $y(t)$ are measured in meters. Find the total distance traveled by the boat over the time interval $0 \leq t \leq 1$.

END OF PART A OF SECTION II

CALCULUS BC

SECTION II, Part B
Time- $\mathbf{1}$ hour
Number of questions-4

NO CALCULATOR IS ALLOWED FOR THESE QUESTIONS.

Graph of g
3. The graph of the continuous function g, the derivative of the function f, is shown above. The function g is piecewise linear for $-5 \leq x<3$, and $g(x)=2(x-4)^{2}$ for $3 \leq x \leq 6$.
(a) If $f(1)=3$, what is the value of $f(-5)$?
(b) Evaluate $\int_{1}^{6} g(x) d x$.
(c) For $-5<x<6$, on what open intervals, if any, is the graph of f both increasing and concave up? Give a reason for your answer.
(d) Find the x-coordinate of each point of inflection of the graph of f. Give a reason for your answer.

2018 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

t (years)	2	3	5	7	10
$H(t)$ (meters)	1.5	2	6	11	15

4. The height of a tree at time t is given by a twice-differentiable function H, where $H(t)$ is measured in meters and t is measured in years. Selected values of $H(t)$ are given in the table above.
(a) Use the data in the table to estimate $H^{\prime}(6)$. Using correct units, interpret the meaning of $H^{\prime}(6)$ in the context of the problem.
(b) Explain why there must be at least one time t, for $2<t<10$, such that $H^{\prime}(t)=2$.
(c) Use a trapezoidal sum with the four subintervals indicated by the data in the table to approximate the average height of the tree over the time interval $2 \leq t \leq 10$.
(d) The height of the tree, in meters, can also be modeled by the function G, given by $G(x)=\frac{100 x}{1+x}$, where x is the diameter of the base of the tree, in meters. When the tree is 50 meters tall, the diameter of the base of the tree is increasing at a rate of 0.03 meter per year. According to this model, what is the rate of change of the height of the tree with respect to time, in meters per year, at the time when the tree is 50 meters tall?

2018 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

5. The graphs of the polar curves $r=4$ and $r=3+2 \cos \theta$ are shown in the figure above. The curves intersect at $\theta=\frac{\pi}{3}$ and $\theta=\frac{5 \pi}{3}$.
(a) Let R be the shaded region that is inside the graph of $r=4$ and also outside the graph of $r=3+2 \cos \theta$, as shown in the figure above. Write an expression involving an integral for the area of R.
(b) Find the slope of the line tangent to the graph of $r=3+2 \cos \theta$ at $\theta=\frac{\pi}{2}$.
(c) A particle moves along the portion of the curve $r=3+2 \cos \theta$ for $0<\theta<\frac{\pi}{2}$. The particle moves in such a way that the distance between the particle and the origin increases at a constant rate of 3 units per second. Find the rate at which the angle θ changes with respect to time at the instant when the position of the particle corresponds to $\theta=\frac{\pi}{3}$. Indicate units of measure.

2018 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

6. The Maclaurin series for $\ln (1+x)$ is given by

$$
x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n+1} \frac{x^{n}}{n}+\cdots .
$$

On its interval of convergence, this series converges to $\ln (1+x)$. Let f be the function defined by
$f(x)=x \ln \left(1+\frac{x}{3}\right)$.
(a) Write the first four nonzero terms and the general term of the Maclaurin series for f.
(b) Determine the interval of convergence of the Maclaurin series for f. Show the work that leads to your answer.
(c) Let $P_{4}(x)$ be the fourth-degree Taylor polynomial for f about $x=0$. Use the alternating series error bound to find an upper bound for $\left|P_{4}(2)-f(2)\right|$.

END OF EXAM

AP' Calculus BC Free-Response Questions

2019 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

CALCULUS BC

SECTION II, Part A
Time- $\mathbf{3 0}$ minutes
Number of questions- 2

A GRAPHING CALCULATOR IS REQUIRED FOR THESE QUESTIONS.

1. Fish enter a lake at a rate modeled by the function E given by $E(t)=20+15 \sin \left(\frac{\pi t}{6}\right)$. Fish leave the lake at a rate modeled by the function L given by $L(t)=4+2^{0.1 t^{2}}$. Both $E(t)$ and $L(t)$ are measured in fish per hour, and t is measured in hours since midnight $(t=0)$.
(a) How many fish enter the lake over the 5 -hour period from midnight $(t=0)$ to 5 A.m. $(t=5)$? Give your answer to the nearest whole number.
(b) What is the average number of fish that leave the lake per hour over the 5-hour period from midnight $(t=0)$ to 5 A.M. $(t=5)$?
(c) At what time t, for $0 \leq t \leq 8$, is the greatest number of fish in the lake? Justify your answer.
(d) Is the rate of change in the number of fish in the lake increasing or decreasing at 5 A.m. $(t=5)$? Explain your reasoning.

