Cambridge International AS \& A Level

MATHEMATICS

9709/41

Paper 4 Mechanics

October/November 2021

MARK SCHEME

Maximum Mark: 50
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
$1(\mathrm{a})$	$6 V+30 V+3 V=585$ $0.5(30+48) V=585$	$\mathbf{M 1}$	Use of constant acceleration equations or a $v-t$ graph. Complete method to set up an equation in V using constant acceleration equations or correct area formula in $v-t$ graph.
	Speed of the bus $=15 \mathrm{~ms}^{-1}$	$\mathbf{A 1}$	Must be positive.
		$\mathbf{2}$	
	Magnitude of deceleration $=2.5$	$\mathbf{B 1} \mathbf{F T}$	OE. Do not allow $a=-2.5$.
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
2(a)	Attempt at use of conservation of momentum	M1	4 terms implied, i.e. m and km included before and after collision. Velocity after collision is the same for m and $k m$.
	$k m \times 6-m \times 2=(k m+m) \times 4$	A1	
	$k=3$	A1	
		3	
2(b)	$\begin{aligned} & \text { KE initial }=\frac{1}{2} \times k m \times 6^{2}+\frac{1}{2} \times m \times(-2)^{2} \\ & \text { KE after }=\frac{1}{2} \times(k m+m) \times 4^{2} \end{aligned}$	M1	Attempt at any of the three possible KE terms, unsimplified. k need not be substituted here.
	Loss of $\mathrm{KE}=24 \mathrm{~mJ}$	A1 FT	KE loss $=56 m-32 m$ FT on their k, KE loss $=(10 k-6) m, k>0.6$.
		2	

Question	Answer	Marks	Guidance
3	Attempt at resolving in any direction	M1	Correct number of terms. No substitution for α required.
	$P \cos \theta=(36-24) \cos 36.9$ or $P \cos \theta=(36-24) \times 0.8$	A1	
	$P \sin \theta+20=(24+36) \sin 36.9=14.4+21.6$ or $P \sin \theta+20=60 \times 0.6=36$	A1	
	$P \cos \theta=9.6, P \sin \theta=16 \quad P=\sqrt{16^{2}+9.6^{2}}$	M1	Correct method for solving equations for P. OE
	$\theta=\tan ^{-1}\left(\frac{16}{9.6}\right)$	M1	Correct method for solving equations for θ. OE e.g. $\theta=\tan ^{-1}\left(\frac{5}{3}\right)$
	$\begin{aligned} & P=18.7 \\ & \theta=59[.0] \end{aligned}$	A1	Allow $P=\frac{16 \sqrt{34}}{5}$ Allow $P=18.6$.
		6	

Question	Correct 4 force diagram	Marks	B1
4(a) Angles shown. F either up/down slope.			

Question	Answer	Marks	Guidance
5(a)	$s=30 \times 20$	B1	
	$\begin{aligned} & \text { PE change }=1600 \times g \times \mathrm{s} \times 0.12 \\ & {[\mathrm{PE} \text { change }=1600 \times g \times 20 \times 30 \times 0.12]} \end{aligned}$	M1	Attempt change in PE. May use angle $=6.9^{\circ}$. Allow sin/cos error only.
	Change in PE $=1152000 \mathrm{~J}$	A1	
		3	
5(b)	$\begin{aligned} & 1960000=W D_{\text {res }}+\text { their } \mathrm{PE} \\ & {\left[1960000=W D_{\text {res }}+1152000\right]} \\ & {\left[W D_{\text {res }}=808000 \mathrm{~J}\right]} \end{aligned}$	M1	Using work-energy, allow sign error.
	$R=W D_{\text {res }} \div 600$	B1	Using $W D_{\text {res }}=R \times 600$.
	Force resisting motion $=R=1350 \mathrm{~N}$ to 3 sf	A1	Allow $R=\frac{4040}{3} \mathrm{~N}$. Allow R negative.
	Alternative method for question 5(b)		
	$D F-R-1600 g \times 0.12=0$	M1	R is the resisting force.
	$D F=\frac{196000}{20 \times 30}\left[=\frac{9800}{3}\right]$	B1	
	Force resisting motion $=R=\frac{4040}{3}=1350 \mathrm{~N}$ to 3 sf	A1	Allow R negative.
		3	

Question	Answer	Marks	Guidance
5(c)	$\begin{aligned} & P=\left(\frac{4040}{3}+1600 \times g \times 0.12\right) \times 20 \\ & {\left[=\frac{196000}{3}\right]} \end{aligned}$	M1	For using $P=D F \times v$. Allow use of their R.
	$P=65.3 \mathrm{~kW}$	A1	
	Alternative method for question 5(c)		
	$P=\frac{1960000}{30}$	M1	For using $P=$ Work done \div Time .
	$P=65.3 \mathrm{~kW}$	A1	
	Alternative method for question 5(c)		
	$P=\frac{9800}{3} \times 20$	M1	For using $P=D F \times v$. Allow use of their $D F$.
	$P=65.3 \mathrm{~kW}$	A1	
		2	

Question	Answer	Marks	Guidance
5(d)	$0.85 \times \frac{196000}{3}=D F \times 20$	B1 FT	$P=D F \times v\left[D F=\frac{8330}{3}\right]$ FT on their P.
	$\begin{aligned} & D F-R-1600 g \times 0.12=1600 a \\ & {\left[\frac{8330}{3}-\frac{4040}{3}-1920=1600 a\right]} \end{aligned}$	M1	Newton's $2^{\text {nd }}$ law, four terms, allow $\sin /$ cos error, their R and their $D F$.
	$a=[-] 0.306 \mathrm{~ms}^{-2}$	A1	$a=[-] \frac{490}{1600}=[-] \frac{49}{160}$
	Alternative method for question 5(d)		
	$9800=D F \times 20$	B1 FT	Using the reduction in power as the cause of the deceleration. $9800=0.15 \times \text { their } P=D F \times v$
	$\begin{aligned} & D F=1600 d \\ & {\left[\frac{9800}{20}=1600 d\right]} \end{aligned}$	M1	
	$a=[-] 0.306 \mathrm{~ms}^{-2}$	A1	$a=[-] \frac{490}{1600}=[-] \frac{49}{160}$
) 3	

Question	Answer	Marks	Guidance
6(a)	$a=2 p t-q$	*M1	Attempt to differentiate v.
	$\begin{aligned} & 36 p-6 q=36 \\ & 4 p-q=0 \end{aligned}$	DM1	For attempting to set up 2 equations using $a=0$ at $t=2$ and matching the velocities at $t=6$ and solve for p or q.
	$p=3, q=12$	A1	Both correct.
		3	
6(b)	Correct quadratic from $t=0$ to $t=6$ or Correct straight line from 6 to 14	B1	No labelling necessary for this mark.
	Both quadratic and straight line correct	B1	Must join and no labelling needed.
	All correct and key points shown	B1	All correct, labelled at (4, 0$),(6,36)$ and $(14,0)$.
		3	
6(c)	Attempt to integrate v	*M1	Allow in terms of p and q.
	$s=t^{3}-6 t^{2}$	A1 FT	FT on their p and q values.
	$s(\text { quadratic })=\left[\left\|t^{3}-6 t^{2}\right\|\right]_{0}^{4}+\left[t^{3}-6 t^{2}\right]_{4}^{6}$	DM1	$[=32+32]$ Using limits correctly for $t=0$ to $t=6$. Allow in terms of p and q.
	$\begin{aligned} & s(\text { triangle })=\left[63 t-2.25 t^{2}\right]_{6}^{14}=144 \\ & \text { or area of triangle }=144 \end{aligned}$	B1	
	Total distance travelled in $14 \mathrm{~s}=208 \mathrm{~m}$	A1	
		5	

Question	Answer	Marks	Guidance
7	Particle $A: 2 g-T=2 a$ Particle $B: T-3 g \sin 18=T-9.27=3 a$ System: $2 g-3 g \sin 18=2 g-9.27=(2+3) a$	M1	Apply Newton's $2^{\text {nd }}$ law to either particle A, or to particle B or the system. Correct number of terms.
		A1	A and B correct or system correct.
	$\begin{aligned} & a=2.145898034 \\ & {[5 a=10.72949017]} \end{aligned}$	M1	Attempt to find a using equations with correct number of terms.
	$v^{2}=2 \times a \times 0.45$	M1	Use of constant acceleration equations with their $a \neq \pm g$ to find v^{2} when A reaches the ground.
	$\begin{aligned} & v^{2}=2 \times 2.145898034 \times 0.45=1.931308 \cdots \\ & {[v=1.389715162]} \end{aligned}$	A1	Allow unsimplified.
	$\begin{aligned} & T=0, \pm 3 g \sin 18=3 a \\ & {[a= \pm 3.0901699]} \end{aligned}$	M1	Attempt to find a for the motion of B when string becomes slack. Allow $\sin /$ cos error, no extra terms.
	$[0=1.93-2 \times 3.09 \times s] \quad[s=0.312]$	M1	Use constant acceleration equations, using a new $a \neq \pm g$, to find the further distance, s, travelled by B before coming to rest.
	Total distance moved by $B=0.45+0.312=0.762 \mathrm{~m}$	A1	
	Alternative method for question 7		
	Attempt PE loss as A reaches the ground	M1	Allow sin/cos error.
	$\begin{aligned} & \text { PE loss }=2 g \times 0.45-3 g \times 0.45 \sin 18 \\ & {[=4.82827]} \end{aligned}$	A1	Correct unsimplified.
	$2 g \times 0.45-3 g \times 0.45 \sin 18=\frac{1}{2} \times(2+3) v^{2}$	*M1	Apply work-energy equation as PE loss = KE gain, allow sign error, $\sin /$ cos error, 4 terms implied.

Question	Answer	Marks	Guidance
7	Solve for v^{2}	DM1	
	$v^{2}=1.931308 \ldots \quad[v=1.389715162]$	A1	
	PE gain $=3 g \times s \sin 18$	M1	Attempt PE gain for B after string breaks, allow sign error, sin/cos mix, $s=$ extra distance travelled by B along the plane.
	$3 g \times s \sin 18=\frac{1}{2} \times 3 \times 1.931308 \quad[s=0.312]$	M1	Work energy equation for B as PE gain $=\mathrm{KE}$ loss, 2 terms.
	Total distance moved by $B=0.45+0.312=0.762 \mathrm{~m}$	A1	
		8	

Cambridge International AS \& A Level

MATHEMATICS
 9709/42
 Paper 4 Mechanics
 October/November 2021
 MARK SCHEME

Maximum Mark: 50
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI
Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\frac{20-6}{50-T}=\frac{20}{5} \text { or } 20=6+\frac{20}{5(50-T)}$	M1	Equate the accelerations and set up an equation in T. Allow correct use of their incorrect $\frac{20}{5}$.
	$T=46.5$	A1	
		2	
1(b)	$\begin{aligned} & \text { Distance }=\frac{1}{2} \times 5 \times 20+20 \times 20+\frac{1}{2} \times 5 \times(20+6)+ \\ & +6 \times(T-30)+\frac{1}{2} \times(50-T) \times(20+6)+\frac{1}{2} \times 10 \times 20 \\ & {[=50+400+65+99+45.5+100]} \end{aligned}$ OR $\begin{aligned} & \text { Distance }=\frac{1}{2} \times 20 \times(60+45)-\frac{1}{2} \times 14 \times(25+T-30) \\ & {[=1050-290.5]} \end{aligned}$	M1	Attempt to find the total distance travelled using areas. Allow with T not yet substituted. Allow one error in use of area formulae or omission of only one of the areas: $0-5,5-25,25-30,30-T, T-50,50-60$.
	Total distance travelled $=759.5 \mathrm{~m}$	A1 FT	FT their T value: Provided $30<T<50$ and distance $=1085-7 T$
		2	

Question	Answer	Marks	Guidance
2(a)	For van: $\quad 2500-700-T=3600 a$ For trailer: $\quad T-300=1200 a$ For system: $2500-700-300=(3600+1200) a$	M1	Apply Newton's 2nd law to the van or to the trailer or to the system of van and trailer. Correct number of terms.
		A1	For any two correct.
	Obtain an equation in T only $\left[a=\frac{5}{16}=0.3125\right]$	M1	
	Tension in the rope $=T=675 \mathrm{~N}$	A1	
		4	
2(b)	For van: $\quad-F-700=3600 a$ For trailer: $-300=1200 a$ System: $\quad-F-700-300=(3600+1200) a$	M1	Apply Newton's 2nd law to any two of the van, the trailer and the system with braking force F and with $T=0$.
	Least possible value of braking force $=F=200 \mathrm{~N}$	A1	Allow $F=-200$
		2	

Question	Answer	Marks	Guidance
3(a)	$m g \times 1.8=\frac{1}{2} m v^{2}$	M1	Use of conservation of energy, 2 terms. Must NOT use constant acceleration equations. Use of equations such as $v^{2}=u^{2}+2 a s$ scores M0 A0.
	Speed of block at $B=v=6 \mathrm{~ms}^{-1}$	A1	AG
		2	
3(b)	Attempt the work-energy equation	M1	In the form: $\pm \mathrm{KE}$ lost $= \pm \mathrm{PE}$ gain $\pm \mathrm{WD}$ against Resistance
	$\frac{1}{2} \times m \times 6^{2}=4.5+m g \times 1.2$	A1	If using motion from A to final point $m g \times 1.8=m g \times 1.2+4.5$
	Mass of the block $=m=0.75 \mathrm{~kg}$	A1	
		3	

Question	Answer	Marks	Guidance
$4(\mathrm{a})$	For differentiation of s	$* \mathbf{M 1}$	
	$v=0.004\left(150 t-3 t^{2}\right)\left[=0.6 t-0.012 t^{2}\right]$	A1	
	$v=0$ when $t=50$. At $t=50$, $s=0.004\left(75 \times 50^{2}-50^{3}\right)=0.3 \times 50^{2}-0.004 \times 50^{3}$	DM1	Solve $v=0$ for t and substitute this value into s.
	Distance $A B=250 \mathrm{~m}$	$\mathbf{A G}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
4(b)	Attempt to determine stationary points for v by differentiation or by use of symmetry $[a=0.004(150-6 t)=0.6-0.024 t]$ or using symmetry attempt to find the mid-point between $t=0$ and their t value at $v=0$	*M1	If symmetry used then an attempt to find the required midpoint must be seen.
	Maximum v when $a=0$ so $t=25$ Or finding the mid-point if symmetry is used e.g. $v=0.004\left(150 \times 25-3 \times 25^{2}\right)=0.6 \times 25-0.012 \times 25^{2}\left[=7.5 \mathrm{~ms}^{-1}\right]$	DM1	Attempt to solve $a=0$ or use symmetry to find the relevant t value.
	Maximum velocity $=7.5 \mathrm{~ms}^{-1}$	A1	
	Alternative method for question 4(b)		
	Attempt to velocity as $v=-0.012\left[(t-25)^{2}-25^{2}\right]$	M1*	Attempt to complete the square for their velocity as far as $k\left[(t-a)^{2}-a^{2}\right]$
	$v=-0.012(t-25)^{2}+0.012 \times 25^{2}$ and select $t=25$ as the maximum point.	DM1	Or select the 0.012×25^{2} term as the maximum velocity.
	Maximum $=[0.012 \times 625=] 7.5 \mathrm{~ms}^{-1}$	A1	
		3	

Question	Answer	Marks	Guidance
5(a)	$\text { Driving force }=D F=\frac{960000}{30}$	B1	Allow for $960000=D F \times 30$
	$D F-75000 g \times \sin \alpha-R=0$	M1	Resolve forces along the slope. Must use a value for either $\sin \alpha$ or α.
	Resistance force $=R=24500 \mathrm{~N}$	A1	Allow correct work with 24500 to 3 sf.
		3	
5(b)	WD by engine in $60 \mathrm{~s}=900000 \times 60[=54000000]$	B1	
	$K E_{\text {init }}=\frac{1}{2} \times 75000 \times 30^{2} \quad K E_{\text {final }}=\frac{1}{2} \times 75000 \times v^{2}$	B1	For either correct expression for KE.
	$900000 \times 60+\frac{1}{2} \times 75000 \times 30^{2}=46500000+\frac{1}{2} \times 75000 \times v^{2}$	M1	For use of the work-energy equation with 4 terms, correct dimensions.
	Speed of engine after $60 \mathrm{~s}=v=33.2 \mathrm{~ms}^{-1}$	A1	Allow $v=\sqrt{1100}=10 \sqrt{11}$
		4	

Question	Answer	Marks	Guidance
6(a)	$\begin{array}{ll} \text { Horizontal: } & 100-T_{U} \sin 60-T_{L} \sin 60=0 \\ \text { Vertical: } & T_{U} \cos 60-T_{L} \cos 60-5 g=0 \\ \text { Perp to } T_{U} & T_{L} \cos 30+5 g \cos 30=100 \cos 60 \end{array}$	M1	Resolve horizontally or vertically or perpendicular to the upper string to reach an equation. Correct number of terms, Allow X for 100 in horizontal equation.
		A1	Either horizontal and vertical equations correct or perpendicular correct. Must see $X=100$ used for A1.
	Solve for either T_{L} or T_{U} using equation(s) with no missing term.	M1	May see $T_{U}=107.74$
	$T_{L}=7.74 \mathrm{~N}$	A1	Allow 7.73
		4	
6(b)	Horizontal: $\quad X-T_{u p} \sin 60=0$ Vertical: $\quad T_{u p} \cos 60-5 g=0$ Perp to $T_{u p} \quad 5 g \cos 30=X \cos 60$	M1	Resolve either horizontally or vertically or perpendicular to the upper string. Must be using the tension $T_{\text {low }}=0$. Equivalent to Lami as: $\frac{5 g}{\sin 150}=\frac{X}{\sin 120}\left(=\frac{T_{\text {up }}}{\sin 90}\right)$
		A1	Either horizontal and vertical equations correct or perpendicular correct.
	Eliminate $T_{u p}$ and/or solve for X	M1	$T_{u p}=100$
	Least value of $X=86.6$	A1	Allow $X=50 \sqrt{3}$
		4	

Question	Answer	Marks	Guidance
7(a)	For Q :$\begin{array}{ll} -2 m g \sin \alpha-F=2 m a & {[-16 m-7.2 m=2 m a]} \\ R=2 m g \cos \alpha & {[=12 m]} \end{array}$	M1	Apply Newton's 2nd law along or perpendicular to the plane to particle Q. Must use values for α or $\sin \alpha$ or $\cos \alpha$.
		A1	Both correct.
	$\begin{aligned} & F=0.6 \times 2 m g \cos \alpha=0.6 \times 0.6 \times 20 m[=7.2 m] \\ & {[2(m) a=-2(m) g(0.8)-0.6 \times 2(m) g(0.6)]} \end{aligned}$	M1	Using $F=0.6 R$ where R is a component of $2 m g$ only
	Acceleration of Q up the plane while moving up the plane is $a=-11.6 \mathrm{~ms}^{-2}$	A1	AG
		4	
7(b)	For $P: \quad m g \sin \alpha-0.6 R=m a$, leading to $8 m-3.6 m=m a$ $\left[R=m g \cos \alpha=6 m, a=4.4 \mathrm{~ms}^{-2}\right.$]	M1	Apply Newton's 2nd law to attempt to find the acceleration of particle P. Must use values for α or $\sin \alpha$.
	Q comes to rest when $10-11.6 T_{1}=0, \quad\left[T_{1}=\frac{25}{29}=0.862\right]$	M1	For using constant acceleration equations to attempt to determine when $v_{Q}=0$.
	For $P \quad s_{P(\text { down })}=\frac{1}{2} \times 4.4 \times T_{1}^{2} \quad[=1.635]$ For $Q \quad s_{Q(\text { up })}=10 T_{1}+\frac{1}{2} \times(-11.6) \times T_{1}^{2} \quad[=4.31]$	M1	Use constant acceleration equations to attempt to find either $s_{P(\text { down })}$ or $s_{Q(\text { up })}$ at time T_{1}.
	$d=6.4-s_{P(\text { down })}-s_{Q(u p)} \quad[=0.455]$ and to find $T_{2}[=0.12]$ by using $d=s_{P 2}-s_{Q 2}=\left(4.4 T_{1}\right) \times T_{2}$ [$s_{P 2}$ and $s_{Q 2}$ are distances travelled by P and Q in time T_{2}]	M1	For attempting to find the extra distance $d[=0.455]$ needed to reach 6.4 m and using $u_{P}=4.4 T_{1}$ at T_{1} to find T_{2} as $d=\left(4.4 T_{1}\right) T_{2}+\frac{1}{2} \times 4.4 T_{2}^{2}-\frac{1}{2} \times 4.4 T_{2}^{2}$.
	Time before collision $=\left[t=T_{1}+T_{2}=0.862+0.12=\right] 0.982$	A1	$t=0.98194357 \ldots$

Question	Answer	Marks	Guidance
7(b)	Alternative method for Question 7(b)		
	For $P: \quad m g \sin \alpha-0.6 R=m a$, leading to $8 m-3.6 m=m a$ $\left[R=m g \cos \alpha=6 m, a=4.4 \mathrm{~ms}^{-2}\right.$]	M1	Apply Newton's 2nd law to attempt to find the acceleration of particle P. Must use values for α or $\sin \alpha$
	Q comes to rest when $10-11.6 T_{1}=0, \quad\left[T_{1}=\frac{25}{29}=0.862\right]$	M1	For using constant acceleration equations to attempt to determine when $v_{Q}=0$
	For $P \quad s_{P(\text { down })}=\frac{1}{2} \times 4.4 \times t^{2}$ For $Q \quad s_{Q(\mathrm{up})}=10 T_{1}+\frac{1}{2} \times(-11.6) T_{1}^{2}-\frac{1}{2} \times 4.4\left(t-T_{1}\right)^{2}$	M1	Use constant acceleration equations to attempt to find either $s_{P(\text { down })}$ or $s_{Q(\text { up })}$ at time t where t is the total time before collision.
	$\frac{1}{2} \times 4.4 t^{2}+10 T_{1}+\frac{1}{2} \times(-11.6) T_{1}^{2}-\frac{1}{2} \times 4.4\left(t-T_{1}\right)^{2}=6.4$	M1	For using $s_{P(\text { down })}+s_{Q(\text { up) })}=6.4$ and solving for t
	Time before collision is $t=0.982 \mathrm{~s}$	A1	$t=0.98194357 \ldots$
		5	
	Special case for those who do not take into account the fact that Q com	es to rest	and then changes its direction
	For $P: \quad m g \sin \alpha-0.6 R=m a$, leading to $8 m-3.6 m=m a$ $\left[R=m g \cos \alpha=6 m, a=4.4 \mathrm{~ms}^{-2}\right.$]	M1	Apply Newton's 2nd law to attempt to find the acceleration of particle P. Must use values for α or $\sin \alpha$.
	For $P \quad s_{p(\text { down })}=(\pm) \frac{1}{2} \times 4.4 t^{2}$ For $Q \quad s_{q(\mathrm{up})}=(\pm) 10 t+\frac{1}{2} \times(-11.6) t^{2}$	M1	For using constant acceleration equations to attempt to find either $s_{p(\text { down })}$ or $s_{q(\text { up) })}$
	$s_{p}+s_{q}=6.4$ leading to $\frac{1}{2} \times 4.4 t^{2}+10 t+\frac{1}{2} \times(-11.6) t^{2}=6.4$	M1	For applying $(\pm) s_{p}+(\pm) s_{q}=6.4$ using their expressions for s_{p} and s_{q} to set up and solve a 3-term quadratic equation in t to obtain at least 1 solution.

Question	Answer	Marks	Guidance
7(b)	Time that particles are in motion before collision $=t=1 \mathrm{~s}$	A1	Must reject $t=16 / 9$ Maximum mark 4 out of 5
		4	
7(c)	$u_{p(\mathrm{down})}=0+4.4 \times 0.982[=4.3208]$	B1 FT	Allow ± 4.4. FT on their 4.4 and their 0.982
	$u_{q(\text { down })}=4.4 \times 0.12[=0.528]$	B1 FT	Allow ± 4.4. FT on their 4.4 and their 0.12
	$\pm m \times 4.3208 \pm 2 m \times 0.528= \pm(m+2 m) v$ [Correct equation is $m \times 4.3208+2 m \times 0.528= \pm(m+2 m) v$]	M1	Apply conservation of momentum, 4 terms, using their u_{p} and u_{q} values with m and $2 m$ respectively. Velocity of P and Q after impact must be equal.
	Speed of combined particle immediately after impact $=v=1.79 \mathrm{~ms}^{-1}$	A1	Must be positive
	Special case for those who do not take into account the fact that Q comes to rest and then changes its direction		
	$u_{p(\text { down })}=0+4.4 \times 1[=4.4]$	B1 FT	Allow $\pm 4.4, \mathrm{FT}$ on their 1 and their 4.4
	$u_{q(\mathrm{up})}=10-11.6 \times 1[=-1.6]$ so $u_{q(\mathrm{down})}=1.6$	B1 FT	Allow $\pm(10-11.6 \times 1), \mathrm{FT}$ on their 1
	$\pm m \times 4.4 \pm 2 m \times 1.6= \pm(m+2 m) v$	M1	Apply conservation of momentum, 4 terms, using their u_{p} and u_{q} values with m and $2 m$ respectively. Velocity of P and Q after impact must be equal.
	Speed of combined particle immediately after impact $=v=2.53 \mathrm{~ms}^{-1}$	- 11	Allow $v=\frac{38}{15}$. Must be positive.
		4	

Cambridge International AS \& A Level

MATHEMATICS
 9709/43
 Paper 4 Mechanics
 October/November 2021
 MARK SCHEME

Maximum Mark: 50
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$120 \times 8=120 v+40 v$	M1	Applying conservation of momentum.
	$v=6 \mathrm{~ms}^{-1}$	A1	
		2	
1(b)	$1600-4800=160 a$ leading to $a=-20$	M1	Applying Newton's 2nd law to the system.
	$0=6^{2}+2 \times(-20) \times s$	M1	Use of constant acceleration equations such as $v^{2}=u^{2}+2 a s$.
	Distance travelled by post $=0.9 \mathrm{~m}$	A1	
	Alternative method for question 1(b)		
	Initial KE $=\frac{1}{2} \times 160 \times 6^{2}$	M1	Use of $\mathrm{KE}=\frac{1}{2} m v^{2}$ for combined mass.
	$\frac{1}{2} \times 160 \times 6^{2}+160 \times 10 \times s=4800 s$	M1	Forms work/energy equation.
	Distance travelled by post $=0.9 \mathrm{~m}$	A1	
		3	

Question	Answer	Marks	Guidance
2(a)	Correct 3 force diagram, including angles shown	B1	
		1	
2(b)	$T_{1} \cos 60=T_{2} \cos 45$	M1	Resolving forces horizontally.
	$T_{1} \sin 60+T_{2} \sin 45=8 \mathrm{~g}$	M1	Resolving forces vertically.
	$T_{1} \cos 60=T_{2} \cos 45$ and $T_{1} \sin 60+T_{2} \sin 45=8 \mathrm{~g}$	A1	
	Attempting to solve for either T_{1} or T_{2}	M1	
	$T_{1}=58.6 \mathrm{~N}$	A1	
	$T_{2}=41.4 \mathrm{~N}$	A1	
	Alternative method for question 2(b)		
	$\frac{\mathrm{T}_{1}}{}=\frac{\mathrm{T}_{2}}{\sin }=\frac{80}{\sin 75}$	M1	Applies Lami's Theorem - at least two terms correct.
	$\sin 135 \quad \sin 150 \quad \sin 75$	A1	
	$\mathrm{T}_{1}=\frac{80 \sin 135}{\sin 75}$	M1	Solves for T_{1}.
	$T_{1}=58.6 \mathrm{~N}$	A1	
	$\mathrm{T}_{2}=\frac{80 \sin 150}{\sin 75}$	M1	Solves for T_{2}.
	$T_{2}=41.4 \mathrm{~N}$	A1	
		6	

Question	Answer	Marks	Guidance
3(a)	$\mathrm{PE}=1.6 \times 10 \times 5[=80 \mathrm{~J}]$ or $\begin{aligned} & v \downarrow=\sqrt{(2 \times 10 \times 5)}[=10] \\ & \mathrm{KE}=\frac{1}{2} \times 1.6 \times 10^{2}[=80 \mathrm{~J}] \end{aligned}$	B1	Either finds PE loss or uses $v^{2}=u^{2}+2 a s$ to find the velocity and hence the kinetic energy on reaching the ground
	$1.6 \times 10 \times 5=1.6 \times 10 \times h+8$ or $\frac{1}{2} \times 1.6 \times v^{2}=80-8, v \uparrow=\sqrt{90}$ $0=90+2 \times(-10) \times h \text { leading to } h=\ldots$ or $\begin{aligned} & \frac{1}{2} \times 1.6 \times v^{2}=80-8, v \uparrow=\sqrt{90} \\ & \frac{1}{2} m \times 90=m \times 10 \times h \text { leading to } h=\ldots \end{aligned}$	M1	Using Initial PE $=$ Final PE + Loss in KE or using $\mathrm{KE}=\frac{1}{2} m v^{2}$ to find initial velocity upwards and either $v^{2}=u^{2}+2$ as or KE loss $=$ PE gain to form equation in h.
	$h=4.5 \mathrm{~m}$	A1	
		3	
3(b)	$5=0+\frac{1}{2} \times 10 \times t^{2}$ leading to $t=1$ or $5=\frac{1}{2} \times(0+10) \times t$ leading to $t=1$ or $10=10 t$ leading to $t=1$	M1	Use of $s=u t+\frac{1}{2} g t^{2}$ for downward motion or use of $s=\frac{1}{2}(u+v) t$ for downward motion or use of $v=u+g t$ for downward motion.
	$4.5=0-\frac{1}{2} \times(-10) \times t^{2} \quad$ leading to $t=\sqrt{0.9}$ or $4.5=\frac{1}{2} \times(\sqrt{90}+0) \times t \quad$ leading to $\quad t=\sqrt{0.9}$ or $0=\sqrt{90}-10 t$ leading to $t=\sqrt{0.9}$	M1	Use of $s=v t-\frac{1}{2}(-g) t^{2}$ for upward motion or use of $s=\frac{1}{2}(u+v) t$ for upward motion or use of $v=u-g t$ for upward motion.
	$t=1.95 \mathrm{~s}$	A1	
		3	

Question	Answer	Marks	Guidance
4(a)(i)	[WD $=1250 \times 36 \times 8]$	M1	For using Work Done $=$ Force \times Distance .
	$\mathrm{WD}=360000 \mathrm{~J}$	A1	or 360 kJ
		2	
4(a)(ii)	$\text { Power }=1250 \times 36 \text { or } \mathrm{P}=\frac{360000}{8}[=45000 \mathrm{~J}]$	B1 FT	FT Work Done from $\frac{\mathbf{a}(\mathbf{i})}{8}$.
	$=45 \mathrm{~kW}$	B1	
		2	
4(a)(iii)	$\mathrm{DF}=\frac{57000}{36}[=1583.3 .$.	M1	Use changed Power in $P=\mathrm{DF} \times v$.
	$\frac{57000}{36}-1250=1400 a$	M1	For using Newton's 2nd law applied to the car.
	$a=0.238 \mathrm{~ms}^{-2}$	A1	
		3	
4(b)	$\frac{64000}{32}=1250+1400 g \sin \theta$	M1	For using DF $=$ resistance + component of the weight of the car.
	$\theta=3.1$ [3.0708 \ldots]	A1	
		2	

Question	Answer	Marks	Guidance
5(a)	$a=16 k-k t^{2}, \quad v=16 k t-\frac{1}{3} k t^{3}$	M1	Uses $v=\int a \mathrm{~d} t$.
	$8=16 k \times 4-\frac{1}{3} k \times 4^{3}$ leading to $k=\ldots$	M1	Substitutes $t=4, v=8$.
	$v=16 k t-\frac{k t^{3}}{3} \text { and } k=\frac{3}{16}$	A1	OE
	$s=8 k t^{2}-\frac{1}{12} k t^{4}$ leading to $s=\frac{24}{16} t^{2}-\frac{3}{192} t^{4}$	M1	Uses $s=\int v \mathrm{~d} t$ and attempts to find s in terms of t only. May be using $v=3 t-\frac{1}{16} t^{3}$.
	$s=\frac{1}{64} t^{2}\left(96-t^{2}\right)$	A1	AG, no errors seen.
		5	
5(b)	$s=0, t^{2}=96, t=4 \sqrt{6}$	M1	Attempt to find t when $s=0$.
	$v=16 \times \frac{3}{16} \times \sqrt{96}-\frac{3}{16} \times \frac{1}{3} \times \sqrt{96^{3}}$	M1	Attempt to find v at this t value
	Speed is $29.4 \mathrm{~ms}^{-1}$	A1	Do not condone $v=-29.4$.
		3	
5(c)	$v=0, t^{2}=48, t=4 \sqrt{3}$	M1	Determine the time, $t\left(\right.$ or $\left.t^{2}\right)$ at which $v=0$
	$s=\frac{1}{64} \times 48 \times(96-48)$	M1	Use substitution of the t or t^{2} value to find s.
	$s=36 \mathrm{~m}$	A1	
		3	

Question	Answer	Marks	Guidance
6(a)	$R=5 g, F=6 g-4 g$	M1	For resolving forces to find F and R.
	$\mu=\frac{2 g}{5 g}=0.4$	A1	AG
		2	
6(b)	$T_{1}-4 g=4 a$ or $8 g-T_{2}=8 a$	M1	For applying Newton's 2 nd law to the 4 kg particle or the 8 kg particle.
	$T_{1}-4 g=4 a$ and $8 g-T_{2}=8 a$	A1	Both equations correct.
	$T_{2}-T_{1}-F=5 a$ and $F=0.4 \times 5 g$	B1	
	Adding gives $8 g-4 g-2 g=17 a \quad$ leading to $a=\ldots$.	M1	Attempt to solve for a, T_{1} or T_{2}.
	$a=1.18 \mathrm{~ms}^{-2}, T_{1}=44.7 \mathrm{~N}, T_{2}=70.6 \mathrm{~N}$	A1	
		5	
6(c)	$T-4 g=4 a,-T-F=5 a, F=2 g$ or $-4 g-2 g=9 a$	M1	Applying Newton's 2nd law to both active particles.
	$a=-\frac{60}{9}$	A1	
	$v^{2}=2 \times \frac{20}{17} \times 0.5=\frac{20}{17}$ leading to $v=\ldots[v=1.0846 \ldots]$	M1	Use of $v^{2}=u^{2}+2 a s$ or equivalent to find v or v^{2} when the 8 kg particle reaches the ground.
	$0=\sqrt{\frac{20}{17}}-\frac{60}{9} t$	M1	Use of $v=u+a t$ or equivalent to find t.
	$t=0.163 \mathrm{~s}$	A1	From $t=0.1626978 \ldots$
		5	

Cambridge International A Level

MATHEMATICS9709/43Paper 4 Mechanics

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

PUBLISHED

Question	Answer	Marks	
1	$0.4 \times 2.5-0.5 \times 1.5$	$\mathbf{M 1}$	Attempt momentum before impact.
	$0.4 \times 2.5-0.5 \times 1.5=0.4 v+0.5 \times 2 v$	$\mathbf{M 1}$	Use of conservation of momentum, either case.
	$0.4 \times 2.5-0.5 \times 1.5=0.4 v+0.5 \times 2 v$ or $0.4 \times 2.5-0.5 \times 1.5=-0.4 v+0.5 \times 2 v$	$\mathbf{A 1}$	One correct equation
	Speed is $0.179 \mathrm{~m} \mathrm{~s}^{-1}$ or $0.417 \mathrm{~m} \mathrm{~s}^{-1}$	$\mathbf{A 1}$	Both values
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2(a)	Forward force exerted by cyclist $=\frac{150}{4} \mathrm{~N}[=37.5 \mathrm{~N}]$	B1	OE. $P=F v$ used correctly.
	$\frac{150}{4}-20=m \times 0.25$	M1	Use of Newton's second law
	$m=70 \mathrm{~kg}$	A1	
		- 3	
2(b)	$150 / 3-20-70 g \sin \theta=0$	M1	For resolving up the plane
		A1 FT	From 2.456.... FT $\theta=\sin ^{-1}\left(\frac{3}{m}\right)$ from (a)
		2	

Question	Answer	Marks	Guidance
3	$F \sin \theta+20 \sin 60-30 \sin \alpha-40 \sin \beta=0$	M1	For resolving in either direction
	Vertical: $F \sin \theta+20 \sin 60-30 \times 0.28-40 \times 0.6=0 \quad[F \sin \theta=15.07949 \ldots]$	A1	
	Horizontal: $F \cos \theta+40 \times 0.8-30 \times 0.96-20 \cos 60=0 \quad[F \cos \theta=6.8]$	A1	
	$\theta=\tan ^{-1} \frac{15.0794 \ldots}{6.8}$	M1	For method for finding θ
	$F=\sqrt{15.07949 \ldots .^{2}+6.8^{2}}$	M1	For method for finding F
	$\theta=65.7, F=16.5$	A1	
		6	
Question	Answer	Marks	Guidance
4(a)	$24=u \times 2-\frac{1}{2} g \times 2^{2}$	M1	Use of $s=u t+1 / 2 a t^{2}$
	$u=22$	A1	AG
	2	(-2	

Question	Answer	Marks	Guidance
4(b)	At maximum height $0=22^{2}-2 g s$	M1	Use of $v^{2}=u^{2}+2$ as to find maximum height.
	Maximum height $s=24.2 \mathrm{~m}$	A1	
	Height down $=0.5 \mathrm{~g} \times 1.8^{2}(=16.2)$	M1	Find distance travelled down in 1.8 s .
	$h=8$	A1	
	Alternative method for Question 4(b)		
	$0=22-10 t$	M1	Use of $v=u-g t$ with $u=22$ and $v=0$ to find time to reach maximum height
	$t=2.2$	A1	
	$h=22 \times(2.2-1.8)-\frac{1}{2} g \times(2.2-1.8)^{2}$	M1	Use of $s=u t+\frac{1}{2} a t^{2}$ to find value of h
	$h=8$	A1	
	Alternative method for Question 4(b)		
	$22 \mathrm{t}-\frac{1}{2} g t^{2}=22 \times(t+3.6)-\frac{1}{2} g \times(t+3.6)^{2}$	M1	Use of $s=u t+\frac{1}{2} a t^{2}$ for times t and $t+3.6$ to find time taken to reach height h.
	$t=0.4($ or $t+3.6=4)$	A1	
	$h=22 \times 0.4-\frac{1}{2} g \times 0.4^{2}$	M1	Use $s=u t+\frac{1}{2} a t^{2}$ to find value of h.
	$h=8$	A1	
		4	

Question	Answer	Marks	Guidance
5(a)	Increase in $\mathrm{KE}=1 / 2 \times 1900 \times 30^{2}-1 / 2 \times 1900 \times 20^{2} \quad[=475000 \mathrm{~J}]$	B1	May be implied by energy equation.
	Loss of PE $=1900 \times g \times s \sin 5 \quad[=1655.95 s \mathrm{~J}]$	B1	May be implied by energy equation.
	$1900 \times g \times s \sin 5+150000=1 / 2 \times 1900 \times 30^{2}-1 / 2 \times 1900 \times 20^{2}$	M1	For attempt at work/energy equation
		A1	Correct
	$s=[$ Length of hill $=] 196 \mathrm{~m}$	A1	
		5	
5(b)	$30^{2}=20^{2}+2 a \times 200$	M1	Use of $v^{2}=u^{2}+2 a s$
	$a=1.25 \mathrm{~m} \mathrm{~s}^{-2}$	A1	
	$T-100+500 g \sin 5=500 a$	M1	For applying Newton's second law to the trailer.
	$T=289 \mathrm{~N}$	A1	
		4	

PUBLISHED

Question	Answer	Marks	Guidance
6(a)	$(2 t-3)(t-1)=0$ leading to $t=\ldots \ldots$	M1	Attempt to solve $v=0$
	$t=1$ or $t=1.5$	A1	
	Minimum velocity when $t=1.25 \quad$ leading to $\quad v=\ldots$. or $\frac{\mathrm{d} v}{\mathrm{~d} t}=4 t-5=0 t=1.25$ leading to $v=\ldots .$. or $v=2\left[\left(t-\frac{5}{4}\right)^{2}-\frac{25}{16}\right]+3 \quad$ leading to $\quad v=\ldots .$.	M1	Uses roots or $\mathrm{d} v / \mathrm{d} t=0$ to find t for $v_{\text {min }}$ and attempts substitution to obtain $v_{\text {min }}$. Alternatively completes square.
	Minimum velocity is $-0.125 \mathrm{~m} \mathrm{~s}^{-1}$	A1	Allow $v=-\frac{1}{8}$
		4	
6(b)	Quadratic curve (two roots and $v(3)>v(0)$)	B1	
	Goes through (1.25, -0.125), (0, 3), (1, 0), (1.5, 0), $(3,6)$	B1	3 of the 5 key points shown on axes or as coordinates
	All five points shown on a totally correct graph	B1	
	\square	3	
6(c)	$s=\frac{2}{3} t^{3}-\frac{5}{2} t^{2}+3 t$	M1	For use of $s=\int_{v} \mathrm{~d} t$
	$\left[\frac{2}{3}(1.5)^{3}-\frac{5}{2}(1.5)^{2}+3(1.5)\right]-\left[\frac{2}{3}(1)^{3}-\frac{5}{2}(1)^{2}+3(1)\right]$	M1	Correct use of limits (their 1 and 1.5)
	Distance $=0.0417 \mathrm{~m}$	A1	A0 for -0.0417
		3	

Question	Answer		Marks	Guidance
7(a)	$R=0.3 g \cos \theta+4 \sin \theta=3 \times \frac{24}{25}+4 \times \frac{7}{25}$	$[=4]$	M1	Resolving forces perpendicular to the plane or parallel to the plane. Allow use of $\theta=16.3^{\circ}$
	$F=4 \cos \theta-0.3 g \sin \theta=4 \times \frac{24}{25}-3 \times \frac{7}{25}$	$[=3]$	A1	Two correct equations
	$3=\mu \times 4$		M1	For use of $F=\mu R$
	$\mu=\frac{3}{4}$		A1	AG Must be from correct and exact working, not using 16.3
			4	
7(b)	$F=\mu \times 0.3 g \cos \theta=\frac{3}{4} \times 3 \times \frac{24}{25}$	$\left[=\frac{54}{25}=2.16\right]$	B1	
	$4-\frac{3}{4} \times 0.3 g \times \frac{24}{25}-0.3 g \times \frac{7}{25}=0.3 a$		M1	Use of Newton's second law
	$a=\frac{10}{3} \mathrm{~m} \mathrm{~s}^{-2}$		A1	
			3	

PUBLISHED

Question	Answer	Marks	Guidance
7(c)	$s_{1}=\frac{1}{2} \times \frac{10}{3} \times 3^{2}=15$ and $v=\frac{10}{3} \times 3=10$	B1 FT	Distance s_{1} in 3 s and v after 3s; FT a from (b)
	$-0.3 g \times \sin \theta-\mu \times 0.3 g \cos \theta=0.3 a$ leading to $a=-10$ $0=10^{2}+2 \times(-10) \times s_{2}$	M1	Apply Newton's 2 nd law after 4 N removed, find a and use $v^{2}=u^{2}+2 a s$ to find extra distance s_{2}
	[$s_{2}=5$ leading to total distance $\left.=s_{1}+s_{2}=15+5=\right] 20 \mathrm{~m}$	A1	
	Alternative method for Question 7(c)		
	$\text { Work done }=4 \times 0.5 \times \frac{10}{3} \times 3^{2}[=60 \mathrm{~J}]$	B1 FT	$\mathrm{WD}=F s$ and $s=1 / 2 a t^{2}$ for 4 N force; FT a from (b)
	$60=\mu \times 0.3 g \cos \theta \times d+0.3 g \times d \sin \theta$	M1	WD by 4 N force $=\mathrm{WD}$ against $F+\mathrm{PE}$ gain
	$d=20 \mathrm{~m}$	A1	
		3	

Cambridge International AS \& A Level

MATHEMATICS9709/42Paper 4 Mechanics

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI
Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	Initial $\mathrm{KE}=\frac{1}{2} \times 0.6 \times 4^{2} \quad[=4.8]$ Final KE $=\frac{1}{2} \times 0.6 \times v^{2}$ PE loss $=0.6 \times g \times 15 \sin 10 \quad[=15.628]$	B1	Any one of the three expressions correct
	$0.6 \times g \times 15 \sin 10+\frac{1}{2} \times 0.6 \times 4^{2}=\frac{1}{2} \times 0.6 \times v^{2}$	M1	Apply energy equation, 3 terms, dimensions correct
	$v=8.25 \mathrm{~ms}^{-1}$	A1	
		3	

Question	Answer	Marks	Guidance
2	Resolve either horizontally or vertically with correct number of terms.	M1	Allow θ and α as in the question for this mark
	$[X=] 30-34 \times \frac{8}{17}-26 \times \frac{5}{13}[=4]$	A1	Allow $\pm X$ as they may resolve forces left or right Allow $[X=] 30-34 \sin 28-26 \sin 23$ angle 2 s.f. or better
	$[Y=] 34 \times \frac{15}{17}-26 \times \frac{12}{13}[=6]$	A1	Allow $\pm Y$ as they may resolve forces up or down Allow $[Y=] 34 \cos 28-26 \cos 23$ angle 2 s.f. or better
	$[R=] \sqrt{X^{2}+Y^{2}}$	M1	Attempt to solve for the magnitude of the force
	$[\beta=] \tan ^{-1}\left(\frac{Y}{X}\right)$ or $[\beta=] \tan ^{-1}\left(\frac{X}{Y}\right)$	M1	Attempt to solve for the direction of the resultant force

Question	Answer	Marks	Guidance
2 cont'd	$R=\sqrt{52}=2 \sqrt{13}=7.21 \mathrm{~N}$ and $\beta=56.3$ above 30 N force or anticlockwise from 30N force	$\mathbf{A 1}$	Both correct with correct explanation of the direction. Must be a correct and clear explanation.
		$\mathbf{6}$	

Question	Answer	Marks	Guidance
3	Resolving along or perpendicular to the rod	M1	3 terms in either direction
	$8 \sin 10+R=0.3 g$	A1	
	$8 \cos 10-F=0.3 a$	A1	
	$F=0.8 R \quad[R=1.61081 \ldots, F=1.28865 \ldots]$	M1	Using $F=\mu R$, where R is 2 terms involving weight and a component of 8 N .
	$\begin{aligned} & {[a=21.966 \ldots]} \\ & 0.6=\frac{1}{2} \times 21.966 \times t^{2} \end{aligned}$	M1	Complete method leading to an equation in t such as $s=u t+\frac{1}{2} a t^{2}$ with $s=0.6, u=0$ and using their value of a found from a Newton's second law with 3 terms, namely, component of 8 N , any friction and $0.3 a$.
	$t=0.234$ seconds	A1	Allow use of $a=22$ for M1 and A1
	Alternative method for Question 3		
	Resolving perpendicular to the rod	M1	
	$8 \sin 10+R=0.3 g$	A1	
	$F=0.8 R \quad[R=1.61081 \ldots, F=1.28865 \ldots]$	M1	Using $F=\mu R$, where R must involve $0.3 g$ and a component of 8 N .

Question	Answer	Marks	Guidance
3	$8 \cos 10 \times 0.6=F \times 0.6+\frac{1}{2} \times 0.3 v^{2} \quad[v=5.134]$	$\mathbf{B 1}$	Work energy equation to find v after 0.6 metres.
	$0.6=\frac{1}{2}(0+5.134) \times t$	$\mathbf{M 1}$	Using $s=\frac{1}{2}(u+v) t$ to find t.
	$t=0.234$ seconds	$\mathbf{A 1}$	
		$\mathbf{6}$	

Question	Answer	Marks	Guidance
4	For resolving either parallel to or perpendicular to the plane	M1	Three relevant terms in either equation.
	$P \cos 8=F+12 g \sin 25$	A1	
	$12 g \cos 25=R+P \sin 8$	A1	
	$F=0.3 R$	M1	Use $F=0.3 R$, where R must involve components of both $12 g$ and P.
	$P \cos 8=0.3(12 g \cos 25-P \sin 8)+12 g \sin 25$	M1	For attempting to solve for P, using equations with the correct number of relevant terms in both.
	$P=80.8$	A1	From $P=80.755 \ldots$ Allow $P \leqslant 80.8$ If more than one case is considered for direction of friction then a choice must be made for final answer.
	Alternative mark scheme for Question 4		
	For resolving forces either vertically or horizontally	M1	Correct number of terms in either equation.
	$R \cos 25+P \sin 33=12 g+F \sin 25$	A1	

Question	Answer	Marks	Guidance
4	$P \cos 33=F \cos 25+R \sin 25$	A1	
	$F=0.3 R$	M1	Use $F=0.3 R$
	Solve a pair of simultaneous equations in P and R May see $R=97.5$	M1	For attempting to solve for P, using equations with the correct number of relevant terms.
	$P=80.8$	\square A1	From $P=80.755 \ldots$ Allow $P \leqslant 80.8$ If more than one case is considered for direction of friction then a choice must be made for final answer.
		6	

Question	Answer	Marks	Guidance
$5(\mathrm{a})(\mathrm{i})$	$P=(440+280) \times 30$	$\mathbf{M 1}$	Using $P=F v$ with F as total resistance
	$P=720 \times 30=21.6 \mathrm{~kW}$	$\mathbf{A 1}$	Answer must be in kW
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
5(a)(ii)	$\begin{aligned} & P=21600-8000 \mathrm{~W} \\ & \mathrm{DF}=\frac{21600-8000}{30}\left[=\frac{13600}{30}=453.333 . .\right] \end{aligned}$	B1 FT	Follow through on their power from 5(a)(i) Allow Driving Force $(D F)=\frac{8000}{30}=266.7$ as the force due to solely to the change in power provided correct equation(s) used.
	Car: $\quad \mathrm{DF}-440-T=1250 a$ Caravan: $T-280=800 a$ System: DF $-(440+280)=2050 a$	M1	Apply Newton's 2nd law to either the car or to the caravan or to the system. Must be correct number of relevant terms. If $\mathrm{DF}=\frac{8000}{30}$ is used then the equations must be either $-\mathrm{DF}=2050 a$ or $T-280=800 a$
	Solve for either a or T	M1	Using equation(s) with no missing/extra terms, $\mathrm{DF} \neq 720$. Solving for a either from the system equation or from the car AND caravan equation. OR solving for T from the car AND caravan equation.
	$a=-0.13 \mathrm{~ms}^{-2}$ and $T=176 \mathrm{~N}$	A1	
		4	

Question	Answer	Marks	Guidance
5(b)(i)	System: DF $=720+2050 g \times 0.06 \quad[=1950]$ Car: DF $-440-T-1250 g \times 0.06=0$ Caravan: $T-280-800 g \times 0.06=0$	M1	Apply Newton's 2nd law with $a=0$, either to the system OR by eliminating T between the equations for the car and the caravan, no extra or missing relevant terms, dimensionally correct, to find DF
	$1950 v=28000$	B1	$P=\mathrm{DF} \times v \cdot \frac{28000}{v} \mathrm{SOI} .$
	$v=14.4 \mathrm{~ms}^{-1}$	A1	
		3	

Question	Answer	Marks	Guidance
5(b)(ii)	$\mathrm{PE}=800 \mathrm{~g} \times d \times 0.06=800 g \times 14.4 \times 60 \times 0.06$	M1	Using PE $=m g h$ with h being height gained in 60 s , using their v
	$\mathrm{PE}=414000(\mathrm{~J})$ or $\mathrm{PE}=414 \mathrm{~kJ}$	A1	Using $v=560 / 39=14.359$
	Alternative method for Question 5(b)(ii)		
	$\begin{aligned} & 28000 \times 60=\mathrm{PE} \text { of Caravan }+1250 g \times d \times 0.06+720 \times d \\ & \text { and } d=60 \times 14.359=861.54 \end{aligned}$	M1	For use of WD $=P \times t$ to find an expression for PE of caravan and the distance travelled up the incline in 1 minute.
	$\begin{aligned} & {[\mathrm{PE}=28000 \times 60-1250 g \times 861.54 \times 0.06-720 \times 861.54]} \\ & \mathrm{PE}=414000(\mathrm{~J}) \text { or } \mathrm{PE}=414 \mathrm{~kJ} \end{aligned}$	A1	
		2	

Question	Answer	Marks	Guidance
6	$s_{A}= \pm\left(30 t-5 t^{2}\right)$ or $s_{B}= \pm 5 t^{2}$	B1	Use of constant acceleration equations to find expressions for displacements of A or B.
	$s_{A}+s_{B}=15$ leading to $15=30 t$ leading to $t=0.5$	B1	Use $s_{A}+s_{B}=15$ to find time at which particles collide.
	$t=0.5$ leading to $v_{A}= \pm 25$ and $v_{B}= \pm 5$	B1	Find speed of particles at $t=0.5$ before collision.
	$t=0.5$ leading to $h_{A}= \pm\left(30 \times 0.5-\frac{1}{2} g \times 0.5^{2}\right)= \pm 13.75$	B1	Find position of A or B at which collision occurs at $t=0.5$ Alternatively allow $h_{B}= \pm 1.25$ as displacement of B
	$\begin{aligned} & 25 \times(2 m)-5(m)=(3 m) v \rightarrow v_{1}=15 \\ & 25(m)-5 \times(2 m)=(3 m) v \rightarrow v_{2}=5 \end{aligned}$	M1	Use of conservation of momentum, either case, using their v_{A} and $v_{B} \neq 0$ or 30 , with 3 terms.
		A1	Both values of v correct

Question	Answer	Marks	Guidance
6	Particle $C_{1}-13.75=15 t-5 t^{2}$ Particle $C_{2}-13.75=5 t-5 t^{2}$	M1	Use of $s=u t+\frac{1}{2} a t^{2}$ OE to find t, using either their numerical v_{1} or numerical v_{2} from a relevant conservation of momentum equation.
	$t_{C_{1}}, t_{C_{2}}=3.74,2.23$ leading to $T=1+\sqrt{5}-\sqrt{3}=1.50$	A1	Find $T=t_{C_{1}}-t_{C_{2}}$ from $t_{C_{1}}=3.736$ and $t_{C_{2}}=2.232$
		8	Subscripts 1 and 2 refer to the two cases.
	Alternative method for the final two marks		
	$\begin{array}{ll} 0=15-g t_{1}, & 0=5-g t_{2} \rightarrow t_{1}=1.5, t_{2}=0.5 \\ \text { Total heights } & h_{1}=13.75+11.25=25 \\ \text { Or } & h_{2}=13.75+1.25=15 \\ 25=5 T_{1}^{2} \text { and } & 15=5 T_{2}^{2} \rightarrow T_{1}=\sqrt{5}, T_{2}=\sqrt{3} \end{array}$	M1	Use of $v=u-g t$ to find time to highest point for either case and use of $v^{2}=u^{2}-2 g s$ to find total height reached for either case, using either their numerical v_{1} or numerical v_{2} from a relevant conservation of momentum equation. Use $s=0+\frac{1}{2} g T^{2}$ to find time to reach ground (either case).
	$T=1.5+\sqrt{5}-(0.5+\sqrt{3})=1+\sqrt{5}-\sqrt{3}=1.50$	A1	Find difference in total times $T=\left(t_{1}+T_{1}\right)-\left(t_{2}+T_{2}\right)$

Question	Answer	Marks	Guidance
7(a)	$v=6 t+2 t^{2}[+c]$ or $v=14 t[+c]$	M1	Attempt to integrate a in Stage 1 or Stage 2 or in Stage 2 for use of $v=u+a t$
	$v=6 t+2 t^{2} \text { and } v=14 t-8$ or $\begin{aligned} & v(t=2)=20 \\ & v(t=4)=20+14 \times 2=48 \end{aligned}$	A1 8 -8	Velocity in Stage 1 and Stage 2 correct including correct constant Find v at $t=2$ and use $v=u+14 t$ to find v at $t=4$
	$v=16 t-t^{2}[+c]$	*M1	Attempt to integrate a in Stage 3.
	$55=16 t-t^{2}$	DM1	Attempt to solve a relevant 3-term quadratic equation which comes from their 2 term v from Stage 3 equated to 55 and finding two values of t
	$t=5$ and $t=11$ only	A1	Allow only if $c=0$ has been shown correctly.
	Alternative method for Question 7(a)		
	State or imply that only possible range is $4 \leqslant t \leqslant 16$	B1	Allow this method if candidates only consider Stage 3
	$v=16 t-t^{2}+c$	M1	For attempt at integration.
	$c=0$ shown	A1	Using $v=0$ at $t=16$
	Solve $55=16 t-t^{2}$	M1	Must find 2 values of t and must be from equating their 2 term v to 55
	$t=5$ and $t=11$ only	A1	Allow only if $c=0$ has been shown correctly.
		5	

Question	Answer	Marks	Guidance
7(b)	Positive quadratic for $0 \leqslant t<2$ through $(0,0)$ joining to the bottom of the given line or Negative quadratic for $4 \leqslant t \leqslant 16$ going through the point $(16,0)$ and joining the top of the given line	B1	
	All correct with correct gradients (approx)	B1	Negative quadratic must have a maximum. There must be no point of inflexion particularly near $t=16$. Ignore any curve drawn outside $0 \leqslant t \leqslant 16$.
		2	
7(c)	$s=\int\left(16 t-t^{2}\right) \mathrm{d} t\left[=8 t^{2}-\frac{1}{3} t^{3}(+c)\right]$	M1	Attempt to integrate their v.
	$\begin{aligned} & s=\left[8 t^{2}-\frac{1}{3} t^{3}\right]_{8}^{16} \\ & s=\left[2048-1365 \frac{1}{3}\right]-\left[512-170 \frac{2}{3}\right] \end{aligned}$	A1	Correct integral and the correct limits used correctly to find an unsimplified expression for the distance from $t=8$ to $t=16$ only.
	$s=341 \frac{1}{3}$	B1	Allow $s=341$ to 3s.f. If no integration seen (calculator used) allow B1 (max 1 out of 3 marks)
		3	

Cambridge International A Level

MATHEMATICS	$\mathbf{9 7 0 9 / 4 1}$
Paper 4 Mechanics	May/June 2021
MARK SCHEME	

Maximum Mark: 50
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions)

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

PUBLISHED

Question	Answer	Marks	Guidance
1	Force exerted by winch $=50 g \sin 60+100[=433.0+100=533.0]$	M1	For resolving forces along the plane
	Work done $=5 \times(50 g \sin 60+100)$	M1	Use of WD $=$ Force \times distance
	Work done $=2670 \mathrm{~J}$	A1	
	Alternative method for Question 1		
	PE increase $=50 g \times 5 \sin 60$	M1	Correct dimensions
	Work done $=50 g \times 5 \sin 60+100 \times 5$	M1	Apply the work-energy equation, 3 terms
	Work done $=2670 \mathrm{~J}$	A1	
		3	
Question	Answer	Marks	Guidance
2(a)	$\begin{array}{ll} 0.1 \mathrm{~kg} \text { particle } & T-0.1 g=0.1 a \\ m \mathrm{~kg} \text { particle } & m g-T=m a \end{array}$	M1	Apply Newton's 2 nd law to either the 0.1 kg particle, the $m \mathrm{~kg}$ particle or to the system, correct number of terms
	System $\quad m g-0.1 g=(m+0.1) a$	A1	Two correct equations
	Solve for $m \quad[a=5]$	M1	From 2 equations with the correct number of relevant terms
	$m=0.3$	A1	
		4	

Question	Answer	Marks	Guidance
$2(\mathrm{~b})$	$v^{2}=0+2 \times 5 \times 0.9$	M1	Use of $v^{2}=u^{2}+2 a s$ with $u=0, s=0.9$ and their $a \neq \pm g$
	$v=3 \mathrm{~m} \mathrm{~s}^{-1}$	A1 FT	FT on $\sqrt{1.8 a}$
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
3(a)	Use of conservation of momentum, 3 terms	M1	Correct dimensions
	$0.1 \times 5+0=0.1 \times(-1)+0.2 \times(\pm v)$	A1	
	$v=3 \mathrm{~m} \mathrm{~s}^{-1}$	A1	A 0 for $v=-3$
		3	
3(b)	$0.2 \times$ their $3+0=0.2 \times u+0.5 \mathrm{~V}$	M1	Use of conservation of momentum, 3 terms, correct dimensions. Allow $u=0$ used or if Q and R coalesce
	$u \geqslant-1$	B1	Allow $u=-1$. Allow equality for finding greatest value of V. Condition for no collision with P, may be a statement.
	Greatest $V=1.6$	A1 FT	FT on their 3 from 3(a) if $u=-1$ used.
		3	

