

## Cambridge International AS & A Level

### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/41 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of **15** printed pages.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

### GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

### GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

| 1 | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | no marks will be awarded for a scale drawing.                                                                                                               |

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.



### **Mark Scheme Notes**

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

### **Types of mark**

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

9709/41

# Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

### Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                                   | Marks | Guidance                                                                                                                                                                                       |
|----------|------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1(a)     | 6V + 30V + 3V = 585<br>0.5(30+48)V = 585 | M1    | Use of constant acceleration equations or a $v$ - $t$ graph.<br>Complete method to set up an equation in $V$ using constant acceleration equations or correct area formula in $v$ - $t$ graph. |
|          | Speed of the bus = $15 \text{ ms}^{-1}$  | A1    | Must be positive.                                                                                                                                                                              |
|          | TPE                                      | 2     |                                                                                                                                                                                                |
| 1(b)     | Magnitude of deceleration = 2.5          | B1 FT | OE. Do not allow $a = -2.5$ .                                                                                                                                                                  |
|          |                                          | 1     |                                                                                                                                                                                                |



| Question | Answer                                                                               | Marks | Guidance                                                                                                                                            |
|----------|--------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2(a)     | Attempt at use of conservation of momentum                                           | M1    | 4 terms implied, i.e. <i>m</i> and <i>km</i> included before and after collision. Velocity after collision is the same for <i>m</i> and <i>km</i> . |
|          | $km \times 6 - m \times 2 = (km + m) \times 4$                                       | A1    |                                                                                                                                                     |
|          | <i>k</i> = 3                                                                         | A1    |                                                                                                                                                     |
|          | TPR                                                                                  | 3     |                                                                                                                                                     |
| 2(b)     | KE initial = $\frac{1}{2} \times km \times 6^2 + \frac{1}{2} \times m \times (-2)^2$ | M1    | Attempt at any of the three possible KE terms, unsimplified. $k$ need not be substituted here.                                                      |
|          | KE after = $\frac{1}{2} \times (km + m) \times 4^2$                                  |       |                                                                                                                                                     |
|          | Loss of KE = $24m$ J                                                                 | A1 FT | KE loss = $56m - 32m$<br>FT on <i>their k</i> , KE loss = $(10k - 6)m$ , $k > 0.6$ .                                                                |
|          |                                                                                      | 2     |                                                                                                                                                     |

| Question | Answer                                                        | Marks | Guidance                                                                                                    |
|----------|---------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------|
| 3        | Attempt at resolving in any direction                         | M1    | Correct number of terms. No substitution for $\alpha$ required.                                             |
|          | $P\cos\theta = (36 - 24)\cos 36.9$                            | A1    |                                                                                                             |
|          | or<br>$P\cos\theta = (36-24) \times 0.8$                      |       |                                                                                                             |
|          | $P\sin\theta + 20 = (24 + 36)\sin 36.9 = 14.4 + 21.6$         | A1    |                                                                                                             |
|          | or<br>$P\sin\theta + 20 = 60 \times 0.6 = 36$                 |       |                                                                                                             |
|          | $P\cos\theta = 9.6, P\sin\theta = 16 P = \sqrt{16^2 + 9.6^2}$ | M1    | Correct method for solving equations for <i>P</i> . OE                                                      |
|          | $\theta = \tan^{-1} \left( \frac{16}{9.6} \right)$            | M1    | Correct method for solving equations for $\theta$ .<br>OE e.g. $\theta = \tan^{-1}\left(\frac{5}{3}\right)$ |
|          | P = 18.7                                                      | A1    | Allow $P = \frac{16\sqrt{34}}{34}$ .                                                                        |
|          | $\theta = 39[.0]$                                             |       | 5 Allow $P = 18.6$ .                                                                                        |
|          | 12                                                            | 6     |                                                                                                             |
|          |                                                               |       |                                                                                                             |

| Question | Answer                                                          | Marks | Guidance                                                                                                                       |
|----------|-----------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------|
| 4(a)     | Correct 4 force diagram                                         | B1    | Angles shown. F either up/down slope.                                                                                          |
|          |                                                                 |       | R<br>25*<br>12g<br>12g<br>12g                                                                                                  |
|          |                                                                 | 1     |                                                                                                                                |
| 4(b)     | Attempt to resolve forces parallel to the plane                 | M1    | Three terms, allow sign errors.                                                                                                |
|          | $P + F = 12g\sin 25 \ [= 50.7]$                                 | A1    | Must have correct direction of $F$ here.                                                                                       |
|          | $R = 12g\cos 25$ [= 108.8]                                      | B1    |                                                                                                                                |
|          | $F = 120\cos 25 \times 0.35  [= 38.1]$<br>P + 38.1 = 120 sin 25 | M1    | Attempt to solve for $P$ using equations with the correct<br>number of terms.<br>R must be a single-term component of 12 $g$ . |
|          | P=12.6                                                          | A1    | P = 12.64926 Allow $P = 12.7$                                                                                                  |
|          | apro                                                            | 5     |                                                                                                                                |

| Question | Answer                                                                                                             | Marks | Guidance                                                                 |
|----------|--------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------|
| 5(a)     | $s = 30 \times 20$                                                                                                 | B1    |                                                                          |
|          | PE change = $1600 \times g \times s \times 0.12$<br>[PE change = $1600 \times g \times 20 \times 30 \times 0.12$ ] | M1    | Attempt change in PE. May use angle = 6.9°.<br>Allow sin/cos error only. |
|          | Change in PE =1152000 J                                                                                            | A1    |                                                                          |
|          | PA                                                                                                                 | 3     |                                                                          |
| 5(b)     | $1960\ 000 = WD_{res} + their PE$<br>[1960\ 000 = WD_{res} + 1152\ 000]<br>[WD_{res} = 808\ 000\ J]                | M1    | Using work-energy, allow sign error.                                     |
|          | $R = WD_{res} \div 600$                                                                                            | B1    | Using $WD_{res} = R \times 600$ .                                        |
|          | Force resisting motion = $R = 1350$ N to 3sf                                                                       | A1    | Allow $R = \frac{4040}{3}$ N. Allow <i>R</i> negative.                   |
|          | Alternative method for question 5(b)                                                                               |       |                                                                          |
|          | $DF - R - 1600g \times 0.12 = 0$                                                                                   | M1    | <i>R</i> is the resisting force.                                         |
|          | $DF = \frac{196000}{20 \times 30} \left[ = \frac{9800}{3} \right]$                                                 | B1    |                                                                          |
|          | Force resisting motion = $R = \frac{4040}{3} = 1350$ N to 3sf                                                      | A1    | Allow R negative.                                                        |
|          |                                                                                                                    | 3     |                                                                          |

| Question | Answer                                                                  | Marks            | Guidance                                                        |
|----------|-------------------------------------------------------------------------|------------------|-----------------------------------------------------------------|
| 5(c)     | $P = \left(\frac{4040}{3} + 1600 \times g \times 0.12\right) \times 20$ | M1               | For using $P = DF \times v$ .<br>Allow use of <i>their R</i> .  |
|          | $\left[=\frac{196\ 000}{3}\right]$                                      |                  |                                                                 |
|          | P = 65.3  kW                                                            | A1               |                                                                 |
|          | Alternative method for question 5(c)                                    |                  |                                                                 |
|          | $P = \frac{1960\ 000}{30}$                                              | M1               | For using $P = W$ ork done $\div$ Time.                         |
|          | P = 65.3  kW                                                            | A1               |                                                                 |
|          | Alternative method for question 5(c)                                    |                  |                                                                 |
|          | $P = \frac{9800}{3} \times 20$                                          | M1               | For using $P = DF \times v$ .<br>Allow use of <i>their DF</i> . |
|          | P = 65.3  kW                                                            | A1               |                                                                 |
|          | × ×                                                                     | 2                | 5                                                               |
|          | 3. satpret                                                              | p.c <sup>0</sup> |                                                                 |

| Question | Answer                                                                                             | Marks | Guidance                                                                                                     |
|----------|----------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------|
| 5(d)     | $0.85 \times \frac{196000}{3} = DF \times 20$                                                      | B1 FT | $P = DF \times v \left[ DF = \frac{8330}{3} \right]$<br>FT on <i>their P</i> .                               |
|          | $DF - R - 1600g \times 0.12 = 1600a$ $\left[\frac{8330}{3} - \frac{4040}{3} - 1920 = 1600a\right]$ | M1    | Newton's $2^{nd}$ law, four terms, allow sin/cos error, <i>their R</i> and <i>their DF</i> .                 |
|          | $a = [-]0.306 \mathrm{ms}^{-2}$                                                                    | A1    | $a = [-]\frac{490}{1600} = [-]\frac{49}{160}$                                                                |
|          | Alternative method for question 5(d)                                                               |       |                                                                                                              |
|          | $9800 = DF \times 20$                                                                              | B1 FT | Using the reduction in power as the cause of the deceleration.<br>$9800 = 0.15 \times their P = DF \times v$ |
|          | $DF = 1600d$ $\left[\frac{9800}{20} = 1600d\right]$                                                | M1    |                                                                                                              |
|          | $a = [-]0.306 \mathrm{ms}^{-2}$                                                                    | A1    | $a = [-]\frac{490}{1600} = [-]\frac{49}{160}$                                                                |
|          | Satpre                                                                                             | 3     |                                                                                                              |

Г

### Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

October/November 2021

| Question | Answer                                                                                      | Marks | Guidance                                                                                                                        |
|----------|---------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------|
| 6(a)     | a = 2pt - q                                                                                 | *M1   | Attempt to differentiate v.                                                                                                     |
|          | 36p - 6q = 36 $4p - q = 0$                                                                  | DM1   | For attempting to set up 2 equations using $a = 0$ at $t = 2$ and matching the velocities at $t = 6$ and solve for $p$ or $q$ . |
|          | p = 3, q = 12                                                                               | A1    | Both correct.                                                                                                                   |
|          | TPR                                                                                         | 3     |                                                                                                                                 |
| 6(b)     | Correct quadratic from $t = 0$ to $t = 6$<br>or<br>Correct straight line from 6 to 14       | B1    | No labelling necessary for this mark.                                                                                           |
|          | Both quadratic and straight line correct                                                    | B1    | Must join and no labelling needed.                                                                                              |
|          | All correct and key points shown                                                            | B1    | All correct, labelled at (4, 0), (6, 36) and (14, 0).                                                                           |
|          |                                                                                             | 3     |                                                                                                                                 |
| 6(c)     | Attempt to integrate v                                                                      | *M1   | Allow in terms of $p$ and $q$ .                                                                                                 |
|          | $s = t^3 - 6t^2$                                                                            | A1 FT | FT on <i>their</i> $p$ and $q$ values.                                                                                          |
|          | $s(\text{quadratic}) = [ t^3 - 6t^2 ]_0^4 + [t^3 - 6t^2]_4^6$                               | DM1   | [=32+32]<br>Using limits correctly for $t = 0$ to $t = 6$ .<br>Allow in terms of p and q.                                       |
|          | $s(\text{triangle}) = \left[63t - 2.25t^2\right]_6^{14} = 144$<br>or area of triangle = 144 | B1    |                                                                                                                                 |
|          | Total distance travelled in $14 \text{ s} = 208 \text{ m}$                                  | A1    |                                                                                                                                 |
|          |                                                                                             | 5     |                                                                                                                                 |

| Question | Answer                                                                                                                      | Marks | Guidance                                                                                                                                                |
|----------|-----------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7        | Particle A: $2g - T = 2a$<br>Particle B: $T - 3g \sin 18 = T - 9.27 = 3a$<br>System: $2g - 3g \sin 18 = 2g - 9.27 = (2+3)a$ | M1    | Apply Newton's $2^{nd}$ law to either particle $A$ , or to particle $B$ or the system.<br>Correct number of terms.                                      |
|          |                                                                                                                             | A1    | A and B correct or system correct.                                                                                                                      |
|          | a = 2.145898034<br>[5 $a = 10.72949017$ ]                                                                                   | M1    | Attempt to find <i>a</i> using equations with correct number of terms.                                                                                  |
|          | $v^2 = 2 \times a \times 0.45$                                                                                              | M1    | Use of constant acceleration equations with <i>their</i> $a \neq \pm g$ to find $v^2$ when A reaches the ground.                                        |
|          | $v^2 = 2 \times 2.145898034 \times 0.45 = 1.931308 \cdots$<br>[ $v = 1.389715162$ ]                                         | A1    | Allow unsimplified.                                                                                                                                     |
|          | $T = 0, \pm 3g \sin 18 = 3a$<br>[a = \pm 3.0901699]                                                                         | M1    | Attempt to find $a$ for the motion of $B$ when string becomes slack. Allow sin/cos error, no extra terms.                                               |
|          | $[0=1.93-2\times3.09\times s]$ [s=0.312]                                                                                    | M1    | Use constant acceleration equations, using a new $a \neq \pm g$ , to find the further distance, <i>s</i> , travelled by <i>B</i> before coming to rest. |
|          | Total distance moved by $B = 0.45 + 0.312 = 0.762 \mathrm{m}$                                                               | A1    |                                                                                                                                                         |
|          | Alternative method for question 7                                                                                           | P.    |                                                                                                                                                         |
|          | Attempt PE loss as A reaches the ground                                                                                     | M1    | Allow sin/cos error.                                                                                                                                    |
|          | PE loss = $2g \times 0.45 - 3g \times 0.45 \sin 18$<br>[= 4.82827]                                                          | A1    | Correct unsimplified.                                                                                                                                   |
|          | $2g \times 0.45 - 3g \times 0.45 \sin 18 = \frac{1}{2} \times (2+3)v^2$                                                     | *M1   | Apply work-energy equation as<br>PE loss = KE gain,<br>allow sign error, sin/cos error, 4 terms implied.                                                |

| Question | Answer                                                                   | Marks | Guidance                                                                                                                                         |
|----------|--------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 7        | Solve for $v^2$                                                          | DM1   |                                                                                                                                                  |
|          | $v^2 = 1.931308$ [ $v = 1.389715162$ ]                                   | A1    |                                                                                                                                                  |
|          | PE gain = $3g \times s \sin 18$                                          | M1    | Attempt PE gain for <i>B</i> after string breaks, allow sign error,<br>sin/cos mix,<br>s = extra distance travelled by <i>B</i> along the plane. |
|          | $3g \times s \sin 18 = \frac{1}{2} \times 3 \times 1.931308$ [s = 0.312] | M1    | Work energy equation for $B$ as<br>PE gain = KE loss, 2 terms.                                                                                   |
|          | Total distance moved by $B = 0.45 + 0.312 = 0.762 \mathrm{m}$            | A1    |                                                                                                                                                  |
|          |                                                                          | 8     |                                                                                                                                                  |





## Cambridge International AS & A Level

### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/42 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

### GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

### GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

### GENERIC MARKING PRINCIPLE 3:

### Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

| 1 | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | then no marks will be awarded for a scale drawing.                                                                                                     |

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.



#### Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

### Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

### Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/42

# Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

### Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

9709/42

### Cambridge International AS & A Level – Mark Scheme PUBLISHED

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                     | Marks | Guidance                                                                                                                                                                                                                                         |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1(a)     | $\frac{20-6}{50-T} = \frac{20}{5} \text{ or } 20 = 6 + \frac{20}{5(50-T)}$                                                                                                                                                                                                                                                                                                 | M1    | Equate the accelerations and set up an equation in <i>T</i> .<br>Allow correct use of <i>their</i> incorrect $\frac{20}{5}$ .                                                                                                                    |
|          | <i>T</i> = 46.5                                                                                                                                                                                                                                                                                                                                                            | A1    |                                                                                                                                                                                                                                                  |
|          |                                                                                                                                                                                                                                                                                                                                                                            | 2     |                                                                                                                                                                                                                                                  |
| 1(b)     | Distance = $\frac{1}{2} \times 5 \times 20 + 20 \times 20 + \frac{1}{2} \times 5 \times (20 + 6) + 6 \times (T - 30) + \frac{1}{2} \times (50 - T) \times (20 + 6) + \frac{1}{2} \times 10 \times 20$<br>[= 50 + 400 + 65 + 99 + 45.5 + 100]<br>OR<br>Distance = $\frac{1}{2} \times 20 \times (60 + 45) - \frac{1}{2} \times 14 \times (25 + T - 30)$<br>[= 1050 - 290.5] | M1    | Attempt to find the total distance travelled using areas.<br>Allow with <i>T</i> not yet substituted.<br>Allow one error in use of area formulae or omission of only<br>one of the areas: $0-5$ , $5-25$ , $25-30$ , $30-T$ , $T-50$ , $50-60$ . |
|          | Total distance travelled = 759.5 m                                                                                                                                                                                                                                                                                                                                         | A1 FT | FT <i>their T</i> value:<br>Provided $30 < T < 50$ and distance $= 1085 - 7T$                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                            | 2     |                                                                                                                                                                                                                                                  |

| Question | Answer                                                                                                  | Marks | Guidance                                                                                                                                 |
|----------|---------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------|
| 2(a)     | For van: $2500 - 700 - T = 3600a$<br>For trailer: $T - 300 = 1200a$                                     | M1    | Apply Newton's 2nd law to the van or to the trailer or to the<br>system of van and trailer. Correct number of terms.For any two correct. |
|          | For system: $2500 - 700 - 500 - (5000 + 1200)a$                                                         | A1    |                                                                                                                                          |
|          | Obtain an equation in <i>T</i> only $\left[a = \frac{5}{16} = 0.3125\right]$                            | M1    |                                                                                                                                          |
|          | Tension in the rope = $T = 675$ N                                                                       | A1    |                                                                                                                                          |
|          |                                                                                                         | 4     |                                                                                                                                          |
| 2(b)     | For van: $-F - 700 = 3600a$<br>For trailer: $-300 = 1200a$<br>System: $-F - 700 - 300 = (3600 + 1200)a$ | M1    | Apply Newton's 2nd law to any two of the van, the trailer and the system with braking force $F$ and with $T = 0$ .                       |
|          | Least possible value of braking force = $F = 200 \text{ N}$                                             | A1    | Allow $F = -200$                                                                                                                         |
|          |                                                                                                         | 2     |                                                                                                                                          |

|        |                                                         | Marks | Guidance                                                                                                                                                     |
|--------|---------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3(a) r | $mg \times 1.8 = \frac{1}{2}mv^2$                       | M1    | Use of conservation of energy, 2 terms.<br>Must NOT use constant acceleration equations. Use of<br>equations such as $v^2 = u^2 + 2as$ scores <b>M0 A0</b> . |
| S      | Speed of block at $B = v = 6 \text{ ms}^{-1}$           | A1    | AG                                                                                                                                                           |
|        |                                                         | 2     |                                                                                                                                                              |
| 3(b) A | Attempt the work-energy equation                        | M1    | In the form: $\pm$ KE lost = $\pm$ PE gain $\pm$ WD against Resistance                                                                                       |
|        | $\frac{1}{2} \times m \times 6^2 = 4.5 + mg \times 1.2$ | A1    | If using motion from A to final point $mg \times 1.8 = mg \times 1.2 + 4.5$                                                                                  |
| n      | Mass of the block = $m = 0.75$ kg                       | A1    |                                                                                                                                                              |
|        |                                                         | 3     |                                                                                                                                                              |

| Question | Answer                                                                                                          | Marks | Guidance                                              |
|----------|-----------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------|
| 4(a)     | For differentiation of <i>s</i>                                                                                 | *M1   |                                                       |
|          | $v = 0.004(150t - 3t^2) [= 0.6t - 0.012t^2]$                                                                    | A1    | .5                                                    |
|          | v = 0 when $t = 50$ . At $t = 50$ ,<br>$s = 0.004(75 \times 50^2 - 50^3) = 0.3 \times 50^2 - 0.004 \times 50^3$ | DM1   | Solve $v = 0$ for t and substitute this value into s. |
|          | Distance $AB = 250 \text{ m}$                                                                                   | A1    | AG                                                    |
|          |                                                                                                                 | 4     |                                                       |

| Question   | Answer                                                                                                                                                                                                                                    | Marks | Guidance                                                                                         |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------|--|
| 4(b)       | Attempt to determine stationary points for v by differentiation or by use<br>of symmetry $[a = 0.004(150 - 6t) = 0.6 - 0.024t]$<br>or using symmetry attempt to find the mid-point between $t = 0$ and <i>their</i><br>t value at $v = 0$ | *M1   | If symmetry used then an attempt to find the required mid-<br>point must be seen.                |  |
|            | Maximum v when $a = 0$ so $t = 25$<br>Or finding the mid-point if symmetry is used<br>e.g. $v = 0.004(150 \times 25 - 3 \times 25^2) = 0.6 \times 25 - 0.012 \times 25^2$ [= 7.5 ms <sup>-1</sup> ]                                       | DM1   | Attempt to solve $a = 0$ or use symmetry to find the relevant $t$ value.                         |  |
|            | Maximum velocity = $7.5 \text{ ms}^{-1}$                                                                                                                                                                                                  | A1    |                                                                                                  |  |
|            | Alternative method for question 4(b)                                                                                                                                                                                                      |       |                                                                                                  |  |
|            | Attempt to velocity as $v = -0.012 \left[ (t - 25)^2 - 25^2 \right]$                                                                                                                                                                      | M1*   | Attempt to complete the square for <i>their</i> velocity as far as $k\left[(t-a)^2 - a^2\right]$ |  |
|            | $v = -0.012(t - 25)^{2} + 0.012 \times 25^{2}$<br>and select $t = 25$ as the maximum point.                                                                                                                                               | DM1   | Or select the $0.012 \times 25^2$ term as the maximum velocity.                                  |  |
|            | Maximum = $[0.012 \times 625 = ]7.5 \text{ ms}^{-1}$                                                                                                                                                                                      | A1    |                                                                                                  |  |
|            | Z                                                                                                                                                                                                                                         | 3     | .5                                                                                               |  |
| Satprep.00 |                                                                                                                                                                                                                                           |       |                                                                                                  |  |

9709/42

## Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

| Question       | Answer                                                                                                     | Marks | Guidance                                                                                   |
|----------------|------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------|
| 5(a)           | Driving force = $DF = \frac{960\ 000}{30}$                                                                 | B1    | Allow for 960 $000 = DF \times 30$                                                         |
|                | $DF - 75000g \times \sin \alpha - R = 0$                                                                   | M1    | Resolve forces along the slope.<br>Must use a value for either $\sin \alpha$ or $\alpha$ . |
|                | Resistance force = $R = 24500$ N                                                                           | A1    | Allow correct work with 24500 to 3 sf.                                                     |
|                |                                                                                                            | 3     |                                                                                            |
| 5(b)           | WD by engine in 60 s = 900 000 × 60 [= 54000000]                                                           | B1    |                                                                                            |
|                | $KE_{init} = \frac{1}{2} \times 75000 \times 30^2$ $KE_{final} = \frac{1}{2} \times 75000 \times v^2$      | B1    | For either correct expression for KE.                                                      |
|                | $900000 \times 60 + \frac{1}{2} \times 75000 \times 30^2 = 46500000 + \frac{1}{2} \times 75000 \times v^2$ | M1    | For use of the work-energy equation with 4 terms, correct dimensions.                      |
|                | Speed of engine after 60 s = $v = 33.2 \text{ ms}^{-1}$                                                    | A1    | Allow $v = \sqrt{1100} = 10\sqrt{11}$                                                      |
|                |                                                                                                            | 4     | C                                                                                          |
| Zy.satprep.co. |                                                                                                            |       |                                                                                            |

9709/42

### Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                                                                                                  | Marks | Guidance                                                                                                                                                                                                                                     |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6(a)     | Horizontal: $100 - T_U \sin 60 - T_L \sin 60 = 0$ Vertical: $T_U \cos 60 - T_L \cos 60 - 5g = 0$ Perp to $T_U$ $T_L \cos 30 + 5g \cos 30 = 100 \cos 60$ | M1    | Resolve horizontally or vertically or perpendicular to the upper string to reach an equation. Correct number of terms, Allow $X$ for 100 in horizontal equation.                                                                             |
|          |                                                                                                                                                         | A1    | Either horizontal and vertical equations correct or<br>perpendicular correct.<br>Must see $X = 100$ used for A1.                                                                                                                             |
|          | Solve for either $T_L$ or $T_U$ using equation(s) with no missing term.                                                                                 | M1    | May see $T_U = 107.74$                                                                                                                                                                                                                       |
|          | $T_L = 7.74 \text{ N}$                                                                                                                                  | A1    | Allow 7.73                                                                                                                                                                                                                                   |
|          |                                                                                                                                                         | 4     |                                                                                                                                                                                                                                              |
| 6(b)     | Horizontal: $X - T_{up} \sin 60 = 0$<br>Vertical: $T_{up} \cos 60 - 5g = 0$<br>Perp to $T_{up}$ $5g \cos 30 = X \cos 60$                                | M1    | Resolve either horizontally or vertically or perpendicular to<br>the upper string. Must be using the tension $T_{low} = 0$ .<br>Equivalent to Lami as:<br>$\frac{5g}{\sin 150} = \frac{X}{\sin 120} \left( = \frac{T_{up}}{\sin 90} \right)$ |
|          |                                                                                                                                                         | A1    | Either horizontal and vertical equations correct or perpendicular correct.                                                                                                                                                                   |
|          | Eliminate $T_{up}$ and/or solve for X                                                                                                                   | M1    | $T_{up} = 100$                                                                                                                                                                                                                               |
|          | Least value of $X = 86.6$                                                                                                                               | A1    | Allow $X = 50\sqrt{3}$                                                                                                                                                                                                                       |
|          |                                                                                                                                                         | 4     |                                                                                                                                                                                                                                              |

| Question | Answer                                                                                                                                                                                                                                         | Marks | Guidance                                                                                                                                                                                                             |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(a)     | For Q:<br>$-2mg \sin \alpha - F = 2ma$ [-16m - 7.2m = 2ma]<br>$R = 2mg \cos \alpha$ [= 12m]                                                                                                                                                    | M1    | Apply Newton's 2nd law along or perpendicular to the plane<br>to particle $Q$ .<br>Must use values for $\alpha$ or sin $\alpha$ or cos $\alpha$ .                                                                    |
|          |                                                                                                                                                                                                                                                | A1    | Both correct.                                                                                                                                                                                                        |
|          | $F = 0.6 \times 2mg \cos \alpha = 0.6 \times 0.6 \times 20m [= 7.2m]$<br>[2(m)a = -2(m)g (0.8) - 0.6 × 2(m)g (0.6)]                                                                                                                            | M1    | Using $F = 0.6R$ where R is a component of $2mg$ only                                                                                                                                                                |
|          | Acceleration of Q up the plane while moving up the plane is $a = -11.6 \text{ ms}^{-2}$                                                                                                                                                        | A1    | AG                                                                                                                                                                                                                   |
|          |                                                                                                                                                                                                                                                | 4     |                                                                                                                                                                                                                      |
| 7(b)     | For <i>P</i> : $mg \sin \alpha - 0.6R = ma$ , leading to $8m - 3.6m = ma$<br>[ $R = mg \cos \alpha = 6m$ , $a = 4.4 \text{ ms}^{-2}$ ]                                                                                                         | M1    | Apply Newton's 2nd law to attempt to find the acceleration of particle <i>P</i> . Must use values for $\alpha$ or sin $\alpha$ .                                                                                     |
|          | <i>Q</i> comes to rest when $10 - 11.6T_1 = 0$ , $\left[T_1 = \frac{25}{29} = 0.862\right]$                                                                                                                                                    | M1    | For using constant acceleration equations to attempt to determine when $v_Q = 0$ .                                                                                                                                   |
|          | For $P$ $s_{P(\text{down})} = \frac{1}{2} \times 4.4 \times T_1^2$ [=1.635]<br>For $Q$ $s_{Q(\text{up})} = 10T_1 + \frac{1}{2} \times (-11.6) \times T_1^2$ [=4.31]                                                                            | M1    | Use constant acceleration equations to attempt to find either $s_{P(\text{down})}$ or $s_{Q(\text{up})}$ at time $T_1$ .                                                                                             |
|          | $d = 6.4 - s_{P(down)} - s_{Q(up)}  [= 0.455]$<br>and to find $T_2  [= 0.12]$ by using $d = s_{P2} - s_{Q2} = (4.4T_1) \times T_2$<br>$[s_{P2} \text{ and } s_{Q2} \text{ are distances travelled by } P \text{ and } Q \text{ in time } T_2]$ | M1    | For attempting to find the extra distance $d = 0.455$ needed<br>to reach 6.4 m and using $u_P = 4.4T_1$ at $T_1$ to find $T_2$ as<br>$d = (4.4T_1)T_2 + \frac{1}{2} \times 4.4T_2^2 - \frac{1}{2} \times 4.4T_2^2$ . |
|          | Time before collision = $[t = T_1 + T_2 = 0.862 + 0.12 =]0.982$                                                                                                                                                                                | A1    | t = 0.98194357                                                                                                                                                                                                       |

| Question                                                                                | Answer                                                                                                                                                                       | Marks                            | Guidance                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(b)                                                                                    | Alternative method for Question 7(b)                                                                                                                                         |                                  |                                                                                                                                                                              |
|                                                                                         | For <i>P</i> : $mg \sin \alpha - 0.6R = ma$ , leading to $8m - 3.6m = ma$<br>[ $R = mg \cos \alpha = 6m, a = 4.4 \text{ ms}^{-2}$ ]                                          | M1                               | Apply Newton's 2nd law to attempt to find the acceleration of particle <i>P</i> . Must use values for $\alpha$ or sin $\alpha$                                               |
|                                                                                         | <i>Q</i> comes to rest when $10 - 11.6T_1 = 0$ , $\left[T_1 = \frac{25}{29} = 0.862\right]$                                                                                  | M1                               | For using constant acceleration equations to attempt to determine when $v_Q = 0$                                                                                             |
|                                                                                         | For $P$ $s_{P(\text{down})} = \frac{1}{2} \times 4.4 \times t^2$<br>For $Q$ $s_{Q(\text{up})} = 10T_1 + \frac{1}{2} \times (-11.6)T_1^2 - \frac{1}{2} \times 4.4(t - T_1)^2$ | M1                               | Use constant acceleration equations to attempt to find either $s_{P(\text{down})}$ or $s_{Q(\text{up})}$ at time <i>t</i> where <i>t</i> is the total time before collision. |
|                                                                                         | $\frac{1}{2} \times 4.4t^2 + 10T_1 + \frac{1}{2} \times (-11.6)T_1^2 - \frac{1}{2} \times 4.4(t - T_1)^2 = 6.4$                                                              | M1                               | For using $s_{P(\text{down})} + s_{Q(\text{up})} = 6.4$ and solving for <i>t</i>                                                                                             |
|                                                                                         | Time before collision is $t = 0.982$ s                                                                                                                                       | A1                               | t = 0.98194357                                                                                                                                                               |
|                                                                                         |                                                                                                                                                                              | 5                                |                                                                                                                                                                              |
| Special case for those who do not take into account the fact that $Q$ comes to rest and |                                                                                                                                                                              | t and then changes its direction |                                                                                                                                                                              |
|                                                                                         | For <i>P</i> : $mg \sin \alpha - 0.6R = ma$ , leading to $8m - 3.6m = ma$<br>[ $R = mg \cos \alpha = 6m, a = 4.4 \text{ ms}^{-2}$ ]                                          | M1                               | Apply Newton's 2nd law to attempt to find the acceleration of particle <i>P</i> . Must use values for $\alpha$ or sin $\alpha$ .                                             |
|                                                                                         | For $P$ $s_{p(\text{down})} = (\pm)\frac{1}{2} \times 4.4t^2$<br>For $Q$ $s_{q(\text{up})} = (\pm) 10t + \frac{1}{2} \times (-11.6)t^2$                                      | M1                               | For using constant acceleration equations to attempt to find<br>either $s_{p(\text{down})}$ or $s_{q(\text{up})}$ .                                                          |
|                                                                                         | $s_p + s_q = 6.4$ leading to $\frac{1}{2} \times 4.4t^2 + 10t + \frac{1}{2} \times (-11.6)t^2 = 6.4$                                                                         | M1                               | For applying $(\pm) s_p + (\pm) s_q = 6.4$ using their expressions for $s_p$ and $s_q$ to set up and solve a 3-term quadratic equation in t to obtain at least 1 solution.   |

| Question | Answer                                                                                                                                  | Marks      | Guidance                                                                                                                                                               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(b)     | Time that particles are in motion before collision $= t = 1$ s                                                                          | A1         | Must reject $t = 16/9$<br>Maximum mark 4 out of 5                                                                                                                      |
|          |                                                                                                                                         | 4          |                                                                                                                                                                        |
| 7(c)     | $u_{p(\text{down})} = 0 + 4.4 \times 0.982 [= 4.3208]$                                                                                  | B1 FT      | Allow $\pm 4.4$ . FT on <i>their</i> 4.4 and <i>their</i> 0.982                                                                                                        |
|          | $u_{q(\text{down})} = 4.4 \times 0.12 [= 0.528]$                                                                                        | B1 FT      | Allow $\pm 4.4$ . FT on <i>their</i> 4.4 and <i>their</i> 0.12                                                                                                         |
|          | $\pm m \times 4.3208 \pm 2m \times 0.528 = \pm (m + 2m)v$<br>[Correct equation is $m \times 4.3208 + 2m \times 0.528 = \pm (m + 2m)v$ ] | M1         | Apply conservation of momentum, 4 terms, using <i>their</i> $u_p$ and $u_q$ values with $m$ and $2m$ respectively. Velocity of $P$ and $Q$ after impact must be equal. |
|          | Speed of combined particle immediately after impact = $v = 1.79 \text{ ms}^{-1}$                                                        | A1         | Must be positive                                                                                                                                                       |
|          | Special case for those who do not take into account the fact that $Q$ con                                                               | nes to res | t and then changes its direction                                                                                                                                       |
|          | $u_{p(\text{down})} = 0 + 4.4 \times 1 [= 4.4]$                                                                                         | B1 FT      | Allow $\pm 4.4$ , FT on <i>their</i> 1 and <i>their</i> 4.4                                                                                                            |
|          | $u_{q(up)} = 10 - 11.6 \times 1 [= -1.6]$ so $u_{q(down)} = 1.6$                                                                        | B1 FT      | Allow $\pm (10 - 11.6 \times 1)$ , FT on <i>their</i> 1                                                                                                                |
|          | $\pm m \times 4.4 \pm 2m \times 1.6 = \pm (m + 2m)v$                                                                                    | M1         | Apply conservation of momentum, 4 terms, using their $u_p$ and $u_q$ values with $m$ and $2m$ respectively. Velocity of $P$ and $Q$ after impact must be equal.        |
|          | Speed of combined particle immediately after impact = $v = 2.53 \text{ ms}^{-1}$                                                        | Al         | Allow $v = \frac{38}{15}$ . Must be positive.                                                                                                                          |
|          |                                                                                                                                         | 4          |                                                                                                                                                                        |



## Cambridge International AS & A Level

### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/43 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

### GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

### GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

### GENERIC MARKING PRINCIPLE 3:

### Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

| 1 | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | then no marks will be awarded for a scale drawing.                                                                                                     |

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.



#### Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

### Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

### Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

### Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question    | Answer                                                               | Marks | Guidance                                                             |  |
|-------------|----------------------------------------------------------------------|-------|----------------------------------------------------------------------|--|
| 1(a)        | $120 \times 8 = 120v + 40v$                                          | M1    | Applying conservation of momentum.                                   |  |
|             | $v = 6 \text{ ms}^{-1}$                                              | A1    |                                                                      |  |
|             |                                                                      | 2     |                                                                      |  |
| 1(b)        | 1600 - 4800 = 160a leading to $a = -20$                              | M1    | Applying Newton's 2nd law to the system.                             |  |
|             | $0 = 6^2 + 2 \times (-20) \times s$                                  | M1    | Use of constant acceleration equations such as<br>$v^2 = u^2 + 2as.$ |  |
|             | Distance travelled by post = 0.9 m                                   | A1    |                                                                      |  |
|             | Alternative method for question 1(b)                                 |       |                                                                      |  |
|             | Initial KE = $\frac{1}{2} \times 160 \times 6^2$                     | M1    | Use of KE = $\frac{1}{2}mv^2$ for combined mass.                     |  |
|             | $\frac{1}{2} \times 160 \times 6^2 + 160 \times 10 \times s = 4800s$ | M1    | Forms work/energy equation.                                          |  |
|             | Distance travelled by post = 0.9 m                                   | A1    |                                                                      |  |
|             | 4                                                                    | 3     | -                                                                    |  |
| Satprep.co. |                                                                      |       |                                                                      |  |

| Question | Answer                                                             | Marks      | Guidance                                             |
|----------|--------------------------------------------------------------------|------------|------------------------------------------------------|
| 2(a)     | Correct 3 force diagram, including angles shown                    | <b>B</b> 1 |                                                      |
|          |                                                                    | 1          |                                                      |
| 2(b)     | $T_1 \cos 60 = T_2 \cos 45$                                        | M1         | Resolving forces horizontally.                       |
|          | $T_1 \sin 60 + T_2 \sin 45 = 8g$                                   | M1         | Resolving forces vertically.                         |
|          | $T_1 \cos 60 = T_2 \cos 45$ and $T_1 \sin 60 + T_2 \sin 45 = 8g$   | A1         |                                                      |
|          | Attempting to solve for either $T_1$ or $T_2$                      | M1         |                                                      |
|          | $T_1 = 58.6 \text{ N}$                                             | A1         |                                                      |
|          | $T_2 = 41.4 \text{ N}$                                             | A1         |                                                      |
|          | Alternative method for question 2(b)                               |            |                                                      |
|          | $\frac{T_1}{\sin 135} = \frac{T_2}{\sin 150} = \frac{80}{\sin 75}$ | M1         | Applies Lami's Theorem – at least two terms correct. |
|          |                                                                    | A1         |                                                      |
|          | $T_1 = \frac{80\sin 135}{\sin 75}$                                 | M1         | Solves for $T_1$ .                                   |
|          | $T_1 = 58.6 \text{ N}$                                             | A1         |                                                      |
|          | $T_2 = \frac{80\sin 150}{\sin 75}$                                 | M1         | Solves for $T_2$ .                                   |
|          | $T_2 = 41.4 \text{ N}$                                             | A1         |                                                      |
|          |                                                                    | 6          |                                                      |
| Question | Answer                                                                                                                                                                                                                                                                                                                                                                    | Marks | Guidance                                                                                                                                                                                               |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3(a)     | PE = $1.6 \times 10 \times 5$ [= 80J]<br>or<br>$v \downarrow = \sqrt{(2 \times 10 \times 5)}$ [= 10]<br>KE = $\frac{1}{2} \times 1.6 \times 10^2$ [= 80 J]                                                                                                                                                                                                                | B1    | Either finds PE loss<br>or<br>uses $v^2 = u^2 + 2as$ to find the velocity and hence the<br>kinetic energy on reaching the ground                                                                       |
|          | $1.6 \times 10 \times 5 = 1.6 \times 10 \times h + 8$<br>or<br>$\frac{1}{2} \times 1.6 \times v^2 = 80 - 8, v \uparrow = \sqrt{90},$<br>$0 = 90 + 2 \times (-10) \times h \text{ leading to } h = \dots$<br>or<br>$\frac{1}{2} \times 1.6 \times v^2 = 80 - 8, v \uparrow = \sqrt{90},$<br>$\frac{1}{2} m \times 90 = m \times 10 \times h \text{ leading to } h = \dots$ | M1    | Using Initial PE = Final PE + Loss in KE<br>or<br>using KE = $\frac{1}{2}mv^2$ to find initial velocity upwards and<br>either $v^2 = u^2 + 2as$ or KE loss = PE gain to form<br>equation in <i>h</i> . |
|          | h = 4.5  m                                                                                                                                                                                                                                                                                                                                                                | A1    |                                                                                                                                                                                                        |
|          |                                                                                                                                                                                                                                                                                                                                                                           | 3     |                                                                                                                                                                                                        |
| 3(b)     | $5 = 0 + \frac{1}{2} \times 10 \times t^{2} \text{ leading to } t = 1$<br>or<br>$5 = \frac{1}{2} \times (0 + 10) \times t \text{ leading to } t = 1$<br>or<br>10 = 10t  leading to  t = 1                                                                                                                                                                                 | M1    | Use of $s = ut + \frac{1}{2} gt^2$ for downward motion<br>or<br>use of $s = \frac{1}{2} (u + v)t$ for downward motion<br>or<br>use of $v = u + gt$ for downward motion.                                |
|          | 4.5 = $0 - \frac{1}{2} \times (-10) \times t^2$ leading to $t = \sqrt{0.9}$<br>or<br>4.5 = $\frac{1}{2} \times (\sqrt{90} + 0) \times t$ leading to $t = \sqrt{0.9}$<br>or<br>$0 = \sqrt{90} - 10t$ leading to $t = \sqrt{0.9}$                                                                                                                                           | IVII  | Use of $s = vt - \frac{1}{2}(-g)t^2$ for upward motion<br>or<br>use of $s = \frac{1}{2}(u+v)t$ for upward motion<br>or<br>use of $v = u - gt$ for upward motion.                                       |
|          | $t = 1.95 \mathrm{s}$                                                                                                                                                                                                                                                                                                                                                     | A1    |                                                                                                                                                                                                        |
|          |                                                                                                                                                                                                                                                                                                                                                                           | 3     |                                                                                                                                                                                                        |

| Question  | Answer                                                               | Marks | Guidance                                                                  |
|-----------|----------------------------------------------------------------------|-------|---------------------------------------------------------------------------|
| 4(a)(i)   | $[WD = 1250 \times 36 \times 8]$                                     | M1    | For using Work Done = Force $\times$ Distance.                            |
|           | WD = 360000 J                                                        | A1    | or 360 kJ                                                                 |
|           |                                                                      | 2     |                                                                           |
| 4(a)(ii)  | Power = $1250 \times 36$ or P = $\frac{360000}{[= 45000 \text{ J}]}$ | B1 FT | ET Work Done from $\frac{\mathbf{a}(\mathbf{i})}{\mathbf{a}(\mathbf{i})}$ |
|           | 8                                                                    |       | 8                                                                         |
|           | $=45 \mathrm{kW}$                                                    | B1    |                                                                           |
|           |                                                                      | 2     |                                                                           |
| 4(a)(iii) | $DF = \frac{57000}{36} \ [= 1583.3]$                                 | M1    | Use changed Power in $P = DF \times v$ .                                  |
|           | $\frac{57000}{36} - 1250 = 1400a$                                    | M1    | For using Newton's 2nd law applied to the car.                            |
|           | $a = 0.238 \text{ ms}^{-2}$                                          | A1    |                                                                           |
|           | ×2                                                                   | 3     | -                                                                         |
| 4(b)      | $\frac{64000}{32} = 1250 + 1400g\sin\theta$                          | M1    | For using DF = resistance + component of the weight of the car.           |
|           | $\theta = 3.1 [3.0708]$                                              | A1    |                                                                           |
|           |                                                                      | 2     |                                                                           |

| Question | Answer                                                                                             | Marks | Guidance                                                                                                                   |
|----------|----------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------|
| 5(a)     | $a = 16k - kt^2$ , $v = 16kt - \frac{1}{3}kt^3$                                                    | M1    | Uses $v = \int a  \mathrm{d}t$ .                                                                                           |
|          | $8 = 16k \times 4 - \frac{1}{3} k \times 4^3$ leading to $k =$                                     | M1    | Substitutes $t = 4$ , $v = 8$ .                                                                                            |
|          | $v = 16kt - \frac{kt^3}{3}$ and $k = \frac{3}{16}$                                                 | A1    | OE                                                                                                                         |
|          | $s = 8kt^2 - \frac{1}{12}kt^4$ leading to $s = \frac{24}{16}t^2 - \frac{3}{192}t^4$                | M1    | Uses $s = \int v dt$ and attempts to find <i>s</i> in terms of <i>t</i> only.<br>May be using $v = 3t - \frac{1}{16}t^3$ . |
|          | $s = \frac{1}{64}t^2(96 - t^2)$                                                                    | A1    | AG, no errors seen.                                                                                                        |
|          |                                                                                                    | 5     |                                                                                                                            |
| 5(b)     | $s = 0, t^2 = 96, t = 4\sqrt{6}$                                                                   | M1    | Attempt to find $t$ when $s = 0$ .                                                                                         |
|          | $v = 16 \times \frac{3}{16} \times \sqrt{96} - \frac{3}{16} \times \frac{1}{3} \times \sqrt{96^3}$ | M1    | Attempt to find v at this t value                                                                                          |
|          | Speed is 29.4 ms <sup>-1</sup>                                                                     | A1    | Do not condone $v = -29.4$ .                                                                                               |
|          | "SatoreP                                                                                           | 3     |                                                                                                                            |
| 5(c)     | $v = 0, t^2 = 48, t = 4\sqrt{3}$                                                                   | M1    | Determine the time, $t$ (or $t^2$ ) at which $v = 0$                                                                       |
|          | $s = \frac{1}{64} \times 48 \times (96 - 48)$                                                      | M1    | Use substitution of the <i>t</i> or $t^2$ value to find <i>s</i> .                                                         |
|          | <i>s</i> = 36 m                                                                                    | A1    |                                                                                                                            |
|          |                                                                                                    | 3     |                                                                                                                            |

| Question | Answer                                                                                        | Marks      | Guidance                                                                                             |
|----------|-----------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------|
| 6(a)     | R = 5g, F = 6g - 4g                                                                           | M1         | For resolving forces to find <i>F</i> and <i>R</i> .                                                 |
|          | $\mu = \frac{2g}{5g} = 0.4$                                                                   | A1         | AG                                                                                                   |
|          |                                                                                               | 2          |                                                                                                      |
| 6(b)     | $T_1 - 4g = 4a \text{ or } 8g - T_2 = 8a$                                                     | M1         | For applying Newton's 2nd law to the 4kg particle or the 8kg particle.                               |
|          | $T_1 - 4g = 4a$ and $8g - T_2 = 8a$                                                           | A1         | Both equations correct.                                                                              |
|          | $T_2 - T_1 - F = 5a$ and $F = 0.4 \times 5g$                                                  | <b>B</b> 1 |                                                                                                      |
|          | Adding gives $8g - 4g - 2g = 17a$ leading to $a = \dots$                                      | M1         | Attempt to solve for $a$ , $T_1$ or $T_2$ .                                                          |
|          | $a = 1.18 \text{ ms}^{-2}, T_1 = 44.7 \text{ N}, T_2 = 70.6 \text{ N}$                        | A1         |                                                                                                      |
|          |                                                                                               | 5          |                                                                                                      |
| 6(c)     | T-4g = 4a, -T-F = 5a, F = 2g or $-4g - 2g = 9a$                                               | M1         | Applying Newton's 2nd law to both active particles.                                                  |
|          | $a = -\frac{60}{9}$                                                                           | A1         |                                                                                                      |
|          | $v^2 = 2 \times \frac{20}{17} \times 0.5 = \frac{20}{17}$ leading to $v = \dots [v = 1.0846]$ | <b>M</b> 1 | Use of $v^2 = u^2 + 2as$ or equivalent to find v or $v^2$ when the 8 kg particle reaches the ground. |
|          | $0 = \sqrt{\frac{20}{17}} - \frac{60}{9}t$                                                    | M1         | Use of $v = u + at$ or equivalent to find $t$ .                                                      |
|          | $t = 0.163 \mathrm{s}$                                                                        | A1         | From $t = 0.1626978$                                                                                 |
|          |                                                                                               | 5          |                                                                                                      |



# **Cambridge International A Level**

#### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/43 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

# **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

# GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

#### GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

#### GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

#### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

# **GENERIC MARKING PRINCIPLE 5:**

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

# GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

| Mathematics | Specific | Marking        | Principles |
|-------------|----------|----------------|------------|
| 1.1         | ~~~~     | 1.1.0.1.1.1.1. |            |

| 1 | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.                                     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.                                                            |
| 3 | Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.                                                                                                               |
| 4 | Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).                                                                                            |
| 5 | Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. |
| 6 | Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.                                                                                              |



# Cambridge International A Level – Mark Scheme PUBLISHED Mark Scheme Notes

# The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

# Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

# Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                                                                                                                   | Marks | Guidance                                      |
|----------|--------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------|
| 1        | 0.4 	imes 2.5 - 0.5 	imes 1.5                                                                                            | M1    | Attempt momentum before impact.               |
|          | $0.4 \times 2.5 - 0.5 \times 1.5 = 0.4\nu + 0.5 \times 2\nu$                                                             | M1    | Use of conservation of momentum, either case. |
|          | $0.4 \times 2.5 - 0.5 \times 1.5 = 0.4v + 0.5 \times 2v$<br>or $0.4 \times 2.5 - 0.5 \times 1.5 = -0.4v + 0.5 \times 2v$ | A1    | One correct equation                          |
|          | Speed is $0.179 \text{ m s}^{-1}$ or $0.417 \text{ m s}^{-1}$                                                            | A1    | Both values                                   |
|          |                                                                                                                          | 4     |                                               |
|          |                                                                                                                          |       |                                               |

| Question | Answer                                                          | Marks      | Guidance                                                               |
|----------|-----------------------------------------------------------------|------------|------------------------------------------------------------------------|
| 2(a)     | Forward force exerted by cyclist = $\frac{150}{4}$ N [= 37.5 N] | B1         | OE. $P = Fv$ used correctly.                                           |
|          | $\frac{150}{4} - 20 = m \times 0.25$                            | M1         | Use of Newton's second law                                             |
|          | m = 70  kg                                                      | A1         |                                                                        |
|          | 2                                                               | 3          |                                                                        |
| 2(b)     | $150/3 - 20 - 70g\sin\theta = 0$                                | <b>M</b> 1 | For resolving up the plane                                             |
|          | $\theta$ = 2.5° to 1d.p.                                        | A1 FT      | From 2.456<br>FT $\theta = \sin^{-1}\left(\frac{3}{m}\right)$ from (a) |
|          |                                                                 | 2          |                                                                        |

| Question | Answer                                                                                                    | Marks | Guidance                          |
|----------|-----------------------------------------------------------------------------------------------------------|-------|-----------------------------------|
| 3        | $F\sin\theta + 20\sin 60 - 30\sin \alpha - 40\sin \beta = 0$                                              | M1    | For resolving in either direction |
|          | Vertical: $F \sin \theta + 20\sin 60 - 30 \times 0.28 - 40 \times 0.6 = 0$ [ $F \sin \theta = 15.07949$ ] | A1    |                                   |
|          | Horizontal: $F \cos\theta + 40 \times 0.8 - 30 \times 0.96 - 20\cos 60 = 0$ [ $F \cos\theta = 6.8$ ]      | A1    |                                   |
|          | $\theta = \tan^{-1} \frac{15.0794}{6.8}$                                                                  | M1    | For method for finding $\theta$   |
|          | $F = \sqrt{15.07949^2 + 6.8^2}$                                                                           | M1    | For method for finding <i>F</i>   |
|          | $\theta = 65.7, F = 16.5$                                                                                 | A1    |                                   |
|          |                                                                                                           | 6     |                                   |

| Question | Answer                                      | Marks | Guidance                          |  |  |
|----------|---------------------------------------------|-------|-----------------------------------|--|--|
| 4(a)     | $24 = u \times 2 - \frac{1}{2}g \times 2^2$ | M1    | Use of $s = ut + \frac{1}{2}at^2$ |  |  |
|          | <i>u</i> = 22                               | A1    | AG                                |  |  |
|          | 22                                          | 2     |                                   |  |  |
|          | ·satprep.                                   |       |                                   |  |  |

| Question | Answer                                                                      | Marks | Guidance                                                                                                              |
|----------|-----------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------|
| 4(b)     | At maximum height $0 = 22^2 - 2gs$                                          | M1    | Use of $v^2 = u^2 + 2as$ to find maximum height.                                                                      |
|          | Maximum height $s = 24.2$ m                                                 | A1    |                                                                                                                       |
|          | Height down = $0.5g \times 1.8^2$ (=16.2)                                   | M1    | Find distance travelled down in 1.8 s.                                                                                |
|          | <i>h</i> = 8                                                                | A1    |                                                                                                                       |
|          | Alternative method for Question 4(b)                                        |       |                                                                                                                       |
|          | 0 = 22 - 10t                                                                | M1    | Use of $v = u - gt$ with $u = 22$ and $v = 0$ to find time to reach maximum height                                    |
|          | t = 2.2                                                                     | A1    |                                                                                                                       |
|          | $h = 22 \times (2.2 - 1.8) - \frac{1}{2}g \times (2.2 - 1.8)^2$             | M1    | Use of $s = ut + \frac{1}{2}at^2$ to find value of $h$                                                                |
|          | <i>h</i> = 8                                                                | A1    |                                                                                                                       |
|          | Alternative method for Question 4(b)                                        |       |                                                                                                                       |
|          | $22t - \frac{1}{2}gt^2 = 22 \times (t+3.6) - \frac{1}{2}g \times (t+3.6)^2$ | M1    | Use of $s = ut + \frac{1}{2}at^2$ for times <i>t</i> and <i>t</i> + 3.6 to find time taken to reach height <i>h</i> . |
|          | t = 0.4 (or $t + 3.6 = 4$ )                                                 | A1    |                                                                                                                       |
|          | $h = 22 \times 0.4 - \frac{1}{2}g \times 0.4^2$                             | M1    | Use $s = ut + \frac{1}{2}at^2$ to find value of <i>h</i> .                                                            |
|          | h = 8                                                                       | A1    |                                                                                                                       |
|          |                                                                             | 4     |                                                                                                                       |

9709/43

# Cambridge International A Level – Mark Scheme PUBLISHED

| Question | Answer                                                                                                                 | Marks | Guidance                                         |
|----------|------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------|
| 5(a)     | Increase in KE = $\frac{1}{2} \times 1900 \times 30^2 - \frac{1}{2} \times 1900 \times 20^2$ [= 475000 J]              | B1    | May be implied by energy equation.               |
|          | Loss of PE = $1900 \times g \times s \sin 5$ [= $1655.95s$ J]                                                          | B1    | May be implied by energy equation.               |
|          | $1900 \times g \times s \sin 5 + 150\ 000 = \frac{1}{2} \times 1900 \times 30^2 - \frac{1}{2} \times 1900 \times 20^2$ | M1    | For attempt at work/energy equation              |
|          |                                                                                                                        | A1    | Correct                                          |
|          | s = [Length of hill =] 196  m                                                                                          | A1    |                                                  |
|          | 9                                                                                                                      | 5     |                                                  |
| 5(b)     | $30^2 = 20^2 + 2a \times 200$                                                                                          | M1    | Use of $v^2 = u^2 + 2as$                         |
|          | $a = 1.25 \text{ m s}^{-2}$                                                                                            | A1    |                                                  |
|          | $T - 100 + 500g \sin 5 = 500a$                                                                                         | M1    | For applying Newton's second law to the trailer. |
|          | T = 289  N                                                                                                             | A1    |                                                  |
|          |                                                                                                                        | 4     |                                                  |



| Question | Answer                                                                                                                  | Marks      | Guidance                                                                                                                               |
|----------|-------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 6(a)     | $(2t-3)(t-1) = 0$ leading to $t = \dots$                                                                                | M1         | Attempt to solve $v = 0$                                                                                                               |
|          | t = 1  or  t = 1.5                                                                                                      | A1         |                                                                                                                                        |
|          | Minimum velocity when $t = 1.25$ leading to $v =$<br>or $\frac{dv}{dt} = 4t - 5 = 0$ $t = 1.25$ leading to $v =$        | M1         | Uses roots or $dv/dt=0$ to find <i>t</i> for $v_{min}$ and attempts substitution to obtain $v_{min}$ . Alternatively completes square. |
|          | or $v = 2\left\lfloor \left( t - \frac{1}{4} \right) - \frac{1}{16} \right\rfloor + 3$ leading to $v = \dots$           |            |                                                                                                                                        |
|          | Minimum velocity is $-0.125 \text{ m s}^{-1}$                                                                           | A1         | Allow $v = -\frac{1}{8}$                                                                                                               |
|          |                                                                                                                         | 4          |                                                                                                                                        |
| 6(b)     | Quadratic curve (two roots and $v(3) > v(0)$ )                                                                          | B1         |                                                                                                                                        |
|          | Goes through (1.25, -0.125), (0, 3), (1, 0), (1.5, 0), (3,6)                                                            | B1         | 3 of the 5 key points shown on axes or as coordinates                                                                                  |
|          | All five points shown on a totally correct graph                                                                        | <b>B</b> 1 |                                                                                                                                        |
|          | 4                                                                                                                       | 3          |                                                                                                                                        |
| 6(c)     | $s = \frac{2}{3}t^3 - \frac{5}{2}t^2 + 3t$                                                                              | M1         | For use of $s = \int v  dt$                                                                                                            |
|          | $\left[\frac{2}{3}(1.5)^{3}-\frac{5}{2}(1.5)^{2}+3(1.5)\right]-\left[\frac{2}{3}(1)^{3}-\frac{5}{2}(1)^{2}+3(1)\right]$ | M1         | Correct use of limits ( <i>their</i> 1 and 1.5)                                                                                        |
|          | Distance = $0.0417 \text{ m}$                                                                                           | A1         | A0 for -0.0417                                                                                                                         |
|          |                                                                                                                         | 3          |                                                                                                                                        |

| Question | Answer                                                                                                                     | Marks            | Guidance                                                                                                   |
|----------|----------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------|
| 7(a)     | $R = 0.3g\cos\theta + 4\sin\theta = 3 \times \frac{24}{25} + 4 \times \frac{7}{25}$ [=4]                                   | M1               | Resolving forces perpendicular to the plane or parallel to the plane. Allow use of $\theta = 16.3^{\circ}$ |
|          | $F = 4\cos\theta - 0.3g\sin\theta = 4 \times \frac{24}{25} - 3 \times \frac{7}{25}$ [=3]                                   | A1               | Two correct equations                                                                                      |
|          | $3 = \mu \times 4$                                                                                                         | M1               | For use of $F = \mu R$                                                                                     |
|          | $\mu = \frac{3}{4}$                                                                                                        | A1               | AG Must be from correct and exact working, not using 16.3                                                  |
|          |                                                                                                                            | 4                |                                                                                                            |
| 7(b)     | $F = \mu \times 0.3g \cos \theta = \frac{3}{4} \times 3 \times \frac{24}{25} \qquad \left[ = \frac{54}{25} = 2.16 \right]$ | B1               |                                                                                                            |
|          | $4 - \frac{3}{4} \times 0.3g \times \frac{24}{25} - 0.3g \times \frac{7}{25} = 0.3a$                                       | M1               | Use of Newton's second law                                                                                 |
|          | $a = \frac{10}{3} \text{ m s}^{-2}$                                                                                        | A1               |                                                                                                            |
|          |                                                                                                                            | 3                |                                                                                                            |
|          | Satpre                                                                                                                     | p.c <sup>0</sup> |                                                                                                            |

| Question | Answer                                                                                                                             | Marks | Guidance                                                                                                                |
|----------|------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------|
| 7(c)     | $s_1 = \frac{1}{2} \times \frac{10}{3} \times 3^2 = 15$ and $v = \frac{10}{3} \times 3 = 10$                                       | B1 FT | Distance $s_1$ in 3s and $v$ after 3s; FT $a$ from (b)                                                                  |
|          | $-0.3g \times \sin \theta - \mu \times 0.3g \cos \theta = 0.3a \text{ leading to } a = -10$ $0 = 10^2 + 2 \times (-10) \times s_2$ | M1    | Apply Newton's 2nd law after 4 N removed, find <i>a</i> and use $v^2 = u^2 + 2as$ to find extra distance s <sub>2</sub> |
|          | $[s_2 = 5 \text{ leading to total distance} = s_1 + s_2 = 15 + 5 = ] 20 \text{ m}$                                                 | A1    |                                                                                                                         |
|          | Alternative method for Question 7(c)                                                                                               |       |                                                                                                                         |
|          | Work done = $4 \times 0.5 \times \frac{10}{3} \times 3^2$ [= 60 J]                                                                 | B1 FT | WD = <i>Fs</i> and $s = \frac{1}{2} at^2$ for 4 N force; FT <i>a</i> from (b)                                           |
|          | $60 = \mu \times 0.3g \cos \theta \times d + 0.3g \times d \sin \theta$                                                            | M1    | WD by 4 N force = WD against $F$ + PE gain                                                                              |
|          | d = 20  m                                                                                                                          | A1    |                                                                                                                         |
|          |                                                                                                                                    | 3     |                                                                                                                         |





# Cambridge International AS & A Level

#### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/42 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

# **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

# GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

#### GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

# GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

# GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

# **GENERIC MARKING PRINCIPLE 5:**

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

# GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

| Mathematics | Specific | Marking     | Principles  |
|-------------|----------|-------------|-------------|
| maniemanes  | Speenie  | 1 Iul Kills | 1 I meipies |

| 1 | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.                                     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.                                                            |
| 3 | Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.                                                                                                               |
| 4 | Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).                                                                                            |
| 5 | Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. |
| 6 | Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.                                                                                              |



#### Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

# **Mark Scheme Notes**

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

# Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/42

# Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

# Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                                                                                                     | Marks | Guidance                                           |
|----------|------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------|
| 1        | Initial KE = $\frac{1}{2} \times 0.6 \times 4^2$ [= 4.8]<br>Final KE = $\frac{1}{2} \times 0.6 \times v^2$ | B1    | Any one of the three expressions correct           |
|          | PE loss = $0.6 \times g \times 15 \sin 10$ [=15.628]                                                       |       |                                                    |
|          | $0.6 \times g \times 15\sin 10 + \frac{1}{2} \times 0.6 \times 4^2 = \frac{1}{2} \times 0.6 \times v^2$    | M1    | Apply energy equation, 3 terms, dimensions correct |
|          | $v = 8.25 \text{ ms}^{-1}$                                                                                 | A1    |                                                    |
|          |                                                                                                            | 3     |                                                    |
|          |                                                                                                            |       |                                                    |

| Question | Answer                                                                                       | Marks      | Guidance                                                                                                                 |
|----------|----------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------|
| 2        | Resolve either horizontally or vertically with correct number of terms.                      | <b>M</b> 1 | Allow $\theta$ and $\alpha$ as in the question for this mark                                                             |
|          | $[X = ]30 - 34 \times \frac{8}{17} - 26 \times \frac{5}{13} [= 4]$                           | A1         | Allow $\pm X$ as they may resolve forces left or right<br>Allow $[X = ]30 - 34\sin 28 - 26\sin 23$ angle 2s.f. or better |
|          | $[Y = ]34 \times \frac{15}{17} - 26 \times \frac{12}{13} [= 6]$                              | A1         | Allow $\pm Y$ as they may resolve forces up or down<br>Allow $[Y = ]$ 34 cos 28 - 26 cos 23 angle 2s.f. or better        |
|          | $[R=]\sqrt{X^2+Y^2}$                                                                         | M1         | Attempt to solve for the magnitude of the force                                                                          |
|          | $[\beta =]\tan^{-1}\left(\frac{Y}{X}\right)$ or $[\beta =]\tan^{-1}\left(\frac{X}{Y}\right)$ | M1         | Attempt to solve for the direction of the resultant force                                                                |

| Question | Answer                                                                                                      | Marks | Guidance                                                                                            |
|----------|-------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------|
| 2 cont'd | $R = \sqrt{52} = 2\sqrt{13} = 7.21$ N and $\beta = 56.3$<br>above 30N force or anticlockwise from 30N force | A1    | Both correct with correct explanation of the direction.<br>Must be a correct and clear explanation. |
|          |                                                                                                             | 6     |                                                                                                     |

| Question | Answer                                                       | Marks | Guidance                                                                                                                                                                                                                                            |
|----------|--------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | Resolving along or perpendicular to the rod                  | M1    | 3 terms in either direction                                                                                                                                                                                                                         |
|          | $8\sin 10 + R = 0.3g$                                        | A1    |                                                                                                                                                                                                                                                     |
|          | $8\cos 10 - F = 0.3a$                                        | A1    |                                                                                                                                                                                                                                                     |
|          | F = 0.8R [ $R = 1.61081, F = 1.28865$ ]                      | M1    | Using $F = \mu R$ , where R is 2 terms involving weight and a component of 8 N.                                                                                                                                                                     |
|          | [a = 21.966]<br>$0.6 = \frac{1}{2} \times 21.966 \times t^2$ | M1    | Complete method leading to an equation in t such as<br>$s = ut + \frac{1}{2} at^2$ with $s = 0.6$ , $u = 0$ and using <i>their</i> value of a<br>found from a Newton's second law with 3 terms, namely,<br>component of 8 N, any friction and 0.3a. |
|          | t = 0.234 seconds                                            | A1    | Allow use of $a = 22$ for M1 and A1                                                                                                                                                                                                                 |
|          | Alternative method for Question 3                            | ep.   |                                                                                                                                                                                                                                                     |
|          | Resolving perpendicular to the rod                           | M1    |                                                                                                                                                                                                                                                     |
|          | $8\sin 10 + R = 0.3g$                                        | A1    |                                                                                                                                                                                                                                                     |
|          | F = 0.8R [ $R = 1.61081, F = 1.28865$ ]                      | M1    | Using $F = \mu R$ , where R must involve 0.3g and a component of 8 N.                                                                                                                                                                               |

| Question | Answer                                                                        | Marks | Guidance                                           |
|----------|-------------------------------------------------------------------------------|-------|----------------------------------------------------|
| 3        | $8\cos 10 \times 0.6 = F \times 0.6 + \frac{1}{2} \times 0.3v^2  [v = 5.134]$ | B1    | Work energy equation to find $v$ after 0.6 metres. |
|          | $0.6 = \frac{1}{2} (0 + 5.134) \times t$                                      | M1    | Using $s = \frac{1}{2}(u+v)t$ to find $t$ .        |
|          | t = 0.234 seconds                                                             | A1    |                                                    |
|          |                                                                               | 6     |                                                    |

| Question | Answer                                                         | Marks | Guidance                                                                                                                                              |
|----------|----------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4        | For resolving either parallel to or perpendicular to the plane | M1    | Three relevant terms in either equation.                                                                                                              |
|          | $P\cos 8 = F + 12g\sin 25$                                     | A1    |                                                                                                                                                       |
|          | $12g\cos 25 = R + P\sin 8$                                     | A1    |                                                                                                                                                       |
|          | F = 0.3R                                                       | M1    | Use $F = 0.3R$ , where R must involve components of both $12g$ and P.                                                                                 |
|          | $P\cos 8 = 0.3(12g\cos 25 - P\sin 8) + 12g\sin 25$             | M1    | For attempting to solve for <i>P</i> , using equations with the correct number of relevant terms in both.                                             |
|          | P=80.8                                                         | AI    | From $P = 80.755$ Allow $P \le 80.8$<br>If more than one case is considered for direction of friction then<br>a choice must be made for final answer. |
|          | Alternative mark scheme for Question 4                         |       |                                                                                                                                                       |
|          | For resolving forces either vertically or horizontally         | M1    | Correct number of terms in either equation.                                                                                                           |
|          | $R\cos 25 + P\sin 33 = 12g + F\sin 25$                         | A1    |                                                                                                                                                       |

| Question | Answer                                                                                | Marks | Guidance                                                                                                                                              |
|----------|---------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4        | $P\cos 33 = F\cos 25 + R\sin 25$                                                      | A1    |                                                                                                                                                       |
|          | F = 0.3R                                                                              | M1    | Use $F = 0.3R$                                                                                                                                        |
|          | Solve a pair of simultaneous equations in <i>P</i> and <i>R</i><br>May see $R = 97.5$ | M1    | For attempting to solve for <i>P</i> , using equations with the correct number of relevant terms.                                                     |
|          | P=80.8                                                                                | A1    | From $P = 80.755$ Allow $P \le 80.8$<br>If more than one case is considered for direction of friction then<br>a choice must be made for final answer. |
|          |                                                                                       | 6     |                                                                                                                                                       |

| Question | Answer                                | Marks | Guidance                                    |
|----------|---------------------------------------|-------|---------------------------------------------|
| 5(a)(i)  | $P = (440 + 280) \times 30$           | M1    | Using $P = Fv$ with $F$ as total resistance |
|          | $P = 720 \times 30 = 21.6 \text{ kW}$ | A1    | Answer must be in kW                        |
|          |                                       | 2     |                                             |

| Question | Answer                                                                                                  | Marks | Guidance                                                                                                                                                                                                                            |
|----------|---------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5(a)(ii) | $P = 21600 - 8000 \text{ W}$ $DF = \frac{21600 - 8000}{30} \left[ = \frac{13600}{30} = 453.333 \right]$ | B1 FT | Follow through on <i>their</i> power from <b>5(a)(i)</b><br>Allow Driving Force (DF) = $\frac{8000}{30}$ = 266.7 as the force due to solely to the change in power provided correct equation(s) used.                               |
|          | Car: $DF - 440 - T = 1250a$<br>Caravan: $T - 280 = 800a$<br>System: $DF - (440 + 280) = 2050a$          | M1    | Apply Newton's 2nd law to either the car or to the caravan or to<br>the system. Must be correct number of relevant terms.<br>If $DF = \frac{8000}{30}$ is used then the equations must be either<br>-DF = 2050a or $T - 280 = 800a$ |
|          | Solve for either <i>a</i> or <i>T</i>                                                                   | M1    | Using equation(s) with no missing/extra terms, $DF \neq 720$ .<br>Solving for <i>a</i> either from the system equation or from the car<br>AND caravan equation.<br>OR solving for <i>T</i> from the car AND caravan equation.       |
|          | $a = -0.13 \text{ ms}^{-2}$ and $T = 176 \text{ N}$                                                     | A1    |                                                                                                                                                                                                                                     |
|          |                                                                                                         | 4     |                                                                                                                                                                                                                                     |

| Question | Answer                                                                                                                                     | Marks | Guidance                                                                                                                                                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5(b)(i)  | System: $DF = 720 + 2050g \times 0.06$ [=1950]<br>Car: $DF - 440 - T - 1250g \times 0.06 = 0$<br>Caravan: $T - 280 - 800g \times 0.06 = 0$ | M1    | Apply Newton's 2nd law with $a = 0$ , either to the system OR by eliminating T between the equations for the car and the caravan, no extra or missing relevant terms, dimensionally correct, to find DF |
|          | 1950v = 28000                                                                                                                              | B1    | $P = \mathrm{DF} \times v \cdot \frac{28000}{v} \text{ SOI.}$                                                                                                                                           |
|          | $v = 14.4 \text{ ms}^{-1}$                                                                                                                 | A1    |                                                                                                                                                                                                         |
|          |                                                                                                                                            | 3     |                                                                                                                                                                                                         |

| Question | Answer                                                                                                                        | Marks | Guidance                                                                                                                       |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------|--|
| 5(b)(ii) | $PE = 800g \times d \times 0.06 = 800g \times 14.4 \times 60 \times 0.06$                                                     | M1    | Using $PE = mgh$ with <i>h</i> being height gained in 60 s, using <i>their</i> $v$                                             |  |
|          | $PE = 414\ 000\ (J)$ or $PE = 414\ kJ$                                                                                        | A1    | Using $v = 560/39 = 14.359$                                                                                                    |  |
|          | Alternative method for Question 5(b)(ii)                                                                                      |       |                                                                                                                                |  |
|          | $28000 \times 60 = PE \text{ of } Caravan + 1250g \times d \times 0.06 + 720 \times d$<br>and $d = 60 \times 14.359 = 861.54$ | M1    | For use of $WD = P \times t$ to find an expression for PE of caravan<br>and the distance travelled up the incline in 1 minute. |  |
|          | $[PE = 28\ 000 \times 60 - 1250g \times 861.54 \times 0.06 - 720 \times 861.54]$<br>PE = 414\ 000\ (J) or PE = 414 kJ         | A1    |                                                                                                                                |  |
|          |                                                                                                                               | 2     |                                                                                                                                |  |
|          |                                                                                                                               |       |                                                                                                                                |  |

| Question | Answer                                                                                                      | Marks | Guidance                                                                                                                                         |
|----------|-------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 6        | $s_A = \pm (30t - 5t^2)$ or $s_B = \pm 5t^2$                                                                | B1    | Use of constant acceleration equations to find expressions for displacements of $A$ or $B$ .                                                     |
|          | $s_A + s_B = 15$ leading to $15 = 30t$ leading to $t = 0.5$                                                 | B1    | Use $s_A + s_B = 15$ to find time at which particles collide.                                                                                    |
|          | $t = 0.5$ leading to $v_A = \pm 25$ and $v_B = \pm 5$                                                       | B1    | Find speed of particles at $t = 0.5$ before collision.                                                                                           |
|          | $t = 0.5$ leading to $h_A = \pm \left(30 \times 0.5 - \frac{1}{2}g \times 0.5^2\right) = \pm 13.75$         | B1    | Find position of <i>A</i> or <i>B</i> at which collision occurs at $t = 0.5$<br>Alternatively allow $h_B = \pm 1.25$ as displacement of <i>B</i> |
|          | $25 \times (2m) - 5(m) = (3m)v \rightarrow v_1 = 15$<br>$25(m) - 5 \times (2m) = (3m)v \rightarrow v_2 = 5$ | M1    | Use of conservation of momentum, either case, using <i>their</i> $v_A$ and $v_B \neq 0$ or 30, with 3 terms.                                     |
|          |                                                                                                             | A1    | Both values of $v$ correct                                                                                                                       |

| Question | Answer                                                                                                                                                                                                                                                                                          | Marks | Guidance                                                                                                                                                                                                                                                                                                                                           |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6        | Particle $C_1 -13.75 = 15t - 5t^2$<br>Particle $C_2 -13.75 = 5t - 5t^2$                                                                                                                                                                                                                         | M1    | Use of $s = ut + \frac{1}{2} at^2$ OE to find <i>t</i> , using either <i>their</i> numerical $v_1$ or numerical $v_2$ from a relevant conservation of momentum equation.                                                                                                                                                                           |
|          | $t_{C_1}, t_{C_2} = 3.74, 2.23$ leading to $T = 1 + \sqrt{5} - \sqrt{3} = 1.50$                                                                                                                                                                                                                 | A1    | Find $T = t_{C_1} - t_{C_2}$ from $t_{C_1} = 3.736$ and $t_{C_2} = 2.232$                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                 | 8     | Subscripts 1 and 2 refer to the two cases.                                                                                                                                                                                                                                                                                                         |
|          | Alternative method for the final two marks                                                                                                                                                                                                                                                      |       |                                                                                                                                                                                                                                                                                                                                                    |
|          | $\begin{array}{l} 0 = 15 - gt_1 \ , \ 0 = 5 - gt_2 \rightarrow t_1 = 1.5 \ , \ t_2 = 0.5 \\ \text{Total heights}  h_1 = 13.75 + 11.25 = 25 \\ \text{Or} \qquad h_2 = 13.75 + 1.25 = 15 \\ 25 = 5T_1^2 \ \text{ and } \ 15 = 5T_2^2 \rightarrow T_1 = \sqrt{5} \ , \ T_2 = \sqrt{3} \end{array}$ | M1    | Use of $v = u - gt$ to find time to highest point for either case and<br>use of $v^2 = u^2 - 2gs$ to find total height reached for either case,<br>using either <i>their</i> numerical $v_1$ or numerical $v_2$ from a relevant<br>conservation of momentum equation.<br>Use $s = 0 + \frac{1}{2}gT^2$ to find time to reach ground (either case). |
|          | $T = 1.5 + \sqrt{5} - (0.5 + \sqrt{3}) = 1 + \sqrt{5} - \sqrt{3} = 1.50$                                                                                                                                                                                                                        | A1    | Find difference in total times $T = (t_1 + T_1) - (t_2 + T_2)$                                                                                                                                                                                                                                                                                     |
|          | ZZV. satpr                                                                                                                                                                                                                                                                                      | ep.   |                                                                                                                                                                                                                                                                                                                                                    |

| Question | Answer                                                                                         | Marks | Guidance                                                                                                                                               |
|----------|------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(a)     | $v = 6t + 2t^{2} [+c]$<br>or<br>v = 14t [+c]                                                   | M1    | Attempt to integrate <i>a</i> in Stage 1 or Stage 2 or in Stage 2 for use<br>of $v = u + at$                                                           |
|          | $v = 6t + 2t^2$ and $v = 14t - 8$<br>or<br>v(t = 2) = 20<br>$v(t = 4) = 20 + 14 \times 2 = 48$ | A1    | Velocity in Stage 1 and Stage 2 correct including correct<br>constant<br>Find v at $t=2$ and use $v=u+14t$ to find v at $t=4$                          |
|          | $v = 16t - t^2 [+c]$                                                                           | *M1   | Attempt to integrate $a$ in Stage 3.                                                                                                                   |
|          | $55 = 16t - t^2$                                                                               | DM1   | Attempt to solve a relevant 3-term quadratic equation which<br>comes from their 2 term $v$ from Stage 3 equated to 55 and<br>finding two values of $t$ |
|          | t = 5 and $t = 11$ only                                                                        | A1    | Allow only if $c = 0$ has been shown correctly.                                                                                                        |
|          | Alternative method for Question 7(a)                                                           |       |                                                                                                                                                        |
|          | State or imply that only possible range is $4 \le t \le 16$                                    | B1    | Allow this method if candidates only consider Stage 3                                                                                                  |
|          | $v = 16t - t^2 + c$                                                                            | M1    | For attempt at integration.                                                                                                                            |
|          | c = 0 shown                                                                                    | Al    | Using $v = 0$ at $t = 16$                                                                                                                              |
|          | Solve $55 = 16t - t^2$                                                                         | M1    | Must find 2 values of $t$ and must be from equating <i>their</i> 2 term $v$ to 55                                                                      |
|          | t = 5 and $t = 11$ only                                                                        | A1    | Allow only if $c = 0$ has been shown correctly.                                                                                                        |
|          |                                                                                                | 5     |                                                                                                                                                        |

| Question | Answer                                                                                                                                                                                                                 | Marks | Guidance                                                                                                                                                         |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(b)     | Positive quadratic for $0 \le t < 2$ through (0,0) joining to the bottom<br>of the given line<br>or<br>Negative quadratic for $4 \le t \le 16$ going through the point (16,0)<br>and joining the top of the given line | B1    |                                                                                                                                                                  |
|          | All correct with correct gradients (approx)                                                                                                                                                                            | B1    | Negative quadratic must have a maximum.<br>There must be no point of inflexion particularly near $t = 16$ .<br>Ignore any curve drawn outside $0 \le t \le 16$ . |
|          | 9                                                                                                                                                                                                                      | 2     |                                                                                                                                                                  |
| 7(c)     | $s = \int (16t - t^2) dt \left[ = 8t^2 - \frac{1}{3}t^3(+c) \right]$                                                                                                                                                   | M1    | Attempt to integrate <i>their v</i> .                                                                                                                            |
|          | $s = \left[8t^{2} - \frac{1}{3}t^{3}\right]_{8}^{16}$<br>$s = \left[2048 - 1365\frac{1}{3}\right] - \left[512 - 170\frac{2}{3}\right]$                                                                                 | A1    | Correct integral and the correct limits used correctly to find an unsimplified expression for the distance from $t = 8$ to $t = 16$ only.                        |
|          | $s = 341\frac{1}{3}$                                                                                                                                                                                                   | B1    | Allow $s = 341$ to 3s.f.<br>If no integration seen (calculator used) allow B1 (max 1 out of 3 marks)                                                             |
|          | .satpr                                                                                                                                                                                                                 | 003   |                                                                                                                                                                  |



# **Cambridge International A Level**

#### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/41 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

# **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

# GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

#### GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

#### GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

#### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

# **GENERIC MARKING PRINCIPLE 5:**

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

# GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

| Mathematics | Specific | Marking        | Principles |
|-------------|----------|----------------|------------|
| 1.1         | ~~~~     | 1.1.0.1.1.1.1. |            |

| 1 | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.                                     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.                                                            |
| 3 | Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.                                                                                                               |
| 4 | Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).                                                                                            |
| 5 | Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. |
| 6 | Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.                                                                                              |



# Cambridge International A Level – Mark Scheme PUBLISHED Mark Scheme Notes

# The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

# Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

# Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                                                               |                             | Guidance                                |  |  |
|----------|----------------------------------------------------------------------|-----------------------------|-----------------------------------------|--|--|
| 1        | Force exerted by winch = $50g \sin 60 + 100 [= 433.0 + 100 = 533.0]$ | M1                          | For resolving forces along the plane    |  |  |
|          | Work done $= 5 \times (50g\sin 60 + 100)$                            | M1                          | Use of WD = Force $\times$ distance     |  |  |
|          | Work done = 2670 J                                                   | A1                          |                                         |  |  |
|          | Alternative method for Question 1                                    | ative method for Question 1 |                                         |  |  |
|          | PE increase = $50g \times 5\sin 60$                                  | M1                          | Correct dimensions                      |  |  |
|          | Work done = $50g \times 5\sin 60 + 100 \times 5$                     | M1                          | Apply the work-energy equation, 3 terms |  |  |
|          | Work done = 2670 J                                                   | A1                          |                                         |  |  |
|          |                                                                      | 3                           |                                         |  |  |
|          |                                                                      |                             |                                         |  |  |

| Question |                                                                                                    | Answer | Marks                                                                                                               | Guidance                                                   |
|----------|----------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 2(a)     | 2(a) 0.1 kg particle $T - 0.1g = 0.1a$<br>m kg particle $mg - T = maSystem mg - 0.1g = (m + 0.1)a$ | M1     | Apply Newton's 2nd law to either the 0.1 kg particle, the $m$ kg particle or to the system, correct number of terms |                                                            |
|          |                                                                                                    | A1     | Two correct equations                                                                                               |                                                            |
|          | Solve for <i>m</i>                                                                                 | [a=5]  | M1                                                                                                                  | From 2 equations with the correct number of relevant terms |
|          | m = 0.3                                                                                            | p      | A1                                                                                                                  |                                                            |
|          |                                                                                                    |        | 4                                                                                                                   |                                                            |
| Question | Answer                            | Marks | Guidance                                                                   |  |
|----------|-----------------------------------|-------|----------------------------------------------------------------------------|--|
| 2(b)     | $v^2 = 0 + 2 \times 5 \times 0.9$ | M1    | Use of $v^2 = u^2 + 2as$ with $u = 0$ , $s = 0.9$ and their $a \neq \pm g$ |  |
|          | $v = 3 \text{ m s}^{-1}$          | A1 FT | FT on $\sqrt{1.8a}$                                                        |  |
|          |                                   | 2     |                                                                            |  |
|          |                                   |       |                                                                            |  |

| Question | Answer                                                    | Marks | Guidance                                                                                                                   |
|----------|-----------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------|
| 3(a)     | Use of conservation of momentum, 3 terms                  | M1    | Correct dimensions                                                                                                         |
|          | $0.1 \times 5 + 0 = 0.1 \times (-1) + 0.2 \times (\pm v)$ | A1    |                                                                                                                            |
|          | $v = 3 \text{ m s}^{-1}$                                  | A1    | A0 for $v = -3$                                                                                                            |
|          |                                                           | 3     |                                                                                                                            |
| 3(b)     | $0.2 \times their 3 + 0 = 0.2 \times u + 0.5V$            | M1    | Use of conservation of momentum, 3 terms, correct dimensions.<br>Allow $u = 0$ used or if Q and R coalesce                 |
|          | $u \ge -1$                                                | B1    | Allow $u = -1$ . Allow equality for finding greatest value of V.<br>Condition for no collision with P, may be a statement. |
|          | Greatest $V = 1.6$                                        | A1 FT | FT on <i>their</i> 3 from $3(a)$ if $u = -1$ used.                                                                         |
|          | ·satp                                                     | e 3   |                                                                                                                            |

| Question | Answer                                                                                                                                                                        | Marks | Guidance                                                                                                                                                        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4(a)     | Isabella $v = 5 \times 1.1 = 5.5$                                                                                                                                             | B1    | Isabella's constant speed for 10 seconds                                                                                                                        |
|          | Use of $s = ut + \frac{1}{2}at^2$ or use of $v-t$ graph to find total distance                                                                                                | M1    | For either Isabella or Maria, all sections included but allow one error in use of formulae                                                                      |
|          | $s_{I} = \frac{1}{2} \times 1.1 \times 5^{2} + 10 \times 5.5 + \frac{1}{2} \times 1.1 \times 5^{2} [= 82.5]$<br>or $s_{I} = \frac{1}{2} \times (20 + 10) \times 5.5 [= 82.5]$ | A1    | For correct expression for Isabella, accept unsimplified                                                                                                        |
|          | $s_M = 27.5 + 5 \times 10 + \frac{1}{2} \times 5 \times 5 [= 90]$                                                                                                             | A1    | For correct expression for Maria, accept unsimplified                                                                                                           |
|          | Distances for Isabella = 82.5 and Maria = 90, so Maria goes further                                                                                                           | B1    |                                                                                                                                                                 |
|          |                                                                                                                                                                               | 5     |                                                                                                                                                                 |
| 4(b)     | $\frac{1}{2}a \times 5^{2} + 10 \times 5a + \frac{1}{2}a \times 5^{2} = 90$<br>or $\frac{1}{2} \times (20 + 10) \times 5a = 90$                                               | M1    | Attempt total distance travelled by Isabella and set up an equation<br>for <i>a</i> , using their value of $s_M = 90$ . All parts included, allow one<br>error. |
|          | a = 1.2                                                                                                                                                                       | A1    | c <sup>o</sup>                                                                                                                                                  |
|          | -satp                                                                                                                                                                         |       |                                                                                                                                                                 |

| Question | Answer                                                                                                                       | Marks | Guidance                                                                                                                                      |
|----------|------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 5(a)     | $v = \int \left( 6t^{\frac{1}{2}} - 2t \right) \mathrm{d}t$                                                                  | M1    | For integration. $v = at$ is M0.                                                                                                              |
|          | $v = 4t^{\frac{3}{2}} - t^{2}(+c)$                                                                                           | A1    | Allow unsimplified coefficients.                                                                                                              |
|          | $v = 0$ leading to $t = 0$ or $t^{\frac{1}{2}} = 4$ leading to $t = 16$                                                      | A1    |                                                                                                                                               |
|          | 9                                                                                                                            | 3     |                                                                                                                                               |
| 5(b)     | $6t^{\frac{1}{2}} - 2t = 0$                                                                                                  | M1    | Attempt to solve $a = 0$ , using valid algebra, reaching $t =$                                                                                |
|          | <i>t</i> = 9                                                                                                                 | A1    |                                                                                                                                               |
|          | $s = \int \left( 4t^{\frac{3}{2}} - t^{2} \right) dt$ $\left[ s = \frac{8}{5}t^{\frac{5}{2}} - \frac{1}{3}t^{3}(+c) \right]$ | M1    | For integration of their expression for $v$ which includes a term with<br>a fractional power. Allow unsimplified coefficients. $v = at$ is M0 |
|          | $s = \frac{8}{5}t^{\frac{5}{2}} - \frac{1}{3}t^{3}$                                                                          | A1    | For correct integral                                                                                                                          |
|          | Distance = 145.8 m                                                                                                           | B1    | Allow $\frac{729}{5}$ or 146 to 3s.f.                                                                                                         |
|          |                                                                                                                              | 5     |                                                                                                                                               |

| Question | Answer                                                                                                    | Marks | Guidance                                                                                                                                                                     |
|----------|-----------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6(a)     | $20\cos 30 = 25\cos 60 + 10\cos \alpha$<br>[17.32 = 12.5 + 10\cos\alpha, \rightarrow \cos\alpha = 0.4821] | M1    | For resolving forces horizontally, all relevant terms included                                                                                                               |
|          | $\alpha = 61.2$                                                                                           | A1    | From $\alpha = 61.18$                                                                                                                                                        |
|          | Resultant = $20\sin 30 + 10\sin 61.2 - 25\sin 60$<br>[= $10 + 8.761 - 21.651$ ]                           | M1    | For resolving forces vertically, all relevant terms included                                                                                                                 |
|          | Magnitude of resultant force = 2.89 N                                                                     | A1    | A0 for –2.89 N or for ±2.89 N.<br>Allow 2.89 N downwards                                                                                                                     |
|          |                                                                                                           | 4     |                                                                                                                                                                              |
| 6(b)     | $X = 25\cos 60 + 10\cos 45 - 20\cos 30$<br>= 12.5 + 7.07107 - 17.32051 = 2.25056                          | M1    | For either horizontal or vertical component, correct number of relevant terms. Allow $\pm X$ and/or $\pm Y$                                                                  |
|          | $Y = 20\sin 30 + 10\sin 45 - 25\sin 60$<br>= 10 + 7.07107 - 21.65064 = -4.57957                           | A1    | For both correct, allow unsimplified                                                                                                                                         |
|          | $R = \sqrt{X^2 + Y^2}$                                                                                    | M1    | OE. Using a method to find the resultant force, using expressions for $X$ and $Y$ with at least 5 relevant terms.                                                            |
|          | $\alpha = \tan^{-1} \frac{Y}{X}$                                                                          | M1    | OE. A method to find the direction, using expressions for $X$ and $Y$ with at least 5 relevant terms.                                                                        |
|          | Resultant = $5.10$ N,<br>Direction = $63.8^{\circ}$ below positive <i>x</i> -axis                         | Al    | For both correct, angle clearly explained.<br>May use a diagram with a correct arrow and arc for angle.<br>Allow angle 296° (measured anticlockwise from +ve <i>x</i> -axis) |
|          |                                                                                                           | 5     |                                                                                                                                                                              |

| Question | Answer                                             | Marks | Guidance                                                                  |
|----------|----------------------------------------------------|-------|---------------------------------------------------------------------------|
| 7(a)(i)  | $PE = 35g \times 2.5 \sin 30$                      | M1    |                                                                           |
|          | $\frac{1}{2} \times 35v^2 = 35g \times 2.5\sin 30$ | M1    | Use of conservation of energy, 2 terms, correct dimensions                |
|          | $v = 5 \text{ m s}^{-1}$                           | A1    |                                                                           |
|          | Alternative method for Question 7(a)(i)            |       |                                                                           |
|          | $mg\sin 30 = ma$ leading to $a = 5$                | M1    | For applying Newton's 2nd law down the plane, 2 terms, correct dimensions |
|          | $v^2 = 0 + 2 \times 5 \times 2.5$                  | M1    | For using $v^2 = u^2 + 2as$ , using their $a \neq \pm g$                  |
|          | $v = 5 \text{ m s}^{-1}$                           | A1    |                                                                           |
|          |                                                    | 3     |                                                                           |



| Question           | Answer                                                                     | Marks | Guidance                                                                                                                                           |  |  |
|--------------------|----------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7(a)(ii)           | $\frac{1}{2} \times 35 \times 5^2 = 250d$                                  | M1    | Use of work-energy from the bottom of the slide until motion stops, 2 terms, correct dimensions, using <i>their</i> $v$                            |  |  |
|                    | d = 1.75  m                                                                | A1    |                                                                                                                                                    |  |  |
|                    | Alternative method for Question 7(a)(ii)                                   |       |                                                                                                                                                    |  |  |
|                    | $35g \times 2.5\sin 30 = 250d$                                             | -M1   | Use of work-energy from the start until motion stops, 2 terms, correct dimensions.                                                                 |  |  |
|                    | <i>d</i> =1.75 m                                                           | A1    |                                                                                                                                                    |  |  |
|                    | Alternative method for Question 7(a)(ii)                                   |       |                                                                                                                                                    |  |  |
|                    | $-250 = 35a$ leading to $a = -\frac{50}{7} = -7.14$<br>$0 = 5^{2} + 2(a)d$ | M1    | Newton's 2nd law on the horizontal section with resistance = 250 N to find <i>a</i> and use $v^2 = u^2 + 2as$ with $v = 0$ , $u = 5$ and $s = d$ . |  |  |
|                    | <i>d</i> =1.75 m                                                           | A1    |                                                                                                                                                    |  |  |
|                    |                                                                            | 2     |                                                                                                                                                    |  |  |
| 32.<br>satprep.co. |                                                                            |       |                                                                                                                                                    |  |  |

May/June 2021

| Question | Answer                                                                                                                                                                | Marks      | Guidance                                                                                                                                                                                                                                                      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(b)     | $\frac{1}{2} \times 35v^2 = 250 \times 1.05 [v^2 = 15]$<br>or                                                                                                         | B1         | Either use the correct work energy equation for motion on the horizontal section or use the fact that the frictional force on the horizontal section is 250 N in order to set up an equation that would lead to finding the speed at the bottom of the slide. |
|          | $-250 = 35a$ leading to $a = -\frac{50}{7}$                                                                                                                           |            |                                                                                                                                                                                                                                                               |
|          | $0 = v^{2} + 2 \times -\frac{50}{7} \times 1.05 \qquad \left[v^{2} = 15\right]$                                                                                       | R          |                                                                                                                                                                                                                                                               |
|          | $R = 35g\cos 30[= 303.11]$                                                                                                                                            | <b>B</b> 1 |                                                                                                                                                                                                                                                               |
|          | $v^2 = 0 + 2 \times a \times 2.5 = 15$ leading to $a = 3$<br>or<br>PE change $= 35g \times 2.5 \sin 30 [= 437.5]$                                                     | M1         | For using $v^2 = u^2 + 2as$ , with their $v^2$ to set up an equation that would lead to finding $a$ .                                                                                                                                                         |
|          | $35g \sin 30 - F = 35a \text{ or } [175 - F = 35a]$<br>or<br>$35g \times 2.5 \sin 30 = F \times 2.5 + \frac{1}{2} \times 35 \times 15 [437.5 = F \times 2.5 + 262.5]$ | M1         | For using Newton's 2nd law down the slope with correct<br>dimensions.<br>or<br>For using energy equation, 3 relevant terms with correct<br>dimensions.                                                                                                        |
|          | $F = \mu \times R$                                                                                                                                                    | M1         | For using $F = \mu R$ , where R is a component of $35g$ .                                                                                                                                                                                                     |
|          | μ=0.231                                                                                                                                                               | Al         | Allow $\mu = \frac{2\sqrt{3}}{15}$ OE                                                                                                                                                                                                                         |