2019 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

2. Let S be the region bounded by the graph of the polar curve $r(\theta)=3 \sqrt{\theta} \sin \left(\theta^{2}\right)$ for $0 \leq \theta \leq \sqrt{\pi}$, as shown in the figure above.
(a) Find the area of S.
(b) What is the average distance from the origin to a point on the polar curve $r(\theta)=3 \sqrt{\theta} \sin \left(\theta^{2}\right)$ for $0 \leq \theta \leq \sqrt{\pi} ?$
(c) There is a line through the origin with positive slope m that divides the region S into two regions with equal areas. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of m.
(d) For $k>0$, let $A(k)$ be the area of the portion of region S that is also inside the circle $r=k \cos \theta$. Find $\lim _{k \rightarrow \infty} A(k)$.

END OF PART A OF SECTION II

CALCULUS BC

SECTION II, Part B

Time-1 hour
 Number of questions-4

NO CALCULATOR IS ALLOWED FOR THESE QUESTIONS.

Graph of f
3. The continuous function f is defined on the closed interval $-6 \leq x \leq 5$. The figure above shows a portion of the graph of f, consisting of two line segments and a quarter of a circle centered at the point $(5,3)$. It is known that the point $(3,3-\sqrt{5})$ is on the graph of f.
(a) If $\int_{-6}^{5} f(x) d x=7$, find the value of $\int_{-6}^{-2} f(x) d x$. Show the work that leads to your answer.
(b) Evaluate $\int_{3}^{5}\left(2 f^{\prime}(x)+4\right) d x$.
(c) The function g is given by $g(x)=\int_{-2}^{x} f(t) d t$. Find the absolute maximum value of g on the interval $-2 \leq x \leq 5$. Justify your answer.
(d) Find $\lim _{x \rightarrow 1} \frac{10^{x}-3 f^{\prime}(x)}{f(x)-\arctan x}$.

2019 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

4. A cylindrical barrel with a diameter of 2 feet contains collected rainwater, as shown in the figure above. The water drains out through a valve (not shown) at the bottom of the barrel. The rate of change of the height h of the water in the barrel with respect to time t is modeled by $\frac{d h}{d t}=-\frac{1}{10} \sqrt{h}$, where h is measured in feet and t is measured in seconds. (The volume V of a cylinder with radius r and height h is $V=\pi r^{2} h$.)
(a) Find the rate of change of the volume of water in the barrel with respect to time when the height of the water is 4 feet. Indicate units of measure.
(b) When the height of the water is 3 feet, is the rate of change of the height of the water with respect to time increasing or decreasing? Explain your reasoning.
(c) At time $t=0$ seconds, the height of the water is 5 feet. Use separation of variables to find an expression for h in terms of t.

2019 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

5. Consider the family of functions $f(x)=\frac{1}{x^{2}-2 x+k}$, where k is a constant.
(a) Find the value of k, for $k>0$, such that the slope of the line tangent to the graph of f at $x=0$ equals 6 .
(b) For $k=-8$, find the value of $\int_{0}^{1} f(x) d x$.
(c) For $k=1$, find the value of $\int_{0}^{2} f(x) d x$ or show that it diverges.

2019 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

6. A function f has derivatives of all orders for all real numbers x. A portion of the graph of f is shown above, along with the line tangent to the graph of f at $x=0$. Selected derivatives of f at $x=0$ are given in the table above.
(a) Write the third-degree Taylor polynomial for f about $x=0$.
(b) Write the first three nonzero terms of the Maclaurin series for e^{x}. Write the second-degree Taylor polynomial for $e^{x} f(x)$ about $x=0$.
(c) Let h be the function defined by $h(x)=\int_{0}^{x} f(t) d t$. Use the Taylor polynomial found in part (a) to find an approximation for $h(1)$.
(d) It is known that the Maclaurin series for h converges to $h(x)$ for all real numbers x. It is also known that the individual terms of the series for $h(1)$ alternate in sign and decrease in absolute value to 0 . Use the alternating series error bound to show that the approximation found in part (c) differs from $h(1)$ by at most 0.45 .

STOP
 END OF EXAM

AP' Calculus BC

Free-Response Questions

CALCULUS BC SECTION II, Part A
 Time- $\mathbf{3 0}$ minutes 2 Questions

A GRAPHING CALCULATOR IS REQUIRED FOR THESE QUESTIONS.

r (centimeters)	0	1	2	2.5	4
$f(r)$ (milligrams per square centimeter)	1	2	6	10	18

1. The density of a bacteria population in a circular petri dish at a distance r centimeters from the center of the dish is given by an increasing, differentiable function f, where $f(r)$ is measured in milligrams per square centimeter. Values of $f(r)$ for selected values of r are given in the table above.
(a) Use the data in the table to estimate $f^{\prime}(2.25)$. Using correct units, interpret the meaning of your answer in the context of this problem.
(b) The total mass, in milligrams, of bacteria in the petri dish is given by the integral expression $2 \pi \int_{0}^{4} r f(r) d r$. Approximate the value of $2 \pi \int_{0}^{4} r f(r) d r$ using a right Riemann sum with the four subintervals indicated by the data in the table.
(c) Is the approximation found in part (b) an overestimate or underestimate of the total mass of bacteria in the petri dish? Explain your reasoning.
(d) The density of bacteria in the petri dish, for $1 \leq r \leq 4$, is modeled by the function g defined by $g(r)=2-16(\cos (1.57 \sqrt{r}))^{3}$. For what value of $k, 1<k<4$, is $g(k)$ equal to the average value of $g(r)$ on the interval $1 \leq r \leq 4$?