PUBLISHED

Question	Answer	Marks	Guidance
4(a)	Isabella $v=5 \times 1.1 \quad[=5.5]$	B1	Isabella's constant speed for 10 seconds
	Use of $s=u t+1 / 2 a t^{2}$ or use of $v-t$ graph to find total distance	M1	For either Isabella or Maria, all sections included but allow one error in use of formulae
	$\begin{aligned} & s_{I}=\frac{1}{2} \times 1.1 \times 5^{2}+10 \times 5.5+\frac{1}{2} \times 1.1 \times 5^{2}[=82.5] \\ & \text { or } s_{I}=\frac{1}{2} \times(20+10) \times 5.5[=82.5] \end{aligned}$	A1	For correct expression for Isabella, accept unsimplified
	$s_{M}=27.5+5 \times 10+\frac{1}{2} \times 5 \times 5[=90]$	A1	For correct expression for Maria, accept unsimplified
	Distances for Isabella $=82.5$ and Maria $=90$, so Maria goes further	B1	
		5	
4(b)	$\begin{aligned} & \frac{1}{2} a \times 5^{2}+10 \times 5 a+\frac{1}{2} a \times 5^{2}=90 \\ & \text { or } \frac{1}{2} \times(20+10) \times 5 a=90 \end{aligned}$	M1	Attempt total distance travelled by Isabella and set up an equation for a, using their value of $s_{M}=90$. All parts included, allow one error.
	$a=1.2$	A1	
		-2	

Question	Answer	Marks	Guidance
5(a)	$v=\int\left(6 t^{\frac{1}{2}}-2 t\right) \mathrm{d} t$	M1	For integration. $v=a t$ is M0.
	$v=4 t^{\frac{3}{2}}-t^{2}(+c)$	A1	Allow unsimplified coefficients.
	$v=0$ leading to $t=0$ or $t^{\frac{1}{2}}=4$ leading to $t=16$	A1	
		3	
5(b)	$6 t^{\frac{1}{2}}-2 t=0$	M1	Attempt to solve $a=0$, using valid algebra, reaching $t=\ldots$
	$t=9$	A1	
	$\begin{aligned} & s=\int\left(4 t^{\frac{3}{2}}-t^{2}\right) \mathrm{d} t \\ & {\left[s=\frac{8}{5} t^{\frac{5}{2}}-\frac{1}{3} t^{3}(+c)\right]} \end{aligned}$	M1	For integration of their expression for v which includes a term with a fractional power. Allow unsimplified coefficients. $v=a t$ is M 0
	$s=\frac{8}{5} t^{\frac{5}{2}}-\frac{1}{3} t^{3}$	A1	For correct integral
	Distance $=145.8 \mathrm{~m}$	B1	Allow $\frac{729}{5}$ or 146 to 3 s.f.
		5	

Question	Answer	Marks	Guidance
6(a)	$\begin{aligned} & 20 \cos 30=25 \cos 60+10 \cos \alpha \\ & {[17.32=12.5+10 \cos \alpha, \rightarrow \cos \alpha=0.4821]} \end{aligned}$	M1	For resolving forces horizontally, all relevant terms included
	$\alpha=61.2$	A1	From $\alpha=61.18$
	$\begin{aligned} & \text { Resultant }=20 \sin 30+10 \sin 61.2-25 \sin 60 \\ & {[=10+8.761-21.651]} \end{aligned}$	M1	For resolving forces vertically, all relevant terms included
	Magnitude of resultant force $=2.89 \mathrm{~N}$	A1	A0 for -2.89 N or for $\pm 2.89 \mathrm{~N}$. Allow 2.89 N downwards
		4	
6(b)	$\begin{aligned} X & =25 \cos 60+10 \cos 45-20 \cos 30 \\ & =12.5+7.07107-17.32051=2.25056 \\ Y & =20 \sin 30+10 \sin 45-25 \sin 60 \\ & =10+7.07107-21.65064=-4.57957 \end{aligned}$	M1	For either horizontal or vertical component, correct number of relevant terms. Allow $\pm X$ and/or $\pm Y$
		A1	For both correct, allow unsimplified
	$R=\sqrt{X^{2}+Y^{2}}$	M1	OE. Using a method to find the resultant force, using expressions for X and Y with at least 5 relevant terms.
	$\alpha=\tan ^{-1} \frac{Y}{X}$	M1	OE. A method to find the direction, using expressions for X and Y with at least 5 relevant terms.
	$\begin{aligned} & \text { Resultant }=5.10 \mathrm{~N}, \\ & \text { Direction }=63.8^{\circ} \text { below positive } x \text {-axis } \end{aligned}$	A1	For both correct, angle clearly explained. May use a diagram with a correct arrow and arc for angle. Allow angle 296° (measured anticlockwise from + ve x-axis)
		5	

Question	Answer	Marks	Guidance
7(a)(i)	$\mathrm{PE}=35 \mathrm{~g} \times 2.5 \sin 30$	M1	
	$\frac{1}{2} \times 35 v^{2}=35 g \times 2.5 \sin 30$	M1	Use of conservation of energy, 2 terms, correct dimensions
	$v=5 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	Alternative method for Question 7(a)(i)		
	$m g \sin 30=m a$ leading to $a=5$	M1	For applying Newton's 2nd law down the plane, 2 terms, correct dimensions
	$v^{2}=0+2 \times 5 \times 2.5$	M1	For using $v^{2}=u^{2}+2 a s$, using their $a \neq \pm g$
	$v=5 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		3	

Question	Answer	Marks	Guidance
7(a)(ii)	$\frac{1}{2} \times 35 \times 5^{2}=250 d$	M1	Use of work-energy from the bottom of the slide until motion stops, 2 terms, correct dimensions, using their v
	$d=1.75 \mathrm{~m}$	A1	
	Alternative method for Question 7(a)(ii)		
	$35 \mathrm{~g} \times 2.5 \sin 30=250 d$	M1	Use of work-energy from the start until motion stops, 2 terms, correct dimensions.
	$d=1.75 \mathrm{~m}$	A1	
	Alternative method for Question 7(a)(ii)		
	$-250=35 a$ leading to $a=-\frac{50}{7}=-7.14$ $0=5^{2}+2(a) d$	M1	Newton's 2nd law on the horizontal section with resistance $=250 \mathrm{~N}$ to find a and use $v^{2}=u^{2}+2 a s$ with $v=0, u=5$ and $s=d$.
	$d=1.75 \mathrm{~m}$	A1	
		2	

Question	Answer	Marks	Guidance
7(b)	$\frac{1}{2} \times 35 v^{2}=250 \times 1.05 \quad\left[v^{2}=15\right]$ or $-250=35 a$ leading to $a=-\frac{50}{7}$ $0=v^{2}+2 \times-\frac{50}{7} \times 1.05 \quad\left[v^{2}=15\right]$	B1	Either use the correct work energy equation for motion on the horizontal section or use the fact that the frictional force on the horizontal section is 250 N in order to set up an equation that would lead to finding the speed at the bottom of the slide.
	$R=35 g \cos 30[=303.11]$	B1	
	$v^{2}=0+2 \times a \times 2.5=15$ leading to $a=3$ or PE change $=35 g \times 2.5 \sin 30[=437.5]$	M1	For using $v^{2}=u^{2}+2 a s$, with their v^{2} to set up an equation that would lead to finding a.
	$35 g \sin 30-F=35 a \text { or }[175-F=35 a]$ or $35 g \times 2.5 \sin 30=F \times 2.5+\frac{1}{2} \times 35 \times 15[437.5=F \times 2.5+262.5]$	M1	For using Newton's 2nd law down the slope with correct dimensions. or For using energy equation, 3 relevant terms with correct dimensions.
	$F=\mu \times R$	M1	For using $F=\mu R$, where R is a component of 35 g .
	$\mu=0.231$	A1	Allow $\mu=\frac{2 \sqrt{3}}{15}$ OE

Question	Answer	Marks	Guidance
7(b)	Alternative method for Question 7(b)		
	$R=35 g \cos 30$	B1	
	PE change $=35 g \times 2.5 \sin 30[=437.5]$	B1	
	WD against friction on the flat $=250 \times 1.05$	B1	$\mathrm{WD}=262.5$
	$35 g \times 2.5 \sin 30=F \times 2.5+250 \times 1.05[437.5=F \times 2.5+262.5]$	M1	For using energy equation, 3 relevant terms with correct dimensions.
	$F=\mu \times R$	M1	For using $F=\mu R$ at any stage, where R is a component of 35 g .
	$\mu=0.231$	A1	Allow $\mu=\frac{2 \sqrt{3}}{15}$ OE
		6	

Cambridge International AS \& A Level

MATHEMATICS	$\mathbf{9 7 0 9 / 4 2}$
Paper 4 Mechanics	March $\mathbf{2 0 2 1}$
MARK SCHEME	

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\pm 0.2 \times 0.5$ or $\pm 0.3 \times 1$	B1	For initial momentum for either particle. Allow kg or g.
	$0.2 \times 0.5+0.3 \times(-1)=0.2 \times v+0$	M1	For conservation of momentum. Dimensions correct. Allow if 3 relevant momentum terms are seen regardless of sign.
	Speed $=1 \mathrm{~ms}^{-1}$	A1	Allow if final answer given as $v=1$ or speed $=1$ from an equation whose solution is $v=-1$
		3	

Question	Answer	Marks	Guidance
$2(\mathrm{a})$	Driving force $=\mathrm{DF}=\frac{22500}{v}$	B1	
	DF $-1400 g \times 0.1-600=0$	M1	Apply Newton's 2nd law to the car with $a=0$, three relevant terms. May see term $1400 g$ sin 5.7°.
	$v=11.25 \mathrm{~m} \mathrm{~s}^{-1}$	$\mathbf{A 1}$	AG From exact working only, may be implied if using 5.7°.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$2(\mathrm{~b})$	$\mathrm{DF}-1400 g \sin 2-600=1400 a$	$\mathbf{M 1}$	Use of Newton's second law for the car, 4 relevant terms.
	$\frac{22500}{11.25}-1400 g \sin 2-600=1400 a$	$\mathbf{A 1}$	
	$a=0.651 \mathrm{~ms}^{-2}(3 \mathrm{sf})$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
3	For attempting to resolve forces in either direction.	M1	Correct number of relevant terms.
	$T_{P} \cos 60=T_{R} \cos 30$	A1	
	$T_{P} \sin 60=T_{R} \sin 30+0.2 g$	A1	
	Attempt to solve simultaneously for either tension.	M1	From 2 equations, with correct number of relevant terms.
	$T_{P}=3.46 \mathrm{~N}$ and $T_{R}=2 \mathrm{~N}$	A1	Both correct. Allow $T_{P}=2 \sqrt{3} \mathrm{~N}$.
	Alternative method for question 3		
	$\frac{T_{P}}{\sin 60}=\frac{T_{R}}{\sin 150}=\frac{0.2 g}{\sin 150}$	M1	Attempt one pair of Lami's equations. Correct angles.
	One pair correct	A1	
	Equations all correct	A1	
	Solve for T_{P} or T_{R}	M1	From equations of the correct form.
	$T_{P}=3.46 \mathrm{~N}$ and $T_{R}=2 \mathrm{~N}$	A1	Both correct. Allow $T_{P}=2 \sqrt{3} \mathrm{~N}$
		5	

Question	Answer	Marks	Guidance
5(a)	$\left[2=\frac{1}{2} \times a \times 25\right]$	M1	Use of $s=u t+1 / 2 a t^{2}$ OE using $u=0, s=2$ and $t=5$.
	$a=0.16 \mathrm{~ms}^{-2}$	A1	Allow $a=\frac{4}{25}$.
		2	
5(b)	$R=5 g-X \sin 30$	B1	
	$X \cos 30-F=5 a$	M1	Apply Newton's 2nd law to the block, using their a.
	$X \cos 30-0.4(5 g-X \sin 30)=5 \times 0.16$	M1	Use $F=0.4 R$ to obtain an equation in X only, using their R which must involve $5 g$ and a component of X only.
	$X=19.5$ (3sf)	A1	
		4	
5(c)	$R=(5 g-25 \sin 30)[R=37.5]$	B1	
	$F=25 \cos 30 \quad\left[F=\frac{25 \sqrt{3}}{2}\right]$	B1	
	$\mu=\frac{F}{R}=0.577(3 \mathrm{sf})$	B1	Allow $\mu=\frac{\sqrt{3}}{3}$ or $\mu=\frac{1}{\sqrt{3}}$.
		3	

Question	Answer	Marks	Guidance
6(a)	$[s=] \int\left(t^{2}-8 t^{\frac{3}{2}}+10 t\right) \mathrm{d} t$	*M1	For attempting to integrate v.
	$[s=] \frac{1}{3} t^{3}-\frac{16}{5} t^{\frac{5}{2}}+5 t^{2}[+C]$	A1	Allow unsimplified.
	For correct use of correct limits.	DM1	Use of limit at $t=0$ may be implied.
	Displacement $=2.13 \mathrm{~m}(3 \mathrm{sf})$	A1	Allow displacement $=\frac{32}{15}$.
		4	

Question	Answer	Marks	Guidance
6(b)	For attempting to differentiate v.	*M1	
	$[a=] 2 t-12 t^{\frac{1}{2}}+10$	A1	Allow unsimplified.
	$a=0 \Rightarrow 2 t-12 t^{\frac{1}{2}}+10=0$	DM1	Dependent on *M1. Set $a=0$ and attempt to solve their 3 term equation in \sqrt{t} or t or $p(=\sqrt{t})$ by treating it as a quadratic equation.
	$2\left(t^{\frac{1}{2}}-5\right)\left(t^{\frac{1}{2}}-1\right)=0$ leading to $t=1$ or $t=25$	A1	Both correct.
	$\frac{\mathrm{d} a}{\mathrm{~d} t}=2-6 t^{-\frac{1}{2}}$	*DM1	Dependent on *M1. Determine the nature of the stationary point by: Either differentiating a and testing the sign of $\frac{\mathrm{d} a}{\mathrm{~d} t}$ or by substituting values either side of their t value(s) and attempt to determine the nature of the stationary point(s). If using $\frac{\mathrm{d} a}{\mathrm{~d} t}$ then must evaluate it at a t value for M1. Allow use with any t value from their 'quadratic'.
	Use $t=25$ in $\frac{\mathrm{d} a}{\mathrm{~d} t}=2-6 \times 25^{-\frac{1}{2}}$ Evaluating $\frac{\mathrm{d} a}{\mathrm{~d} t}$ correctly, hence a minimum.	A1	Or by using a convincing argument to show that $t=25$ gives a minimum value of v. If evaluated then $\frac{\mathrm{d} a}{\mathrm{~d} t}$ must be 0.8 .
	$\text { Minimum velocity }=25^{2}-8 \times 25^{\frac{3}{2}}+10 \times 25=-125 \mathrm{~m} \mathrm{~s}^{-1}$	B1	AG This mark is awarded only if the previous 6 marks are awarded.
		7	

Question	Answer	Marks	Guidance
7(a)	Attempt Newton's 2nd law for either P, Q or the system.	M1	Correct number of relevant terms, dimensionally correct.
	For $P: \quad 0.8+0.5 g \sin 30-T=0.5 a$	A1	For any one correct equation.
	System: $0.8+0.5 g \sin 30-0.3 g \sin 45=0.8 a$	A1	For two correct equations.
	Attempt to solve for T.	M1	Using two equations, each with the correct number of relevant terms. [$a=1.4733$ may be seen].
	$T=2.56 \mathrm{~N}(3 \mathrm{sf})$	A1	Allow $T=\frac{99+75 \sqrt{2}}{80}$.
		5	

Question	Answer	Marks	Guidance
7(b)	KE and PE for $m \mathrm{~kg}$ particle: $\frac{1}{2} m \times 0.36=0.18 m \text { and } m g \sin 45=5 \sqrt{2} m$	B1	Any 2 correct PE or KE terms.
	KE and PE for 0.5 kg particle: $\frac{1}{2} \times 0.5 \times 0.36=0.09$ and $0.5 g \sin 30=2.5$	B1	All 4 correct PE and KE terms.
	Apply the work-energy equation to the system as: PE loss +WD by $0.8 \mathrm{~N}=\mathrm{KE}$ gain +0.5	M1	Must include at least 5 relevant terms only and no extra terms. All terms dimensionally correct.
	$0.5 g \times 1 \times \sin 30-m g \times 1 \times \sin 45+0.8 \times 1 \quad 1$	A1	May be seen as: $2.5-5 \sqrt{2} m+0.8=0.09+0.18 m+0.5$
	$m=0.374$	A1	
	Alternative method for question 7(b)		
	KE and PE for $m \mathrm{~kg}$ particle: $\frac{1}{2} m \times 0.36=0.18 m \text { and } m g \sin 45=5 \sqrt{2} m$	B1	Correct KE and PE for $m \mathrm{~kg}$ particle.
	$a=0.18$ and $3.3-T=0.5(0.18)$ leading to $T=3.21$	B1	Evaluate the tension in the string using Newton's second law applied to the 0.5 kg particle.
	For $m \mathrm{~kg}$ particle: WD by $T=$ KE gain + PE gain +0.5	M1	At least 3 relevant terms including tension. All terms dimensionally correct.
	$3.21 \times 1=\frac{1}{2} m \times 0.36+m g \sin 45+0.5$	A1	
	$m=0.374$	A1	

Question	Answer	Marks	Guidance
7(b)	Alternative method for question 7(b)		
	KE and PE for $m \mathrm{~kg}$ particle: $\frac{1}{2} m \times 0.36=0.18 m$ and $m g \sin 45=5 \sqrt{2} m$ KE and PE for 0.5 kg particle $\frac{1}{2} \times 0.5 \times 0.36=0.09$ and $0.5 g \sin 30=2.5$	B1	Any 2 correct PE or KE terms.
		B1	All 4 correct PE and KE terms.
	Apply the work-energy equation to both particles as: $\begin{aligned} & 0.8 \times 1+0.5 g \sin 30=\frac{1}{2} \times 0.5 \times 0.36+T \times 1 \\ & \text { and } T \times 1=\frac{1}{2} m \times 0.36+m g \sin 45+0.5 \end{aligned}$	M1	Must include at least 5 relevant terms only and tension terms in both. $[T=3.21]$ All terms dimensionally correct.
	$0.8 \times 1+0.5 g \sin 30-\frac{1}{2} \times 0.5 \times 0.36=\frac{1}{2} m \times 0.36+m g \sin 45+0.5$	A1	
	$m=0.374$	A1	
		5	

Cambridge International AS \& A Level

MATHEMATICS9709/43Paper 4 MechanicsOctober/November 2020MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE
AG
CAO
CWO
ISW
SOI
SC

AWRT

Correct Working Only
Ignore Subsequent Working
Seen Or Implied
Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

Answer Which Rounds To

Question	Answer	Marks	Guidance
$1(\mathrm{a})$	$v=30$	$\mathbf{B 1}$	Use $v=u+a t$ (or equivalent suvat) with $v=0, a=-g$ and $t=3$
			$\mathbf{1}$

Question	Answer	Marks	Guidance
2(a)	$W D=40 \times 158=600 \mathrm{~J}$	B1	
		1	
2(b)	$[P E=5 \times 10 \times 15 \sin 20]$	M1	Attempt PE gain
	257 J (256.5151... J)	A1	
		2	
2(c)	$W D=40 \times 15+5 \times 10 \times 15 \sin 20=857 \mathrm{~J}$	B1 FT	FT $600+$ 'PE' (>0) from 2(b)
		1	

Question	Answer	Marks	Guidance
4	For using conservation of momentum (either case)	M1	
	$\begin{aligned} & 6 \times 4=3 m+4 \times 1.5 \text { or } \\ & 6 \times 4=3 m-4 \times 1.5 \end{aligned}$	A1	
	$m=6$ and $m=10$	A1	
	$\begin{aligned} & \mathrm{KE}_{\mathrm{A}} \text { initial }=1 / 2 \times 4 \times 6^{2} \quad(72 \mathrm{~J}) \\ & \text { or } \mathrm{KE}_{\mathrm{A}} \text { after }=1 / 2 \times 4 \times 1.5^{2} \quad(4.5 \mathrm{~J}) \\ & \text { or } \mathrm{KE}_{\mathrm{B}} \text { after }=1 / 2 \times 6 \times 3^{2} \quad(27 \mathrm{~J}) \\ & \text { or } \mathrm{KE}_{\mathrm{B}} \text { after }=1 / 2 \times 10 \times 3^{2} \quad(45 \mathrm{~J}) \end{aligned}$	B1 FT	$\begin{aligned} & \mathrm{KE}=1 / 2 \times m \times v^{2} \\ & \text { FT } 4.5 m \text { for } \mathrm{KE}_{\mathrm{B}} \end{aligned}$
	$\begin{aligned} & \text { KE loss }=\left[1 / 2 \times 4 \times 6^{2}-1 / 2 \times 4 \times 1.5^{2}-1 / 2 \times 6 \times 3^{2}\right] \\ & \text { or }\left[1 / 2 \times 4 \times 6^{2}-1 / 2 \times 4 \times 1.5^{2}-1 / 2 \times 10 \times 3^{2}\right] \end{aligned}$	M1	Uses KE loss $=$ KE before -KE after
	Loss of KE $=40.5 \mathrm{~J}$ or 22.5 J	A1	
		6	

Question	Answer	Marks	Guidance
$5(\mathrm{a})$	$4 t^{2}-20 t+21=(2 t-3)(2 t-7)=0 \rightarrow t=\ldots$	$\mathbf{M 1}$	For setting $v=0$ and attempting to solve $v=0$
	$t=1.5$ and $t=3.5$	$\mathbf{A 1}$	
		$\mathbf{2}$	
	$a=8 t-20, a(0)=\ldots$	$\mathbf{M 1}$	For using $a=\mathrm{d} v / \mathrm{d} t$ and evaluating for $t=0$
	$a=-20$	$\mathbf{A 1}$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
5(c)	$\begin{aligned} & 8 t-20=0, t=2.5 \rightarrow v=\ldots \text { or } \\ & v=(2 t-5)^{2}-4, v_{\min }=\ldots \end{aligned}$	M1	For setting $a=0$, attempting to solve for t and substituting to obtain v, or for attempting to complete the square on the expression for v
	$v_{\text {min }}=-4 \mathrm{~ms}^{-1}$	A1	
		2	
5(d)	$s=\int\left(4 t^{2}-20 t+21\right) \mathrm{d} t$	M1	For using $s=\int_{v} \mathrm{~d} t$ and attempting integration
	$s=\frac{4}{3} t^{3}-10 t^{2}+21 t(+c)$	A1	Correct integration
	$\frac{49}{6}-\frac{27}{2}$	M1	Substitute their limits (1.5 and 3.5) into their integral
	$\text { Distance }=\frac{16}{3}=5.33 \mathrm{~m}$	A1	
		4	

Question	Answer	Marks	Guidance
$6(\mathrm{a})(\mathrm{i})$	$P=650 \times 25$	M1	Use $P=F v$ with $F=$ total resistance
	$P=16250 \mathrm{~W}=16.25 \mathrm{~kW}$	A1	Accept 16300 W or $16.3 \mathrm{~kW}(3 \mathrm{sf})$
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
6(a)(ii)	$\mathrm{DF}=\frac{39000}{25}(=1560)$	B1	For using $\mathrm{DF}=P / v$
	For applying Newton's $2^{\text {nd }}$ law to the system to form an equation in a, or to the caravan or the car to form an equation in T and a	M1	$[1560-650=2400 \times a]$
	$\begin{aligned} & 1560-650=2400 a \\ & T-250=800 a \\ & 1560-400-T=1600 a \end{aligned}$	A1	Two correct equations
	$\left[a=\frac{(1560-650)}{2400}\right]$	M1	For solving for a or for T
	$\begin{aligned} & a=0.379 \mathrm{~ms}^{-2} \quad(0.37916 \ldots) \\ & T=553 \mathrm{~N} \quad(553.33 \ldots) \end{aligned}$	A1	
		5	
6(b)	$[\mathrm{DF}=650+2400 \times 10 \times 0.05]$	M1	Newton's $2^{\text {nd }}$ law
	$32500=(650+24000 \times 0.05) v$	M1	For using $P=F v$
	$v=17.6$	A1	Allow $v=\frac{650}{37}$
		-3	

Question	Answer	Marks	Guidance
7(a)	$[T=2 g \sin 10]$ or [3g sin $20=F+T]$	M1	Resolve forces parallel to plane P for particle A or parallel to plane Q for Particle B
	$T=2 g \sin 10$ and $3 g \sin 20=F+T$	A1	
	$R=30 \cos 20$ ($=28.19 \ldots$)	B1	Resolving forces perpendicular to plane Q for particle B
	$\mu=\frac{3 g \sin 20-2 g \sin 10}{30 \cos 20}$	M1	Using $\mu=F / R$
	$\mu=0.241$ ($=0.2407 \ldots$)	A1	
		5	
7(b)	$3 \mathrm{~g} \sin 20-T=3 a \text { or } T-2 g \sin 10=2 a$ or System: $3 g \sin 20-2 g \sin 10=5 a$	M1	For applying Newton's second law to either A or to B or to the system
	$a=\frac{(3 g \sin 20-2 g \sin 10)}{5}$	M1	For applying Newton's second law to the second particle and/or solving for a
	$a=1.3575 \ldots$	A1	
	$\begin{aligned} & h_{1}=x \sin 20 \\ & h_{2}=x \sin 10 \\ & x \sin 20+x \sin 10=1 \end{aligned}$	B1	Using expressions for height change of each particle after each moves a distance x along the plane, to obtain equation in x
	$\frac{1}{\sin 10+\sin 20}=0+\frac{1}{2} \times 1.3575 \times t^{2}$	M1	For using $s=u t+1 / 2 a t^{2}$ for either particle with $s=x, u=0$ and using their a (=1.3575)
	$t=1.69$	A1	
		6	

Cambridge International AS \& A Level

MATHEMATICS9709/42Paper 4 MechanicsOctober/November 2020MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI
Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Mark	Guidance
$1(\mathrm{a})$	Momentum $=0.2 \times 2=0.4 \mathrm{~kg} \mathrm{~ms}^{-1}$	$\mathbf{B 1}$	
		$\mathbf{1}$	
	$0.4=0.2 \times 0.3+0.5 v$	M1	Apply conservation of momentum, 3 terms
	$v=0.68 \mathrm{~ms}^{-1}$	A1 FT	FT on answer in 1(a)
		$\mathbf{2}$	

Question	Answer	Mark	Guidance
2(a)	DF $-650=1800 \times 0.5 \quad[\mathrm{DF}=1550]$	M1	Apply Newton's second law, 3 terms
	$\frac{P}{20}-650=1800 \times 0.5$	B1	
	[Power $P=1550 \times 20=] 31000 \mathrm{~W}$ or 31 kW	A1	
		3	
2(b)	$\frac{31000}{v}-650=0$	M1	Use $P=F v$ with $F=650$
	$v=47.7 \mathrm{~ms}^{-1} \quad$ ato	A1 FT	FT on their $P \neq 13000$ Allow $\frac{620}{13}$
		2	

Question	Answer	Mark	Guidance
3	$20 \cos 60=T \cos 45$	M1	Resolve forces horizontally, 2 terms
	$T=10 \sqrt{ } 2$ or $T=14.1$	A1	
	$20 \sin 60+T \sin 45=m g$ or W	M1	Resolve forces vertically, 3 terms
	$20 \sin 60+T \sin 45=m g$	A1	
	$m=2.73[=\sqrt{ } 3+1]$	A1	
	Alternative method for question 3		
	$\left[\frac{T}{\sin 150}=\frac{m g \text { or } W}{\sin 75}=\frac{20}{\sin 135}\right]$	M1	Attempt at one pair of terms using Lami's Method
	$\frac{T}{\sin 150}=\frac{m g}{\sin 75}=\frac{20}{\sin 135}$	A1	All terms correct in Lami's Method
	Attempt to solve for either T or m or W	M1	
	$T=10 \sqrt{ } 2$ or $T=14.1$	A1	
	$m=2.73[=\sqrt{ } 3+1]$	A1	
		5	

Question	Answer	Mark	Guidance
3	Alternative method for question 3		
	$\left[\frac{T}{\sin 30}=\frac{m g \text { or } W}{\sin 105}=\frac{20}{\sin 45}\right]$	M1	Attempt the triangle of forces method and state one equation which involves any two of the forces T, m and 20 .
	$\frac{T}{\sin 30}=\frac{m g}{\sin 105}=\frac{20}{\sin 45}$	A1	All correct
	Attempt to solve for either T or m or W	M1	
	$T=10 \sqrt{ } 2$ or $T=14.1$	A1	
	$m=2.73[=\sqrt{ } 3+1]$	A1	
		5	

Question	Answer	Mark	Guidance
4(a)	$\left[2=\frac{20}{T}\right] \rightarrow T=10$	B1	
		1	
4(b)	Distance travelled before constant speed $=$ $\begin{aligned} & 1 / 2 \times 10 \times 20+1 / 2 \times(20+V) \times 5 \\ & 1 / 2 \times 10 \times 20+1 / 2 \times(20-V) \times 5+5 V \\ & {[=150+2.5 V]} \end{aligned}$	B1 FT	May be implied if seen within total distance FT on T value from 4(a)
	Distance travelled after constant speed $=27.5 \mathrm{~V}+1 / 2 \times 5 \mathrm{~V}[=30 \mathrm{~V}]$	B1	May be implied if seen within total distance
	$\begin{aligned} & 1 / 2 \times 10 \times 20+1 / 2 \times(20+V) \times 5 \\ & =1 / 3[1 / 2 \times 10 \times 20+1 / 2 \times(20+V) \times 5+27.5 V+1 / 2 \times 5 \mathrm{~V}] \end{aligned}$	M1	For attempting to use $\frac{1}{2}$ or $\frac{1}{3}$ correctly and for obtaining an equation for V which includes all parts of the journey. or $1 / 2 \times 10 \times 20+1 / 2 \times(20+V) \times 5=1 / 2[27.5 V+1 / 2 \times 5 V]$
	$V=12$	A1	
		4	

Question	Answer	Mark	Guidance
5(a)	$40-g t=0 \quad[t=4]$	M1	Using $v=u+a t$ with $u=40, v=0$ and $a=-g$ to find the time taken to reach the highest point.
	Time to top of building $=4-1 / 2(4)=2$	A1	May see $t=4+2=6$ for A1
	$\begin{aligned} & h=40 \times 2-1 / 2 \times 10 \times 2^{2} \\ & h=40 \times 6-1 / 2 \times 10 \times 6^{2} \end{aligned}$	M1	Using $s=u t+1 / 2 a t^{2}$ with $u=40, a=-g$ and $t=2$ or $t=6$ to set up an equation which enables the value of h, the height of the building, to be found.
	$h=60$	A1	
	Alternative method for question 5(a)		
	$0=40^{2}+2 \times(-10) \times H$	M1	For using $v^{2}=u^{2}+2 a s$ with $u=40, v=0$ and $a=-g$ in order to find H, the greatest height achieved
	$H=80$	A1	
	$s=1 / 2 \times 10 \times 2^{2}$	M1	Use either $s=v t-1 / 2 a t^{2}$ with $v=0, a=-g, t=2$ or use $s=u t+1 / 2 a t^{2}$ with $u=0, a=g, t=2$ to find the distance travelled either in the final 2 seconds going up or the first 2 seconds going down
	$s=20$ and so $h=80-20=60$	A1	
		4	

Question	Answer	Mark	Guidance
5(b)	Height of first particle above ground $=40 t-1 / 2 \times 10 t^{2}$	B1	
	Height of second particle above top of building $=20(t-1)-1 / 2 \times 10 \times(t-1)^{2}$	B1	
	$60+20(t-1)-1 / 2 \times 10 \times(t-1)^{2}=40 t-1 / 2 \times 10 t^{2}$	M1	Set up an equation involving expressions for displacement to enable the time at which the particles reach the same height to be found.
	$t=3.5$ seconds	A1	
	Alternative method for question 5(b)		
	$h_{1}=40 \times 1-5 \times 1^{2}[=35]$ and $v_{1}=40-10 \times 1[=30]$	B1	Distance travelled and speed of first particle after 1 second
	$H_{1}=30 T-5 \times T^{2}, H_{2}=20 T-5 \times T^{2}$	B1	Distance travelled by both particles, T seconds after the second particle is projected.
	$30 T-5 \times T^{2}=20 T-5 \times T^{2}+(60-35)$	M1	Set up an equation in T involving expressions for displacement to enable the time at which the particles are at the same height to be found.
	$T=2.5$ and so time to meet $=2.5+1=3.5$ seconds	A1	
		4	

Question	Answer	Mark	Guidance
6(a)	$R=5 g \cos 30 \quad[=25 \sqrt{ } 3]$	B1	
	$40-5 g \sin 30-F>0$	M1	State that the net force up the plane is positive, 3 terms
	$F=\mu \times 5 g \cos 30$	M1	For using $F=\mu R$ with R as a component of $5 g$ to obtain an equality/inequality in μ only with 3 terms
	$\mu<\frac{1}{5} \sqrt{3}$	A1	AG
	Alternative scheme for question 6(a)		
	$R=5 g \cos 30[=25 \sqrt{ } 3]$	B1	
	$40-5 g \sin 30-F=5 a$	M1	Acceleration $a>0$
	$\begin{aligned} & F=\mu \times 5 g \cos 30 \\ & {[40-5 g \sin 30-\mu \times 5 g \cos 30=5 a]} \end{aligned}$	M1	For using $F=\mu R$ with R as a component of $5 g$ to obtain an equality in μ and a
	$\mu<\frac{1}{5} \sqrt{3}$	A1	AG. From $\mu=\frac{1}{5} \sqrt{3}=\frac{a}{g} \cos 30$ with $a>0$
		4	C

Question	Answer	Mark	Guidance
6(b)	Attempt to resolve forces parallel to or perpendicular to the inclined plane, 3 relevant terms in either direction	M1	
	$R=5 g \cos 30+40 \sin 30[=20+25 \sqrt{ } 3=63.3]$	A1	
	$F=40 \cos 30-5 g \sin 30[=20 \sqrt{ } 3-25=9.64]$	A1	
	$\mu \geqslant 0.152$	B1	AG. Using $F \leqslant \mu R$
	Alternative method for question 6(b)		
	Attempt to resolve forces horizontally or vertically with 3 relevant terms in either direction	M1	
	$40=R \sin 30+F \cos 30[40=1 / 2 R+\sqrt{ } 3 / 2 F]$	A1	
	$5 g=R \cos 30-F \sin 30[5 g=\sqrt{ } 3 / 2 R-1 / 2 F]$	A1	
	$\mu \geqslant 0.152$	B1	AG. Solve for R and F and use $F \leqslant \mu R$

Question	Answer	Mark	Guidance
$7(\mathrm{a})$	$\int 0.1 t^{3 / 2} d t$	$* \mathbf{M 1}$	For integrating a
	$v=0.04 t^{5 / 2}+1.72$	$\mathbf{A 1}$	
	$0.04 t^{5 / 2}+1.72=3$	DM1	For attempting to solve the equation $v=3$, to obtain t
	$t=4$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Mark	Guidance
$7(\mathrm{~b})$	$\int\left(0.04 t^{5 / 2}+1.72\right) d t$	$* \mathbf{M 1}$	For integrating v which itself has come from integration
	$\left[s=\frac{2}{175} t^{7 / 2}+1.72 t\left(+C^{\prime}\right)\right]$	DM1	
	For using correct limits correctly	$\mathbf{A 1}$	
	Displacement when $t=2$ is 3.57 m	$\mathbf{3}$	

Question	Answer	Mark	Guidance
8(a)	For $A: T=0.3 a$ For $B: 3.5+0.5 g \sin 30-T=0.5 a$ System: $3.5+0.5 g \sin 30=(0.3+0.5) a$	M1	For applying Newton's $2^{\text {nd }}$ law for either particle A or to particle B or to the system. Correct number of terms.
		A1	Two correct equations
	For solving either for T or for a	M1	
	$a=7.5 \mathrm{~ms}^{-2}$	A1	
	$T=2.25 \mathrm{~N}$	A1	
		5	
8(b)	$0.5 \mathrm{~g} \sin 30 \times 0.6[=1.5]$	B1	PE loss by B
	Apply the work-energy equation to the system	M1	5 relevant terms, their PE for 0.5 kg , WD by 3.5 N , WD against friction and two relevant KE terms.
	$0.5 g \sin 30 \times 0.6+3.5 \times 0.6=1 / 2 \times 0.8 \times v^{2}+1.1$	A1	
	$v=2.5 \mathrm{~ms}^{-1}$	A1	
		4	

Cambridge International AS \& A Level

MATHEMATICS	9709/41
Paper 4 Mechanics	October/November 2020
MARK SCHEME	

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI
Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$6 \times 2.5=2.5 v+5 v$	M1	Apply conservation of momentum, 3 terms implied
	$v=2 \mathrm{~ms}^{-1}$	A1	
		2	
1(b)	Use $\mathrm{KE}=1 / 2 m v^{2}$ either before or after collision	M1	Allow this for either particle
	$\begin{aligned} & \mathrm{KE}(\text { before })=0.5 \times 2.5 \times 6^{2} \\ & \mathrm{KE}(\text { after })=0.5 \times 7.5 \times 2^{2} \end{aligned}$	A1 FT	Both correct FT on v
	Loss of $\mathrm{KE}=30 \mathrm{~J}$	A1	
		3	

Question	Answer	Marks	Guidance
$2(\mathrm{a})$	$P=350 \times 20$	$\mathbf{M 1}$	Using $P=F v$
	$P=7 \mathrm{~kW}$	$\mathbf{A 1}$	
		$\mathbf{2}$	
	$15000=\mathrm{DF} \times 20 \quad[\mathrm{DF}=750]$	$\mathbf{B 1}$	Using $P=F v$
	$\mathrm{DF}-350=1400 a$	$\mathbf{M 1}$	Use Newton's $2^{\text {nd }}$ law, 3 terms
	$a=\frac{2}{7} \mathrm{~ms}^{-2}$	$\mathbf{A 1}$	$a=0.286$
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
3	Resolve forces either horizontally or vertically	M1	Correct number of relevant terms
	$P \cos \theta=12+8 \cos 30-10 \cos 45$ [$=11.857]$	A1	
	$P \sin \theta=10 \sin 45-8 \sin 30[=3.071]$	A1	
	$P=\sqrt{\left(11.857^{2}+3.071^{2}\right)}$	M1	OE. Use of correct method for finding P
	$\theta=\tan ^{-1}\left(\frac{3.071}{11.857}\right)$	M1	OE. Use of correct method for finding θ
	$P=12.2$ and $\theta=14.5$	A1	Both correct
		6	

Question	Answer	Marks	Guidance
4	$\left[v=3 t^{2}-18 t(+C)\right]$	$* \mathbf{M 1}$	Attempt to integrate a
	$\left[s=t^{3}-9 t^{2}(+C)\right]$	\#M1	Attempt to integrate v
	$v=3 t^{2}-18 t$ $s=t^{3}-9 t^{2}$	A1	Both integrals correct
	$v=0,3 t^{2}-18 t=0 \quad[t=6]$	*DM1	Attempt to find t when $v=0$
	$s=6^{3}-9 \times 6^{2}-[0]$	\#DM1	Substitute limits correctly into s
	$s=108 \mathrm{~m}$	$\mathbf{A 1}$	Answer must be positive
		$\mathbf{6}$	

PUBLISHED

Question	Answer	Marks	Guidance
5(a)	$0.8 g-T=0.8 a, \quad T-0.2 g=0.2 a$ For system: $0.8 g-0.2 g=(0.8+0.2) a$	M1	Apply Newton's $2^{\text {nd }}$ law to either particle or to the system
		A1	Any 2 correct equations
	Attempt to solve for either a or T	M1	
	$a=6 \mathrm{~ms}^{-2}$ and $T=3.2 \mathrm{~N}$	A1	AG. Both correct
		4	
5(b)	$v^{2}=2 \times 6 \times 0.5$	M1	Attempt to find v or v^{2} as 0.8 kg particle reaches the ground using a from 5(a)
	$0=6-20 \mathrm{~s}$	M1	Attempt to find the extra height reached by 0.2 kg particle using v^{2} from previous M1 mark
	Greatest height $=0.5+0.5+0.3=1.3 \mathrm{~m}$	A1	
		3	

Question	Answer	Marks	Guidance
6(a)	$\begin{aligned} & \mathrm{KE}(\text { final })=1 / 2 \times 1500 \times 20^{2}+1 / 2 \times 750 \times 20^{2} \\ & \mathrm{KE}(\text { initial })=1 / 2 \times 1500 \times 30^{2}+1 / 2 \times 750 \times 30^{2} \end{aligned}$	B1	Use $\mathrm{KE}=1 / 2 m v^{2}$ for any two of the four elements
	PE gain $=2250 \times 10 \times 800 \times 0.08$	B1	
	WD against friction $=600 \times 800$	B1	
	$\begin{aligned} & 1 / 2 \times 2250 \times 30^{2}+\mathrm{DF} \times 800= \\ &+1 / 2 \times 2250 \times 800 \\ & \times 20^{2}+2250 \times 10 \times 800 \times 0.08 \end{aligned}$	M1	Use energy equation.
	DF $=1700 \mathrm{~N}$	A1	$\mathrm{DF}=1696.875 \mathrm{~N}$
		5	

Question	Answer	Marks	Guidance
$6(\mathrm{~b})$	2400 $-600=2250 a$ or $T-200=750 a$ and $2400-400-T=1500 a$	$\mathbf{M 1}$	Apply Newton's second law to the system or to each of the car and trailer separately
	Attempting to solve for a or for T	Two correct equations	
	$T=800 \mathrm{~N}$ and $a=0.8 \mathrm{~ms}^{-2}$	$\mathbf{M 1}$	
		$\mathbf{4}$	

Question	Answer	Mark	Guidance
7(a)	$0.2 \times 10 \times 0.5=\frac{1}{2} \times 0.2 \times v_{B}^{2}$	M1	Attempt PE or KE for motion from A to B
		M1	Attempt PE loss $=$ KE gain from A to B
	$v_{B}^{2}=10$	A1	
	Alternative method for the first 3 marks		
	$0.2 \times 10 \times \sin 30=0.2 a, a=5$	(M1)	Attempt to find acceleration a for motion from A to B
	$v_{B}^{2}=0^{2}+2 \times 5 \times 1$	(M1)	Use $v^{2}=u^{2}+2 a s$ in attempt to find speed at B
	$v_{B}^{2}=10 \quad$ atotut	(A1)	

Question	Answer	Marks	Guidance
7(a)	THEN, either this method for the next 5 marks		
	$R=0.2 \times 10 \times \cos 30=\sqrt{ } 3$	B1	
	$F=\frac{\sqrt{3}}{2} \times 0.2 \times \frac{\sqrt{3}}{2} \times 10=1.5$	M1	For using $F=\mu R$ where R must be a component of $0.2 g$
	PE loss $=0.2 \times 10 \times 0.5=1$ WD against $F=1.5 \times 1$	M1	Attempt to find either PE loss or WD against F from B to C
	$\frac{1}{2} 0.2 \times 10+0.2 \times 10 \times 0.5=1.5 \times 1+\frac{1}{2} 0.2 v_{C}^{2}$	M1	Apply work-energy equation for motion from B to C as KE at $B+\mathrm{PE}$ at $B=\mathrm{WD}$ against $F+\mathrm{KE}$ at C with $v_{\mathrm{B}} \neq 0$
	$v_{c}=\sqrt{5}=2.24 \mathrm{~ms}^{-1}$	A1	
	OR, this method for the next 5 marks		
	$R=0.2 \times 10 \times \cos 30=\sqrt{ } 3$	(B1)	
	$F=\frac{\sqrt{3}}{2} \times 0.2 \times \frac{\sqrt{3}}{2} \times 10=1.5$	(M1)	For using $F=\mu R$ where R must be a component of $0.2 g$
	$0.2 \times 10 \sin 30-1.5=0.2 a \quad a=-2.5$	(M1)	Attempt to find acceleration a for motion from B to C
	$v_{c}^{2}=10+2 \times-2.5 \times 1$	(M1)	Use $v^{2}=u^{2}+2$ as in attempt to find v_{c} using $v_{\mathrm{B}} \neq 0$
	$v_{c}=\sqrt{5}=2.24 \mathrm{~ms}^{-1}$	(A1)	
		8	

Question	Answer	Marks	Guidance
7(a)	Alternative method for question 7(a)		
	PE loss $=0.2 \times 10 \times 2 \sin 30=2$	M1	Attempt PE loss for motion from A to C
	KE gain $=\frac{1}{2} \times 0.2 \times v_{C}^{2}$	M1	Attempt KE gain for motion from A to C
	Both PE loss and KE gain correct	A1	
	$R=0.2 \times 10 \times \cos 30=\sqrt{ } 3$	B1	
	$F=\frac{\sqrt{3}}{2} \times 0.2 \times \frac{\sqrt{3}}{2} \times 10=1.5$	M1	For using $F=\mu R$ where R must be a component of $0.2 g$
	WD against $F=1.5 \times 1$	M1	Attempt WD against F
	$0.2 \times 10 \times 1=1.5 \times 1+\frac{1}{2} \times 0.2 \times v_{C}^{2}$	M1	Attempt work-energy equation for motion from A to C
	$v_{c}=\sqrt{5}=2.24 \mathrm{~ms}^{-1}$	A1	
		8	

Question	Answer	Marks	Guidance
7(b)	$0=10+2 a \quad[a=-5]$	M1	Attempt to find a for motion from B to C, using $v_{B}^{2}=10, v_{C}=0$
	$0.2 \times 10 \times \sin 30-F=0.2 \times-5$	M1	Attempt Newton's $2^{\text {nd }}$ law for motion from B to C
	$2=\mu \sqrt{3}$	M1	Use $F=\mu R$ where R is a component of $0.2 g$ but $R=0.2 g$ is M0
	$\mu=\frac{2}{\sqrt{3}}$	A1	Any correct exact form such as $2 / 3 \sqrt{3}$
	Alternative method for question 7(b)		
	PE loss $=0.2 \times 10 \times 1 \sin 30=1$	M1	Attempt PE loss for motion from B to C
	$1+1 / 2 \times 0.2 \times 10=F \times 1$	M1	Work-Energy equation for motion from B to C in the form PE at $B+\mathrm{KE}$ at $B=\mathrm{WD}$ against F using $v_{B}^{2}=10, v_{C}=0$
	$F=\mu \sqrt{3}$	M1	Use $F=\mu R$ leading to an equation in μ where R is a component of $0.2 g$
	$\mu=\frac{2}{\sqrt{3}}$	A1	Any correct exact form such as $2 / 3 \sqrt{3}$

Question	Answer	Marks	Guidance
7(b)	Alternative method for question 7(b)		
	PE loss $=0.2 \times 10 \times 2 \sin 30=2$	M1	Attempt PE loss for motion from A to C
	$2=F \times 1$	M1	Work-Energy equation for motion from B to C
	$F=\mu \sqrt{3}$	M1	Use $F=\mu R$ leading to an equation in μ where R is a component of $0.2 g$
	$\mu=\frac{2}{\sqrt{3}}$	A1	Any correct exact form such as $2 / 3 \sqrt{3}$
		4	

Cambridge International AS \& A Level

MATHEMATICS9709/43
Paper 4 Mechanics

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks
1	Use of conservation of momentum	M1
	$m \times 2+0=m \times(-0.5)+0.2 \times 1$	A1
	$m=0.08$	A1

Question	Answer		Marks
2(a)	$F-900=4000 \times 0.5$ (M1 for use of Newton's second law, 3 terms)		M1
	$F=2900$ N		A1
2(b)	900×25 (M1 for use of $P=F v$ with $F=$ resistance only)		M1
	22500 W or 22.5 kW		A1

Question	Answer	Marks
3	Attempt to resolve, either direction with correct number of terms	M1
	$F \cos \alpha=40 \sin 30+20 \sin 60-50 \sin 45$ ($=1.965 \ldots$)	A1
	$F \sin \alpha=50 \cos 45+20 \cos 60-40 \cos 30(=10.714 \ldots)$	A1
	Method for either F or α	M1
	$F=\sqrt{\left((1.965 \ldots)^{2}+(10.714 \ldots)^{2}\right)}=10.9(10.893)$	A1
	$\alpha=\tan ^{-1}(10.714 \ldots / 1.965 \ldots)=79.6$ (79.606 ...)	A1
		6

Question	Answer	Marks
4(a)	Trapezium shape with gradient of right-hand side approximately 2 times left side	B1
		1
4(b)	Constant velocity $=500 / 25=20 \mathrm{~ms}^{-1}$	B1
	$20^{2}=0+2 a \times 50$	M1
	$a=4$	A1
		3
4(c)	Time to accelerate $=20 / 4=5 \mathrm{~s}$	B1
	Deceleration time $=2.5 \mathrm{~s}$	B1
	So total time $=5+25+2.5=32.5 \mathrm{~s}$	B1
		3

Question	Answer		Marks
5(a)	Decrease in $\mathrm{KE}=\frac{1}{2} \times 4 \times\left(12^{2}-8^{2}\right)$		M1
	160 J		A1
			2
5(b)	PE gained $=4 \mathrm{~g} \times 10 \sin 30(=200)$		B1
	Total work done $=200-160$		M1
	Total work done $=40 \mathrm{~J}$		A1 FT
			3
5(c)	$-4 g \sin 30=4 a$		M1
	$a=-5$		A1
	$-10=8 t-\frac{1}{2} \times 5 t^{2}$		M1
	$t=4.16 \mathrm{~s}$		A1
			4

Question		Answer	Marks
6(a)	$a=4-t$ (M1 for differentiation)		M1
	When $a=0, t=4$		A1
	At $t=4, v=12.5$		A1
			3
6(b)	Velocity $=0$ when $4.5+4 t-0.5 t^{2}=0$		M1
	$t=9($ reject $t=-1)$		A1
	$\int\left(4.5+4 t-0.5 t^{2}\right) d t$		M1
	$4.5 t+2 t^{2}-\frac{1}{6} t^{3}[+c]$		A1
	Apply limits (0 and 9)		M1
	Distance $=81 \mathrm{~m}$		A1
			6

Question	Answer	Marks
7(a)	$T-2 m g=0$	B1
	$3 m g \sin \theta-T=0$ (M1 for resolving forces parallel to the plane and solving for θ)	M1
	$\theta=41.8$ (41.810...)	A1
		3
7(b)	$R=3 m g \cos 30$	B1
	Use of $F=\mu R$	M1
	$2 m g-T=0.1 \times 2 m$ OR $T-3 m g \sin 30-\mu \times 3 m g \cos 30=0.1 \times 3 m$	M1
	$2 m g-0.2 m-3 m g \sin 30-\mu \times 3 m g \cos 30=0.1 \times 3 m$	M1
	$\mu=\frac{\sqrt{3}}{10}$	A1
		5
7(c)	$v^{2}=0+2 \times 0.1 \times 0.8 \quad(v=0.4)$	M1
	$-3 m g \sin 30-\mu \times 3 m g \cos 30=3 m a(a=-6.5)$	M1
	$0=-0.4-6.5 t$	M1
	$t=0.4 / 6.5=0.0615 \mathrm{~s}$	A1
		4

Cambridge International AS \& A Level

MATHEMATICS9709/42
Paper 4 Mechanics

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks
1(a)	Trapezium, deceleration steeper than acceleration	B1
	Time from 0 to 200	B1
		2
1(b)	$0.5(170+200) v=2775$	M1
	$v=15$	A1
		2
1(c)	$a=15 \div 20$	M1
	$a=0.75$	A1
		2

Question		Answer	Marks
2	Resolving forces in either direction		M1
	$20 \cos \theta=4 P \cos 30$		A1
	$4 P+2 P \sin 30=20 \sin \theta$		A1
	$\begin{aligned} & \cos \theta=\frac{\sqrt{3}}{10} P \\ & \sin \theta=\frac{P}{4} \\ & \frac{3}{100} P^{2}+\frac{1}{16} P^{2}=1 \end{aligned}$		M1
	$P=3.29$		A1
	$\theta=55.3$		A1
			6

Question	Answer	Marks
3	$T \sin 60+R=25 \cos 20$	B1
	Attempt at resolving in any direction	M1
	$T \cos 60=F+25 \sin 20$	A1
	$T \cos 60+F=25 \sin 20$	A1
	Use of $F=\mu R$	M1
	$\begin{aligned} & T \cos 60=25 \sin 20 \pm 0.3(25 \cos 20-T \sin 60) \\ & T=\frac{25 \sin 20 \pm 0.3 \times 25 \cos 20}{\cos 60 \pm 0.3 \sin 60} \end{aligned}$	M1
	$T=6.26$	A1
	$T=20.5$	A1
		8

Question		Answer	Marks
4(a)	$4 \times 10[+0]=4 \times 0.5 v+2 v$		M1
	$v_{A}=5$ and $v_{B}=10$		A1
			2
4(b)	Conservation of momentum B, C $2 \times 10[+0]=2 \times v+3 v$		M1
	$v=4$		A1
	$v_{A}>v_{B}$, hence another collision		A1
			3
4(c)	Conservation of momentum A, B		M1
	$4 \times \text { their } 5+2 \times \text { their } 4=4 v+2 v \quad v=\frac{14}{3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$		A1
	$\mathrm{KE} \text { initial }=\frac{1}{2} \times 4 \times 10^{2}$		M1
	$\text { KE final }=\frac{1}{2} \times 6 \times \text { their }\left(\frac{14}{3}\right)^{2}+\frac{1}{2} \times 1 \times \text { their } 12^{2}$		A1
	Loss of KE $=200-\frac{412}{3}=\frac{188}{3}$		A1
			5

Question		Answer	Marks
5(a)(i)	$D F=750$		B1
	$\begin{aligned} & \text { Power }=\text { their }(750) \times 32 \\ & =24 \mathrm{~kW} \end{aligned}$		B1 FT
			2
5(a)(ii)	$\begin{aligned} & 16000=D F \times 32 \\ & D F=500 \end{aligned}$		M1
	$500-750=1250 \times a$		M1
	$a=[-] 0.2$		A1
			3
5(b)	$D F=1000+8 v+1250 \times 10 \times 0.096$		M1
	$2200+8 v$		A1
	$60000=(2200+8 v) v$		M1
	$8 v^{2}+2200 v-60000=0$		A1
	$v=25$		A1
			5

Question	Answer	Marks
6(a)	Correct for $0 \leq t \leq 5$	B1
	Correct for $5 \leq t \leq 7$	B1
	Correct for $7 \leq t \leq 13.5$	B1
		3
6(b)	$a=-2 t$ by differentiating	M1
	$a=-12$	A1
		2
6(c)	$s=\int_{0}^{5}(2 t+1) \mathrm{d} t+\int_{5}^{6}\left(36-t^{2}\right) \mathrm{d} t+\left\|\int_{6}^{7}\left(36-t^{2}\right) \mathrm{d} t+\int_{7}^{13.5}(2 t-27) \mathrm{d} t\right\|$	M1
	$s=\int_{0}^{5}(2 t+1) \mathrm{d} t+\int_{5}^{6}\left(36-t^{2}\right) \mathrm{d} t+\left\|\int_{6}^{7}\left(36-t^{2}\right) \mathrm{d} t+\int_{7}^{13.5}(2 t-27) \mathrm{d} t\right\|$	A1
	$s=\left[t^{2}+t\right]+\left[36 t-\frac{t^{3}}{3}\right]+t^{2}-27 t$	M1
	All correct	A1
	$s=84.25$	A1
		5

Cambridge International AS \& A Level

MATHEMATICS9709/41
Paper 4 Mechanics

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks
1	Resultant $=100-2 \times 50 \cos \alpha$	M1
	20 N	A1
	Direction is to the left (or equivalent)	B1
		3

Question	Answer	Marks
2(a)	$[T-100=400 \times 1.5]$	M1
	$T=700 \mathrm{~N}$	A1
		2
2(b)	$F-250-100=2200 \times 1.5(F=3650 \mathrm{~N})$ (M1 for using Newton's second law for the system or for the car using the result from 2(a))	M1
	For use of power $=F v$	M1
	73000 W or 73 kW	A1
		3

Question	Answer		Marks
3(a)	$0=5^{2}-2 g s$		M1
	$s=1.25$		A1
	[Height above ground $=$] 4.05 m		A1
			3
3(b)	Use of $s=u t+1 / 2 a t^{2}$		M1
	$0.8=5 t-5 t^{2}$		A1
	$t=0.2$ or 0.8		M1
	Length of time $=0.6 \mathrm{~s}$		A1
			4

Question		Answer	Marks
4(a)	Resolving forces in either direction		M1
	$R=T \sin 30+0.1 g, F=T \cos 30$		A1
	$T \cos 30=0.8(T \sin 30+0.1 g)$		M1
	$T=1.72$ (1.7166...)		A1
			4
4(b)	$R=3 \sin 30+0.1 g$		B1
	$3 \cos 30-0.8(3 \sin 30+0.1 g)=0.1 a$		M1
	$a=5.98 \mathrm{~ms}^{-2}$ (5.9807...)		A1
			3

Question	Answer	Marks
5(a)	Attempt at finding PE lost	M1
	PE lost $=35 \mathrm{~g}(4 \cos 22.5-4 \cos 45)$	A1
	$\frac{1}{2} \times 35 v^{2}=35 g(4 \cos 22.5-4 \cos 45)$	M1
	Speed $=4.16 \mathrm{~ms}^{-1}(4.1643 \ldots)$	A1
		4
5(b)	Use of the work-energy equation in the form: PE lost = KE gain + WD against resistance	M1
	$\frac{1}{2} \times 35 \times 4^{2}=35 g(4-4 \cos 45)-X$	A1
	$X=130$ (130.05 ...)	A1
		3

Question	Answer	Marks
6(a)	$\int k\left(t^{2}-10 t+21\right) \mathrm{d} t$	M1
	$s=k\left(\frac{1}{3} t^{3}+5 t^{2}+21 t\right)+\mathrm{C}$	A1
	$2.85=k\left(\frac{1}{3} \times 3^{3}-5 \times 3^{2}+21 \times 3\right)+\mathrm{C}$ or $2.4=k\left(\frac{1}{3} \times 6^{3}-5 \times 6^{2}+21 \times 6\right)+\mathrm{C}$	M1
	$2.85=27 k+\mathrm{C}, 2.4=18 k+\mathrm{C}$ (A1 for both)	A1
	Solving for k	M1
	$k=0.05$	A1
	$s=0.05\left(\frac{1}{3} t^{3}-5 t^{2}+21 t\right)+1.5$	A1
		7
6(b)	Differentiating v or completing the square for v	M1
	$a=0.05(2 t-10)$	A1
	Min value of v is at $t=5$.	M1
	Displacement at $t=5$ is $2.58 \mathrm{~m}(2.5833 \ldots)$	A1
		4

Question	Answer	Marks
7(a)	$0.3 g \sin 30=0.3 a(a=5)$ (M1 for applying Newton's second law parallel to the plane)	M1
	$v^{2}=0+2 \times 2.5 \times a$	M1
	$v=5$	A1
	$0.3 \times 5+0=0.3 \times 2+0.2 w$	M1
	Velocity of $Q=4.5 \mathrm{~ms}^{-1}$	A1
		5

Cambridge International AS \& A Level

MATHEMATICS	$\mathbf{9 7 0 9 / 4 2}$
Paper 4 Mechanics	March $\mathbf{2 0 2 0}$
MARK SCHEME	

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	Power $=750000 / 10=75000 \mathrm{~W}$ or 75 kW	B1	Power $=$ WD/Time
		1	
1(b)	Driving force $\mathrm{DF}=75000 / 25$	B1FT	Using $P=\mathrm{DF} \times v$
	$[\mathrm{DF}-2400=16000 a]$	M1	Using Newton's $2^{\text {nd }}$ law
	$a=0.0375 \mathrm{~ms}^{-2}$	A1	Allow $a=\frac{3}{80}$
		3	

Question	Answer	Marks	Guidance
2(a)	$\left[1.44=0+1 / 2 \times 2 t^{2}\right]$	M1	For using a complete method which would lead to an equation for finding a value of t such as $s=u t+1 / 2 a t^{2}$ with $u=0, s=1.44$ and $a=2$
	$t=1.2 \mathrm{~s}$	A1	
		2	
2(b)	$R=0.4 g-3 \times \frac{}{5}=0.4 g-3 \sin 36.9[=2.2]$	B1	
	$\left[3 \times \frac{4}{5}-F=3 \cos 36.9-F=0.4 \times 2\right] \quad[F=1.6]$	M1	Use Newton's $2^{\text {nd }}$ law, 3 terms, to find F.
	$\left[\mu=\frac{3 \times \frac{4}{5}-0.4 \times 2}{0.4 g-3 \times \frac{3}{5}}=\frac{1.6}{2.2}\right]$	M1	Use of $\mu=\frac{F}{R}$
	$\mu=0.727$	A1	Allow $\mu=\frac{8}{11}$
		4	