May/June 2021

| Question | Answer                                                                                     | Marks | Guidance                                                              |  |
|----------|--------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------|--|
| 7(b)     | >) Alternative method for Question 7(b)                                                    |       |                                                                       |  |
|          | $R = 35g\cos 30$                                                                           | B1    |                                                                       |  |
|          | PE change = $35g \times 2.5 \sin 30 [= 437.5]$                                             | B1    |                                                                       |  |
|          | WD against friction on the flat $= 250 \times 1.05$                                        | B1    | WD = 262.5                                                            |  |
|          | $35g \times 2.5 \sin 30 = F \times 2.5 + 250 \times 1.05 \ [437.5 = F \times 2.5 + 262.5]$ | M1    | For using energy equation, 3 relevant terms with correct dimensions.  |  |
|          | $F = \mu \times R$                                                                         | M1    | For using $F = \mu R$ at any stage, where R is a component of $35g$ . |  |
|          | $\mu = 0.231$                                                                              | A1    | Allow $\mu = \frac{2\sqrt{3}}{15}$ OE                                 |  |
|          |                                                                                            | 6     |                                                                       |  |





# Cambridge International AS & A Level

### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/42 March 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

### GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

### GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

### GENERIC MARKING PRINCIPLE 3

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### **GENERIC MARKING PRINCIPLE 5:**

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

| Mathematics Specific Marking runchbles | Mathematics | Specific | Marking | Principles |
|----------------------------------------|-------------|----------|---------|------------|
|----------------------------------------|-------------|----------|---------|------------|

| 1 | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.                                     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.                                                            |
| 3 | Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.                                                                                                               |
| 4 | Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).                                                                                            |
| 5 | Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. |
| 6 | Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.                                                                                              |



### **Mark Scheme Notes**

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

### **Types of mark**

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

9709/42

# Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

### Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                                                | Marks | Guidance                                                                                                                |
|----------|-------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------|
| 1        | $\pm 0.2 \times 0.5 \text{ or } \pm 0.3 \times 1$     | B1    | For initial momentum for either particle. Allow kg or g.                                                                |
|          | $0.2 \times 0.5 + 0.3 \times (-1) = 0.2 \times v + 0$ | M1    | For conservation of momentum. Dimensions correct.<br>Allow if 3 relevant momentum terms are seen regardless<br>of sign. |
|          | Speed = $1 \text{ ms}^{-1}$                           | A1    | Allow if final answer given as $v = 1$ or speed = 1 from an equation whose solution is $v = -1$                         |
|          | 6                                                     | 3     |                                                                                                                         |
|          |                                                       |       |                                                                                                                         |

| Question | Answer                                 | Marks | Guidance                                                                                            |
|----------|----------------------------------------|-------|-----------------------------------------------------------------------------------------------------|
| 2(a)     | Driving force = DF = $\frac{22500}{v}$ | B1    |                                                                                                     |
|          | $DF - 1400g \times 0.1 - 600 = 0$      | M1    | Apply Newton's 2nd law to the car with $a = 0$ , three relevant terms. May see term 1400g sin 5.7°. |
|          | $v = 11.25 \text{ ms}^{-1}$            | A1    | <b>AG</b> From exact working only, may be implied if using 5.7°.                                    |
|          | 2                                      | 3     |                                                                                                     |
|          | <sup>h</sup> .satpre                   | p.00  |                                                                                                     |

9709/42

| March 2 | 2021 |
|---------|------|
|---------|------|

| Question | Answer                                            | Marks | Guidance                                                  |
|----------|---------------------------------------------------|-------|-----------------------------------------------------------|
| 2(b)     | $DF - 1400g\sin 2 - 600 = 1400a$                  | M1    | Use of Newton's second law for the car, 4 relevant terms. |
|          | $\frac{22500}{11.25} - 1400g\sin 2 - 600 = 1400a$ | A1    |                                                           |
|          | $a = 0.651 \text{ ms}^{-2}$ (3sf)                 | A1    |                                                           |
|          | T PR                                              | 3     |                                                           |
|          |                                                   | SX    |                                                           |

| Question | Answer                                                               | Marks | Guidance                                                 |
|----------|----------------------------------------------------------------------|-------|----------------------------------------------------------|
| 3        | For attempting to resolve forces in either direction.                | M1    | Correct number of relevant terms.                        |
|          | $T_P \cos 60 = T_R \cos 30$                                          | A1    |                                                          |
|          | $T_P \sin 60 = T_R \sin 30 + 0.2g$                                   | A1    |                                                          |
|          | Attempt to solve simultaneously for either tension.                  | M1    | From 2 equations, with correct number of relevant terms. |
|          | $T_P = 3.46$ N and $T_R = 2$ N                                       | A1    | Both correct. Allow $T_P = 2\sqrt{3}$ N.                 |
|          | Alternative method for question 3                                    |       | 5                                                        |
|          | $\frac{T_P}{\sin 60} = \frac{T_R}{\sin 150} = \frac{0.2g}{\sin 150}$ | M1    | Attempt one pair of Lami's equations. Correct angles.    |
|          | One pair correct                                                     | A1    |                                                          |
|          | Equations all correct                                                | A1    |                                                          |
|          | Solve for $T_P$ or $T_R$                                             | M1    | From equations of the correct form.                      |
|          | $T_P = 3.46$ N and $T_R = 2$ N                                       | A1    | Both correct. Allow $T_P = 2\sqrt{3}$ N                  |
|          |                                                                      | 5     |                                                          |

| March 2 | 2021 |
|---------|------|
|---------|------|

| Question | Answer                                                      | Marks | Guidance                                                                                                                                                   |
|----------|-------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4(a)     | Acceleration = $\frac{4}{3}$ m s <sup>-2</sup>              | B1    | Allow = $1.33 \text{ m s}^{-2}$ .                                                                                                                          |
|          |                                                             | 1     |                                                                                                                                                            |
| 4(b)     | $\frac{1}{2}(7+4.5) \times 2 = \frac{1}{2}(8.5+5) \times V$ | M1    | Equate expressions for the two areas (distances) leading to an equation in $V$ .                                                                           |
|          | V = 1.7[0] (3sf)                                            | A1    | Allow $V = \frac{46}{27}$ .                                                                                                                                |
|          |                                                             | 2     |                                                                                                                                                            |
| 4(c)     | Acceleration = $-2 \text{ m s}^{-2}$                        | B1    | Or Deceleration = 2.                                                                                                                                       |
|          | $T - 1500g = 1500 \times (-2)$                              | M1    | Apply Newton's second law to the lift, using an acceleration $(\neq \frac{4}{3} \text{ or their 4(a)})$ . Correct dimensions and number of relevant terms. |
|          | $T = 12\ 000\ \mathrm{N}$                                   | A1    |                                                                                                                                                            |
|          | Z                                                           | 3     |                                                                                                                                                            |
| Satprep. |                                                             |       |                                                                                                                                                            |

| Question | Answer                                                   | Marks | Guidance                                                                                                       |
|----------|----------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------|
| 5(a)     | $[2 = \frac{1}{2} \times a \times 25]$                   | M1    | Use of $s = ut + \frac{1}{2}at^2$ OE using $u = 0$ , $s = 2$ and $t = 5$ .                                     |
|          | $a = 0.16 \mathrm{ms^{-2}}$                              | A1    | Allow $a = \frac{4}{25}$ .                                                                                     |
|          | TPR                                                      | 2     |                                                                                                                |
| 5(b)     | $R = 5g - X\sin 30$                                      | B1    |                                                                                                                |
|          | $X\cos 30 - F = 5a$                                      | M1    | Apply Newton's 2nd law to the block, using their <i>a</i> .                                                    |
|          | $X\cos 30 - 0.4(5g - X\sin 30) = 5 \times 0.16$          | M1    | Use $F = 0.4R$ to obtain an equation in X only, using their R which must involve 5g and a component of X only. |
|          | X = 19.5 (3sf)                                           | A1    |                                                                                                                |
|          |                                                          | 4     |                                                                                                                |
| 5(c)     | $R = (5g - 25\sin 30) [R = 37.5]$                        | B1    |                                                                                                                |
|          | $F = 25 \cos 30 \left[ F = \frac{25\sqrt{3}}{2} \right]$ | B1    | 5                                                                                                              |
|          | $\mu = \frac{F}{R} = 0.577 \ (3sf)$                      | B1    | Allow $\mu = \frac{\sqrt{3}}{3}$ or $\mu = \frac{1}{\sqrt{3}}$ .                                               |
|          |                                                          | 3     |                                                                                                                |

| March 2 | 2021 |
|---------|------|
|---------|------|

| Question | Answer                                                            | Marks | Guidance                                |
|----------|-------------------------------------------------------------------|-------|-----------------------------------------|
| 6(a)     | $[s=] \int \left(t^2 - 8t^{\frac{3}{2}} + 10t\right) \mathrm{d}t$ | *M1   | For attempting to integrate <i>v</i> .  |
|          | $[s=]\frac{1}{3}t^3 - \frac{16}{5}t^{\frac{5}{2}} + 5t^2[+C]$     | A1    | Allow unsimplified.                     |
|          | For correct use of correct limits.                                | DM1   | Use of limit at $t = 0$ may be implied. |
|          | Displacement = 2.13 m (3sf)                                       | A1    | Allow displacement = $\frac{32}{15}$ .  |
|          |                                                                   | 4     |                                         |



| Question | Answer                                                                                                                     | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6(b)     | For attempting to differentiate <i>v</i> .                                                                                 | *M1   |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | $[a=]2t-12t^{\frac{1}{2}}+10$                                                                                              | A1    | Allow unsimplified.                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | $a = 0 \implies 2t - 12t^{\frac{1}{2}} + 10 = 0$                                                                           | DM1   | Dependent on *M1.<br>Set $a = 0$ and attempt to solve their 3 term equation in $\sqrt{t}$<br>or t or $p (=\sqrt{t})$ by treating it as a quadratic equation.                                                                                                                                                                                                                                                                              |
|          | $2\left(t^{\frac{1}{2}}-5\right)\left(t^{\frac{1}{2}}-1\right) = 0$ leading to $t = 1$ or $t = 25$                         | A1    | Both correct.                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | $\frac{\mathrm{d}a}{\mathrm{d}t} = 2 - 6t^{-\frac{1}{2}}$                                                                  | *DM1  | Dependent on *M1.<br>Determine the nature of the stationary point by:<br>Either differentiating <i>a</i> and testing the sign of $\frac{da}{dt}$ or by<br>substituting values either side of their <i>t</i> value(s) and<br>attempt to determine the nature of the stationary point(s).<br>If using $\frac{da}{dt}$ then must evaluate it at a <i>t</i> value for M1.<br>Allow use with any <i>t</i> value from <i>their</i> 'quadratic'. |
|          | Use $t = 25$ in $\frac{da}{dt} = 2 - 6 \times 25^{-\frac{1}{2}}$<br>Evaluating $\frac{da}{dt}$ correctly, hence a minimum. | A1    | Or by using a convincing argument to show that $t = 25$ gives a minimum value of <i>v</i> . If evaluated then $\frac{da}{dt}$ must be 0.8.                                                                                                                                                                                                                                                                                                |
|          | Minimum velocity = $25^2 - 8 \times 25^{\frac{3}{2}} + 10 \times 25 = -125 \text{ m s}^{-1}$                               | B1    | <b>AG</b> This mark is awarded only if the previous 6 marks are awarded.                                                                                                                                                                                                                                                                                                                                                                  |
|          |                                                                                                                            | 7     |                                                                                                                                                                                                                                                                                                                                                                                                                                           |

9709/42

| March 2 | 2021 |
|---------|------|
|---------|------|

| Question | Answer                                                                                                                           | Marks | Guidance                                                                                          |
|----------|----------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------|
| 7(a)     | Attempt Newton's 2nd law for either $P, Q$ or the system.                                                                        | M1    | Correct number of relevant terms, dimensionally correct.                                          |
|          | For P: $0.8 + 0.5g \sin 30 - T = 0.5a$<br>For Q: $T - 0.3g \sin 45 = 0.3a$<br>System: $0.8 + 0.5g \sin 30 - 0.3g \sin 45 = 0.8a$ | A1    | For any one correct equation.                                                                     |
|          |                                                                                                                                  | A1    | For two correct equations.                                                                        |
|          | Attempt to solve for <i>T</i> .                                                                                                  | M1    | Using two equations, each with the correct number of relevant terms. [ $a = 1.4733$ may be seen]. |
|          | T = 2.56  N (3 sf)                                                                                                               | A1    | Allow $T = \frac{99 + 75\sqrt{2}}{80}$ .                                                          |
|          |                                                                                                                                  | 5     |                                                                                                   |



| Question | Answer                                                                                                                           | Marks | Guidance                                                                                         |
|----------|----------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------|
| 7(b)     | KE and PE for <i>m</i> kg particle:<br>$\frac{1}{2}m \times 0.36 = 0.18m$ and <i>mg</i> sin45= $5\sqrt{2}m$                      | B1    | Any 2 correct PE or KE terms.                                                                    |
|          | KE and PE for 0.5 kg particle:<br>$\frac{1}{2} \times 0.5 \times 0.36 = 0.09$ and $0.5g \sin 30 = 2.5$                           | B1    | All 4 correct PE and KE terms.                                                                   |
|          | Apply the work-energy equation to the system as:<br>PE loss + WD by 0.8 N = KE gain + 0.5                                        | M1    | Must include at least 5 relevant terms only and no extra terms. All terms dimensionally correct. |
|          | $0.5g \times 1 \times \sin 30 - mg \times 1 \times \sin 45 + 0.8 \times 1$<br>= $\frac{1}{2} \times (0.5 + m) \times 0.36 + 0.5$ | A1    | May be seen as:<br>2.5 $-5\sqrt{2}m + 0.8 = 0.09 + 0.18m + 0.5$                                  |
|          | m = 0.374                                                                                                                        | A1    |                                                                                                  |
|          | Alternative method for question 7(b)                                                                                             |       |                                                                                                  |
|          | KE and PE for <i>m</i> kg particle:<br>$\frac{1}{2}m \times 0.36 = 0.18m$ and <i>mg</i> sin45= $5\sqrt{2}m$                      | B1    | Correct KE and PE for <i>m</i> kg particle.                                                      |
|          | a=0.18 and $3.3-T=0.5(0.18)$ leading to $T=3.21$                                                                                 | B1    | Evaluate the tension in the string using Newton's second law applied to the 0.5 kg particle.     |
|          | For <i>m</i> kg particle:<br>WD by $T = KE$ gain + PE gain + 0.5                                                                 | M1    | At least 3 relevant terms including tension.<br>All terms dimensionally correct.                 |
|          | $3.21 \times 1 = \frac{1}{2}m \times 0.36 + mg\sin 45 + 0.5$                                                                     | A1    |                                                                                                  |
|          | m = 0.374                                                                                                                        | A1    |                                                                                                  |

Question

7(b)

### Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

| PUBLISHED                                                                                                      |       |                                                         |  |
|----------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------|--|
| Answer                                                                                                         | Marks | Guidance                                                |  |
| Alternative method for question 7(b)                                                                           | ·     |                                                         |  |
| KE and PE for <i>m</i> kg particle:                                                                            | B1    | Any 2 correct PE or KE terms.                           |  |
| $\frac{1}{2}m \times 0.36 = 0.18m$ and $mg \sin 45 = 5\sqrt{2}m$                                               | B1    | All 4 correct PE and KE terms.                          |  |
| KE and PE for 0.5 kg particle                                                                                  |       |                                                         |  |
| $\frac{1}{2} \times 0.5 \times 0.36 = 0.09$ and $0.5g \sin 30 = 2.5$                                           |       |                                                         |  |
| Apply the work-energy equation to both particles as:                                                           | M1    | Must include at least 5 relevant terms only and tension |  |
| $0.8 \times 1 + 0.5g \sin 30 = \frac{1}{2} \times 0.5 \times 0.36 + T \times 1$                                |       | terms in both. $[T=3.21]$                               |  |
| and $T \times 1 = \frac{1}{2}m \times 0.36 + mg\sin 45 + 0.5$                                                  |       | All terms dimensionally correct.                        |  |
| $0.8 \times 1 + 0.5g\sin 30 - \frac{1}{2} \times 0.5 \times 0.36 = \frac{1}{2}m \times 0.36 + mg\sin 45 + 0.5$ | A1    |                                                         |  |
| m = 0.374                                                                                                      | A1    |                                                         |  |

5

Satprep.c

March 2021



# Cambridge International AS & A Level

### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/43 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

### GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

### GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

### GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

| Ma | athematics Specific Marking Principles                                             |
|----|------------------------------------------------------------------------------------|
| 1  | Interest a nonticular mothed has been aposified in the substitute full montes more |

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.



### **Mark Scheme Notes**

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

### **Types of mark**

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
  - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT ٠ above).
  - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 • decimal place for angles in degrees).
  - The total number of marks available for each question is shown at the bottom of the Marks column. ٠
  - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. ٠
  - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

### Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To



| Question | Answer                  | Marks | Guidance                                                                                                     |
|----------|-------------------------|-------|--------------------------------------------------------------------------------------------------------------|
| 1(a)     | v = 30                  | B1    | Use $v = u + at$ (or equivalent <i>suvat</i> ) with $v = 0$ , $a = -g$ and $t = 3$                           |
|          |                         | 1     |                                                                                                              |
| 1(b)     | $[0 = 30^2 + 2(-10)s]$  | M1    | Using $v^2 = u^2 + 2as$ with $a = -g$ , $v = 0$ and $u =$ value from 1(a), or equivalent <i>suvat</i> method |
|          | Greatest height is 45 m | A1    |                                                                                                              |
|          | 6                       | 2     |                                                                                                              |
|          |                         |       |                                                                                                              |

| Question | Answer                                                              | Marks      | Guidance                            |
|----------|---------------------------------------------------------------------|------------|-------------------------------------|
| 2(a)     | $WD = 40 \times 158 = 600 \text{ J}$                                | B1         |                                     |
|          |                                                                     | 1          |                                     |
| 2(b)     | $[PE = 5 \times 10 \times 15 \sin 20]$                              | <b>M</b> 1 | Attempt PE gain                     |
|          | 257 J (256.5151 J)                                                  | A1         |                                     |
|          |                                                                     | 2          |                                     |
| 2(c)     | $WD = 40 \times 15 + 5 \times 10 \times 15 \sin 20 = 857 \text{ J}$ | B1 FT      | FT 600 + 'PE'(> 0) from <b>2(b)</b> |
|          | V.Sato                                                              | ed         |                                     |
|          | arb.                                                                |            |                                     |

9709/43

| Question | Answer                                   | Marks      | Guidance           |
|----------|------------------------------------------|------------|--------------------|
| 3(a)     | Fr • 30N                                 | B1         | 4 forces, labelled |
|          | 4g                                       | R          |                    |
|          | 9                                        | 1          |                    |
| 3(b)     | For resolving horizontally or vertically | M1         |                    |
|          | $30 \cos 24 = F$ (F = 27.406)            | A1         |                    |
|          | $R + 30 \cos 24 = 40$ ( $R = 27.797$ )   | A1         |                    |
|          | $\mu = \frac{30\cos 24}{40 - 30\sin 24}$ | <b>M</b> 1 | Using $\mu = F/R$  |
|          | $\mu = 0.986  (0.9859)$                  | A1         |                    |
|          | Z                                        | 5          | .5                 |
| Satprep. |                                          |            |                    |

| Question | Answer                                                                                                                                                                                                                               | Marks | Guidance                               |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------|
| 4        | For using conservation of momentum (either case)                                                                                                                                                                                     | M1    |                                        |
|          | $6 \times 4 = 3m + 4 \times 1.5$ or<br>$6 \times 4 = 3m - 4 \times 1.5$                                                                                                                                                              | A1    |                                        |
|          | m = 6 and $m = 10$                                                                                                                                                                                                                   | A1    |                                        |
|          | $KE_A initial = \frac{1}{2} \times 4 \times 6^2  (72 \text{ J})$                                                                                                                                                                     | B1 FT | $KE = \frac{1}{2} \times m \times v^2$ |
|          | or KE <sub>A</sub> after = $\frac{1}{2} \times 4 \times 1.5^2$ (4.5 J)                                                                                                                                                               |       | F1 4.5 <i>m</i> for $KE_B$             |
|          | or KE <sub>B</sub> after = $\frac{1}{2} \times 6 \times 3^2$ (27 J)                                                                                                                                                                  |       |                                        |
|          | or KE <sub>B</sub> after = $\frac{1}{2} \times 10 \times 3^2$ (45 J)                                                                                                                                                                 |       |                                        |
|          | KE loss = $[\frac{1}{2} \times 4 \times 6^2 - \frac{1}{2} \times 4 \times 1.5^2 - \frac{1}{2} \times 6 \times 3^2]$<br>or $[\frac{1}{2} \times 4 \times 6^2 - \frac{1}{2} \times 4 \times 1.5^2 - \frac{1}{2} \times 10 \times 3^2]$ | M1    | Uses KE loss = KE before – KE after    |
|          | Loss of KE = 40.5 J or 22.5 J                                                                                                                                                                                                        | A1    |                                        |
|          |                                                                                                                                                                                                                                      | 6     |                                        |
|          |                                                                                                                                                                                                                                      |       |                                        |

| Question | Answer                                                         | Marks | Guidance                                            |
|----------|----------------------------------------------------------------|-------|-----------------------------------------------------|
| 5(a)     | $4t^2 - 20t + 21 = (2t - 3)(2t - 7) = 0 \rightarrow t = \dots$ | M1    | For setting $v = 0$ and attempting to solve $v = 0$ |
|          | t = 1.5 and $t = 3.5$                                          | A1    |                                                     |
|          |                                                                | 2     |                                                     |
| 5(b)     | $a = 8t - 20, a(0) = \dots$                                    | M1    | For using $a = dv/dt$ and evaluating for $t = 0$    |
|          | a = -20                                                        | A1    |                                                     |
|          |                                                                | 2     |                                                     |

| Question | Answer                                                                                    | Marks | Guidance                                                                                                                                                             |
|----------|-------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5(c)     | $8t - 20 = 0, t = 2.5 \rightarrow v = \dots$ or<br>$v = (2t - 5)^2 - 4, v_{\min} = \dots$ | M1    | For setting $a = 0$ , attempting to solve for <i>t</i> and substituting to obtain <i>v</i> , or for attempting to complete the square on the expression for <i>v</i> |
|          | $v_{\rm min} = -4 \ \rm ms^{-1}$                                                          | A1    |                                                                                                                                                                      |
|          |                                                                                           | 2     |                                                                                                                                                                      |
| 5(d)     | $s = \int (4t^2 - 20t + 21)  \mathrm{d}t$                                                 | M1    | For using $s = \int v dt$ and attempting integration                                                                                                                 |
|          | $s = \frac{4}{3}t^3 - 10t^2 + 21t(+c)$                                                    | A1    | Correct integration                                                                                                                                                  |
|          | $\frac{49}{6} - \frac{27}{2}$                                                             | M1    | Substitute their limits (1.5 and 3.5) into <i>their</i> integral                                                                                                     |
|          | Distance = $\frac{16}{3}$ = 5.33 m                                                        | A1    |                                                                                                                                                                      |
|          |                                                                                           | 4     |                                                                                                                                                                      |

| Question | Answer                                   | Marks | Guidance                                 |
|----------|------------------------------------------|-------|------------------------------------------|
| 6(a)(i)  | $P = 650 \times 25$                      | M1    | Use $P = Fv$ with $F =$ total resistance |
|          | $P = 16250\mathrm{W} = 16.25\mathrm{kW}$ | A1    | Accept 16 300 W or 16.3 kW (3sf)         |
|          |                                          | 2     |                                          |

| Question | Answer                                                                                                                                        | Marks | Guidance                                 |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------|
| 6(a)(ii) | $DF = \frac{39000}{25} \ (= 1560)$                                                                                                            | B1    | For using $DF = P/v$                     |
|          | For applying Newton's $2^{nd}$ law to the system to form an equation in $a$ , or to the caravan or the car to form an equation in $T$ and $a$ | M1    | $[1560 - 650 = 2400 \times a]$           |
|          | 1560 - 650 = 2400a<br>T - 250 = 800a<br>1560 - 400 - T = 1600a                                                                                | A1    | Two correct equations                    |
|          | $\left[a = \frac{(1560 - 650)}{2400}\right]$                                                                                                  | M1    | For solving for <i>a</i> or for <i>T</i> |
|          | $a = 0.379 \text{ ms}^{-2} (0.37916)$<br>T = 553  N (553.33)                                                                                  | A1    |                                          |
|          |                                                                                                                                               | 5     |                                          |
| 6(b)     | $[DF = 650 + 2400 \times 10 \times 0.05]$                                                                                                     | M1    | Newton's 2 <sup>nd</sup> law             |
|          | $32\ 500 = (650 + 24\ 000 \times 0.05)v$                                                                                                      | M1    | For using $P = Fv$                       |
|          | v = 17.6                                                                                                                                      | A1    | Allow $v = \frac{650}{37}$               |
|          | · satpi                                                                                                                                       | 63    |                                          |

October/November 2020

| Question | Answer                                                                                             | Marks | Guidance                                                                                                                        |
|----------|----------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------|
| 7(a)     | $[T = 2g \sin 10]$ or $[3g \sin 20 = F + T]$                                                       | M1    | Resolve forces parallel to plane $P$ for particle $A$ or parallel to plane $Q$ for Particle $B$                                 |
|          | $T = 2g \sin 10$ and $3g \sin 20 = F + T$                                                          | A1    |                                                                                                                                 |
|          | $R = 30 \cos 20 (= 28.19)$                                                                         | B1    | Resolving forces perpendicular to plane $Q$ for particle $B$                                                                    |
|          | $\mu = \frac{3g\sin 20 - 2g\sin 10}{30\cos 20}$                                                    | M1    | Using $\mu = F/R$                                                                                                               |
|          | $\mu = 0.241 (=0.2407)$                                                                            | A1    |                                                                                                                                 |
|          |                                                                                                    | 5     |                                                                                                                                 |
| 7(b)     | $3g \sin 20 - T = 3a \text{ or } T - 2g \sin 10 = 2a$<br>or System: $3g \sin 20 - 2g \sin 10 = 5a$ | M1    | For applying Newton's second law to either <i>A</i> or to <i>B</i> or to the system                                             |
|          | $a = \frac{(3g\sin 20 - 2g\sin 10)}{5}$                                                            | M1    | For applying Newton's second law to the second particle and/or solving for $a$                                                  |
|          | <i>a</i> = 1.3575                                                                                  | A1    |                                                                                                                                 |
|          | $h_1 = x \sin 20 h_2 = x \sin 10 x \sin 20 + x \sin 10 = 1$                                        | B1    | Using expressions for height change of each particle after each moves a distance $x$ along the plane, to obtain equation in $x$ |
|          | $\frac{1}{\sin 10 + \sin 20} = 0 + \frac{1}{2} \times 1.3575 \times t^2$                           | M1    | For using $s = ut + \frac{1}{2}at^2$ for either particle with $s = x$ , $u = 0$ and using <i>their a</i> (= 1.3575)             |
|          | <i>t</i> = 1.69                                                                                    | A1    |                                                                                                                                 |
|          |                                                                                                    | 6     |                                                                                                                                 |



# Cambridge International AS & A Level

### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/42 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

### GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

### GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

г

| Mathematics Specific Marking Principles |                                                                                                                                                                                                                                               |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1                                       | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.                                     |  |  |  |
| 2                                       | Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.                                                            |  |  |  |
| 3                                       | Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.                                                                                                               |  |  |  |
| 4                                       | Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).                                                                                            |  |  |  |
| 5                                       | Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. |  |  |  |
| 6                                       | Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.                                                                                              |  |  |  |


### **Mark Scheme Notes**

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

### **Types of mark**

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
  - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT • above).
  - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 ٠ decimal place for angles in degrees).
  - The total number of marks available for each question is shown at the bottom of the Marks column.
  - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. ٠
  - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. ٠

9709/42

### Cambridge International AS & A Level – Mark Scheme PUBLISHED

### Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                                             | Mark  | Guidance                                |
|----------|----------------------------------------------------|-------|-----------------------------------------|
| 1(a)     | $Momentum = 0.2 \times 2 = 0.4 \text{ kg ms}^{-1}$ | B1    |                                         |
|          |                                                    | 1     |                                         |
| 1(b)     | $0.4 = 0.2 \times 0.3 + 0.5v$                      | M1    | Apply conservation of momentum, 3 terms |
|          | $v = 0.68 \text{ ms}^{-1}$                         | A1 FT | FT on answer in 1(a)                    |
|          | 6                                                  | 2     |                                         |
|          |                                                    |       |                                         |

| Question | Answer                                            | Mark       | Guidance                                                   |
|----------|---------------------------------------------------|------------|------------------------------------------------------------|
| 2(a)     | $DF - 650 = 1800 \times 0.5$ [DF = 1550]          | M1         | Apply Newton's second law, 3 terms                         |
|          | $\frac{P}{20} - 650 = 1800 \times 0.5$            | <b>B</b> 1 |                                                            |
|          | [Power $P = 1550 \times 20 =$ ] 31 000 W or 31 kW | A1         |                                                            |
|          |                                                   | 3          |                                                            |
| 2(b)     | $\frac{31000}{v} - 650 = 0$                       | M1         | Use $P = Fv$ with $F = 650$                                |
|          | $v = 47.7 \text{ ms}^{-1}$                        | A1 FT      | FT on <i>their</i> $P \neq 13\ 000$ Allow $\frac{620}{13}$ |
|          |                                                   | 2          |                                                            |

| Question | Answer                                                                                     | Mark | Guidance                                         |
|----------|--------------------------------------------------------------------------------------------|------|--------------------------------------------------|
| 3        | $20\cos 60 = T\cos 45$                                                                     | M1   | Resolve forces horizontally, 2 terms             |
|          | $T = 10\sqrt{2}$ or $T = 14.1$                                                             | A1   |                                                  |
|          | $20\sin 60 + T\sin 45 = mg \text{ or } W$                                                  | M1   | Resolve forces vertically, 3 terms               |
|          | $20\sin 60 + T\sin 45 = mg$                                                                | A1   |                                                  |
|          | $m = 2.73 [= \sqrt{3} + 1]$                                                                | A1   |                                                  |
|          | Alternative method for question 3                                                          |      |                                                  |
|          | $\left[\frac{T}{\sin 150} = \frac{mg \text{ or } W}{\sin 75} = \frac{20}{\sin 135}\right]$ | M1   | Attempt at one pair of terms using Lami's Method |
|          | $\frac{T}{\sin 150} = \frac{mg}{\sin 75} = \frac{20}{\sin 135}$                            | A1   | All terms correct in Lami's Method               |
|          | Attempt to solve for either <i>T</i> or <i>m</i> or <i>W</i>                               | M1   |                                                  |
|          | $T = 10\sqrt{2} \text{ or } T = 14.1$                                                      | A1   |                                                  |
|          | $m = 2.73 [= \sqrt{3} + 1]$                                                                | A1   | .5                                               |
|          | 24                                                                                         | 5    | <u>_</u> O'                                      |