Write your responses to this question only on the designated pages in the separate Free Response booklet. Write your solution to each part in the space provided for that part.
2. For time $t \geq 0$, a particle moves in the $x y$-plane with position $(x(t), y(t))$ and velocity vector $\left\langle(t-1) e^{t^{2}}, \sin \left(t^{1.25}\right)\right\rangle$. At time $t=0$, the position of the particle is $(-2,5)$.
(a) Find the speed of the particle at time $t=1.2$. Find the acceleration vector of the particle at time $t=1.2$.
(b) Find the total distance traveled by the particle over the time interval $0 \leq t \leq 1.2$.
(c) Find the coordinates of the point at which the particle is farthest to the left for $t \geq 0$. Explain why there is no point at which the particle is farthest to the right for $t \geq 0$.

Write your responses to this question only on the designated pages in the separate Free Response booklet. Write your solution to each part in the space provided for that part.

END OF PART A

CALCULUS BC

SECTION II, Part B

Time- 1 hour
4 Questions

NO CALCULATOR IS ALLOWED FOR THESE QUESTIONS.

3. A company designs spinning toys using the family of functions $y=c x \sqrt{4-x^{2}}$, where c is a positive constant. The figure above shows the region in the first quadrant bounded by the x-axis and the graph of $y=c x \sqrt{4-x^{2}}$, for some c. Each spinning toy is in the shape of the solid generated when such a region is revolved about the x-axis. Both x and y are measured in inches.
(a) Find the area of the region in the first quadrant bounded by the x-axis and the graph of $y=c x \sqrt{4-x^{2}}$ for $c=6$.
(b) It is known that, for $y=c x \sqrt{4-x^{2}}, \frac{d y}{d x}=\frac{c\left(4-2 x^{2}\right)}{\sqrt{4-x^{2}}}$. For a particular spinning toy, the radius of the largest cross-sectional circular slice is 1.2 inches. What is the value of c for this spinning toy?
(c) For another spinning toy, the volume is 2π cubic inches. What is the value of c for this spinning toy?

Write your responses to this question only on the designated pages in the separate Free Response booklet. Write your solution to each part in the space provided for that part.

Graph of f

4. Let f be a continuous function defined on the closed interval $-4 \leq x \leq 6$. The graph of f, consisting of four line segments, is shown above. Let G be the function defined by $G(x)=\int_{0}^{x} f(t) d t$.
(a) On what open intervals is the graph of G concave up? Give a reason for your answer.
(b) Let P be the function defined by $P(x)=G(x) \cdot f(x)$. Find $P^{\prime}(3)$.
(c) Find $\lim _{x \rightarrow 2} \frac{G(x)}{x^{2}-2 x}$.
(d) Find the average rate of change of G on the interval $[-4,2]$. Does the Mean Value Theorem guarantee a value $c,-4<c<2$, for which $G^{\prime}(c)$ is equal to this average rate of change? Justify your answer.

Write your responses to this question only on the designated pages in the separate Free Response booklet. Write your solution to each part in the space provided for that part.
5. Let $y=f(x)$ be the particular solution to the differential equation $\frac{d y}{d x}=y \cdot(x \ln x)$ with initial condition $f(1)=4$. It can be shown that $f^{\prime \prime}(1)=4$.
(a) Write the second-degree Taylor polynomial for f about $x=1$. Use the Taylor polynomial to approximate $f(2)$.
(b) Use Euler's method, starting at $x=1$ with two steps of equal size, to approximate $f(2)$. Show the work that leads to your answer.
(c) Find the particular solution $y=f(x)$ to the differential equation $\frac{d y}{d x}=y \cdot(x \ln x)$ with initial condition $f(1)=4$.

Write your responses to this question only on the designated pages in the separate Free Response booklet. Write your solution to each part in the space provided for that part.
6. The function g has derivatives of all orders for all real numbers. The Maclaurin series for g is given by $g(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{2 e^{n}+3}$ on its interval of convergence.
(a) State the conditions necessary to use the integral test to determine convergence of the series $\sum_{n=0}^{\infty} \frac{1}{e^{n}}$. Use the integral test to show that $\sum_{n=0}^{\infty} \frac{1}{e^{n}}$ converges.
(b) Use the limit comparison test with the series $\sum_{n=0}^{\infty} \frac{1}{e^{n}}$ to show that the series $g(1)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 e^{n}+3}$ converges absolutely.
(c) Determine the radius of convergence of the Maclaurin series for g.
(d) The first two terms of the series $g(1)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 e^{n}+3}$ are used to approximate $g(1)$. Use the alternating series error bound to determine an upper bound on the error of the approximation.

Write your responses to this question only on the designated pages in the separate Free Response booklet. Write your solution to each part in the space provided for that part.

STOP

END OF EXAM