Question	Answer	Marks	Guidance
$3(\mathrm{a})$	Initial $\mathrm{KE}=1 / 2 \times 0.2 \times 5^{2}$ or Final $\mathrm{KE}=1 / 2 \times 0.2 \times 3^{2}$	$\mathbf{B 1}$	
	$1 / 2 \times 0.2 \times 5^{2}=0.2 g h+1 / 2 \times 0.2 \times 3^{2}$	$\mathbf{M 1}$	Use conservation of energy
	$h=0.8$	$\mathbf{A 1}$	
		$\mathbf{3}$	
	Apply work-energy equation from A to C	$\mathbf{M 1}$	
	$1 / 2 \times 0.2 \times 5^{2}-3.1+0.2 g \times 0.5=1 / 2 \times 0.2 v^{2}$	Correct work-energy equation	
	Speed $=2 \mathrm{~ms}^{-1}$	$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(a)	Use the constant acceleration equations to obtain an expression for either $s_{A B}$ or $s_{B C}$ in terms of a	M1	
	$s_{A B}=2 \times 4.5-1 / 2 \times a \times 2^{2}$	A1	or $s_{A B}=1 / 2\left(v_{A}+v_{B}\right) \times 2=9-2 a$
	$s_{B C}=2 \times 4.5+1 / 2 \times a \times 2^{2}$	A1	or $s_{B C}=1 / 2\left(v_{B}+v_{C}\right) \times 2=9+2 a$
	$\left[2 \times 4.5-1 / 2 a \times 2^{2}=\frac{4}{5}\left(2 \times 4.5+1 / 2 a \times 2^{2}\right)\right]$	M1	Use the given information to find a valid equation for a
	$a=0.5 \mathrm{~ms}^{-2}$	A1	
	Alternative method for question 4(a)		
	$\left[4.5=u+2 a, s_{A C}=4 u+8 a, s_{A B}=2 u+2 a\right]$	M1	Any two relevant equations in $u, a, s_{A B}$ and $s_{A C}$ where u is the velocity at A
	Two correct equations	A1	
	Three correct equations	A1	
	$\left[2(4.5-2 a)+6 a=\frac{5}{4}\{2(4.5-2 a)+2 a\}\right]$	M1	Use the given information that $B C=5 / 4 A B$ to find a valid equation such as the one shown OE involving a only
	$a=0.5 \mathrm{~ms}^{-2}$	A1	
	Alternative method for question 4(a)		
	[$A C=4.5 \times 4]$	M1	Using $A C=v_{B} \times 4$ since v_{B} is the average velocity over $A C$
	$B C=5 / 9 \times A C$ or $A B=4 / 9 \times A C$	M1	
	$B C=10$ or $A B=8$	A1	
	$[10=4.5 \times 2+2 a$ or $8=4.5 \times 2-2 a]$	M1	Using $s=u t+1 / 2 a t^{2}$ for $B C$ or $s=v t-1 / 2 a t^{2}$ for $A B$
	$a=0.5 \mathrm{~ms}^{-2}$	A1	

Question	Answer	Marks	Guidance
		5	
4(b)	$s_{A B}=2 \times 4.5-1 / 2 \times 0.5 \times 2^{2}=8$ OR $s_{B C}=2 \times 4.5+1 / 2 \times 0.5 \times 2^{2}=10$	M1	Attempt to find the value of $s_{A B}$ or $s_{B C}$ OR attempt to find $s_{A B}$ directly as $s_{A C}=3.5 \times 4+1 / 2 \times a \times 4^{2} \text { or } 1 / 2(4.5-2 a+4.5+2 a) \times 4$ or add the 2 expressions found in $4(a)$ for $s_{A B}$ and $s_{B C}$
	$s_{A C}=8+5 / 4 \times 8=18 \mathrm{~m}$ OR $s_{A C}=10+4 / 5 \times 10=18 \mathrm{~m}$		
		2	

Question	Answer	Mark	Guidance
$5(\mathrm{a})$	$[4 \sin 30+F \sin 60-6=0]$	$\mathbf{M 1}$	Resolve forces vertically and equate to zero
	Correct equation	A1	
	$F=4.62$	A1	Allow $F=\frac{8}{\sqrt{3}}$ or $F=\frac{8}{3} \sqrt{3}$
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
5(b)	Resolve forces either vertically or horizontally	M1	
	$\begin{aligned} & F \sin \alpha+4 \sin 30-6=0 \\ & \text { and } \\ & F \cos \alpha+3-4 \cos 30=0 \end{aligned}$	A1	Both equations correct $\begin{aligned} & {[F \sin \alpha=4]} \\ & {[F \cos \alpha=0.464102 \ldots]} \end{aligned}$
	$\begin{aligned} & {\left[F^{2}=4^{2}+0.464^{2}\right]} \\ & \text { or } \\ & {\left[F=\frac{4}{\sin 83.4}=\frac{0.464}{\cos 83.4}\right]} \end{aligned}$	M1	Attempt to solve for F using Pythagoras or from a value found for α
	$\left[\alpha=\tan ^{-1}\left(\frac{4}{0.464}\right)\right]$ or $\left[\alpha=\sin ^{-1}\left(\frac{4}{4.03}\right)=\cos ^{-1}\left(\frac{0.464}{4.03}\right)\right]$	M1	Attempt to solve for α using trigonometry or from a value found for F
	$F=4.03$ and $\alpha=83.4$	A1	Both correct as shown [F=4.0268..., $\alpha=83.382 \ldots]$
		5	

Question	Answer	Marks	Guidance
6(a)	$\begin{aligned} & {[T-200=700 \times-12]} \\ & \text { Car: } \quad-T-600-F=1600 \times-12 \\ & \text { System: }-600-200-F=2300 \times-12 \end{aligned}$	M1	Apply Newton's $2^{\text {nd }}$ law to the trailer or apply Newton's $2^{\text {nd }}$ law to the car and to the system and eliminate the braking force, F.
	Magnitude of $T=8200 \mathrm{~N}$	A1	
		2	
6(b)	Car $\quad[T-F-600=1600 \times-12]$ or System $[-600-200-F=2300 \times-12]$	M1	Apply Newton's second law either to the car or to the system with braking force $=F$ and use of their T from $\mathbf{6 (a)}$
	Braking force $F=26800 \mathrm{~N}$	A1	
		2	
6(c)	$\left[v^{2}=22^{2}+2 \times-12 \times 17.5\right]$	M1	A complete method using constant acceleration equations which would lead to an equation for finding v, using $u=22, s=17.5$ and $a=-12$
	$v=8 \mathrm{~ms}^{-1}$	A1	AG
		2	
6(d)	$[2300 \times 8+m \times 0=2300 \times 2+m \times 5]$	M1	For applying the conservation of momentum equation to the system of car, trailer and van, where $m=$ mass of the van
		A1	Correct equation
	$m=2760 \mathrm{~kg}$	A1	
		3	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/43
Paper 4
October/November 2019
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

[^0]
Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	
1	$F=\mu \times 500 g$	B1	Use of $F=\mu R$
	$[2500=\mu \times 500 g]$	M1	Resolving horizontally
	$\mu=0.5$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer		Marks	Guidance
2	PE gain $=150000 g \times 500 \sin \alpha$	$(=75000000 g \sin \alpha)$	B1	Correct expression for PE gain
	$\frac{1}{2} \times 150000 \times 45^{2}-\frac{1}{2} \times 150000 \times 42^{2}$	$(=19575000)$	B1	Correct expression for KE loss
			M1	For 5 term work energy equation (or 4 terms if using loss in KE as 1 term)
	$150000 g \times 500 \sin \alpha=19575000+16000 \times 500-4 \times 10^{6}$		A1	
	$\alpha=1.8$		A1	
			5	

Question	Answer	Marks	Guidance
3	Resolving horizontally or vertically	M1	
	$50 \cos 20+60-100 \sin 30 \quad(=56.984 \ldots)$	A1	
	$100 \cos 30-50 \sin 20 \quad(=69.501 \ldots)$	A1	
	$R=\sqrt{\left(56.984 \ldots .^{2}+69.501 \ldots{ }^{2}\right)}$ or $\alpha=\tan ^{-1}\left(\frac{56.984 \ldots}{69.501 \ldots}\right)$	M1	Method to find either R or α
	$R=89.9$ (89.876...)	A1	
	$\alpha=39.3$ (39.348...)	A1	
		6	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$s_{P Q}=20 \times 10-0.5 a \times 10^{2}$ or $s_{Q R}=20 \times 10+0.5 a \times 10^{2}$	M1	For use of $s=v t-\frac{1}{2} a t^{2}$ or $s=u t+\frac{1}{2} a t^{2}$ OE
		suvat to find $P Q$ or $Q R$	

Question		Answer	Marks	Guidance
5(i)	Driving force $=\frac{240}{6}(=40 \mathrm{~N})$		B1	Use of power $=$ force \times velocity
	$[40-R=80 \times 0.3]$		M1	Use of Newton's Second Law (3 terms)
	Resistance is 16 N		A1	AG
			3	
5(ii)	$\left[\frac{240}{v}=16\right]$		M1	Use of $P=F v$ with $\mathrm{DF}=$ resistance
	Steady speed is $15 \mathrm{~ms}^{-1}$		A1	
			2	
5(iii)	Use of Newton's Second Law		M1	(4 terms)
	$\frac{240}{4}-16-80 g \sin 3=80 a$		A1	
	Acceleration is $0.0266 \mathrm{~ms}^{-2}$		A1	
			3	

Question	Answer	Marks	Guidance
Q6(i)	$10=0.04 \times 5^{3}+5^{2} c+5 k \quad(5 c+k=1)$	B1	Use of $t=5, v=10$
	$s=\frac{0.04}{4} t^{4}+\frac{c t^{3}}{3}+\frac{k t^{2}}{2}+(C)$	*M1	For use of $s=\int v \mathrm{~d} t$
	$25=0.01 \times 5^{4}+\frac{5^{3}}{3} c+\frac{5^{2}}{2} k$	DM1	Use of $t=0, \mathrm{~s}=0$ and $t=5, s=25$
	$6.25+\frac{125}{3} c+\frac{25}{2} k=25 \quad\left(\frac{125}{3} c+\frac{25}{2} k=18.75\right)$	A1	
	Solving for c or for k	M1	
	$c=-0.3$ and $k=2.5$	A1	
		6	
Q6(ii)	$a=0.12 t^{2}-0.6 t+2.5$	M1	For use of $a=\frac{\mathrm{d} v}{\mathrm{~d} t}$
	$a^{\prime}=0.24 t-0.6=0 \rightarrow t=\ldots$ or $a=0.12\left(t^{2}-5 t+\ldots\right)=0.12\left[(t-2.5)^{2}+\ldots\right]$	M1	Uses $\frac{\mathrm{d} a}{\mathrm{~d} t}=0$ or completes the square for a
	Minimum when $t=2.5$	A1	AG
		3	

Question	Answer	Marks	Guidance
7(i)	$\left[0.81=0+\frac{1}{2} \times a \times 0.9^{2}\right]$	M1	For use of $s=u t+\frac{1}{2} a t^{2}$
	$a=2$	A1	
	$T-m g=m a$ or $k m g-T=k m a$	M1	Use of Newton's Second Law for A or B or use of $a=\frac{\left(m_{B}-m_{A}\right) g}{\left(m_{B}+m_{A}\right)}$
	$T-m g=m a \text { and } k m g-T=k m a \text { or }\left[a=\frac{(k m-m) g}{(k m+m)}\right]$	A1	
	$a=\frac{(k g-g)}{(k+1)}=2 \rightarrow k=\ldots$	M1	Solves to find k
	$k=1.5$	A1	
	$T=10 m+2 m=12 m \mathrm{~N}$	B1	AG
		7	
7(ii)	Velocity of A when string breaks $=2 \times 0.9 \quad\left(=1.8 \mathrm{~ms}^{-1}\right.$ upwards)	B1FT	For use of $v=u+a t \mathrm{ft} a$ from (i)
	$v^{2}=1.8^{2}+2 \mathrm{~g} \times 1.62 \rightarrow v=\ldots$	M1	For use of suvat to find v_{A} at ground
	Speed is $5.97 \mathrm{~ms}^{-1}$	A1	AG
	Time taken $=\frac{(1.8+5.97)}{g}=0.777 s$	B1	
		4	

Question	Answer	Marks	Guidance
7 (iii)	Straight line from $(0,0)$ to $(0.9,1.8)$	B1	
	Straight line from $(0.9,1.8)$ to approx. $(1.7,-6)$	B1FT	FT $0.9+t$ from (ii) for 1.7
		$\mathbf{2}$	

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

[^1]
Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Mark	Guidance
1	$(v=) 3 t^{2}-12 t+4$	*M1	Attempt at differentiation of s to find v
	$(a=) 6 t-12$	*M1	Attempt at differentiation of v to find a
	[When $a=0, t=2$]	DM1	Solve to find t when $a=0$ and find v at this time
	$v=-8 \mathrm{~ms}^{-1}$	A1	
	Alternative method for question 1		
	$(v=) 3 t^{2}-12 t+4$	M1	Attempt at differentiation of s to find v
	$\begin{aligned} & (v=) 3(t-2)^{2}-8 \\ & \text { or } t=\frac{-b}{2 a}=\frac{12}{6}=2 \end{aligned}$	M1	For using the method of completing the square or using the value of ${ }^{\star} \frac{-b^{\prime}}{2 a}$ to find the t value of the minimum velocity
		M1	Use of the t value at minimum velocity to find v
	$v=-8 \mathrm{~ms}^{-1}$	A1	
		4	

Question	Answer	Mark	Guidance
2(i)	$\frac{(12-V)}{(35-30)}=0.8 \text { or } 12=V+0.8 \times 5$	M1	Use gradient of graph or constant acceleration formulae to set up an equation in V
	$V=8$	A1	
		2	
2(ii)	$\left[25 \times 8+5 \times 10+15 \times 6+\frac{1}{2} \times(U+8) \times 5=375\right]$	M1	Attempt to find total distance travelled by the tractor in 50s to set up an equation for U using EITHER areas OR suvat equations OR a combination of areas and suvat In either case total distance must be attempted
		A1FT	Correct equation FT on their V from (i)
	$U=6$	A1	
		3	

Question	Answer	Mark	Guidance
3	$T_{A} \times \frac{4}{5}+T_{B} \times \frac{3}{5}+0.3 g=5$	M1	Resolving vertically
	$T_{A} \times \frac{3}{5}=T_{B} \times \frac{4}{5}$	M1	Resolving horizontally
		A1	Both correct
		M1	Solve for T_{A} or T_{B}
	$T_{A}=1.6 \mathrm{~N}$ and $T_{B}=1.2 \mathrm{~N}$	A1	
	Alternative method for question 3		
	$\left[\frac{5-3}{\sin 90}=\frac{T_{A}}{\sin 126.9}=\frac{T_{B}}{\sin 143.1}\right]$	M1	Attempt one pair of Lami's equations
		M1	Attempt a second pair of Lami equations
		A1	Equations all correct
		M1	Evaluate T_{A} or T_{B}
	$T_{A}=1.6 \mathrm{~N}$ and $T_{B}=1.2 \mathrm{~N}$	A1	

Question	Answer	Mark	Guidance
3	Alternative method for question 3		
	$T_{A}=5 \cos 36.9-3 \cos 36.9=5 \times \frac{4}{5}-3 \times \frac{4}{5}$	M1	Resolve along $P A$
	$T B=5 \cos 53.1-3 \cos 53.1=5 \times \frac{3}{5}-3 \times \frac{3}{5}$	M1	Resolve along $P B$
		A1	Both correct
		M1	Evaluate T_{A} or T_{B}
	$T_{A}=1.6 \mathrm{~N}$ and $T_{B}=1.2 \mathrm{~N}$	A1	
	Alternative method for question 3		
	Forces $2 \mathrm{~N}, T_{A}$ and T_{B} with angles 36.9 and 53.1	M1	Attempt to illustrate a triangle of forces
	[$\left.T_{A}=2 \cos 36.9, T_{B}=2 \cos 53.1\right]$	M1	Use trigonometry in the triangle to find T_{A} and T_{B}
		A1	Both correct
		M1	Solve for T_{A} or T_{B}
	$T_{A}=1.6 \mathrm{~N}$ and $T_{B}=1.2 \mathrm{~N}$	A1	
		5	

Question	Answer	Mark	Guidance
4(i)	$P=3000 \times 30$	M1	Use of $P=F v$ with $F=$ resistance
	$P=90000 \mathrm{~W}=90 \mathrm{~kW}$	A1	
		2	
4(ii)	PE gained $=25000 \mathrm{gh}$	B1	Correct expression for PE Allow PE=25000gdsin 2
	$\begin{aligned} & \text { Initial } \mathrm{KE}=\frac{1}{2} \times 25000 \times 30^{2}[=11250000] \\ & \text { Final } \mathrm{KE}=\frac{1}{2} \times 25000 \times 25^{2}[=7812500] \end{aligned}$	B1	For either correct [KE loss $=3437$ 500]
	$\begin{aligned} & \text { Initial KE }=\text { Final KE }+25000 g h+\frac{3000 h}{\sin 2} \\ & \text { OR } \\ & \text { Initial KE }=\text { Final KE }+25000 g d \sin 2+3000 d \end{aligned}$	M1	For a 4 term work-energy equation, correct dimensions
		A1	Correct work-energy equation involving h or d
	$h=10.2 \mathrm{~m}(10.2318 \ldots)$	A1	
		5	

Question	Answer	Mark	Guidance
5(i)	$h_{A}=20 t-\frac{1}{2} \times 10 t^{2}$ or $h_{B}= \pm \frac{1}{2} \times 10(t-1)^{2}$	B1	OE $h_{A}=20(T+1)-\frac{1}{2} \times 10(T+1)^{2} \text { or } h_{B}= \pm \frac{1}{2} \times 10 T^{2}$
	[Meet when $\left.20 t-\frac{1}{2} \times 10 t^{2}+\frac{1}{2} \times 10(t-1)^{2}=40\right]$	*M1	Set up an equation using their h_{A}, their h_{B} and 40
	$10 t-35=0$	DM1	Solve for t and attempt to find the height at collision.
	$t=3.5$ so height at collision $=8.75 \mathrm{~m}$	A1	$T=2.5$ and height at collision $=8.75 \mathrm{~m}$
	Alternative method for question 5(i)		
	$h_{A}=20 \times 1-\frac{1}{2} \times 10 \times 1^{2}=15, v=20-10 \times 1=10$	B1	Finding distance travelled by A and its speed after 1 second
	$\begin{aligned} & H_{A}+H_{B}=25 \\ & \left(10 T-\frac{1}{2} \times 10 \times T^{2}\right)+\frac{1}{2} \times 10 \times T^{2}=25 \end{aligned}$	*M1	T is the time beyond 1 s until the particles reach same level H_{A} and H_{B} are distances travelled by A and B in T seconds.
	[10T $=25 \rightarrow T=2.5]$	DM1	Solve for T and attempt to find the height at collision
	$t=3.5$ so height $=8.75 \mathrm{~m}$	A1	
		4	

Question	Answer	Mark	Guidance
$5(\mathrm{ii})$	$v_{A}=20-g t=-15$ or $v_{A}{ }^{2}=20^{2}+2(-g)(8.75)$	M1	Use of their t or their $h \leqslant 20$ from 5(i) in a constant acceleration formula which would lead to finding v_{A}
	$v_{B}=-g(t-1)=-25$ or $v_{B}{ }^{2}=2(g)(40-8.75)$	M1	Use of their $t \pm 1$ or their $40-h$ from 5(i) in a constant acceleration formula which would lead to finding v_{B}
	Difference $=10 \mathrm{~ms}^{-1}$	A1	CWO
		$\mathbf{3}$	

Question	Answer	Mark	Guidance
6(i)	$4.5=0+\frac{1}{2} \times a \times 5^{2}$	M1	For use of $s=u t+\frac{1}{2} a t^{2}$ to find a
	$a=0.36$	A1	
	$6 \times \frac{24}{25}-F=3 \times 0.36$	M1	Resolving horizontally. Allow use of $\theta=16.3$
	$F=4.68 \mathrm{~N}$	A1	
		4	
6(ii)	$R=3 g-6 \sin 16.3=3 g-6 \times \frac{7}{25} \quad[=28.32] \quad$ atp	B1	
	$4.68=\mu \times 28.32$	M1	Use of $F=\mu R$
	$\mu=0.165$ (0.165254...)	A1	$\text { AG. Allow } \mu=\frac{39}{236}$
		3	

Question	Answer	Mark	Guidance
6(iii)	$\begin{aligned} & v=5 \times 0.36[=1.8] \\ & \text { or } v=\sqrt{(2 \times 0.36 \times 4.5)}[=1.8] \end{aligned}$	B1FT	For velocity at $t=5 \mathrm{ft}$ on their a from 6(i)
	$3 a=-0.165 \times 3 g$	M1	Using Newton's second law with new frictional force
	$0=1.8-0.165 g t \quad(t=1.09)$	M1	Using constant acceleration equations which would lead to a positive value of t
	Total time $=5+1.09=6.09 \mathrm{~s}$	A1	
		4	

Question	Answer	Mark	Guidance
7(i)		M1	Use of Newton's second law for P or Q or the system
	$\begin{array}{ll} \text { For } P: & T-0.3 g \times \frac{3}{5}=T-0.3 g \sin 36.9=0.3 a \\ \text { For } Q: & 0.2 g-T=0.2 a \\ \text { System: } & 0.2 g-0.3 g \times \frac{3}{5}=(0.2+0.3) a \\ \text { or } & 0.2 g-0.3 g \sin 36.9=(0.2+0.3) a \end{array}$	A1	Two correct equations Allow use of $\theta=36.9$
	$[0.2 g-0.18 g=0.5 a]$	M1	For solving either the system for a or for solving a pair of simultaneous equations for a or T
	$a=0.4 \mathrm{~ms}^{-2}$	A1	
	$T=1.92 \mathrm{~N}$	A1	
		5	

Question	Answer	Mark	Guidance
7(ii)	$0.8=0+\frac{1}{2} \times 0.4 \times t^{2} \mathrm{a}$	M1	For use of the constant acceleration equations with their a from 7(i) and $a \neq \pm g$ for a complete method to find t
	$t=2 \mathrm{~s}$	A1	
		2	
7(iii)	Speed when Q hits the floor $=2 \times 0.4(=0.8)$ or $v=\sqrt{(2 \times 0.4 \times 0.8)}[=0.8]$	B1FT	Using $v=u+a t$ with $u=0$ Allow FT for their unsimplified $v=a t$ or $v^{2}=2 a s$ with a from (i), t from (ii) and $s=0.8$
	$-0.3 g \times \frac{3}{5}=-0.3 g \sin 36.9=0.3 a \quad[a=-6]$	M1	Using Newton's second law for P to find $a \neq \pm g$
	$\begin{aligned} & 0=0.8 t+\frac{1}{2} \times(-6) t^{2}(t=0.2666 \ldots) \\ & \text { or } \\ & 0=0.8-6 T \\ & \left(T=0.13333=\frac{2}{15} \text { and } t=2 T=0.26666=\frac{4}{15}\right) \end{aligned}$	M1	Use of the constant acceleration equation(s) to find the time taken for P to return to the position where the string first became slack.
	$\text { Total time }=2+0.266 \ldots=2+\frac{4}{15}=2.27=\frac{34}{15} \mathrm{~s}$	A1	
		$\square \quad 4$	

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

[^2]
Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$20000=V \times 1250 g$	M1	Use of $P=F v$ with $F=m g$
	$V=1.6$	A1	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
2	$\begin{aligned} & \text { Initial } K E=\frac{1}{2} \times 75 \times 10^{2} \\ & \text { Final } K E=\frac{1}{2} \times 75 \times 5^{2} \end{aligned}$	B1	Either correct
	PE gained $=75 g \times 700 \sin 1.5 \quad[=13743]$	B1	
	WD by $F=F \times 700$	B1	For WD by $F=F \times d$
	WD by $F+$ Initial KE $=$ Final $\mathrm{KE}+\mathrm{PE}$ gain +2000	M1	Use of work-energy equation. 5 dimensionally correct terms.
	$F=18.5$	A1	
		5	

Question	Answer	Marks	Guidance
3(i)	$R=3 g \cos 60$	B1	
	Use $F=\mu R$	M1	
	$[3 g \sin 60-\mu 3 g \cos 60-15=0]$	M1	Resolve forces parallel to the plane, 3 terms
		A1	Correct equation
	$\mu=0.732$	A1	Allow $\mu=\sqrt{3}-1$
		5	
3(ii)	$\begin{aligned} {[\text { Maximum force }} & =3 g \sin 60+F \\ & =3 \sin 60+\mu 3 g \cos 60] \end{aligned}$	M1	
	$X=37(.0)$	A1	Allow $X=15(2 \sqrt{3-1})$
		2	

Question	Answer	Marks	Guidance
4(i)	Apply Newton's second law to either or to the system	M1	
	Block A : $\quad T-4 g \times \frac{7}{25}=4 a$ Block B: $\quad 36-T-5 g \times \frac{7}{25}=5 a$ System: $\quad 36-5 g \times \frac{7}{25}-4 g \times \frac{7}{25}=9 a$	A1	Any two correct. Allow $\alpha=16.3$ used.
	Either solving the system for a or solving a pair of simultaneous equations for either a or T	M1	
	$a=1.2 \mathrm{~ms}^{-2}$	A1	
	$T=16 \mathrm{~N}$	A1	
		5	
4(ii)	$\left[0.65=1 \times t+\frac{1}{2} \times 1.2 t^{2}\right]$	M1	Use constant acceleration equation(s) with $u=1$ and solve a 3 term quadratic equation to find t
	$t=0.5 \mathrm{~s}$	A1	
	Alternative method for question 4(ii)		
	$v^{2}=1^{2}+2 \times 1.2 \times 0.65 \quad[v=1.6] \quad$ and $0.65=\frac{1}{2}(1+v) \times t$	M1	Use relevant constant acceleration equations with $u=1$ in a complete method to find t
	$t=0.5 \mathrm{~s}$	A1	
		2	

Question	Answer	Marks	Guidance
5(i)	Resolve forces either horizontally or vertically	M1	
	$7.5 \cos 60+4.5 \cos 20=F \cos \theta \quad[=7.97861]$	A1	
	$7.5 \sin 60-4.5 \sin 20=F \sin \theta \quad[=4.95609]$	A1	
	$F=\sqrt{\left(7.98^{2}+4.96^{2}\right)}$	M1	Use Pythagoras or use the value found for θ to find F
	$\theta=\tan ^{-1}\left(\frac{4.96}{7.98}\right)$	M1	Use trigonometry or the value found for F to find θ
	$F=9.39$ and $\theta=31.8$	A1	
	Alternative method for question 5(i)		
	$\frac{F}{\sin 80}=\frac{4.5}{\sin (120+\theta)}=\frac{7.5}{\sin (160-\theta)}$	M1	Attempt to use Lami
		A1	One correct pair of terms
		A1	A second correct pair of terms
	$[4.5 \sin (160-\theta)=7.5 \sin (120+\theta)]$	M1	Attempt to solve for θ
	Use the θ value found by valid trigonometry to find F	M1	
	$F=9.39$ and $\theta=31.8$	A1	

Question	Answer	Marks	Guidance
5(i)	Alternative method for question 5(i)		
	Forces $4.5,7.5, F$ opposite angles $60-\theta, \theta+20,100$	M1	Illustrate a triangle of forces
	$\left[F^{2}=4.5^{2}+7.5^{2}-2 \times 4.5 \times 7.5 \times \cos 100\right]$	M1	For application of cosine rule to find F
		A1	Correct equation
	$\left[\frac{9.39}{\sin 100}=\frac{4.5}{\sin (60-\theta)}=\frac{7.5}{\sin (\theta+20)}\right]$	M1	One application of the sine rule to find θ
		A1	Correct equation
	$F=9.39$ and $\theta=31.8$	A1	
		6	
5(ii)	$9.5 \cos 30-7.5 \cos 60-4.5 \cos 20=m \times 1.5$	M1	Apply Newton's second law to the ring along $A B$ (4 terms)
	$m=0.166 \mathrm{~kg}$	A1	
		2	\cdots

Question	Answer	Marks	Guidance
6(i)	$0.4 g \times 1.8=\frac{1}{2} \times 0.4 \times v^{2}$	M1	KE gain $=\mathrm{PE}$ lost
	$v=6 \mathrm{~ms}^{-1}$	A1	
	Alternative method for question 6(i)		
	$v^{2}=0^{2}+2 \times g \times 1.8$	M1	Use constant acceleration equation(s) with $a=g$ to find v
	$v=6 \mathrm{~ms}^{-1}$	A1	
		2	
6(ii)	$0.4 g-5.6=0.4 a$	M1	Use Newton's second law for the particle in the vertical (3 terms)
	$a=-4 \mathrm{~ms}^{-2}$	A1	
	$0=6-4 t$	M1	Use of constant acceleration equation(s) such as $v=u+a t$ to find t
	$t=1.5 \mathrm{~s}$	A1	
		4	
6(iii)	Straight line starting at (0,0) with positive gradient	B1	
	Second straight line starting at end of the first line with negative gradient and ending with $v=0$	B1	
	All correct, start at $(0,0)$ with max velocity $v=6$ at $t=0.6$ i.e. $(0.6,6)$ and finishing at $(2.1,0)$	B1FT	FT on their v from (i) and/or their t from (ii)
		3	

Question	Answer	Marks	Guidance
7(i)	$0.6 t^{2}-0.12 t^{3}=0$	M1	For attempting to solve $v=0$
	($t=0$ or) $t=5$	A1	
	$\int v \mathrm{~d} t=0.2 t^{3}-0.03 t^{4}$	*M1	For integrating the velocity
	$O P=\left[0.2 \times 5^{3}-0.03 \times 5^{4}\right]-[0]$	DM1	Use limits to find $O P$
	Distance $=6.25 \mathrm{~m}$	A1	AG
		5	
7(ii)	$k \times 5^{3}+c \times 5^{5}=6.25$	B1	Using $s=6.25$ at $t=5$ to set up equation in k and c
	$v=3 k t^{2}+5 c t^{4}$	*M1	For differentiating s to find v
	$1.25=3 k \times 5^{2}+5 c \times 5^{4}$	DM1	For using the given value of $v=1.25$ in the expression for v
	$\begin{aligned} & 125 k+3125 c=6.25 \\ & 75 k+3125 c=1.25 \end{aligned}$	M1	For attempting to solve a pair of simultaneous equations in k and c and finding a value of either k or c
	$k=0.1, c=-0.002$	A1	
		5	
7(iii)	$a=0.6 t-0.04 t^{3}$	M1	For differentiating their expression for v
	At $t=5, a=-2 \quad$ Acceleration $=-2 \mathrm{~ms}^{-2}$	A1	
		2	

MATHEMATICS

9709/43
Paper 4
May/June 2019
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The $P A-1$ penalty is usually discussed at the meeting.

Question	Answer	Marks	
1	Trapezium	B1	Includes $(0,0)$ and $(\ldots, 0)$
	$(t=0), t=5, t=29, t=35$	B1	Correct trapezium with key time values
	$\mathrm{V}_{\max }=2.1 \times 5=10.5 \mathrm{~ms}^{-1}$	B1	
	$[1 / 2 \times(24+35) \times 10.5]$ or $[1 / 2 \times 5 \times 10.5+24 \times 10.5+1 / 2 \times 6 \times 10.5]$	M1	Use of area property to find distance
	309.75 m or 310 m	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
2(i)	$\left[24 \cos 25^{\circ}-12 \cos 65^{\circ}\right]$	M1	Resolving in x-direction
	16.7 N	A1	(16.679...)
	$\left[30-24 \sin 25^{\circ}-12 \sin 65^{\circ}\right]$	M1	Resolving in y-direction
	8.98 N	A1	(8.981...)
		4	
2(ii)	$\left[\tan ^{-1} \frac{8.98 \ldots}{16.67 \ldots}\right]$	M1	Uses trigonometry to find the angle
	28.3° (anticlockwise) from x-direction	A1	(28.300...) or equivalent
		6	

Question	Answer	Marks	Guidance
3(i)		M1	Use of Newton's Second Law (4 terms)
	$D F-1550-1400 g \sin 4^{\circ}=1400 \times 0.4$	A1	($D F=3086.59 \ldots$)
	$\left[30000=\left(1400 \times 0.4+1550+1400 g \sin 4^{\circ}\right) v\right]$	M1	Use of $P=F v$
	$v=9.72 \mathrm{~ms}^{-1}$	A1	
3(ii)	$\left[D F-1550-1400 g \sin 4^{\circ}=0\right]$	M1	($D F=2526.59 \ldots$...) Resolving up the hill
	$\left[P_{\text {max }}=\left(1550+1400 g \sin 4^{\circ}\right) \times 40\right]$	M1	Use of $P=F v$
	$P=101000 \mathrm{~W}$ or 101 kW	A1	($P=101063.6 \ldots$..
		3	

Question	Answer	Marks	Guidance
4(i)	Particle $A:[1.3 g-T=1.3 a]$ or Particle $B:[T-0.7 g=0.7 a]$	M1	Use of Newton's Second law for A or B or use of $a=\left(m_{A}-\right.$ $\left.m_{B}\right) g /\left(m_{A}+m_{B}\right)$
	$1.3 g-T=1.3 a \text { and } T-0.7 g=0.7 a$ OR $a=\frac{(1.3-0.7) g}{(1.3+0.7)}$ and $1.3 g-T=1.3 a$ or $T-0.7 g=0.7 a$	A1	Two correct equations
	$[6=2 a, a=3] \quad \text { or } \quad\left[\frac{1.3 g-T}{1.3}=\frac{T-0.7 g}{0.7}, T=9.1\right]$	M1	Solves for a or for T
	$a=3 \mathrm{~ms}^{-2}$ and $T=9.1 \mathrm{~N}$	A1	($a=3$)
		4	
4(ii)	Distance while connected $=0.375 \mathrm{~m}$	B1	
	$\left[v^{2}=0^{2}+2 \times 3 \times 0.375 \rightarrow v=\ldots\right]$	M1	Use of suvat to find v at 'break' $\left(v^{2}=2 a s\right)$
	$v=1.5 \mathrm{~ms}^{-1}$	A1	Correct value or expression for v
	$\left[A: \quad 1.375=1.5 t+1 / 2 g t^{2} \rightarrow t=0.395 \ldots\right]$	M1	Finds one time 'from break to floor'
	$\left[B: 1.375=-1.5 t+1 / 2 g t^{2}\right.$ or $\left.-1.375=1.5 t-1 / 2 g t^{2} \rightarrow t=0.695 \ldots\right]$	M1	Finds second time 'from break to floor'
	Difference in times $=0.3 \mathrm{~s}$	- 11	
	Alternative Method 1 for 4(ii) (last 3 marks)		
	$\left[u_{B}=1.5, v_{B}=0, a=-g, 0=1.5-g t \rightarrow t=0.15\right]$	M1	Finds t_{B} from 'break' to maximum height
	Difference in times $=2 \times 0.15$	M1	
	Difference in times $=0.3 \mathrm{~s}$	A1	

Question	Answer	Marks	Guidance
4(ii)	Alternative Method 2 for 4(ii) (last 3 marks)		
	$\begin{aligned} & {\left[\begin{array}{lll} A: & 0.375=1 / 2 \times 3 t^{2} \rightarrow t=0.5 \quad 1.375=1.5 t+1 / 2 g t^{2} \rightarrow t= \\ \left.0.395 \ldots \quad t_{\mathrm{A}} \text { total }=0.5+0.395 \ldots=0.895 \ldots \mathrm{~s}\right] \end{array}\right.} \end{aligned}$	M1	Use of suvat to find total time for A
	$\begin{aligned} & {\left[B: 0.375=1 / 2 \times 3 t^{2} \rightarrow t=0.5 ; 0=1.5-g t \rightarrow t=0.15\right.} \\ & \mathrm{s}=1.5 \mathrm{t}-1 / 2 \mathrm{gt}^{2}=0.1125 \quad 1.4875=1 / 2 \times g t^{2} \rightarrow t=0.545 \ldots \\ & \left.\mathrm{t}_{\mathrm{B}} \text { total }=1.195 \mathrm{~s}\right] \end{aligned}$	M1	Use of suvat to find total time for B
	Difference in times $=0.3 \mathrm{~s}$	A1	
		6	

Question	Answer	Marks	Guidance
5(i)	$(\mathrm{PE}$ gain $=) 18 g d \sin 30^{\circ}$ or $(\mathrm{KE}$ loss $=) 1 / 2 \times 18 \times 20^{2}$	B1	
	$(\mathrm{PE}$ gain $=) 18 g d \sin 30^{\circ}$ and $(\mathrm{KE} \text { loss }=)^{1 / 2} \times 18 \times 20^{2}$	B1	
	$\left[18 g d \sin 30^{\circ}=1 / 2 \times 18 \times 20^{2}\right]$ or $\left[18 g h=1 / 2 \times 18 \times 20^{2}\right]$	M1	Energy equation (PE gain $=\mathrm{KE}$ loss)
	Distance up plane $=40 \mathrm{~m}$	A1	
		4	
5(ii)	$R=18 g \cos 30^{\circ} \quad(90 \sqrt{3}$ or $155.884 \ldots)$	B1	
	$\left[F=0.25\left(18 g \cos 30^{\circ}\right)\right] \quad(45 \sqrt{ } 3 / 2$ or $38.971 \ldots)$	M1	Use of $F=\mu R$
	$\left[18 g \sin 30^{\circ}+0.25\left(18 g \cos 30^{\circ}\right)=-18 a \rightarrow a=\ldots\right] \quad(a=-7.165 .$.	M1	Newton's Second Law (3 term equation)
	$\left[0^{2}=20^{2}+2 \times-7.165 . . \times s \quad \rightarrow s=\ldots\right]$	M1	Use of suvat to find s
	$s=27.913 \ldots$	A1	

Question	Answer	Marks	Guidance
5(ii)	$\left[18 g \sin 30^{\circ}-0.25\left(18 g \cos 30^{\circ}\right)=18 a \rightarrow a=\ldots.\right]$	M1	($a=2.835 .$.$) - Newton's Second Law (3 term equation)$
	$\left[v^{2}=0^{2}+2 \times 2.835 . . \times 27.913 . . \quad \rightarrow v=\ldots.\right]$	M1	Use of suvat to find s
	$v=12.6 \mathrm{~ms}^{-1}$	A1	(12.580...)
	Alternative Method 1 for 5(ii)		
	$R=18 g \cos 30^{\circ} \quad(90 \sqrt{ } 3$ or $155.884 \ldots)$	B1	
	$\left[F=0.25\left(18 g \cos 30^{\circ}\right)\right] \quad(45 \sqrt{ } 3 / 2$ or $38.971 \ldots)$	M1	Use of $F=\mu R$
	$\left[\mathrm{KE}\right.$ gain $=1 / 2 \times 18 \times 20^{2}$ and PE loss $=18 g h$ or $\left.18 g s\left(\sin 30^{\circ}\right)\right]$	M1	Use of $\mathrm{KE}=1 / 2 m v^{2}$ and $\mathrm{PE}=m g h$
	$\left[1 / 2 \times 18 \times 20^{2}=18 g s\left(\sin 30^{\circ}\right)+45 \cos 30^{\circ} \times s\right]$	M1	Work / Energy equation (up plane)
	$s=27.913 \ldots$	A1	
	$\left[\mathrm{WD}=45 \cos 30^{\circ} \times 27.91 \ldots\right]$	M1	Work done against friction
	$\left[1 / 2 \times 18 v^{2}=\left(18 g \sin 30^{\circ}\right) \times 27.91 . .-45 \cos 30^{\circ} \times 27.91 \ldots\right]$	M1	Work / Energy equation (down plane)
	$v=12.6 \mathrm{~ms}^{-1}$	A1	(12.580...)
	Alternative Method 2 for 5(ii) (last 3 marks)		
	[WD $\left.=2 \times 45 \cos 30^{\circ} \times 27.91 \ldots\right]$	M1	WD against friction (up and down)
	$\left[1 / 2 \times 18 \times 20^{2}-1 / 2 \times 18 v^{2}=2 \times 45 \cos 30^{\circ} \times 27.91 \ldots\right]$	M1	Uses KE loss = total WD against friction
	$v=12.6 \mathrm{~ms}^{-1}$	A1	(12.580...)
		8	

Question	Answer	Marks	Guidance
6(i)	$\left[v=6 t^{2} / 2-12 t+C\right] \quad v=3 t^{2}-12 t+C$	*M1	Use of $v=\int a d t$
	$\left[s=3 t^{3} / 3-12 t^{2} / 2+C t+D\right] \quad s=t^{3}-6 t^{2}+C t+D$	*M1	Use of $s=\int v d t$
	$\left.\begin{array}{ll} {[5=1-6+C+D} & C+D=10 \\ 1=27-54+3 C+D & 3 C+D=28 \end{array} \quad \rightarrow C=\ldots ., D=\ldots .\right]$	DM1	Substitutes for s and t and solves equations. Dependent on both Ms.
	$s=t^{3}-6 t^{2}+9 t+1$ or $p=9, q=1$	A1	
		4	
6(ii)	$\left[v=0,3 t^{2}-12 t+9=0(t-1)(t-3)=0 \rightarrow t=\ldots ..\right]$	M1	Solves $v=0$ to find t values
	$t=1$ or $t=3$	A1	
		2	
6(iii)	$\left[\int_{0}^{1} v d t+\int_{1}^{3} v d t+\int_{3}^{4} v d t\right]$	M1	Attempts to use at least three t intervals
	$[$ For $0 \leqslant t \leqslant 1, s=(1-6+9+1)-1=4]$	M1	Evaluates s for one time interval
	$\begin{aligned} & {[0 \leqslant t \leqslant 1, s=(1-6+9+1)-1=4 ; 1 \leqslant t \leqslant 3, s=(27-54+27+1)-} \\ & 5=-43 \leqslant t \leqslant 4, s=(64-96+36+1)-1=4] \end{aligned}$	A1	Correctly finds all at least two distances (ignoring signs)
	Total distance is 12 m	A1	
		4	

MATHEMATICS

9709/42
Paper 4
May/June 2019
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The $P A-1$ penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$\begin{aligned} & {[P \cos \theta=32 \cos 20-17 \sin 55]} \\ & {[P \sin \theta=40+17 \cos 55-32 \sin 20]} \end{aligned}$	M1	Resolve forces horizontally or vertically 3 terms horizontally, 4 terms vertically
		A1	One correct
		A1	Both correct $[P \sin \theta=38.8062 \quad P \cos \theta=16.1446]$
	$P=\sqrt{(17 \cos 55-32 \sin 20+40)^{2}+(32 \cos 20-17 \cos 35)^{2}}$	M1	Either use Pythagoras to find P or use their value of θ to find P
	$\theta=\tan ^{-1}\left[\frac{(17 \cos 55-32 \sin 20+40)}{(32 \cos 20-17 \cos 35)}\right]$	M1	Either use trigonometry to find θ or use their value of P to find θ $[\tan \theta=2.4037]$
	$P=42(.0)$ and $\theta=67.4$	A1	
		6	

Question	Answer	Marks	Guidance
2	Possible equations include: $\begin{array}{rll} t=0 \text { to } t=5 & \rightarrow 80=5 u+12.5 a \\ t=0 \text { to } t=8 & \rightarrow 160=8 u+32 a \\ t=5 \text { to } t=8 & \rightarrow 80=3(u+5 a)+4.5 a \\ \text { i.e. } & & 80=3 u+19.5 a \end{array}$	M1	Use the equation $s=u t+1 / 2 a t^{2}$ to set up one equation in u and a or using speeds as $u($ at $t=0), u+5 a($ at $t=5), u+8 a($ at $t=8)$ and then apply $s=1 / 2 \times(u+v) \times t$
	$80=5 u+1 / 2 \times a \times 5^{2} \quad \rightarrow \quad 5 u+12.5 a=80$	A1	One correct equation in a and u
	$160=8 u+0.5 a \times 8^{2} \rightarrow 8 u+32 a=160$	A1	Second correct equation in a and u
		M1	Attempt to solve a pair of valid simultaneous equations for a or u
	$a=\frac{8}{3}$	A1	Allow $a=2.67$
	$u=\frac{28}{3}$	A1	Allow $u=9.33$
		6	

Question	Answer	Marks	Guidance
3	$R=13 g \cos 22.6=13 g \times(12 / 13),[R=120]$	B1	Resolve perpendicular to the plane
	$F=0.3 \times 13 g \cos 22.6[F=36]$	M1	Using $F=\mu R$
	$T=F+13 g \sin 22.6=F+13 g \times(5 / 13),[T=86]$	M1	Apply Newton's second law parallel to the plane with $a=0$
	$\mathrm{WD}=T \times 2.5[=86 \times 2.5]$	M1	$\mathrm{WD}=T \times d$
	$\mathrm{WD}=215 \mathrm{~J}$	A1	
	Alternative method for question 3		
	$R=13 g \cos 22.6=13 g \times(12 / 13),[R=120]$	B1	Resolve perpendicular to the plane
	$F=0.3 \times 13 g \cos 22.6[F=36]$	M1	Using $F=\mu R$
	PE gain $=13 \times g \times 2.5 \times(5 / 13)[=125]$	M1	Attempt PE gain. Allow sin 22.6 for 5/13
	[WD by $T=13 \times g \times 2.5 \times(5 / 13)+F \times 2.5$]	M1	Using WD by $T=$ PE gain + WD against F
	WD by $T=215 \mathrm{~J}$	A1	
		5	

Question	Answer	Marks	Guidance
4	$[1200-350-1250 \times 10 \times 0.05=1250 a]$	M1	Apply Newton's second law for motion up the hill
	[$a=225 / 1250=0.18]$	A1	Correct Newton's law for motion up the hill
	$[1200-350+1250 \times 10 \times 0.05=1250 a]$	M1	Apply Newton's second law for motion down the hill
	$[a=1475 / 1250=1.18]$	A1	Correct Newton's law for motion down the hill
	Up the hill: Down the hill: $\begin{aligned} & v^{2}=0+2 \times 0.18 \times 100 \\ & v^{2}=0+2 \times 1.18 \times 100 \end{aligned}$	M1	Use their a in the constant acceleration equations either to find v going up or going down the hill
	Up the hill: $\quad v=6 \mathrm{~ms}^{-1}$	A1	
	Down the hill: $\quad v=15.4 \mathrm{~ms}^{-1}$	A1	Allow $v=2 \sqrt{ } 59$
	Alternative method for question 4		
	$\left[1200 \times 100=350 \times 100+1250 g \times 100 \times 0.05+1 / 2 \times 1250 \times v^{2}\right]$	M1	Attempt the work-energy equation for motion up the hill
		A1	Correct work-energy equation for motion up the hill
	$\left[1200 \times 100+1250 g \times 100 \times 0.05=350 \times 100+1 / 2 \times 1250 \times v^{2}\right]$	M1	Attempt work-energy equation for motion down the hill
		A1	Correct work-energy equation for motion down the hill
		M1	Attempt to solve either energy equation to find either v going up the hill or v going down the hill
	Up the hill: $\quad v=6 \mathrm{~ms}^{-1}$	A1	
	Down the hill: $\quad v=15.4 \mathrm{~ms}^{-1}$	A1	Allow $v=2 \sqrt{ } 59$
		7	

Question	Answer	Marks	Guidance
5(i)	$\begin{array}{ll} A: & 4-T=0.4 a \\ B: & T-2=0.2 a \\ \text { System: } & 4-2=(0.4+0.2) a \end{array}$	M1	Apply Newton' second law to particle A (3 terms) or to particle B (3 terms) or to the system (4 terms implied)
		A1	Two correct equations
		M1	Either solve the system equation for a or solve two simultaneous equations for a or T or verify the given value of a by finding the same T value in both equations
	$a=\frac{10}{3}, T=\frac{8}{3}$	A1	Both correct AG
		4	
5(ii)		M1	Apply $v^{2}=u^{2}+2$ as to particle A or particle B with $a=10 / 3$
	$v^{2}=0+2 \times 10 / 3 \times 0.5$	A1	[$v=1.83$ but not needed specifically]
	$0=10 / 3-2 \times 10 \times s \quad\left[s=\frac{1}{6}\right]$	M1	Apply $v^{2}=u^{2}+2$ as to particle B to find s, the distance travelled by B after A has hit the ground
	$\text { Maximum height }=\frac{7}{6}=1.17 \mathrm{~m}$	A1	Maximum height $=1 / 2+1 / 2+1 / 6=7 / 6=1.17$
		4	

Question	Answer	Marks	Guidance
6	Case 1: $\quad \mathrm{DF}=36000 / 18$ or Case 2: $\quad \mathrm{DF}=21000 / 12$	B1	$\mathrm{DF}=P / v$ in either case
	$\begin{aligned} & 18 A+B=\mathrm{DF} \\ & {[36000 / 18=18 A+B=2000]} \end{aligned}$	M1	Use DF = resistance (case 1)
	$18 A+B=2000$ oe	A1	Correct equation, unsimplified
	$12 A+B=\mathrm{DF}+$ weight component $[21000 / 12=12 A+B+1000 g \times 1 / 20]$	M1	Use DF $=$ resistance + weight component (case 2)
	$12 A+B=1250$ oe	A1	Correct equation, unsimplified
		DM1	Solve two simultaneous equations in A and B only for A or B Dependent on both previous M1's
	$A=125, B=-250$	A1	Both correct
		7	

Question	Answer	Marks	Guidance
7(iii)	Distance $P Q=\left\|s_{P}-s_{Q}\right\|= \pm\left(2 t^{3}-8 t^{2}-10 t\right)$	M1	Find the distance between P and Q Allow either sign s_{P} and s_{Q} must have been found by integration
	Maximum s if $\quad 6 t^{2}-16 t-10=0$	M1	Differentiate to obtain an equation in t and attempt to solve
	$t=3.19$	A1	
	Maximum Distance $P Q=(-) 48.4 \mathrm{~m}$	A1	
	Alternative method for question 7(iii)		
	$6 t^{2}-18 t=10-2 t$	M1	State that greatest distance between P and Q occurs when v_{P} $=v_{Q}$
	$6 t^{2}-16 t-10=0$	M1	Rearrange and attempt to solve for t
	$t=3.19$	A1	
	Maximum Distance $P Q=(-) 48.4 \mathrm{~m}$	A1	
		4	

MATHEMATICS

9709/41
Paper 4
May/June 2019
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Question	Answer	Mark	Guidance
1	$\begin{aligned} & (X=) 78 \times 5 / 13-50 \times 3 / 5=78 \cos 67.4-50 \cos 53.1 \\ & (Y=) 78 \times 12 / 13+50 \times 4 / 5-112 \\ & =78 \sin 67.4+50 \sin 53.1-112 \end{aligned}$	M1	Attempt to resolve forces either horizontally (2 terms) or vertically (3 terms)
	$[X=30-30=0 Y=72+40-112=0]$	A1	Correct expressions horizontally and vertically
	$X=0$ and $Y=0$	A1	From convincing exact calculations
		eethod for	question 1
	$\frac{112}{\sin 59.5}=\frac{50}{\sin 157.4}=\frac{78}{\sin 143.1}$	M1	Attempt to use Lami, one pair of terms
		A1	All terms correct
	$\frac{112}{56 / 65}=\frac{50}{5 / 13}=\frac{78}{3 / 5}=130$	A1	Exact values seen and used and shown to be $=130$ $\cos [180-(\theta+\alpha)]=33 / 65$ and $\sin [180-(\theta+\alpha)]=56 / 65$
		3	

Question	Answer	Mark	Guidance
$2(\mathrm{i})$	$[0=25-10 t]$	M1	Use of $v=u+a t$ with $u=25, v=0$ and $a=-g$ or other complete method for finding t to highest point
	$t=2.5$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Mark	Guidance
2(ii)	$\left[20=25 t-1 / 2 g t^{2}\right]$	M1	Applying $s=u t+1 / 2 a t^{2}$ with $s=20, u=25$
	[$t=1$ and $t=4$]	M1	Solve a 3-term quadratic for t, factorising or formula
	Required time $=4-1=3$ seconds	A1	
	Alternative method for question 2(ii)		
	$\left[v^{2}=25^{2}+2 \times(-10) \times 20 \quad \rightarrow \quad v= \pm 15\right]$	M1	Using $v^{2}=u^{2}+2 a s$ with $u=25, s=20$ and $a=-g$
	$[-15=15-10 T]$ or equivalent	M1	Use v at $s=20$ to find the time, T, taken to reach the maximum height and to return to $s=20$
	Required time $=1.5+1.5=3$ seconds	A1	
		3	
2(iii)	Max height reached at 2.5 s , hence reaches h after 2 s $h-3=25 \times 2-5 \times 2^{2}$	M1	Using their t from 2(i) -0.5 in $s=u t+1 / 2 a t^{2}$ Allow finding h without taking note of the additional 3 m
	$h=33 \mathrm{~m}$	A1	
	Alternative method for question 2(iii)		
	Maximum height $=1 / 2 \times(25+0) \times 2.5[=31.25]$ o.e. In 0.5 s it falls distance $1 / 2 \times 10 \times 0.5^{2}[=1.25]$	M1	For attempting to find both the maximum height and the distance fallen in 0.5 seconds
	$h=31.25-1.25+3=33 \mathrm{~m}$	A1	
		2	

Question	Answer	Mark	Guidance
3(i)	$\mathrm{DF}=1500+12000 \times g \times 0.08[\mathrm{DF}=11100]$	M1	Using DF $=$ Resistance + weight component (3 terms)
	Power $=\mathrm{DF} \times 5$	M1	Using $P=F v$ (their 2 term $\mathrm{DF} \times 5$)
	Power $=11100 \times 5=55.5 \mathrm{~kW}$	A1	AG
		3	
3(ii)	$k \times 5^{2}=1500, k=60$	B1	AG
		1	
3(iii)	$\mathrm{DF}=60 \nu^{2}$	B1	Using DF $=$ resistance $=60 v^{2}$
	$55500=\mathrm{DF} \times v=60 v^{2} \times v=60 v^{3}$	M1	$P=F v$ used and attempt to solve a 2-term cubic equation for v
	$v=9.74 \mathrm{~ms}^{-1}$	A1	
	-	3	

Question	Answer		Mark	Guidance
4(i)	$R=13 \cos 67.4=13(5 / 13)$	[$R=5$]	B1	Resolve forces perpendicular to plane. Allow 67.4 used
	$F+13 \sin 67.4=F+13(12 / 13)=20$	[$F=8$]	B1	Resolve forces parallel to plane. Allow 67.4 used
			M1	Use $F=\mu R$
	$\mu=8 / 5=1.6$		A1	AG Must be from exact working here
			4	

Question	Answer	Mark	Guidance
4(ii)	$\begin{aligned} & 13 \sin 67.4-F=1.3 a \\ & F=\mu R=8 \quad \rightarrow \quad[4=1.3 a] \end{aligned}$	M1	For applying Newton's second law along the plane and also using $F=\mu R$ (3 terms)
	$a=3.08 \mathrm{~ms}^{-2}$	A1	Allow $a=40 / 13$
		2	
4(iii)	$s=0+0.5 \times(40 / 13) \times 2^{2}[=80 / 13=6.15]$	M1	Use $s=u t+1 / 2 a t^{2}$ with $u=0$ and their $a \neq \pm g$ to find the distance moved in the first 2 seconds
	$\mathrm{WD}=8 \times 6.15$	M1	$\mathrm{WD}=F \times d$
	$\mathrm{WD}=49.2 \mathrm{~J}$	A1	Allow WD $=640 / 13 \mathrm{~J}$
	Alternative method for question 4(iii)		
	$s=0+0.5 \times(40 / 13) \times 2^{2}[=80 / 13=6.15]$	M1	
	$\begin{aligned} & {[v=(40 / 13) \times 2]} \\ & \text { and }\left[\mathrm{WD}=1.3 g(80 / 13)(12 / 13)-1 / 2 \times 1.3 \times(80 / 13)^{2}\right] \end{aligned}$	M1	Finding v after 2 seconds and using WD $=$ PE loss - KE gain
	$\mathrm{WD}=49.2 \mathrm{~J}$	A1	Allow WD $=640 / 13 \mathrm{~J}$
		3	

Question	Answer	Mark	Guidance
5(i)	$a=2 t-8$	M1	Differentiate to find a
	$a=0 \rightarrow t=4$	M1	Set $a=0$ and solve for t
	Minimum $v=-4 \mathrm{~ms}^{-1}$	A1	Full marks available for correct use of a $v-t$ graph or correct use of " $t=-b / 2 a$ "
	Alternative	thod for	uestion 5(i)
	$v=(t-4)^{2}-4$	M1	Attempt to complete the square for v
	[$t=4$]	M1	Choose the t value which gives minimum v
	Minimum $v=-4 \mathrm{~ms}^{-1}$	A1	
		3	
5(ii)	$v=0$ when $(t-2)(t-6)=0$	M1	Find values of t when $v=0$, factorise or formula
	$t=2$ or $t=6$	A1	
	$\left[s=1 / 3 t^{3}-4 t^{2}+12 t(+\mathrm{c})\right]$	M1	Integrate v to find s
		A1	Correct integration
	$\begin{aligned} & 0 \leq t \leq 2 \quad s_{1}=8 / 3-16+24=32 / 3 \\ & 2 \leq t \leq 6 s_{2}=(216 / 3-144+72)-(8 / 3-16+24)=-32 / 3 \\ & 6 \leq t \leq 8 \\ & s_{3}=\left(512 / 3-4 \times 8^{2}+12 \times 8\right)-(216 / 3-144+72)=32 / 3 \end{aligned}$	M1	Attempt to find s_{1}, s_{2} and s_{3} Look for consideration of the need for 3 intervals Allow use of symmetry when finding s_{1}, and s_{3}
		A1	2 correct values of displacement
	Total distance $=32 \mathrm{~m}$	A1	All correct
		7	

Question	Answer	Mark	Guidance
6(i)	Particle $A: T=4 \sin \theta$ Particle B : $T=2$	M1	Resolve forces for A and for B
		M1	Eliminate T and solve for θ
	$\theta=30$	A1	
		3	
6(ii)(a)	A: $\quad T-4 \sin 20=0.4 a$ B: $\quad 2-T=0.2 a$ System: $\quad 2-4 \sin 20=(0.4+0.2) a$	M1	Apply Newton's second law to A or to B or to the system
		A1	Two correct equations
		M1	Solve for a or T
	$T=1.79$ and $a=1.05$	A1	Both correct
		4	
6(ii)(b)	$v^{2}=2 \times 1.053 \times 0.5=1.053$	M1	Attempt to find v using their $a \neq \pm g$
	$v=1.03 \mathrm{~ms}^{-1}$	A1	
		2	

Question	Answer	Mark	Guidance
6(ii)(c)	$\text { Loss in } \mathrm{KE}=1 / 2 \times 0.4 \times 1.053=0.2106$ $\text { Gain in } \mathrm{PE}=0.4 \times 10 \times d \sin 20$	M1	Attempt KE loss or PE gain for particle A only after particle B hits the ground.
		A1ft	Both correct, d is distance moved up the plane after B hits ground
	$1 / 2 \times 0.4 \times 1.053=0.4 \times 10 \times d \sin 20$	M1	Apply KE loss = PE gain
		A1	FT Correct energy equation
	Total dist A moves up plane $=0.5+d=0.654 \mathrm{~m}$	A1	
		5	

Cambridge
International
AS \& A Level

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS
Paper 4 Mechanics
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3 :

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR-1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$R=2.5 \cos 15$	B1	
	$[F=\mu \times 2.5 \cos 15]$	M1	Using $F=\mu R$
	$[2.5 \sin 15=0.03 g+F]$	M1	Resolve forces along the rod
	$\mu=0.144$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	$\left[0=30^{2}+2(-g) s\right]$	M1	Using $v^{2}=u^{2}+2 a s$ with $v=0$, $u=30$ and $a=-g$ For any complete method for finding maximum height s
	$s=$ maximum height $=900 / 20=45 \mathrm{~m}$	A1	AG
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
2(ii)	$\left[33.75=30 t-1 / 2 g t^{2}\right]$	M1	Applying $s=u t+1 / 2 a t^{2}$ with $s=33.75, u=30$ and $a=-g$
	$\left[5 t^{2}-30 t+33.75=0\right.$ or $\left.4 t^{2}-24 t+27=0\right]$	M1	Solve a 3-term quadratic for t
	$t=1.5($ reject $t=4.5)$	A1	
	$v=30-1.5 g=15$	B1ft	Use $v=u+a t$ with $u=30$ and $t=1.5$ ft on t value found
	Alternative method for question 2(ii)		
	$v^{2}=30^{2}-2 g(33.75)=225 \rightarrow v=15$	B1	Use $v^{2}=u^{2}+2 a s$ with $u=30$, $a=-g$ and $s=33.75$ to find v
	$\begin{aligned} & {[33.75=1 / 2(30+15) \times t]} \\ & \text { or }[15=30-10 t] \end{aligned}$	M1	Use $s=1 / 2(u+v) \times t$ with $s=33.75, u=30$ and v as found. or Use $v=u-g t$ with $u=30$ and v as found
		M1	Solve for t
	$t=1.5$	A1ft	ft on v value found
		4	