Satprep

| Question | Answer                                                                                    | Mark | Guidance                                                                                                            |
|----------|-------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------|
| 3        | Alternative method for question 3                                                         |      |                                                                                                                     |
|          | $\left[\frac{T}{\sin 30} = \frac{mg \text{ or } W}{\sin 105} = \frac{20}{\sin 45}\right]$ | M1   | Attempt the triangle of forces method and state one equation which involves any two of the forces $T$ , $m$ and 20. |
|          | $\frac{T}{\sin 30} = \frac{mg}{\sin 105} = \frac{20}{\sin 45}$                            | A1   | All correct                                                                                                         |
|          | Attempt to solve for either <i>T</i> or <i>m</i> or <i>W</i>                              | M1   |                                                                                                                     |
|          | $T = 10\sqrt{2}$ or $T = 14.1$                                                            | A1   |                                                                                                                     |
|          | $m = 2.73 [= \sqrt{3} + 1]$                                                               | A1   |                                                                                                                     |
|          |                                                                                           | 5    |                                                                                                                     |



| Question | Answer                                                                                                                                                                                                                    | Mark  | Guidance                                                                                                                                                                                                                                                                        |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4(a)     | $\left[2 = \frac{20}{T}\right] \to T = 10$                                                                                                                                                                                | B1    |                                                                                                                                                                                                                                                                                 |
|          |                                                                                                                                                                                                                           | 1     |                                                                                                                                                                                                                                                                                 |
| 4(b)     | Distance travelled before constant speed =<br>$\frac{1}{2} \times 10 \times 20 + \frac{1}{2} \times (20 + V) \times 5$<br>$\frac{1}{2} \times 10 \times 20 + \frac{1}{2} \times (20 - V) \times 5 + 5V$<br>[= 150 + 2.5V] | B1 FT | May be implied if seen within total distance<br>FT on <i>T</i> value from <b>4(a)</b>                                                                                                                                                                                           |
|          | Distance travelled after constant speed<br>= $27.5V + \frac{1}{2} \times 5V [= 30V]$                                                                                                                                      | B1    | May be implied if seen within total distance                                                                                                                                                                                                                                    |
|          | $\frac{\frac{1}{2} \times 10 \times 20 + \frac{1}{2} \times (20 + V) \times 5}{\frac{1}{2} \times 10 \times 20 + \frac{1}{2} \times (20 + V) \times 5 + 27.5V + \frac{1}{2} \times 5V}$                                   | M1    | For attempting to use $\frac{1}{2}$ or $\frac{1}{3}$ correctly and for obtaining an equation for <i>V</i> which includes all parts of the journey.<br>or $\frac{1}{2} \times 10 \times 20 + \frac{1}{2} \times (20 + V) \times 5 = \frac{1}{2} [27.5V + \frac{1}{2} \times 5V]$ |
|          | V = 12                                                                                                                                                                                                                    | A1    |                                                                                                                                                                                                                                                                                 |
|          |                                                                                                                                                                                                                           | 4     |                                                                                                                                                                                                                                                                                 |

| Question | Answer                                                                                                           | Mark | Guidance                                                                                                                                                                                                                                             |
|----------|------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5(a)     | 40 - gt = 0  [t = 4]                                                                                             | M1   | Using $v = u + at$ with $u = 40$ , $v = 0$ and $a = -g$ to find the time taken to reach the highest point.                                                                                                                                           |
|          | Time to top of building = $4 - \frac{1}{2}(4) = 2$                                                               | A1   | May see $t = 4 + 2 = 6$ for A1                                                                                                                                                                                                                       |
|          | $h = 40 \times 2 - \frac{1}{2} \times 10 \times 2^{2}$<br>$h = 40 \times 6 - \frac{1}{2} \times 10 \times 6^{2}$ | M1   | Using $s = ut + \frac{1}{2} at^2$ with $u = 40$ , $a = -g$ and $t = 2$ or $t = 6$ to set up an equation which enables the value of $h$ , the height of the building, to be found.                                                                    |
|          | <i>h</i> = 60                                                                                                    | A1   |                                                                                                                                                                                                                                                      |
|          | Alternative method for question 5(a)                                                                             |      |                                                                                                                                                                                                                                                      |
|          | $0 = 40^2 + 2 \times (-10) \times H$                                                                             | M1   | For using $v^2 = u^2 + 2as$ with $u = 40$ , $v = 0$ and $a = -g$ in order to find <i>H</i> , the greatest height achieved                                                                                                                            |
|          | <i>H</i> = 80                                                                                                    | A1   |                                                                                                                                                                                                                                                      |
|          | $s = \frac{1}{2} \times 10 \times 2^2$                                                                           | M1   | Use either $s = vt - \frac{1}{2} at^2$ with $v = 0$ , $a = -g$ , $t = 2$ or use $s = ut + \frac{1}{2} at^2$ with $u = 0$ , $a = g$ , $t = 2$ to find the distance travelled either in the final 2 seconds going up or the first 2 seconds going down |
|          | s = 20 and so $h = 80 - 20 = 60$                                                                                 | A1   | 2.                                                                                                                                                                                                                                                   |
|          | 22                                                                                                               | 4    | 0                                                                                                                                                                                                                                                    |

| Question | Answer                                                                                                | Mark | Guidance                                                                                                                                            |
|----------|-------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 5(b)     | Height of first particle above ground = $40t - \frac{1}{2} \times 10t^2$                              | B1   |                                                                                                                                                     |
|          | Height of second particle above top of building<br>= $20(t-1) - \frac{1}{2} \times 10 \times (t-1)^2$ | B1   |                                                                                                                                                     |
|          | $60 + 20(t-1) - \frac{1}{2} \times 10 \times (t-1)^2 = 40t - \frac{1}{2} \times 10t^2$                | M1   | Set up an equation involving expressions for displacement to<br>enable the time at which the particles reach the same height to be<br>found.        |
|          | t = 3.5 seconds                                                                                       | A1   |                                                                                                                                                     |
|          | Alternative method for question 5(b)                                                                  |      |                                                                                                                                                     |
|          | $h_1 = 40 \times 1 - 5 \times 1^2$ [= 35] and $v_1 = 40 - 10 \times 1$ [= 30]                         | B1   | Distance travelled and speed of first particle after 1 second                                                                                       |
|          | $H_1 = 30T - 5 \times T^2, H_2 = 20T - 5 \times T^2$                                                  | B1   | Distance travelled by both particles, $T$ seconds after the second particle is projected.                                                           |
|          | $30T - 5 \times T^2 = 20T - 5 \times T^2 + (60 - 35)$                                                 | M1   | Set up an equation in <i>T</i> involving expressions for displacement to enable the time at which the particles are at the same height to be found. |
|          | T = 2.5 and so time to meet $= 2.5 + 1 = 3.5$ seconds                                                 | A1   | S                                                                                                                                                   |
|          | 2                                                                                                     | 4    | -0                                                                                                                                                  |
|          | v.satp                                                                                                | rep  |                                                                                                                                                     |

| Question | Answer                                                                          | Mark | Guidance                                                                                                      |
|----------|---------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------|
| 6(a)     | $R = 5g\cos 30  [= 25\sqrt{3}]$                                                 | B1   |                                                                                                               |
|          | $40 - 5g\sin 30 - F > 0$                                                        | M1   | State that the net force up the plane is positive, 3 terms                                                    |
|          | $F = \mu \times 5g \cos 30$                                                     | M1   | For using $F = \mu R$ with R as a component of 5g to obtain an equality/inequality in $\mu$ only with 3 terms |
|          | $\mu < \frac{1}{5}\sqrt{3}$                                                     | A1   | AG                                                                                                            |
|          | Alternative scheme for question 6(a)                                            |      |                                                                                                               |
|          | $R = 5g\cos 30 [= 25\sqrt{3}]$                                                  | B1   |                                                                                                               |
|          | $40 - 5g\sin 30 - F = 5a$                                                       | M1   | Acceleration $a > 0$                                                                                          |
|          | $F = \mu \times 5g \cos 30$<br>[40 - 5g sin 30 - $\mu \times 5g \cos 30 = 5a$ ] | M1   | For using $F = \mu R$ with R as a component of 5g to obtain an equality<br>in $\mu$ and a                     |
|          | $\mu < \frac{1}{5}\sqrt{3}$                                                     | A1   | AG. From $\mu = \frac{1}{5}\sqrt{3} = \frac{a}{g}\cos 30$ with $a > 0$                                        |
|          |                                                                                 | 4    | 12                                                                                                            |
|          | 2. satp                                                                         | ep   | .0.                                                                                                           |

| Question | Answer                                                                                                             | Mark       | Guidance                                                   |
|----------|--------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------|
| 6(b)     | Attempt to resolve forces parallel to or perpendicular to the inclined plane, 3 relevant terms in either direction | M1         |                                                            |
|          | $R = 5g\cos 30 + 40\sin 30 [= 20 + 25\sqrt{3} = 63.3]$                                                             | A1         |                                                            |
|          | $F = 40\cos 30 - 5g\sin 30 \ [= 20\sqrt{3} - 25 = 9.64]$                                                           | A1         |                                                            |
|          | $\mu \ge 0.152$                                                                                                    | B1         | AG. Using $F \leq \mu R$                                   |
|          | Alternative method for question 6(b)                                                                               |            |                                                            |
|          | Attempt to resolve forces horizontally or vertically with 3 relevant terms in either direction                     | M1         |                                                            |
|          | $40 = R\sin 30 + F\cos 30 \left[40 = \frac{1}{2}R + \frac{\sqrt{3}}{2}F\right]$                                    | A1         |                                                            |
|          | $5g = R\cos 30 - F\sin 30 \ [5g = \sqrt{3/2R} - \frac{1}{2}F]$                                                     | A1         |                                                            |
|          | $\mu \ge 0.152$                                                                                                    | <b>B</b> 1 | AG. Solve for <i>R</i> and <i>F</i> and use $F \leq \mu R$ |
|          |                                                                                                                    |            |                                                            |

| Question | Answer                   | Mark | Guidance                                                     |
|----------|--------------------------|------|--------------------------------------------------------------|
| 7(a)     | $\int 0.1t^{3/2}dt$      | *M1  | For integrating <i>a</i>                                     |
|          | $v = 0.04t^{5/2} + 1.72$ | A1   | C <sup>O</sup>                                               |
|          | $0.04t^{5/2} + 1.72 = 3$ | DM1  | For attempting to solve the equation $v = 3$ , to obtain $t$ |
|          | t = 4                    | A1   |                                                              |
|          |                          | 4    |                                                              |

| Question | Answer                                    | Mark | Guidance                                                   |
|----------|-------------------------------------------|------|------------------------------------------------------------|
| 7(b)     | $\int (0.04t^{5/2} + 1.72) dt$            | *M1  | For integrating $v$ which itself has come from integration |
|          | $[s = \frac{2}{175}t^{7/2} + 1.72t(+C')]$ |      |                                                            |
|          | For using correct limits correctly        | DM1  |                                                            |
|          | Displacement when $t = 2$ is 3.57 m       | A1   |                                                            |
|          | 6                                         | 3    |                                                            |

| Question | Answer                                                                              | Mark | Guidance                                                                                                                           |
|----------|-------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------|
| 8(a)     | For A: $T = 0.3a$<br>For B: $3.5 + 0.5g \sin 30 - T = 0.5a$                         | M1   | For applying Newton's $2^{nd}$ law for either particle <i>A</i> or to particle <i>B</i> or to the system. Correct number of terms. |
|          | System: $5.5 + 0.5g \sin 50 - (0.5 + 0.5)a$                                         | A1   | Two correct equations                                                                                                              |
|          | For solving either for <i>T</i> or for <i>a</i>                                     | M1   |                                                                                                                                    |
|          | $a = 7.5 \text{ ms}^{-2}$                                                           | A1   |                                                                                                                                    |
|          | T = 2.25  N                                                                         | A1   | i'i                                                                                                                                |
|          | 24                                                                                  | 5    | 0.                                                                                                                                 |
| 8(b)     | 0.5g sin 30 × 0.6 [= 1.5]                                                           | B1   | PE loss by B                                                                                                                       |
|          | Apply the work-energy equation to the system                                        | M1   | 5 relevant terms, their PE for 0.5 kg, WD by 3.5 N, WD against friction and two relevant KE terms.                                 |
|          | $0.5g\sin 30 \times 0.6 + 3.5 \times 0.6 = \frac{1}{2} \times 0.8 \times v^2 + 1.1$ | A1   |                                                                                                                                    |
|          | $v = 2.5 \text{ ms}^{-1}$                                                           | A1   |                                                                                                                                    |
|          |                                                                                     | 4    |                                                                                                                                    |



## Cambridge International AS & A Level

#### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/41 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

### GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

### GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

| Ma | Mathematics Specific Marking Principles                                                                                                                                                                                                       |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1  | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.                                     |  |  |  |  |  |
| 2  | Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.                                                            |  |  |  |  |  |
| 3  | Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.                                                                                                               |  |  |  |  |  |
| 4  | Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).                                                                                            |  |  |  |  |  |
| 5  | Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. |  |  |  |  |  |
| 6  | Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.                                                                                              |  |  |  |  |  |



### **Mark Scheme Notes**

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

### **Types of mark**

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
  - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT • above).
  - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 ٠ decimal place for angles in degrees).
  - The total number of marks available for each question is shown at the bottom of the Marks column.
  - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. ٠
  - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. ٠

9709/41

### Cambridge International AS & A Level – Mark Scheme PUBLISHED

### Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

9709/41

| Question | Answer                                                                                  | Marks | Guidance                                        |  |  |
|----------|-----------------------------------------------------------------------------------------|-------|-------------------------------------------------|--|--|
| 1(a)     | $6 \times 2.5 = 2.5v + 5v$                                                              | M1    | Apply conservation of momentum, 3 terms implied |  |  |
|          | $v = 2 \text{ ms}^{-1}$                                                                 | A1    |                                                 |  |  |
|          |                                                                                         | 2     |                                                 |  |  |
| 1(b)     | Use KE = $\frac{1}{2} mv^2$ either before or after collision                            | M1    | Allow this for either particle                  |  |  |
|          | $KE(before) = 0.5 \times 2.5 \times 6^{2}$<br>$KE(after) = 0.5 \times 7.5 \times 2^{2}$ | A1 FT | Both correct FT on v                            |  |  |
|          | Loss of $KE = 30 J$                                                                     | A1    |                                                 |  |  |
|          |                                                                                         | 3     |                                                 |  |  |
|          |                                                                                         |       |                                                 |  |  |

| Question | Answer                            | Marks | Guidance                                  |
|----------|-----------------------------------|-------|-------------------------------------------|
| 2(a)     | $P = 350 \times 20$               | M1    | Using $P = Fv$                            |
|          | P = 7  kW                         | A1    |                                           |
|          |                                   | 2     |                                           |
| 2(b)     | $15000 = DF \times 20$ [DF = 750] | B1    | Using $P = Fv$                            |
|          | DF - 350 = 1400a                  | M1    | Use Newton's 2 <sup>nd</sup> law, 3 terms |
|          | $a = \frac{2}{7} \text{ ms}^{-2}$ | A1    | a = 0.286                                 |
|          |                                   | 3     |                                           |

| Question | Answer                                                   | Marks | Guidance                                       |
|----------|----------------------------------------------------------|-------|------------------------------------------------|
| 3        | Resolve forces either horizontally or vertically         | M1    | Correct number of relevant terms               |
|          | $P\cos\theta = 12 + 8\cos 30 - 10\cos 45 \ [= 11.857]$   | A1    |                                                |
|          | $P\sin\theta = 10\sin 45 - 8\sin 30 \ [= 3.071]$         | A1    |                                                |
|          | $P = \sqrt{\left(11.857^2 + 3.071^2\right)}$             | M1    | OE. Use of correct method for finding <i>P</i> |
|          | $\theta = \tan^{-1} \left( \frac{3.071}{11.857} \right)$ | M1    | OE. Use of correct method for finding $\theta$ |
|          | $P = 12.2$ and $\theta = 14.5$                           | A1    | Both correct                                   |
|          |                                                          | 6     |                                                |

| Question | Answer                               | Marks | Guidance                                  |
|----------|--------------------------------------|-------|-------------------------------------------|
| 4        | $[v = 3t^2 - 18t (+ C)]$             | *M1   | Attempt to integrate a                    |
|          | $[s = t^3 - 9t^2 (+C)]$              | #M1   | Attempt to integrate v                    |
|          | $v = 3t^2 - 18t$<br>$s = t^3 - 9t^2$ | A1    | Both integrals correct                    |
|          | $v = 0, 3t^2 - 18t = 0$ [t = 6]      | *DM1  | Attempt to find <i>t</i> when $v = 0$     |
|          | $s = 6^3 - 9 \times 6^2 - [0]$       | #DM1  | Substitute limits correctly into <i>s</i> |
|          | <i>s</i> = 108 m                     | A1    | Answer must be positive                   |
|          |                                      | 6     |                                           |

| Question | Answer                                                 | Marks | Guidance                                                                                      |
|----------|--------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------|
| 5(a)     | 0.8g - T = 0.8a,  T - 0.2g = 0.2a,                     | M1    | Apply Newton's 2 <sup>nd</sup> law to either particle or to the system                        |
|          | For system: $0.8g - 0.2g = (0.8 + 0.2)a$               | A1    | Any 2 correct equations                                                                       |
|          | Attempt to solve for either <i>a</i> or <i>T</i>       | M1    |                                                                                               |
|          | $a = 6 \text{ ms}^{-2} \text{ and } T = 3.2 \text{ N}$ | A1    | AG. Both correct                                                                              |
|          |                                                        | 4     |                                                                                               |
| 5(b)     | $v^2 = 2 \times 6 \times 0.5$                          | M1    | Attempt to find v or $v^2$ as 0.8 kg particle reaches the ground using<br>a from <b>5(a)</b>  |
|          | 0 = 6 - 20s                                            | M1    | Attempt to find the extra height reached by 0.2 kg particle using $v^2$ from previous M1 mark |
|          | Greatest height = $0.5 + 0.5 + 0.3 = 1.3$ m            | A1    |                                                                                               |
|          |                                                        | 3     |                                                                                               |

| Question | Answer                                                                                                                                                                               | Marks      | Guidance                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------|
| 6(a)     | KE (final) = $\frac{1}{2} \times 1500 \times 20^2 + \frac{1}{2} \times 750 \times 20^2$<br>KE (initial) = $\frac{1}{2} \times 1500 \times 30^2 + \frac{1}{2} \times 750 \times 30^2$ | B1         | Use KE = $\frac{1}{2}mv^2$ for any two of the four elements |
|          | PE gain = $2250 \times 10 \times 800 \times 0.08$                                                                                                                                    | B1         |                                                             |
|          | WD against friction = $600 \times 800$                                                                                                                                               | <b>B</b> 1 |                                                             |
|          | $\frac{1}{2} \times 2250 \times 30^2 + \text{DF} \times 800 = 600 \times 800$<br>+ $\frac{1}{2} \times 2250 \times 20^2 + 2250 \times 10 \times 800 \times 0.08$                     | M1         | Use energy equation.                                        |
|          | DF = 1700 N                                                                                                                                                                          | A1         | DF = 1696.875 N                                             |
|          |                                                                                                                                                                                      | 5          |                                                             |

| Question | Answer                                                   | Marks | Guidance                                                                                |
|----------|----------------------------------------------------------|-------|-----------------------------------------------------------------------------------------|
| 6(b)     | 2400 - 600 = 2250a<br>or                                 | M1    | Apply Newton's second law to the system or to each of the car<br>and trailer separately |
|          | T - 200 = 750a and $2400 - 400 - T = 1500a$              | A1    | Two correct equations                                                                   |
|          | Attempting to solve for <i>a</i> or for <i>T</i>         | M1    |                                                                                         |
|          | $T = 800 \text{ N} \text{ and } a = 0.8 \text{ ms}^{-2}$ | A1    |                                                                                         |
|          |                                                          | 4     |                                                                                         |

| Question | Answer                                                               | Mark | Guidance                                                                   |
|----------|----------------------------------------------------------------------|------|----------------------------------------------------------------------------|
| 7(a)     | $0.2 \times 10 \times 0.5 = \frac{1}{2} \times 0.2 \times v_{p}^{2}$ | M1   | Attempt PE or KE for motion from A to B                                    |
|          | 2                                                                    | M1   | Attempt PE loss = KE gain from $A$ to $B$                                  |
|          | $v_B^2 = 10$                                                         | A1   |                                                                            |
|          | Alternative method for the first 3 marks                             |      |                                                                            |
|          | $0.2 \times 10 \times \sin 30 = 0.2a, a = 5$                         | (M1) | Attempt to find acceleration <i>a</i> for motion from <i>A</i> to <i>B</i> |
|          | $v_B^2 = 0^2 + 2 \times 5 \times 1$                                  | (M1) | Use $v^2 = u^2 + 2as$ in attempt to find speed at <i>B</i>                 |
|          | $v_B^2 = 10$                                                         | (A1) |                                                                            |

| Question | Answer                                                                                     | Marks       | Guidance                                                                                                                                        |
|----------|--------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(a)     | THEN, either this method for the next 5 marks                                              |             |                                                                                                                                                 |
|          | $R = 0.2 \times 10 \times \cos 30 = \sqrt{3}$                                              | B1          |                                                                                                                                                 |
|          | $F = \frac{\sqrt{3}}{2} \times 0.2 \times \frac{\sqrt{3}}{2} \times 10 = 1.5$              | M1          | For using $F = \mu R$ where R must be a component of 0.2g                                                                                       |
|          | PE loss = $0.2 \times 10 \times 0.5 = 1$<br>WD against $F = 1.5 \times 1$                  | M1          | Attempt to find either PE loss or WD against $F$ from $B$ to $C$                                                                                |
|          | $\frac{1}{2}0.2 \times 10 + 0.2 \times 10 \times 0.5 = 1.5 \times 1 + \frac{1}{2}0.2v_C^2$ | M1          | Apply work-energy equation for motion from <i>B</i> to <i>C</i> as<br>KE at $B$ + PE at $B$ = WD against $F$ + KE at <i>C</i> with $v_B \neq 0$ |
|          | $v_c = \sqrt{5} = 2.24 \text{ ms}^{-1}$                                                    | A1          |                                                                                                                                                 |
|          | OR, this method for the next 5 marks                                                       |             |                                                                                                                                                 |
|          | $R = 0.2 \times 10 \times \cos 30 = \sqrt{3}$                                              | <b>(B1)</b> |                                                                                                                                                 |
|          | $F = \frac{\sqrt{3}}{2} \times 0.2 \times \frac{\sqrt{3}}{2} \times 10 = 1.5$              | (M1)        | For using $F = \mu R$ where R must be a component of 0.2g                                                                                       |
|          | $0.2 \times 10 \sin 30 - 1.5 = 0.2a$ $a = -2.5$                                            | (M1)        | Attempt to find acceleration $a$ for motion from $B$ to $C$                                                                                     |
|          | $v_c^2 = 10 + 2 \times -2.5 \times 1$                                                      | (M1)        | Use $v^2 = u^2 + 2as$ in attempt to find $v_c$ using $v_B \neq 0$                                                                               |
|          | $v_c = \sqrt{5} = 2.24 \text{ ms}^{-1}$                                                    | (A1)        |                                                                                                                                                 |
|          |                                                                                            | 8           |                                                                                                                                                 |

| Question | Answer                                                                        | Marks | Guidance                                                    |
|----------|-------------------------------------------------------------------------------|-------|-------------------------------------------------------------|
| 7(a)     | Alternative method for question 7(a)                                          |       |                                                             |
|          | $PE loss = 0.2 \times 10 \times 2 \sin 30 = 2$                                | M1    | Attempt PE loss for motion from A to C                      |
|          | KE gain $=\frac{1}{2} \times 0.2 \times v_c^2$                                | M1    | Attempt KE gain for motion from A to C                      |
|          | Both PE loss and KE gain correct                                              | A1    |                                                             |
|          | $R = 0.2 \times 10 \times \cos 30 = \sqrt{3}$                                 | B1    |                                                             |
|          | $F = \frac{\sqrt{3}}{2} \times 0.2 \times \frac{\sqrt{3}}{2} \times 10 = 1.5$ | M1    | For using $F = \mu R$ where R must be a component of $0.2g$ |
|          | WD against $F = 1.5 \times 1$                                                 | M1    | Attempt WD against F                                        |
|          | $0.2 \times 10 \times 1 = 1.5 \times 1 + \frac{1}{2} \times 0.2 \times v_C^2$ | M1    | Attempt work-energy equation for motion from $A$ to $C$     |
|          | $v_c = \sqrt{5} = 2.24 \text{ ms}^{-1}$                                       | A1    |                                                             |
|          | z                                                                             | 8     | .5                                                          |
|          | Satpr                                                                         | ep.   | c <sup>0</sup> .                                            |

October/November 2020

| Question | Answer                                                 | Marks | Guidance                                                                                                                                                          |
|----------|--------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(b)     | 0 = 10 + 2a  [a = -5]                                  | M1    | Attempt to find <i>a</i> for motion from <i>B</i> to <i>C</i> , using $v_B^2 = 10$ , $v_C = 0$                                                                    |
|          | $0.2 \times 10 \times \sin 30 - F = 0.2 \times -5$     | M1    | Attempt Newton's $2^{nd}$ law for motion from <i>B</i> to <i>C</i>                                                                                                |
|          | $2 = \mu \sqrt{3}$                                     | M1    | Use $F = \mu R$ where R is a component of 0.2g but $R = 0.2g$ is M0                                                                                               |
|          | $\mu = \frac{2}{\sqrt{3}}$                             | A1    | Any correct exact form such as $2/3\sqrt{3}$                                                                                                                      |
|          | Alternative method for question 7(b)                   |       |                                                                                                                                                                   |
|          | $PE \text{ loss} = 0.2 \times 10 \times 1 \sin 30 = 1$ | M1    | Attempt PE loss for motion from <i>B</i> to <i>C</i>                                                                                                              |
|          | $1 + \frac{1}{2} \times 0.2 \times 10 = F \times 1$    | M1    | Work-Energy equation for motion from <i>B</i> to <i>C</i> in the form<br>PE at $B + \text{KE}$ at $B = \text{WD}$ against <i>F</i> using $v_B^2 = 10$ , $v_C = 0$ |
|          | $F = \mu \sqrt{3}$                                     | M1    | Use $F = \mu R$ leading to an equation in $\mu$ where <i>R</i> is a component of 0.2 <i>g</i>                                                                     |
|          | $\mu = \frac{2}{\sqrt{3}}$                             | A1    | Any correct exact form such as $2/3\sqrt{3}$                                                                                                                      |

32. satprep.co.

| Question | Answer                                         | Marks | Guidance                                                                       |
|----------|------------------------------------------------|-------|--------------------------------------------------------------------------------|
| 7(b)     | Alternative method for question 7(b)           | -     |                                                                                |
|          | $PE loss = 0.2 \times 10 \times 2 \sin 30 = 2$ | M1    | Attempt PE loss for motion from A to C                                         |
|          | $2 = F \times 1$                               | M1    | Work-Energy equation for motion from <i>B</i> to <i>C</i>                      |
|          | $F = \mu \sqrt{3}$                             | M1    | Use $F = \mu R$ leading to an equation in $\mu$ where R is a component of 0.2g |
|          | $\mu = \frac{2}{\sqrt{3}}$                     | A1    | Any correct exact form such as $^{2}/_{3}\sqrt{3}$                             |
|          |                                                | 4     |                                                                                |





## Cambridge International AS & A Level

#### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/43 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE<sup>™</sup> and Cambridge International A & AS Level components, and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

### GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

### GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

### GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

| 1 | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | marks will be awarded for a scale drawing.                                                                                                                     |

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.



### **Mark Scheme Notes**

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

### Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

9709/43

# Cambridge International AS & A Level – Mark Scheme PUBLISHED

### Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                                            | Marks |
|----------|---------------------------------------------------|-------|
| 1        | Use of conservation of momentum                   | M1    |
|          | $m \times 2 + 0 = m \times (-0.5) + 0.2 \times 1$ | A1    |
|          | m = 0.08                                          | A1    |
|          |                                                   | 3     |

| Question | Answer                                                                 | Marks |
|----------|------------------------------------------------------------------------|-------|
| 2(a)     | $F-900 = 4000 \times 0.5$ (M1 for use of Newton's second law, 3 terms) | M1    |
|          | F=2900 N                                                               | A1    |
|          |                                                                        |       |
| 2(b)     | 900 $\times$ 25<br>(M1 for use of $P = Fv$ with $F =$ resistance only) | M1    |
|          | 22 500 W or 22.5 kW                                                    | A1    |
|          | 3 5                                                                    |       |
|          | Satprep.co.                                                            |       |

| Question | Answer                                                                                | Marks |
|----------|---------------------------------------------------------------------------------------|-------|
| 3        | Attempt to resolve, either direction with correct number of terms                     | M1    |
|          | $F\cos\alpha = 40\sin 30 + 20\sin 60 - 50\sin 45 \ (= 1.965)$                         | A1    |
|          | $F\sin\alpha = 50\cos 45 + 20\cos 60 - 40\cos 30 \ (= 10.714)$                        | A1    |
|          | Method for either F or α                                                              | M1    |
|          | $F = \sqrt{\left(\left(1.965\right)^2 + \left(10.714\right)^2\right)} = 10.9(10.893)$ | A1    |
|          | $\alpha = \tan^{-1}(10.714/1.965) = 79.6 (79.606)$                                    | A1    |
|          |                                                                                       | 6     |

| Question | Answer                                                                           | Marks |
|----------|----------------------------------------------------------------------------------|-------|
| 4(a)     | Trapezium shape with gradient of right-hand side approximately 2 times left side | B1    |
|          |                                                                                  | 1     |
| 4(b)     | Constant velocity = $500/25 = 20 \text{ ms}^{-1}$                                | B1    |
|          | $20^2 = 0 + 2a \times 50$                                                        | M1    |
|          | a=4 Satore?                                                                      | A1    |
|          |                                                                                  | 3     |
| 4(c)     | Time to accelerate = $20/4 = 5$ s                                                | B1    |
|          | Deceleration time = $2.5 \text{ s}$                                              | B1    |
|          | So total time = $5 + 25 + 2.5 = 32.5$ s                                          | B1    |
|          |                                                                                  | 3     |

| Question | Answer                                                      | Marks |
|----------|-------------------------------------------------------------|-------|
| 5(a)     | Decrease in KE = $\frac{1}{2} \times 4 \times (12^2 - 8^2)$ | M1    |
|          | 160 J                                                       | A1    |
|          |                                                             | 2     |
| 5(b)     | PE gained = $4g \times 10\sin 30$ (= 200)                   | B1    |
|          | Total work done = $200 - 160$                               | M1    |
|          | Total work done = 40 J                                      | A1 FT |
|          |                                                             | 3     |
| 5(c)     | $-4g\sin 30 = 4a$                                           | M1    |
|          | <i>a</i> = –5                                               | A1    |
|          | $-10 = 8t - \frac{1}{2} \times 5t^2$                        | M1    |
|          | t = 4.16  s                                                 | A1    |
|          |                                                             | 4     |
|          |                                                             |       |

| Question | Answer                                    | Marks |
|----------|-------------------------------------------|-------|
| 6(a)     | a=4-t<br>(M1 for differentiation)         | M1    |
|          | When $a = 0, t = 4$                       | A1    |
|          | At $t = 4$ , $v = 12.5$                   | A1    |
|          | TPR                                       | 3     |
| 6(b)     | Velocity = 0 when $4.5 + 4t - 0.5t^2 = 0$ | M1    |
|          | t=9 (reject $t=-1$ )                      | A1    |
|          | $\int (4.5 + 4t - 0.5t^2) dt$             | M1    |
|          | $4.5t + 2t^2 - \frac{1}{6}t^3 [+c]$       | A1    |
|          | Apply limits (0 and 9)                    | M1    |
|          | Distance = 81 m                           | A1    |
|          | 2                                         | 6     |
|          | Satprep.co.                               |       |

| Question | Answer                                                                                              | Marks |
|----------|-----------------------------------------------------------------------------------------------------|-------|
| 7(a)     | T - 2mg = 0                                                                                         | B1    |
|          | $3mg \sin \theta - T = 0$ (M1 for resolving forces parallel to the plane and solving for $\theta$ ) | M1    |
|          | $\theta = 41.8 (41.810)$                                                                            | A1    |
|          | TPRA                                                                                                | 3     |
| 7(b)     | $R = 3mg\cos 30$                                                                                    | B1    |
|          | Use of $F = \mu R$                                                                                  | M1    |
|          | $2mg - T = 0.1 \times 2m  \text{OR}  T - 3mg \sin 30 - \mu \times 3mg \cos 30 = 0.1 \times 3m$      | M1    |
|          | $2mg - 0.2m - 3mg\sin 30 - \mu \times 3mg\cos 30 = 0.1 \times 3m$                                   | M1    |
|          | $\mu = \frac{\sqrt{3}}{10}$                                                                         | A1    |
|          |                                                                                                     | 5     |
| 7(c)     | $v^2 = 0 + 2 \times 0.1 \times 0.8$ (v = 0.4)                                                       | M1    |
|          | $-3mg\sin 30 - \mu \times 3mg\cos 30 = 3ma \ (a = -6.5)$                                            | M1    |
|          | 0 = -0.4 - 6.5t                                                                                     | M1    |
|          | t = 0.4/6.5 = 0.0615 s                                                                              | A1    |
|          |                                                                                                     | 4     |



## Cambridge International AS & A Level

#### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/42 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE<sup>™</sup> and Cambridge International A & AS Level components, and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

### GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

### GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

### GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.
| 1 | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | marks will be awarded for a scale drawing.                                                                                                                     |

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.