Question	Answer	Marks	Guidance
3		M1	Attempt to resolve forces horizontally or vertically
	$F \cos \alpha=15 \cos 20-5$ (=9.095...)	A1	
	$F \sin \alpha=15 \sin 20+25$ ($=30.13 \ldots .$.	A1	
	$F=\sqrt{(15 \cos 20-5)^{2}+(15 \sin 20+25)^{2}}$	M1	Use Pythagoras or trigonometry to find F
	$\propto=\tan ^{-1}[(15 \sin 20+25) /(15 \cos 20-5)]$	M1	Use trigonometry to find α
	$\alpha=73.2$ and $F=31.5$	A1	
		6	
Question	Answer	Marks	Guidance
4(i)	Driving force $=6000 / 20[=300 \mathrm{~N}]$	B1	Using $F=P / v$
	$R=300-80=220$	B1ft	Net force on system $=300-R-220=0 \mathrm{ft}$ on DF found
	1	\bigcirc	

Question	Answer	Marks	Guidance
4(ii)	[New driving force $\mathrm{DF}=12500 / 25=500 \mathrm{~N}$ Car: $\mathrm{DF}-T-R=1500 a$ Trailer: $T-80=300 a$ System: DF $-80-R=1800 a$]	M1	Any one equation from the following: Apply Newton's 2nd law to the car Apply Newton's 2nd law to the trailer Apply Newton's 2nd law to the system of car and trailer.
	Two correct equations	A1ft	Correct $\mathrm{DF}=500$ must be used. ft on R value found
		M1	EITHER solve two dimensionally correct simultaneous equations in a and T to find a or T OR solve the system equation to find a
	$a=0.111 \mathrm{~m} \mathrm{~s}^{-2}$	A1	Allow $a=1 / 9$
	$T=113 \mathrm{~N}(=113.3333 \ldots)$	A1	Allow $T=340 / 3$
		5	
Question	Answer	Marks	Guidance
5(i)	Velocity at $t=3$ is $3 \times 3=9$	B1	
	$[1 / 2 \times 3 \times 9+1 / 2(9+7) \times 2+1 / 2 \times 3 \times 7]$	M1	Attempt distance travelled in the first 8 seconds using Distance $=$ area under graph.
	Distance $=40 \mathrm{~m}$	A1	
		3	

Question	Answer	Marks	Guidance
5(ii)	[32 $=40+$ area of triangle]	M1	Use given displacement to set up equation for area of triangle or attempt to find distance or displacement from $t=8$ to $t=$ 16
	Area of triangle or displacement/distance $=$ (-)8	A1	
	[Distance $=1 / 2 \times 8 \times V=(-) 8]$	M1	Set up an equation for the area of triangle involving V or use suvat equations to set up an equation involving V
	$V=-2$	A1	
		4	

Question	Answer	Marks	Guidance
6(i)	$\left[\int\left(0.4 t^{3}-4.8 t^{\frac{1}{2}}\right) \mathrm{d} t\right]$	M1	Attempt to integrate a
	$v=0.1 t^{4}-3.2 t^{\frac{3}{2}}(+c)$	A1	
	$\left[v=0 \rightarrow 0.1 t^{4}-3.2 t^{\frac{3}{2}}=0\right]$	DM1	Attempt to solve $v=0$, and reach the form $t^{a / b}=k$
	$\left[t^{\frac{5}{2}}=32\right]$	M1	Attempt to solve an equation of the form $t^{a / b}=k$
	$t=4$	A1	
	$a=16 \mathrm{~m} \mathrm{~s}^{-2}$	B1	
		6	
6(ii)	$\left[s=\int 0.1 t^{4}-3.2 t^{\frac{3}{2}} \mathrm{~d} t\right]$	M1	Attempt to integrate v
	$\text { Displacement }=\left[0.02 t^{5}-1.28 t^{\frac{5}{2}}\right]_{0}^{5}$	A1	Correct integration.
	Displacement $=-9.05 \mathrm{~m}(-9.05417 \ldots)$	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	$R=0.25 g \times 0.6[=1.5]$	B1	
	$[F=0.5 \times 0.25 g \times 0.6][F=0.75]$	M1	Use $F=\mu R$
	[WD against friction $=F \times 8$]	M1	Using WD $=$ Force \times distance moved in direction of force
	$\mathrm{WD}=6 \mathrm{~J}$	A1	
		4	
7(ii)	$\begin{aligned} & {\left[1 / 2 \times 0.25 \times 15^{2}=\right.} \\ & \left.1 / 2 \times 0.25 \times v^{2}+6+0.25 g \times 8 \times 0.8\right] \end{aligned}$	M1	Work-energy equation in the form Initial $\mathrm{KE}=$ Final $\mathrm{KE}+\mathrm{WD}$ against $F+\mathrm{PE}$ gain
		A1ft	Correct Work-Energy equation for the motion to $Q . \mathrm{ft}$ on WD
		M1	Solving the work-energy equation for v
	$v=7 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	Alternative method for question 7(ii)		
	$[-F-0.25 g \sin \alpha=0.25 a]$	M1	Applying Newton's second law to the particle along the plane
	$a=-11 \mathrm{~m} \mathrm{~s}^{-2}$	A1ft	ft on friction found in (i)
		M1	Finding the speed of the particle at Q by applying $v^{2}=u^{2}+$ 2as with $u=15, s=8$ or equivalent complete method
	$v=7 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		4	

Question	Answer	Marks	Guidance
7(iii)	$\left[1 / 2 \times 0.25 \times 7^{2}=0.25 \times g \times H\right]$ Or $\left[1 / 2 \times m \times 7^{2}=m \times g \times H\right]$	M1	KE lost from Q to $R=\mathrm{PE}$ gain from Q to R H is the height of R above Q
	$H=7^{2} / 2 g=2.45 \mathrm{~m}$	A1	
	Total height $h=6.4+H=8.85$	A1	
		or questi	- 7(iii)
	$\left[1 / 2 \times 0.25 \times 15^{2}=6+0.25 g \times h\right]$	M1	Work-energy from P to R
		A1	Correct Work-energy equation from P to R
	$h=8.85$	A1	
		3	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/43
Paper 4
October/November 2018
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The $P A-1$ penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
3(i)	$\left[1 / 2 \times 1.2 \times 7.5^{2}-1 / 2 \times 1.2 \times v^{2}=25\right]$	M1	For use of KE and 25 in a 3 term equation
	$v=3.82 \mathrm{~m} \mathrm{~s}^{-1}(3.81881 \ldots)$	A1	
		[2]	
3(ii)	1.2 gdsin 30	B1	Correct expression for PE
	$\left[1 / 2 \times 1.2 \times 7.5^{2}-25+1.2 g d \sin 30=1 / 2 \times 1.2 \times 9^{2}\right]$	M1	For 4 term work / energy equation
	$d=6.64 \mathrm{~m}(6.64166 \ldots)$	A1	
		3	

Question	Answer	Marks	Guidance
$4(\mathrm{ii})$	$[1 / 2 \times 20 \times v=96]$	$\mathbf{M 1}$	Uses area of triangle $=96$ or uses $s=u t+1 / 2 a t^{2}$ to form equation in a
	$v=9.6 \mathrm{~m} \mathrm{~s}^{-1}$ or $48=1 / 2 a(10)^{2}$	$\mathbf{A 1}$	
	Acceleration $=9.6 / 10=0.96 \mathrm{~m} \mathrm{~s}^{-2}$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
5(i)	$[T-0.3 g=0.3 a$ or $0.5 g-T=0.5 a]$	M1	Use of Newton's second law for P or Q or use of $a=\left(m_{Q}-m_{P}\right) g /\left(m_{P}+m_{Q}\right)$
	$T-0.3 g=0.3 a$ and $0.5 g-T=0.5 a$ or $a=(0.5 g-0.3 g) /(0.5+0.3)$	A1	
	$[0.5 g-0.3 g=0.8 a]$	M1	Solve for a
	$a=2.5$	A1	
	$\left[h=0+1 / 2 \times 2.5 \times 0.6^{2}\right]$	M1	For use of $s=u t+1 / 2 a t^{2}$
	$h=0.45$	A1	
	- 4010	6	

Question	Answer	Marks	Guidance
$5(\mathrm{ii})$	Velocity of P when Q reaches floor $=0+0.6 \times 2.5=1.5 \mathrm{~m} \mathrm{~s}^{-1}$	B1ft	$\mathrm{ft} a$ from (i) $\times 0.6$
	$[0=1.5-g t \rightarrow t=\ldots](t=0.15)$	M1	Use of suvat to find time to highest point
	Total time $=2 \times 0.15+0.6=0.9 \mathrm{~s}$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6 (i)	Driving force $=36000 / 20$	B1	For use of power $=F v$
	$[36000 / 20-R=3200 \times 0.2]$	M1	Use of Newton's Second Law
	$R=1160 \mathrm{~N}$	A1	
	6(ii)	Driving force $F=3200 g \sin 1.5+1160$	[3]
	$[$ Power $=(3200 g \sin 1.5+1160) \times 30]$	M1	Resolving along plane
	Power $=59900 \mathrm{~W}(59929.87 \ldots)$	Use of $P=F v$	
		A1	

Question	Answer	Marks	Guidance
6(iii)	$[-(3200 g \sin 1.5+1160)=3200 a]$	M1	Use of Newton's Second Law
	($a=-0.62426 \ldots$)	A1	
	$\left[0^{2}=30^{2}+2 a s\right]$	M1	Use of $v^{2}=u^{2}+2 a s$ to find s
	Distance $s=721 \mathrm{~m}(720.84 \ldots)$	A1	
		4	
	OR:		
6(iii)	[$3200 \mathrm{gsin} 1.5 s]$ or $[1 / 2 \times 3200 \times 900]$	M1	For PE gain or KE loss
	3200 gsin 1.5 s and $1 / 2 \times 3200 \times 900$	A1	For PE gain and KE loss
	$[1 / 2 \times 3200 \times 900=1160 s+3200 g \sin 1.5 s]$	M1	For work / energy equation
	Distance $s=721 \mathrm{~m}(720.84 \ldots)$	A1	
		4	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$	Acceleration $=0$ when $t=5$ from $25-t^{2}=0$	B1	
	$\left[v=25 t-1 / 3 t^{3}\right]$	M1	Use of integration
	$\left[\right.$ Max speed $\left.=25 \times 5-1 / 3 \times 5^{3}\right]$	M1	Substitution for t
	Max speed $=83^{1 / 3} \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
7(ii)	$\left[s=121 / 2 t^{2}-1 / 12 t^{4}\right]$	M1	Use of integration
	Distance $=260 \mathrm{~m}(260.4166 \ldots)$	A1	
		2	
7(iii)	At $t=9, v=25 \times 9-1 / 3 \times 9^{3}=-18$	B1ft	$\mathrm{ft} v$ from (i)
	$\left[s=\int_{9}^{25}\left(-3 t^{-\frac{1}{2}}\right) d t=\left[-6 t^{\frac{1}{2}}\right]\right]$	M1	Use of integration
	[Change in velocity from $t=9$ to $\left.t=25=\left[-6 t^{\frac{1}{2}}\right]=-6 \times 5+6 \times 3=-12\right]$	M1	Substituting limits
	Velocity at $t=25$ is $-18-12=-30 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		4	
	OR:		
7(iii)	At $t=9, v=25 \times 9-1 / 3 \times 9^{3}=-18$	B1ft	$\mathrm{ft} v$ from (i)
	$\left[s=\int-3 t^{-1 / 2} d t=-6 t^{1 / 2}(+C)\right]$	M1	Use of integration
	$\left[t=9, v=-18 \rightarrow C=0, t=25, v=-6 \times 25^{1 / 2}\right]$ atpre	M1	Finds C and substitutes $t=25$
	Velocity at $t=25$ is $-30 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		4	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/42
Paper 4
October/November 2018
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The $P A-1$ penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$[T \cos 45+T \cos 45=2.5 \cos 45]$	M1	For resolving horizontally
	$T=1.25 \mathrm{~N}$	A1	
	$[2.5 \sin 45=m g]$	M1	For resolving vertically
	Mass of ring $=0.177 \mathrm{~kg}$	A1	Allow $m=\sqrt{ } 2 / 8$
	First alternative method for Q1		
	[2.5 $=T+m g \cos 45]$	M1	Resolve forces along BR
	[$T=m g \cos 45]$	M1	Resolve forces perpendicular to BR and eliminate T or m
	$T=1.25 \mathrm{~N}$	A1	
	Mass of ring $=0.177 \mathrm{~kg}$	A1	Allow $m=\sqrt{ } 2 / 8$
	Second alternative method for Q1		
	$\frac{2 T \cos 45}{\sin 135}=\frac{2.5}{\sin 90}=\frac{m g}{\sin 135}$ or $\frac{2.5-T}{\sin 135}=\frac{T}{\sin 135}=\frac{m g}{\sin 90}$	M1	Attempt to apply Lami's theorem,
		M1	All three terms of Lami attempted
	$T=1.25 \mathrm{~N}$	A1	
	Mass of ring $=0.177 \mathrm{~kg}$	A1	Allow $m=\sqrt{ } 2 / 8$
		4	

Question	Answer	Marks	
2	$R=5 g \cos 6$	B1	
	$[F=0.3 \times 5 g \cos 6]$	M1	Use of $F=\mu R$
	$[T=5 g \sin 6+F]$	M1	For resolving along the plane
	$T=20.1 \mathrm{~N}(20.14425 \ldots)$	$\mathbf{A 1}$	
		4	

Question	Answer	Marks	Guidance
3(i)	Acceleration $=-1 \mathrm{~m} \mathrm{~s}^{-2}$	B1	Allow deceleration $=1 \mathrm{~m} \mathrm{~s}^{-2}$
		1	
3(ii)	$[V / 4=1$ or $(V+2) / 6=1]$	M1	Use of gradient of line between $t=4$ and $t=10$ or use of similar triangles to find V
	$V=4$	A1	
		2	
3(iii)	$[$ Distance $=$ Area $=1 / 2(6+2) \times 2=8]$	M1	Attempt distance travelled in first 6 seconds
	Distance $A B=3 \times 8=24 \mathrm{~m}$	A1	
	$[1 / 2 \times(T-6) \times 4=24]$	M1	Attempt to find the distance travelled from $t=6$ to $t=T$ and set up an equation for T
	$T=18$	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	$T=0.7 \mathrm{~g}$	B1	
	$R=0.4 g \times 4 / 5[=16 / 5=3.2]$	B1	Normal reaction on particle P
	$[X+0.4 g \times 3 / 5-F-T=0]$	M1	Attempt to resolve forces along the plane
	$X=6.2$	A1	AG
		4	
4(ii)	$\begin{aligned} & {[0.7 g-T=0.7 a]} \\ & {[T-0.8-0.4 g \times 3 / 5-F=0.4 a]} \\ & {[0.7 g-0.8-0.4 g \times 3 / 5-F=(0.7+0.4) a] \text { System }} \end{aligned}$	M1	For using Newton's 2nd law for both particle P and particle Q or the system equation
		A1	Both equations correct or system equation correct
		M1	Solve either the system equation or solve two simultaneous equations to find a
	$a=2 \mathrm{~m} \mathrm{~s}^{-2}$	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	$\left[1.2 T^{1 / 2}-0.6 T=0\right]$	M1	Attempt to find time of maximum v, set $a=0$ and solve for T
	$T^{1 / 2}=2 \rightarrow T=4$	A1	
		2	
5(ii)	$\left[\mathrm{d} a / \mathrm{d} t=0.6 t^{1 / 2}-0.6\right]$	M1	Attempt to differentiate a
	$t=1$	A1	Solve $\mathrm{d} a / \mathrm{d} t=0$ and find t
	$\left[v=0.8 t^{3 / 2}-0.3 t^{2}(+C)\right]$	M1	Attempt to integrate a to find v
		A1	Correct integration
	[$C=1$]	M1	Use $v=1$ at $t=0$ either finding C or by using limits as $v(1)-v(0)=\left[0.8(1)^{3 / 2}-0.3(1)^{2}\right]-\left[0.8(0)^{3 / 2}-0.3(0)^{2}\right]$
	Velocity when acceleration is max is $1.5 \mathrm{~ms}^{-1}$	A1	$v=1.5$
		6	

Question	Answer	Marks	Guidance
6(i)	Power $=350 \times 15=5250 \mathrm{~W}$	B1	Allow 5.25 kW
		1	
6(ii)		B1	Using Driving force $\mathrm{DF}=P / 15$
	$\mathrm{DF}+1200 g \sin 1-350=1200 \times 0.12$	M1	For using Newton's 2nd law down the slope
	$P=4270 \mathrm{~W}$ (4268.56...)	A1	
		3	
6(iii)	$[1200 g \sin 1-350=1200 a]$	M1	Using Newton's 2 nd law down the slope
		A1	Correct equation
	$\left[18^{2}=20^{2}+2 a s\right]$	M1	Using constant acceleration formulae with a complete method to find distance, s, travelled.
	Distance travelled $s=324 \mathrm{~m}$ (324.39)	A1	

Question	Answer	Marks	
6(iii)	Alternative method for Q6(iii)		
	PE loss $=1200 g \times s \sin 1$ KE loss $=1 / 2 \times 1200 \times\left(20^{2}-18^{2}\right)$	M1	Attempt either PE loss or KE loss
		A1	Both PE loss and KE loss correct
	$\left[1200 g \times s \sin 1+1 / 2 \times 1200 \times\left(20^{2}-18^{2}\right)=350 s\right]$	M1	Apply work-energy equation to the car
	Distance travelled $s=324 \mathrm{~m}(324.39)$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
7(i)	At liquid surface, speed $=0+g \times 0.8[=8]$ or $0.3 g \times 1 / 2(0+v) \times 0.8=1 / 2(0.3) v^{2} \rightarrow v=8$	B1	Using constant acceleration equation $v=u+a t$ or PE loss $=\mathrm{KE}$ gain
	PE lost in water $=0.3 g \times 1.25[=3.75]$	B1	
	$\left[1 / 2 \times 0.3 \times\left(8^{2}-v^{2}\right)+0.3 g \times 1.25=1.2\right]$	M1	Using work-energy for downward motion in the tank PE loss + KE loss $=$ Work done against resistance
	$v=9 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	Alternative method for Q7(i)		
	Height above tank $=1 / 2 \times g \times 0.8^{2}[=3.2]$	B1	
	Total PE loss $=0.3 g \times(3.2+1.25)[=13.35]$	B1	
	$\left[0.3 g \times(3.2+1.25)=1 / 2 \times 0.3 \times v^{2}+1.2\right]$	M1	Work-energy equation for the total downward motion
	$v=9 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		4	

Question	Answer	Marks	Guidance
7(ii)	$[-0.3 g-1.8=0.3 a]$	M1	Using Newton's 2nd law for the upward motion in the tank
	$a=-16$	A1	
	$\left[1.25=7 T+1 / 2 \times(-16) \times T^{2}\right]$	M1	Using constant acceleration equations to find the time, T, for the particle to travel from the bottom to the surface of the liquid
	$T=0.25$ (or 0.625 , on the way down)	A1	
	$[v$ at surface $=7+(-16) \times 0.25=3]$	B1	Using $v=u+a T$ or equivalent to find v at surface
	$[0=3-g t \rightarrow t=0.3]$	M1	Attempt to find the time, t, taken for the particle to travel from the surface to reach maximum height using their $v \neq 7$
	Total time $=T+t=0.55 \mathrm{~s}$	A1	

Question	Answer	Marks	Guidance
7(ii)	Alternative method for Q7(ii)		
	$[-0.3 g-1.8=0.3 a]$	M1	Using Newton's 2nd law for the upward motion in the tank
	$a=-16$	A1	
	$v^{2}=7^{2}+2 \times(-16) \times 1.25=9 \rightarrow v=3$	B1	Using constant acceleration equations to find v at the surface
	$\begin{aligned} & 1.25=1 / 2(7+3) \times T \\ & \text { or } 3=7+(-16) \times T \end{aligned}$	M1	Using $s=1 / 2(u+v) \times T$ or $v=u+a T$ to find the time, T, for the particle to travel from the bottom to the surface of the liquid
	$T=0.25$	A1	
	$[0=3-g t \rightarrow t=0.3]$	M1	Attempt to find the time, t, taken for the particle to travel from the surface to reach maximum height using their $v \neq 7$
	Total time $=T+t=0.55 \mathrm{~s}$	A1	

Question	Answer	Marks	Guidance
7(ii)	Second Alternative method for Q7(ii)		
	$\left[1 / 2 \times 0.3 \times\left(7^{2}-v^{2}\right)=0.3 g \times 1.25+1.8 \times 1.25\right]$	M1	Work-energy equation for motion from bottom to surface
		A1	Correct equation
	$v=3$	B1	Find v at surface from rearrangement of work-energy
	$[1.25=1 / 2(7+3) \times T]$	M1	Using $s=1 / 2(u+v) \times T$ to find the time T, for the particle to travel from the bottom to the surface of the liquid
	$T=0.25$	A1	
	$[0=3-10 t \rightarrow t=0.3]$	M1	Attempt to find the time, t, taken for the particle to travel from the surface to reach maximum height using their $v \neq 7$
	Total time $=T+t=0.55 \mathrm{~s}$	A1	
		7	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/41
Paper 4
October/November 2018
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3 :

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The $P A-1$ penalty is usually discussed at the meeting.

Question	Answer	Marks	
1	$4.5=2.5+a \times 5$	M1	For use of $v=u+a t$
	$a=0.4$	$\mathbf{A 1}$	
	$F-1.5=0.2 a$	$\mathbf{M 1}$	For use of Newton's second law
	$F=1.58$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2(i)	$\text { Resistance }=\text { Driving force }=\frac{4080000}{85}=48000 \mathrm{~N}$	B1	Correct use of $P=F v$ and using DF $=$ Resistance
		1	
2(ii)	$\mathrm{DF}=\frac{P}{85}$	B1	$\mathrm{DF}=\frac{P}{v}$
	$\mathrm{DF}-48000-490000 \mathrm{~g} \times \frac{1}{200}=0$	M1	For applying Newton's second law (3 terms)
	$P=72500 \times 85=6.16 \mathrm{MW}$	A1	
	¢く口	3	

Question	Answer	Marks	Guidance
3	$\begin{aligned} & \text { [KE gained }=\frac{1}{2} \times 2500 \times\left(30^{2}-20^{2}\right)(=625000 \mathrm{~J}) \\ & \text { PE lost }=2500 g \times 400 \sin 4(=697564.7 \mathrm{~J}) \end{aligned}$	M1	KE gained or PE lost attempted
		A1	Both KE and PE correct
	[WD by engine $+2500 g \times 400 \sin 4+\frac{1}{2} \times 2500 \times 20^{2}$ $\left.=600 \times 400+\frac{1}{2} \times 2500 \times 30^{2}\right]$	M1	Using work-energy equation in the form WD by engine +PE lost $=\mathrm{WD}$ against $\mathrm{F}+\mathrm{KE}$ gain
	Work done by engine + PE lost $=600 \times 400+625000$	A1	Work-energy equation all correct
	Work done $=167000 \mathrm{~J}(167435.2 \ldots)$	A1	
		5	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$0.6^{2}=0+2 a \times 0.8$	M1	For use of $v^{2}=u^{2}+2 a s$
	$a=0.225$	A1	
	$T-0.3 g=0.3 a$	M1	For using Newton's second law for the 0.3 kg particle
	$T=3.07 \mathrm{~N}(3.0675 \mathrm{~N})$	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
$4(\mathrm{ii})$	$m g-T=m a, m(10-0.225)=3.0675$	$\mathbf{M 1}$	For using Newton's second law applied to the $m \mathrm{~kg}$ particle
	$m=0.314 \mathrm{~kg}(0.31381 \ldots)$	$\mathbf{A 1}$	
		$\mathbf{2}$	

Question	Answer $\square \square$	Marks	Guidance
5(i)		M1	For resolving forces horizontally or vertically o.e.
	$25 \cos 30-15 \cos 40(=10.1599 \ldots)$	A1	
	$25 \sin 30+15 \sin 40-30(=-7.8581 \ldots)$	A1	
		M1	For using a method for either magnitude or direction
	$\text { Magnitude }=\sqrt{\left(10.15 \ldots^{2}+7.858 \ldots .^{2}\right)}=12.8 \mathrm{~N}$	A1	Magnitude $=12.844 \ldots$
	Angle 37.7° below the horizontal in the direction $B A$	A1	
		6	

Question	Answer	Marks	Guidance
$5(\mathrm{ii})$	$F \cos 40=25 \cos 30$	M1	For equating forces in the direction $B C$ to zero
	$F=28.3$	$\mathbf{A 1}$	$F=28.2628 \ldots$
	New resultant force $=28.26 \ldots \sin 40+25 \sin 30-30=0.667 \mathrm{~N}$ upwards	$\mathbf{B 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(ii)	$R=m g \cos 3$	B1	
	$F=\mu m g \cos 3$	M1	For use of $F=\mu R$
	$-m g \sin 3-\mu \times m g \cos 3=m \times\left(-\frac{2}{3}\right)$	M1	For using Newton's second law (3 terms)
	$\mu=0.0144$ (0.014350...)	A1	
		4	

Question	Answer	Marks	Guidance
7(i)	$v=\int(5.4-1.62 t) \mathrm{d} t$	M1	For using integration of a to find v
	$v=5.4 t-0.81 t^{2}(+C)$	A1	
	$5.4 t-0.81 t^{2}=0$	M1	For solving $v=0$
	$t=6 \frac{2}{3}=\frac{20}{3} s$	A1	
		4	
7(ii)	$v(10)=-27 \mathrm{~ms}^{-1}$	B1	
	Inverted parabola	B1	
	$v=0$ at $t=0$, negative at $t=10$ and through $\left(6 \frac{2}{3}, 0\right)$	B1	
		3	

Question	Answer	Marks	Guidance
7(iii)	$s=\int\left(5.4 t-0.81 t^{2}\right) d t$	M1	For using integration of v to find s
	$s=2.7 t^{2}-0.27 t^{3}(+C)$	A1	
	At $t=6 \frac{2}{3}$, displacement $=40$	M1	For evaluating the integral at the time when $v=0$
	At $t=10$ displacement $=0$	M1	For evaluating the integral at time $t=10$
	Total distance $=80 \mathrm{~m}$	A1	
		5	

MATHEMATICS

9709/43
Paper 4
May/June 2018
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\top M}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3 :

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	$0.4\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	B1	
	Total:	1	
1(ii)	$\left[9040=\frac{1}{2}(600+T) \times 16\right]$	M1	Equating area of the trapezium to the total distance or using $s=1 / 2(u+v) t$ or equivalent
	Time is 530 (s)	A1	
	Total:	2	
1(iii)	$\left[s=\frac{1}{2} \times(600-530-40) \times 16\right]$	M1	Use of triangular area, or equivalent
	Distance is 240 (m)	A1	
	Total:	2	

Question	Answer		Marks	Guidance
2	$\left[V^{2}=5^{2}+2 \times g \times 7.2\right]$		M1	Use of uvast to find V
	$V=13$		A1	
	$[13=5+g t \quad t=\ldots .$.	0.8 (s)	M1	Use of u vast to find time for A to reach ground
	$[0=6.5-g t \quad t=\ldots .$.	0.65 (s)	M1	Use of uvast to find time from ground to B
	Total time is 1.45 (s)		A1	
			5	

Question	Answer	Marks	Guidance
3		M1	For resolving forces in any one direction
	E.g. $X=18+12 \sin 60^{\circ}-8 \sin 30^{\circ} \quad 14+6 \sqrt{ } 3$	A1	One correct equation or expression
	E.g. $Y=8 \cos 30^{\circ}+12 \cos 60^{\circ} \quad 6+4 \sqrt{ } 3$	A1	Second correct equation or expression (X and Y may denote components of resultant of given 3 forces or may be components of the fourth force that would produce equilibrium)
	$\left[(14+6 \sqrt{ } 3)^{2}+(6+4 \sqrt{ } 3)^{2}\right]$ or $\left[\tan ^{-1}(6+4 \sqrt{ } 3) /(14+6 \sqrt{ } 3)\right]$	M1	Use of Pythagoras or appropriate trig to find magnitude or angle
	Magnitude is 27.6 (N)	A1	Not for resultant
	Direction is 27.9° below 'negative x-axis'	A1	Not for 27.9° only; direction must be clearly specified
	Total:	6	

Question	Answer	Marks	Guidance
4	$\left[\frac{1}{2} \times 0.8 \times v^{2}\right]$ or $\left[\frac{1}{2} \times 1.6 \times v^{2}\right]$	M1	For KE of either particle
	Gain in $\mathrm{KE}=\frac{1}{2} \times 0.8 \times v^{2}+\frac{1}{2} \times 1.6 \times v^{2}$	A1	Total KE
	[Gain in $\mathrm{PE}_{A}=0.8 \mathrm{~g} \times 0.5 \times \sin \theta$] or [Loss in $\mathrm{PE}_{B}=1.6 \mathrm{~g} \times 0.5$]	M1	For PE change of either particle (irrespective of sign)
	Loss in PE $=1.6 \mathrm{~g} \times 0.5-0.8 g \times 0.5 \times 0.6$	- A1	Change of PE
	$\left[1.2 v^{2}=8-2.4\right]$	M1	Energy equation originating from 4 terms
	Speed is $2.16\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	
	Total:	6	
			SC for using Newton II equations and $v^{2}=u^{2}+2 a s(\max 2 / 6)$ $[16-T=1.6 a$ and $T-8 \sin \theta=0.8 a] \rightarrow a=4.67\left(\mathrm{~ms}^{-2}\right) \quad$ B1 $\left[v^{2}=2 \times \frac{14}{3} \times 0.5\right] \rightarrow$ speed is $2.16\left(\mathrm{~ms}^{-1}\right)$ B1
			Alternative method 1 for Question 4
	$\left[\frac{1}{2} \times 0.8 \times v^{2}\right]$ or $[0.8 g \times 0.5 \times \sin \theta]$	M1	For KE gain or PE gain of particle A
	$\frac{1}{2} \times 0.8 \times v^{2}+0.8 g \times 0.5 \times 0.6$	- A1	Total energy gain for particle A
	[16-T=1.6a and $T-8 \sin \theta=0.8 a \rightarrow T=\ldots]$.	M1	Forms and solves Newton II equations to find tension T
	$\mathrm{WD}_{T}=\frac{128}{15} \times 0.5$	A1	Finds $\mathrm{WD}_{\text {Tension }}$
	$\left[\frac{1}{2} \times 0.8 \times v^{2}+0.8 g \times 0.5 \times 0.6=\frac{128}{15} \times 0.5\right]$	M1	Energy equation (3 terms)

Question	Answer	Marks	Guidance
4	Speed is $2.16\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	
	Total:	6	
			Alternative method 2 for Question 4
	$\left[\frac{1}{2} \times 1.6 \times v^{2}\right]$ or $[1.6 \mathrm{~g} \times 0.5]$	M1	For KE gain or PE loss of particle B
	$1.6 \mathrm{~g} \times 0.5-\frac{1}{2} \times 1.6 \times v^{2}$	A1	Energy change for particle B
	$[16-T=1.6 a$ and $T-8 \sin \theta=0.8 a \rightarrow T=\ldots]$.	M1	Forms and solves Newton II equations to find tension T
	$\mathrm{WD}_{T}=\frac{128}{15} \times 0.5$	A1	Finds $W^{\text {Tension }}$
	$\left.1.6 g \times 0.5-\frac{1}{2} \times 1.6 \times v^{2}=\frac{128}{15} \times 0.5\right]$	M1	Energy equation (3 terms)
	Speed is $2.16\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	
	Total:	6	

Question	Answer		Marks	Guidance
5	$R=3 g \cos 20^{\circ}$		B1	Correct normal reaction stated or used
	$\left[F=0.35 \times 3 g \cos 20^{\circ}\right]$		M1	For use of $F=\mu R$
	$\left[P_{1}+F=3 g \sin 20^{\circ}\right]$		M1	Attempted resolving equation for minimum case
	$P_{1}=0.394$ (AG)		A1	Correct given answer from correct work
	[$\left.P_{2}=F+3 g \sin 20^{\circ}\right]$		M1	Attempted resolving equation for maximum case
	$P_{2}=20.1(\mathrm{~N})$		A1	
		Total:	6	

Question	Answer		Marks	Guidance
6(i)	$\left[\frac{P}{56}=40 \times 56\right]$		M1	For equating $\frac{\text { Power }}{\text { Velocity }}$ to Resistance, or equivalent
	Power is $125(\mathrm{~kW})$		A1	
		Total:	2	
6(ii)	Driving force is $\frac{125440}{32}$		B1ft	Follow through their power from (i)
	$\left[\frac{125440}{32}-40 \times 32=1400 a\right]$		M1	For 3-term Newton II equation
	$a=1.89\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$		A1	
		Total:	3	

Question	Answer	Marks	Guidance
$6($ iii $)$	$\left[\frac{60000}{50}+1400 g \sin \theta-40 \times 50=0\right]$	M1	For 3-term Newton II equation
		A1	Correct equation
	$\left[\sin \theta^{\circ}=\frac{800}{14000}\right]$	M1	
	$\theta=3.3$	A1	
		4	

Question	Answer	Marks	Guidance
7(i)	$\left[\frac{\mathrm{d} v}{\mathrm{~d} t}=12-8 t\right]$ or e.g. $\left[-4\left[(t-1.5)^{2}-2.25\right]\right]$	M1	For attempted differentiation of $12 t-4 t^{2}$ (or for alternative e.g. completing the square)
	[Maximum v when $t=1.5 \Rightarrow v=12 \times 1.5-4 \times 1.5^{2}$]	M1	For finding and using t
	Maximum velocity is $9\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	
	Total:	3	
7(ii)	$\left[\frac{\mathrm{d} v}{\mathrm{~d} t}=12-8 t=-4\right]$	M1	Finding acceleration for $0 \leqslant t \leqslant 2$ when $\mathrm{t}=2$
	Acceleration for $2 \leqslant t \leqslant 4$ is -4 No instantaneous change	A1	Both values correct, with correct statement
	Total:	2	

Question	Answer	Marks	Guidance
7(iii)		B1	Quadratic shape (with max) for $0 \leqslant t \leqslant 2$
		B1	Line with negative gradient from $(2, \ldots)$ to (4,0)
		B1	All correct, smooth join and key values indicated
	Total:	$\square 3$	
7(iv)	Area of triangle is 8	B1	(May be obtained by integrating $16-4 t$ or use of $u v a s t$)
	$\left[\int\left(12 t-4 t^{2}\right) \mathrm{d} t=6 t^{2}-\frac{4}{3} t^{3}\right]$	M1	Integration attempt for $0 \leqslant t \leqslant 2$
	$\left[6 \times 2^{2}-\frac{4}{3} \times 2^{3}-6 \times 0^{2}+\frac{4}{3} \times 0^{3}\right]$	DM1	Use of limits 0 and 2; condone absence of zero terms
	Area under curve is $\frac{40}{3}$ or 13.3	A1	
	Distance travelled is $\frac{64}{3}(\mathrm{~m})$ or $21.3(\mathrm{~m})$	A1	
	Total:	5	

MATHEMATICS

9709/42
Paper 4
May/June 2018
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3 :

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The $P A-1$ penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	KE gain $=\frac{1}{2} \times 80 \times\left(5.5^{2}-4^{2}\right)[=570]$	B1	Either initial or final KE correct
	WD against Res $=60 P$	B1	
	$\left[\frac{1}{2} \times 80 \times\left(5.5^{2}-4^{2}\right)+60 P=1200\right]$	M1	Four term work-energy equation
	$P=10.5$	A1	
		4	

Question	Answer	Marks	Guidance
2	Driving force DF $=\frac{P}{15}$	B1	Correct use of $P=F v$
	$[\mathrm{DF}-240000 g \sin 4-18000=240000 \times(-0.2)]$	M1	A four-term Newton 2nd law equation
		A1	Correct equation
	Power is 2060000 (W)	A1	Allow 2060 kW or 2.06 MW
		4	

Question	Answer	Marks	Guidance
3	$[3 \cos 60=2 \cos \theta]$	M1	Attempt to resolve forces horizontally (2 terms)
	$\theta=41.4$	A1	
	$[P=3 \sin 60+2 \sin \theta]$	M1	Attempt to resolve forces vertically (3 terms)
	$P=3.92$	A1	
	First alternative method for Q3		
	$\frac{P}{\sin (120-\theta)}=\frac{2}{\sin 150}=\frac{3}{\sin (90+\theta)}$	M1	Attempt two terms of Lami's equation which can be used to find θ
	$\theta=41.4$	A1	
		M1	Attempt an equation which can be used to find P
	$P=3.92$	A1	
	Second alternative method for Q3		
	[Triangle with sides $2,3, P$ and angles opposite of $30,90-\theta, 60+\theta$] $\frac{P}{\sin (60+\theta)}=\frac{2}{\sin 30}=\frac{3}{\sin (90-\theta)}$	M1	Attempt two terms from the triangle of forces which can be used to find θ
	$\theta=41.4$	A1	
		M1	Attempt an equation which can be used to find P
	$P=3.92$	A1	

Question	Answer	Marks	Guidance
4(i)	$\begin{array}{ll} \text { For example } & 100=4 u+8 a \\ \text { or } & 100=\frac{1}{2}(u+v) \times 4 \\ \text { or } & 148=4 v+8 a \end{array}$ or any equation in two of the variables u, v, w, a	M1	Any relevant use of constant acceleration equations in any two of the variables below a is acceleration u is speed at A v is speed at B w is speed at C
		A1	One correct equation
	For example $248=8 u+32 a$ or two further correct equations in 3 unknowns such as $148=4 v+8 a$ and $v=u+4 a$ or $148=\frac{1}{2}(v+w) \times 4 \text { and } 248=\frac{1}{2}(u+w) \times 8$	A1	A second correct equation in the same two variables or two further correct equations leading to three equations in three of the unknowns u, v, w, a
		M1	Attempt to solve for a or u This must reach $a=\ldots$ or $u=\ldots$
	$a=3$	A1	AG
	$u=19$	B1	
		6	

Question	Answer	Marks	Guidance
4(ii)	$61^{2}=19^{2}+2 \times 3 \times s$	M1	Attempt equation for $s=A D$
	$[s=560 \rightarrow C D=560-248]$	M1	Attempt to find $C D$
	Distance $C D$ is 312	A1	
		3	
	Alternative method for 4(ii)		
	Speed at C is $19+8 \times 3[=43]$	M1	Attempt to find speed at C
	$\left[61^{2}=43^{2}+2 \times 3 \times C D\right]$	M1	Attempt to find $C D$
	Distance CD is 312	A1	

Question	Answer	Marks	Guidance
5	$R=20 g \cos 60[=100]$	B1	
	$F=\mu \times 20 g \cos 60[=100 \mu]$	M1	Use $F=\mu R$
		M1	Resolve along plane in either case
	$\left(P_{\text {max }}=\right) 20 g \sin 60+F$	A1	One correct equation
	$\left(P_{\text {min }}=\right) 20 g \sin 60-F$	A1	Second correct equation
	$20 g \sin 60+F=2(20 g \sin 60-F)$	M1	Use of $P_{\text {max }}=2 P_{\text {min }}$ to give four term equation in F or μ or P
	$\mu=\frac{\sqrt{3}}{3}=0.577$	A1	
		7	
	Iternati	${ }_{\text {min }}$ is tak	n as acting down the plane
	$P_{\text {min }}=F-20 g \sin 60$	A1	
	$20 g \sin 60+F=2(F-20 g \sin 60)$	M1	
	$\mu=3 \sqrt{3}=5.196$	A1	

Question	Answer	Marks	Guidance
6(i)		M1	Attempt to integrate a
	$v=6 t-0.12 t^{2}(+c)$	A1	
	$0=6 \times 20-0.12 \times 20^{2}+c$	DM1	Substitute $v=0, t=20$ in an equation with arbitrary constant
	$0.12 t^{2}-6 t+72=0$	DM1	Substitute $v=0$ and attempt to solve a 3-term quadratic
	$t=30$	A1	
		5	
6(ii)	$s=3 t^{2}-0.04 t^{3}-72 t(+k)$	M1	Attempt to integrate v
	$s(30)-s(20)=-540-(-560)$	DM1	Use of limits 20 and their 30
	Distance travelled $=20$	A1	
		3	π

Question	Answer	Marks	Guidance
7(i)	$[T=1.6 a, 2.4 g \sin 30-T=2.4 a]$ System is $2.4 g \sin 30=4 a$	M1	Attempt Newton's 2nd law for A or B or for the system
		A1	Two correct equations
		M1	Solve for a or T
	$a=3 \square \square \square$	A1	
	$T=4.8$	A1	
		5	
7(ii)	Friction force on A is $F=0.2 \times 1.6 g[=3.2]$	B1	From $F=\mu R$
	$\begin{aligned} & T-F=1.6 a \\ & 2.4 g \sin 30-T=2.4 a \\ & \text { System is } 2.4 g \sin 30-F=4 a \end{aligned}$	M1	Attempt Newton's $2^{\text {nd }}$ law for both particles or for the system
		A1	Correct equations for A and B or correct system equation
		M1	Attempt to solve for a
	$a=2.2$	A1	
	$v^{2}=2 \times 2.2 \times 1$	M1	Attempt to find v or v^{2} when B reaches the barrier
	Subsequent acceleration of A is -2	B1	
	$4.4=2 \times 2 \times s$	M1	Attempt to find distance A travels while decelerating to $v=0$
	Total distance travelled is 2.1 m	A1	
		9	

Question	Answer	Marks	Guidance
7(ii)	Alternative method for Q7 [Work-Energy applied to \boldsymbol{A} and B]		
	$F=0.2 \times 1.6 \mathrm{~g}[=3.2]$	B1	From $F=\mu R=0.2 \times 1.6 g=3.2$
		M1	Attempt PE loss as B reaches the barrier
	PE loss $=2.4 g \sin 30$ [$=12$]	A1	
		M1	Attempt KE gain for both A and B
	$\text { KE gain }=\frac{1}{2}(1.6+2.4) v^{2}\left[=2 v^{2}\right]$	A1	
	$\begin{aligned} & {\left[2.4 g \sin 30=\frac{1}{2} \times 4 \times v^{2}+3.2 \times 1\right]} \\ & {\left[v^{2}=4.4\right]} \end{aligned}$	M1	Apply work-energy equation for the motion until B reaches the barrier (Three relevant terms)
	$\mathrm{KE} \operatorname{loss}=\frac{1}{2} \times 1.6 \times 4.4$	B1	Find KE loss as A comes to rest after B has stopped
	$\left[\frac{1}{2} \times 1.6 \times 4.4=3.2 d\right]$ $[d=1.1]$	M1	Apply work-energy equation where d is the extra distance travelled by A leading to a positive value for d
	Total distance $=2.1 \mathrm{~m}$	- A1	Distance $=d+1$

Question	Answer	Marks	Guidance
7(ii)	Alternative scheme for first 6 marks of 7(ii) [Work-energy applied to A]		
	Friction $=0.2 \times 1.6 \mathrm{~g}[=3.2]$	B1	
	$\begin{aligned} & {[2.4 g \sin 30-T=2.4 a} \\ & T-F=1.6 a] \end{aligned}$	M1	Apply Newton's 2nd law to A and B and solve for T
	$T=6.72 \square \square \square \square \square$	A1	
	$\left[\frac{1}{2} \times 1.6 \times v^{2}\right]$	M1	Attempt KE for A only
		A1	Correct KE for A
	$\left[6.72 \times 1=\frac{1}{2} \times 1.6 \times v^{2}+3.2 \times 1\right]$	M1	Use work/energy equation for A
	Alternative scheme for first 6 marks of 7(ii) [Work-energy applied to B]		
	Friction $=0.2 \times 1.6 \mathrm{~g}$ [=3.2]	B1	
	$\begin{aligned} & {[2.4 g \sin 30-T=2.4 a} \\ & T-F=1.6 a] \end{aligned}$	M1	Apply Newton's 2nd law to A and B and solve for T
	$T=6.72$	A1	
		M1	Find energy loss/gain for B Allow either term
	$\pm\left(\frac{1}{2} \times 2.4 \times v^{2}-2.4 g \sin 30\right)$	A1	
	$2.4 g \sin 30=\frac{1}{2} \times 2.4 \times v^{2}+6.72 \times 1$	M1	Use work/energy equation for B

MATHEMATICS

9709/41
Paper 4
May/June 2018
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\top M}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$-5=24 t-5 t^{2}$	M1	Use $s=u t+\frac{1}{2} a t^{2}$
	$5 t^{2}-24 t-5=0$	M1	Solve relevant 3 term quadratic
	$t=5$	A1	
		3	
	Alternative scheme for Question 1		
	$0=24-10 t_{1} \rightarrow t_{1}=2.4$	M1	Attempt to find the time taken to reach the highest point
	$\begin{aligned} & 0=24^{2}+2 \times(-10) \times h \rightarrow h=28.8 \\ & \text { And } \quad 33.8=\frac{1}{2} g t_{2}{ }^{2} \rightarrow t_{2}=2.6 \end{aligned}$	M1	Find total height h reached and attempt to find time taken from highest point to ground level
	$t=t_{1}+t_{2}=5$	A1	

Question	Answer	Marks	Guidance
2	[$10 \cos \alpha=8$ or $10 \cos \beta=6]$	M1	Introduce α or β, an angle between the 10 N force and the vertical or horizontal and attempt to resolve forces
	$\alpha=36.9$ or $\beta=53.1$	A1	
	Angle between 6 N and 10 N is 126.9	B1	
	Angle between 8 N and 10 N is 143.1	B1	
		4	
	Alternative scheme for Question 2		
	$\frac{10}{\sin 90}=\frac{6}{\sin \gamma}=\frac{8}{\sin \delta}$	M1	Attempt to use Lami's theorem $\gamma(8$ and 10$), \delta(6$ and 10$)$
	All correct	A1	
	Angle between 8 N and 10 N is $\gamma=143.1$	B1	
	Angle between 6 N and 10 N is $\delta=126.9$	B1	

Question	Answer	Marks	Guidance
3(i)		M1	Attempt to resolve forces along the plane (2 terms)
	$100 \cos \theta=8 \mathrm{~g} \sin 30 \rightarrow \theta=66.4$	A1	
	$[R=8 \mathrm{~g} \cos 30+100 \sin \theta]$	M1	Resolve forces perpendicular to the plane (3 terms)
	$R=161$	A1	
		4	
3(ii)	$100 \cos 30-8 g \sin 30=8 a$	M1	Apply Newton's 2nd law parallel to the plane (3 terms)
	$a=5.83$	A1	
	\square	$\square 2$	

Question	Answer	Marks	Guidance
4 (i)		M1	Attempt differentiation
	$v=3 t^{2}-8 t+4$	A1	
		$\mathbf{2}$	
	$3 t^{2}-8 t+4=0$	M1	Set $v=0$ and attempt to solve a relevant 3 term quadratic
	$t=\frac{2}{3}$ and $t=2$	A1	
			$\mathbf{2}$

Question	Answer	Marks	Guidance
4(iii)	$[6 t-8=0]$	M1	Differentiate v and equate to 0
	$\left[t=\frac{4}{3}, v=3\left(\frac{4}{3}\right)^{2}-8\left(\frac{4}{3}\right)+4\right]$	M1	Solve for t and attempt v
	$v=-\frac{4}{3}$	A1	
		3	
	Alternative scheme for Question 4(iii)		
	$\left[v=3\left(t^{2}-\frac{8}{3} t\right)+4=3\left(t-\frac{4}{3}\right)^{2}+\ldots \ldots .\right]$	M1	Attempt to complete the square for v
	$\left[t=\frac{4}{3}, v=3\left(t-\frac{4}{3}\right)^{2}-\frac{4}{3}\right] \square \square$	M1	Find value of t for minimum v and attempt to find v
	$v=-\frac{4}{3}$	A1	

Question	Answer	Marks	Guidance
5(i)	$\left[s_{1}=\frac{1}{2}(0+12) \times 6\right]$	M1	Use constant acceleration equations or find area in (t, v) graph to find the distance s_{1} travelled in the first 6 seconds
	$\left[s_{2}=10 \times 12\right]$	M1	Use constant acceleration equations or find area in (t, v) graph to find s_{2} the distance travelled between 6 s and 16 s
	Distance for first 16 s is $36+10 \times 12=156$	A1	
	Curve concave up for $0<t<6$ starting at $(0,0)$ ending at $(6,36)$	B1	Co-ordinates refer to (t, s) in a displacement-time graph
	Line, positive gradient, $6<t<16$ starts at $(6,36)$ ends at $(16,156)$	B1	
	Curve concave down, $16<t<20$ from $(16,156)$ to $(20,200)$	B1	
		6	
5(ii)	$\left[44=\frac{1}{2}(12+V) \times 4\right]$	M1	Use relevant constant acceleration equations or the area property of a $v-t$ graph
	$V=10$	A1	
		2	

Question	Answer	Marks	Guidance
6(i)	$[P=\mathrm{DF} \times v=850 \times 36]$	M1	Apply $P=\mathrm{DF} \times v$ with $\mathrm{DF}=$ Resistance force
	Power $=$ rate of working $=30.6 \mathrm{~kW}$	A1	
		2	
6(ii)	$[\mathrm{DF}=1250 \mathrm{~g} \times 0.1+850]$	M1	Driving force comprising of resistance plus a weight component
	$\mathrm{DF}=\frac{63000}{v}$	M1	$\mathrm{DF}=\frac{P}{v}$
	$v=30$ so speed of car is $30 \mathrm{~ms}^{-1}$	A1	
		3	
6(iii)	$\text { Gain in } \mathrm{KE}=\frac{1}{2} \times 1250 \times\left(24^{2}-20^{2}\right)$	B1	[$=110000]$
	Loss in PE = $1250 \mathrm{~g} \times 176 \times 0.1$	B1	[$=220000$]
	WD by car's engine $=20000 \times 8$	B1	[$=160000]$
	$\begin{aligned} & {[160000+220000=} \\ & \text { WD against resistance }+110000] \end{aligned}$	M1	4 term work energy equation
	$\mathrm{WD}=270000 \mathrm{~J}=270 \mathrm{~kJ}$	A1	
		5	

Question	Answer	Marks	Guidance
7(i)	$\begin{aligned} & A \quad T-0.8 g \sin 45=0.8 a \\ & B \quad 1.2 g \sin 30-T=1.2 a \\ & \text { System } \quad 1.2 g \sin 30-0.8 g \sin 45=2 a \end{aligned}$	M1	Apply Newton 2nd law to either A or to B or to the system
		A1	One correct equation
		A1	A second correct equation
	$a=0.171$	M1	Solve for a
	$v^{2}=2 \times a \times 0.4$	M1	Use $v^{2}=u^{2}+2 a s$ with $u=0$
	$v=0.370$ so speed of A is $0.370 \mathrm{~ms}^{-1}$	A1	
		6	
	Alternative scheme for Question 7(i)		
		M1	Attempt KE gain or PE loss
	KE gain $=\frac{1}{2} \times 0.8 \times v^{2}+\frac{1}{2} \times 1.2 \times v^{2}$	A1	v is the required speed of A
	PE loss = $1.2 g \times 0.4 \sin 30-0.8 g \times 0.4 \sin 45$	A1	
	$\begin{aligned} & \frac{1}{2} \times 0.8 \times v^{2}+\frac{1}{2} \times 1.2 \times v^{2}= \\ & 1.2 g \times 0.4 \sin 30-0.8 g \times 0.4 \sin 45 \end{aligned}$	M1	4 term energy equation
		M1	Solving for v
	$v=0.370$ so speed of A is $0.370 \mathrm{~ms}^{-1}$	A1	

Question	Answer	Marks	Guidance
7(ii)	$\begin{aligned} & R_{A}=0.8 g \cos 45=4 \sqrt{2} \\ & R_{B}=1.2 g \cos 30=6 \sqrt{3} \end{aligned}$	B1	For either R_{A} or R_{B}
	$F_{A}=4 \sqrt{2} \mu$ and $F_{B}=6 \sqrt{3} \mu$	M1	Either F_{A} or F_{B} used
	$\begin{array}{lr} A & 0.8 g \sin 45+F_{A}=T \\ B & 1.2 g \sin 30-F_{B}=T \\ \text { or system equation: } \\ 12 \sin 30-8 \sin 45=F_{A}+F_{B} \end{array}$	M1	Resolve parallel to the plane either for both particles A and B or for the system equation
	Correct equation(s)	A1	
		M1	Eliminate T and solve for μ
	$\begin{aligned} \mu & =\frac{(6-4 \sqrt{2})}{(6 \sqrt{3}+4 \sqrt{ } 2)} \\ & =0.0214 \end{aligned}$	A1	
		6	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/42
Paper 4 Mechanics
March 2018
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$[T-2=0.2 a \quad 8-T=0.8 a]$ System is $0.8 g-0.2 g=(0.2+0.8) a$ and $T=2(0.2)(0.8) g /(0.8+0.2)$	M1	Attempt Newton's 2nd law for either particle or use a formula for the system for a and/or T
	A1	Two correct equations	
	Attempt to solve for a or T	M1	
	$a=6 T=3.2$	A1	Both correct NB $a=6 \mathbf{A G}$
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2	EITHER: $2 P \sin \theta=P \sin 60$	(M1	Resolve vertically (2 terms)
	$\theta=25.7$	A1	
	$2 P \cos \theta+P \cos 60=10$	M1	Resolve horizontally (3 terms)
	$P=4.34$	A1)	
	$\begin{aligned} & \text { OR1: } \\ & {\left[\frac{2 P}{\sin 120}=\frac{P}{\sin (180-\theta)}=\frac{10}{\sin (60+\theta)}\right]} \end{aligned}$	(M1	Attempt Lami's theorem using one pair of terms
	$\theta=25.7$	A1	Solve for θ
	Use a second Lami equation	M1	
	$P=4.34$	A1)	
	OR2: Use sine or cosine rule with triangle of forces using forces $P, 2 P$ and 10 and with angles 60 , θ and $120-\theta$ between	(M1	
	$\theta=25.7$	A1	
	Use a second relationship from the triangle of forces	M1	
	$P=4.34$	A1)	
		4	

Question	Answer	Marks	Guidance
3(i)	$\frac{1}{2} \times 40 \times v^{2}=40 \times g \times 7.2$	M1	Use of KE gain = PE loss
	$v=12 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		2	
3(ii)	Work done against friction(WDF) $\mathrm{WDF}=40 \times g \times 7.2-\frac{1}{2} \times 40 \times 10^{2}[=880]$	M1	May be calculated as $\frac{1}{2} \times 40 \times 12^{2}-\frac{1}{2} \times 40 \times 10^{2}$
	$\frac{1}{2} \times 40 \times V^{2}+40 \times g \times 7.2=\frac{1}{2} \times 40 \times 11^{2}+880$ or $\frac{1}{2} \times 40 \times V^{2}=\frac{1}{2} \times 40 \times 11^{2}-\frac{1}{2} \times 40 \times 10^{2}$	M1	For 4-term work-energy equation with numerical attempt at work done or using the fact that WDF is the same in both cases, extra initial $\mathrm{KE}=$ difference in final KEs
	$V=\sqrt{21}=4.58$	A1	
		3	

Question	Answer	Marks	Guidance
4	$\begin{aligned} & {[R=12 g \cos 25+P \sin 25} \\ & P \cos 25=F+12 g \sin 25] \\ & \text { or } \\ & {[P=F \cos 25+R \sin 25} \\ & R \cos 25=F \sin 25+12 g] \end{aligned}$	M1	Attempt resolving of forces in any one direction, parallel to, perpendicular to plane or horizontally, vertically
		A1	Any one correct equation
		A1	Any second correct equation
	$F=0.8 R$	M1	Use of $F=\mu R$
	Complete method to find P from 2 equations(3 terms each)	M1	
	$P=242$	A1	
		6	

Question	Answer	Marks	Guidance
5(i)	$200=1 / 2 \times(0+v) \times 10$	M1	Use of suvat
	$v=40 \mathrm{~m} \mathrm{~s}^{-1}$	A1	AG
	$200=1 / 2 \times a \times 10^{2}$	M1	Second use of suvat
	$a=4 \mathrm{~m} \mathrm{~s}^{-2}$	A1	
		4	
5(ii)	$0=40^{2}-2 \times g \times s$	M1	Use of suvat with $a=g$
	$s=80$ so height above ground $=280 \mathrm{~m}$	A1	
		2	
5(iii)	EITHER: $0=40-g t_{1}$	(M1	Use of suvat to find extra time to highest point
	$t_{1}=4$	A1	
	$280=1 / 2 g t_{2}{ }^{2}$	M1	Use of suvat to find time from highest point to ground
	$t_{2}=\sqrt{ } 56=7.48 \ldots$ so total time $=21.5 \mathrm{~s}$	A1)	
	$\begin{aligned} & \text { OR: } \\ & -200=40 t_{3}-1 / 2 g t_{3}^{2} \end{aligned}$	(M1	Use of $s=u t+1 / 2 a t^{2}$ with 200, 40 and g used
	$\begin{aligned} & 5 t_{3}{ }^{2}-40 t_{3}-200=0 \text { o.e. } \\ & {\left[t_{3}{ }^{2}-8 t_{3}-40=0\right]} \end{aligned}$	A1	Correct quadratic for time under gravity
	$\left[t_{3}=4 \pm \sqrt{ } 56=4 \pm 7.48\right]$	M1	Solution of relevant 3-term quadratic
	$t_{3}=11.48$ so total time is 21.5 s	A1)	
		4	

Question	Answer	Marks	Guidance
$6(\mathrm{i})$	Driving force $=35 \times 60$	M1	
	Power $=35 \times 60^{2}=126000 \mathrm{~W}$	A1	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
6(ii)	Driving force is $\mathrm{DF}=\frac{126000}{30}$	B1FT	
	DF $-35 \times 30=1200 a$	M1	For 3-term Newton's 2nd law equation, dimensionally correct
	$a=\frac{3150}{1200}=\frac{21}{8}=2.625 \mathrm{~m} \mathrm{~s}^{-2}$	A1	AG
		3	
6(iii)	$\mathrm{DF}=\frac{126000}{v}$	M1	For $F=\frac{P}{v}$
	$\frac{126000}{v}=35 v+1200 g \times \frac{7}{48}$	M1	For 3-term force equation, or equivalent
		A1	For correct (unsimplified) equation
	$\begin{aligned} & 35 v^{2}+1750 v-126000=0 \\ & \text { or } v^{2}+50 v-3600=0 \end{aligned}$	M1	For simplifying and solving of a 3term quadratic attempted
	$v=40 \mathrm{~ms}^{-1}$	A1	$v=-90$ rejected or ignored
		5	

Question	Answer	Marks	Guidance
7(i)	$0.2\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	B1	
		1	
7(ii)	$a=-1600 t^{-3}$	M1	For attempted differentiation of $-2+\frac{800}{t^{2}}$
	Acceleration at $t=20$ is $-0.2\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	A1	
		2	
7(iii)	Straight line joining $t=0, v=4 \text { to } t=10, v=6$	B1	
	Curve with correct concavity joining end of line to $t=20, v=0$	B1	
	Correct labelling on axes provided the curves pass through $(0,4),(10,6),(20,0)$	B1	
		3	

Question	Answer	Marks	Guidance
7 (iv)	Trapezium area $=50$	$\mathbf{B 1}$	or from integration of $4+0.2 t$
	$\int\left(-2+800 t^{-2}\right) \mathrm{d} t=-2 t-800 t^{-1}$	$\mathbf{M 1}$	Integration attempted
		A1	Correct indefinite integral
	$\left[-2 t-800 t^{-1}\right]_{10}^{20}$ $=-40-40+20+80$	$\mathbf{M 1}$	Correct use of the limits $t=10$ and $t=20$
	Distance is $50+20=70 \mathrm{~m}$	$\mathbf{A 1}$	Correct total
		$\mathbf{5}$	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/43
Paper 4 Paper 4
October/November 2017
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$(X=) 20 \cos 60+30 \cos 60-F$	B1	
	$[F=20 \cos 60+30 \cos 60]$	M1	Use of horizontal component of resultant $=0$
	$F=25$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2(i)	$[F=1480+7850 g \sin 3](=5588)$	M1	
	$\left[\frac{P}{10}=1480+7850 g \sin 3\right] \rightarrow P=$	M1	Using $P=F v$ and solving for P
	Power $=55900 \mathrm{~W}$	A1	
		3	
2(ii)	$\begin{aligned} & {[F+7850 g \sin 3-1480=7850 \times 0.8]} \\ & (F=3652) \end{aligned}$	M1	Use of Newton's Second Law
	$\begin{aligned} & {\left[\frac{P}{15}+7850 \mathrm{~g} \sin 3-1480=7850 \times 0.8\right]} \\ & \rightarrow P=\ldots \end{aligned}$	M1	Using $P=F v$ and solving for P
	Power $=54800 \mathrm{~W}$	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	$R=m g \cos 25$	B1	
	[$F=0.4 m g \cos 25]$	M1	Using $F=\mu R$
	$[m g \sin 25-0.4 m g \cos 25=m a]$	M1	Use of Newton's Second Law
	$a=0.601 \mathrm{~ms}^{-2}$	A1	
		4	
3(ii)	$\left[s=1 / 2 \times 0.601 \times 3^{2}\right]$	M1	Use of $s=u t+1 / 2 a t^{2}$
	Distance $=2.70 \mathrm{~m}$	A1 FT	FT $4.5 \times a$ from (i)
		2	

Question	Answer	Marks	Guidance
4(i)	EITHER: $[T-0.35 g=0.35 a$ or $0.45 g-T=0.45 a$ or $0.45 g-0.35 g=0.8 a]$	(M1	Applies Newton's Second Law to one of the particles or forms system equation in $a\left(m_{\mathrm{B}} g-m_{\mathrm{A}} g=\left(m_{\mathrm{A}}+m_{\mathrm{B}}\right) a\right)$
	$\begin{aligned} & {[0.45 g-T=0.45 a} \\ & \text { or } T-0.35 g=0.35 a] \rightarrow a=\ldots \end{aligned}$	M1	Applies Newton's Second Law to form second equation in T and a and solves for a or solves system equation for a
	$a=1.25 \mathrm{~m} \mathrm{~s}^{-2}$	A1	
	[$\left.\nu^{2}=2 \times 1.25 \times 0.64\right] \quad(=1.6)$	M1	Using $v^{2}=u^{2}+2 a s$
	Velocity $=1.26 \mathrm{~ms}^{-1}$	A1)	
	OR: [PE loss $=0.45 g \times 0.64-0.35 g \times 0.64]$	(M1	Attempts PE loss
	$\left[\mathrm{KE}\right.$ gain $\left.=1 / 2(0.35+0.45) v^{2}\right]$	M1	Attempts KE gain
	$\begin{aligned} & \text { PE loss }=0.45 g \times 0.64-0.35 g \times 0.64 \\ & \text { and } \mathrm{KE} \text { gain }=1 / 2(0.35+0.45) v^{2} \end{aligned}$	A1	
	$\left[1 / 2(0.8) v^{2}=0.1 g \times 0.64\right] \quad\left(v^{2}=1.6\right)$	M1	Using PE loss = KE gain
	Velocity $=1.26 \mathrm{~ms}^{-1}$	A1)	
		5	
4(ii)	EITHER: $[0=1.6-2 \mathrm{~g} s] \quad(s=0.08)$	(M1	Using $v^{2}=u^{2}+2 a s$
	Distance $=0.16 \mathrm{~m}$	A1)	
	OR: $[0.35 g h=1 / 2(0.35) \times 1.6] \quad(h=0.08)$	(M1	Using PE gain = KE loss for particle A
	Distance $=0.16 \mathrm{~m}$	A1)	
		2	

Question	Answer	Marks	Guidance
5(i)	$\begin{aligned} v & =\int k\left(3 t^{2}-12 t+2\right) \mathrm{d} t \\ & =k\left(3 t^{3} / 3-12 t^{2} / 2+2 t\right)+C \end{aligned}$	*M1	Use of $v=\int a \mathrm{~d} t$
	$v=k\left(t^{3}-6 t^{2}+2 t\right)+C$	A1	Condone C missing
	$C=0.4$	B1	
	$0.1=k(1-6+2)+0.4 \quad[-0.3=-3 k]$	DM1	Substitutes $t=1, v=0.1$
	$k=0.1$	A1	AG
		5	
5(ii)	$\begin{aligned} & {\left[s=\int 0.1\left(t^{3}-6 t^{2}+2 t\right)+0.4 \mathrm{~d} t\right.} \\ & \left.=0.1\left(t^{4} / 4-6 t^{3} / 3+2 t^{2} / 2\right)+0.4 t+C\right] \end{aligned}$	M1	Use of $s=\int v \mathrm{~d} t$
	$s=0.025 t^{4}-0.2 t^{3}+0.1 t^{2}+0.4 t$	A1	$C=0$ seen or implied
		2	
5(iii)	Substitutes $t=2$ to show $s=0$	B1	AG
		1	

Question	Answer	Marks	Guidance
6(i)	$\begin{aligned} & {[\text { Area }=1 / 2(10+4) \times 6=42 \mathrm{~m}]} \\ & \text { Displacement }=42 \mathrm{~m} \end{aligned}$	B1	
		1	
6(ii)	$\begin{aligned} & \frac{v}{2}=\frac{6}{4} \\ & \text { or }[\text { gradient }=1.5, v=6+1.5 \times 6] \end{aligned}$	M1	Using similar triangles or using acceleration $=$ gradient and $v=u+a t$
	$v=3 \mathrm{~ms}^{-1}$	A1	
		2	
6(iii)	Total distance travelled $=42+1 / 2(T-10) \times 3$	B1 FT	Area found with FT distance from (i) and FT speed from (ii)
	$[42+1 / 2(T-10) \times 3=49.5] \rightarrow T=\ldots$	M1	For equation and solving for T
	$T=15 \mathrm{~s}$	A1	
		3	

Question	Answer	Marks	Guidance
6 (iv)	$V=1.75 \times 4=7 \mathrm{~ms}^{-1}$	B1	
	Q travels $[1 / 2(13+6) \times 7=66.5 \mathrm{~m}]$ Distance apart $=[66.5+42-7.5]$	$\mathbf{M 1}$	Finding area for Q and interpreting total distance between particles
	Distance between P and $Q=101 \mathrm{~m}$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
7(i)	$R=0.2 g \cos 30-T \sin 15$	B1	
	$[F=0.3 \times(0.2 g \cos 30-T \sin 15)]$	M1	Use of $F=\mu R$
		M1	For resolving along the plane
	$\begin{aligned} & T \cos 15+0.3 \times(0.2 g \cos 30-T \sin 15) \\ & =0.2 g \sin 30 \end{aligned}$	A1	
		M1	For solving a 4 term equation for T
	$T=0.541$	A1	
		6	
7(ii)	$0.3 \times 0.2 g \cos 30 \times 3 \quad[=1.5588 \mathrm{~J}]$	B1	WD against $F=$ friction \times distance
	$\mathrm{WD}=0.25 \times 3 \quad[=0.75 \mathrm{~J}]$	B1	WD against 0.25 force
	$0.2 g \times 3 \sin 30 \quad[=3 \mathrm{~J}]$	B1	PE loss $=m g h$
	$\left[1 / 2(0.2) v^{2}=3-1.5588-0.75\right]$	M1	Work/Energy equation
	Speed $=2.63 \mathrm{~ms}^{-1}$	A1	
		5	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/42
Paper 4
October/November 2017
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The $P A-1$ penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	$F=0.2 g \sin 20=0.684 \mathrm{~N}$	B1	AG
		1	
1(ii)	$R=0.2 g \cos 20$	B1	
	$F=\mu R[=0.6 \times 0.2 g \cos 20]$	M1	Using $F=\mu R \quad F=1.1276 \ldots$
	$[0.9+0.2 g \sin 20-F=0.2 a]$	M1	Use of Newton's 2nd law along the plane (4 relevant terms)
	$a=2.28 \mathrm{~ms}^{-2}$	A1	
		4	

Question	Answer	Marks	Guidance
2	EITHER:	(M1	Attempt to resolve (either direction with correct number of terms and dimensionally correct)
	$T \sin \theta+120 \sin 45=15 g$	A1	Resolving vertically
	$T \cos \theta=120 \cos 45$	A1	Resolving horizontally
	$\begin{aligned} & {\left[\tan \theta=\frac{(15 g-120 \sin 45)}{(120 \cos 45)}\right.} \\ & \text { or } \left.T=\sqrt{65.15^{2}+84.85^{2}}\right] \end{aligned}$	M1	For using division to find θ or for using Pythagoras to find T
	$\theta=37.5$	A1	
	$T=107$	A1)	
	OR1: $\frac{120}{\sin (90+\theta)}=\frac{T}{\sin 135}=\frac{15 g}{\sin (135-\theta)}$	(A1	One correct equation
		A1	A second correct equation
		M1	Attempt to solve for θ or T
	$\theta=37.5$	A1	
	$T=107$	A1	
		M1)	Attempt to use triangle of forces

Question	Answer	Marks	Guidance
	OR2: $\frac{T}{\sin 45}=\frac{15 g}{\sin (45+\theta)}=\frac{120}{\sin (90-\theta)}$	(A1	One correct equation
		A1	A second correct equation
		M1	Attempt to solve for θ or T

Question	Answer	Marks	Guidance
3(i)	$s_{A B}=14 \times 5+1 / 2 a \times 5^{2}$	B1	or $s_{A B}=1 / 2(14+14+5 a) \times 5 \quad \mathrm{OE}$
	$s_{A C}=14 \times 8+1 / 2 a \times 8^{2}$	B1	or $s_{A C}=1 / 2(14+14+8 a) \times 8 \quad \mathrm{OE}$
	$[112+32 a=2(70+12.5 a)]$	M1	Using $A C=2 A B$ and solving for a or for substituting $a=4$ and finding $A B$ and $A C$
	$a=4 \mathrm{~m} \mathrm{~s}^{-2}$	A1	AG, If substituting $a=4$ must show $A B=120$ and $A C=240 \quad O E$
		4	
3(ii)	$[v=14+4 \times 8]$	M1	Use of $v=u+a t$ or any complete method to find v
	Velocity $=46 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		2	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$\left[12 t-1 / 2 g t^{2}=0\right]$ or $[0=12-g T]$ with $t=2 T$ used	M1	Using $s=u t+1 / 2 a t^{2}$ or equivalent such as finding time T to highest point and doubling.
	$t=2.4 \mathrm{~s}$	A1	
		$\mathbf{2}$	
	Critical point at $t=1.2$	B1	Seen in 4(ii)
	Critical point at $t=2$	B1	Seen in 4(ii)
	Both moving in same direction $1<t<1.2$	B1	
	Both moving in same direction $2<t<2.4$	$\mathbf{4}$	

Question	Answer	Marks	Guidance
5(i)	EITHER: Resistance force $=\frac{600}{25}=24 \mathrm{~N}$	(B1	
	$\begin{aligned} \text { Weight component } & =80 g(0.04) \\ & =32 \mathrm{~N} \end{aligned}$	B1	For correct unsimplified numerical form of the weight component
	[Power $=56 \times 4]$	M1	For use of $P=F v$ where F is from two relevant force terms
	Power $=224 \mathrm{~W}$	A1)	
		4	
	OR: $\begin{aligned} \text { PE gain } & =80 g \times 25(0.04) \\ & =800 \end{aligned}$	(B1	For a correct unsimplified numerical expression for PE
	$\text { Time taken }=\frac{25}{4}=6.25$	B1	
	[WD by cyclist $=P \times 6.25=800+600]$	M1	For using WD $=P \times t$ where WD is from two relevant terms
	Power $=224 \mathrm{~W}$	A1)	
		4	

Question	Answer	Marks	Guidance
$5(\mathrm{ii})$	Work done by cyclist $=224 \times 10(=2240 \mathrm{~J})$	B1 FT	For stating WD $=$ power \times time FT on P value found in 5(i)
	Initial $\mathrm{KE}=1 / 2 \times 80 \times 4^{2}[=640 \mathrm{~J}]$	B1	
	$\left[1 / 2 \times 80 v^{2}=640+P \times 10-1200\right]$	M1	For using Work/Energy equation
	Speed $=6.48 \mathrm{~m} \mathrm{~s}^{-1}$	$\mathbf{A 1}$	Allow speed $=\sqrt{ } 42$
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
6(i)	$R=m g \cos \alpha \quad(R=9.6 m)$	B1	Allow use of $\alpha=16.3^{\circ}$ throughout
	$\begin{aligned} & {[T=m g} \\ & F=m g \sin \alpha+T] \end{aligned}$	M1	For resolving forces on P and Q and eliminating T or for considering the equilibrium of the system
	$F=m g \sin \alpha+m g$	A1	$(F=12.8 m)$
		M1	For use of $F=\mu R$
	$\text { Coefficient of friction }=11 / 3=\frac{4}{3}$	A1	AG so must be from exact working
		5	

Question	Answer	Marks	Guidance
6(ii)	EITHER: P equation is $10-m g \sin \alpha-F-T=2.5 m$ Q equation is $T-m g=2.5 m$	(*M1	For applying Newton's 2nd law to P (5 terms) or Q (3 terms)
		*M1	For applying Newton's 2nd law to the other particle and eliminate T
	$\begin{array}{\|l} 10-m g \sin \alpha-\mu m g \cos \alpha \\ -m g=2 m(2.5) \end{array}$	A1	If evaluated then this is $10-2.8 m-12.8 m-10 m=5 m$
		DM1	For solving this equation for m as far as $m=$ Dependent on one or other of the previous M marks having been scored
	$m=0.327$	A1)	Allow $m=\frac{50}{153}$
	OR: $[10-m g \sin \alpha-F-m g=m(2.5+2.5)]$	(*M1	For applying Newton's 2nd law to the system. Allow with 5 terms
		*M1	System equation with all 6 terms
	$\begin{aligned} & 10-m g \sin \alpha-\mu m g \cos \alpha \\ & -m g=2 m(2.5) \end{aligned}$	A1	
		DM1	For solving this equation for m as far as $m=$ Dependent on one or other of the previous M marks having been scored
	$m=0.327$	A1)	$\text { Allow } m=\frac{50}{153}$
		5	

Question	Answer	Marks	Guidance
7(i)	$\begin{aligned} & -0.01 t\left(t^{2}-22 t+40\right)=0 \\ & -0.01 t(t-20)(t-2)=0 \end{aligned}$	M1	Attempting to solve $v=0$ for t for a solvable quadratic using factors or quadratic formula and obtaining two nonzero solutions
	$t=2$ or $t=20$	A1	
		2	
7(ii)	$a=-0.03 t^{2}+0.44 t-0.4$	M1	For differentiation
	a is greatest (maximum) when $0.44-0.06 t=0$	M1	For differentiation or finding values of $t=t_{1}$ and $t=t_{2}$ where $a=0$ and using $t=1 / 2\left(t_{1}+t_{2}\right)$ or completing the square or other method to find maximum value
	Max acceleration when $t=7.33$	\square A1	Allow $t=\frac{22}{3}$
		3	
7(iii)	$\int\left(-0.01 t^{3}+0.22 t^{2}-0.4 t\right) \mathrm{d} t$	*M1	For using integration.
	$s(t)=-\frac{0.01}{4} t^{4}+\frac{0.22}{3} t^{3}-0.2 t^{2}$	A1	Correct Integration Allow $+C$ included
	$s(20)-s(2)$	DM1	Limits 2 and 20 used correctly Dependent on previous M1 having been scored
	Distance $=107 \mathrm{~m}$	A1	$\text { Distance }=\frac{2673}{25}=106.92$
	Satp	$\bigcirc 4$	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/41
Paper 4
October/November 2017
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$[12 \cos 25=3 a]$	M1	For use of Newton's second law
	$a=4 \cos 25=3.625$	$\mathbf{A 1}$	
	$\left[s=1 / 2 \times 4 \cos 25 \times 5^{2}\right]$	$\mathbf{M 1}$	For use of $s=u t+1 / 2 a t^{2} \quad$ OE
	Distance $=45.3 \mathrm{~m}$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2(i)	Power $=1150 \times 12=13800 \mathrm{~W}$	B1	For use of $P=F \times v \quad$ Allow 13.8 kW
		1	
2(ii)	$\text { Driving force }=\frac{25000}{12}$	B1	$\text { Using } F=\frac{P}{v}$
	$\frac{25000}{12}-1150-3700 g \sin 4=3700 a$	M1	For applying Newton's 2nd law up the slope, 4 terms
	$a=-0.445 \mathrm{~m} \mathrm{~s}^{-2}$	A1	
		3	
2(iii)	$\frac{25000}{v}-1150-3700 g \sin 4=0$	M1	For stating the equation for constant v, with 3 terms, and solving for v
	$v=6.70 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		2	

Question	Answer	Marks	Guidance
3(i)	640×18	M1	For use of work done $=F \times d$
	Work done $=11520 \mathrm{~J}$	A1	
		2	
3(ii)	KE at start $=1 / 2 \times 840 \times 14^{2}=82320 \mathrm{~J}$	B1	
	$\begin{aligned} & \text { PE gained }=840 g \times 8 \sin 30 \\ & -840 g \times 10 \sin 20=4870 \mathrm{~J} \end{aligned}$	B1	
	$1 / 2 \times 840 \times v^{2}=82320-11520-4870$	M1	For using work - energy equation with 4 terms and solving for v
	$v=12.5 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	$\text { Acceleration }=\frac{(-25)}{2.5}=-10 \mathrm{~m} \mathrm{~s}^{-2}$	B1	AG
		1	
4(ii)	$V=-15+7.5 \times 4$	M1	Using $v-t$ graph OE
	$V=15 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		2	
4(iii)	Using $v=0$ at $t=4.5$ and $t=8$	B1	
		M1	Attempting to use area to find total distance travelled
	$\begin{aligned} & 1 / 2 \times(4.5+2) \times 10 \\ & +1 / 2 \times(8-4.5) \times 15 \\ & +1 / 2 \times(T-8) \times 15=100 \end{aligned}$	M1	For setting up an equation for total distance travelled and solving for T
	$T=13.5$	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	Acceleration $=0.4 \mathrm{~m} \mathrm{~s}^{-2}$	B1	
		1	
5(ii)	$\frac{100}{t^{2}}-0.1 t=0$	M1	For setting $v=0$ and solving for t
	$t=10 \mathrm{~s}$	(11	
		2	
5(iii)	$\begin{aligned} & \text { Distance } t=0 \text { to } t=5 \text { is } \\ & 1 / 2(1.5+3.5) \times 5=12.5 \end{aligned}$	B1	Trapezium rule or integration
	$s(t)=\int\left(\frac{100}{t^{2}}-0.1 t\right) d t$	M1	For integration
	$=-\frac{100}{t}-0.05 t^{2}(+C)$	A1	Correct integration
	$s(10)-s(5)$	M1	Use limits 5 and 10 used or find $+C$
	Total distance $=12.5+6.25=18.75 \mathrm{~m}$	A1	
		5	

Question	Answer	Marks	Guidance
6(i)		M1	For resolving forces (either direction)
	$\begin{aligned} & X=75+50 \cos 60(=100) \\ & Y=50 \sin 60(=43.3) \end{aligned}$	A1	For both equations, unevaluated
	Resultant $=\sqrt{ }\left(100^{2}+43.3^{2}\right)=109 \mathrm{~N}$	B1	
	Angle $=\arctan \left(\frac{43.3}{100}\right)=23.4^{\circ}$	B1	Must state anticlockwise from the positive x-axis or show in a diagram
		4	
6(ii)	$50 \cos \alpha-F \cos 50=0$	B1	Resolving forces horizontally
	$50 \sin \alpha-3 F-F \sin 50=0$	B1	Resolving forces vertically
	$\tan \alpha=\frac{(3 F+F \sin 50)}{(F \cos 50)}$	M1	For division to find θ or for using Pythagoras to find F
	$\alpha=80.3$	A1	
	$F=13.1$	A1	
		5	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$		M1	For applying Newton's 2nd law to either particle (correct number of terms)
	$T-0.9 g \sin 15=0.9 a$	$\mathbf{A 1}$	
	$2.5+0.4 g \sin 25-T=0.4 a$	$\mathbf{A 1}$	
	$1.3 a=1.86 \ldots$	$\mathbf{M 1}$	Solving simultaneously for a
	$a=1.43 \mathrm{~m} \mathrm{~s}^{-2}$	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
7 7(ii)	$F=0.8 \times 0.4 g \cos 25$	$\mathbf{B 1}$	
	$2.5+0.4 g \sin 25-T-F=0$	$\mathbf{M 1}$	For using equilibrium of forces acting on particle B with 4 terms
	$T-0.9 g \sin \theta=0$	M1	For using equilibrium of forces acting on particle A with 2 terms
		M1	For solving for θ
	$\theta=8.2^{\circ}$	$\mathbf{A 1}$	
		$\mathbf{5}$	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/43
Paper 4 Paper 4
October/November 2017
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$(X=) 20 \cos 60+30 \cos 60-F$	B1	
	$[F=20 \cos 60+30 \cos 60]$	M1	Use of horizontal component of resultant $=0$
	$F=25$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2(i)	$[F=1480+7850 g \sin 3](=5588)$	M1	
	$\left[\frac{P}{10}=1480+7850 g \sin 3\right] \rightarrow P=$	M1	Using $P=F v$ and solving for P
	Power $=55900 \mathrm{~W}$	A1	
		3	
2(ii)	$\begin{aligned} & {[F+7850 g \sin 3-1480=7850 \times 0.8]} \\ & (F=3652) \end{aligned}$	M1	Use of Newton's Second Law
	$\begin{aligned} & {\left[\frac{P}{15}+7850 \mathrm{~g} \sin 3-1480=7850 \times 0.8\right]} \\ & \rightarrow P=\ldots \end{aligned}$	M1	Using $P=F v$ and solving for P
	Power $=54800 \mathrm{~W}$	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	$R=m g \cos 25$	B1	
	[$F=0.4 m g \cos 25]$	M1	Using $F=\mu R$
	$[m g \sin 25-0.4 m g \cos 25=m a]$	M1	Use of Newton's Second Law
	$a=0.601 \mathrm{~ms}^{-2}$	A1	
		4	
3(ii)	$\left[s=1 / 2 \times 0.601 \times 3^{2}\right]$	M1	Use of $s=u t+1 / 2 a t^{2}$
	Distance $=2.70 \mathrm{~m}$	A1 FT	FT $4.5 \times a$ from (i)
		2	

Question	Answer	Marks	Guidance
4(i)	EITHER: $[T-0.35 g=0.35 a$ or $0.45 g-T=0.45 a$ or $0.45 g-0.35 g=0.8 a]$	(M1	Applies Newton's Second Law to one of the particles or forms system equation in $a\left(m_{\mathrm{B}} g-m_{\mathrm{A}} g=\left(m_{\mathrm{A}}+m_{\mathrm{B}}\right) a\right)$
	$\begin{aligned} & {[0.45 g-T=0.45 a} \\ & \text { or } T-0.35 g=0.35 a] \rightarrow a=\ldots \end{aligned}$	M1	Applies Newton's Second Law to form second equation in T and a and solves for a or solves system equation for a
	$a=1.25 \mathrm{~m} \mathrm{~s}^{-2}$	A1	
	[$\left.\nu^{2}=2 \times 1.25 \times 0.64\right] \quad(=1.6)$	M1	Using $v^{2}=u^{2}+2 a s$
	Velocity $=1.26 \mathrm{~ms}^{-1}$	A1)	
	OR: [PE loss $=0.45 g \times 0.64-0.35 g \times 0.64]$	(M1	Attempts PE loss
	$\left[\mathrm{KE}\right.$ gain $\left.=1 / 2(0.35+0.45) v^{2}\right]$	M1	Attempts KE gain
	$\begin{aligned} & \text { PE loss }=0.45 g \times 0.64-0.35 g \times 0.64 \\ & \text { and } \mathrm{KE} \text { gain }=1 / 2(0.35+0.45) v^{2} \end{aligned}$	A1	
	$\left[1 / 2(0.8) v^{2}=0.1 g \times 0.64\right] \quad\left(v^{2}=1.6\right)$	M1	Using PE loss = KE gain
	Velocity $=1.26 \mathrm{~ms}^{-1}$	A1)	
		5	
4(ii)	EITHER: $[0=1.6-2 \mathrm{~g} s] \quad(s=0.08)$	(M1	Using $v^{2}=u^{2}+2 a s$
	Distance $=0.16 \mathrm{~m}$	A1)	
	OR: $[0.35 g h=1 / 2(0.35) \times 1.6] \quad(h=0.08)$	(M1	Using PE gain = KE loss for particle A
	Distance $=0.16 \mathrm{~m}$	A1)	
		2	

Question	Answer	Marks	Guidance
5(i)	$\begin{aligned} v & =\int k\left(3 t^{2}-12 t+2\right) \mathrm{d} t \\ & =k\left(3 t^{3} / 3-12 t^{2} / 2+2 t\right)+C \end{aligned}$	*M1	Use of $v=\int a \mathrm{~d} t$
	$v=k\left(t^{3}-6 t^{2}+2 t\right)+C$	A1	Condone C missing
	$C=0.4$	B1	
	$0.1=k(1-6+2)+0.4 \quad[-0.3=-3 k]$	DM1	Substitutes $t=1, v=0.1$
	$k=0.1$	A1	AG
		5	
5(ii)	$\begin{aligned} & {\left[s=\int 0.1\left(t^{3}-6 t^{2}+2 t\right)+0.4 \mathrm{~d} t\right.} \\ & \left.=0.1\left(t^{4} / 4-6 t^{3} / 3+2 t^{2} / 2\right)+0.4 t+C\right] \end{aligned}$	M1	Use of $s=\int v \mathrm{~d} t$
	$s=0.025 t^{4}-0.2 t^{3}+0.1 t^{2}+0.4 t$	A1	$C=0$ seen or implied
		2	
5(iii)	Substitutes $t=2$ to show $s=0$	B1	AG
		1	

Question	Answer	Marks	Guidance
6(i)	$\begin{aligned} & {[\text { Area }=1 / 2(10+4) \times 6=42 \mathrm{~m}]} \\ & \text { Displacement }=42 \mathrm{~m} \end{aligned}$	B1	
		1	
6(ii)	$\begin{aligned} & \frac{v}{2}=\frac{6}{4} \\ & \text { or }[\text { gradient }=1.5, v=6+1.5 \times 6] \end{aligned}$	M1	Using similar triangles or using acceleration $=$ gradient and $v=u+a t$
	$v=3 \mathrm{~ms}^{-1}$	A1	
		2	
6(iii)	Total distance travelled $=42+1 / 2(T-10) \times 3$	B1 FT	Area found with FT distance from (i) and FT speed from (ii)
	$[42+1 / 2(T-10) \times 3=49.5] \rightarrow T=\ldots$	M1	For equation and solving for T
	$T=15 \mathrm{~s}$	A1	
		3	

Question	Answer	Marks	Guidance
6 (iv)	$V=1.75 \times 4=7 \mathrm{~ms}^{-1}$	B1	
	Q travels $[1 / 2(13+6) \times 7=66.5 \mathrm{~m}]$ Distance apart $=[66.5+42-7.5]$	$\mathbf{M 1}$	Finding area for Q and interpreting total distance between particles
	Distance between P and $Q=101 \mathrm{~m}$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
7(i)	$R=0.2 g \cos 30-T \sin 15$	B1	
	$[F=0.3 \times(0.2 g \cos 30-T \sin 15)]$	M1	Use of $F=\mu R$
		M1	For resolving along the plane
	$\begin{aligned} & T \cos 15+0.3 \times(0.2 g \cos 30-T \sin 15) \\ & =0.2 g \sin 30 \end{aligned}$	A1	
		M1	For solving a 4 term equation for T
	$T=0.541$	A1	
		6	
7(ii)	$0.3 \times 0.2 g \cos 30 \times 3 \quad[=1.5588 \mathrm{~J}]$	B1	WD against $F=$ friction \times distance
	$\mathrm{WD}=0.25 \times 3 \quad[=0.75 \mathrm{~J}]$	B1	WD against 0.25 force
	$0.2 g \times 3 \sin 30 \quad[=3 \mathrm{~J}]$	B1	PE loss $=m g h$
	$\left[1 / 2(0.2) v^{2}=3-1.5588-0.75\right]$	M1	Work/Energy equation
	Speed $=2.63 \mathrm{~ms}^{-1}$	A1	
		5	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/42
Paper 4
October/November 2017
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The $P A-1$ penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	$F=0.2 g \sin 20=0.684 \mathrm{~N}$	B1	AG
		1	
1(ii)	$R=0.2 g \cos 20$	B1	
	$F=\mu R[=0.6 \times 0.2 g \cos 20]$	M1	Using $F=\mu R \quad F=1.1276 \ldots$
	$[0.9+0.2 g \sin 20-F=0.2 a]$	M1	Use of Newton's 2nd law along the plane (4 relevant terms)
	$a=2.28 \mathrm{~ms}^{-2}$	A1	
		4	

Question	Answer	Marks	Guidance
2	EITHER:	(M1	Attempt to resolve (either direction with correct number of terms and dimensionally correct)
	$T \sin \theta+120 \sin 45=15 g$	A1	Resolving vertically
	$T \cos \theta=120 \cos 45$	A1	Resolving horizontally
	$\begin{aligned} & {\left[\tan \theta=\frac{(15 g-120 \sin 45)}{(120 \cos 45)}\right.} \\ & \text { or } \left.T=\sqrt{65.15^{2}+84.85^{2}}\right] \end{aligned}$	M1	For using division to find θ or for using Pythagoras to find T
	$\theta=37.5$	A1	
	$T=107$	A1)	
	OR1: $\frac{120}{\sin (90+\theta)}=\frac{T}{\sin 135}=\frac{15 g}{\sin (135-\theta)}$	(A1	One correct equation
		A1	A second correct equation
		M1	Attempt to solve for θ or T
	$\theta=37.5$	A1	
	$T=107$	A1	
		M1)	Attempt to use triangle of forces

Question	Answer	Marks	Guidance
	OR2: $\frac{T}{\sin 45}=\frac{15 g}{\sin (45+\theta)}=\frac{120}{\sin (90-\theta)}$	(A1	One correct equation
		A1	A second correct equation
		M1	Attempt to solve for θ or T

Question	Answer	Marks	Guidance
3(i)	$s_{A B}=14 \times 5+1 / 2 a \times 5^{2}$	B1	or $s_{A B}=1 / 2(14+14+5 a) \times 5 \quad \mathrm{OE}$
	$s_{A C}=14 \times 8+1 / 2 a \times 8^{2}$	B1	or $s_{A C}=1 / 2(14+14+8 a) \times 8 \quad \mathrm{OE}$
	$[112+32 a=2(70+12.5 a)]$	M1	Using $A C=2 A B$ and solving for a or for substituting $a=4$ and finding $A B$ and $A C$
	$a=4 \mathrm{~m} \mathrm{~s}^{-2}$	A1	AG, If substituting $a=4$ must show $A B=120$ and $A C=240 \quad O E$
		4	
3(ii)	$[v=14+4 \times 8]$	M1	Use of $v=u+a t$ or any complete method to find v
	Velocity $=46 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		2	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$\left[12 t-1 / 2 g t^{2}=0\right]$ or $[0=12-g T]$ with $t=2 T$ used	M1	Using $s=u t+1 / 2 a t^{2}$ or equivalent such as finding time T to highest point and doubling.
	$t=2.4 \mathrm{~s}$	A1	
		$\mathbf{2}$	
	Critical point at $t=1.2$	B1	Seen in 4(ii)
	Critical point at $t=2$	B1	Seen in 4(ii)
	Both moving in same direction $1<t<1.2$	B1	
	Both moving in same direction $2<t<2.4$	$\mathbf{4}$	

Question	Answer	Marks	Guidance
5(i)	EITHER: Resistance force $=\frac{600}{25}=24 \mathrm{~N}$	(B1	
	$\begin{aligned} \text { Weight component } & =80 g(0.04) \\ & =32 \mathrm{~N} \end{aligned}$	B1	For correct unsimplified numerical form of the weight component
	[Power $=56 \times 4]$	M1	For use of $P=F v$ where F is from two relevant force terms
	Power $=224 \mathrm{~W}$	A1)	
		4	
	OR: $\begin{aligned} \text { PE gain } & =80 g \times 25(0.04) \\ & =800 \end{aligned}$	(B1	For a correct unsimplified numerical expression for PE
	$\text { Time taken }=\frac{25}{4}=6.25$	B1	
	[WD by cyclist $=P \times 6.25=800+600]$	M1	For using WD $=P \times t$ where WD is from two relevant terms
	Power $=224 \mathrm{~W}$	A1)	
		4	

Question	Answer	Marks	Guidance
$5(\mathrm{ii})$	Work done by cyclist $=224 \times 10(=2240 \mathrm{~J})$	B1 FT	For stating WD $=$ power \times time FT on P value found in 5(i)
	Initial $\mathrm{KE}=1 / 2 \times 80 \times 4^{2}[=640 \mathrm{~J}]$	B1	
	$\left[1 / 2 \times 80 v^{2}=640+P \times 10-1200\right]$	M1	For using Work/Energy equation
	Speed $=6.48 \mathrm{~m} \mathrm{~s}^{-1}$	$\mathbf{A 1}$	Allow speed $=\sqrt{ } 42$
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
6(i)	$R=m g \cos \alpha \quad(R=9.6 m)$	B1	Allow use of $\alpha=16.3^{\circ}$ throughout
	$\begin{aligned} & {[T=m g} \\ & F=m g \sin \alpha+T] \end{aligned}$	M1	For resolving forces on P and Q and eliminating T or for considering the equilibrium of the system
	$F=m g \sin \alpha+m g$	A1	$(F=12.8 m)$
		M1	For use of $F=\mu R$
	$\text { Coefficient of friction }=11 / 3=\frac{4}{3}$	A1	AG so must be from exact working
		5	

Question	Answer	Marks	Guidance
6(ii)	EITHER: P equation is $10-m g \sin \alpha-F-T=2.5 m$ Q equation is $T-m g=2.5 m$	(*M1	For applying Newton's 2nd law to P (5 terms) or Q (3 terms)
		*M1	For applying Newton's 2nd law to the other particle and eliminate T
	$\begin{array}{\|l} 10-m g \sin \alpha-\mu m g \cos \alpha \\ -m g=2 m(2.5) \end{array}$	A1	If evaluated then this is $10-2.8 m-12.8 m-10 m=5 m$
		DM1	For solving this equation for m as far as $m=$ Dependent on one or other of the previous M marks having been scored
	$m=0.327$	A1)	Allow $m=\frac{50}{153}$
	OR: $[10-m g \sin \alpha-F-m g=m(2.5+2.5)]$	(*M1	For applying Newton's 2nd law to the system. Allow with 5 terms
		*M1	System equation with all 6 terms
	$\begin{aligned} & 10-m g \sin \alpha-\mu m g \cos \alpha \\ & -m g=2 m(2.5) \end{aligned}$	A1	
		DM1	For solving this equation for m as far as $m=$ Dependent on one or other of the previous M marks having been scored
	$m=0.327$	A1)	$\text { Allow } m=\frac{50}{153}$
		5	

Question	Answer	Marks	Guidance
7(i)	$\begin{aligned} & -0.01 t\left(t^{2}-22 t+40\right)=0 \\ & -0.01 t(t-20)(t-2)=0 \end{aligned}$	M1	Attempting to solve $v=0$ for t for a solvable quadratic using factors or quadratic formula and obtaining two nonzero solutions
	$t=2$ or $t=20$	A1	
		2	
7(ii)	$a=-0.03 t^{2}+0.44 t-0.4$	M1	For differentiation
	a is greatest (maximum) when $0.44-0.06 t=0$	M1	For differentiation or finding values of $t=t_{1}$ and $t=t_{2}$ where $a=0$ and using $t=1 / 2\left(t_{1}+t_{2}\right)$ or completing the square or other method to find maximum value
	Max acceleration when $t=7.33$	\square A1	Allow $t=\frac{22}{3}$
		3	
7(iii)	$\int\left(-0.01 t^{3}+0.22 t^{2}-0.4 t\right) \mathrm{d} t$	*M1	For using integration.
	$s(t)=-\frac{0.01}{4} t^{4}+\frac{0.22}{3} t^{3}-0.2 t^{2}$	A1	Correct Integration Allow $+C$ included
	$s(20)-s(2)$	DM1	Limits 2 and 20 used correctly Dependent on previous M1 having been scored
	Distance $=107 \mathrm{~m}$	A1	$\text { Distance }=\frac{2673}{25}=106.92$
	Satp	$\bigcirc 4$	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/41
Paper 4
October/November 2017
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$[12 \cos 25=3 a]$	M1	For use of Newton's second law
	$a=4 \cos 25=3.625$	$\mathbf{A 1}$	
	$\left[s=1 / 2 \times 4 \cos 25 \times 5^{2}\right]$	$\mathbf{M 1}$	For use of $s=u t+1 / 2 a t^{2} \quad$ OE
	Distance $=45.3 \mathrm{~m}$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2(i)	Power $=1150 \times 12=13800 \mathrm{~W}$	B1	For use of $P=F \times v \quad$ Allow 13.8 kW
		1	
2(ii)	$\text { Driving force }=\frac{25000}{12}$	B1	$\text { Using } F=\frac{P}{v}$
	$\frac{25000}{12}-1150-3700 g \sin 4=3700 a$	M1	For applying Newton's 2nd law up the slope, 4 terms
	$a=-0.445 \mathrm{~m} \mathrm{~s}^{-2}$	A1	
		3	
2(iii)	$\frac{25000}{v}-1150-3700 g \sin 4=0$	M1	For stating the equation for constant v, with 3 terms, and solving for v
	$v=6.70 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		2	

Question	Answer	Marks	Guidance
3(i)	640×18	M1	For use of work done $=F \times d$
	Work done $=11520 \mathrm{~J}$	A1	
		2	
3(ii)	KE at start $=1 / 2 \times 840 \times 14^{2}=82320 \mathrm{~J}$	B1	
	$\begin{aligned} & \text { PE gained }=840 g \times 8 \sin 30 \\ & -840 g \times 10 \sin 20=4870 \mathrm{~J} \end{aligned}$	B1	
	$1 / 2 \times 840 \times v^{2}=82320-11520-4870$	M1	For using work - energy equation with 4 terms and solving for v
	$v=12.5 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	$\text { Acceleration }=\frac{(-25)}{2.5}=-10 \mathrm{~m} \mathrm{~s}^{-2}$	B1	AG
		1	
4(ii)	$V=-15+7.5 \times 4$	M1	Using $v-t$ graph OE
	$V=15 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		2	
4(iii)	Using $v=0$ at $t=4.5$ and $t=8$	B1	
		M1	Attempting to use area to find total distance travelled
	$\begin{aligned} & 1 / 2 \times(4.5+2) \times 10 \\ & +1 / 2 \times(8-4.5) \times 15 \\ & +1 / 2 \times(T-8) \times 15=100 \end{aligned}$	M1	For setting up an equation for total distance travelled and solving for T
	$T=13.5$	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	Acceleration $=0.4 \mathrm{~m} \mathrm{~s}^{-2}$	B1	
		1	
5(ii)	$\frac{100}{t^{2}}-0.1 t=0$	M1	For setting $v=0$ and solving for t
	$t=10 \mathrm{~s}$	(11	
		2	
5(iii)	$\begin{aligned} & \text { Distance } t=0 \text { to } t=5 \text { is } \\ & 1 / 2(1.5+3.5) \times 5=12.5 \end{aligned}$	B1	Trapezium rule or integration
	$s(t)=\int\left(\frac{100}{t^{2}}-0.1 t\right) d t$	M1	For integration
	$=-\frac{100}{t}-0.05 t^{2}(+C)$	A1	Correct integration
	$s(10)-s(5)$	M1	Use limits 5 and 10 used or find $+C$
	Total distance $=12.5+6.25=18.75 \mathrm{~m}$	A1	
		5	

Question	Answer	Marks	Guidance
6(i)		M1	For resolving forces (either direction)
	$\begin{aligned} & X=75+50 \cos 60(=100) \\ & Y=50 \sin 60(=43.3) \end{aligned}$	A1	For both equations, unevaluated
	Resultant $=\sqrt{ }\left(100^{2}+43.3^{2}\right)=109 \mathrm{~N}$	B1	
	Angle $=\arctan \left(\frac{43.3}{100}\right)=23.4^{\circ}$	B1	Must state anticlockwise from the positive x-axis or show in a diagram
		4	
6(ii)	$50 \cos \alpha-F \cos 50=0$	B1	Resolving forces horizontally
	$50 \sin \alpha-3 F-F \sin 50=0$	B1	Resolving forces vertically
	$\tan \alpha=\frac{(3 F+F \sin 50)}{(F \cos 50)}$	M1	For division to find θ or for using Pythagoras to find F
	$\alpha=80.3$	A1	
	$F=13.1$	A1	
		5	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$		M1	For applying Newton's 2nd law to either particle (correct number of terms)
	$T-0.9 g \sin 15=0.9 a$	$\mathbf{A 1}$	
	$2.5+0.4 g \sin 25-T=0.4 a$	$\mathbf{A 1}$	
	$1.3 a=1.86 \ldots$	$\mathbf{M 1}$	Solving simultaneously for a
	$a=1.43 \mathrm{~m} \mathrm{~s}^{-2}$	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
7 7(ii)	$F=0.8 \times 0.4 g \cos 25$	$\mathbf{B 1}$	
	$2.5+0.4 g \sin 25-T-F=0$	$\mathbf{M 1}$	For using equilibrium of forces acting on particle B with 4 terms
	$T-0.9 g \sin \theta=0$	M1	For using equilibrium of forces acting on particle A with 2 terms
		M1	For solving for θ
	$\theta=8.2^{\circ}$	$\mathbf{A 1}$	
		$\mathbf{5}$	

Cambridge
International
AS \& A Level

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/42
Paper 4 Mechanics March 2017

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $₹$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through §" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1 (i)	KE $=1 / 2 \times 0.4 \times 12^{2}=28.8 \mathrm{~J}$	B1	
		Total:	$\mathbf{1}$
	PE gain $=0.4 g h[=4 d \sin 30]$		B1
		$h=$ height gained $d=$ distance travelled up the plane	
	$4 h=28.8$	M1	Using KE loss $=$ PE gain
	$h=7.2 h=d \sin 30 d=14.4 \mathrm{~m}$		A1

Question	Answer	Marks	Guidance
2		M1	Resolve forces horizontally and/or vertically
	$T_{\mathrm{A}} \sin 20+T_{\mathrm{B}} \sin 40=16$	A1	Correct vertical equation
	$T_{\text {A }} \cos 20=T_{\mathrm{B}} \cos 40$	A1	Correct horizontal equation
		M1	Attempt to solve for T_{A} and/or T_{B}
	$T_{\text {A }}=14.2 \mathrm{~N}$	A1	$T_{\mathrm{A}}=14.1528 \ldots$
	$T_{\mathrm{B}}=17.4 \mathrm{~N}$	A1	$T_{\mathrm{B}}=17.3610 \ldots$
	Total:	6	
	Alternative m	thod for	Question 2
		M1	Attempt to use Lami's Theorem
	$\frac{16}{\sin 120}=\frac{T_{A}}{\sin 130}$	A1	
	$\frac{16}{\sin 120}=\frac{T_{B}}{\sin 110}$	A1	
		M1	Attempt to solve for T_{A} and/or T_{B}
	$T_{\text {A }}=14.2 \mathrm{~N}$	A1	
	$T_{\mathrm{B}}=17.4 \mathrm{~N}$	A1	
	Total:	6	

Question	Answer	Marks	Guidance
3	$R=0.6 g \cos 21[=5.60]$	B1	
	$F=0.3 R=1.8 \cos 21[=1.68]$	$\mathbf{M 1}$	Using $F=\mu R$
	$P+F=6 \sin 21[=2.15]$	M1	Slipping down
	$P=2.15-1.68=0.470$	AG	A1
	$P-F=6 \sin 21$	Least possible value	
	$P=2.15+1.68=3.83$	M1	Slipping up
			A1
Greatest possible value			

Question	Answer	Marks	Guidance
4(i)	$36000=800 \nu \square \square$	M1	Using $P=F v$
	$v=45 \mathrm{~ms}^{-1}$	A1	Speed of the car
	$A B=45 \times 120=5400 \mathrm{~m}$	A1	
	Total:	3	
4(ii)	$-800=900 a[a=-8 / 9]$	M1	Using Newton's 2nd law
	$v^{2}=45^{2}-\frac{16}{9} \times 450$	M1	Using $v^{2}=u^{2}+2 a s$
	$v=35 \mathrm{~ms}^{-1}$	A1	Speed of the car at C
	Total:	3	
	Alternative m	od for Q	uestion 4(ii)
	$0.5 \times 900 \times\left(45-v^{2}\right)$	M1	Attempt change in KE
	$0.5 \times 900 \times\left(45-v^{2}\right)=800 \times 450$	M1	KE loss $=$ WD against Friction
	$v=35 \mathrm{~ms}^{-1}$	A1	Speed of the car at C
	Total:	3	

Question	Answer	Marks	Guidance
4 (iii)	$C D=6637.5-5400-450=787.5$	B1	
	$0=35^{2}-2 d \times 787.5$	M1	Using $v^{2}=u^{2}+2 a s, a=-d$
	$d=7 / 9=0.778 \mathrm{~ms} \mathrm{~s}^{-2}$	A1	$d=$ deceleration
	$P=900 \times(7 / 9)=700$	A1	Using $F=m a$
		Total:	$\mathbf{4}$

Question	Answer	Marks	Guidance
5(i)	$\begin{aligned} & 0=a+b \times 35^{2} \\ & 40=a+b \times 15^{2} \end{aligned}$	M1	For matching velocities at $t=15$ and using $v=0$ at $t=35$
	$\begin{aligned} & {[1000 b=-40 \rightarrow b=-0.04]} \\ & {[a=0.04 \times 352=49]} \end{aligned}$	M1	Solve for a and b
	$a=49$ and $b=-0.04 \quad$ AG	A1	
	Total:	3	
5(ii)	$0 \leqslant t \leqslant 5$ correct	B1	Increasing quadratic, from $(0,0)$ to $(5,20)$, concave up
	$5 \leqslant t \leqslant 15$ correct	B1	Line from (5,20) to (15,40)
	$15 \leqslant t \leqslant 35$ correct	B1	Decreasing quadratic, from $(15,40)$ to (35,0), concave down
	20 and 40 seen correct on v-axis	B1	
	Total:	4	
5(iii)	$A_{1}=\int_{0}^{5} 0.8 t^{2} \mathrm{~d} t=\frac{100}{3}$	B1	
	$A_{2}=\frac{1}{2}(20+40) \times 10=300$	M1	Using trapezium rule or integration for $t=5$ to $t=15$
	$\begin{aligned} & A_{3}=\int_{15}^{35}\left(a+b t^{2}\right) \mathrm{d} t \\ & =49 t-\frac{0.04}{3} t^{3} \end{aligned}$	M1	Attempt to integrate the quadratic function from $t=15$ to $t=35$
	$A_{3}=453.3333=1360 / 3$	A1	
	Total Distance $=2360 / 3=787 \mathrm{~m}$	A1	
	Total:	5	

Question	Answer	Marks	Guidance
6(i)		M1	Apply Newton's law to either of the particles
	$12-T=1.2 a$ and $T-8=0.8 a$	A1	Both equations correct
		M1	Solve for a and T
	$a=2 \mathrm{~ms}^{-2}$ and $T=9.6 \mathrm{~N}$	A1	
	Total:	4	
6(ii)	$\begin{aligned} & {\left[0.64=1 / 2 \times 2 \times t_{1}^{2}\right]} \\ & {\left[v=2 t_{1}\right]} \end{aligned}$	M1	Attempt to find time t_{1} taken for 1.2 kg particle to reach ground and/or its speed v at the ground
	$t_{1}=0.8$	A1	
	$v=2 \times 0.8=1.6$	A1	
	$\begin{aligned} & {\left[0=1.6-10 t_{2}\right]} \\ & {\left[1.6^{2}=2 \times 10 \times s_{2}\right]} \end{aligned}$	M1	For attempting to find the time t_{2} and/or distance travelled s_{2} as 0.8 kg particle comes to rest
	$t_{2}=0.16$	A1	
	$s_{2}=0.128$	A1	
	$\begin{aligned} & t_{3}=1-0.8-0.16=0.04 \\ & s_{3}=1 / 2 \times 10 \times 0.04^{2} \end{aligned}$	B1	Finding the distance s_{3} travelled downwards in t_{3} seconds
	Total distance travelled $=$ $0.64+0.128+0.008=0.776 \mathrm{~m}$	B1	
	2- Total:	8	

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/43
Paper 4
October/November 2016
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	43

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \downarrow " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	43

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	43

3 (i)	$\begin{aligned} & {[7 g-T=7 a \text { and } T-3 g=3 a]} \\ & \text { or }[7 g-3 g=10 a] \end{aligned}$ Acceleration is $4 \mathrm{~ms}^{-2}$ $\left[v^{2}=0+2 \times 4 \times 0.4\right]\left(v^{2}=3.2\right)$ Speed is $1.79 \mathrm{~ms}^{-1}$	M1 A1 M1 A1	[4]	For applying Newton's second law to P and to Q or for using $m_{P} g-m_{Q} g=$ $\left(m_{P}+m_{Q}\right) a$ For using $v^{2}=u^{2}+2 a s$
(ii)	$\begin{aligned} & {[0=3.2+2 \times(-g) \times s](s=0.16)} \\ & 0.16+0.4=0.56 \end{aligned}$ So particle Q does not come to rest before it reaches the pulley Alternative $\begin{aligned} & {\left[v^{2}=3.2+2 \times(-g) \times 0.1\right]} \\ & v=\sqrt{ } 1.2(=1.10) \end{aligned}$ So particle Q does not come to rest before it reaches the pulley	M1 A1 M1 A1	[2]	For using $0=u^{2}+2(-g) s$ For using $v^{2}=u^{2}+2(-g)(0.1)$
$4 \quad$ (i)	$\begin{aligned} & s_{A}=1 / 2 g \times 2.5^{2}(=31.25) \\ & {\left[s_{B}=20 \times 1.5-1 / 2 g \times 1.5^{2}\right](=18.75)} \\ & 1 / 2 g \times 2.5^{2}+20 \times 1.5-1 / 2 g \times 1.5^{2} \end{aligned}$ Height is 50 m	B1 M1 A1	[3]	For using $s=u t+1 / 2 a t^{2}$
(ii)	$\begin{aligned} & 50=0.5 g t_{A}{ }^{2} \quad\left(t_{A}=3.16\right) \\ & t_{B}=\sqrt{ } 10-1=2.16 \end{aligned}$ To top, $0^{2}=20^{2}-2 g s_{B} \quad \rightarrow s_{B}=20$ To top, $\left[0=20-g t_{B}\right] \quad \rightarrow t_{B}=2$ Downwards, $\left[s_{B}=1 / 2 g(0.16)^{2}\right](=0.13)$ Total distance is 20.1 m	B1 B1 B1 M1 A1	[5]	For using $s=1 / 2 a t^{2}$ For using $v=u+a t$ to find time to top for B and $s=1 / 2 a t^{2}$ to find downwards distance for B

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	43

$5 \quad$ (i)	$\begin{aligned} & 6 t-0.3 t^{2}=0 \rightarrow t=20(\text { or } 0) \\ & {\left[s=6 t^{2} / 2-0.3 t^{3} / 3(+\mathrm{C})\right]} \\ & {\left[s=6(20)^{2} / 2-0.3(20)^{3} / 3\right]} \end{aligned}$ Distance OX is 400 m	B1 M1 DM1 A1	[4]	For integrating $v(t)$ to obtain $s(t)$ For evaluating $s(t)$ when $\mathrm{v}=0$
(ii)	$\begin{aligned} & {\left[v=k t-6 t^{2}(+\mathrm{C})\right]} \\ & {\left[s=k t^{2} / 2-6 t^{3} / 3\right]} \end{aligned}$ $\left[400=0.5 k \times 10^{2}-2 \times 10^{3}\right]$ $k=48$	M1* M1* DM1 A1	[4]	For integrating $a(t)$ to obtain $v(t)$ For integrating $v(t)$ to obtain $s(t)$ and for using $s(0)=0$ For using $t=10$ and $s=400$ to form equation in k
6 (i)	$\begin{aligned} & \text { Driving force }=160 / 5(=32 \mathrm{~N}) \\ & {[160 / 5-20=m \times 0.15]} \end{aligned}$ Total mass is 80 kg	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[3]	For using Newton's Second Law
(ii)	$\left[300 / v-20-80 g \sin 2^{\circ}=0\right]$ Speed is $6.26 \mathrm{~ms}^{-1}$	$\begin{array}{\|l\|} \text { M1 } \\ \hline \text { A1 } \\ \hline \end{array}$	[2]	For resolving up hill
(iii)	Driving force $=$ $300 /(0.9 \times 6.26)(=53.2 \mathrm{~N})$ $300 /(0.9 \times 6.26)-20-80 g \sin 2^{\circ}=80 a$ Acceleration is $0.0666 \mathrm{~ms}^{-2}$	B1 M1 A1 A1	[4]	For using Newton's Second Law

Page 7 Mark Scheme

Cambridge International AS/A Level - October/November 2016
Syllabus
Paper
9709
43

$7 \quad$ (i)	$\begin{aligned} & R=50 g \cos 10^{\circ} \text { and } \\ & F=50 g \sin 10^{\circ} \\ & \mu \geqslant 0.176 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	[2]	$\mu \geqslant F \div R \quad$ Allow $\mu \geqslant \tan 10^{\circ}$
(ii)	$\text { PE loss }=50 g \times d \sin 10^{\circ}$ WD against friction $=$ $0.19 \times 50 g \cos 10^{\circ} \times d$ $\begin{aligned} & 50 \times 5+50 g \times 10 \sin 10^{\circ}-0.19 \times \\ & 50 g \cos 10^{\circ} \times 10=0.5 \times 50 v^{2} \end{aligned}$ Speed is $2.70 \mathrm{~ms}^{-1}$	B1 B1 M1 A1 A1	[5]	$d=5 \text { or } d=10$ $d=5 \text { or } d=10$ For using WD by 50 N force + PE loss WD against friction $=\mathrm{KE}$ gain SC for candidates using Newton's Second law: max $2 / 5$ $\text { B1 } v=2.94 \mathrm{~ms}^{-1} \text { after } 5 \mathrm{~m}$ B1 Speed is $2.70 \mathrm{~ms}^{-1}$
(iii)	$\begin{aligned} & 50 g \sin 20^{\circ}- \\ & 0.19 \times 50 \mathrm{~g} \cos 20^{\circ}=50 a \end{aligned}$ Acceleration is $1.63 \mathrm{~ms}^{-2}$	M1 A1	[2]	For using Newton's Second Law

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/42
Paper 4
October/November 2016
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	42

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	42

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \downarrow " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	42

Alternative to 1(i)				
	$\begin{aligned} & s=1 / 2(0+3.5) \times 10=17.5 \mathrm{~m} \\ & {\left[10 \cos 15 \times 17.5=F \times 17.5+1 / 22(3.5)^{2}\right]} \\ & F=8.96 \mathrm{~N} \end{aligned}$	B1 M1 A1	[3]	Distanced moved in 10 secs Work done by 10 N force $=$ WD against $F+$ KE gain
(ii)	$\begin{aligned} & {[R=2 g-10 \sin 15]} \\ & {[\mu=8.96 /(2 g-10 \sin 15)]} \\ & \mu=0.515 \end{aligned}$	M1 M1 A1	[3]	Resolving forces vertically Using $F=\mu R$
2 (i)	$\begin{aligned} & {\left[v=4 t-40 t^{0.5}\right]} \\ & {\left[a=4-20 t^{-0.5}\right]} \\ & {\left[4-20 t^{-0.5}=0\right]} \end{aligned}$ $t=25 \mathrm{~s}$	M1* M1* DM1 A1	[4]	For differentiating s to find v For differentiating v to find a For setting $a=0$ and attempt to solve to find t
(ii)	Substitute their t into s or v Displacement $=-2083.3 \mathrm{~m}(=-20803 \mathrm{sf})$ and Velocity $=-100 \mathrm{~ms}^{-1}$	M1 A1	[2]	or Displacement $=-6250 / 3$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	42

3 (i)	$[X=60 \cos 25+50 \cos 15]$ $=103 \mathrm{~N}$	M1 A1	[2]	For resolving both forces in the direction of river Value of X is 102.7 N
(ii)	$Y=60 \sin 25-50 \sin 15[=12.4]$ $\left[R^{2}=X^{2}+Y^{2}\right]$ or $[\alpha=\arctan (Y / X)]$ Magnitude is 103 N (or $\alpha=6.9^{\circ}$ with direction specified unambiguously) $\alpha=6.9^{\circ}$ with direction specified unambiguously (or Magnitude $=103 \mathrm{~N}$)	B1 M1 A1 B1	[4]	Component perpendicular to the direction of the river For using Pythagoras or for using arctan to find the resultant force or its direction Magnitude is 103.4 N
4 (i)	$\begin{aligned} & \text { PE loss }=m g \times 100 \sin 20 \\ & {\left[1 / 2 m v^{2}-1 / 2 m \times 5^{2}=m g \times 100 \sin 20\right]} \\ & v=26.6 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1	[3]	Using KE gain $=$ PE loss
Alternative method for 4(i)				
	$\begin{aligned} & a=g \sin 20[=3.42] \\ & {\left[v^{2}=5^{2}+2 \times a \times 100\right]} \\ & v=26.6 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1	[3]	Using $v^{2}=u^{2}+2 a s$
(ii)	$\begin{aligned} & \mathrm{KE}= \\ & \pm(0.5 m \times 441-0.5 m \times 25)[= \pm 208 m] \\ & {[m g \times 100 \sin 20=8500+208 m]} \end{aligned}$ Mass $m=63.4 \mathrm{~kg}$	B1 M1 A1	[3]	For using PE loss = WD against Friction + KE gain

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	42

5	$\begin{aligned} & F=\mu m g \cos 30 \\ & {[10+F-m g \sin 30=0]} \\ & {[75-F-m g \sin 30=0]} \\ & {[85=2 m g \sin 30]} \\ & \text { or } \\ & {[10+\mu m g \cos 30-m g \sin 30=0} \\ & 75-\mu m g \cos 30-m g \sin 30=0] \\ & \\ & m=8.5 \mathrm{~kg} \text { or } \mu=0.442 \\ & \mu=0.442 \text { or } m=8.5 \mathrm{~kg} \end{aligned}$	B1 M1 M1 M1 A1 B1	[6]	Resolving up, first case Resolving up, second case Either attempt to solve for m or Solve a pair of two 3 term simultaneous equations for either m or μ
6 (i)	$[\text { Power }=400 \times 25]$ $\text { Power }=10000 \mathrm{~W}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	For using $P=F v$ where $F=$ resistance $=400 \mathrm{~N}$ Allow 10 kW
(ii)	Tension $=100 \mathrm{~N}$	B1	[1]	Considering the trailer
(iii)	$\left.\begin{array}{l} \text { New driving force } \\ \quad=25000 / 20=1250 \mathrm{~N} \\ {[\mathrm{DF}-300-T-3000 g \sin 4=3000 a]} \\ \text { or } \\ {[T-100-500 g \sin 4=500 a]} \\ \text { or } \\ {[\mathrm{DF}-400-3500 g \sin 4=3500 a]} \end{array}\right] \begin{aligned} & {[a=-0.4547 \text { may be seen }]} \\ & T=221 \mathrm{~N} \end{aligned}$	B1 M1 M1 M1 A1	[5]	Driving force $=P / v$ at the instant when $v=20$ For using Newton's second law applied either to the van or to the trailer or to the system of van and trailer. For using N2 applied to one of the other cases Solving or using substitution to find T Allow $T=1550 / 7 \mathrm{~N}$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	42

$7 \quad$ (i)	$\begin{aligned} & v=3 \times 10=30 \mathrm{~ms}^{-1} \\ & {[s=1 / 2(30+40) \times 30]} \end{aligned}$ or equivalent complete method Total distance $=1050 \mathrm{~m}$	B1 M1 A1	[3]	Velocity after 10 seconds For determining distance travelled in first 40 seconds
(ii)	[Distance $=450 \mathrm{~m}$ Time taken $=450 / 15=30 \mathrm{~s}$] Total time of motion for $\mathrm{car}=70 \mathrm{~s}$ [Motorcycle takes 50 s to travel 1500 m $1500=1 / 2(30+50) \times V$ or $\quad 1500=30 V+0.5 \times 20 \mathrm{~V}]$ $V=37.5 \mathrm{~ms}^{-1}$ [20 s is split between 5 s accelerating and 15 s decelerating] $a=37.5 / 5=7.5 \mathrm{~ms}^{-2}$	M1 A1 M1 A1 M1 A1	[6]	For finding distance covered in deceleration stage and time taken for this stage May be implied by time for motorcycle $=50 \mathrm{~s}$ For setting up an equation for distance travelled by M/C ($v-t$ graph or other) involving V or a and up to one other variable. For finding time taken to accelerate to speed V
(iii)	Displacement-time graph	B1 B1 B1	[3]	Two of the three graph stages correct with correct curvature All three stages of the graph correct with correct curvature Correct graph, fully labelled $\mathrm{t}=10,40,70 \mathrm{~s}=150,1050,1500$

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS
 9709/41

Paper 4
October/November 2016
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	41

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0 .