## **Mark Scheme Notes**

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

## Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

# Cambridge International AS & A Level – Mark Scheme PUBLISHED

# Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                                            | Marks |
|----------|---------------------------------------------------|-------|
| 1(a)     | Trapezium, deceleration steeper than acceleration | B1    |
|          | Time from 0 to 200                                | B1    |
|          |                                                   | 2     |
| 1(b)     | 0.5(170 + 200)v = 2775                            | M1    |
|          | v = 15                                            | A1    |
|          | 0                                                 | 2     |
| 1(c)     | $a = 15 \div 20$                                  | M1    |
|          | <i>a</i> = 0.75                                   | A1    |
|          |                                                   | 2     |



| Question | Answer                                                                                                        | Marks |
|----------|---------------------------------------------------------------------------------------------------------------|-------|
| 2        | Resolving forces in either direction                                                                          | M1    |
|          | $20\cos\theta = 4P\cos 30$                                                                                    | A1    |
|          | $4P + 2P\sin 30 = 20\sin\theta$                                                                               | A1    |
|          | $\cos\theta = \frac{\sqrt{3}}{10}P$<br>$\sin\theta = \frac{P}{4}$<br>$\frac{3}{100}P^2 + \frac{1}{16}P^2 = 1$ | M1    |
|          | <i>P</i> = 3.29                                                                                               | A1    |
|          | $\theta = 55.3$                                                                                               | A1    |
|          |                                                                                                               | 6     |



| Question | Answer                                                                                                                       | Marks |
|----------|------------------------------------------------------------------------------------------------------------------------------|-------|
| 3        | $T\sin 60 + R = 25\cos 20$                                                                                                   | B1    |
|          | Attempt at resolving in any direction                                                                                        | M1    |
|          | $T\cos 60 = F + 25\sin 20$                                                                                                   | A1    |
|          | $T\cos 60 + F = 25\sin 20$                                                                                                   | A1    |
|          | Use of $F = \mu R$                                                                                                           | M1    |
|          | $T\cos 60 = 25\sin 20 \pm 0.3(25\cos 20 - T\sin 60)$ $T = \frac{25\sin 20 \pm 0.3 \times 25\cos 20}{\cos 60 \pm 0.3\sin 60}$ | M1    |
|          | T = 6.26                                                                                                                     | A1    |
|          | T = 20.5                                                                                                                     | A1    |
|          |                                                                                                                              | 8     |



| Question | Answer                                                                                                   | Marks |
|----------|----------------------------------------------------------------------------------------------------------|-------|
| 4(a)     | $4 \times 10 [+0] = 4 \times 0.5v + 2v$                                                                  | M1    |
|          | $v_A = 5$ and $v_B = 10$                                                                                 | A1    |
|          |                                                                                                          | 2     |
| 4(b)     | Conservation of momentum <i>B</i> , <i>C</i><br>$2 \times 10 [+0] = 2 \times v + 3v$                     | M1    |
|          | v = 4                                                                                                    | A1    |
|          | $v_A > v_B$ , hence another collision                                                                    | A1    |
|          |                                                                                                          | 3     |
| 4(c)     | Conservation of momentum A, B                                                                            | M1    |
|          | $4 \times their5 + 2 \times their4 = 4v + 2v$ $v = \frac{14}{3} (ms^{-1})$                               | A1    |
|          | KE initial = $\frac{1}{2} \times 4 \times 10^2$                                                          | M1    |
|          | KE final = $\frac{1}{2} \times 6 \times their (\frac{14}{3})^2 + \frac{1}{2} \times 1 \times their 12^2$ | A1    |
|          | Loss of KE = $200 - \frac{412}{3} = \frac{188}{3}$                                                       | A1    |
|          |                                                                                                          | 5     |

| Question | Answer                                         | Marks |
|----------|------------------------------------------------|-------|
| 5(a)(i)  | <i>DF</i> = 750                                | B1    |
|          | Power = $their(750) \times 32$<br>= 24kW       | B1 FT |
|          |                                                | 2     |
| 5(a)(ii) | $16000 = DF \times 32$ $DF = 500$              | M1    |
|          | $500 - 750 = 1250 \times a$                    | M1    |
|          | a = [-]0.2                                     | A1    |
|          |                                                | 3     |
| 5(b)     | $DF = 1000 + 8v + 1250 \times 10 \times 0.096$ | M1    |
|          | 2200 + 8v                                      | A1    |
|          | 60000 = (2200 + 8v)v                           | M1    |
|          | $8v^2 + 2200v - 60000 = 0$                     | A1    |
|          | v = 25                                         | A1    |
|          | Satbles                                        | 5     |

| Question | Answer                                                                                                                             | Marks |
|----------|------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6(a)     | Correct for $0 \le t \le 5$                                                                                                        | B1    |
|          | Correct for $5 \le t \le 7$                                                                                                        | B1    |
|          | Correct for $7 \le t \le 13.5$                                                                                                     | B1    |
|          |                                                                                                                                    | 3     |
| 6(b)     | a = -2t by differentiating                                                                                                         | M1    |
|          | a = -12                                                                                                                            | A1    |
|          |                                                                                                                                    | 2     |
| 6(c)     | $s = \int_{0}^{5} (2t+1) dt + \int_{5}^{6} (36-t^{2}) dt + \left  \int_{6}^{7} (36-t^{2}) dt + \int_{7}^{13.5} (2t-27) dt \right $ | M1    |
|          | $s = \int_{0}^{5} (2t+1)dt + \int_{5}^{6} (36-t^{2})dt + \left  \int_{6}^{7} (36-t^{2})dt + \int_{7}^{13.5} (2t-27)dt \right $     | A1    |
|          | $s = [t^{2} + t] + [36t - \frac{t^{3}}{3}] + t^{2} - 27t$                                                                          | M1    |
|          | All correct                                                                                                                        | A1    |
|          | <i>s</i> = 84.25                                                                                                                   | A1    |
|          |                                                                                                                                    | 5     |



# Cambridge International AS & A Level

#### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/41 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE<sup>™</sup> and Cambridge International A & AS Level components, and some Cambridge O Level components.

## **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

## GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

#### GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

#### GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

#### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

## **GENERIC MARKING PRINCIPLE 5:**

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

## GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

| 1 | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | marks will be awarded for a scale drawing.                                                                                                                     |

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.



## **Mark Scheme Notes**

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

## **Types of mark**

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

# Cambridge International AS & A Level – Mark Scheme PUBLISHED

# Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                                      | Marks |
|----------|---------------------------------------------|-------|
| 1        | Resultant = $100 - 2 \times 50 \cos \alpha$ | M1    |
|          | 20 N                                        | A1    |
|          | Direction is to the left (or equivalent)    | B1    |
|          |                                             | 3     |

| Question | Answer                                                                                                                                           | Marks |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2(a)     | $[T - 100 = 400 \times 1.5]$                                                                                                                     | M1    |
|          | T = 700  N                                                                                                                                       | A1    |
|          |                                                                                                                                                  | 2     |
| 2(b)     | $F-250-100 = 2200 \times 1.5 \ (F = 3650 \text{ N})$ (M1 for using Newton's second law for the system or for the car using the result from 2(a)) | M1    |
|          | For use of power = $Fv$                                                                                                                          | M1    |
|          | 73 000 W or 73 kW                                                                                                                                | A1    |
|          | 2                                                                                                                                                | 3     |
|          | 2. satprep.o                                                                                                                                     |       |

| Question | Answer                             | Marks |
|----------|------------------------------------|-------|
| 3(a)     | $0=5^2-2gs$                        | M1    |
|          | <i>s</i> = 1.25                    | A1    |
|          | [Height above ground =] 4.05 m     | A1    |
|          |                                    | 3     |
| 3(b)     | Use of $s = ut + \frac{1}{2} at^2$ | M1    |
|          | $0.8 = 5t - 5t^2$                  | A1    |
|          | t = 0.2  or  0.8                   | M1    |
|          | Length of time = 0.6 s             | A1    |
|          |                                    | 4     |



| Question | Answer                                   | Marks |
|----------|------------------------------------------|-------|
| 4(a)     | Resolving forces in either direction     | M1    |
|          | $R = T\sin 30 + 0.1g, F = T\cos 30$      | A1    |
|          | $T\cos 30 = 0.8 (T\sin 30 + 0.1g)$       | M1    |
|          | T = 1.72 (1.7166)                        | A1    |
|          | PRA                                      | 4     |
| 4(b)     | $R = 3\sin 30 + 0.1g$                    | B1    |
|          | $3\cos 30 - 0.8(3\sin 30 + 0.1g) = 0.1a$ | M1    |
|          | $a = 5.98 \text{ ms}^{-2} (5.9807)$      | A1    |
|          |                                          | 3     |



| Question | Answer                                                                                 | Marks |
|----------|----------------------------------------------------------------------------------------|-------|
| 5(a)     | Attempt at finding PE lost                                                             | M1    |
|          | $PE lost = 35g (4\cos 22.5 - 4\cos 45)$                                                | A1    |
|          | $\frac{1}{2} \times 35v^2 = 35g \left(4\cos 22.5 - 4\cos 45\right)$                    | M1    |
|          | Speed = $4.16 \text{ ms}^{-1} (4.1643)$                                                | A1    |
|          |                                                                                        | 4     |
| 5(b)     | Use of the work-energy equation in the form: PE lost = KE gain + WD against resistance | M1    |
|          | $\frac{1}{2} \times 35 \times 4^2 = 35g \left(4 - 4\cos 45\right) - X$                 | A1    |
|          | <i>X</i> =130 (130.05)                                                                 | A1    |
|          |                                                                                        | 3     |



| Question | Answer                                                                                                                                                                   | Marks |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6(a)     | $\int k \left( t^2 - 10t + 21 \right) \mathrm{d}t$                                                                                                                       | M1    |
|          | $s = k \left( \frac{1}{3}t^3 + 5t^2 + 21t \right) + C$                                                                                                                   | A1    |
|          | $2.85 = k \left(\frac{1}{3} \times 3^3 - 5 \times 3^2 + 21 \times 3\right) + C \text{ or } 2.4 = k \left(\frac{1}{3} \times 6^3 - 5 \times 6^2 + 21 \times 6\right) + C$ | M1    |
|          | 2.85 = $27k + C$ , 2.4 = $18k + C$<br>(A1 for both)                                                                                                                      | A1    |
|          | Solving for <i>k</i>                                                                                                                                                     | M1    |
|          | <i>k</i> =0.05                                                                                                                                                           | A1    |
|          | $s = 0.05 \left(\frac{1}{3}t^3 - 5t^2 + 21t\right) + 1.5$                                                                                                                | A1    |
|          |                                                                                                                                                                          | 7     |
| 6(b)     | Differentiating v or completing the square for v                                                                                                                         | M1    |
|          | a = 0.05(2t - 10)                                                                                                                                                        | A1    |
|          | Min value of v is at $t = 5$ .                                                                                                                                           | M1    |
|          | Displacement at $t = 5$ is 2.58 m (2.5833)                                                                                                                               | A1    |
|          |                                                                                                                                                                          | 4     |

| Question | Answer                                                                                   | Marks |
|----------|------------------------------------------------------------------------------------------|-------|
| 7(a)     | 0.3gsin 30 = 0.3a (a = 5)<br>(M1 for applying Newton's second law parallel to the plane) | M1    |
|          | $v^2 = 0 + 2 \times 2.5 \times a$                                                        | M1    |
|          | v = 5                                                                                    | A1    |
|          | $0.3 \times 5 + 0 = 0.3 \times 2 + 0.2 w$                                                | M1    |
|          | Velocity of $Q = 4.5 \text{ ms}^{-1}$                                                    | A1    |
|          |                                                                                          | 5     |



| Question | Answer                                                                                               | Marks |
|----------|------------------------------------------------------------------------------------------------------|-------|
| 7(b)     | $0.3 \times z + 0 = 0.5 \times 1.2$                                                                  | M1    |
|          | Velocity of <i>P</i> before collision $z = 2$                                                        | A1    |
|          | Friction force on <i>P</i> after reaches horizontal plane $F = \mu \times 0.3 g$                     | B1    |
|          | $\mu \times 0.3g \times 1.5 = \frac{1}{2} \times 0.3 \times 5^2 - \frac{1}{2} \times 0.3 \times 2^2$ | M1    |
|          | Coefficient $\mu = 0.7$                                                                              | A1    |
|          | Alternative method for question 7(b)                                                                 |       |
|          | $0.3 \times z + 0 = 0.5 \times 1.2$                                                                  | M1    |
|          | Velocity of <i>P</i> before collision $z = 2$                                                        | A1    |
|          | Friction force on <i>P</i> after reaches horizontal plane $F = \mu \times 0.3 g$                     | B1    |
|          | $a = (5^2 - 2^2) / (2 \times 1.5) = 7, F = 0.3 \times 7$                                             | M1    |
|          | Coefficient $\mu = 0.7$                                                                              | A1    |
|          | Z                                                                                                    | 5     |
|          | Satprep.co                                                                                           |       |



# Cambridge International AS & A Level

#### MATHEMATICS

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50 9709/42 March 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

## **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

## GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

## GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

#### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

# GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

## GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

| Ma | Mathematics-Specific Marking Principles                                                                                                                                                                                                       |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1  | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.                                     |  |  |
| 2  | Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.                                                            |  |  |
| 3  | Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.                                                                                                               |  |  |
| 4  | Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).                                                                                            |  |  |
| 5  | Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. |  |  |
| 6  | Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.                                                                                              |  |  |



#### **Mark Scheme Notes**

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

## Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

# Cambridge International AS & A Level – Mark Scheme PUBLISHED

# Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                               | Marks | Guidance                           |
|----------|--------------------------------------|-------|------------------------------------|
| 1(a)     | Power = 750000/10 = 75000 W or 75 kW | B1    | Power = WD/Time                    |
|          |                                      | 1     |                                    |
| 1(b)     | Driving force $DF = 75000/25$        | B1FT  | Using $P = DF \times v$            |
|          | [DF - 2400 = 16000a]                 | M1    | Using Newton's 2 <sup>nd</sup> law |
|          | $a = 0.0375 \text{ ms}^{-2}$         | A1    | Allow $a = \frac{3}{80}$           |
|          |                                      | 3     |                                    |



| March 2 | 2020 |
|---------|------|
|---------|------|

| Question | Answer                                                                                                         | Marks | Guidance                                                                                                                                                              |
|----------|----------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2(a)     | $[1.44 = 0 + \frac{1}{2} \times 2t^2]$                                                                         | M1    | For using a complete method which would lead to an equation for finding a value of <i>t</i> such as $s = ut + \frac{1}{2} at^2$ with $u = 0$ , $s = 1.44$ and $a = 2$ |
|          | t = 1.2  s                                                                                                     | A1    |                                                                                                                                                                       |
|          |                                                                                                                | 2     |                                                                                                                                                                       |
| 2(b)     | $R = 0.4g - 3 \times \frac{3}{5} = 0.4g - 3\sin 36.9 \ [= 2.2]$                                                | B1    |                                                                                                                                                                       |
|          | $[3 \times \frac{4}{5} - F = 3\cos 36.9 - F = 0.4 \times 2]  [F = 1.6]$                                        | M1    | Use Newton's $2^{nd}$ law, 3 terms, to find <i>F</i> .                                                                                                                |
|          | $\left[\mu = \frac{3 \times \frac{4}{5} - 0.4 \times 2}{0.4g - 3 \times \frac{3}{5}} = \frac{1.6}{2.2}\right]$ | M1    | Use of $\mu = \frac{F}{R}$                                                                                                                                            |
|          | $\mu = 0.727$                                                                                                  | A1    | Allow $\mu = \frac{8}{11}$                                                                                                                                            |
|          |                                                                                                                | 4     |                                                                                                                                                                       |



| Question | Answer                                                                                                | Marks | Guidance                     |
|----------|-------------------------------------------------------------------------------------------------------|-------|------------------------------|
| 3(a)     | Initial KE = $\frac{1}{2} \times 0.2 \times 5^2$<br>or Final KE = $\frac{1}{2} \times 0.2 \times 3^2$ | B1    |                              |
|          | $\frac{1}{2} \times 0.2 \times 5^2 = 0.2gh + \frac{1}{2} \times 0.2 \times 3^2$                       | M1    | Use conservation of energy   |
|          | h = 0.8                                                                                               | A1    |                              |
|          | TF                                                                                                    | 3     |                              |
| 3(b)     | Apply work-energy equation from <i>A</i> to <i>C</i>                                                  | M1    |                              |
|          | $\frac{1}{2} \times 0.2 \times 5^2 - 3.1 + 0.2g \times 0.5 = \frac{1}{2} \times 0.2v^2$               | A1    | Correct work-energy equation |
|          | Speed = $2 \text{ ms}^{-1}$                                                                           | A1    |                              |
|          |                                                                                                       | 3     |                              |



| Question | Answer                                                                                                          | Marks | Guidance                                                                                                                      |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| 4(a)     | Use the constant acceleration equations to obtain an expression for either $s_{AB}$ or $s_{BC}$ in terms of $a$ | M1    |                                                                                                                               |  |  |
|          | $s_{AB} = 2 \times 4.5 - \frac{1}{2} \times a \times 2^2$                                                       | A1    | or $s_{AB} = \frac{1}{2}(v_A + v_B) \times 2 = 9 - 2a$                                                                        |  |  |
|          | $s_{BC} = 2 \times 4.5 + \frac{1}{2} \times a \times 2^2$                                                       | A1    | or $s_{BC} = \frac{1}{2}(v_B + v_C) \times 2 = 9 + 2a$                                                                        |  |  |
|          | $[2 \times 4.5 - \frac{1}{2}a \times 2^2 = \frac{4}{5} (2 \times 4.5 + \frac{1}{2}a \times 2^2)]$               | M1    | Use the given information to find a valid equation for <i>a</i>                                                               |  |  |
|          | $a = 0.5 \text{ ms}^{-2}$                                                                                       | A1    |                                                                                                                               |  |  |
|          | Alternative method for question 4(a)                                                                            |       |                                                                                                                               |  |  |
|          | $[4.5 = u + 2a, s_{AC} = 4u + 8a, s_{AB} = 2u + 2a]$                                                            | M1    | Any two relevant equations in $u$ , $a$ , $s_{AB}$ and $s_{AC}$ where $u$ is the velocity at $A$                              |  |  |
|          | Two correct equations                                                                                           | A1    |                                                                                                                               |  |  |
|          | Three correct equations                                                                                         | A1    |                                                                                                                               |  |  |
|          | $[2(4.5-2a)+6a=\frac{5}{4} \{2(4.5-2a)+2a\}]$                                                                   | M1    | Use the given information that $BC = \frac{5}{4AB}$ to find a valid equation such as the one shown OE involving <i>a</i> only |  |  |
|          | $a = 0.5 \text{ ms}^{-2}$                                                                                       | A1    |                                                                                                                               |  |  |
|          | Alternative method for question 4(a)                                                                            |       |                                                                                                                               |  |  |
|          | $[AC = 4.5 \times 4]$                                                                                           | M1    | Using $AC = v_B \times 4$ since $v_B$ is the average velocity over $AC$                                                       |  |  |
|          | $BC = 5/9 \times AC$ or $AB = 4/9 \times AC$                                                                    | M1    |                                                                                                                               |  |  |
|          | BC = 10  or  AB = 8                                                                                             | A1    |                                                                                                                               |  |  |
|          | $[10 = 4.5 \times 2 + 2a \text{ or } 8 = 4.5 \times 2 - 2a]$                                                    | M1    | Using $s = ut + \frac{1}{2} at^2$ for <i>BC</i> or $s = vt - \frac{1}{2} at^2$ for <i>AB</i>                                  |  |  |
|          | $a = 0.5 \text{ ms}^{-2}$                                                                                       | A1    |                                                                                                                               |  |  |

| Question | Answer                                                                                                                                        | Marks | Guidance                                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                               | 5     |                                                                                                                                                                                                                                                                                                    |
| 4(b)     | $s_{AB} = 2 \times 4.5 - \frac{1}{2} \times 0.5 \times 2^{2} = 8$<br>OR<br>$s_{BC} = 2 \times 4.5 + \frac{1}{2} \times 0.5 \times 2^{2} = 10$ | M1    | Attempt to find the value of $s_{AB}$ or $s_{BC}$<br><b>OR</b> attempt to find $s_{AB}$ directly as<br>$s_{AC} = 3.5 \times 4 + \frac{1}{2} \times a \times 4^2$ or $\frac{1}{2} (4.5 - 2a + 4.5 + 2a) \times 4$<br><b>or</b> add the 2 expressions found in <b>4(a)</b> for $s_{AB}$ and $s_{BC}$ |
|          | $s_{AC} = 8 + \frac{5}{4} \times 8 = 18 \text{ m}$<br>OR<br>$s_{AC} = 10 + \frac{4}{5} \times 10 = 18 \text{ m}$                              | A1    |                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                               | 2     |                                                                                                                                                                                                                                                                                                    |

| Question      | Answer                          | Mark | Guidance                                                    |
|---------------|---------------------------------|------|-------------------------------------------------------------|
| 5(a)          | $[4\sin 30 + F\sin 60 - 6 = 0]$ | M1   | Resolve forces vertically and equate to zero                |
|               | Correct equation                | A1   |                                                             |
|               | <i>F</i> = 4.62                 | A1   | Allow $F = \frac{8}{\sqrt{3}}$ or $F = \frac{8}{3}\sqrt{3}$ |
|               | ž                               | 3    | .5                                                          |
| 3. satprep.co |                                 |      |                                                             |

| Question | Answer                                                                                                  | Marks | Guidance                                                                        |
|----------|---------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------|
| 5(b)     | Resolve forces either vertically or horizontally                                                        | M1    |                                                                                 |
|          | $F \sin \alpha + 4 \sin 30 - 6 = 0$<br>and<br>$F \cos \alpha + 3 - 4 \cos 30 = 0$                       | A1    | Both equations correct<br>$[F \sin \alpha = 4]$<br>$[F \cos \alpha = 0.464102]$ |
|          | $[F^{2} = 4^{2} + 0.464^{2}]$<br>or<br>$\left[F = \frac{4}{\sin 83.4} = \frac{0.464}{\cos 83.4}\right]$ | M1    | Attempt to solve for $F$ using Pythagoras or from a value found for $\alpha$    |
|          | $\left[\alpha = \tan^{-1}\left(\frac{4}{0.464}\right)\right]$                                           | M1    | Attempt to solve for $\alpha$ using trigonometry or from a value found for $F$  |
|          | $\left[\alpha = \sin^{-1}\left(\frac{4}{4.03}\right) = \cos^{-1}\left(\frac{0.464}{4.03}\right)\right]$ |       |                                                                                 |
|          | $F = 4.03$ and $\alpha = 83.4$                                                                          | A1    | Both correct as shown $[F = 4.0268, \alpha = 83.382]$                           |
|          |                                                                                                         | 5     |                                                                                 |

| Question | Answer                                                                                                          | Marks | Guidance                                                                                                                                             |
|----------|-----------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6(a)     | $[T-200 = 700 \times -12]$<br>Car: $-T-600 - F = 1600 \times -12$<br>System: $-600 - 200 - F = 2300 \times -12$ | M1    | Apply Newton's $2^{nd}$ law to the trailer or apply Newton's $2^{nd}$ law to the car and to the system and eliminate the braking force, <i>F</i> .   |
|          | Magnitude of $T = 8200$ N                                                                                       | A1    |                                                                                                                                                      |
|          |                                                                                                                 | 2     |                                                                                                                                                      |
| 6(b)     | Car $[T - F - 600 = 1600 \times -12]$<br>or<br>System $[-600 - 200 - F = 2300 \times -12]$                      | M1    | Apply Newton's second law either to the car or to the system with braking force = $F$ and use of <i>their</i> $T$ from <b>6(a)</b>                   |
|          | Braking force $F = 26800$ N                                                                                     | A1    |                                                                                                                                                      |
|          |                                                                                                                 | 2     |                                                                                                                                                      |
| 6(c)     | $[v^2 = 22^2 + 2 \times -12 \times 17.5]$                                                                       | M1    | A complete method using constant acceleration equations which<br>would lead to an equation for finding v, using $u = 22$ , $s = 17.5$ and<br>a = -12 |
|          | $v = 8 \text{ ms}^{-1}$                                                                                         | A1    | AG                                                                                                                                                   |
|          | 4                                                                                                               | 2     | .5                                                                                                                                                   |
| 6(d)     | $[2300 \times 8 + m \times 0 = 2300 \times 2 + m \times 5]$                                                     | M1    | For applying the conservation of momentum equation to the system of car, trailer and van, where $m = mass$ of the van                                |
|          | satp                                                                                                            | A1    | Correct equation                                                                                                                                     |
|          | m = 2760  kg                                                                                                    | A1    |                                                                                                                                                      |
|          |                                                                                                                 | 3     |                                                                                                                                                      |

| March 2 | 2020 |
|---------|------|
|---------|------|

| Question | Answer                                                  | Marks | Guidance                                                                                                          |
|----------|---------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------|
| 7(a)     | [v = 2t - 3]                                            | M1    | For differentiation of <i>s</i> for $0 \le t \le 6$                                                               |
|          | t = 1.5                                                 | A1    |                                                                                                                   |
|          |                                                         | 2     |                                                                                                                   |
| 7(b)     | Velocity at arrival = $9 \text{ ms}^{-1}$               | B1    | t = 6 used in $v$                                                                                                 |
|          | $v = -\frac{24}{t^2} - 0.5t$                            | M1    | For differentiation of <i>s</i> for $t \ge 6$                                                                     |
|          | Velocity when leaves = $-3.67 \text{ ms}^{-1}$          | A1    | Allow $v = -11/3$                                                                                                 |
|          |                                                         | 3     |                                                                                                                   |
| 7(c)     | At $t = 0$ , $s = 2$ or at $t = 6$ , $s = 20$           | B1    | SOI                                                                                                               |
|          | At $t = 1.5$ , $s = -0.25$                              | B1    | SOI                                                                                                               |
|          | At $t = 10, s = 2.4$                                    | B1    | SOI                                                                                                               |
|          | [Total distance = $2 + 0.25 + 0.25 + 20 + (20 - 2.4)$ ] | M1    | Evidence of distance rather than displacement involving all three sections, $(0, 1.5)$ , $(1.5, 6)$ and $(6, 10)$ |
|          | So total distance travelled = 40.1 m                    | A1    |                                                                                                                   |
|          | -satp                                                   | e (5  |                                                                                                                   |



#### MATHEMATICS

9709/43 October/November 2019

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

## **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

## GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.
### Cambridge International AS/A Level – Mark Scheme PUBLISHED Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

#### Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

### Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                   | Marks | Guidance               |
|----------|--------------------------|-------|------------------------|
| 1        | <i>F=</i> µ×500 <i>g</i> | B1    | Use of $F=\mu R$       |
|          | $[2500=\mu \times 500g]$ | M1    | Resolving horizontally |
|          | μ=0.5                    | A1    |                        |
|          |                          | 3     |                        |

| Question      | Answer                                                                          |                 | Marks | Guidance                                                                      |  |
|---------------|---------------------------------------------------------------------------------|-----------------|-------|-------------------------------------------------------------------------------|--|
| 2             | PE gain =150000 $g \times 500$ sina                                             | (=7500000gsinα) | B1    | Correct expression for PE gain                                                |  |
|               | $\frac{1}{2} \times 150000 \times 45^2 - \frac{1}{2} \times 150000 \times 42^2$ | (=19575000)     | B1    | Correct expression for KE loss                                                |  |
|               |                                                                                 |                 | M1    | For 5 term work energy equation<br>(or 4 terms if using loss in KE as 1 term) |  |
|               | $150000g \times 500\sin\alpha = 19575000 + 16000 \times 500 - 4 \times 10^{6}$  |                 | A1    |                                                                               |  |
|               | α=1.8                                                                           |                 | A1    |                                                                               |  |
|               | 34                                                                              |                 | 5     |                                                                               |  |
| 2. satprep.00 |                                                                                 |                 |       |                                                                               |  |

### Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                                                   |            | Marks | Guidance                                   |
|----------|----------------------------------------------------------------------------------------------------------|------------|-------|--------------------------------------------|
| 3        | Resolving horizontally or vertically                                                                     |            | M1    |                                            |
|          | $50\cos 20 + 60 - 100\sin 30$                                                                            | (=56.984)  | A1    |                                            |
|          | 100cos30 – 50sin20                                                                                       | (= 69.501) | A1    |                                            |
|          | $R = \sqrt{(56.984^{2} + 69.501^{2})} \text{ or } \alpha = \tan^{-1} \left(\frac{56.984}{69.501}\right)$ | PRA        | M1    | Method to find either <i>R</i> or $\alpha$ |
|          | <i>R</i> =89.9 (89.876)                                                                                  |            | A1    |                                            |
|          | <i>α</i> =39.3 (39.348)                                                                                  |            | A1    |                                            |
|          |                                                                                                          |            | 6     |                                            |



9709/43

| Question | Answer                                                                                   | Marks | Guidance                                                                                         |
|----------|------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------|
| 4(i)     | $s_{PQ} = 20 \times 10 - 0.5a \times 10^2$ or $s_{QR} = 20 \times 10 + 0.5a \times 10^2$ | M1    | For use of $s = vt - \frac{1}{2}at^2$ or $s = ut + \frac{1}{2}at^2$ OE<br>suvat to find PQ or QR |
|          | s = 200-50a and $1.5s = 200 + 50a$                                                       | A1    | OE                                                                                               |
|          | $1.5(200 - 50a) = 200 + 50a \rightarrow 100 = 125a \rightarrow a = 0.8 \text{ ms}^{-2}$  | B1    | AG                                                                                               |
|          |                                                                                          | 3     |                                                                                                  |
| 4(ii)    | Distance $QS = 20 \times 20 + \frac{1}{2} \times 0.8 \times 20^2$                        | M1    | Using $s = ut + \frac{1}{2}at^2$                                                                 |
|          | Distance=560 m                                                                           | A1    |                                                                                                  |
|          | Average speed between $Q$ and $S = \frac{560}{20} = 28 \mathrm{ms}^{-1}$                 | B1    |                                                                                                  |
|          |                                                                                          | 3     |                                                                                                  |



# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2019

| Question | Answer                                   | Marks | Guidance                              |
|----------|------------------------------------------|-------|---------------------------------------|
| 5(i)     | Driving force = $\frac{240}{6}$ (= 40 N) | B1    | Use of power = force × velocity       |
|          | $[40 - R = 80 \times 0.3]$               | M1    | Use of Newton's Second Law (3 terms)  |
|          | Resistance is 16 N                       | A1    | AG                                    |
|          | T PRA                                    | 3     |                                       |
| 5(ii)    | $\left[\frac{240}{v} = 16\right]$        | M1    | Use of <i>P=Fv</i> with DF=resistance |
|          | Steady speed is 15 ms <sup>-1</sup>      | A1    |                                       |
|          |                                          | 2     |                                       |
| 5(iii)   | Use of Newton's Second Law               | M1    | (4 terms)                             |
|          | $\frac{240}{4} - 16 - 80g\sin 3 = 80a$   | A1    |                                       |
|          | Acceleration is 0.0266 ms <sup>-2</sup>  | A1    |                                       |
|          | 2.0                                      | 3     |                                       |

satprep.

# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                                                   | Marks | Guidance                                                 |
|----------|----------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------|
| Q6(i)    | $10 = 0.04 \times 5^3 + 5^2 c + 5k \qquad (5c + k = 1)$                                                  | B1    | Use of <i>t</i> =5, <i>v</i> =10                         |
|          | $s = \frac{0.04}{4}t^4 + \frac{ct^3}{3} + \frac{kt^2}{2} + (C)$                                          | *M1   | For use of $s = \int v dt$                               |
|          | $25 = 0.01 \times 5^4 + \frac{5^3}{3}c + \frac{5^2}{2}k$                                                 | DM1   | Use of $t = 0$ , $s = 0$ and $t = 5$ , $s = 25$          |
|          | $6.25 + \frac{125}{3}c + \frac{25}{2}k = 25 \qquad \left(\frac{125}{3}c + \frac{25}{2}k = 18.75\right)$  | A1    |                                                          |
|          | Solving for <i>c</i> or for <i>k</i>                                                                     | M1    |                                                          |
|          | c = -0.3 and $k = 2.5$                                                                                   | A1    |                                                          |
|          |                                                                                                          | 6     |                                                          |
| Q6(ii)   | $a = 0.12t^2 - 0.6t + 2.5$                                                                               | M1    | For use of $a = \frac{\mathrm{d}v}{\mathrm{d}t}$         |
|          | $a' = 0.24t - 0.6 = 0 \rightarrow t = \dots$ or $a = 0.12(t^2 - 5t + \dots) = 0.12[(t - 2.5)^2 + \dots]$ | M1    | Uses $\frac{da}{dt} = 0$ or completes the square for $a$ |
|          | Minimum when $t = 2.5$                                                                                   | A1    | AG                                                       |
|          | apror                                                                                                    | 3     |                                                          |

| Question | Answer                                                                             | Marks | Guidance                                                                                                |
|----------|------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------|
| 7(i)     | $\left[0.81 = 0 + \frac{1}{2} \times a \times 0.9^2\right]$                        | M1    | For use of $s = ut + \frac{1}{2}at^2$                                                                   |
|          | <i>a</i> = 2                                                                       | A1    |                                                                                                         |
|          | T - mg = ma or $kmg - T = kma$                                                     | M1    | Use of Newton's Second Law for <i>A</i> or <i>B</i> or<br>use of $a = \frac{(m_B - m_A)g}{(m_B + m_A)}$ |
|          | $T - mg = ma$ and $kmg - T = kma$ or $\left[a = \frac{(km - m)g}{(km + m)}\right]$ | A1    |                                                                                                         |
|          | $a = \frac{(kg - g)}{(k+1)} = 2 \rightarrow k = \dots$                             | M1    | Solves to find <i>k</i>                                                                                 |
|          | <i>k</i> = 1.5                                                                     | A1    |                                                                                                         |
|          | T = 10m + 2m = 12m N                                                               | B1    | AG                                                                                                      |
|          | 4                                                                                  | 7     |                                                                                                         |
| 7(ii)    | Velocity of A when string breaks = $2 \times 0.9$ (=1.8 ms <sup>-1</sup> upwards)  | B1FT  | For use of $v=u+at$ ft <i>a</i> from (i)                                                                |
|          | $v^2 = 1.8^2 + 2g \times 1.62 \rightarrow v =$                                     | M1    | For use of <i>suvat</i> to find $v_A$ at ground                                                         |
|          | Speed is 5.97 ms <sup>-1</sup>                                                     | A1    | AG                                                                                                      |
|          | Time taken $=\frac{(1.8+5.97)}{g} = 0.777s$ (0.7769)                               | B1    |                                                                                                         |
|          |                                                                                    | 4     |                                                                                                         |

### Cambridge International AS/A Level – Mark Scheme PUBLISHED

| Question | Answer                                                 | Marks | Guidance                            |
|----------|--------------------------------------------------------|-------|-------------------------------------|
| 7(iii)   | Straight line from $(0, 0)$ to $(0.9, 1.8)$            | B1    |                                     |
|          | Straight line from $(0.9, 1.8)$ to approx. $(1.7, -6)$ | B1FT  | FT 0.9 + <i>t</i> from (ii) for 1.7 |
|          |                                                        | 2     |                                     |





#### MATHEMATICS

9709/42 October/November 2019

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

### GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

#### Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

#### Types of mark

- Method mark. awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or М errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the Α associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically DM or DB says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B FT marks are given for correct work only.

### Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                                                              | Mark | Guidance                                                                                                                                            |  |
|----------|---------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1        | $(v =) 3t^2 - 12t + 4$                                              | *M1  | Attempt at differentiation of <i>s</i> to find <i>v</i>                                                                                             |  |
|          | (a =) 6t - 12                                                       | *M1  | Attempt at differentiation of v to find a                                                                                                           |  |
|          | [When $a = 0, t = 2$ ]                                              | DM1  | Solve to find <i>t</i> when $a = 0$ and find <i>v</i> at this time                                                                                  |  |
|          | $v = -8 \text{ ms}^{-1}$                                            | A1   |                                                                                                                                                     |  |
|          | Alternative method for question 1                                   | RE   |                                                                                                                                                     |  |
|          | $(v =) 3t^2 - 12t + 4$                                              | M1   | Attempt at differentiation of $s$ to find $v$                                                                                                       |  |
|          | $(v =) 3(t - 2)^2 - 8$<br>or $t = \frac{-b}{2a} = \frac{12}{6} = 2$ | M1   | For using the method of completing the square or using the value of $\left(\frac{-b}{2a}\right)$ to find the <i>t</i> value of the minimum velocity |  |
|          |                                                                     | M1   | Use of the $t$ value at minimum velocity to find $v$                                                                                                |  |
|          | $v = -8 \text{ ms}^{-1}$                                            | A1   |                                                                                                                                                     |  |
|          |                                                                     | 4    |                                                                                                                                                     |  |

# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                                             | Mark | Guidance                                                                                                                                                                                                               |
|----------|----------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2(i)     | $\frac{(12-V)}{(35-30)} = 0.8$ or $12 = V + 0.8 \times 5$                                          | M1   | Use gradient of graph or constant acceleration formulae to set up an equation in $V$                                                                                                                                   |
|          | <i>V</i> = 8                                                                                       | A1   |                                                                                                                                                                                                                        |
|          |                                                                                                    | 2    |                                                                                                                                                                                                                        |
| 2(ii)    | $\left[25 \times 8 + 5 \times 10 + 15 \times 6 + \frac{1}{2} \times (U + 8) \times 5 = 375\right]$ | M1   | Attempt to find total distance travelled by the tractor in 50s to set up an equation for $U$ using EITHER areas OR suvat equations OR a combination of areas and suvat In either case total distance must be attempted |
|          |                                                                                                    | A1FT | Correct equation FT on <i>their V</i> from (i)                                                                                                                                                                         |
|          | <i>U</i> = 6                                                                                       | A1   |                                                                                                                                                                                                                        |
|          |                                                                                                    | 3    |                                                                                                                                                                                                                        |



| Question | Answer                                                                               | Mark | Guidance                                |  |  |
|----------|--------------------------------------------------------------------------------------|------|-----------------------------------------|--|--|
| 3        | $T_A \times \frac{4}{5} + T_B \times \frac{3}{5} + 0.3g = 5$                         | M1   | Resolving vertically                    |  |  |
|          | $T_A \times \frac{3}{5} = T_B \times \frac{4}{5}$                                    | M1   | Resolving horizontally                  |  |  |
|          | TP                                                                                   | A1   | Both correct                            |  |  |
|          |                                                                                      | M1   | Solve for $T_A$ or $T_B$                |  |  |
|          | $T_A = 1.6 \text{ N} \text{ and } T_B = 1.2 \text{ N}$                               | A1   |                                         |  |  |
|          | Alternative method for question 3                                                    |      |                                         |  |  |
|          | $\left[\frac{5-3}{\sin 90} = \frac{T_A}{\sin 126.9} = \frac{T_B}{\sin 143.1}\right]$ | M1   | Attempt one pair of Lami's equations    |  |  |
|          |                                                                                      | M1   | Attempt a second pair of Lami equations |  |  |
|          |                                                                                      | A1   | Equations all correct                   |  |  |
|          |                                                                                      | M1   | Evaluate $T_A$ or $T_B$                 |  |  |
|          | $T_A = 1.6 \text{ N}$ and $T_B = 1.2 \text{ N}$                                      | A1   | 0.                                      |  |  |
|          | Satprep.                                                                             |      |                                         |  |  |

| Question                          | Answer                                                                        | Mark | Guidance                                                 |  |  |
|-----------------------------------|-------------------------------------------------------------------------------|------|----------------------------------------------------------|--|--|
| 3                                 | Alternative method for question 3                                             |      |                                                          |  |  |
|                                   | $T_A = 5\cos 36.9 - 3\cos 36.9 = 5 \times \frac{4}{5} - 3 \times \frac{4}{5}$ | M1   | Resolve along <i>PA</i>                                  |  |  |
|                                   | $TB = 5\cos 53.1 - 3\cos 53.1 = 5 \times \frac{3}{5} - 3 \times \frac{3}{5}$  | M1   | Resolve along <i>PB</i>                                  |  |  |
|                                   |                                                                               | A1   | Both correct                                             |  |  |
|                                   |                                                                               | M1   | Evaluate $T_A$ or $T_B$                                  |  |  |
|                                   | $T_A = 1.6 \text{ N} \text{ and } T_B = 1.2 \text{ N}$                        | A1   |                                                          |  |  |
| Alternative method for question 3 |                                                                               |      |                                                          |  |  |
|                                   | Forces 2N, $T_A$ and $T_B$ with angles 36.9 and 53.1                          | M1   | Attempt to illustrate a triangle of forces               |  |  |
|                                   | $[T_A = 2\cos 36.9, T_B = 2\cos 53.1]$                                        | M1   | Use trigonometry in the triangle to find $T_A$ and $T_B$ |  |  |
|                                   |                                                                               | A1   | Both correct                                             |  |  |
|                                   | ź                                                                             | M1   | Solve for $T_A$ or $T_B$                                 |  |  |
|                                   | $T_A = 1.6 \text{ N} \text{ and } T_B = 1.2 \text{ N}$                        | A1   | -0'                                                      |  |  |
|                                   | Satpi                                                                         | eP5  |                                                          |  |  |

### Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                                                                                | Mark | Guidance                                                     |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------|--|
| 4(i)     | $P = 3000 \times 30$                                                                                                                  | M1   | Use of $P = Fv$ with $F =$ resistance                        |  |
|          | P = 90000  W = 90 kW                                                                                                                  | A1   |                                                              |  |
|          |                                                                                                                                       | 2    |                                                              |  |
| 4(ii)    | PE gained = 25000 <i>gh</i>                                                                                                           | B1   | Correct expression for PE Allow PE = $25\ 000\ g\ d\ \sin 2$ |  |
|          | Initial KE = $\frac{1}{2} \times 25000 \times 30^2$ [= 11 250 000]<br>Final KE = $\frac{1}{2} \times 25000 \times 25^2$ [= 7 812 500] | B1   | For either correct<br>[KE loss = 3 437 500]                  |  |
|          | Initial KE = Final KE + $25000gh + \frac{3000h}{\sin 2}$<br>OR<br>Initial KE = Final KE + $25000gd\sin 2 + 3000d$                     | M1   | For a 4 term work-energy equation, correct dimensions        |  |
|          |                                                                                                                                       | A1   | Correct work-energy equation involving <i>h</i> or <i>d</i>  |  |
|          | h = 10.2  m (10.2318)                                                                                                                 | A1   |                                                              |  |
|          | Z                                                                                                                                     | 5    |                                                              |  |
|          |                                                                                                                                       |      |                                                              |  |

| Question | Answer                                                                                                                 | Mark | Guidance                                                                                                                                                  |  |
|----------|------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5(i)     | $h_A = 20t - \frac{1}{2} \times 10t^2$ or $h_B = \pm \frac{1}{2} \times 10(t-1)^2$                                     | B1   | OE<br>$h_A = 20(T+1) - \frac{1}{2} \times 10(T+1)^2 \text{ or } h_B = \pm \frac{1}{2} \times 10T^2$                                                       |  |
|          | [Meet when $20t - \frac{1}{2} \times 10t^2 + \frac{1}{2} \times 10(t-1)^2 = 40$ ]                                      | *M1  | Set up an equation using <i>their</i> $h_A$ , <i>their</i> $h_B$ and 40                                                                                   |  |
|          | 10t - 35 = 0                                                                                                           | DM1  | Solve for <i>t</i> and attempt to find the height at collision.                                                                                           |  |
|          | t = 3.5 so height at collision = 8.75 m                                                                                | A1   | T = 2.5 and height at collision = 8.75 m                                                                                                                  |  |
|          | Alternative method for question 5(i)                                                                                   |      |                                                                                                                                                           |  |
|          | $h_A = 20 \times 1 - \frac{1}{2} \times 10 \times 1^2 = 15, v = 20 - 10 \times 1 = 10$                                 | B1   | Finding distance travelled by A and its speed after 1 second                                                                                              |  |
|          | $H_{A} + H_{B} = 25$ $\left(10T - \frac{1}{2} \times 10 \times T^{2}\right) + \frac{1}{2} \times 10 \times T^{2} = 25$ | *M1  | <i>T</i> is the time beyond 1s until the particles reach same level $H_A$ and $H_B$ are distances travelled by <i>A</i> and <i>B</i> in <i>T</i> seconds. |  |
|          | $[10T = 25 \rightarrow T = 2.5]$                                                                                       | DM1  | Solve for <i>T</i> and attempt to find the height at collision                                                                                            |  |
|          | t = 3.5 so height = 8.75 m                                                                                             | A1   |                                                                                                                                                           |  |
|          | "Sator                                                                                                                 | 4    |                                                                                                                                                           |  |

| Question | Answer                                                | Mark | Guidance                                                                                                                                     |
|----------|-------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 5(ii)    | $v_A = 20 - gt = -15$ or $v_A^2 = 20^2 + 2(-g)(8.75)$ | M1   | Use of <i>their t</i> or <i>their h</i> $\leq$ 20 from <b>5(i)</b> in a constant acceleration formula which would lead to finding $v_A$      |
|          | $v_B = -g(t-1) = -25$ or $v_B^2 = 2(g)(40 - 8.75)$    | M1   | Use of <i>their</i> $t \pm 1$ or <i>their</i> $40 - h$ from <b>5(i)</b> in a constant acceleration formula which would lead to finding $v_B$ |
|          | Difference = $10 \text{ ms}^{-1}$                     | A1   | CWO                                                                                                                                          |
|          |                                                       | 3    |                                                                                                                                              |

|          | <u> </u>                                                            |      |                                                      |
|----------|---------------------------------------------------------------------|------|------------------------------------------------------|
| Question | Answer                                                              | Mark | Guidance                                             |
| 6(i)     | $4.5 = 0 + \frac{1}{2} \times a \times 5^2$                         | M1   | For use of $s = ut + \frac{1}{2}at^2$ to find $a$    |
|          | <i>a</i> = 0.36                                                     | A1   |                                                      |
|          | $6 \times \frac{24}{25} - F = 3 \times 0.36$                        | M1   | Resolving horizontally. Allow use of $\theta = 16.3$ |
|          | F = 4.68  N                                                         | A1   |                                                      |
|          | Z.                                                                  | 4    |                                                      |
| 6(ii)    | $R = 3g - 6\sin 16.3 = 3g - 6 \times \frac{7}{25} \qquad [= 28.32]$ | B1   |                                                      |
|          | $4.68 = \mu \times 28.32$                                           | M1   | Use of $F = \mu R$                                   |
|          | $\mu = 0.165 \ (0.165254)$                                          | A1   | AG. Allow $\mu = \frac{39}{236}$                     |
|          |                                                                     | 3    |                                                      |

| Question | Answer                                                                            | Mark | Guidance                                                                               |
|----------|-----------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------|
| 6(iii)   | $v = 5 \times 0.36 [= 1.8]$<br>or $v = \sqrt{(2 \times 0.36 \times 4.5)} [= 1.8]$ | B1FT | For velocity at $t = 5$ ft on <i>their a</i> from <b>6(i)</b>                          |
|          | $3a = -0.165 \times 3g$                                                           | M1   | Using Newton's second law with new frictional force                                    |
|          | 0 = 1.8 - 0.165gt  (t = 1.09)                                                     | M1   | Using constant acceleration equations which would lead to a positive value of <i>t</i> |
|          | Total time = $5 + 1.09 = 6.09$ s                                                  | A1   |                                                                                        |
|          |                                                                                   | 4    |                                                                                        |

| Question | Answer                                                                                                                                                                                               | Mark | Guidance                                                                                             |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------|
| 7(i)     |                                                                                                                                                                                                      | M1   | Use of Newton's second law for $P$ or $Q$ or the system                                              |
|          | For P: $T - 0.3g \times \frac{3}{5} = T - 0.3g \sin 36.9 = 0.3a$<br>For Q: $0.2g - T = 0.2a$<br>System: $0.2g - 0.3g \times \frac{3}{5} = (0.2 + 0.3)a$<br>or $0.2g - 0.3g \sin 36.9 = (0.2 + 0.3)a$ | A1   | Two correct equations<br>Allow use of $\theta = 36.9$                                                |
|          | [0.2g - 0.18g = 0.5a]                                                                                                                                                                                | M1   | For solving either the system for $a$ or for solving a pair of simultaneous equations for $a$ or $T$ |
|          | $a = 0.4 \text{ ms}^{-2}$                                                                                                                                                                            | A1   |                                                                                                      |
|          | T = 1.92  N                                                                                                                                                                                          | A1   |                                                                                                      |
|          |                                                                                                                                                                                                      | 5    |                                                                                                      |

# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                                                    | Mark | Guidance                                                                                                                                                   |
|----------|-----------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(ii)    | $0.8 = 0 + \frac{1}{2} \times 0.4 \times t^2$ a                                                           | M1   | For use of the constant acceleration equations with <i>their a</i> from <b>7(i)</b> and $a \neq \pm g$ for a complete method to find <i>t</i>              |
|          | t = 2  s                                                                                                  | A1   |                                                                                                                                                            |
|          |                                                                                                           | 2    |                                                                                                                                                            |
| 7(iii)   | Speed when Q hits the floor = $2 \times 0.4$ (= 0.8)<br>or $v = \sqrt{(2 \times 0.4 \times 0.8)} [= 0.8]$ | B1FT | Using $v = u + at$ with $u = 0$<br>Allow FT for <i>their</i> unsimplified $v = at$ or $v^2 = 2as$ with <i>a</i> from (i), <i>t</i> from (ii) and $s = 0.8$ |
|          | $-0.3g \times \frac{3}{5} = -0.3g \sin 36.9 = 0.3a \ [a = -6]$                                            | M1   | Using Newton's second law for <i>P</i> to find $a \neq \pm g$                                                                                              |
|          | $0 = 0.8t + \frac{1}{2} \times (-6)t^{2} (t = 0.2666)$<br>or<br>0 = 0.8 - 6T                              | M1   | Use of the constant acceleration equation(s) to find the time taken for $P$ to return to the position where the string first became slack.                 |
|          | $(T = 0.13333 = \frac{2}{15} \text{ and } t = 2T = 0.26666 = \frac{4}{15})$                               |      |                                                                                                                                                            |
|          | Total time = 2 + 0.266 = 2 + $\frac{4}{15}$ = 2.27 = $\frac{34}{15}$ s                                    | A1   | .5                                                                                                                                                         |
|          | Satpr                                                                                                     | eP4  |                                                                                                                                                            |



#### MATHEMATICS

9709/41 October/November 2019

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

#### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

#### GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

#### Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

#### Types of mark

- Method mark. awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or М errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the Α associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically DM or DB says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
  - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B FT marks are given for correct work only.

### Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

### Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

| Question | Answer                     | Marks | Guidance                      |
|----------|----------------------------|-------|-------------------------------|
| 1        | $20\ 000 = V \times 1250g$ | M1    | Use of $P = Fv$ with $F = mg$ |
|          | <i>V</i> = 1.6             | A1    |                               |
|          |                            | 2     |                               |

| Question | Answer                                             | Marks | Guidance                                                    |
|----------|----------------------------------------------------|-------|-------------------------------------------------------------|
| 2        | Initial $KE = \frac{1}{2} \times 75 \times 10^2$   | B1    | Either correct                                              |
|          | Final $KE = \frac{1}{2} \times 75 \times 5^2$      |       |                                                             |
|          | PE gained = $75g \times 700 \sin 1.5$ [=13 743]    | B1    |                                                             |
|          | WD by $F = F \times 700$                           | B1    | For WD by $F = F \times d$                                  |
|          | WD by $F$ + Initial KE = Final KE + PE gain + 2000 | M1    | Use of work-energy equation. 5 dimensionally correct terms. |
|          | <i>F</i> = 18.5                                    | A1    |                                                             |
|          |                                                    | 5     |                                                             |

| Question | Answer                                                             | Marks | Guidance                                      |
|----------|--------------------------------------------------------------------|-------|-----------------------------------------------|
| 3(i)     | $R = 3 g \cos 60$                                                  | B1    |                                               |
|          | Use $F = \mu R$                                                    | M1    |                                               |
|          | $[3g\sin 60 - \mu 3g\cos 60 - 15 = 0]$                             | M1    | Resolve forces parallel to the plane, 3 terms |
|          |                                                                    | A1    | Correct equation                              |
|          | $\mu = 0.732$                                                      | A1    | Allow $\mu = \sqrt{3} - 1$                    |
|          |                                                                    | 5     |                                               |
| 3(ii)    | [Maximum force = $3g\sin 60 + F$<br>= $3\sin 60 + \mu 3g\cos 60$ ] | M1    |                                               |
|          | <i>X</i> =37(.0)                                                   | A1    | Allow $X = 15(2\sqrt{3}-1)$                   |
|          |                                                                    | 2     |                                               |



| Question | Answer                                                                                                                                                               | Marks | Guidance                                                                                             |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------|
| 4(i)     | Apply Newton's second law to either or to the system                                                                                                                 | M1    |                                                                                                      |
|          | Block A: $T - 4g \times \frac{7}{25} = 4a$<br>Block B: $36 - T - 5g \times \frac{7}{25} = 5a$<br>System: $36 - 5g \times \frac{7}{25} - 4g \times \frac{7}{25} = 9a$ | A1    | Any two correct. Allow $\alpha = 16.3$ used.                                                         |
|          | Either solving the system for $a$ or solving a pair of simultaneous equations for either $a$ or $T$                                                                  | M1    |                                                                                                      |
|          | $a = 1.2 \text{ ms}^{-2}$                                                                                                                                            | A1    |                                                                                                      |
|          | T = 16  N                                                                                                                                                            | A1    |                                                                                                      |
|          |                                                                                                                                                                      | 5     |                                                                                                      |
| 4(ii)    | $\left[0.65 = 1 \times t + \frac{1}{2} \times 1.2t^2\right]$                                                                                                         | M1    | Use constant acceleration equation(s) with $u = 1$ and solve a 3 term quadratic equation to find $t$ |
|          | t = 0.5  s                                                                                                                                                           | A1    |                                                                                                      |
|          | Alternative method for question 4(ii)                                                                                                                                |       |                                                                                                      |
|          | $v^2 = 1^2 + 2 \times 1.2 \times 0.65$ [ $v = 1.6$ ] and $0.65 = \frac{1}{2}(1+v) \times t$                                                                          | M1    | Use relevant constant acceleration equations with $u = 1$ in a complete method to find $t$           |
|          | t = 0.5 s                                                                                                                                                            | A1    |                                                                                                      |
|          |                                                                                                                                                                      | 2     |                                                                                                      |

| Question | Answer                                                                            | Marks | Guidance                                                     |
|----------|-----------------------------------------------------------------------------------|-------|--------------------------------------------------------------|
| 5(i)     | Resolve forces either horizontally or vertically                                  | M1    |                                                              |
|          | $7.5\cos 60 + 4.5\cos 20 = F\cos\theta  [= 7.97861]$                              | A1    |                                                              |
|          | $7.5\sin 60 - 4.5\sin 20 = F\sin \theta$ [= 4.95609]                              | A1    |                                                              |
|          | $F = \sqrt{\left(7.98^2 + 4.96^2\right)}$                                         | M1    | Use Pythagoras or use the value found for $\theta$ to find F |
|          | $\theta = \tan^{-1}(\frac{4.96}{7.98})$                                           | M1    | Use trigonometry or the value found for $F$ to find $\theta$ |
|          | $F = 9.39$ and $\theta = 31.8$                                                    | A1    |                                                              |
|          | Alternative method for question 5(i)                                              |       |                                                              |
|          | $\frac{F}{\sin 80} = \frac{4.5}{\sin(120+\theta)} = \frac{7.5}{\sin(160-\theta)}$ | M1    | Attempt to use Lami                                          |
|          |                                                                                   | A1    | One correct pair of terms                                    |
|          |                                                                                   | A1    | A second correct pair of terms                               |
|          | $[4.5\sin(160 - \theta) = 7.5\sin(120 + \theta)]$                                 | M1    | Attempt to solve for $\theta$                                |
|          | Use the $\theta$ value found by valid trigonometry to find $F$                    | M1    |                                                              |
|          | $F = 9.39 \text{ and } \theta = 31.8$                                             | Al    |                                                              |

| Question        | Answer                                                                                           | Marks | Guidance                                                 |  |  |
|-----------------|--------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------|--|--|
| 5(i)            | Alternative method for question 5(i)                                                             |       |                                                          |  |  |
|                 | Forces 4.5, 7.5, F opposite angles $60 - \theta$ , $\theta + 20$ , 100                           | M1    | Illustrate a triangle of forces                          |  |  |
|                 | $[F^2 = 4.5^2 + 7.5^2 - 2 \times 4.5 \times 7.5 \times \cos 100]$                                | M1    | For application of cosine rule to find <i>F</i>          |  |  |
|                 |                                                                                                  | A1    | Correct equation                                         |  |  |
|                 | $\left[\frac{9.39}{\sin 100} = \frac{4.5}{\sin(60-\theta)} = \frac{7.5}{\sin(\theta+20)}\right]$ | M1    | One application of the sine rule to find $\theta$        |  |  |
|                 |                                                                                                  | A1    | Correct equation                                         |  |  |
|                 | $F = 9.39$ and $\theta = 31.8$                                                                   | A1    |                                                          |  |  |
|                 |                                                                                                  | 6     |                                                          |  |  |
| 5(ii)           | $9.5\cos 30 - 7.5\cos 60 - 4.5\cos 20 = m \times 1.5$                                            | M1    | Apply Newton's second law to the ring along AB (4 terms) |  |  |
|                 | m = 0.166  kg                                                                                    | A1    |                                                          |  |  |
|                 | 4                                                                                                | 2     | 5                                                        |  |  |
| Zy. satprep.co. |                                                                                                  |       |                                                          |  |  |

| Question | Answer                                                                                                               | Marks | Guidance                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------|
| 6(i)     | $0.4g \times 1.8 = \frac{1}{2} \times 0.4 \times v^2$                                                                | M1    | KE gain = PE lost                                                              |
|          | $v = 6 \text{ ms}^{-1}$                                                                                              | A1    |                                                                                |
|          |                                                                                                                      |       |                                                                                |
|          | $v^2 = 0^2 + 2 \times g \times 1.8$                                                                                  | M1    | Use constant acceleration equation(s) with $a = g$ to find $v$                 |
|          | $v = 6 \text{ ms}^{-1}$                                                                                              | A1    |                                                                                |
|          |                                                                                                                      | 2     |                                                                                |
| 6(ii)    | 0.4g - 5.6 = 0.4a                                                                                                    | M1    | Use Newton's second law for the particle in the vertical (3 terms)             |
|          | $a = -4 \text{ ms}^{-2}$                                                                                             | A1    |                                                                                |
|          | 0 = 6 - 4t                                                                                                           | M1    | Use of constant acceleration equation(s) such as $v = u + at$ to find <i>t</i> |
|          | t = 1.5  s                                                                                                           | A1    |                                                                                |
|          | Z                                                                                                                    | 4     |                                                                                |
| 6(iii)   | Straight line starting at (0,0) with positive gradient                                                               | B1    |                                                                                |
|          | Second straight line starting at end of the first line with negative gradient and ending with $v = 0$                | B1    |                                                                                |
|          | All correct, start at $(0, 0)$ with max velocity $v = 6$ at $t = 0.6$<br>i.e. $(0.6, 6)$ and finishing at $(2.1, 0)$ | B1FT  | FT on <i>their v</i> from (i) and/or <i>their t</i> from (ii)                  |
|          |                                                                                                                      | 3     |                                                                                |

| Question | Answer                                                    | Marks | Guidance                                                                                                         |
|----------|-----------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------|
| 7(i)     | $0.6t^2 - 0.12t^3 = 0$                                    | M1    | For attempting to solve $v = 0$                                                                                  |
|          | (t = 0  or) t = 5                                         | A1    |                                                                                                                  |
|          | $\int v  \mathrm{d}t = 0.2t^3 - 0.03t^4$                  | *M1   | For integrating the velocity                                                                                     |
|          | $OP = [0.2 \times 5^3 - 0.03 \times 5^4] - [0]$           | DM1   | Use limits to find <i>OP</i>                                                                                     |
|          | Distance = 6.25 m                                         | A1    | AG                                                                                                               |
|          | 9                                                         | 5     |                                                                                                                  |
| 7(ii)    | $k \times 5^3 + c \times 5^5 = 6.25$                      | B1    | Using $s = 6.25$ at $t = 5$ to set up equation in $k$ and $c$                                                    |
|          | $v = 3kt^2 + 5ct^4$                                       | *M1   | For differentiating <i>s</i> to find <i>v</i>                                                                    |
|          | $1.25 = 3k \times 5^2 + 5c \times 5^4$                    | DM1   | For using the given value of $v = 1.25$ in the expression for $v$                                                |
|          | 125k + 3125c = 6.25<br>75k + 3125c = 1.25                 | M1    | For attempting to solve a pair of simultaneous equations in $k$ and $c$ and finding a value of either $k$ or $c$ |
|          | k = 0.1, c = -0.002                                       | A1    |                                                                                                                  |
|          | Z                                                         | 5     |                                                                                                                  |
| 7(iii)   | $a = 0.6t - 0.04t^3$                                      | M1    | For differentiating their expression for <i>v</i>                                                                |
|          | At $t = 5$ , $a = -2$ Acceleration $= -2 \text{ ms}^{-2}$ | A1    |                                                                                                                  |
|          |                                                           | 2     |                                                                                                                  |



#### MATHEMATICS

9709/43 May/June 2019

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

#### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

**GENERIC MARKING PRINCIPLE 2:** 

Marks awarded are always whole marks (not half marks, or other fractions).