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	41

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through §" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	41

1	$[0.4 g-T=0.4 a \quad T=0.6 a$ System equation $\quad 0.4 g=(0.4+0.6) a]$ $\begin{aligned} & a=4 \mathrm{~m} \mathrm{~s}^{-2} \\ & T=2.4 \mathrm{~N} \end{aligned}$	M1 M1 A1 A1	[4]	For applying Newton's 2nd law to either particle or to the system For applying Newton's 2nd law to the other particle and attempt to solve for a and T
2 (i)	$\begin{aligned} & 2=5 a \rightarrow a=0.4 \mathrm{~ms}^{-2} \\ & {[0.1 g \sin 20-F=0.1 \times 0.4]} \end{aligned}$ $F=0.302 \mathrm{~N}$	B1 M1 A1	[3]	For applying Newton's 2nd law to the particle
(ii)	$[R=0.1 \mathrm{~g} \cos 20(=0.9397)]$ $\mu=0.3020 / 0.9397=0.321$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	For attempting to find R and using $\mu=F / R$
3 (i)	$\begin{aligned} & {\left[0=6^{2}-2 g \times s\right]} \\ & s=1.8 \\ & \text { Total height }=2.3 \mathrm{~m} \end{aligned}$	M1 A1 B1	[3]	For using $v^{2}=u^{2}+2 a s$
	Alternative for 3(i)			
	$\begin{aligned} & {\left[6^{2}=u^{2}-2 g \times 0.5\right]} \\ & u^{2}=46 \\ & 0^{2}=46-2 g s \rightarrow s=\text { total height }=2.3 \mathrm{~m} \end{aligned}$	M1 A1 B1	[3]	For using $v^{2}=u^{2}+2 a s$ to find the initial velocity

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	41

(ii)	$\begin{aligned} & {\left[2.3=0+0.5 g t^{2}\right]} \\ & t=0.678 \\ & \text { Total time }=2 \times 0.678=1.36 \mathrm{~s} \end{aligned}$	M1 A1 B1	[3]	For using $s=u t+0.5 g t^{2}$ to find time to reach the ground
	Alternative for 3(ii)			
	$[0=\sqrt{46}-g t]$ $t=\frac{\sqrt{46}}{10}=0.678$ Total time $=2 \times 0.678=1.36 \mathrm{~s}$	M1 A1 B1	[3]	Using $v=u-g t$ to find time taken to the highest point
4	$2 F+F \cos 60=15 \cos \alpha$ $F \sin 60=15 \sin \alpha$ $F=5.67 \text { and } \alpha=19.1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[6]	For resolving forces horizontally For resolving forces vertically For using Pythagoras or for using $\tan \alpha$ to find F and α Allow $F=15 \sqrt{7} / 7$
$5 \quad$ (i)	$a=0.5 \mathrm{~ms}^{-2}$	B1	[1]	
(ii)	$\begin{aligned} & {\left[\begin{array}{l} \text { Distance } \\ \quad=25+100+5(5+V)+30 V+10 V] \\ 150+45 V \end{array}\right.} \\ & 150+45 V=465 \rightarrow V=7 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 B1	[3]	For attempting to find the distance travelled
(iii)	$\begin{aligned} & 1 / 2 \times 80 \times 7^{2}-1 / 2 \times 80 \times 5^{2}[=960] \\ & 20 \times(5+7) / 2 \times 10[=1200] \\ & {[80 g h=960+1200]} \\ & h=2.7 \mathrm{~m} \end{aligned}$	M1 M1 M1 A1	[4]	For change in KE For work done against friction using $F \times d$ For using PE loss = KE gain + WD against Res.

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	41

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	41

(iii) $\quad v(5)=7.5 \times 25-125=62.5 \mathrm{~m} \mathrm{~s}^{-1}$
$\int_{5}^{k}-\frac{625}{t^{2}} \mathrm{~d} t=\left[\frac{625}{t}\right]_{5}^{k}$
$=\frac{625}{k}-\frac{625}{5}=\frac{625}{k}-125$
$\frac{625}{k}-125=v(k)-v(5)=-62.5$
$k=10$

B1		Allow $v(5)=125 / 2$ M1
A1		Integral with correct limits
M1		Use of $v(5)=62.5$ and $v(k)=0$
A1	$[5]$	

Alternative for 7(iii)

$v(5)=7.5 \times 25-125=62.5 \mathrm{~m} \mathrm{~s}^{-1}$	B1		
$v(t)=\int-\frac{625}{t^{2}} \mathrm{~d} t=\frac{625}{t}+c$	M1		Using indefinite integration
$[c=-62.5]$			
$v(t)=\frac{625}{t}-62.5$	A1		For using $v(5)=62.5$ to find c and setting $v(k)=0$
$v(k)=\frac{625}{k}-62.5=0$	M1		
$k=10$	A1		

MATHEMATICS

9709/43
Paper 4
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	43

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\wedge}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded ($1 \mathrm{~d} . \mathrm{p}$. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	43

Qu	Answer	Part Marks	Marks	Notes
1 (i) (ii)	$\left[\mathrm{PE} \text { gain }=8 g \times 20 \sin 30^{\circ}\right]$ Change in PE is 800 J $\begin{aligned} & {\left[8 g \times 20 \sin 30^{\circ}+20 F=\right.} \\ & 1146] \end{aligned}$ Frictional force is 17.3 N	M1 A1 M1 A1	2	For using PE gain $=m g h$ For using PE gain + WD against friction $=1146$
2 (i) (ii)	$s_{B}=1 / 2 \times 1.2 \times 5^{2}$ Distance travelled is 15 m $v_{B}=1.2 \times 5$ Speed is $6 \mathrm{~ms}^{-1}$ $[4 T=15+6(T-10)]$ or $[4(T+5)=15+6(T-5)]$ or $\begin{aligned} & {[4(T+10)=15+6 T]} \\ & T=22.5 \text { or } T=17.5 \text { or } T=12.5 \end{aligned}$ Distance OP $=4 \times 22.5=90 \mathrm{~m}$	B1 B1 M1 A1 B1	2 3	For using $s_{A}=s_{B}$ after T seconds or after $T+5$ seconds or after $T+10$ seconds
3	$12 \cos 75^{\circ}+P \cos \theta^{\circ}=18 \cos 65^{\circ}$ $18 \sin 65^{\circ}+12 \sin 75^{\circ}=15+P \sin \theta^{\circ}$ $\left[P^{2}=\left(18 \sin 65^{\circ}+12 \sin 75^{\circ}-15\right)^{2}+\right.$ $\left.\left(18 \cos 65^{\circ}-12 \cos 75^{\circ}\right)^{2}\right]$ or $\left[\theta=\tan ^{-1}\left(18 \sin 65^{\circ}+12 \sin 75^{\circ}-15\right)\right.$ $\left.\left(18 \cos 65^{\circ}-12 \cos 75^{\circ}\right)\right]$ $\begin{aligned} & P=13.7 \text { or } \theta=70.8 \\ & \theta=70.8 \text { or } P=13.7 \end{aligned}$	M1 A1 A1 M1 A1 B1	6	For resolving forces horizontally and/or vertically For eliminating either θ or P from the simultaneous equations

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	43

Qu	Answer	Part Marks	Marks	Notes
4	$\begin{aligned} & R=15 g \cos 20^{\circ} \\ & F=\mu R=0.2 \times 15 g \cos 20^{\circ} \end{aligned}$ $X+0.2 \times 15 \mathrm{~g} \cos 20^{\circ}=$ $15 g \sin 20^{\circ}$ Least value of X is 23.1 $\begin{aligned} & {\left[X=15 g \sin 20^{\circ}+\right.} \\ & \left.0.2 \times 15 g \cos 20^{\circ}\right] \end{aligned}$ Greatest value of X is 79.5	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \mathbf{M 1} \\ & \hline \mathbf{A 1} \end{aligned}$	7	140.95 28.19 For resolving parallel to the plane (F acting up plane) AG For resolving parallel to the plane (F acting down plane)
5 (i) (ii) (iii)	$[20000 / v=650]$ Speed is $30.8 \mathrm{~ms}^{-1}$ $\begin{aligned} & {[\mathrm{DF}=650+1400 g \times 1 / 7]} \\ & \left.P / 10=650+1400 g \times \frac{1}{7}\right] \end{aligned}$ Power is 26500 W $P=0.8 \times 26500(21200)$ $\begin{aligned} & {[21200 / 20+1400 g \times 1 / 7-650=} \\ & 1400 a] \end{aligned}$ Acceleration is $1.72 \mathrm{~ms}^{-2}$	M1 A1 M1 M1 A1 B1 ${ }^{\wedge}$ M1 A1	2 3 \leftarrow 0° 3	For using $\mathrm{DF}=P / v$ and for resolving forces along the direction of motion For resolving forces along the direction of motion For using $\mathrm{DF}=\mathrm{P} / \mathrm{v}$ ft $0.8 \times P$ from (ii) For using Newton's Second Law
6 (i) (a)	$1.3 g-T=1.3 a \text { and } T-0.7 g=0.7 a$ or $1.3 g-0.7 g=(1.3+0.7) a$ and either $1.3 g-$ $T=1.3 a$ or $T-0.7 g=0.7 a$ Tension is 9.1 N	M1 A1 B1		For applying Newton's Second Law to one particle or for using $m_{1} g-m_{2} g=\left(m_{1}+m_{2}\right) a$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	43

\begin{tabular}{|c|c|c|c|c|}
\hline Qu \& Answer \& Part Marks \& Marks \& Notes \\
\hline (b)
(ii) \& \begin{tabular}{l}
Acceleration is \(3 \mathrm{~ms}^{-2}\)
\[
\left[2=1 / 2 \times 3 \times t^{2}\right]
\] \\
Time taken is 1.15 seconds
\[
\begin{aligned}
\& {\left[v^{2}=2 \times 3 \times 2\right]} \\
\& v=\sqrt{ } 12(3.464)
\end{aligned}
\]
\[
[0=12-2 g s \rightarrow s=\ldots]
\] \\
Greatest height is 4.6 m
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
A1 \({ }^{\wedge}\) \\
M1 \\
A1
\end{tabular} \& 6

4 \& | For using $s=1 / 2 a t^{2}$ |
| :--- |
| For using $v^{2}=u^{2}+2 a s$ to find the speed on reaching plane |
| $\mathrm{ft} \sqrt{ }(4 a)$ orat from (i) |
| For using $v^{2}=u^{2}+2 a s$ to find the distance 0.7 kg particle continues upwards |

\hline \multicolumn{5}{|c|}{Alternative}

\hline (ii) \& | $\left[1.3 g \times 2=1 / 2(1.3) v^{2}+9.1 \times 2\right]$ |
| :--- |
| or $\left[\begin{array}{l} {\left[9.1 \times 2=1 / 2(0.7) v^{2}+0.7 g \times 2\right]} \\ v=\sqrt{ } 12(3.464) \\ {\left[1 / 2 \times 0.7 v^{2}=0.7 g s \rightarrow s=\ldots\right]} \end{array}\right.$ |
| Greatest height is 4.6 m | \& | M1 |
| :--- |
| A1 \downarrow |
| M1 |
| A1 | \& 4 \& | For using PE loss = KE gain + WD_{T} for 1.3 kg or for using $\mathrm{WD}_{\mathrm{T}}=\mathrm{KE}$ gain +PE gain for 0.7 kg |
| :--- |
| $\mathrm{ff} \sqrt{(4 a)}$ or $a t$ from (i) |
| For using KE loss $=$ PE gain |

\hline \multirow[t]{5}{*}{| $7 \quad$ (i) |
| :--- |
| (ii) |} \& $[6 t-2<0 \rightarrow \mathrm{t}<\ldots .$.] \& M1 \& \& For solving $a(t)<0$

\hline \& $0<t<1 / 3$ \& A1 \& 2 \&

\hline \& [$\left.v=3 t^{2}-2 t+\mathrm{c}\right]$ \& M1 \& \& For using $v(t)=\int a(t) d t$

\hline \& \[
s=t^{3}-t^{2}+\mathrm{c} t+\mathrm{d}

\] \& | M1 |
| :--- |
| A1 | \& \& For using $s(t)=\int v(t) d t$

\hline \& \[
$$
\begin{aligned}
& {[\mathrm{c}+\mathrm{d}=7} \\
& 3 \mathrm{c}+\mathrm{d}=11 \rightarrow \mathrm{c}=\ldots, \mathrm{d}=\ldots] \\
& s=t^{3}-t^{2}+2 t+5
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 | \& 5 \& For using $\mathrm{t}=1, \mathrm{~s}=7$ and $\mathrm{t}=3$, $\mathrm{s}=29$ to form and solve simultaneous equations

\hline \multirow[t]{2}{*}{(iii)} \& \[
\left[3 t^{2}-2 t+2=10\right]

\] \& | M1 |
| :--- |
| DM1 | \& \& | For using $v(t)=10$ |
| :--- |
| For solving 3 term quadratic $v(t)=10$ |

\hline \& $t=2$ \& A1 \& 3 \&

\hline
\end{tabular}

MATHEMATICS

9709/42
Paper 4
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	42

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	42

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	42

\begin{tabular}{|c|c|c|c|c|}
\hline Qu \& Answer \& \begin{tabular}{l}
Part \\
Marks
\end{tabular} \& Mark \& Notes \\
\hline 1 \& \begin{tabular}{l}
\[
\begin{aligned}
\& {[X=7-8 \cos \alpha-6 \sin \alpha=-3]} \\
\& X=7-8 \times(4 / 5)-6 \times(3 / 5)=-3 \\
\& {[Y=8 \sin \alpha-6 \cos \alpha=0]} \\
\& Y=8 \times(3 / 5)-6 \times(4 / 5)=0
\end{aligned}
\] \\
Resultant force is 3 N to the left
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
B1
\end{tabular} \& 5 \& \begin{tabular}{l}
For resolving forces horizontally \\
Allow \(\alpha=36.9\) used \\
For resolving forces vertically \\
Allow \(\alpha=36.9\) used
\end{tabular} \\
\hline \begin{tabular}{l}
2 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 4 t^{2}-8 t+3=0 \\
\& (2 t-3)(2 t-1) \\
\& t=0.5 \text { and } t=1.5 \\
\& s=-\int\left(4 t^{2}-8 t+3\right) \mathrm{d} t \\
\& -\left[\frac{4}{3} t^{3}-4 t^{2}+3 t\right]_{0.5}^{1.5}
\end{aligned}
\] \\
Distance travelled \(=2 / 3 \mathrm{~m}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} \& 2

3 \& | Set $v=0$ and attempt to factorise or use the quadratic formula or completing the square. |
| :--- |
| Integrating v to find s. Allow minus sign omitted. |
| Attempted integration with limits substituted and then subtracted but not necessarily fully evaluated. $[=-(0-2 / 3)]$ |
| Allow first minus sign omitted |
| Must justify sign of answer |

\hline | 3 (i) |
| :--- |
| (ii) | \& \[

$$
\begin{aligned}
& {[80 x \sin 22.6 \text { or } 80 x(5 / 13)]} \\
& =\frac{400}{13} x=30.8 x \\
& \text { WD against friction }=15 \times x \\
& \frac{1}{2} \times 8 \times 5^{2} \\
& \frac{1}{2} \times 8 \times 5^{2}=\frac{400}{13} x+15 x \\
& x=\frac{260}{119}=2.18
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| B1 |
| B1 |
| M1 |
| A1 | \& \[

2

\] \& | For using PE change $=m g h$ PE change $=8 \times g \times x \sin \alpha$ |
| :--- |
| Allow $\alpha=22.6$ used |
| For using KE loss = PE gain + WD against friction |

\hline
\end{tabular}

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	42

Qu	Answer	Part Marks	Mark	Notes
$\begin{array}{rr}4 & \text { (i) } \\ & \\ & \text { (ii) }\end{array}$	$\begin{array}{\|l} 1 / 2 \times 6 \times 8.2+36 \times 8.2 \\ \mathrm{Or}^{1} / 2 \times 8.2 \times(36+42) \end{array}$	M1		For using distance $=$ total area under graph
	Distance $=319.8 \mathrm{~m}$	A1	2	
	$s=80.2$	B1^		Distance from $t=42$ to $t=52$
	$80.2=\frac{8.2+V}{2} \times 10$	M1		For equating remaining distance to total area under graph between $t=42$ and $t=52$
	$V=7.84$	A1	3	AG
(iii)		M1		Use gradient property for deceleration
	$d=\frac{8.2-7.84}{10}=0.036$	A1	2	

Alternative for 4(iii)				
(iii)	$80.2=8.2 \times 10+1 / 2 a \times 10^{2}$ $a=-0.036 \mathrm{~ms}^{-2} \text { or } d=0.036 \mathrm{~ms}^{-2}$	M1 A1	2	For using $s=u t+1 / 2 a t^{2}$ between $t=42$ and $t=52$
5	$\begin{aligned} & R+T \sin 20=2.5 g \cos 30 \\ & F=0.25 \times R \end{aligned}$ $T \cos 20=F+2.5 g \sin 30$ $T=17.5$	A1 B1 M1 A1 M1 A1	7	For resolving forces perpendicular to the plane (3 term equation) May be implied For resolving forces parallel to the plane (3 term equation) For solving and obtaining T

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	42

\begin{tabular}{|c|c|c|c|c|}
\hline Qu \& Answer \& \begin{tabular}{l}
Part \\
Marks
\end{tabular} \& Mark \& Notes \\
\hline \multicolumn{5}{|c|}{Alternative scheme} \\
\hline 5 \& \[
F=0.25 \times R
\]
\[
T \cos 50=F \cos 30+R \sin 30
\]
\[
R \cos 30+T \sin 50=F \sin 30+2.5 g
\]
\[
T=17.5
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 7 \& \begin{tabular}{l}
May be implied \\
For resolving forces horizontally (3 term equation) \\
For resolving forces vertically (4 term equation) \\
For solving and obtaining \(T\)
\end{tabular} \\
\hline \& \[
\begin{aligned}
\& \text { Power }=1550 \times 40 \mathrm{~W} \\
\& \text { Power }=62000 \mathrm{~W}=62 \mathrm{~kW} \\
\& (62000-22000)=\mathrm{DF} \times 40 \\
\& {[\mathrm{DF}=1000]} \\
\& \mathrm{DF}-1550=1100 a \\
\& a=-0.5 \mathrm{~ms}^{-2} \text { or } d=0.5 \mathrm{~ms}^{-2} \\
\& \mathrm{DF}=1100 \mathrm{~g} \sin 8+1550 \\
\& {[=3081]} \\
\& 80000=3081 v \\
\& v=26(.0) \mathrm{ms}^{-1}
\end{aligned}
\] \& \begin{tabular}{l}
A1 \\
B1ft \\
M1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} \& 2

3 \& | Using Power $=F v$ where $F=$ Resistance force |
| :--- |
| Answer must be in kW |
| For stating $P-22000=\mathrm{DF} \times 40$ |
| to find the new driving force. |
| ft on Power found in (i)(a) |
| For applying Newton's second law to the car (3 terms) |
| For stating the equilibrium of the three forces |
| For using $P=F v$ |
| with F involving a weight and a resistance term |

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	42

Qu		Answer	Part Marks	Mark

Alternative for 7(i)

(i)	$\begin{aligned} & {[\mathrm{PE} \text { loss }=2.4 \times g \times 0.5=12} \\ & \left.\mathrm{KE} \text { gain }=1 / 2(1.6+2.4) v^{2}=2 v^{2}\right] \end{aligned}$	M1		For attempting to find PE and KE as B reaches the ground
	$\left[12=2 v^{2}\right]$	M1		Using PE loss $=$ KE gain
	$v^{2}=6 \rightarrow v=2.45 \mathrm{~ms}^{-1}$	A1		
	$[0.5=1 / 2 \times(0+2.45) \times t]$	M1		Using $s=1 / 2(u+v) t$
	$t=0.408 \mathrm{~s}$	A1	5	Accept $t=\sqrt{6} / 6$
(ii)	$R=1.6 \mathrm{~g}=16 \mathrm{and} F=3 / 8 R=6$	B1		
	System is $[2.4 g-6=(1.6+2.4) a]$	M1		For using Newton's second law for both particles or the system
	$2.4 g-T=2.4 a \mathrm{and} T-6=1.6 a$	A1		Both or system equation
	[$a=4.5$]	M1		For finding a and using $v^{2}=u^{2}+2 a s$ to find v as B reaches the ground
	$v=\sqrt{2 \times 4.5 \times 0.5}=\sqrt{4.5}=2.12 \mathrm{~ms}^{-1}$	A1		
	$\begin{aligned} & -6=1.6 a \rightarrow a=-3.75 \mathrm{~ms}^{-2} \\ & 0=4.5+2 \times(-3.75) \times(s-0.5) \end{aligned}$	M1		For finding the deceleration of A and using $v^{2}=u^{2}+2$ as to find s the total distance travelled by A
	$s=1.1 \mathrm{~m}$	A1	7	

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International ASS/A Level - May/June 2016	9709	42

Qu	Answer	Part Marks	Mark	Notes
First Alternative for 7(ii)				
(ii)	$R=1.6 \mathrm{~g}=16 \mathrm{and} F=3 / 8 R=6$	B1		
		M1		For attempting PE loss and KE gain as B reaches the ground
	$\begin{aligned} & \text { PE loss }=2.4 \times g \times 0.5[=12] \\ & \text { KE gain }=1 / 2 \times(1.6+2.4) \times v^{2}\left[=2 v^{2}\right] \end{aligned}$	A1		For both PE and KE correct
		M1		For using PE loss = KE gain + WD against F
	$\begin{aligned} & 12=2 v^{2}+6 \times 0.5 \rightarrow v^{2}=4.5 \rightarrow v= \\ & 2.12 \end{aligned}$	A1		
	$\begin{aligned} & \text { Loss of KE }=\text { WD against } F \\ & {[1 / 2 \times 1.6 \times 4.5=6 \times(s-0.5)]} \end{aligned}$	M1		For considering the motion of A after B reaches the ground to find s the total distance travelled
	$s=1.1 \mathrm{~m}$	A1	7	

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	41

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\text {* implies that the } \mathrm{A} \text { or B mark indicated is allowed for work correctly following }}$ on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2.
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	41

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	41

Qu	Answer	Part Mark	Marks	Guidance
(i) (ii)	Trapezium seen $0,3,9,13$ shown on the t axis $v=2.7$ soi in either part $[0.5 \times(6+13) \times 2.7]$ Total distance $=25.65 \mathrm{~m}$	B1 B1 B1 M1 A1	[3] [2]	$v-t$ graph with three straight lines, with positive, zero and negative gradients, continuous Using area of trapezium Allow Distance $=513 / 20 \mathrm{~m}$
Alternative method for 1(ii)				
(ii)	Stage 1 $s_{1}=0.5 \times 0.9 \times 3^{2}=4.05$ Stage 2 $s_{2}=2.7 \times 6=16.2$ Stage 3 $s_{3}=0.5 \times(2.7+0) \times 4=5.4$ Total distance $=25.65 \mathrm{~m}$	M1 A1	[2]	Complete method to find the total distance travelled by the lift using constant acceleration equations for all three stages
2 (i) (ii) (iii)	$\mathrm{WD}=40 \times 36=1440 \mathrm{~J}$ $\mathrm{PE}=25 \times g \times 36 \sin 20=3080 \mathrm{~J}$ WD by pulling force $=$ $\text { (i) }+ \text { (ii) }$ $\mathrm{WD}=4520 \mathrm{~J}$	B1 M1 A1 M1 A1	[1] [2] [2]	Using PE $=m g h$ $[\mathrm{PE}=3078.18]$ For using WD by pulling force $=$ Gain in PE + WD against F $[\mathrm{WD}=4518.18]$
Alternative for (iii)				
(iii)	$[(25 g \sin 20+40) \times 36]$ $\mathrm{WD}=4520 \mathrm{~J}$	M1 A1	[2]	For attempting to find the pulling force and multiply it by 36 to find the work done $[\mathrm{WD}=4518.18]$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	41

Qu	Answer	Part Mark	Marks	Guidance
3 (i) (ii)	Driving Force $=300$ $P=300 \times 40$ $P=12000 \mathrm{~W}=12 \mathrm{~kW}$ $P=0.9 \times 12000=10800$ $\frac{10800}{25}-300=1000 a$ $a=132 / 1000=0.132 \mathrm{~ms}^{-2}$	B1 M1 A1 B1 ${ }^{\wedge}$ M1 A1	[3] [3]	Using DF $=$ Resistance Using $P=F v$ Must give answer in kW ft on 12000 Applying Newton's second law with 3 terms to the car
4	$\begin{aligned} & P \cos \theta=48 \cos \alpha-14 \sin \alpha \\ & \text { and/or } \\ & P \sin \theta=50-48 \sin \alpha-14 \cos \alpha \\ & P \cos \theta=48(24 / 25)-14(7 / 25) \\ & =42.16 \\ & P \sin \theta=50-48(7 / 25)-14(24 / 25) \\ & =23.12 \\ & P=\sqrt{42.16^{2}+23.12^{2}}=48.1 \\ & \tan \theta=\frac{23.12}{42.16} \\ & \theta=28.7 \end{aligned}$	M1 A1 A1 M1 A1 B1		For resolving forces horizontally and/or vertically Allow $\alpha=16.3$ used throughout For attempting to find P or θ Allow $P=34 \sqrt{2}$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	41

Qu	Answer	Part Mark	Marks	Guidance
5	$\begin{aligned} & R=5 g \cos \alpha=4 g \\ & F=0.5 \times 4 g=2 g \end{aligned}$ $\begin{aligned} & T-2 g-5 g \sin \alpha=5 a \rightarrow \\ & T-5 g=5 a \end{aligned}$ $10 g-T=10 a$ $[5 g=15 a]$ $a=g / 3=3.33 \mathrm{~ms}^{-2}$ $\begin{gathered} T=10 g-10(g / 3) \\ =20 g / 3=66.7 \mathrm{~N} \end{gathered}$	B1 M1 A1 A1 M1 A1 B1	[7]	For finding the normal reaction R acting on the 5 kg particle and using $F=\mu R$ For applying Newton's second law to one or both particles or to the system System equation is $10 g-5 g \sin \alpha-2 g=5 g=15 a$ For eliminating T and solve for a
$\begin{array}{rr}6 & \text { (i) } \\ & \\ & \text { (ii) }\end{array}$	$a=12 t-30$	M1		For differentiating v to find a
	$t<2.5$	A1	[2]	
	$v=0$ at $t=1$ and $t=4$	B1		Using $v=6(t-4)(t-1)$
	$\begin{aligned} & s=\int\left(6 t^{2}-30 t+24\right) d t \\ & =\frac{6}{3} t^{3}-\frac{30}{2} t^{2}+24 t \end{aligned}$	M1		For using integration to find s
	$s=\left[2 t^{3}-15 t^{2}+24 t\right]_{1}^{4}$	M1		For using limits
	Distance $=27 \mathrm{~m}$	A1	[4]	
(iii)	$2 t^{3}-15 t^{2}+24 t=0$	M1		State $s=0$
	$2 t^{2}-15 t+24=0$	M1		Reduce to a quadratic and attempt to solve
	$t=2.31$ and $t=5.19$	A1	[3]	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	41

Qu	Answer	Part Mark	Marks	Guidance
$7 \quad$ (i) (a) (b)	$\begin{aligned} & 200-30 \mathrm{~g} \sin 20=30 a \\ & a=3.25 \mathrm{~ms}^{-2} \\ & {\left[v^{2}=2 \times 3.2465 \times 12=77.9\right]} \\ & \text { KE change }=0.5 \times 30 \times 77.9=1170 \mathrm{~J} \end{aligned}$	M1 A1 M1 A1	[2] [2]	For applying Newton's second law with 3 terms parallel to the plane $[a=3.2465]$ For using $v^{2}=u^{2}+2 a s$ and attempting to find KE change $[\mathrm{KE}=1168.7 \mathrm{~J}]$
Alternative method for 7(i)(b)				
(b) (ii) (a) (b)	KE change $=$ $200 \times 12-30 g \times 12 \sin 20$ KE change $=1170 \mathrm{~J}$ $\begin{aligned} & N=30 g \cos 20 \\ & F=0.12 \times 30 g \cos 20[=33.8] \\ & 200-30 g \sin 20-33.8=30 a \end{aligned}$ $a=2.12 \mathrm{~ms}^{-2}$ $N+200 \sin 10=30 g \cos 20$ $[N=247.2]$ $F=0.12 N[=0.12 \times 247.2=29.66]$ $200 \cos 10-29.66-30 g \sin 20=30 a$ $a=2.16 \mathrm{~ms}^{-2}$	M1 A1 B1 M1 M1 A1 M1 M1 M1 A1	[2] [4] [4]	Using KE gain = WD by DF - PE gain $[N=281.9]$ Using $F=\mu N a$ For using Newton's second law with 4 terms applied to the particle For resolving forces perpendicular to the plane. Three term equation. N must be from a 3 term equation For using Newton's second law with 4 terms applied to the particle

CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the March 2016 series

9709 MATHEMATICS

9709/42
Paper 4 (Mechanics), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE ${ }^{\circledR}$ and Cambridge International A and AS Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	42

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\text {* implies that the A or B mark indicated is allowed for work correctly following }}$ on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded ($1 \mathrm{~d} . \mathrm{p}$. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	42

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	42

1	KE gain $=1 / 2 \times 105 \times\left(10^{2}-5^{2}\right)$ WD against Resistance $=50 \times 40$ Total WD $=5937.5 \mathrm{~J}$	M1 A1 B1	3	Attempt KE gain or WD against Res Both correct (unsimplified) KE gain $=3937.5 \mathrm{~J}$ WD $=2000 \mathrm{~J}$ $\mathrm{WD}=\mathrm{KE}$ gain +WD against Res
Alternative method				
	$\begin{aligned} & 10^{2}=5^{2}+2 \times 50 \times a[a=0.75] \\ & \mathrm{DF}-40=105 a \\ & \mathrm{DF}=40+105 \times 0.75=118.75 \\ & \text { Total WD }=118.75 \times 50=5937.5 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	3	Using $v^{2}=u^{2}+2 a s$ and applying Newton's 2nd law to the system $\mathrm{WD}=\mathrm{DF} \times 50$
2 (i)	$\begin{aligned} & \mathrm{DF}=1350 \\ & P=1350 \times 32=43.2 \mathrm{~kW} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \hline \text { B1 } \end{array}$	2	
(ii)	$\begin{aligned} & \mathrm{DF}-1350-1200 \mathrm{~g} \times 0.1=0 \\ & \quad[\mathrm{DF}=2550] \\ & \mathrm{DF}=76500 / v \\ & v=30 \mathrm{~ms}^{-1} \end{aligned}$	M1 M1 A1	3	For using Newton's 2nd law applied to the car up the hill (3 terms) Allow use of $\theta=5.7^{\circ}$ For using $\mathrm{DF}=P / v$
3 (i)	$\begin{aligned} & R_{x}=40 \times(24 / 25)-30 \times(7 / 25) \\ & {[=30]} \\ & R_{y}=50-40 \times(7 / 25)-30 \times(24 / 25) \\ & {[=10]} \end{aligned}$ and $\begin{aligned} & \theta=\tan ^{-1}\left(\mathrm{R}_{\mathrm{y}} / \mathrm{R}_{\mathrm{x}}\right) \\ & R=31.6 \mathrm{~N} \text { and } \\ & \theta=18.4^{\circ} \text { with the positive } x \text {-axis } \end{aligned}$	M1 A1 M1 A1 M1 A1	6	For resolving forces horizontally Allow $R_{x}=40 \cos 16.3-30 \sin 16.3$ For resolving forces vertically Allow $R_{y}=50-40 \sin 16.3-30 \cos 16.3$ For using Pythagoras to find the resultant force R and trigonometry to find the angle θ made by the resultant with the x-axis

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	42

Alternative method for 3(i)

(i)	$R_{1}=40-50 \times(7 / 25) \quad[=26]$ $R_{2}=30-50 \times(24 / 25) \quad[=-18]$ $R^{2}=R_{1}{ }^{2}+R_{2}{ }^{2}$ and $\arctan \left(-R_{2} / R_{1}\right)$ $R=31.6 \mathrm{~N}$ and direction is $34.7-\alpha=18.4^{\circ}$ with positive x-axis	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	6	Resolve forces along 40 N direction Allow $R_{1}=40-50 \sin 16.3$ Resolve forces along 30 N direction Allow $R_{2}=30-50 \cos 16.3$ Use Pythagoras and trigonometry Using $\arctan (18 / 26)=34.7^{\circ}$ is the angle between R and the 40 N force
(ii)	$P=40$	B1	1	
4 (i)	$\begin{array}{ll} 5 \cos \alpha=F & {[F=4]} \\ R+5 \sin \alpha=8 & {[R=5]} \\ 4=5 \mu & \\ \mu=0.8 & \end{array}$	M1 M1 M1 A1	4	For resolving forces horizontally Allow use of $\alpha=36.9^{\circ}$ throughout For resolving forces vertically For using $F=\mu R$
(ii)	$\begin{array}{ll} R+10 \sin \alpha=8 & {[R=2]} \\ \text { and } \\ F=0.8 \times R & {[F=1.6]} \\ 10 \cos \alpha-F=0.8 a \\ a=8 \mathrm{~ms}^{-2} \end{array}$	B1 M1 A1	3	For resolving forces vertically to find the new value of R and using $F=\mu R$ For resolving horizontally
5 (i)		M1 A1 M1 A1	4	For using Newton's 2nd law for the system or for applying Newton's 2nd law to the car and to the trailer and for solving for a Allow use of $\alpha=5.7^{\circ}$ throughout For applying Newton's 2nd law either to the car or to the trailer to set up an equation for T

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	42

(ii)	$\begin{aligned} & -2000 g \times 0.1-250=2000 a \\ & \quad[a=-1.125] \\ & 0=30-1.125 t \\ & t=26.7 \mathrm{~s} \end{aligned}$	M1 M1 A1	3	For applying Newton's 2nd law to the system with no driving force to set up an equation for a For using $v=u+a t$ Allow $t=80 / 3 \mathrm{~s}$
Alternative method for 5(ii)				
(ii)	$\begin{aligned} & {\left[1 / 2(2000) 30^{2}=\right.} \\ & \quad 250 s+2000 \times g \times 0.1 s] \\ & \quad \rightarrow s=400 \\ & {[400=1 / 2(30+0) t]} \\ & t=26.7 \mathrm{~s} \end{aligned}$	M1 M1 A1	3	Apply work/energy equation to find s the distance travelled up the plane with no driving force (3 terms) as: KE loss $=\mathrm{WD}$ against $\mathrm{F}+\mathrm{PE}$ gain For using $x=1 / 2(u+v) t$ Allow $t=80 / 3 \mathrm{~s}$
6 (i)	$\begin{aligned} & {[T=0.8 a \quad \text { for } A} \\ & 2-T=0.2 a \quad \text { for } B \\ & 0.2 g=(0.2+0.8) a \text { system }] \\ & \\ & {[a=2]} \\ & {\left[2.5=1 / 2 \times 2 \times t^{2}\right]} \\ & \\ & t=1.58 \mathrm{~s} \end{aligned}$	M1 M1 A1 M1 A1	5	For applying Newton's 2nd law either to particle A or to particle B or to the system For applying N 2 to a second particle (if needed) and solving for a A complete method for finding t such as using $s=u t+1 / 2 a t^{2}$ Allow $t=\frac{1}{2} \sqrt{10}$
First Alternative Method for 6(i)				
(i)	$\begin{aligned} & {\left[0.2 \times g \times 2.5 \text { or } 1 / 2(0.2+0.8) v^{2}\right]} \\ & {\left[0.2 \times g \times 2.5=1 / 2(0.2+0.8) v^{2}\right]} \\ & {\left[v^{2}=10\right]} \\ & {[2.5=1 / 2(0+\sqrt{ } 10) t]} \\ & t=1.58 \mathrm{~s} \end{aligned}$	M1 M1 A1 M1 A1	5	Finding PE loss or KE gain (system) Using PE loss $=\mathrm{KE}$ gain and find v For using $s=1 / 2(u+v) t$ Allow $t=\frac{1}{2} \sqrt{10}$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	42

Second Alternative Method for 6(i)

(i)	$\begin{aligned} & {\left[\begin{array}{l} {[=0.8 a \quad 2-T=0.2 a} \\ \\ {[T=1.6 \mathrm{~N}]} \end{array}\right.} \\ & {\left[T \times 2.5=1 / 2(0.8) v^{2}\right]} \\ & {\left[v^{2}=10\right]} \\ & {[2.5=1 / 2(0+\sqrt{ } 10) t]} \\ & t=1.58 \mathrm{~s} \end{aligned}$	M1 M1 A1 M1 A1	5	Apply N2 to A and B and solve for T Use WD by $\mathrm{T}=\mathrm{KE}$ gain by A, find v Using $s=1 / 2(u+v) t$ Allow $t=\frac{1}{2} \sqrt{10}$
(ii)	$\begin{aligned} & N=8 \text { and } F=0.1 \times N=0.8 \\ & T-0.8=0.8 a \text { and } 2-T=0.2 a \\ & \text { or } 0.2 g-0.8=(0.2+0.8) a \\ & a=1.2 \\ & v^{2}=0+2 \times 1.2 \times 2.5 \\ & v=\sqrt{ } 6=2.45 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1 M1 A1	5	For applying N 2 to both particles or to the system and solving for a For using $v^{2}=u^{2}+2 a s$
First Alternative Method for 6(ii)				
(ii)	$\begin{aligned} & N=8 \text { and } F=0.1 \times N=0.8 \\ & \\ & {[0.2 \times g \times 2.5=} \\ & \left.\quad 1 / 2(0.8+0.2) v^{2}+0.8 \times 2.5\right] \end{aligned}$ $v=\sqrt{ } 6=2.45 \mathrm{~ms}^{-1}$	B1 M1 A1 M1 A1	\%	Apply work/energy to the system as PE loss $=$ KE gain + WD against resistance Correct Work/Energy equation For solving for v
Second Alternative Method for 6(ii)				
(ii)	$\begin{aligned} & N=8 \text { and } F=0.1 \times N=0.8 \\ & T-0.8=0.8 a \text { and } 2-T=0.2 a \\ & T=1.76 \mathrm{~N} \\ & {\left[T \times 2.5=0.8 \times 2.5+1 / 2(0.8) v^{2}\right]} \\ & v=\sqrt{ } 6=2.45 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1 M1 A1	5	Use N 2 for A and B and solve for T Apply Work/Energy equation to A

$7 \quad$ (i)	$k=40$	B1	1	
(ii)	Correct for $0 \leqslant t \leqslant 4$ Correct for $4 \leqslant t \leqslant 14$ Correct $14 \leqslant t \leqslant 20$	$\begin{aligned} & \mathrm{B} 1 \downarrow^{\wedge} \\ & \mathrm{B} 1 \downarrow \\ & \mathrm{~B} 1 \downarrow \end{aligned}$	3	Quadratic curve with minimum at $t=1$ approximately, $v=0$ at $t=2$ and $v=k$ at $t=4$. ft on k Horizontal line at $v=k$. ft on k Line with negative gradient from ($14, k$) to $(20,28)$. ft on k
(iii)	$\begin{aligned} & \text { For } 0 \leqslant t \leqslant 4 \quad a=10 t-10 \\ & 1<t \leqslant 4 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Attempting to differentiate to find a
(iv)	$\begin{aligned} & \left\{\left(5 t^{2}-10 t\right) d t=\right. \\ & \frac{5}{3} t^{3}-5 t^{2} \\ & A=\left[\frac{5}{3} t^{3}-5 t^{2}\right]_{0}^{2}= \\ & \left(\frac{5}{3} 2^{3}-5 \times 2^{2}\right) \\ & -\left(\frac{5}{3} 0^{3}-5 \times 0^{2}\right) \\ & B=\left[\frac{5}{3} t^{3}-5 t^{2}\right]_{2}^{4}= \\ & \left(\frac{5}{3} 4^{3}-5 \times 4^{2}\right) \end{aligned}$	M1		For attempting to integrate the given quadratic expression and attempting to apply limits over the interval $t=0$ to $t=4$ Use of limits to obtain A, the integral from $t=0$ to $t=2$ and B, the integral from $t=2$ to $t=4$ Full evaluation of A not necessary at this stage $\left[A=-\frac{20}{3}\right]$ Full evaluation of B not necessary at this stage $\left[B=\frac{100}{3}\right]$
	$-\left(\frac{5}{3} 2^{3}-5 \times 2^{2}\right)$ $\begin{aligned} & C=(40 \times 10)+ \\ & 0.5 \times(40+28) \times 6 \\ & -A+B+C= \\ & \quad[20 / 3+100 / 3+400+204] \end{aligned}$ Total distance travelled $=644 \mathrm{~m}$	A1 B1 ${ }^{\wedge}$ M1 A1	5	For finding the distance travelled in the interval $t=4$ to $t=20$ using area properties or integration. ft on k For attempting to evaluate the total distance travelled by P in the interval $t=0$ to $t=20$. The distance travelled in the first 4 seconds must have been found using integration methods.

CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the October／November 2015 series

9709 MATHEMATICS

9709／43
Paper 4，maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some
Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	43

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\text {* implies that the A or B mark indicated is allowed for work correctly following }}$ on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to $3 \mathrm{~s} . \mathrm{f}$. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\text { " }}$ marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	43

1	Tension is 30 N $[R=(4 g-30) \times 0.8]$ Normal component is 8 N	B1 M1 A1	3	For resolving forces acting on B, perpendicular to the plane.
2	$\begin{aligned} & F=T \cos \alpha=0.96 T \\ & R=0.2 g-T \sin \alpha=2-0.28 T \\ & {[0.96 T=0.25(2-0.28 T)]} \\ & {[(0.96+0.07) T=0.5 \rightarrow T=\ldots]} \\ & T=0.485 \end{aligned}$	B1 B1 M1 M1 A1	5	For using $F=\mu R$ For solving resultant equation for T
3	$\begin{aligned} & 120 \cos 75^{\circ}=150-100-P \cos \theta^{\circ} \\ & 120 \sin 75^{\circ}=P \sin \theta^{\circ} \\ & {\left[P^{2}=14400-12000 \cos 75^{\circ}+2500\right]} \\ & \text { or } \\ & \tan \theta=\left[120 \sin 75^{\circ} /\left(50-120 \cos 75^{\circ}\right)\right] \\ & P=117 \text { or } \theta=80.7 \\ & \theta=80.7 \text { or } P=117 \end{aligned}$	M1 A1 M1 A1 M1 A1 B1	7	For resolving forces in the x or $-x$ direction For resolving forces in the y direction For using P^{2} $=(P \cos \theta)^{2}+(P \sin \theta)^{2}$ or for using $P \sin \theta / P \cos \theta=\tan \theta$
4 (i)	$\begin{aligned} & 0.35 g-T=0.35 a \\ & T-0.15 g=0.15 a \\ & (0.35-0.15) g=(0.35+0.15) a \end{aligned}$ Acceleration is $4 \mathrm{~ms}^{-2}$ Tension is 2.1 N	M1 A1 B1 B1	4	For applying Newton's second law to A or to B or for using $m_{A} g-m_{B} g=\left(m_{A}+m_{B}\right) a$ Two of the three equations
(ii)	$\left[v_{1}^{2}=0+8 \times 1.6(=12.8)\right]$ $[H=1.6+(-12.8) \div(-20)]$ Greatest height is 2.24 m	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	For using $v_{1}{ }^{2}=0+2 a \times 1.6$ For using $H=1.6+\left(0-v_{1}^{2}\right) /(-2 g)$ or for using $h=\left(0-v_{1}^{2}\right) /(-2 g)$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	43

5 (i)	$\begin{aligned} & a= \\ & \left(5^{2}-3^{2}\right) \div(2 \times 500)=0.016 \\ & D F+90 g \times 0.05-R=90 \times 0.016 \\ & {\left[R=\frac{420}{v}-90(0.016-0.5)\right]} \\ & R=\frac{420}{v}+43.56 \end{aligned}$	B1 M1 A1 M1 A1	5	For using Newton's $2^{\text {nd }}$ law For using $D F=P / v$ AG SR for assuming constant R and $D F$ (max 2/5) PE loss $=90 g(500)(0.05)$ and KE gain $=1 / 2(90)\left(5^{2}-3^{2}\right) \quad \mathrm{B} 1$ $\mathrm{WD}_{\mathrm{DF}}+\mathrm{PE}$ loss $=$ KEgain $+\mathrm{WD}_{\mathrm{R}}$ $\rightarrow R=420 / v+43.56 \quad \mathrm{~B} 1$
(ii)	$v_{M}^{2}=3^{2}+2 \times 0.016 \times 250 \rightarrow$ speed at mid-point is $4.12 \mathrm{~ms}^{-1}$ [Decrease in R from top to mid-way $=420[(1 \div 3)-(1 \div \sqrt{17})]$ or [Decrease in R from midway to $\mathrm{b} ' \mathrm{~m}=$ $420[(1 \div \sqrt{17})-(1 \div 5)]$ 38.1 and 17.9	B1 M1 A1	3	For finding the difference in R for either top to midway or midway to bottom
6 (i)	Time taken $\begin{aligned} & =\frac{0.08}{0.0002}=400 \mathrm{~s} \\ & v=\frac{\mathrm{d} x}{\mathrm{~d} t}=0.16 t-0.0006 t^{2} \\ & {[\text { speed }} \\ & \left.\quad=-0.16 \times 400+0.0006 \times 400^{2}\right] \end{aligned}$ Speed at O is $32 \mathrm{~ms}^{-1}$	B1 B1 M1 A1	4	For evaluating $\pm v$ (400)
(ii) (a) (b)	Time to furthest point is $0.16 / 0.0006 \mathrm{~s}$ $\left.\left[\begin{array}{l} {\left[0.08(800 / 3)^{2}\right.} \end{array}\right]-0.0002(800 / 3)^{3}\right]$ Distance moved is 3790 m $\left[\right.$ speed $\left.=3790 / 400 \mathrm{~ms}^{-1}\right]$ Average speed is $9.48 \mathrm{~ms}^{-1}$	B1 ${ }^{\wedge}$ M1 ${ }^{*}$ A1 dM1* A1	3 2	$\stackrel{\rightharpoonup}{ }$ $\begin{aligned} & v=0.16 t-k t^{2} \text { or } \\ & v=k t-0.0006 t^{2} \text { from part (i) } \end{aligned}$ For evaluating $x\left(\mathrm{t}_{\text {furthest point }}\right) \quad(\times 2)$ For using 'average speed = total distance moved/time taken'

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	43

$7 \quad$ (i)	Gain in KE $=1 / 21250\left(8^{2}-5^{2}\right)$ Loss in PE $=1250 \mathrm{~g} \times 400 \sin 4^{\circ}$ $\begin{aligned} & 400(D F)=1 / 21250\left(8^{2}-5^{2}\right)-1250 g \times \\ & 400 \sin 4^{\circ}+2000 \times 400 \end{aligned}$ Driving force is 1189 N or 1190 N	B1 B1 M1 A1 A1	5	For using WD by $D F=$ Gain in $\mathrm{KE}-$ Loss in PE + WD by resistance SR for using Newton's second law (max 2/5) $\begin{gathered} D F+1250 g \sin 4^{\circ}-2000=1250 a \\ \text { B1 } \\ a=\left(8^{2}-5^{2}\right) / 2 \times 400 \rightarrow D F=1190 \mathrm{~N} \end{gathered}$ B1
(ii)	$\begin{array}{r} 1189 \times 2-2000=1250 a \text { or } \\ 22.75^{2}=8^{2}+2 a \times 750 \end{array}$ Acceleration is $0.302 \mathrm{~ms}^{-2}$	M1 A1/ A1	3	For using Newton's second law to find acceleration or for finding v_{C} and using $v^{2}=u^{2}+2 a s$ to find acceleration $\checkmark D F$ from part (i)
(iii)	$\begin{aligned} & v_{c}{ }^{2}=64+2 \times 0.302 \times 750 \\ & {[P / 22.75-2000=1250 \times 0.302]} \end{aligned}$ Power is 54.1 kW or 54100 W	B1 \downarrow M1 A1	3	\checkmark acceleration from part (ii)

CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the October／November 2015 series

9709 MATHEMATICS

9709／42
Paper 4，maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some
Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	42

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\text {* implies that the A or B mark indicated is allowed for work correctly following }}$ on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded ($1 \mathrm{~d} . \mathrm{p}$. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	42

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	42

1 (i)	$\begin{aligned} & 15+F \cos 60^{\circ}=F \cos 30^{\circ} \\ & F=41.0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	For resolving forces in the x direction $\mathbf{A G} \quad F=15(1+\sqrt{3})$
(ii)	$\left[G=F\left(\sin 30^{\circ}+\sin 60^{\circ}\right)\right]$ $G=56.0$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For resolving forces in the y direction Allow $15(2+\sqrt{3})$
2 (i)	$\left[V^{2}=(V-10)^{2}+2 g \times 35\right]$ $\begin{aligned} & 20 V=100+70 g \\ & V=40 \end{aligned}$	M1 A1 A1	3	For using $v^{2}=u^{2}+2 g s$ to obtain an equation in V only or to obtain two equations in V and H and attempting to eliminate H
Alternative for 2(i)				
(i)	$\begin{aligned} & V=V-10+10 t \rightarrow t=1 \text { and } \\ & 35=(V-10) \times 1+1 / 2 \times 10 \times 1^{2} \text { or } \\ & 35=(V-10+V) / 2 \times 1 \\ & V=40 \end{aligned}$	M1 A1 A1	3	A complete method to find V by considering the final 35 m using $v=u+a t$ and either $s=u t+1 / 2 a t^{2} \text { or } s=(u+v) / 2 \times t$
(ii)	$\begin{aligned} & {\left[40^{2}=0^{2}+20 H\right]} \\ & H=80 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For using $v^{2}=u^{2}+2 g s$
3 (i)	$\begin{aligned} {[a(t)} & \left.=0.00012 t^{2}-0.012 t+0.288\right] \\ {[a(t)} & =0.00012\left(t^{2}-100 t+2400\right) \\ & =0.00012(t-40)(t-60)=0] \\ a(t) & =0 \text { when } t=40 \text { and } t=60 \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { dM1* } \\ \text { A1 } \end{gathered}$	3	For attempting to differentiate $v(t)$ For setting $a(t)=0$ and attempting to solve a three term quadratic
(ii)	$\begin{aligned} & {\left[0.00001 t^{4}-0.002 t^{3}+0.144 t^{2}\right]} \\ & {\left[0.00001(100)^{4}-0.002(100)^{3}+\right.} \\ & \left.0.144(100)^{2}\right] \end{aligned}$ Displacement is 440 m	$\mathbf{M} 1 \dagger$ dM1 \dagger A1	3	For attempting to integrate $v(t)$ Integration attempted using correct limits t $=0 \text { to } t=100$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	42

4	$\begin{aligned} \text { Frictional force } & =0.4 \times 2 \cos 45 \\ & =0.4 \sqrt{2} \end{aligned}$ KE gain $=1 / 2 \times 0.2 \times V_{\mathrm{C}}^{2}$ and PE loss $=0.2 \times g \times(2.5+2 \sqrt{2})$ $0.1 V_{\mathrm{C}}^{2}=(5+4 \sqrt{2})-0.4 \sqrt{2} \times 4$ Speed at C is $9.16 \mathrm{~ms}^{-1}$	M1 A1 B1 M1 A1 A1	6	For using $R=2 \cos 45^{\circ}$ and $F=\mu R$ For using KE gain from A to C $=$ PE loss from A to $C-$ Work done by frictional force

First alternative for the last four marks

	$\begin{aligned} & 1 / 2 \times 0.2 \times V_{\mathrm{B}}^{2}=0.2 \times g \times 2.5 \rightarrow \\ & V_{\mathrm{B}}^{2}=50 \end{aligned}$ $\begin{aligned} & 0.1\left(V_{\mathrm{C}}{ }^{2}-V_{\mathrm{B}}{ }^{2}\right) \\ &= 0.2 \times g \times(4 \div \sqrt{2})- \\ & 0.4 \sqrt{2} \times 4 \end{aligned}$ Speed at C is $9.16 \mathrm{~ms}^{-1}$	B1 M1 A1 A1		For using KE gain from B to $C=\mathrm{PE}$ loss from B to C - Work done by frictional force
Second alternative for the last four marks				
	$\begin{aligned} & 1 / 2 \times 0.2 \times V_{\mathrm{B}}^{2}=0.2 \times g \times 2.5 \rightarrow \\ & V_{\mathrm{B}}^{2}=50 \end{aligned}$ $\begin{aligned} & \sqrt{2}-0.4 \sqrt{2}=0.2 a \rightarrow a \\ & =3 \sqrt{2} \mathrm{~ms}^{-2} \end{aligned}$ and $\quad V_{\mathrm{C}}{ }^{2}=V_{\mathrm{B}}{ }^{2}+2 \times 3 \sqrt{2} \times 4$ Speed at C is $9.16 \mathrm{~ms}^{-1}$	B1 M1 A1 A1		For using Newton's $2^{\text {nd }}$ law to find acceleration along $B C$ and using $v^{2}=u^{2}+$ 2as to find V_{C}

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	42

\begin{tabular}{|c|c|c|c|c|}
\hline 5 (i) \& \begin{tabular}{l}
\[
\begin{aligned}
\& 0.5 g \times \frac{7}{25}-T=0.5 a \\
\& T-0.1 g=0.1 a \\
\& 1.4-1=0.6 a
\end{aligned}
\] \\
For eliminating \(T\) and obtaining
\[
a=\frac{2}{3} \mathrm{~ms}^{-2}
\] \\
Tension is 1.07 N
\end{tabular} \& M1

A1
B1
B1
M1

A1 \& 5 \& | For applying Newton $2^{\text {nd }}$ law to P or to Q or for applying N 2 to the system |
| :--- |
| Any two correct |
| Allow sin 16.3 for $7 / 25$ |
| For substituting for a to find T |
| Allow $T=16 / 15 \mathrm{~N}$ |

\hline (ii) \& | $\left[v^{2}=2 \times\left(\frac{2}{3}\right) \times 0.7\right]$ $\left[2^{2}=2 \times \frac{2}{3} \times 0.7+2 \times 0.28 g \times s\right]$ |
| :--- |
| Length of string $=2.5-s=1.95 \mathrm{~m}$ | \& M1 \& 3 \& | For using $v^{2}=u^{2}+2$ as to find the speed of the particles immediately before the string breaks |
| :--- |
| For applying $v^{2}=u^{2}+2 a s$ for the motion of P when the string is slack and s is the distance travelled by P after the break until it reaches the floor |
| Allow length $=41 / 21 \mathrm{~m}$ |

\hline 6 (i) \& | $\begin{aligned} & {[0.195 \cos \theta=F]} \\ & \begin{aligned} F & =0.195 \cos 22.6=0.195 \times \frac{12}{13} \\ \quad & =0.18=\frac{9}{50} \end{aligned} \\ & {[R=0.24+0.195 \sin \theta]} \\ & R=0.24+0.195 \sin 22.6= \\ & 0.24+0.195 \times \frac{5}{13}=0.315 \\ & \quad=\frac{63}{200} \end{aligned}$ |
| :--- |
| Coefficient $\mu=4 / 7$ or 0.571 | \& | M1 |
| :--- |
| A1 |
| M1 |
| |
| |
| A1 |
| M1 |
| A1 | \& 6 \& | For resolving forces horizontally |
| :--- |
| For resolving forces vertically |
| For using $\mu=F / R$ |

\hline
\end{tabular}

(ii)	$\begin{aligned} R & =0.24-0.195 \sin 22.6 \\ & =0.24-0.195 \times \frac{5}{13} \\ & =0.165=\frac{33}{200} \\ 0.195 & \times \frac{12}{13}-\left(\frac{4}{7}\right) \times 0.165 \\ & =0.024 a \end{aligned}$ Acceleration is $3.57 \mathrm{~ms}^{-2}$	B1 M1 A1 A1	4	For using Newton's second law for motion along the rod Allow acceleration $=25 / 7$
$7 \quad$ (i)	$[\mathrm{WD}=14000 \times 25]$ Work done is 350 kJ or 350000 J	$\begin{gathered} \text { M1 } \\ \hline \text { A1 } \end{gathered}$	2	For using $P=\mathrm{WD} \div \Delta t$
(ii)	$\begin{aligned} & 14000 / v_{\mathrm{A}}-235=1600 \times 0.5 \rightarrow \\ & v_{\mathrm{A}}=13.53 \mathrm{~ms}^{-1} \\ & 14000 / v_{\mathrm{B}}-235=1600 \times 0.25 \rightarrow \\ & v_{\mathrm{B}}=22.05 \mathrm{~ms}^{-1} \\ & {[\text { KE gain }=} \\ & 1 / 2 \end{aligned}$	M1 A1 A1 M1 A1	5	For using $\mathrm{DF}=P / v$ and Newton's $2^{\text {nd }}$ law to find the speed of the car at A or at B $\begin{aligned} & v_{\mathrm{A}}=2800 / 207 \\ & v_{\mathrm{B}}=2800 / 127 \end{aligned}$ For using KE gain $=1 / 2 m\left(v_{\mathrm{B}}^{2}-v_{\mathrm{A}}^{2}\right)$
(iii)	$350000=242500+235 \times A B$ Distance $A B$ is 457 m	M1 A1】 A1	3	For using WD by DF $=$ KE gain + resistance $\times A B$

CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the October／November 2015 series

9709 MATHEMATICS

9709／41
Paper 4，maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some
Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	41

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded ($1 \mathrm{~d} . \mathrm{p}$. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	41

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \downarrow "" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	41

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	41

4	$\begin{aligned} & F=0.2 \times m g \cos 35 \\ & \\ & \begin{array}{l} 5 g-m g \sin 35-0.2 \mathrm{mg} \cos 35 \\ \quad=0 \end{array} \\ & \begin{array}{l} 5 g-M g \sin 35+0.2 \mathrm{Mg} \cos 35 \\ \quad=0 \end{array} \\ & \begin{array}{c} m=6.78 \text { or } M=12.2 \\ 6.78 \leqslant \operatorname{mass} \leqslant 12.2 \end{array} \end{aligned}$	B1 M1 A1 A1 M1 A1	6	Maximum value of F For resolving forces along the plane in either case Equilibrium, on the point of moving up the plane Equilibrium, on the point of moving down the plane For solving either
5 (i)	$\begin{gathered} F \cos 70+20-10 \cos 30 \\ =R \cos 15 \end{gathered}$ $10 \sin 30-F \sin 70=R \sin 15$ $F=1.90 \mathrm{~N} \text { and } R=12.4 \mathrm{~N}$	M1 A1 A1 M1 A1	5	For resolving forces either horizontally or vertically For solving simultaneously
	$\begin{aligned} & {[X=0.342 F+11.34} \\ & Y=0.94 F-5] \end{aligned}$ $\begin{aligned} & (0.342 F+11.34)^{2}+(0.94 F-5)^{2} \\ & \quad=R^{2} \end{aligned}$ $\tan 15$ $=(5-0.94 F) /(0.342 F+11.34)$ $F=1.90 \mathrm{~N}$ and $R=12.4 \mathrm{~N}$	M1 A1 A1 M1 A1	5	5(i) For finding components of the forces in the x and y directions Solve the tan 15 equation for F and substitute to find R
(ii)	$\begin{aligned} & 11.7^{2}=0+2 a \times 3 \\ & a=22.815 \\ & R \cos 15=m \times 22.815 \\ & \text { Mass of bead }=0.526 \mathrm{~kg} \end{aligned}$	B1 M1 A1	3	Applying Newton's second law to the particle in direction $A B$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	41

6 (i)	$\begin{aligned} & s=0.3 t^{2}-0.01 t^{3} \\ & s(5)=0.3 \times 5^{2}-0.01 \times 5^{3}=6.25 \\ & a=0.6-0.06 t \\ & a(5)=0.6-0.0 \times 5=0.3 \mathrm{~ms}^{-2} \end{aligned}$	M1 A1 M1 A1	4	For integration For differentiation
(ii)	Maximum velocity is when $0.6-0.06 t=0$ $[t=10]$ Max velocity $=3 \mathrm{~ms}^{-1}$ $0.6 t-0.03 t^{2}=1.5$ $\left[t^{2}-20 t+50=0\right]$ Times are 2.93 s and 17.07 s	M1 M1 A1 M1 A1 A1	6	For setting $a=0$ For solving $a=0$ Setting velocity $=$ half its maximum and attempting to solve a three term quadratic

Page 7 Mark Scheme

Syllabus
Paper
Cambridge International AS/A Level - October/November 2015

7 (i)	$\begin{aligned} & 36=0+0.5 \times 0.5 t^{2} \\ & t=12 \\ & v^{2}=0+2 \times 0.5 \times 36 \\ & v=6 \\ & s=6 \times 25 \end{aligned}$ remaining distance $=210-36-150=24$ $24=(6+0) / 2 \times t$ $t=8$ Total Time $=12+25+8=45 \mathrm{~s}$	B1 B1 B1 M1 A1	5	Using $s=(u+v) t / 2$
(ii)	Distance travelled by cyclist $=36+6(t-12)$ Distance travelled by car $\begin{aligned} & \quad=0.5 \times 4 \times(t-24)^{2} \\ & 2 t^{2}-96 t+1152 \\ & \quad=36+6 t-72 \\ & {\left[t^{2}-51 t+594=0\right]} \\ & t=33 \text { or } t=18 \\ & \text { Time }=33 \mathrm{~s} \end{aligned}$	M1 M1 M1 A1 B1	5	For attempting distance travelled by cyclist for $t>12$ For attempting distance travelled by car Equating expressions and attempting to solve a three term quadratic equation Choosing the correct solution

CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/43
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	43

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\text {* implies that the A or B mark indicated is allowed for work correctly following }}$ on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded ($1 \mathrm{~d} . \mathrm{p}$. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	43

1	$[\mathrm{WD}=500 \times 2.75 \times 40]$ Work done $=55000 \mathrm{~J}$ $\begin{aligned} & \text { Power }=\frac{55000}{40}=1375 \mathrm{~W} \\ & \text { or Power }=500 \times 2.75=1375 \mathrm{~W} \end{aligned}$	M1 A1 M1 A1	4	For using $\mathrm{WD}=F s$ or for using $\mathrm{WD}=P t$ For using Power $=\Delta \mathrm{WD} \div \Delta t$ or for using $P=F v$
2 (i)		B1	1	After B reaches the floor, A continues at constant speed until it reaches the pulley (no tension and the surface is smooth). Thus A 's speed when B reaches the floor is the same as A 's speed $\left(3 \mathrm{~ms}^{-1}\right)$ when it reaches the pulley. Until the instant when B reached the floor, A and B have the same speed and hence B reaches the floor with speed $3 \mathrm{~ms}^{-1}$.
(ii)	Loss of $\mathrm{PE}=0.15 \mathrm{gh}$ $\text { Gain of } K E=\frac{1}{2}(0.35+0.15) \times 3^{2}$ $1.5 h=0.25 \times 9$ $h=1.5$	B1 B1 M1 A1	4	For using loss of PE $=\text { gain of KE }$
Alternative Method for part (ii)				
(ii)		M1 A1 M1 A1	4	For applying Newton's second law to A and to B or for using $m_{B} g=\left(m_{A}+m_{B}\right) a$ to find a For using $v^{2}=u^{2}+2 a s$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	43

Alternative Method for part (ii)

(ii)	$\begin{aligned} & {[0.15 g-T=0.15 a \text { and } T=0.35 a} \\ & \quad \rightarrow T=\ldots . \\ & T=1.05 \mathrm{~N} \\ & {\left[0.15 g h-\frac{1}{2} \times 0.15 \times 3^{2}=1.05 h\right]} \\ & \text { or } \\ & {\left[\frac{1}{2} \times 0.35 \times 3^{2}=1.05 h\right]} \\ & h=1.5 \end{aligned}$	M1 A1 M1 A1	4	For applying Newton's second law to A and to B to find T For using PE_{B} loss $-\mathrm{KE}_{\mathrm{B}}$ gain $=\mathrm{WD}$ against T or for using KE_{A} gain = WD by T
3	$\begin{aligned} & \frac{P}{4.5}-R=860 \times 4 \\ & \frac{P}{22.5}-R=860 \times 0.3 \\ & \\ & \frac{P}{4.5}-\frac{P}{P}=17.5=860(4-0.3) \rightarrow \\ & \text { or } \\ & -4.5 R+22.5 R= \\ & 860(4 \times 4.5-0.3 \times 22.5) \quad \rightarrow \\ & R=537.5 \end{aligned}$	M1 A1 A1 M1 A1	\%	For using $\mathrm{DF}=P / v$ and for applying Newton's $2^{\text {nd }}$ law at one or both points For eliminating R to find P or for eliminating P to find R Accept 538
4	$\begin{aligned} & \text { KE loss }=\frac{1}{2} \times 12000\left(24^{2}-16^{2}\right) \\ & \text { PE gain }=12000 \mathrm{~g} \times 25 \end{aligned}$	B1 B1		
		M1		For using WD by DF = PE gain - KE loss + WD against resistance

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	43

	WD by DF $=3000000-1920000+7500 \times 500$ Driving force $=4830000 \div 500$ Driving force is 9660 N	A1 M1 A1	6	For using $\mathrm{DF}=\mathrm{WD}$ by $\mathrm{DF} \div 500$
Alternative Method for 4				
4	$\begin{aligned} & {\left[16^{2}=24^{2}+2 \times 500 a\right]} \\ & a=-0.32 \mathrm{~ms}^{-2} \end{aligned}$ Weight component down hill $=$ $12000 g \times 25 / 500$ $\begin{array}{r} \text { DF }-7500-12000 \mathrm{~g} \times \frac{25}{500} \\ =12000 \times(-0.32) \end{array}$ Driving force is 9660 N	M1 A1 B1 M1 A1 A1	6	For using $v^{2}=u^{2}+2 a s$ For using Newton's 2nd law
5 (i)	$\begin{aligned} & x \text {-component }=4+8 \cos 30^{\circ}+12 \cos 60^{\circ} \\ & {[=10+4 \sqrt{ } 3]} \\ & y \text {-component }=8 \sin 30^{\circ}+12 \sin 60^{\circ}+16 \\ & {[=20+6 \sqrt{ } 3]} \end{aligned}$ $R=34.8$ or $\theta=60.9^{\circ}$ with the 4 N force $\theta=60.9^{\circ}$ with the 4 N force or $R=34.8$	B1 B1 M1 A1 B1	5	$\begin{aligned} & 16.928 \\ & 30.392 \end{aligned}$ For using $R^{2}=X^{2}+Y^{2}$ or $\tan \theta=Y \div X$
(ii)	$R=34.8$ $\theta=29.1^{\circ}$ with the 16 N force	$\begin{aligned} & \mathrm{B} 1 \downarrow \\ & \mathrm{~B} 1 \downarrow \end{aligned}$	2	$\mathrm{ft} R$ from (i) ft $90-\theta$ from (i)

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	43

6 (i)	$\begin{aligned} & 20+5 g \sin 10^{\circ}-F=0 \\ & R=5 g \cos 10^{\circ} \\ & {[\mu=(20+8.6824) \div 49.24]} \end{aligned}$ Coefficient of friction is 0.582	M1 A1 B1 M1 A1	5	For resolving forces down the plane For using $\mu=F \div R$
(ii)	$\begin{aligned} & 5 g \sin 10^{\circ}-0.582 \times 49.24=5 a \\ & {\left[0=2.5^{2}-2 \times 4 s\right]} \end{aligned}$ Distance is 0.781 m	M1 A1 M1 A1	4	For using Newton's 2nd law ft μ from (i) $(\mu>0)$ For using $v^{2}=u^{2}+2 a s$

Alternative Method for part (ii)				
(ii)	$\text { PE loss }=5 g d \sin 10^{\circ}$ $\frac{1}{2} \times 5 \times 2.5^{2}+5 g d \sin 10^{\circ}=0.582 \times 5 g d \cos 10^{\circ}$ Distance is 0.781 m	B1 M1 A1 $\sqrt{\wedge}$ A1	4	For using KE loss + PE loss = WD against friction $\mathrm{ft} \mu \quad(\mu>0)$
7 (i)	$\begin{aligned} & {[0.0001 t(t-50)(t-100)=0} \\ & \text { or } v(0)=0, v(50)=0, v(100)=0] \\ & v(t)=0 \text { when } t=0,50 \& 100 \end{aligned}$	M1 A1	2	Either factorise $v(t)$ and solve $v(t)=0$ or evaluate $v(0), v(50)$ and $v(100)$
(ii)	$\left[0.0003 t^{2}-0.03 t+0.5=0\right]$ $\begin{aligned} & t^{2}-100 t+1667=0 \rightarrow \\ & t=\left[\frac{1}{2}\left\{100 \pm \sqrt{\left(100^{2}-4 \times 1667\right)}\right\}\right] \end{aligned}$	M1 dM1		For using $a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}$ For solving $a(t)=0$

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	43

	$a=0$ when $t=21.1$ and when $t=78.9$ $\begin{aligned} & v(21.1)=4.81 \\ & v(78.9)=-4.81 \end{aligned}$ Convex curve from $(0,0)$ to $(50,0)$ with $v>0$ and has a maximum point. The curve for $(50,0)$ to $(100,0)$ is exactly the same as the first curve positioned by rotating the first curve through 180° about the point $(50,0)$.	A1 B1 B1 B1 B1	7	
(iii)	$\begin{aligned} & s(t)=0.000025 t^{4}-0.005 t^{3}+0.25 t^{2}(+c) \\ & {[156.25-625+625]} \end{aligned}$ Greatest distance is 156 m	M1 A1 M1 A1	4	For integrating $v(t)$ to obtain $s(t)$ For using lower and upper limits of 0 and 50 respectively.

CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/42
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	42

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2.
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	42

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	42

1 (i)	$\begin{aligned} & {\left[\begin{array}{ll} s=0.3 \times 5+\frac{1}{2} & 0.5 \times 5^{2} \end{array}\right]} \\ & {[v=0.3+0.5 \times 5=2.8 \mathrm{~m}]} \end{aligned}$ Complete method for finding s required Distance $=7.75 \mathrm{~m}$	M1 A1	2	For using $s=u t+\frac{1}{2} a t^{2}$ or using $v=u+a t$ followed by either v^{2} $=u^{2}+2 a s$ or $s=\frac{(u+v)}{2} t$ or $s=v t-\frac{1}{2} a t^{2}$
(ii)	$[\mathrm{WD}=8 \times 7.75 \times 0.5]$ Work done is 31 J	M1 A1	2	For using $\mathrm{WD}=T d \cos 60^{\circ}$
2 (i)	$\begin{aligned} & {\left[\frac{P}{5}=80 \times 1.2\right]} \\ & P=480 \end{aligned}$	M1 A1	2	For using DF $=\frac{P}{v}$ and Newton's 2nd law
(ii)	$\frac{450}{3.6}-80 g \times 0.035=80 a$ Acceleration is $1.21 \mathrm{~ms}^{-2}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \\ \mathrm{~A} 1 \end{gathered}$	3	For using $\frac{P}{v}-W \sin \alpha=m a$ Allow $a=\frac{97}{80}$
3 (i)	$\begin{aligned} & \text { KE gain }\left[=\frac{1}{2} \times 8 \times 4.5^{2}\right]=81 \mathrm{~J} \\ & {\left[\text { Decrease }=8 g \times 12 \times\left(\frac{1}{8}\right)\right]} \\ & \text { PE loss }=120 \mathrm{~J} \end{aligned}$	B1 M1 A1	3	For using PE $=m g h$ and $h=d \sin \alpha$
(ii)	$[81=120-12 R]$ Resisting force is 3.25 N	M1 A1	2	For using KE gain $=$ PE loss - WD by resistance Allow $R=\frac{13}{4}$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International ASSA Level - May/June 2015	9709	42

Alternative method for (ii)				
(ii)	$\begin{aligned} & {\left[4.5^{2}=2 \times a \times 12\right] \rightarrow} \\ & {\left[a=\frac{27}{32}=0.84375\right]} \\ & {\left[8 g \sin \alpha-R=8 \times \frac{27}{32}\right]} \end{aligned}$ Resisting force is 3.25 N	M1 A1	2	For using $v^{2}=u^{2}+2 a s$ to find a and using Newton's 2nd law to find R
4 (i)	$v(t)=0.025 t^{3}-0.75 t^{2}+5 t \quad(+0)$ $\begin{equation*} \mathrm{s}(t)=0.00625 t^{4}-0.25 t^{3}+2.5 t^{2} \tag{+0} \end{equation*}$	M1 A1 M1 A1	4	For integrating to obtain $v(t)$. For integrating to obtain $s(t)$.
(ii)	$\left[t^{4}-40 t^{3}+400 t^{2}=0 \rightarrow t^{2}(t-20)^{2}=0\right]$ Time taken is 20 s	M1 M1 A1	3	For setting $s=0(t$ not zero $)$ in their attempt at s which was obtained using integration only. For attempting to solve a quartic equation for $s=0$ where s was obtained using integration only. $t=20 \text { only }$
5 (i)	$-20=20-10 t \rightarrow$ time taken is 4 s or $0=20-10 t \rightarrow$ time taken is $2 \times 2 \mathrm{~s}=4 \mathrm{~s}$ $[30=0+4 a]$ Acceleration of P is $7.5 \mathrm{~ms}^{-2}$	M1 A1 M1 A1 \downarrow	4	For using $v=u-g t$ to find the time taken by Q. Must be for a complete method for the total time taken to return to point A For using $v=u+a t$ to find the acceleration of P ft on an incorrect positive value of the time taken

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	42

(ii)	Either $30^{2}=2 \times 7.5 \times O A$ or $\quad O A=\frac{(0+30)}{2} \times 4$ or $\quad O A=\frac{1}{2} \times 7.5 \times 4^{2}$ or $\quad O A=30 \times 4-\frac{1}{2} \times 7.5 \times 4^{2}$ \rightarrow Distance $O A$ is 60 m	M1 A1	2	For using $v^{2}=u^{2}+2 a s$ or $s=\frac{(u+v)}{2} t$ or $\mathrm{s}=u t+\frac{1}{2} a t^{2}$ or $\mathrm{s}=v t-\frac{1}{2} a t^{2}$ to find the distance $O A$
6 (i)	$\left[h=\frac{1}{2} \times 0.5 \times 2\right]$ $h=0.5$	M1 Al	2	For using area property of the graph or constant acceleration formulae
(ii)	$[a=2 \div 0.5]$ $[T-m g=m a$ and $(1-m) g-T=(1-m) a$ or $a=\{(1-2 m) \div(1-m+m)\} g]$	B1 M1		State the value of a using the gradient property of the graph For applying both - Newton's 2nd law to P (while Q is moving) - Newton's 2nd law to Q (while Q is moving) or using $a=[(M-m) \div(M+m)] g$
	$\begin{aligned} & m=0.3 \\ & {[T-0.3 \times 10=4 \times 0.3 \quad \text { or }} \\ & 0.7 \times 10-T=4 \times 0.7] \end{aligned}$ Tension is 4.2 N	M1 A1 M1 A1	6	For eliminating T or rearranging to find m For substituting a and m into - Newton's 2nd law to P (while Q is moving) - Newton's 2nd law to Q (while Q is moving) to find T (tension)

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	42

(iii)	$\begin{aligned} & (-2-2) \div(t-0.5)=-10 \\ & T=0.9 \end{aligned}$	M1 A1 A1	3	For using the gradient property of the graph with acceleration $-g$
First Alternative method for (iii)				
(iii)	$\begin{aligned} & {[-2=2-10 t]} \\ & t=0.4 \\ & \text { Required time }=0.5+0.4=0.9 \end{aligned}$	M1 A1 A1	3	For using $v=u+a t$ to find the total time that string is slack
Second Alternative method for (iii)				
(iii)	$t=0.2 \mathrm{~s}$ $t=0.2 \times 2=0.4 \mathrm{~s}$ Total time $=0.9 \mathrm{~s}$	B1 B1 B1	3	Obtaining the time taken from $v=0$ to $v=2$ OR $v=0$ to $v=-2$ Obtaining the total time that the string is slack. For completing the solution using $0.4+0.5=0.9 \mathrm{~s}$
$7 \quad$ (i)	$\begin{aligned} & 0.8 T_{A}+0.6 T_{R}=5.6 \\ & 0.6 T_{A}=0.8 T_{R} \end{aligned}$ Tension in $A J$ is 4.48 N and tension in $R J$ is 3.36 N	M1 A1 A1 M1 A1	5	For resolving forces at J horizontally or vertically Allow $T_{A} \cos 36.9+T_{R} \cos 53.1=5.6$ oe Allow $T_{A} \sin 36.9=T_{R} \sin 53.1$ oe For solving the simultaneous equations for T_{A} and T_{R}

First Alternative Method for (i)

(i)	$\frac{5.6}{\sin 90}=\frac{T_{A}}{\sin \alpha}=\frac{T_{R}}{\sin (270-\alpha)} \mathrm{m}$	M1		For applying Lami's theorem to two of the three forces T_{A}, T_{R}, and 5.6 where α is an obtuse angle
	$\frac{5.6}{\sin 90}=\frac{T_{A}}{0.8}=\frac{T_{R}}{0.6} \mathrm{~m}$	A1		Allow sin 126.9 for 0.8 and $\sin 143.1$ for 0.6 here
		M1		Solve for T_{A} and T_{R}
	$T_{A}=4.48$ and $T_{R}=3.36$	A1	5	

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	42

Second Alternative Method for (i)

(i)	$\begin{aligned} & \frac{5.6}{\sin 90}=\frac{T_{A}}{\sin \alpha}=\frac{T_{R}}{\sin (90-\alpha)} \mathrm{m} \\ & \frac{5.6}{\sin 90}=\frac{T_{A}}{0.8}=\frac{T_{R}}{0.6} \mathrm{~m} \end{aligned}$ $T_{A}=4.48 \text { and } T_{R}=3.36$	M1 A1 A1 M1 A1	5	For applying triangle of forces to two of the three forces T_{A}, T_{R}, and 5.6 Allow $\sin 53.1$ for 0.8 and $\sin 36.9$ for 0.6 here Solve for T_{A} and T_{R}
(ii)	$0.2 g+F=T_{R} \times \cos 36.9$ $\begin{aligned} & N=T_{R} \times \sin 36.9 \\ & {\left[0.2 g+\mu \times T_{R} \times 0.6=T_{R} \times 0.8\right]} \end{aligned}$ $\mu=0.688 \div 2.016=0.341$	$B 1^{\downarrow}$ $B 1{ }^{\wedge}$ M1 A1	4	ft on T_{R} and 36.9 ft on T_{R} and 36.9 For using $\mu=F \div N$ and obtaining an equation in μ AG
(iii)	$\begin{aligned} & {\left[0.2 g+m g=\mu N+0.8 T_{R}\right]} \\ & 0.2 g+m g=0.341 \times 2.016+3.36 \times 0.8 \\ & m=0.137 \text { or } 0.138 \end{aligned}$	M1 A1 A1	3	For a four term equation from resolving forces acting on R vertically.

CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/41
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	41

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\text {* implies that the } \mathrm{A} \text { or B mark indicated is allowed for work correctly following }}$ on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2.
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	41

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

4 (i)		M1		For using KE gain $=\frac{1}{2} m v_{B}^{2}$ or PE loss $=m g \times A B \sin \theta$
	```For KE gain \(=4032 \times 10^{3}\) or PE loss \(=42 \times 10^{6} \sin \theta\)```	A1		
	$\begin{aligned} \text { PE loss }= & 42 \times 10^{6} \sin \theta \text { or } \\ & \text { KE gain }=4032 \times 10^{3} \end{aligned}$	B1	3	
(ii)		M1		For using WD by DF $=$ KE gain - PE loss + WD by resistance
	$5000=4032-42000 \sin \theta+3360$	A1^		
	$\theta=3.3{ }^{\circ}$	A1	3	
5		M1		For using $\mathrm{DF}=\frac{P}{v}$ for DF up and down
		M1		For applying Newton's $2^{\text {nd }}$ law up and down
	$\frac{P}{3}-R-84 g \times 0.1=84 \times 1.25$	A1		
	$\frac{P}{10}-R+84 g \times 0.1=84 \times 1.25$	A1		
	$\left[P\left(\frac{1}{3}-\frac{1}{10}\right)-168=0\right]$	M1		For solving equations for $P$
	$P=720$	A1		
	$\left[R=\frac{720}{3}-84-105\right]$	M1		For substitution for $P$ to obtain $R$
	$R=51$	A1	8	
6 (i)		M1		For integrating $a(t)$ to find $v(t)$
	$v(t)=0.05 t-0.0001 t^{2} \quad(+0)$	A1		
	$v(200)=10-4=6 \mathrm{~ms}^{-1}$	A1		
	$v(500)=25-25=0$	A1	4	
(ii)		M1		For integrating $v(\mathrm{t})$ between limits 0 to 500 to obtain the distance $A$ travels


	$\begin{aligned} & \int_{0}^{500}\left(0.05 t-0.0001 t^{2}\right) d t \\ & {\left[\frac{0.05 t^{2}}{2}-\frac{0.0001 t^{3}}{3}\right]_{0}^{500}} \end{aligned}$	A1		
	$\begin{aligned} & \text { Distance }=0.025 \times 500^{2}-0.0001 \times \\ & 500^{3} \div 3 \end{aligned}$	A1		Accept 2080
		M1		For using area property of graph or $s=\frac{1}{2}(u+v) t$ or $s=u t+\frac{1}{2} a t^{2}$ to find distance travelled by $B$
	$\begin{aligned} & \text { Distance }=\frac{1}{2} \times 6 \times 500=1500 \mathrm{~m} \text { or } \\ & \text { distance }=\frac{1}{2}(0+6) \times 200+\frac{1}{2}(6+0) \times 300 \\ & \text { or distance }=\left(0+\frac{1}{2} 0.03 \times 200^{2}\right) \\ & \quad+\left(6 \times 300+\frac{1}{2}(-0.02) 300^{2}\right) \end{aligned}$	A1		
	Distance between $A$ and $B$ is $2083-1500=583 \mathrm{~m}$	B1^	6	Can only be scored if distance travelled by $A$ has been found using integration
7 (i)		M1		For using Newton's $2^{\text {nd }}$ law for both particles
	$T-0.2 \times 3=0.3 a$ and 7-T=0.7a	A1		
	Acceleration $=6.4 \mathrm{~ms}^{-2}$	A1		
	[ $v=0+6.4 \times 0.25]$	M1		For using $v=0+a t$ to find speed when string breaks
	$v=1.6 \mathrm{~ms}^{-1}$	A1		
	$\left[\text { Distance }=0+\frac{1}{2} 6.4 \times 0.25^{2}\right]$	M1		For using $s=u t+\frac{1}{2} a t^{2}$ to find distance moved before break
	Distance $=0.2 \mathrm{~m}$	A1		
	$\left[v^{2}=1.6^{2}+2 g \times(0.5-0.2)\right]$	M1		For using $v^{2}=u^{2}+2 g s$ to find speed when $B$ hits floor
	Speed is $2.93 \mathrm{~ms}^{-1}$	A1	9	


Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	41


(ii)		M1		For finding distance travelled by $A$ after break from $v^{2}=u^{2}+2 a s$
	Distance travelled after break $=\left(0-1.6^{2}\right) \div(2 \times-2)=0.64$	A1		$\begin{aligned} & \text { For } A, F=0.2 \times 3 \text { and so } \\ & -0.2 \times 3=0.3 a \text { so } a=-2 \end{aligned}$
	Total distance travelled $=0.2+0.64=0.84$	B1	3	Distance $=0.84 \mathrm{~m}$
	Alternative method for 7(ii)			
(ii)	$T=2.52, F=0.2 \times 3$   WD by $T=2.52 \times 0.2$   WD by $F=0.2 \times 3 \times d$	B1		For stating WD by $T$ on $A$ and WD by $F$
	$[0.6 d=2.52 \times 0.2]$	M1		Using WD by $F=$ WD by $T$ (No change in KE or PE for $A$ )
	WD by $T=$ WD by $F \rightarrow d=0.84$	A1	3	Distance $=0.84 \mathrm{~m}$

## MARK SCHEME for the October/November 2014 series

## 9709 MATHEMATICS

9709/43
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	43

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\downarrow$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2.
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR-1 A penalty of MR-1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\text { " " }}$ marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

$1 \quad$ (i)	$\begin{aligned} & \mathrm{DF}=P \div 18 \\ & {[P \div 18-800=1400 \times 0.5]} \\ & P=27000 \end{aligned}$	B1   M1   A1	3	For using $\mathrm{DF}-R=m a$
(ii)	$[1080-800=1400 a]$   Acceleration is $0.2 \mathrm{~ms}^{-2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For using $\mathrm{DF}=P \div 25$ and $\mathrm{DF}-R=m a$
2	$\begin{aligned} & 0.65 \times 10 \times(63 / 65)-T=0.65 a \text { or } \\ & T-0.65 \times 10 \times(16 / 65)=0.65 a \\ & T-0.65 \times 10 \times(16 / 65)=0.65 a \text { or } \\ & 0.65 \times 10 \times(63 / 65)-T=0.65 a \text { or } \\ & 0.65 \times 10 \times(63-16) / 65=2 \times 0.65 a \\ & {[T-1.6=6.3-T] \text { or }} \\ & \quad[T=6.3-0.65 \times(47 / 13)] \text { or } \\ & \quad[T=1.6+0.65 \times(47 / 13)] \end{aligned}$   Tension is 3.95 N	M1   A1   B1   M1   A1	5	For applying Newton's 2nd law to $P$ or to $Q$   For eliminating $a$
3 (i)	$\begin{aligned} & {[W \cos \alpha+7 \times 0.6=8]} \\ & W \cos \alpha=3.8(\mathrm{cwo}) \\ & W \sin \alpha=5.6 \end{aligned}$	M1   A1   B1	3	For resolving forces acting at $O$ vertically AG
(ii)	$\begin{aligned} & W=6.77 \text { or } \alpha=55.8 \\ & \alpha=55.8 \text { or } W=6.77 \end{aligned}$	M1   A1   B1	3	For using $W^{2}=(W \sin \alpha)^{2}+(W \cos \alpha)^{2}$ or $\tan \alpha=(W \sin \alpha \div W \cos \alpha)$
4 (i)	$\begin{aligned} & v(8)=0.25 \times 8=2 \\ & 2=-6.4+19.2-k \rightarrow k=10.8 \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{~B} 1 \downarrow \end{gathered}$	2	$\mathrm{ft}(12.8-v)$
(ii)	$\begin{aligned} & {[\mathrm{d} v / \mathrm{d} t=-0.2 t+2.4(=0 \text { when } t=12)} \\ & \left.\mathrm{v}_{\text {max }}=-0.1 \times 144+2.4 \times 12-10.8\right] \end{aligned}$   Maximum speed is $3.6 \mathrm{~ms}^{-1}$	M1 $\mathrm{Alv}$	2	For finding $t$ when $\mathrm{d} v / \mathrm{d} t=0$ and substituting into $v(t)$ $\mathrm{ft}(14.4-\operatorname{incorrect} k)$


(iii)	Displacement $s_{1}=1 / 20.25 \times 8^{2} \quad(=8)$   [Displacement $\left.s_{2}=\left[-0.1 t^{3} / 3+1.2 t^{2}-10.8 t\right]_{8}^{18} \quad(=26.7)\right]$   Displacement is 34.7 m	B1 M1 A1	3	For using displacement $s_{2}=\int_{8}^{18}\left(-0.1 t^{2}+2.4 t-10.8\right) \mathrm{d} t$
5	$\begin{aligned} & {\left[P-8 g \sin 5^{\circ}-F=8 a\right]} \\ & 7 X-8 g \sin 5^{\circ}-F=8 \times 0.15 \text { and } \\ & \quad 8 X-8 g \sin 5^{\circ}-F=8 \times 1.15 \end{aligned} \begin{aligned} & X=8 \end{aligned}$ $\begin{aligned} & F=56-8 g \sin 5^{\circ}-8 \times 0.15 \text { or } \\ & F=64-8 g \sin 5^{\circ}-8 \times 1.15 \text { or } \\ & F=56 \times 1.15-64 \times 0.15-8 g \sin 5^{\circ} \text { or } \\ & F=47.8(275 \ldots) \end{aligned}$ $R=8 g \cos 5^{\circ} \quad(=79.695 \ldots)$ $[\mu=47.8 \div 79.7]$   Coefficient is 0.600 (accept 0.6 )	M1   A1   A1   M1   Al ${ }^{\wedge}$   B1   M1   A1	8	For using Newton's $2^{\text {nd }}$ law (either case)   For obtaining a numerical expression for F   $\mathrm{ft} X$ either from error for one term in $X / F$ equation or from error in solution of correct $X / F$ equations   For using $\mu=\frac{F}{R}$
6 (i)	Acceleration is $4 \mathrm{~ms}^{-2}$   For $T-m g=4 m$ and $(1-m) g-T=$ $4(1-m)$   or $4=(1-m-m) g$   $P$ has mass 0.3 kg and $Q$ has mass 0.7 kg	M1   A1   M1   A1   A1	5	For using the gradient property for acceleration   For applying Newton's $2^{\text {nd }}$ law to both particles or using the formula $(M+m) a=(M-m) g$   and for using $m+M=1$


(ii)	For using the area property of the graph or $h=1 / 2 a t^{2}$ to obtain $h=2$	B1	1	
(iii)	Distance travelled upwards by $P=1 / 21.4 \times 4$   Height is 4.8 m	B1   B1	2	
$7 \quad$ (i)	$\begin{aligned} & 4^{2}=0^{2}+2 a \times 12.5 \rightarrow a=0.64 \\ & {[35 \times 0.96-3 g \times 0.6-F=3 \times 0.64]} \\ & F=13.68 \end{aligned}$   WD against $F=13.68 \times 12.5=171 \mathrm{~J}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \end{aligned}$	4	For using Newton's $2^{\text {nd }}$ law to find $F$
(ii)	$\begin{aligned} & \mathrm{R}_{\text {from O to A }}=3 g \times 0.8-35 \times 0.28 \\ & {[\mu=13.68 \div 14.2(=0.96338)]} \end{aligned}$   Coefficient is 0.963 (accept 0.96 )	B1   M1   A1	3	For using $\mu=F \div R$
(iii)	$[-3 g \times 0.6-0.96338 \times(3 g \times 0.8)=3 a]$   Acceleration is $-13.7 \mathrm{~ms}^{-2}$ $[0=16+2(-13.7) s]$   Distance travelled is 0.584 m	M1   A1   M1   A1	4	For applying Newton's $2^{\text {nd }}$ law to the block to find $a$   For using $v^{2}=u^{2}+2 a s$ to find $s$
Alternative for part (i)				
(i)	$\begin{aligned} & \text { Gain in } \mathrm{KE}=1 / 23 \times 4^{2}(=24 \mathrm{~J}) \\ & \text { Gain in } \mathrm{PE}=3 g \times 12.5 \times 0.6(=225 \mathrm{~J}) \\ & {\left[\mathrm{WD}=35 \times 12.5 \times 0.96-1 / 23 \times 4^{2}-\right.} \\ & 3 g \times 12.5 \times 0.6] \end{aligned}$   WD against $F$ is 171 J	B1   B1   M1   A1	4	For using WD against F $=\mathrm{WD} \text { by applied force }- \text { KE gain }-\mathrm{PE}$ gain
Alternative for part (iii)				
	WD against $F=0.96(338 ..) \times 3 g \times 0.8 s$ $1 / 23 \times 4^{2}=3 g s(0.6)+0.96(338 . .) \times 3 g \times 0.8 s$   Distance travelled is 0.584 m	B1   M1   A1   A1	4	For using KE loss = PE gain + WD against friction

## MARK SCHEME for the October/November 2014 series

## 9709 MATHEMATICS

9709/42
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	42

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\downarrow$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded ( 1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	42

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR-1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ "" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	42


1 (i)	$[-11=11-10 t]$   Time after projection is 2.2 seconds	M1   A1	2	For using $v=u-g t$ (or equivalent method) to find the duration of motion
(ii)	$\begin{aligned} & h=0+1 / 2 g \times 2.2^{2}=24.2 \\ & V=0+g \times 2.2=22 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \sqrt{\wedge} \\ & \mathrm{~B} 1 \sqrt{\wedge} \end{aligned}$	2	
2 (i)	$[X=25 \times 0.96-30 \times 0.8=0]$   Component in $x$-direction is zero	M1   A1	2	For resolving forces in the $x$ direction AG
(ii)	$[Y=25 \times 0.28-20+30 \times 0.6=5]$   Resultant has magnitude 5 N and acts in the positive $y$ direction	M1   A1	2	For resolving forces in the $y$ direction
(iii)	Replacement has magnitude 30 N and acts in the -ve $y$ direction	B1	1	
3 (i)	$\left[v_{B}=1.2 \times 28 \div 0.96\right]$   Speed of the train at $B$ is $35 \mathrm{~ms}^{-1}$	M1   A1	2	For using $P=F v$ and the factors 1.2 and 0.96 and an equation in $v_{B}$ only   AG
(ii)	KE increase $=100000\left(35^{2}-28^{2}\right)$   WD by engine $=44.1 \times 10^{6}+2.3 \times 10^{6} \mathrm{~J}$   Work done is 46400 kJ or $46.4 \times 10^{6} \mathrm{~J}$	B1   M1   A1	3	For using WD by engine $=\mathrm{KE}$ increase + WD against resistance or 46400000 J
4 (i)	$\begin{aligned} & {\left[X \cos 30^{\circ}=40 \cos 60^{\circ}\right]} \\ & X=23.1(=40 / \sqrt{ } 3) \end{aligned}$	M1   A1	2	For resolving forces horizontally
(ii)	$\left[X \cos 30^{\circ}-10=40 \cos 60^{\circ}\right]$ $X=60 \div \sqrt{ } 3 \text { or } 34.6$ $\left[R+X \sin 30^{\circ}+40 \sin 60^{\circ}=15 g\right]$ $[\mu=10 \div(150-30 / \sqrt{3}-20 \sqrt{ } 3)]$   Coefficient is 0.102	M1   A1   M1   M1   A1	5	For resolving forces horizontally   For resolving forces vertically $(R=98.038)$   For using $F=\mu R$


Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	42


5 (i) (a)	$[F=0.7 \times 3, \mathrm{WD}=2.1 \times 0.9]$   Work done is 1.89 J	M1   A1	2	For using $F=\mu R$ and $\mathrm{WD}=F s$
(b)	Loss of PE $=3 \times 0.9=2.7 \mathrm{~J}$	B1	1	
(c)	$[\mathrm{KE} \text { gain }=2.7-1.89]$   Gain in $\mathrm{KE}=0.81 \mathrm{~J}$	M1   A1	2	For 'gain in $\mathrm{KE}=$ loss in $\mathrm{PE}-\mathrm{WD}$ by friction'
(ii)	$\left.1 / 2(0.3+0.3) v_{\text {at break }}{ }^{2}=0.81\right]$ $v_{\text {floor }}{ }^{2}=v_{\text {at break }}{ }^{2}+2 g \times 0.54$   Speed at the floor is $3.67 \mathrm{~ms}^{-1}$	M1   M1   A1	3	For using $1 / 2\left(m_{A}+m_{B}\right) v^{2}=$ gain in KE   For using $v^{2}=u^{2}+2 g s$
Alternative method for (i) (c) and (ii)				
(c)	$\begin{aligned} & {[T-2.1=0.3 a \text { and } 3-T=0.3 a} \\ & \rightarrow \quad a=1.5] \\ & {\left[v^{2}=2 \times 1.5 \times 0.9=2.7\right]} \end{aligned}$ $\mathrm{KE}=0.5 \times(0.3+0.3) \times 2.7=0.81 \mathrm{~J}$	M1   A1	2	For applying Newton's $2^{\text {nd }}$ law to both particles and finding $a$ and using $v^{2}=0+2$ as and attempting KE
(ii)	$\left[v_{\text {at break }}^{2}=2.7\right]$ $v_{\text {floor }}^{2}=v_{\text {at break }}{ }^{2}+2 g \times 0.54$   Speed at floor $=3.67 \mathrm{~ms}^{-1}(=1.5 \sqrt{ } 6)$	M1   M1   A1	3	For using their $v^{2}$ in (i)(c) as $v_{\text {at break }}{ }^{2}$   For using $v^{2}=u^{2}+2 g s$
Alternative method for (ii)				
(ii)	$\begin{aligned} & {[0.3 \times g \times 0.54] \text { or }\left[1 / 2 \times 0.3 \times\left(v^{2}-2.7\right)\right]} \\ & {\left[1.62=1 / 2 \times 0.3 \times\left(v^{2}-2.7\right)\right]} \\ & \text { Speed at floor }=3.67 \mathrm{~ms}^{-1}(=1.5 \sqrt{ } 6) \end{aligned}$	M1   M1   A1	3	For attempting PE loss or KE gain for the falling particle only   For using PE loss $=$ KE gain of this particle
6 (i) (a)	(a) Acceleration is $2.8 \mathrm{~ms}^{-2}$	B1		Using acceleration $=g \sin \alpha$
(b)	$[m g \times 0.28-0.5 m g \times 0.96=m a]$   Acceleration is $-2 \mathrm{~ms}^{-2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	For using Newton's $2^{\text {nd }}$ law


Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	42


(ii)	$\begin{aligned} & v_{B}{ }^{2}=2 \times 2.8(A B) \text { and } \\ & \quad 2^{2}=5.6(A B)-2 \times 2(5-A B) \end{aligned}$   Distance is 2.5 m	M1   A1 ${ }^{\wedge}$   A1	3	For using $v^{2}=u^{2}+2 a s$ for $A B$ and for $B C$ and using $A B+B C=5$   ft incorrect answers in (i)
Alternative method for (ii)				
	$\begin{aligned} & {\left[m g \times 5 \times 0.28=1 / 2 m 2^{2}+\right.} \\ & \mu \times m g \times 0.96 \times B C] \\ & 14=2+4.8 \times B C \\ & B C=12 / 4.8=2.5 \mathrm{~m} \end{aligned}$	M1   A1   A1	3	For using Loss in $\mathrm{PE}=$ Gain in KE + WD against Friction for the motion from $A$ to $C$   Correct equation
(iii)	$T=2 \times 2.5 \div(0+\sqrt{ } 14)+2 \times 2.5 \div(\sqrt{ } 14+2)$   Time taken is 2.21 s	M1   A1   A1	3	For using $t=2 s \div(u+v)$ for $A B$ and $B C$
$7 \quad$ (i)	$\begin{aligned} & v=-4.8 \\ & {[ \pm 4.8=3 a]} \end{aligned}$   Magnitude of acceleration is $1.6 \mathrm{~ms}^{-2}$	B1   M1   A1	3	For using $v=0+a t$
(ii)	$[-0.4 t+4(=0 \text { when } t=10)]$ $v_{\max }=-0.2 \times 100+4 \times 10-15 \rightarrow$   Maximum velocity is $5 \mathrm{~ms}^{-1}$	M1   M1   $P$   A1	3	For finding the value of $t$ when $\mathrm{d} v / \mathrm{d} t=0$   For evaluating $v(10)$ as $v_{\text {max }}$ (the graph excludes the possibility of $v(10)$ as $v_{\text {min }}$ )
(iii) (a)	Distance 0 to $3 \mathrm{~s}=1 / 2 \times 3 \times 4.8(=7.2)$   Distance 3 to $5 \mathrm{~s}=-\int_{3}^{5}\left(-0.2 t^{2}+4 t-15\right) \mathrm{d} t$   Distance $= \pm 4.5333 \ldots \mathrm{~m}$   Average speed $=(7.2+4.533) \div 5$   $=2.35 \mathrm{~ms}^{-1}$	B1   M1   A1   B1		Attempt to integrate and use limits


Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	42


| (b)Distance $B C$ <br> $=\left[-\frac{0.2 t^{3}}{3}+2 t^{2}-15 t\right] 15$ <br> and <br> Av speed $=(A B+B C) \div 15$ <br>  <br>  <br> Av speed $=(45.066 \div 15)=3.00 \mathrm{~ms}^{-1}$ | M1 |  | ft for errors in coefficients in cubic <br> expression |
| :--- | :--- | :---: | :---: | :--- |

## MARK SCHEME for the October/November 2014 series

## 9709 MATHEMATICS

9709/41
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	41

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2.
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded ( 1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	41

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR -1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\downarrow$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

1	$\text { DF }-R=800 \times 1.2$ $\mathrm{DF}=22500 / 18[=1250]$   Resistance is 290 N	M1   A1   B1   A1	4	For using Newton's $2^{\text {nd }}$ law with three terms
2	For $A$ : right angle between 18 and $R$ and   $30^{\circ}$ opposite 18   or   $W_{A} \sin 30^{\circ}=18 \quad$ or   For $B$ : right angle between 18 and $W$ and   $30^{\circ}$ opposite 18   or   $W_{B} \sin 30^{\circ}=18 \cos 30^{\circ}$   For $B$ : right angle between 18 and $W$ and   $30^{\circ}$ opposite 18   or   $W_{B} \sin 30^{\circ}=18 \cos 30^{\circ} \quad$ or   For $A$ : right angle between 18 and $R$ and   $30^{\circ}$ opposite 18   or   $W_{A} \sin 30^{\circ}=18$   Weight of $A$ is 36 N and weight of $B$ is 31.2 N	M1   A1   B1   A1	4	For a triangle of forces with sides $18, R$ and $W$ for $A$ or for $B$   - or -   for resolving forces acting on $A$ or on $B$ parallel to line of greatest slope
3 (i)	$\begin{aligned} & F+W \sin \alpha=7.2 \\ & {[\mu \times 7.5 \cos \alpha \geqslant 7.2-7.5 \sin \alpha]} \\ & \mu \geqslant 17 / 24 \end{aligned}$	M1   A1   M1   A1	4	For resolving forces parallel to slope with three terms   For using $F \leqslant \mu R$   AG
(ii)	$[7.2+7.5 \times(7 / 25)-\mu(7.5 \times 24 / 25)>0]$ $\mu<31 / 24$	M1   A1	2	For using 'resultant force down the plane is $>0$ ' and $F=\mu R$   AG
$4 \quad$ (i)	End speed $=1.3+0.1 \times 20$ $v_{Q}(t)=0.008 t^{2}+v_{Q}(0)$ $\left[3.3=0.008 \times 20^{2}+v_{Q}(0)\right]$   Speed of $Q$ when $t=0$ is $0.1 \mathrm{~ms}^{-1}$	B1   B1   M1   A1	4	For substituting end speed and $t=20$


Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	41


(ii)	$\begin{aligned} & \text { Distance } A O=\left(3.3^{2}-1.3^{2}\right) \div(2 \times 0.1) \text { or } \\ & \quad 20 \times 1 / 2(1.3+3.3)[=46] \\ & \text { Distance } O B=0.008 \times 20^{3} \div 3+0.1 \times 20 \\ & {[=70 / 3=23.3]} \end{aligned}$   Distance $A B$ is 69.3 m	B1   B1   B1	3	or $A O=1.3(20)+1 / 2(0.1) \times 20^{2}$
5 (i)	$\text { Frictional force }=\mu \times 0.25 g$ $0.3 g=0.2 g+\mu 0.25 g \rightarrow$   Coefficient of friction is 0.4	M1   B1   A1	3	For resolving forces horizontally on $B$, including the frictional force and using tensions in $P B$ and $B Q$ being equal to the weights of $P$ and $Q$ respectively.
(ii)	$\begin{aligned} & 0.2 g-T=0.2 a \\ & T-0.4 \times 0.25 g=0.25 a \\ & T-0.4 \times 0.25 g=0.25 a \\ & 0.2 g-T=0.2 a \\ & 0.2 g-\mu 0.25 g=(0.2+0.25) a \end{aligned}$   Acceleration is $2.22 \mathrm{~ms}^{-2}$   Tension is 1.56 N	M1   A1   B1   M1   B1   A1	6	For applying Newton's $2^{\text {nd }}$ law to $P$ or to $B$   For solving for $a$ and for $T$
6 (i)	$[3 g-R=3 \times 5.5]$   Resistance is 13.5 N	M1	2	For using Newton's $2^{\text {nd }}$ law
(ii)	Graph consists of two line segments; the first starts at the origin and has a positive gradient.   The second starts where first one ends and has positive but less steep gradient.	B1   B1	2	


Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	41


(iii)	$\begin{aligned} & {\left[v_{s}^{2}=2 \times 10 \times 5=100\right. \text { or }} \\ & \left.v_{B}^{2}=v_{T}^{2}+2 \times 5.5 \times 4\right] \end{aligned}$   $v_{S}=10 \mathrm{~ms}^{-1}$ at surface and $v_{B}=12 \mathrm{~ms}^{-1}$ at bottom   - both shown on sketch $\begin{aligned} & {\left[10=0+10 t_{1} \quad\right. \text { or }} \\ & \left.12=10+5.5\left(t_{2}-t_{1}\right)\right] \end{aligned}$   $t_{1}=1 \mathrm{~s}$ at surface and shown on sketch   $t_{2}=1.36 \mathrm{~s}$ at bottom and shown on sketch.	M1   A1   M1   A1   A1	5	For using $v^{2}=u^{2}+2 a s$ (for either stage)   For using $v=u+a t$ (for either stage)
7	$\begin{aligned} & \text { PE change }=60 g \times 17.5 \text { or } \\ & \quad \text { KE change }=1 / 260\left(8.5^{2}-3.5^{2}\right) \\ & \text { KE change }=1 / 260\left(8.5^{2}-3.5^{2}\right) \text { or } \\ & \quad \text { PE change }=60 g \times 17.5 \end{aligned} \text { WD against resistance }=6 \times 250_{\text {WD by pulling force }=}^{50 \cos \alpha \times 250} \begin{array}{r} \text { WD }=10500-1800+1500 \\ \text { WD by the pulling force is } \\ 10200 \mathrm{~J} \text { or } 10.2 \mathrm{~kJ} \\ \text { For using } \mathrm{WD}=F d \cos \alpha \\ 10200=50 \times 250 \cos \alpha \\ \alpha=35.3 \end{array}$	M1   A1   B1   B1   B1   M1   A1 $\downarrow$   A1   M1   A1   A1	11	To obtain PE change or KE change $[\mathrm{PE}=10500]$ $[\mathrm{KE}=1800]$ $[=1500]$   For using 'WD by the pulling force is a linear combination of PE change, KE change and WD against resistance.'


Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	41


Alternative solution			
	M1		Using $v^{2}=u^{2}+2 a s$
$(3.5)^{2}=(8.5)^{2}+2 a(250)$	A1		
$a=-3 / 25=-0.12$	A1		
	M2		Applying Newton's $2^{\text {nd }}$ law with 4 relevant terms [Allow M1 with 3 relevant terms]
$50 \cos \alpha-6-60 g(17.5 / 250)=60(-0.12)$	A4		One mark for each correct term
[ $\cos \alpha=102 / 125]$	M1		Solve for $\cos \alpha$
$\alpha=35.3$	A1	11	

## MARK SCHEME for the May/June 2014 series

## 9709 MATHEMATICS

9709/43
Paper 4 (Mechanics 1), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Syllabus	Paper
9709	43

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $₹$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2.
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .
Page 3 Mark Scheme
Syllabus $\quad$ Paper
GCE AS/A LEVEL - May/June 2014 9709 $\quad 43$

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR-1 A penalty of MR -1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all $A$ and $B$ marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	43


1 (i)   (ii)	$[\mathrm{N}+$ component of $\mathrm{X}=$ Weight of B$]$   Normal component is $\left(70-\mathrm{X} \cos 15^{\circ}\right) \mathrm{N}$ $\mathrm{F}=\mathrm{X} \sin 15^{\circ}$   $\left[\mathrm{X} \sin 15^{\circ}=0.4\left(70-\mathrm{X} \cos 15^{\circ}\right)\right]$   Value of X is 43.4	M1   A1   B1   M1   A1	[2] [3]	For resolving forces acting on the block vertically (3 terms required)   For using $F=\mu R$
2	$\begin{aligned} & \text { DF }-600-1250 \times 0.02 g=1250 \times 0.5 \\ & v=23000 \div(625+600+250) \end{aligned}$   Speed of car is $15.6 \mathrm{~ms}^{-1}$	M1   A1   M1   A1ft   A1	[5]	For using Newton's $2^{\text {nd }}$ law   For using DF $=23000 / \mathrm{v}$   ft error in one term for DF above ( $1^{\text {st }}$ A mark)


Alternative Method				
	$\mathrm{WD}=1250 \times 0.5 \mathrm{~s}+1250 \mathrm{~g} \times 0.02 \mathrm{~s}+600 \mathrm{~s}$ $\mathrm{v}=23000 \div(625+600+250)$   Speed of car is $15.6 \mathrm{~ms}^{-1}$	M1   A1   M1   A1ft   A1	[5]	For using WD by driving force $=$ KE gain + PE gain + WD against resistance   For using WD by driving force $=\mathrm{DF} \times \mathrm{s}$ and $D F=23000 / v$   ft error in one term for WD above ( $1^{\text {st }} \mathrm{A}$ mark)
3	$\begin{aligned} & 0.8 \mathrm{~T}_{1}+12 \mathrm{~T}_{2} / 13=2.24 \\ & 0.6 \mathrm{~T}_{1}-5 \mathrm{~T}_{2} / 13=1.4 \\ & \mathrm{~T}_{1}=2.5 \text { and } \mathrm{T}_{2}=0.26 \end{aligned}$	M1   A1   M1   A1   M1   A1	[6]	For resolving forces acting on $P$ horizontally.   For resolving forces acting on $P$ vertically.   For solving for $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$   SR for using Lami's Rule for $\mathrm{T}_{1} \mathrm{~T}_{2}$ and 2.24 N (weight missing) (max 3/6)   $\mathrm{T}_{1} / \sin 157.38=2.24 / \sin 59.49 \quad$ B1   $\mathrm{T}_{2} / \sin 143.13=2.24 / \sin 59.49 \quad$ B1   $\mathrm{T}_{1}=1(.00)$ and $\mathrm{T}_{2}=1.56 \quad \mathrm{~B} 1$


Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2014	9709	43


4 (i)	PE loss $=0.4 \mathrm{~g} \times 5 \mathrm{~J}=20 \mathrm{~J}$	B1	[4]	Uses PE gain $=$ KE loss to form equation in $h$
	Initial $\mathrm{KE}_{\text {up }}=0.4 \mathrm{~g} \times 5-12.8=7.2 \mathrm{~J}$	B1		
	[ $0.4 \mathrm{gh}=2 \mathrm{~g}-12.8]$	M1		
	Height reached is 1.8 m	A1		AG
(ii)	$5=0+\frac{1}{2} \mathrm{gt}_{\mathrm{down}}^{2} \quad\left(\mathrm{t}_{\text {down }}=1\right)$	B1		
	$0=6-\mathrm{gt}_{\mathrm{up}} \text { or } 1.8=\frac{1}{2} \mathrm{gt}_{\text {up }}^{2}\left(\mathrm{t}_{\mathrm{up}}=0.6\right)$	B1		
	Total time is 1.6 s	B1	[3]	

First Alternative for part (i)

	v
K	
	$[$
	H

$\mathrm{v}^{2}=2 \times 10 \times 5 \rightarrow \quad(\mathrm{v}=10)$
$\mathrm{KE} \operatorname{loss}=\frac{1}{2} 0.4\left(10^{2}-\mathrm{v}_{\text {up }}^{2}\right)=12.8$
$\left[\mathrm{v}_{\text {up }}=60, \quad 0=6^{2}-2 \mathrm{gh}\right]$
Height reached is 1.8 m

B1

B1

M1
Uses $v^{2}=u^{2}-2 g$ s to form equation in $h$

Second Alternative for part (i)

	$0.4 \mathrm{gh}=12.8$   $\mathrm{~h}=3.2 \mathrm{~m}$   $[$ Height reached $=5-12.8 / 0.4 \mathrm{~g}]$
	Height reached is 1.8 m


M1		Uses PE gain $=$ KE loss
A1		Uses height reached $=$   $5-$ 'height not reached'   M1
A1	$[4]$	AG

Third Alternative for part (i)
$\square$

M1		Uses KE loss $=12.8$ and $v^{2}=u^{2}+2 g s$
A1		
M1		Uses height reached $=$   $5-$ 'height not reached'
A1	$[4]$	AG


Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	43


5 (i)		M1		For using WD by driving force $=$ Gain in   PE + WD against resistance
WD against resistance   $=4500 \times 1200-16000 \mathrm{~g} \times 18$   WD against resistance $=2.52 \times 10^{6} \mathrm{~J}$	A1	$[3]$		

## Alternative Method for part (i)



Page 7	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	43



## MARK SCHEME for the May/June 2014 series

## 9709 MATHEMATICS

9709/42
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Syllabus $\quad$ Paper

GCE AS/A LEVEL - May/June 2014

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\downarrow$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	42

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR - 1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all $A$ and $B$ marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	42



Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	42

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
4 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& a(t)=t^{1 / 3} / 3 \\
\& {[0.25-(1 / 2) / 3=1 / 4-1 / 6]}
\end{aligned}
\] \\
Decrease is \(1 / 12 \mathrm{~ms}^{-2}\)
\[
s_{2}=\int_{8}^{27} \frac{1}{2} t^{2 / 3} d t=\left[0.3 t^{5 / 3}\right]_{8}^{27}
\] \\
Distance is 71.3 m
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
B1 \\
M1 \\
A1
\end{tabular} \& 4 \& \begin{tabular}{l}
For differentiation to find \(a(t)\) for \(t \geqslant 8\) \\
Decrease \(=a\left(8^{-}\right)-a\left(8^{+}\right)\) \\
AG
\[
s_{1}=1 / 21 / 48^{2}=8
\] \\
Using definite integration to find \(\mathrm{s}_{2}\)
\[
s_{1}+s_{2}=71.3
\]
\end{tabular} \\
\hline \multicolumn{5}{|c|}{Alternative method for the final two marks} \\
\hline \& \[
\begin{aligned}
\& s=\int \frac{1}{2} t^{2 / 3} d t=0.3 t^{5 / 3}+c \\
\& s(8)=8 \text { gives } c=-1.6 \\
\& s(27)=0.3(27)^{5 / 3}-1.6=71.3
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \& \begin{tabular}{l}
Using indefinite integration to find \(s\) and finding the constant of integration by using the value of \(s_{1}\) \\
Finding \(s(27)\)
\end{tabular} \\
\hline \begin{tabular}{l}
5 (i) \\
(ii) (a) \\
(b) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
KE gain is \(10.5 \mathrm{v}^{2} \mathrm{~J}\) \\
[PE Loss \(=16(10) x-5(10) x \sin 30]\) \\
PE loss by system is 135 x J
\[
\begin{aligned}
\& \mathrm{R}=5(10) \times(\sqrt{ } 3 \div 2) \\
\& \mathrm{F}=25
\end{aligned}
\] \\
Work done is \(25 x \mathrm{~J}\)
\[
\left[10.5 v^{2}=135 x-25 x\right]
\]
\[
21 v^{2}=220 x
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
B1 \\
B1 \\
B1 \\
M1 \\
A1
\end{tabular} \& 2

3

2 \& | For use of $\mathrm{PE}=\mathrm{mgh}$ and Loss by system $=$ loss by $\mathrm{B}-$ gain by A |
| :--- |
| ft incorrect F |
| For using 'Gain in $\mathrm{KE}=$ Loss in $\mathrm{PE}-$ WD against friction' |
| AG | <br>

\hline 6 (i) \& | $v^{2}=2 \times g \times 7.2$ |
| :--- |
| $\rightarrow$ speed at surface is $12 \mathrm{~ms}^{-1}$ $\left[6^{2}=12^{2}+2 a \times 0.8\right]$ |
| Deceleration is $67.5 \mathrm{~ms}^{-2}$ $[0.2 g-\mathrm{R}=-0.2 \times 67.5]$ $\mathrm{R}=15.5$ | \& | B1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 | \& 5 \& | For using $6^{2}=v^{2}+2 a s$ and finding $a$ |
| :--- |
| For using Newton's $2^{\text {nd }}$ law with three terms for P in the liquid | <br>

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9709	$\mathbf{4 2}$

\begin{tabular}{|c|c|c|c|c|}
\hline (ii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& {\left[3.6=1 / 2 a \times 4^{2}\right]} \\
\& a=0.45 \mathrm{~ms}^{-2} \\
\& {[\mathrm{~T}-\mathrm{R}-0.2 g=0.2 \times 0.45]}
\end{aligned}
\] \\
Tension is 17.6 N
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
Alv
\end{tabular} \& 4 \& \begin{tabular}{l}
For using \(\mathrm{s}=0+1 / 2 \mathrm{at}^{2}\) and finding \(a\) \\
For using Newton's \(2^{\text {nd }}\) law with \(P\) in the liquid \\
ft incorrect R
\end{tabular} \\
\hline \multicolumn{5}{|c|}{Alternative Energy Method} \\
\hline (i)

(ii) \& $$
\begin{aligned}
& 0.2 g \times 8=\mathrm{R}(0.8)+1 / 2(0.2) 6^{2} \\
& \mathrm{R}=15.5 \\
& 0.2 g-15.5=0.2 a \\
& a=-67.5
\end{aligned}
$$

$$
3.6=v / 2 \times 4 \quad v=1.8
$$

$$
\mathrm{T}(3.6)=\mathrm{R}(3.6)+0.2 g(3.6)+1 / 2(0.2) 1.8^{2}
$$

\[
\mathrm{T}=17.6 \mathrm{~N}

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 | \& 5

4 \& | For using PE lost = WD by R in liquid +KE gain |
| :--- |
| Finding R |
| For using Newton's $2^{\text {nd }}$ law in the liquid |
| For using $s=(0+v) / 2 \times t$ to find $v$ at surface of liquid |
| For using WD by $\mathrm{T}=\mathrm{WD}$ by $\mathrm{R}+\mathrm{PE}$ gain +KE gain | <br>

\hline | 7 (i) |
| :--- |
| (ii) | \& \[

$$
\begin{aligned}
& {\left[\mathrm{T}_{\mathrm{A}}-2.5=0.25 \times a\right] \quad\left[7.5-\mathrm{T}_{\mathrm{B}}=0.75 \times a\right]} \\
& \mathrm{T}_{\mathrm{A}}=2.5+0.25 a \\
& \mathrm{~T}_{\mathrm{B}}=7.5-0.75 a \\
& \mathrm{~F}=0.4 \times 5 \\
& {\left[\mathrm{~T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}}-\mathrm{F}=0.5 a\right]}
\end{aligned}
$$
\]

\[
7.5-0.75 a-(2.5+0.25 a)-2=0.5 a \rightarrow a=2

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| B1 |
| M1 |
| A1 | \& 3

3 \& | For applying Newton's $2^{\text {nd }}$ law to either particle A or particle B |
| :--- |
| For using Newton's $2^{\text {nd }}$ law for P with friction and both tensions represented (4 terms) |
| AG | <br>

\hline
\end{tabular}

Page 7 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2014	9709	42


	Alternative method for (ii)			
(ii)	$\mathrm{F}=0.4 \times 5$	B1		
	$a=2$ used to find $\mathrm{T}_{\mathrm{A}}=3, \mathrm{~T}_{\mathrm{B}}=6$ and used in $\mathrm{T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}}-\mathrm{F}=0.5 \times a$	M1		Assume given value of $a$, find $\mathrm{T}_{\mathrm{A}}$ and $\mathrm{T}_{\mathrm{B}}$ and use the values in 4 term Newton's $2^{\text {nd }}$ law
	$a=2$	A1		Justify the value $a=2$
(iii)	[ $\left.\nu^{2}=2 \times 2 \times 0.36\right]$	M1		$\begin{aligned} & \text { For using } v^{2}=2 a s \text { with } \\ & s=1-1 / 2(5.28-4) \end{aligned}$
	Speed is $1.2 \mathrm{~ms}^{-1}$	A1	2	
(iv)	$-\mathrm{T}_{\mathrm{A}}-2=0.5 a$ and $\mathrm{T}_{\mathrm{A}}-2.5=0.25 a$	M1		For applying Newton's $2^{\text {nd }}$ law to particle P and substituting for $\mathrm{T}_{\mathrm{A}}$
	Deceleration is $6 \mathrm{~ms}^{-2}$	A1	2	$a=-6$ or $d=6$

## MARK SCHEME for the May/June 2014 series

## 9709 MATHEMATICS

9709/41
Paper 4 (Mechanics 1), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Syllabus	Paper
9709	41

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\downarrow$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	41

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR-1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all $A$ and $B$ marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	41

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& \[
\begin{aligned}
\& \mathrm{DF}=28000 \\
\& {[1330000=28000 \mathrm{~V}]} \\
\& \mathrm{V}=47.5
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& [3] \& For using \(\mathrm{P}=(\mathrm{DF}) \mathrm{V}\) \\
\hline \begin{tabular}{l}
2 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 2.4=0.25 \mathrm{~g} \cos \alpha \\
\& \alpha=16.3 \\
\& {[\mu=0.28 \div 0.96]}
\end{aligned}
\] \\
Least possible value of \(\mu\) is \(7 / 24\) or 0.292
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
[2] \\
[2]
\end{tabular} \& For using
\[
\mu=\mathrm{F} / \mathrm{R} \text { or } \mu=\tan \alpha
\] \\
\hline 3 \& \begin{tabular}{l}
\[
X=5-7 \cos 60^{\circ}-3 \cos 30^{\circ} \quad(=-1.098)
\]
\[
\mathrm{Y}=7 \sin 60^{\circ}-3 \sin 30^{\circ}-4 \quad(=0.5622)
\] \\
Resultant is 1.23 N and Direction is \(152.9^{\circ}\) anticlockwise from + ve \(x\)-axis oe
\end{tabular} \& M1
A1
M1
A1
M1

A1 \& [6] \& | For finding the component of the forces in the $x$ direction |
| :--- |
| For finding the component of the forces in the $y$ direction |
| For using $\mathrm{R}^{2}=\mathrm{X}^{2}+\mathrm{Y}^{2}$ and $\tan \theta=\mathrm{Y} / \mathrm{X}$ | <br>

\hline 4 \& | For $\mathrm{s}=4.05$ |
| :--- |
| Total distance $=4.05+(3.15+4.05)$ $=11.25 \mathrm{~m}$ |
| $\mathrm{t}_{\text {upwards }}=0.9$ |
| For downwards motion $(3.15+4.05)=\frac{1}{2} \mathrm{gt}^{2} \rightarrow \mathrm{t}=1.2$ |
| Time taken is 2.1 s | \& | M1 |
| :---: |
| A1 |
| B1 |
| B1 |
| B1 |
|  |
| B1 | \& [6] \& For using $0=\mathrm{u}^{2}-2 \mathrm{gs}$ for the upwards motion <br>

\hline
\end{tabular}

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	41


	Alternative Mark Scheme for final 3 marks $\begin{aligned} & {\left[-3.15=9 \mathrm{~T}+\frac{1}{2}(-\mathrm{g}) \mathrm{T}^{2}\right]} \\ & {\left[100 \mathrm{t}^{2}-180 \mathrm{t}-63=0\right]} \\ & (10 \mathrm{~T}-21)(10 \mathrm{~T}+3)=0 \end{aligned}$	M1   M1   A1		For using $\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$ for the total displacement and time   For solving a quadratic equation for the total time T $\mathrm{T}=2.1 \text { only }$
5 (i)   (ii)	$\begin{aligned} & \text { KE gain }=550 v^{2} \\ & \text { PE gain }=1000 x \\ & {\left[1800 x=550 v^{2}+1000 x+700 x\right]} \\ & k=5.5 \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \downarrow \end{gathered}$	[4]	ft for incorrect coeff(s) of $v^{2}$ and/or of $x$
	At A $5.5 v^{2}=1760 \rightarrow v^{2}=320$	B1		
	$\begin{aligned} & 550\left(v^{2}-320\right)= \\ & 1800(x-1760)-700(x-1760) \end{aligned}$	M1 A1		For using from A, KEgain= WD by DF -WD against R
	$v^{2}=2 x-3200$ (cwo)	A1	[4]	AG
	Alternative for part (ii)   $\left[1800-700=1100 a\right.$ and $\left.5.5 v^{2}=1760\right]$	M1		For applying Newton's 2nd Law to find acceleration along AB and for using $k v^{2}=x$ to find $v^{2}$ at A
	$a=1$ and $v^{2}=320$	A1		
	$\left[v^{2}=320+2 \times 1 \times(x-1760)\right]$	M1		For using $v^{2}=u^{2}+2 a s$ for motion from A to B
	$v^{2}=2 x-3200$	A1	[4]	
$\begin{array}{ll}6 & \text { (i) } \\ & \\ & \\ & \\ \text { (ii) }\end{array}$		M1		For using Newton's second law for both particles and eliminating T, or using $(M+m) a=(M-m) g$
	Acceleration is $5 \mathrm{~ms}^{-2}$	A1		
		M1		For using $\mathrm{s}=0+\frac{1}{2} \mathrm{at}^{2}$
	Distance is 0.9 m	A1	[4]	
	$\frac{1}{2} 0.6 \times \mathrm{V}=0.9 \rightarrow \mathrm{~V}=3$	B14		ft distance in (i)
		M1		For using $0=\mathrm{V}-\mathrm{g}(\mathrm{~T}-0.6)$
	$\mathrm{T}=0.9$	A1	[3]	


Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9709	41



## MARK SCHEME for the October/November 2013 series

## 9709 MATHEMATICS

9709/43
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Syllabus $\quad$ Paper
GCE A LEVEL - October/November 2013

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\downarrow$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR-1 A penalty of MR-1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\text { " " }}$ marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9709	43


1 (i)	$[-(1 \div 3)(\mathrm{W} \cos \alpha)-\mathrm{W} \sin \alpha=(\mathrm{W} / \mathrm{g}) \mathrm{a}]$ $(-0.32-0.28) \mathrm{g}=\mathrm{a}$ $\mathrm{a}=-6 .$	M1   A1   A1	3	For using Newton's $2^{\text {nd }}$ law and $\mathrm{F}=\mu \mathrm{R}$ AG
(ii)	$\begin{aligned} & {\left[0=5.4^{2}+2(-6) \mathrm{s}\right] \quad \text { or }} \\ & {\left[\mathrm{mgs}(0.28)=1 / 2 \mathrm{~m}(5.4)^{2}-\operatorname{mgs}(0.96) / 3\right]} \end{aligned}$   Distance is 2.43 m	M1   A1	2	For using $0=u^{2}+2$ as or for using PE gain $=$ KE loss -WD against friction
2	$\mathrm{a}=5$   When B reaches the floor $\mathrm{v}^{2}=2 \times 5 \times 1.6$; speed is $4 \mathrm{~ms}^{-1}$ $\begin{aligned} & 0=16-20 \mathrm{~s} \quad(\mathrm{~s}=0.8) \\ & \mathrm{h}+1.6+0.8=3 \rightarrow \mathrm{~h}=0.6 \end{aligned}$	M1   A1   B1ft   M1   A1ft   B1	6	For using $\mathrm{a}=(\mathrm{M}-\mathrm{m}) \mathrm{g} /(\mathrm{M}+\mathrm{m})$ or for applying Newton's $2^{\text {nd }}$ law to A and to B and solving for a .   ft a $\quad \mathrm{a} \neq \mathrm{g} \quad \mathrm{v}=\sqrt{ }(3.2 \mathrm{a})$   For using $0=u^{2}-2 g s$ or for using PE gain $=K E$ loss   ft speed
3	$\mathrm{T}_{\mathrm{A}}(1 / 2.6)+\mathrm{T}_{\mathrm{B}}(1 / 1.25)=10.5$ $\mathrm{T}_{\mathrm{A}}(2.4 / 2.6)=\mathrm{T}_{\mathrm{B}}(0.75 / 1.25)$   Tension in AP is 6.5 N and tension in BP is 10 N .	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	6	For resolving forces on P vertically   For resolving forces on P horizontally   For solving for $T_{A}$ and $T_{B}$


Page 5 Mark Scheme	Syllabus	Paper	
	GCE A LEVEL - October/November 2013	9709	43


	First Alternative			
	$75.7(5)^{\circ}$ opposite to 10.5 N   $36.8(7)^{\circ}$ opposite to $\mathrm{T}_{\mathrm{A}}$   $67.3(8)^{\circ}$ opposite to $\mathrm{T}_{\mathrm{B}}$ $\begin{aligned} & \mathrm{T}_{\mathrm{A}} \div \sin 36.8(7)=10.5 \div \sin 75.7(5) \text { and } \\ & \mathrm{T}_{\mathrm{B}} \div \sin 67.3(8)=10.5 \div \sin 75.7(5) \end{aligned}$   Tension in AP is 6.5 N and tension in BP is 10 N .	M1   A1   M1   A1   M1   A1	6	For finding two angles in the triangle of forces   For using the sine rule to find equations for $T_{A}$ and $T_{B}$   For solving for $\mathrm{T}_{\mathrm{A}}$ and $\mathrm{T}_{\mathrm{B}}$
	Second Alternative			
	$104.2(5)^{\circ}$ opposite to 10.5 N $143.1(3)^{\circ}$ opposite to $\mathrm{T}_{\mathrm{A}}$ $112.6(2)^{\circ}$ opposite to $\mathrm{T}_{\mathrm{B}}$ $\begin{aligned} & \mathrm{T}_{\mathrm{A}} \div \sin 143.1(3)=10.5 \div \sin 104.2(5) \& \\ & \mathrm{~T}_{\mathrm{B}} \div \sin 112.6(2)=10.5 \div \sin 104.2(5) \end{aligned}$   Tension in AP is 6.5 N and tension in BP is 10 N .	M1   A1   M1   A1   M1   A1	6	For finding angles at P in the space diagram.   For using Lami's rule to find equations for $T_{A}$ and $T_{B}$   For solving for $T_{A}$ and $T_{B}$
4 (i)	$\begin{align*} & {[\mathrm{W} \sin \alpha+\mathrm{F}=40]} \\ & \mathrm{F}=40-300 \times 0.1 \quad(=10  \tag{=10}\\ & \mathrm{R}=300 \sqrt{ }\left(1-0.1^{2}\right) \quad(=298.496 . .) \end{align*}$   Coefficient is 0.0335	M1   A1   B1   M1   A1	5	For resolving forces parallel to the plane   For using $\mu=\mathrm{F} / \mathrm{R}$


Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9709	43


(ii)	[The component of weight $(30 \mathrm{~N})$ is greater than the frictional force ( 10 N )]   Box does not remain in equilibrium	M1   A1	2	For comparing the weight component parallel to the plane and the frictional force or for using Newton's Second Law and finding the acceleration
5 (i)	$\mathrm{T}_{1}=\mathrm{V} \div 0.3, \mathrm{~T}_{3}=\mathrm{V}$	B1   M1   A1	3	The sketch requires three straight line segments with +ve , zero and ve slopes in order, which together with a segment of the $t$ axis form a trapezium.   For using $\mathrm{v}=$ at for $\mathrm{T}_{1}$ or $u=-$ at for $T_{3}$
(ii)	$\left[S=1 / 2 T_{1} V+T_{2} V+1 / 2 T_{3} V\right]$ $\left.\begin{array}{rl} \mathrm{S}=552 \mathrm{~V}-\mathrm{V} & \left\{0.5\left(\mathrm{~T}_{1}+\mathrm{T}_{3}\right)\right\} \\ & =552 \mathrm{~V}-13 \mathrm{~V}^{2} / 6 \end{array}\right\} \begin{aligned} & 13 \mathrm{~V}^{2}-3312 \mathrm{~V}+72000=0 \\ & \mathrm{~V}=24 \end{aligned}$	M1   M1   A1   B1   B1	5	For using the area property for the distance travelled   For substituting for $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and $\mathrm{T}_{3}$ in terms of V   AG
6 (i)	$\begin{array}{r} {[144000 / \mathrm{v}-4800} \\ =12500 \mathrm{a}] \end{array}$   Acceleration at A is $0.336 \mathrm{~ms}^{-2}$   The speed at B $24 \mathrm{~ms}^{-1}$	M1 A1 A1	3	For using DF $=\mathrm{P} / \mathrm{v}$ and Newton's $2^{\text {nd }}$ law at A or at B   AG
(ii)	WD by DF $=5800 \times 500 \&$   WD against res'ce $=4800 \times 500$   Loss in $\mathrm{KE}=1 / 212500\left(24^{2}-16^{2}\right)$ $\begin{aligned} & 5800 \times 500=12500 \mathrm{gh}- \\ & 1 / 212500\left(24^{2}-16^{2}\right)+4800 \times 500 \end{aligned}$   Height of C is 20 m	B1 B1 M1 A1 A1	5	For using WD by DF = PE gain KE loss + WD against res'ce


Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9709	43


	(ii) Alternative			
	$\begin{aligned} & {\left[16^{2}=24^{2}+2 \times 500 \mathrm{a}\right]} \\ & \mathrm{a}=-0.32 \mathrm{~ms}^{-2} \\ & \\ & 5800-4800-12500 \mathrm{~g} \times(\mathrm{h} \div 500) \\ & =12500(-0.32) \end{aligned}$   Height of C is 20 m	M1   A1   M1   A1   A1	5	For using $v^{2}=u^{2}+2$ as   For using Newton's second law
7 (i)	$\begin{aligned} & {\left[\mathrm{s}=\mathrm{k}_{1} \mathrm{t}^{2} / 2-0.005 \mathrm{t}^{3} / 3+(\mathrm{C})\right]} \\ & {\left[\mathrm{k}_{1}\left(60^{2} / 2\right)-0.005\left(60^{3} / 3\right)=540\right]} \\ & \mathrm{k}_{1}=0.5 \\ & 0.5 \times 60-0.005 \times 60^{2}=\mathrm{k}_{2} \div \sqrt{ } 60 \\ & \mathrm{k}_{2}=12 \sqrt{ } 60 \end{aligned}$	M1   DM1   A1   M1   A1	5	For using $\mathrm{s}=\int \mathrm{vdt}$   For using limits 0 and 60 and equating to 540   For using $\mathrm{v}_{1}(60)=\mathrm{v}_{2}(60)$ AG
(ii)	$\begin{array}{r} {[\mathrm{s}=540+12 \sqrt{ } 60(2 \sqrt{ } \mathrm{t}-2 \sqrt{ } 60)=]} \\ 24 \sqrt{ }(60 \mathrm{t})-900 \end{array}$	M1   A1	2	For using s $=540+$ $12 \sqrt{ } 60 \int_{60}{ }^{\mathrm{t}}\left(\mathrm{t}^{-1 / 2}\right) \mathrm{dt}$   Accept any other correct form for s if it is used in (iii)
(iii)	$\begin{aligned} & {[24 \sqrt{ }(60 t)-900=1260]} \\ & t=135 \\ & v=12 \sqrt{60} \div \sqrt{ } 135 \rightarrow \text { speed is } 8 \mathrm{~ms}^{-1} \end{aligned}$	M1   A1   B1	3	For solving $\mathrm{s}(\mathrm{t})=1260$ for t

## MARK SCHEME for the October/November 2013 series

## 9709 MATHEMATICS

9709/42
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Syllabus $\quad$ Paper

GCE AS/A LEVEL - October/November 2012

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol 凤 implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
$B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.
- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9709	42

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR-1 A penalty of MR-1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through §" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	42


1	Applying   $\mathrm{T} \cos \beta=\mathrm{W} \sin \alpha$   Tension is 2.5 N	M1   A1   A1	3	For resolving forces parallel to the line of greatest slope   $T(24 / 25)=5.1(8 / 17)$ or   $\mathrm{T} \cos 16.26=5.1 \sin 28.07$
First Alternative Marking Scheme				
	Applying   $\mathrm{R} \cos \alpha+\mathrm{T} \sin (\alpha+\beta)=\mathrm{W}$ and $\mathrm{R} \sin \alpha=\mathrm{T} \cos (\alpha+\beta)$   Tension is 2.5 N	M1   A1   A1	3	For resolving forces vertically or horizontally   $\mathrm{R} \cos 28.07+\mathrm{T} \sin 44.33=5.1$ and $\mathrm{R} \sin 28.07=\mathrm{T} \cos 44.33$
Second Alternative Marking Scheme				
	Applying   $\mathrm{T} / \sin \alpha=5.1 / \sin (90+\beta)$   Tension is 2.5 N	M1   A1   A1	3	Using Triangle of forces $\mathrm{T} / \sin 28.07=5.1 / \sin 106.26$


$\mathbf{2}$		M1	For using $\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{v}^{2}$   or $\mathrm{WD}=\mathrm{Fd} \cos \alpha$	
	Gain in $\mathrm{KE}=1 / 225 \times 3^{2}$   or   WD by pulling force $=220 \times 15 \cos \alpha$   WD by pulling force $=220 \times 15 \cos \alpha$   or   Gain in $\mathrm{KE}=1 / 225 \times 3^{2}$	A1	B1	M1
$[3300 \cos \alpha=112.5+3000]$				
$\alpha=19.4$	A1	5	For using WD by pulling   force $=$ KE gain + WD   against resistance	


Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2013	9709	$\mathbf{4 2}$


3 (i)	$100 / 4-4 \mathrm{k}=0 \rightarrow \mathrm{k}=6.25$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For using $\mathrm{F}=\mathrm{P} / \mathrm{v}$ and Newton's $2^{\text {nd }}$ law with $\mathrm{a}=0$   AG
(ii)	$\begin{aligned} & 100 / \mathrm{v}-70 \mathrm{~g} \times 0.05-6.25 \mathrm{v}=0 \\ & {\left[6.25 \mathrm{v}^{2}+35 \mathrm{v}-100=0\right] \quad \text { or }} \\ & {\left[\mathrm{v}^{2}+5.6 \mathrm{v}-16=0\right]} \end{aligned}$   Maximum speed is $2.08 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	For using Newton's $2^{\text {nd }}$ law with $\mathrm{a}=0$ uphill $\rightarrow 3$ term equation   For solving a 3 -term quadratic for v



Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	$\mathbf{4 2}$

## Alternative Marking Scheme



\begin{tabular}{|c|c|c|c|c|}
\hline \(5 \quad\) (i) \& \[
\begin{aligned}
\& {\left[\mathrm{s}=\mathrm{t}^{2} / 2-0.1 \mathrm{t}^{3} / 3\right]} \\
\& {\left[\mathrm{s}_{1}=25 / 2-0.1 \times 125 / 3\right]} \\
\& \mathrm{s}_{1}=8.33
\end{aligned}
\] \& \begin{tabular}{l}
M1* \\
DM1* \\
A1
\end{tabular} \& \& \begin{tabular}{l}
For integrating to find s for
\[
0 \leqslant t \leqslant 5
\] \\
For obtaining \(\mathrm{s}_{1}\) by using limits 0 to 5 or having zero for constant of integration (can be implied) and substituting \(\mathrm{t}=5\)
\end{tabular} \\
\hline \multirow[t]{3}{*}{(ii)} \& \& \& \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{M} \\
1
\end{gathered}
\]} \& For using \(\mathrm{s}=\mathrm{v}(5) \times(45-5)\) for \(5 \leqslant t \leqslant 45\) \\
\hline \& \[
\begin{aligned}
\& \mathrm{s}_{2}=2.5 \times 40 \\
\& {\left[\mathrm{~s}=9 \mathrm{t}^{2} / 2-0.1 \mathrm{t}^{3} / 3-200 \mathrm{t}\right.} \\
\& \quad \text { for } 45 \leqslant \mathrm{t} \leqslant 50]
\end{aligned}
\] \& A1

M1 \& \& For integrating to find s for $45 \leqslant \mathrm{t}$ $\leqslant 50$ and implying the use of limits 45 and 50 or equivalent via constant of integration <br>

\hline \& $$
\begin{aligned}
& \mathrm{s}_{3}=\left[9(50)^{2} / 2-0.1(50)^{3} / 3-200(50)\right] \\
&-\left[9(45)^{2} / 2-0.1(45)^{3} / 3-200(45)\right] \\
& {[=8.33] }
\end{aligned}
$$ \& A1 \& \& For applying the limits at 45 and 50 correctly or equivalent via constant of integration <br>

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	$\mathbf{4 2}$

## Alternative mark scheme for previous 2 marks

	Recognising the symmetry of the velocity   distribution due to the correspondence of the   points   $(0,0) \rightarrow(50,0)$ and $(5,2.5) \rightarrow(45,2.5)$	(M1)		
Complete the idea of symmetry with one   further property and hence   State $\mathrm{s}_{3}=\mathrm{s}_{1}=8.33$	Property is any one of   $\mathrm{a}(0)=-\mathrm{a}(50)$   $\mathrm{a}(5)=\mathrm{a}(45)$   $\mathrm{v}(2.5)=\mathrm{v}(47.5)$ oe			
Distance from O to A is 117 m	A1	B1 ft	6	ft answer for total distance


6 (i)	$\begin{aligned} & \mathrm{T}-0.4 \mathrm{~g}=0.4 \mathrm{a} \text { or } 1.6 \mathrm{~g}-\mathrm{T}=1.6 \mathrm{a} \\ & 1.6 \mathrm{~g}-\mathrm{T}=1.6 \mathrm{a} \text { or } \mathrm{T}-0.4 \mathrm{~g}=0.4 \mathrm{a} \\ & \text { or } 1.6 \mathrm{~g}-0.4 \mathrm{~g}=(1.6+0.4) \mathrm{a} \\ & \mathrm{~T}=6.4 \end{aligned}$   Work done by tension is 7.68 J	M1   A1   B1   A1   B1ft	5	For applying Newton's $2^{\text {nd }}$ law to A or B
Alternative mark scheme for 6 (i)				
	$\begin{aligned} & \mathrm{T}-0.4 \mathrm{~g}=0.4 \mathrm{a} \text { or } 1.6 \mathrm{~g}-\mathrm{T}=1.6 \mathrm{a} \\ & 1.6 \mathrm{~g}-\mathrm{T}=1.6 \mathrm{a} \text { or } \mathrm{T}-0.4 \mathrm{~g}=0.4 \mathrm{a} \\ & \text { or } \quad 1.6 \mathrm{~g}-0.4 \mathrm{~g}=(1.6+0.4) \mathrm{a} \end{aligned}$   WD by $\mathrm{T}=$ initial $\mathrm{PE}-$ final KE $=1.6 \times \mathrm{g} \times 1.2-1 / 2 \times 1.6 \times 14.4$   WD by $\mathrm{T}=19.2-11.52=7.68$	M1   A1   B1   M1   A1	5	For applying Newton's $2^{\text {nd }}$ law to A or B   For finding $v^{2}$ and applying Work/Energy equation to B


Page 8	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$


(ii)	$\left[1.6 \times 10 \times 1.2=1 / 21.6 \mathrm{v}^{2}+7.68\right]$   $\mathrm{v}^{2}=14.4$   $14.4=2 \times 10 \times \mathrm{h}$   $\mathrm{h}=0.72$   $\mathrm{H}=2 \times 1.2+\mathrm{h}$	M1		For using PE loss $=$   KE gain +WD by T   to find $\mathrm{v}^{2}$			
Greatest height is 3.12 m					$\quad$	M1	A1
:---	:---						

First Alternative Marking Scheme for 6 (ii)

	$\begin{aligned} & {\left[\mathrm{v}^{2}=2 \times 6 \times 1.2\right]} \\ & \mathrm{v}^{2}=14.4 \\ & 14.4=2 \times 10 \times \mathrm{h} \\ & \mathrm{~h}=0.72 \\ & \mathrm{H}=2 \times 1.2+\mathrm{h} \end{aligned}$   Greatest height is 3.12 m	M1   A1   M1   A1		For using $v^{2}=2$ as to find $v^{2}$   For using PCE for A's motion after $B$ reaches the ground or $0=\mathrm{u}^{2}-2 \mathrm{gh}$   and $\mathrm{H}=2 \times 1.2+\mathrm{h}$
Second Alternative Marking Scheme for 6 (ii)				
	WD by $\mathrm{T}=$ Increase in PE $7.68=0.4 \times \mathrm{g} \times \mathrm{s}$ $\mathrm{s}=1.92$ $\mathrm{H}=1.2+\mathrm{s}$ $\mathrm{H}=1.2+1.92=3.12 \text { Height }=3.12 \mathrm{~m}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$		For applying WD by T to particle A's complete motion   For adding 1.2 to s


Page 9	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	42


$7 \quad$ (i)	$[\mathrm{s}=1 / 25 \times 0.4+19 \times 0.4+1 / 24 \times 0.4]$   Distance $=9.4$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For using the area property for distance
(ii)	Acceleration is $0.08 \mathrm{~ms}^{-2}$   Deceleration is $0.1 \mathrm{~ms}^{-2}$	B1   B1	2	
(iii)	$\begin{aligned} & {[\mathrm{T}-(800+100) \mathrm{g}=(800+100) \mathrm{a}]} \\ & \mathrm{T}-900 \mathrm{~g}=900 \mathrm{a} \\ & \mathrm{~T}=9072 \mathrm{~N} \text { in } 1^{\text {st }} \text { stage } \\ & \mathrm{T}=9000 \mathrm{~N} \text { in } 2^{\text {nd }} \text { stage } \\ & \mathrm{T}=8910 \mathrm{~N} \text { in } 3^{\text {rd }} \text { stage } \end{aligned}$	M1   A1   A1	3	For applying Newton's $2^{\text {nd }}$ law to the elevator and box
(iv)	$\begin{aligned} & {[\mathrm{R}-100 \mathrm{~g}=100 \mathrm{a}]} \\ & \mathrm{R}=1008 \mathrm{~N} \\ & \mathrm{R}=990 \mathrm{~N} \end{aligned}$	M1   A1   A1	3	For applying Newton's $2^{\text {nd }}$ law to the box   For obtaining the greatest value of the force on the box   For obtaining the least value of the force on the box

## MARK SCHEME for the October/November 2013 series

## 9709 MATHEMATICS

9709/41
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

GCE AS/A LEVEL - October/November 2013

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol 凤 implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	41

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR -1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\downarrow$ "" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	41


1	$\begin{aligned} & {[\mathrm{T} \cos \alpha=\mathrm{mg}]} \\ & \text { Tension is } 3.4 \mathrm{~N} \\ & {[\mathrm{~F}=\mathrm{T} \sin \alpha]} \\ & \mathrm{F}=1.6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	For resolving forces vertically   For resolving forces horizontally
2	(i) $\begin{aligned} {[\mathrm{WD}=30} & \times 20 \times 0.6 \\ & +40 \times 20 \times 0.8] \end{aligned}$   Work done is 1000 J	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$	2	For using WD = Fdcos $\theta$
	(ii) $30 \times 0.6+40 \times 0.8-0.625 \mathrm{~W}=0$   Weight is 80 N	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	For applying $\mathrm{F}=\mu \mathrm{W}$ and Newton's $2^{\text {nd }}$ law with $\mathrm{a}=0$
3	(i) $\begin{aligned} & \mathrm{F}-780 \times(36 \div 325)-32 \\ &=78 \times(-0.2) \\ & \mathrm{F}=103 \quad(102.8 \text { exact }) \end{aligned}$	M1 A2   A1	4	For applying Newton's $2^{\text {nd }}$ law to the bicycle/cyclist   (A2 for all correct, A 1 for one error, A 0 for more than one error)
	(ii) $\left[0=7^{2}+2(-0.2) \mathrm{s}\right]$   Distance is 122.5 m (accept 122 or 123)	M1   A1	2	For using $0=\mathrm{u}^{2}+2$ as
4	(i) $[-\mu \mathrm{mg}=\mathrm{ma}]$   Decelerations of P and Q are $2 \mathrm{~ms}^{-2}$ and $2.5 \mathrm{~ms}^{-2}$.	M1 A1	2	For using Newton's $2^{\text {nd }}$ law, $\mathrm{F}=\mu \mathrm{R}$ and $\mathrm{R}=\mathrm{mg}$
	(ii) $\begin{aligned} & 8 t-t^{2}=3 t-1.25 t^{2}+5 \\ & t=\sqrt{ } 120-10 \quad(=0.95445 \ldots) \end{aligned}$   Speed of $\mathrm{P}=6.09 \mathrm{~ms}^{-1}$, speed of $\mathrm{Q}=0.614 \mathrm{~ms}^{-1}$	M1   A1   A1   M1   A1	5	For using $\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2}$ and $\mathrm{s}_{\mathrm{P}}=\mathrm{s}_{\mathrm{Q}}+5$   For using $\mathrm{v}=\mathrm{u}+\mathrm{at}$ for both P and Q


Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	41


5	(i) Gain in $\mathrm{PE}=15000 \mathrm{~g} \times 16$   WD against resistance $=$ $1800 \times 1440$   Work done is $4.99 \times 10^{6} \mathrm{~J}$	B1   B1   M1   A1	4	For using:-   WD by driving force $=$ Gain in PE   + WD against resistance
	(ii) $\begin{aligned} & 5030000= \\ & 1 / 215000\left(24^{2}-15^{2}\right)+1600 \mathrm{~d} \end{aligned}$   Distance is 1500 m	$\begin{array}{\|l\|} \hline \text { M1 } \\ \hline \text { A1 } \\ \hline \text { A1 } \end{array}$	3	For using :-   WD by engine = Increase in KE + WD against resistance
6	(i) $\begin{aligned} & \mathrm{T}-0.3 \mathrm{~g}=0.3 \mathrm{a} \text { or } \\ & 0.7 \mathrm{~g}-\mathrm{T}=0.7 \mathrm{a} \\ & 0.7 \mathrm{~g}-\mathrm{T}=0.7 \mathrm{a} \text { or } \\ & \mathrm{T}-0.3 \mathrm{~g}=0.3 \mathrm{a} \text { or } \\ & \quad 0.7 \mathrm{~g}-0.3 \mathrm{~g}=(0.7+0.3) \mathrm{a} \end{aligned}$   Tension is 4.2 N	M1   A1   B1   A1	4	For applying Newton's $2^{\text {nd }}$ law to A or to B
	$\text { (ii) } \begin{aligned} & \mathrm{a}=4 \\ & \mathrm{~s}_{\text {taut }}=1.6^{2} /(2 \times 4) \quad(=0.32) \\ & {\left[(0.52+0.32)=-1.6 \mathrm{t}+5 \mathrm{t}^{2}\right] } \\ & {[(\mathrm{t}-0.6)(5 \mathrm{t}+1.4)=0] } \end{aligned}$   Time taken is 0.6 s	B1   B1   M1   M1   A1	5	May be scored in (i)   For using $s=u t+1 / 2 \mathrm{gt}^{2}$   For solving the resultant quadratic equation.
Alternative Marking Scheme for the last three marks				
	$\begin{aligned} & 0^{2}=1.6^{2}-2 \mathrm{gs}_{\text {up }}, \\ & \mathrm{t}_{\mathrm{up}}=2 \mathrm{~s}_{\mathrm{up}} /(1.6+0) \quad(=0.16) \\ & 0.52+\mathrm{s}_{\text {taut }}+\mathrm{s}_{\text {up }}=0+1 / 2 \mathrm{gt}_{\text {down }}{ }^{2} \\ & \quad\left(\mathrm{t}_{\text {down }}=0.44\right) \end{aligned} \quad \begin{aligned} & \text { Time taken }=\mathrm{t}_{\text {up }}+\mathrm{t}_{\text {down }}=0.6 \mathrm{~s} \end{aligned}$	M1   M1   B1		For using kinematic formulae to find $\mathrm{t}_{\mathrm{up}}$   For using kinematic formulae to find $t_{\text {down }}$


Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	41


7	(i) $\mathrm{v}(\mathrm{t})=0.3 \mathrm{t}^{2}$ $\mathrm{s}(\mathrm{t})=0.1 \mathrm{t}^{3}$   Velocity is $30 \mathrm{~ms}^{-1}$ and displacement is 100 m	M1   A1   M1   A1   A1	5	For integrating 0.6 t and using $\mathrm{v}(0)=0$ (may be implied by absence of constant of integration)   For integrating $\mathrm{v}(\mathrm{t})$ and using $\mathrm{s}(0)=0$ (may be implied by absence of constant of integration)
	(ii) $v(t)=-0.2 \mathrm{t}^{2}+50$   At A, $-0.2 \mathrm{t}^{2}+50=0 \rightarrow \mathrm{t}=\sqrt{ } 250$ $s(t)=-t^{3} / 15+50 t-1000 / 3$   Distance OA is 194 m	M1   A1   B1   M1   A1   M1   A1	7	For integrating -0.4 t and using $\mathrm{v}(10)=30$   For integrating $\mathrm{v}(\mathrm{t})$ and using $\mathrm{s}(10)=100$   For finding $\mathrm{s}(\sqrt{ } 250)$

## MARK SCHEME for the May/June 2013 series

## 9709 MATHEMATICS

9709/43
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Syllabus	Paper
9709	43

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the $A$ or $B$ mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR - 1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all $A$ and $B$ marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	43


$\mathbf{1}$	$[(\mathrm{W} / \mathrm{g}) \mathrm{a}=\mathrm{W} \sin \alpha-0.02 \mathrm{~W} \cos \alpha]$   $\mathrm{a}=\left(\sin 14^{\circ}-0.02 \cos 14^{\circ}\right) \mathrm{g}$   $(=2.225 \ldots)$	M1		For using Newton's second law
	$\left[\mathrm{v}^{2}=8^{2}+2 \times 2.225 \ldots \times 50\right]$   Speed is $16.9 \mathrm{~m} \mathrm{~s}^{-1}$	M1		For using $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ a s
	A1	$[4]$		


Alternative Scheme				
1	WD against friction $=0.02 \mathrm{~W} \cos \alpha \times 50$ $\text { PE loss }=\mathrm{W} \times 50 \sin \alpha$   Speed is $16.9 \mathrm{~m} \mathrm{~s}^{-1}$	B1   B1   M1   A1	[4]	For using Gain in $\mathrm{KE}=$ Loss in PE   - WD against friction
2 (i)   (ii)	Loss of PE $=2 \mathrm{~g} \times 3.24$ $-1.6 \mathrm{~g}(3.24 \times 0.8)$   Loss is 23.328 J . $1 / 2(1.6+2) v^{2}=23.328$   Speed is $3.6 \mathrm{~m} \mathrm{~s}^{-1}$	M1   A1   A1   B1   B1	[3]   [2]	PE loss $=\mathrm{B}$ 's loss - A's gain   AG   SR (max 1/2) for using Newton's second law and $\begin{array}{\|lr} \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{ar} & \\ 2 \mathrm{~g}-\mathrm{T}=2 \mathrm{a} \text { and } \mathrm{T}-1.6 \mathrm{~g} \times 0.8 \\ & =1.6 \mathrm{a} \\ \mathrm{a}=2 & \\ \mathrm{v}^{2}=2 \times 2 \times 3.24 & \mathrm{v}=3.6 \mathrm{~B} 1 \end{array}$
3	$\begin{aligned} & 1000 \mathrm{P} / 14-\mathrm{R}=800 \times 1.4 \text { and } \\ & 1000 \mathrm{P} / 25-\mathrm{R}=800 \times 0.33 \\ & \mathrm{P}=27.2 \\ & \mathrm{R}=825 \end{aligned}$	M1   M1   A1   M1   A1   B1	[6]	For using $\mathrm{DF}=\mathrm{P} / \mathrm{v}$   For using Newton's $2^{\text {nd }}$ law for both speeds / accelerations   For solving for P   Accept 825.5


Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	43


4 (i)		M1		
	$V(t)=1.5 \mathrm{t}+0.006 \mathrm{t}^{2}$	A1		Constant of integration zero or absent
	$\begin{aligned} & {\left[0.006 \mathrm{t}^{2}+1.5 \mathrm{t}-90=0 \rightarrow\right.} \\ & \left.\mathrm{t}^{2}+250 \mathrm{t}-15000=0\right] \boldsymbol{\rightarrow} \\ & (\mathrm{t}-50)(\mathrm{t}+300)=0] \end{aligned}$	DM1		For using $\mathrm{v}(\mathrm{t})=90$ and solving for $t$ (dependent on integration)
	Leaves the ground when $\mathrm{t}=50$	A1	[4]	
		M1		For integrating $\mathrm{v}(\mathrm{t})$ and using limits 0 to candidate's answer for part (i)
	$\mathrm{s}=0.75 \mathrm{t}^{2}+0.002 \mathrm{t}^{3}$	A1ft		ft if there is a non-zero constant of integration C in part (i) $\mathrm{s}=0.75 \mathrm{t}^{2}+0.002 \mathrm{t}^{3}+\mathrm{Ct}$
	Distance is 2125 m	A1ft	[3]	Accept 2120 or 2130   ft t from part (i) in $0.75 \mathrm{t}^{2}+0.002 \mathrm{t}^{3}$
5 (i)	$\begin{aligned} & {[\mathrm{T}=2 \times 1.7-2 \times 0.7]} \\ & {\left[\text { for P } 17 \mathrm{t}-5 \mathrm{t}^{2}=0\right.} \\ & \text { and } \\ & \text { for Q } \left.7 \mathrm{t}=5 \mathrm{t}^{2}=0\right] \\ & \mathrm{T}=2 \end{aligned}$$17(t+2)-5(t+2)^{2}-\left(7 t-5 t^{2}\right)=5 \text { or }$$17 \mathrm{t}-5 \mathrm{t}^{2}-7(\mathrm{t}-2)+5(\mathrm{t}-2)^{2}=5$	M1		$\mathrm{T}=2 \mathrm{x}$ time to max. height for $\mathrm{P}-$ 2 x time to max. height for Q or For using $\mathrm{T}=$ time for P to return to ground - time for Q to return to ground
		A1	[2]	SR (max 1/2) for candidates who find difference in time to maximum height $\mathrm{T}=1.7-0.7=1 \quad \mathrm{~B} 1$
		M1		For using $\mathrm{h}_{\mathrm{p}}-\mathrm{h}_{\mathrm{Q}}=5$ and $\mathrm{s}=\mathrm{ut}-5 \mathrm{t}^{2}$ for both P and Q
		A1	ft	$\mathrm{ft} \mathrm{T} \mathrm{from} \mathrm{part} \mathrm{(i)}$
	$\mathrm{t}=0.9$ or $\mathrm{t}=2.9$	A1		
		M1		For using $\mathrm{v}=\mathrm{u}-10 \mathrm{t}$ for P and Q


Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	43



Page 7 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	43


$7 \quad$ (i)		M1		For applying Newton's $2^{\text {nd }}$ law to A or to B
	$\begin{aligned} & \mathrm{T}-(2 / 7) 1.26 \mathrm{~g}=1.26 \mathrm{a} \text { or } \\ & 0.9 \mathrm{~g}-\mathrm{T}=0.9 \mathrm{a} \end{aligned}$	A1		
	$\begin{aligned} & 0.9 \mathrm{~g}-\mathrm{T}=0.9 \mathrm{a} \text { or } \\ & \mathrm{T}-(2 / 7) 1.26 \mathrm{~g}=1.26 \mathrm{a} \end{aligned}$   or			
	$0.9 \mathrm{~g}-(2 / 7) 1.26 \mathrm{~g}=(0.9+1.26) \mathrm{a}$	B1		
	Acceleration is $2.5 \mathrm{~m} \mathrm{~s}^{-2}$	B1		AG
	Tension is 6.75 N	A1	[5]	
(ii)	$\left[\mathrm{v}^{2}=2 \times(2.5) \times 0.45\right]$	M1		For using $\mathrm{v}^{2}=2 \mathrm{ah}$
	Speed is $1.5 \mathrm{~m} \mathrm{~s}^{-1}$	A1	[2]	
(iii)	[-(2/7) $1.26 \mathrm{~g}=1.26 \mathrm{a}$ ]	M1		For applying Newton's $2^{\text {nd }}$ law to A
	$\mathrm{a}=-20 / 7$	A1		
	$\left[\mathrm{v}^{2}=2.25+2(-20 / 7)(0.03)\right]$	M1		For using $\mathrm{v}^{2}=\mathrm{v}^{2}+2 \mathrm{as}$
	Speed is $1.44 \mathrm{~m} \mathrm{~s}^{-1}$	A1	[4]	

## MARK SCHEME for the May/June 2013 series

## 9709 MATHEMATICS

9709/42
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the $A$ or $B$ mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	42

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR-1 A penalty of MR-1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all $A$ and $B$ marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	42

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
1 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
[24=\mu 30]
\] \\
Coefficient is 0.8
\[
\begin{aligned}
\& \mathrm{F}=0.8\left(30-25 \sin 30^{\circ}\right) \quad(=14) \\
\& {\left[25 \cos 30^{\circ}-\mathrm{F}=(30 \div \mathrm{g}) \mathrm{a}\right]}
\end{aligned}
\] \\
Acceleration is \(2.55 \mathrm{~ms}^{-2}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& [2]

[4] \& | For using $\mathrm{R}=\mathrm{W}$, $\mathrm{F}=\mathrm{T}$ and $\mathrm{F}=\mu \mathrm{R}$ |
| :--- |
| For resolving forces vertically and using $\mathrm{F}=\mu \mathrm{R}$ |
| For using of Newton's 2nd law | <br>

\hline | 2 (i) |
| :--- |
| (ii) | \& | $\begin{aligned} 1150=1 / 216 \times 10^{2} & -16 \mathrm{~g}(50 \times 0.05) \\ & + \text { WD by resistance } \end{aligned}$ |
| :--- |
| WD by resistance $=750 \mathrm{~J}$ $1150=\text { increase in } \mathrm{KE}+16 \mathrm{~g}(50 \times 0.05)+750$ |
| KE gain $=0 \rightarrow$ speed at top $=$ speed at bottom | \& M1

A1
A1
M1
A1 \& $[3]$

[2] \& | For using work done by pulling force $=$ increase in $\mathrm{KE}-$ decrease in $\mathrm{PE}+$ WD by resistance |
| :--- |
| For WD by pulling force $=$ KE gain + PE gain + WD by resistance AG | <br>

\hline 3 \& | $\begin{aligned} & \mathrm{T}_{\mathrm{A}} \times(40 / 50)+\mathrm{T}_{\mathrm{B}} \times(40 / 104)=21 \text { or } \\ & \mathrm{T}_{\mathrm{A}} \times(30 / 50)=\mathrm{T}_{\mathrm{B}} \times(96 / 104) \\ & \mathrm{T}_{\mathrm{A}} \times(30 / 50)=\mathrm{T}_{\mathrm{B}} \times(96 / 104) \text { or } \\ & \mathrm{T}_{\mathrm{A}} \times(40 / 50)+\mathrm{T}_{\mathrm{B}} \times(40 / 104)=21 \end{aligned}$ |
| :--- |
| Solve for $T_{A}$ and $T_{B}$ |
| Tension in AP is 20 N and tension in BP is 13 N | \& | M1 |
| :--- |
| A1 |
| B1 |
| M1 |
| A1 | \& [5] \& | For resolving forces acting on P horizontally or vertically |
| :--- |
| Solving for both |
| Both $\mathrm{T}_{\mathrm{A}}=20$ and $\mathrm{T}_{\mathrm{B}}=13$ | <br>

\hline \& \multicolumn{4}{|c|}{First Alternative Marking Scheme} <br>

\hline 3 \& | $21 / \sin 75.75($ or 75.7 or 75.8$)=$ |
| :--- |
| $\mathrm{T}_{\mathrm{A}} / \sin 67.4\left(\right.$ or $\left.\mathrm{T}_{\mathrm{B}} / \sin 36.9\right)$ |
| $21 / \sin 75.75($ or 75.7 or 75.8$)=$ $\mathrm{T}_{\mathrm{B}} / \sin 36.9$ (or $\mathrm{T}_{\mathrm{A}} / \sin 67.4$ ) or $\mathrm{T}_{\mathrm{B}} / \sin 36.9=20 / \sin 67.4$ |
| Solve for $T_{A}$ and $T_{B}$ | \& | M1 |
| :--- |
| A1 |
| B1 |
| M1 | \& \& | For using the sine rule in the triangle of forces |
| :--- |
| Solving for both | <br>

\hline
\end{tabular}

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	$\mathbf{4 2}$


	Tension in AP is 20 N and tension in BP is 13 N	A1	[5]	Both $\mathrm{T}_{\mathrm{A}}=20$ and $\mathrm{T}_{\mathrm{B}}=13$
Second Alternative Marking Scheme				
3	$\begin{aligned} & 21 / \sin 104.3= \mathrm{T}_{\mathrm{A}} / \sin 112.6 \\ &\left(\text { or }_{\mathrm{B}} / \sin 143.1\right) \\ & 21 / \sin 104.3= \mathrm{T}_{\mathrm{B}} / \sin 143.1 \\ &\left({\text { or } \left.\mathrm{T}_{\mathrm{A}} / \sin 112.6\right)}\right. \\ & \text { or } \mathrm{T}_{\mathrm{B}} / \sin 143.1=20 / \sin 112.6 \\ & \text { or } \mathrm{T}_{\mathrm{A}} / \sin 112.6=13 / \sin 143.1 \end{aligned}$   Solve for $T_{A}$ and $T_{B}$   Tension in AP is 20 N and tension in BP is 13 N	M1   A1   B1   M1   A1	[5]	For using Lami's Rule   For using the equations to find $\mathrm{T}_{\mathrm{A}}$ and $\mathrm{T}_{\mathrm{B}}$   Both $\mathrm{T}_{\mathrm{A}}=20$ and $\mathrm{T}_{\mathrm{B}}=13$
$\begin{array}{rr}4 & \text { (i) } \\ & \\ & \\ \text { (ii) }\end{array}$	$\begin{aligned} & \mathrm{a}=(16 \div 65) \mathrm{g} \\ & {\left[8^{2}=2(16 \div 65) \mathrm{gS}\right]} \\ & \mathrm{S}=13 \\ & {\left[\mathrm{v}^{2}=2(16 \div 65) \mathrm{g} \times 6.5\right.} \\ & \text { or } \left.^{2} \div 8^{2}=1 / 2\right] \end{aligned}$   Speed is $5.66 \mathrm{~ms}^{-1}$ $\begin{aligned} & {\left[s=1 / 2 a \times\left(64 \div 4 a^{2}\right)\right.} \\ & \text { or } \left.\div 13=(1 / 2)^{2}\right] \end{aligned}$   Distance is 3.25 m	B1   M1   A1   M1   A1   M1   A1	[5]	For using $\mathrm{v}^{2}=2$ as to find S   For using $\mathrm{v}^{2}=2 \mathrm{a}(1 / 2 \mathrm{~S})$ or $v^{2} \alpha \mathrm{~s}$   For using $\begin{aligned} & 8=0+\mathrm{aT} \text { and } \mathrm{s}=1 / 2 \mathrm{a}(\mathrm{~T} / 2)^{2} \\ & \text { or } \mathrm{s} \alpha \mathrm{t}^{2} \end{aligned}$


Alternative Marking Scheme				
4 (i)	$\left[1 / 2 m v^{2}=\mathrm{mgh}\right.$			
	and $\mathrm{S}=\mathrm{h} \div \sin \alpha$	M1		For using KE gain = PE loss
	$\mathrm{S}=\left(8^{2} \div 20\right) \div(16 \div 65)$	A1		Or AEF
	$\mathrm{S}=13$	A1		
	$1 / 2 \mathrm{mv}{ }^{2}=\mathrm{mg}(1 / 213 \times(16 / 65))$	M1		Or AEF
	Speed is $5.66 \mathrm{~ms}^{-1}$	A1	[5]	
(ii)		M1		For eliminating at ${ }^{2}$ from $\mathrm{s}=1 / 2 \mathrm{at}^{2}$ and $13=1 / 2 \mathrm{a}(2 \mathrm{t})^{2}$
	Distance is 3.25 m	A1	[2]	
5 (i)	Driving force $=1000 \mathrm{P} / 25$	B1		


Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	$\mathbf{4 2}$

\begin{tabular}{|c|c|c|c|c|}
\hline (ii) \& \begin{tabular}{l}
\[
1000 \mathrm{P} / 25-600=1000 \times 0.2
\]
\[
\mathrm{P}=20
\]
\[
20000 / v_{\max }-600=0
\] \\
Steady speed is \(33.3 \mathrm{~ms}^{-1}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1ft \\
A1
\end{tabular} \& [4]

[3] \& | For using Newton's $2^{\text {nd }}$ law |
| :--- |
| For using Newton's $2^{\text {nd }}$ law with $\mathrm{a}=0$ |
| ft for their P in (i) | <br>

\hline | 6 (i) |
| :--- |
| (ii) |
| (iii) | \& | For sketch of single valued, continuous graph consisting of 3 straight line segments with $+{ }^{\text {ve }}$, then $-{ }^{\text {ve }}$, then $+{ }^{\text {ve }}$ slope |
| :--- |
| Sketch appears to show $\mathrm{v}(0)=0$ and $\mathrm{v}(8)>\mathrm{v}(26)>\mathrm{v}(20)$ |
| For shading the triangle from $t=0$ to $t=8$, the trapezium from $t=8$ to $t=20$ and the trapezium from $t=20$ to a value of $t$ seen to be between 20 and 26 $s(20)=1 / 2(8 \times 8)+1 / 2(8+2) \times 12 \quad(=92)$ $\begin{aligned} & \mathrm{a}=(6.5-2) / 6 \quad(=0.75) \\ & {\left[\mathrm{s}(\mathrm{t})=92+2(\mathrm{t}-20)+0.375(\mathrm{t}-20)^{2}\right.} \end{aligned}$ |
| Displacement is $0.375 t^{2}-13 t+202 \text { metres }$ | \& | B1 |
| :--- |
| B1 |
| B1 |
| M1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 | \& [1] ${ }^{[2]}$ \& | For using area property to find $\mathrm{s}(20)$ |
| :--- |
| For using the gradient property to find acceleration in $3^{\text {rd }}$ phase | <br>

\hline
\end{tabular}

Alternative Marking Scheme for final 2 marks of Q6

	$\begin{aligned} & {[\mathrm{v}(\mathrm{t})=2+0.75(\mathrm{t}-20)} \\ & \mathrm{s}(\mathrm{t})=0.375 \mathrm{t}^{2}-13 \mathrm{t}+\mathrm{A} \text { where } \\ & 92=0.375 \times 400-13 \times 20+\mathrm{A}] \end{aligned}$   Displacement is $0.375 t^{2}-13 t+202 \text { metres }$	M1   A1	For finding $\mathrm{v}(\mathrm{t})$, integrating and using $\mathrm{s}(20)=92$
6 (iii)	First Alternative Marking Scheme for part (iii) of Q6		
	$\begin{aligned} & a=(6.5-2) /(26-20)=0.75 \\ & v=0.75 t(+C 1) \\ & v=0.75 t-13 \end{aligned}$	B1   M1   A1	Integrating   Using $\mathrm{v}(20)=2$ or $v(26)=6.5$


Page 7 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	$\mathbf{4 2}$

\begin{tabular}{|c|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& s(20)=92 \text { or } s(26)=117.5 \\
\& s=0.375 t^{2}-13 t\left(+C_{2}\right) \\
\& s=0.375 t^{2}-13 t+202
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& [6] \& \begin{tabular}{l}
Using area in diagram \\
Integrating \\
Using \(\mathrm{s}(20)\) or \(\mathrm{s}(26)\) to find \(\mathrm{C}_{2}=202\)
\end{tabular} \\
\hline 6 (iii) \& \multicolumn{4}{|l|}{Second Alternative Marking Scheme for part (iii) of Q6} \\
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& s=0.375 t 2-13 t+202 \\
\& v=0.75 t-13 \\
\& a=0.75 \\
\& a=(6.5-2) /(26-20)=0.75 \\
\& v(20)=0.75(20)-13=2 \text { or } \\
\& v(26)=0.75(26)-13=6.5
\end{aligned}
\] \\
Show \(\mathrm{s}(20)=92\) or \(\mathrm{s}(26)=117.5\)
\[
\begin{aligned}
\& \mathrm{s}(20)=0.375(20)^{2}-13(20)+202=92 \text { or } \\
\& \mathrm{s}(26)=0.375(26)^{2}-13(26)+202=117.5
\end{aligned}
\]
\end{tabular} \& M1
M1
B1
B1
B1
B1 \& \& \begin{tabular}{l}
Given \\
Differentiating \\
Differentiating \\
Check agreement from graph \\
Check vagrees at a point between \(\mathrm{t}=\) 20 and \(\mathrm{t}=26\) \\
Using area under graph \\
Check s agrees at a point between \(\mathrm{t}=\) 20 and \(\mathrm{t}=26\)
\end{tabular} \\
\hline 7 (i) \& \begin{tabular}{l}
\[
\mathrm{T}-0.26 \mathrm{~g}(16 \div 65)=0.26 \mathrm{a} \text { or }
\]
\[
0.52 \mathrm{~g}-\mathrm{T}=0.52 \mathrm{a}
\] \\
For \(\{0.52 \mathrm{~g}-\mathrm{T}=0.52 \mathrm{a}\) or \(\mathrm{T}-0.26 \mathrm{~g}(16 \div 65)=0.26 \mathrm{a}\}\) or \(0.52 \mathrm{~g}-0.26 \mathrm{~g}(16 \div 65)=(0.52+0.26) \mathrm{a}\) \\
Acceleration is \(5.85 \mathrm{~ms}^{-2}\) \\
Tension is 2.16 N
\[
\left[v^{2}=2 \times(76 / 13) \times 0.6\right]
\] \\
Speed is \(2.65 \mathrm{~ms}^{-1}\)
\[
\begin{aligned}
\& 0=91.2 / 13-2(160 / 65) \mathrm{s} \\
\& \mathrm{~S}=57 / 40 \quad(=1.425)
\end{aligned}
\]
\[
[\mathrm{AP}=2.5-0.6-1.425]
\] \\
Distance AP is 0.475 m
\end{tabular} \& M1 \& [5]

[6] \& | For applying Newton's $2^{\text {nd }}$ law to A or B |
| :--- |
| For using $\mathrm{v}^{2}=2 \mathrm{as}$ |
| For using $0=v_{B}{ }^{2}-2(g \sin \alpha) s$ |
| For using $\mathrm{AP}=2.5-0.6-\mathrm{s}$ | <br>

\hline
\end{tabular}

## MARK SCHEME for the May/June 2013 series

## 9709 MATHEMATICS

9709/41
Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the $A$ or $B$ mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	41

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR - 1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all $A$ and $B$ marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	41


1 (i)   (ii)	Less than $\begin{aligned} & \mathrm{F}=1.25 \mathrm{~W} \text { so } \mathrm{W}<\mathrm{F} \\ & {[\mathrm{P}-60 \times 1.25=6 \times 4]} \\ & \mathrm{P}=99 \end{aligned}$	B1   B1   M1   A1	[2] [2]	For applying Newton's second law.
2	Increase in PE $=1250 \times 10 \times 600$ $\sin 2.5^{\circ}$   Decrease in $\mathrm{KE}=1 / 21250\left(30^{2}-\mathrm{v}_{\text {top }}{ }^{2}\right)$   WD against resistance $=400 \times 600$ $\begin{aligned} & {\left[562500-625 \mathrm{v}_{\text {top }}^{2}=327145+240000\right.} \\ & -450000] \end{aligned}$   Speed is $26.7 \mathrm{~ms}^{-1}$	B1   B1   B1   M1   A1	[5]	For using WD by DF = Increase in PE - decrease in $\mathrm{KE}+\mathrm{WD}$ against resistance

Special Ruling for candidates who assume, without justification, that the driving force (DF) is constant (maximum mark 4).

	[DF - Weight component - Resistance $=$ Mass $\times$ Accel'n] $\begin{aligned} & 750-545-400=1250 \mathrm{a} \\ & \mathrm{v}^{2}=30^{2}+2 \times(-0.156) \times 600 \end{aligned}$   Speed is $26.7 \mathrm{~ms}^{-1}$	M1   A1   B1ft   B1	[4]	For applying Newton's second law.   ft value of a
3 (i)   (ii)	$\begin{aligned} & u^{2}=2 \times 10 \times 45 ; \text { speed is } 30 \mathrm{~ms}^{-1} \\ & {\left[40=30 t-5 t^{2} \rightarrow t=2,4\right]} \\ & {\left[5=1 / 210 t^{2} \rightarrow t=1\right]} \end{aligned}$   Time above the ground is 2 s	M1   A1   M1   A1ft	[2]   [2]	For using $0=u^{2}-2 \mathrm{gs}$   For using $s=u t-1 / 2$ gt 2 with $s=40, u=30$ and $T$ $=t_{2}-t_{1} \text { or } s=u t+1 / 2 g t^{2} s=5, u=0 \text { and }$ $\mathrm{T}=2 \mathrm{t}$
Special Ruling for candidates who assume, without justification, that the length of time required is that of the upward movement only. (maximum mark 1).				
(ii)   (iii)	$5=1 / 210 \mathrm{t}^{2} \rightarrow \mathrm{t}=1$, the length of time required is 1 s   Max. height above top of cliff $=1 / 2 \mathrm{~g}(17$ $\div 4)(=21.25)$ $\left[0=\mathrm{V}^{2}-2 \mathrm{~g}(40+21.25)\right.$   Speed is $35 \mathrm{~ms}^{-1}$	B1   B1   M1   A1	B1   [3]	For using $0=\mathrm{u}^{2}-2 \mathrm{gs}$


Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9709	41


Alternative Marking Scheme for (iii)				
(iii)	$17=\mathrm{V}^{2} / 25-32$   Speed is $35 \mathrm{~ms}^{-1}$	M1   A1   A1	[3]	For using $40=\mathrm{Vt}-5 \mathrm{t}^{2} \rightarrow$ $\begin{aligned} & t_{2}-t_{1}= \\ & 1 / 2\left(\mathrm{~V} / 5+\sqrt{ }\left(\mathrm{V}^{2} / 25-32\right)-1 / 2\left(\mathrm{~V} / 5-\sqrt{ }\left(\mathrm{V}^{2} / 25-32\right)\right.\right. \end{aligned}$
4 (i)   (ii)	$\begin{aligned} & \mathrm{DF}=1500000 / 37.5(=40000) \\ & {[\mathrm{DF}-\mathrm{R}=\mathrm{ma}]} \\ & \mathrm{DF}-30000=400000 \mathrm{a} \end{aligned}$   Acceleration is $0.025 \mathrm{~ms}^{-2}$ $[1500000 / \mathrm{v}-30000=0]$   Steady speed is $50 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]   [2]	For using Newton's second law   For using Newton's $2^{\text {nd }}$ law with $\mathrm{a}=0$
5 (i)   (ii)	$\begin{aligned} & \mathrm{R}=2.6 \times(12 \div 13)(=2.4) \\ & {[\mathrm{F}=0.2 \times 2.4]} \\ & {[\mathrm{T}-2.6(5 \div 13)-\mathrm{F}=0.26 \mathrm{a}, 5.4-\mathrm{T}=} \\ & 0.54 \mathrm{a}] \end{aligned}$   For any two of T $-1-0.48=0.26 a, 5.4$ $\begin{aligned} & -\mathrm{T}=0.54 \mathrm{a} \text { or } \\ & (5.4-1-0.48)=(0.54+0.26) \mathrm{a} \end{aligned}$   Acceleration is $4.9 \mathrm{~ms}^{-2}$   Tension is 2.75 N ( 2.754 exact) $\left[\mathrm{s}=1 / 24.9 \times 0.4^{2}\right]$   Distance is 0.392 m	B1   M1   M1   A1   B1   A1   M1   A1	[6] [2]	For using $F=\mu R$   For applying Newton's $2^{\text {nd }}$ law to A or to B.   For using $\mathrm{s}=1 / 2 \mathrm{at}^{2}$
6 (i)	$F \cos \theta=2.5 \times 24 \div 25+2.6 \times 5 \div 13$   $F \sin \theta=2.6 \times 12 \div 13-2.5 \times 7 \div 25$   For $\mathrm{F}=3.80 \mathrm{~N}$ or $\tan \theta=0.5$   For $\tan \theta=0.5$ or $\mathrm{F}=3.80 \mathrm{~N}$	M1   A1   A1   M1   A1   B1	[6]	For resolving forces in the $x$ and $y$ directions (or for sketching a marked triangle of forces) $\begin{aligned} & (=3.4) \\ & (=1.7) \end{aligned}$   For using $\mathrm{F}^{2}=(\mathrm{F} \cos \theta)^{2}+(\mathrm{Fsin} \theta)^{2}$ to find F or $\tan \theta=\mathrm{F} \sin \theta \div \mathrm{F} \cos \theta$ to find $\theta$


Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9709	41


(ii)	$[3.80=0.5 \mathrm{a}]$   Acceleration is $7.60 \mathrm{~ms}^{-2}$   Direction is $26.6^{\circ}$ clockwise from +ve $x$-axis.	M1   Alft   B1ft	[3]	For using Newton's $2^{\text {nd }}$ law with the magnitude of the resultant force equal to the value of F found.   ft value of F found in (i)   ft value of $\tan \theta$ found in (i)
$\begin{array}{ll}7 & \text { (i) } \\ & \\ & \text { (ii) } \\ \\ & \text { (iii) } \\ \\ \text { (iv) }\end{array}$	$\begin{array}{r} {\left[0.0000117\left(1200 t^{2}-12 t^{3}\right)\right.} \\ =0] \end{array}$	M1		For differentiating and solving $\mathrm{ds} / \mathrm{dt}=0$
	$1200 \mathrm{t}^{2}=12 \mathrm{t}^{3} \boldsymbol{\rightarrow} \mathrm{t}=0,100$	A1		Accept just $\mathrm{t}=100$, if it is used to find distance AB.
	Distance AB $=1170 \mathrm{~m}$	A1	[3]	
		M1		For differentiating again and solving $\mathrm{d}^{2} \mathrm{~s} / \mathrm{dt}^{2}=0$
	$2400 \mathrm{t}-36 \mathrm{t}^{2}=0 \rightarrow \mathrm{t}=0,200 / 3$	A1		Accept just $\mathrm{t}=200 / 3$, if it is used to find $\mathrm{v}_{\text {max }}$.
	$\begin{array}{r} {\left[\mathrm{v}_{\max }=0.0000117\left\{1200(200 / 3)^{2}\right.\right.} \\ \left.\left.-12(200 / 3)^{3}\right\}\right] \end{array}$	M1		For substituting into $\mathrm{v}(\mathrm{t})$
	Maximum speed is $20.8 \mathrm{~ms}^{-1}$	A1	[4]	
	At $\mathrm{Aa}(\mathrm{t})=0$	B1		
	$\begin{aligned} & \text { At } \mathrm{Ba}(\mathrm{t})= \\ & 0.0000117\left(2400 \times 100-36 \times 100^{2}\right)= \\ & -1.40 \mathrm{~ms}^{-2}(-1.404 \text { exact }) \end{aligned}$	B1	[2]	
	Sketch has v increasing			
	from 0 to maximum and decreasing to 0 , with maximum closer to $t=100$ than $\mathrm{t}=0$.	B1		
	Sketch has zero gradient at $\mathrm{t}=0$ and inflexion closer to $\mathrm{t}=0$ than $\mathrm{t}=100$.	B1	[2]	


[^0]:    GENERIC MARKING PRINCIPLE 6:
    Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

[^1]:    GENERIC MARKING PRINCIPLE 6:
    Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

[^2]:    GENERIC MARKING PRINCIPLE 6:
    Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