**GENERIC MARKING PRINCIPLE 3:** 

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.


#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
  otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
  marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

### <u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Question | Answer                                                                                                                                   | Marks | Guidance                               |
|----------|------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------|
| 1        | Trapezium                                                                                                                                | B1    | Includes (0,0) and (,0)                |
|          | (t = 0), t = 5, t = 29, t = 35                                                                                                           | B1    | Correct trapezium with key time values |
|          | $v_{max} = 2.1 \times 5 = 10.5 \text{ ms}^{-1}$                                                                                          | B1    |                                        |
|          | $[\frac{1}{2} \times (24 + 35) \times 10.5]$ or $[\frac{1}{2} \times 5 \times 10.5 + 24 \times 10.5 + \frac{1}{2} \times 6 \times 10.5]$ | M1    | Use of area property to find distance  |
|          | 309.75 m or 310 m                                                                                                                        | A1    |                                        |
|          | 9                                                                                                                                        | 5     |                                        |
|          |                                                                                                                                          |       |                                        |

| Question | Answer                                         | Marks | Guidance                            |
|----------|------------------------------------------------|-------|-------------------------------------|
| 2(i)     | [24cos25° – 12cos65°]                          | M1    | Resolving in <i>x</i> -direction    |
|          | 16.7 N                                         | A1    | (16.679)                            |
|          | [30 – 24sin25° – 12sin65°]                     | M1    | Resolving in <i>y</i> -direction    |
|          | 8.98 N                                         | A1    | (8.981)                             |
|          | ž                                              | 4     |                                     |
| 2(ii)    | $[\tan^{-1} \frac{8.98}{16.67}]$               | M1    | Uses trigonometry to find the angle |
|          | 28.3° (anticlockwise) from <i>x</i> -direction | A1    | (28.300) or equivalent              |
|          |                                                | 6     |                                     |

| Question | Answer                                                    | Marks | Guidance                             |
|----------|-----------------------------------------------------------|-------|--------------------------------------|
| 3(i)     |                                                           | M1    | Use of Newton's Second Law (4 terms) |
|          | $DF - 1550 - 1400gsin4^\circ = 1400 \times 0.4$           | A1    | ( <i>DF</i> = 3086.59)               |
|          | $[30000 = (1400 \times 0.4 + 1550 + 1400gsin4^{\circ})v]$ | M1    | Use of $P = Fv$                      |
|          | $v = 9.72 \text{ ms}^{-1}$                                | A1    |                                      |
|          |                                                           | 4     |                                      |
| 3(ii)    | $[DF - 1550 - 1400gsin4^\circ = 0]$                       | M1    | (DF = 2526.59) Resolving up the hill |
|          | $[P_{\max} = (1550 + 1400g\sin^{\circ}) \times 40]$       | M1    | Use of $P = Fv$                      |
|          | P = 101000  W or $101  kW$                                | A1    | (P = 101063.6)                       |
|          |                                                           | 3     |                                      |



9709/43

| Question | Answer                                                                                                                        | Marks | Guidance                                                                                     |
|----------|-------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------|
| 4(i)     | Particle A: $[1.3g - T = 1.3a]$ or Particle B: $[T - 0.7g = 0.7a]$                                                            | M1    | Use of Newton's Second law for <i>A</i> or <i>B</i> or use of $a = (m_A - m_B)g/(m_A + m_B)$ |
|          | 1.3g - T = 1.3a  and  T - 0.7g = 0.7a<br>OR $a = \frac{(1.3 - 0.7)g}{(1.3 + 0.7)}$ and $1.3g - T = 1.3a$ or $T - 0.7g = 0.7a$ | A1    | Two correct equations                                                                        |
|          | $[6=2a, a=3]$ or $[\frac{1.3g-T}{1.3} = \frac{T-0.7g}{0.7}, T=9.1]$                                                           | M1    | Solves for <i>a</i> or for <i>T</i>                                                          |
|          | $a = 3 \text{ ms}^{-2}$ and $T = 9.1 \text{ N}$                                                                               | A1    | (a=3)                                                                                        |
|          |                                                                                                                               | 4     |                                                                                              |
| 4(ii)    | Distance while connected = $0.375 \text{ m}$                                                                                  | B1    |                                                                                              |
|          | $[v^2 = 0^2 + 2 \times 3 \times 0.375 \rightarrow v =]$                                                                       | M1    | Use of <i>suvat</i> to find v at 'break' $(v^2 = 2as)$                                       |
|          | $v = 1.5 \text{ ms}^{-1}$                                                                                                     | A1    | Correct value or expression for v                                                            |
|          | $[A: 1.375 = 1.5t + \frac{1}{2}gt^2 \rightarrow t = 0.395]$                                                                   | M1    | Finds one time 'from break to floor'                                                         |
|          | [B: $1.375 = -1.5t + \frac{1}{2}gt^2$ or $-1.375 = 1.5t - \frac{1}{2}gt^2 \rightarrow t = 0.695$ ]                            | M1    | Finds second time 'from break to floor'                                                      |
|          | Difference in times = 0.3 s                                                                                                   | A1    |                                                                                              |
|          | Alternative Method 1 for 4(ii) (last 3 marks)                                                                                 |       |                                                                                              |
|          | $[u_B = 1.5, v_B = 0, a = -g, 0 = 1.5 - gt \rightarrow t = 0.15]$                                                             | M1    | Finds $t_B$ from 'break' to maximum height                                                   |
|          | Difference in times = $2 \times 0.15$                                                                                         | M1    |                                                                                              |
|          | Difference in times = $0.3$ s                                                                                                 | A1    |                                                                                              |

#### 9709/43

# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                                                                                                                                                                                                                      | Marks | Guidance                                            |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------|
| 4(ii)    | Alternative Method 2 for 4(ii) (last 3 marks)                                                                                                                                                                                                                               |       |                                                     |
|          | $\begin{bmatrix} A: & 0.375 = \frac{1}{2} \times 3t^2 \rightarrow t = 0.5 & 1.375 = 1.5t + \frac{1}{2}gt^2 \rightarrow t = \\ 0.395 & t_A \text{ total} = 0.5 + 0.395 = 0.895 \text{ s} \end{bmatrix}$                                                                      | M1    | Use of <i>suvat</i> to find total time for A        |
|          | $\begin{bmatrix} B: & 0.375 = \frac{1}{2} \times 3t^2 \rightarrow t = 0.5; & 0 = 1.5 - gt \rightarrow t = 0.15, \\ s = 1.5t - \frac{1}{2}gt^2 = 0.1125 & 1.4875 = \frac{1}{2} \times gt^2 \rightarrow t = 0.545 \\ t_{\rm B} \text{ total} = 1.195 \text{ s} \end{bmatrix}$ | M1    | Use of <i>suvat</i> to find total time for <i>B</i> |
|          | Difference in times = 0.3 s                                                                                                                                                                                                                                                 | A1    |                                                     |
|          |                                                                                                                                                                                                                                                                             | 6     |                                                     |
|          |                                                                                                                                                                                                                                                                             |       |                                                     |

| Question | Answer                                                                                                    | Marks      | Guidance                              |
|----------|-----------------------------------------------------------------------------------------------------------|------------|---------------------------------------|
| 5(i)     | (PE gain =) $18gd\sin 30^{\circ}$ or (KE loss =) $\frac{1}{2} \times 18 \times 20^{2}$                    | <b>B</b> 1 |                                       |
|          | (PE gain =) $18gd\sin 30^{\circ}$ and (KE loss =) $\frac{1}{2} \times 18 \times 20^{2}$                   | B1         |                                       |
|          | $[18gd\sin 30^\circ = \frac{1}{2} \times 18 \times 20^2]$ or $[18gh = \frac{1}{2} \times 18 \times 20^2]$ | M1         | Energy equation (PE gain = KE loss)   |
|          | Distance up plane = 40 m                                                                                  | A1         | S                                     |
|          | 24                                                                                                        | 4          |                                       |
| 5(ii)    | $R = 18 g \cos 30^{\circ}$ (90 $\sqrt{3}$ or 155.884)                                                     | <b>B</b> 1 |                                       |
|          | $[F = 0.25(18g\cos 30^{\circ})] \qquad (45\sqrt{3}/2 \text{ or } 38.971)$                                 | M1         | Use of $F = \mu R$                    |
|          | $[18gsin30^{\circ} + 0.25(18gcos30^{\circ}) = -18a \rightarrow a =] \qquad (a = -7.165)$                  | M1         | Newton's Second Law (3 term equation) |
|          | $[0^2 = 20^2 + 2 \times -7.165 \times s \longrightarrow s =]$                                             | M1         | Use of <i>suvat</i> to find <i>s</i>  |
|          | <i>s</i> = 27.913                                                                                         | A1         |                                       |

| Question | Answer                                                                                                   | Marks | Guidance                                            |
|----------|----------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------|
| 5(ii)    | $[18gsin30^{\circ} - 0.25(18gcos30^{\circ}) = 18a \rightarrow a =]$                                      | M1    | (a = 2.835) - Newton's Second Law (3 term equation) |
|          | $[v^2 = 0^2 + 2 \times 2.835 \times 27.913 \rightarrow v =]$                                             | M1    | Use of <i>suvat</i> to find <i>s</i>                |
|          | $v = 12.6 \text{ ms}^{-1}$                                                                               | A1    | (12.580)                                            |
|          | Alternative Method 1 for 5(ii)                                                                           |       |                                                     |
|          | $R = 18g\cos 30^{\circ}$ (90 $\sqrt{3}$ or 155.884)                                                      | B1    |                                                     |
|          | $[F = 0.25(18g\cos 30^\circ)]$ (45 $\sqrt{3}/2$ or 38.971)                                               | M1    | Use of $F = \mu R$                                  |
|          | [KE gain = $\frac{1}{2} \times 18 \times 20^2$ and PE loss = 18gh or 18gs(sin30°)]                       | M1    | Use of KE = $1/2 mv^2$ and PE = $mgh$               |
|          | $[\frac{1}{2} \times 18 \times 20^2 = 18gs(\sin 30^\circ) + 45\cos 30^\circ \times s]$                   | M1    | Work / Energy equation (up plane)                   |
|          | <i>s</i> = 27.913                                                                                        | A1    |                                                     |
|          | $[WD = 45\cos 30^{\circ} \times 27.91]$                                                                  | M1    | Work done against friction                          |
|          | $[\frac{1}{2} \times 18v^2 = (18gsin30^\circ) \times 27.91 45cos30^\circ \times 27.91]$                  | M1    | Work / Energy equation (down plane)                 |
|          | $v = 12.6 \text{ ms}^{-1}$                                                                               | A1    | (12.580)                                            |
|          | Alternative Method 2 for 5(ii) (last 3 marks)                                                            |       |                                                     |
|          | $[WD = 2 \times 45 \cos 30^{\circ} \times 27.91]$                                                        | M1    | WD against friction (up and down)                   |
|          | $[\frac{1}{2} \times 18 \times 20^2 - \frac{1}{2} \times 18v^2 = 2 \times 45\cos 30^\circ \times 27.91]$ | M1    | Uses KE loss = total WD against friction            |
|          | $v = 12.6 \text{ ms}^{-1}$                                                                               | A1    | (12.580)                                            |
|          |                                                                                                          | 8     |                                                     |

9709/43

### Cambridge International AS/A Level – Mark Scheme PUBLISHED

| Question | Answer                                                                                                                                                                      | Marks | Guidance                                                                             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------|
| 6(i)     | $[v = 6t^2/2 - 12t + C] \qquad v = 3t^2 - 12t + C$                                                                                                                          | *M1   | Use of $v = \int a dt$                                                               |
|          | $[s = 3t^{3}/3 - 12t^{2}/2 + Ct + D] \qquad s = t^{3} - 6t^{2} + Ct + D$                                                                                                    | *M1   | Use of $s = \int v dt$                                                               |
|          | $\begin{bmatrix} 5 = 1 - 6 + C + D & C + D = 10 \\ 1 = 27 - 54 + 3C + D & 3C + D = 28 & \rightarrow C = \dots, D = \dots \end{bmatrix}$                                     | DM1   | Substitutes for <i>s</i> and <i>t</i> and solves equations.<br>Dependent on both Ms. |
|          | $s = t^3 - 6t^2 + 9t + 1$ or $p = 9, q = 1$                                                                                                                                 | A1    |                                                                                      |
|          | 6                                                                                                                                                                           | 4     |                                                                                      |
| 6(ii)    | $[v = 0, 3t^{2} - 12t + 9 = 0(t - 1)(t - 3) = 0 \rightarrow t = \dots]$                                                                                                     | M1    | Solves $v = 0$ to find <i>t</i> values                                               |
|          | t = 1 or $t = 3$                                                                                                                                                            | A1    |                                                                                      |
|          |                                                                                                                                                                             | 2     |                                                                                      |
| 6(iii)   | $\left[\int_{0}^{1} v  dt + \int_{1}^{3} v  dt + \int_{3}^{4} v  dt\right]$                                                                                                 | M1    | Attempts to use at least three <i>t</i> intervals                                    |
|          | [For $0 \le t \le 1$ , $s = (1 - 6 + 9 + 1) - 1 = 4$ ]                                                                                                                      | M1    | Evaluates <i>s</i> for one time interval                                             |
|          | $\begin{bmatrix} 0 \le t \le 1, s = (1 - 6 + 9 + 1) - 1 = 4; 1 \le t \le 3, s = (27 - 54 + 27 + 1) - 5 = -4 \\ 3 \le t \le 4, s = (64 - 96 + 36 + 1) - 1 = 4 \end{bmatrix}$ | A1    | Correctly finds all at least two distances (ignoring signs)                          |
|          | Total distance is 12 m                                                                                                                                                      | A1    |                                                                                      |
|          |                                                                                                                                                                             | 4     |                                                                                      |



#### MATHEMATICS

9709/42 May/June 2019

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

**GENERIC MARKING PRINCIPLE 2:** 

Marks awarded are always whole marks (not half marks, or other fractions).

**GENERIC MARKING PRINCIPLE 3:** 

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.



#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
  otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
  marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

### <u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

9709/42

# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                                           | Marks | Guidance                                                                                                        |
|----------|--------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------|
| 1        | $[P \cos \theta = 32 \cos 20 - 17 \sin 55]$<br>[P \sin \theta = 40 + 17 \cos 55 - 32 \sin 20]    | M1    | Resolve forces horizontally or vertically<br>3 terms horizontally, 4 terms vertically                           |
|          |                                                                                                  | A1    | One correct                                                                                                     |
|          | TPR                                                                                              | A1    | Both correct<br>[ $P \sin \theta = 38.8062$ $P \cos \theta = 16.1446$ ]                                         |
|          | $P = \sqrt{\left(17\cos 55 - 32\sin 20 + 40\right)^2 + \left(32\cos 20 - 17\cos 35\right)^2}$    | M1    | Either use Pythagoras to find $P$<br>or use their value of $\theta$ to find $P$                                 |
|          | $\theta = \tan^{-1} \left[ \frac{(17\cos 55 - 32\sin 20 + 40)}{(32\cos 20 - 17\cos 35)} \right]$ | M1    | Either use trigonometry to find $\theta$<br>or use their value of P to find $\theta$<br>[tan $\theta$ = 2.4037] |
|          | $P = 42(.0)$ and $\theta = 67.4$                                                                 | A1    |                                                                                                                 |
|          |                                                                                                  | 6     |                                                                                                                 |



9709/42

# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question        | Answer                                                                                                                                                                                                           | Marks | Guidance                                                                                                                                                                                                                                                                                         |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2               | Possible equations include:<br>$t = 0$ to $t = 5 \rightarrow 80 = 5u + 12.5a$<br>$t = 0$ to $t = 8 \rightarrow 160 = 8u + 32a$<br>$t = 5$ to $t = 8 \rightarrow 80 = 3(u + 5a) + 4.5a$<br>i.e. $80 = 3u + 19.5a$ | M1    | Use the equation<br>$s = ut + \frac{1}{2}at^2$ to set up one equation in <i>u</i> and <i>a</i><br>or<br>using speeds as <i>u</i> (at <i>t</i> = 0), <i>u</i> + 5 <i>a</i> (at <i>t</i> = 5), <i>u</i> + 8 <i>a</i> (at <i>t</i> = 8)<br>and then apply $s = \frac{1}{2} \times (u + v) \times t$ |
|                 | $80 = 5u + \frac{1}{2} \times a \times 5^2  \rightarrow  5u + 12.5a = 80$                                                                                                                                        | A1    | One correct equation in $a$ and $u$                                                                                                                                                                                                                                                              |
|                 | $160 = 8u + 0.5a \times 8^2  \rightarrow  8u + 32a = 160$                                                                                                                                                        | A1    | Second correct equation in <i>a</i> and <i>u</i>                                                                                                                                                                                                                                                 |
|                 |                                                                                                                                                                                                                  | M1    | Attempt to solve a pair of valid simultaneous equations for $a$ or $u$                                                                                                                                                                                                                           |
|                 | $a = \frac{8}{3}$                                                                                                                                                                                                | A1    | Allow <i>a</i> = 2.67                                                                                                                                                                                                                                                                            |
|                 | $u = \frac{28}{3}$                                                                                                                                                                                               | A1    | Allow $u = 9.33$                                                                                                                                                                                                                                                                                 |
|                 | ź                                                                                                                                                                                                                | 6     | 5                                                                                                                                                                                                                                                                                                |
| 32. satprep.co' |                                                                                                                                                                                                                  |       |                                                                                                                                                                                                                                                                                                  |

| Question | Answer                                                             | Marks | Guidance                                                     |  |  |
|----------|--------------------------------------------------------------------|-------|--------------------------------------------------------------|--|--|
| 3        | $R = 13g \cos 22.6 = 13g \times (12/13), [R = 120]$                | B1    | Resolve perpendicular to the plane                           |  |  |
|          | $F = 0.3 \times 13g \cos 22.6 [F = 36]$                            | M1    | Using $F = \mu R$                                            |  |  |
|          | $T = F + 13g \sin 22.6 = F + 13g \times (5/13), [T = 86]$          | M1    | Apply Newton's second law parallel to the plane with $a = 0$ |  |  |
|          | $WD = T \times 2.5 [= 86 \times 2.5]$                              | M1    | $WD = T \times d$                                            |  |  |
|          | WD = 215 J                                                         | A1    |                                                              |  |  |
|          | Alternative method for question 3                                  |       |                                                              |  |  |
|          | $R = 13g \cos 22.6 = 13g \times (12/13), [R = 120]$                | B1    | Resolve perpendicular to the plane                           |  |  |
|          | $F = 0.3 \times 13g \cos 22.6 [F = 36]$                            | M1    | Using $F = \mu R$                                            |  |  |
|          | PE gain = $13 \times g \times 2.5 \times (5/13)$ [= 125]           | M1    | Attempt PE gain. Allow sin 22.6 for 5/13                     |  |  |
|          | [WD by $T = 13 \times g \times 2.5 \times (5/13) + F \times 2.5$ ] | M1    | Using WD by $T = PE$ gain + WD against $F$                   |  |  |
|          | WD by $T = 215 \text{ J}$                                          | A1    | C                                                            |  |  |
|          | 22                                                                 | 5     |                                                              |  |  |
|          | ·satpreP·                                                          |       |                                                              |  |  |

| Question | Answer                                                                                                   | Marks | Guidance                                                                                                   |
|----------|----------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------|
| 4        | $[1200 - 350 - 1250 \times 10 \times 0.05 = 1250a]$                                                      | M1    | Apply Newton's second law for motion up the hill                                                           |
|          | [a = 225/1250 = 0.18]                                                                                    | A1    | Correct Newton's law for motion up the hill                                                                |
|          | $[1200 - 350 + 1250 \times 10 \times 0.05 = 1250a]$                                                      | M1    | Apply Newton's second law for motion down the hill                                                         |
|          | [a = 1475/1250 = 1.18]                                                                                   | A1    | Correct Newton's law for motion down the hill                                                              |
|          | Up the hill: $v^2 = 0 + 2 \times 0.18 \times 100$<br>Down the hill: $v^2 = 0 + 2 \times 1.18 \times 100$ | M1    | Use their $a$ in the constant acceleration equations either to find $v$ going up or going down the hill    |
|          | Up the hill: $v = 6 \text{ ms}^{-1}$                                                                     | A1    |                                                                                                            |
|          | Down the hill: $v = 15.4 \text{ ms}^{-1}$                                                                | A1    | Allow $v = 2\sqrt{59}$                                                                                     |
|          | Alternative method for question 4                                                                        |       |                                                                                                            |
|          | $[1200 \times 100 = 350 \times 100 + 1250g \times 100 \times 0.05 + \frac{1}{2} \times 1250 \times v^2]$ | M1    | Attempt the work-energy equation for motion up the hill                                                    |
|          |                                                                                                          | A1    | Correct work-energy equation for motion up the hill                                                        |
|          | $[1200 \times 100 + 1250g \times 100 \times 0.05 = 350 \times 100 + \frac{1}{2} \times 1250 \times v^2]$ | M1    | Attempt work-energy equation for motion down the hill                                                      |
|          | The sector                                                                                               | A1    | Correct work-energy equation for motion down the hill                                                      |
|          | Salpre                                                                                                   | M1    | Attempt to solve either energy equation to find<br>either $v$ going up the hill or $v$ going down the hill |
|          | Up the hill: $v = 6 \text{ ms}^{-1}$                                                                     | A1    |                                                                                                            |
|          | Down the hill: $v = 15.4 \text{ ms}^{-1}$                                                                | A1    | Allow $v = 2\sqrt{59}$                                                                                     |
|          |                                                                                                          | 7     |                                                                                                            |

9709/42

### Cambridge International AS/A Level – Mark Scheme PUBLISHED

| Question | Answer                                                                   | Marks | Guidance                                                                                                                                                                              |
|----------|--------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5(i)     | A: $4 - T = 0.4a$<br>B: $T - 2 = 0.2a$<br>System: $4 - 2 = (0.4 + 0.2)a$ | M1    | Apply Newton' second law to particle <i>A</i> (3 terms)<br>or to particle <i>B</i> (3 terms)<br>or to the system (4 terms implied)                                                    |
|          |                                                                          | A1    | Two correct equations                                                                                                                                                                 |
|          | GATPA                                                                    | M1    | Either solve the system equation for $a$<br>or solve two simultaneous equations for $a$ or $T$<br>or verify the given value of $a$ by finding the same $T$ value in<br>both equations |
|          | $a = \frac{10}{3}, T = \frac{8}{3}$                                      | A1    | Both correct AG                                                                                                                                                                       |
|          |                                                                          | 4     |                                                                                                                                                                                       |
| 5(ii)    |                                                                          | M1    | Apply $v^2 = u^2 + 2as$ to particle <i>A</i> or particle <i>B</i> with $a = 10/3$                                                                                                     |
|          | $v^2 = 0 + 2 \times 10/3 \times 0.5$                                     | A1    | [v = 1.83  but not needed specifically]                                                                                                                                               |
|          | $0 = 10/3 - 2 \times 10 \times s$ $[s = \frac{1}{6}]$                    | M1    | Apply $v^2 = u^2 + 2as$ to particle <i>B</i> to find <i>s</i> , the distance<br>travelled by <i>B</i> after <i>A</i> has hit the ground                                               |
|          | Maximum height = $\frac{7}{6}$ = 1.17 m                                  | A1    | Maximum height = $1/2 + 1/2 + 1/6 = 7/6 = 1.17$                                                                                                                                       |
|          |                                                                          | 4     |                                                                                                                                                                                       |

| Question | Answer                                                                          | Marks | Guidance                                                                                                                |
|----------|---------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------|
| 6        | Case 1: $DF = 36000/18$<br>or<br>Case 2: $DF = 21000/12$                        | B1    | DF = P/v in either case                                                                                                 |
|          | 18A + B = DF<br>[36000/18 = 18A + B = 2000]                                     | M1    | Use DF = resistance (case 1)                                                                                            |
|          | 18A + B = 2000 oe                                                               | A1    | Correct equation, unsimplified                                                                                          |
|          | 12A + B = DF + weight component<br>[21000/12 = $12A + B + 1000 g \times 1/20$ ] | M1    | Use DF = resistance + weight component (case 2)                                                                         |
|          | 12A + B = 1250 oe                                                               | A1    | Correct equation, unsimplified                                                                                          |
|          |                                                                                 | DM1   | Solve two simultaneous equations in <i>A</i> and <i>B</i> only for <i>A</i> or <i>B</i> Dependent on both previous M1's |
|          | A = 125, B = -250                                                               | A1    | Both correct                                                                                                            |
|          |                                                                                 | 7     |                                                                                                                         |

| Question | Answer                                                                                                         | Marks | Guidance                                                                                                                                                                                                                         |
|----------|----------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(i)     | Straight line, reaching positive <i>v</i> -axis and positive <i>t</i> -axis (negative gradient)                | B1    |                                                                                                                                                                                                                                  |
|          | Quadratic (U shape, through (0,0) and cutting <i>t</i> -axis at $t < 5$ )                                      | B1    |                                                                                                                                                                                                                                  |
|          | Fully correct graphs with correct labelling with $t = 3$ , $t = 5$ , $v = 10$ , $v = 60$ seen                  | B1    |                                                                                                                                                                                                                                  |
|          | 6                                                                                                              | 3     |                                                                                                                                                                                                                                  |
| 7(ii)    | $s = \int (10 - 2t) dt = 10t - t^2 (+ c)$<br>or use area of a triangle $\frac{1}{2} \times 10 \times 5$ [= 25] | B1    | Use either integration to find $s$ for $Q$ or use a correct formula to find the area under the relevant triangle                                                                                                                 |
|          |                                                                                                                | M1    | Use integration to find the displacement for <i>P</i>                                                                                                                                                                            |
|          | $s = \int (6t^2 - 18t) dt = 2t^3 - 9t^2 (+c)$                                                                  | A1    | Correct integration for <i>P</i> (unsimplified)                                                                                                                                                                                  |
|          | $s(P) = \left[2t^{3} - 9t^{2}\right]_{0}^{5} = 25$<br>or solve<br>$10t - t^{2} = 2t^{3} - 9t^{2}$              | B1    | <b>Either</b><br>evaluation of $s(P)$ at $t = 5$ and show that at $t = 5$ , $s(P) = s(Q)$<br>= 25<br>or show that $t = 5$ is a solution of the cubic by solving<br>or verify $t = 5$ is a solution of the cubic by substitution. |
|          | satpre                                                                                                         | 4     |                                                                                                                                                                                                                                  |

| Question | Answer                                                | Marks | Guidance                                                                                                              |  |  |
|----------|-------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| 7(iii)   | Distance $PQ =  s_P - s_Q  = \pm (2t^3 - 8t^2 - 10t)$ | M1    | Find the distance between <i>P</i> and <i>Q</i> Allow either sign $s_P$ and $s_Q$ must have been found by integration |  |  |
|          | Maximum <i>s</i> if $6t^2 - 16t - 10 = 0$             | M1    | Differentiate to obtain an equation in <i>t</i> and attempt to solve                                                  |  |  |
|          | <i>t</i> = 3.19                                       | A1    |                                                                                                                       |  |  |
|          | Maximum Distance $PQ = (-)48.4 \text{ m}$             | A1    |                                                                                                                       |  |  |
|          | Alternative method for question 7(iii)                |       |                                                                                                                       |  |  |
|          | $6t^2 - 18t = 10 - 2t$                                | M1    | State that greatest distance between <i>P</i> and <i>Q</i> occurs when $v_P = v_Q$                                    |  |  |
|          | $6t^2 - 16t - 10 = 0$                                 | M1    | Rearrange and attempt to solve for <i>t</i>                                                                           |  |  |
|          | <i>t</i> = 3.19                                       | A1    |                                                                                                                       |  |  |
|          | Maximum Distance $PQ = (-)48.4$ m                     | A1    |                                                                                                                       |  |  |
|          |                                                       | 4     |                                                                                                                       |  |  |
|          |                                                       |       |                                                                                                                       |  |  |



#### MATHEMATICS

9709/41 May/June 2019

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

**GENERIC MARKING PRINCIPLE 1:** Marks must be awarded in line with: the specific content of the mark scheme or the generic level descriptors for the guestion the specific skills defined in the mark scheme or in the generic level descriptors for the question the standard of response required by a candidate as exemplified by the standardisation scripts. **GENERIC MARKING PRINCIPLE 2:** Marks awarded are always whole marks (not half marks, or other fractions). **GENERIC MARKING PRINCIPLE 3:** Marks must be awarded positively: marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate marks are awarded when candidates clearly demonstrate what they know and can do marks are not deducted for errors marks are not deducted for omissions answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous. **GENERIC MARKING PRINCIPLE 4:** 

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.



#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
  otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
  marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Question | Answer                                                                                                                                       | Mark | Guidance                                                                                                                                  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1        | $(X=) 78 \times 5/13 - 50 \times 3/5 = 78 \cos 67.4 - 50 \cos 53.1$<br>(Y=) 78 × 12/13 + 50 × 4/5 - 112<br>= 78 sin 67.4 + 50 sin 53.1 - 112 | M1   | Attempt to resolve forces either horizontally (2 terms) or vertically (3 terms)                                                           |  |
|          | $[X = 30 - 30 = 0 \ Y = 72 + 40 - 112 = 0]$                                                                                                  | A1   | Correct expressions horizontally and vertically                                                                                           |  |
|          | X = 0 and $Y = 0$                                                                                                                            | A1   | From convincing exact calculations                                                                                                        |  |
|          | Alternative method for question 1                                                                                                            |      |                                                                                                                                           |  |
|          | $\frac{112}{\sin 59.5} = \frac{50}{\sin 157.4} = \frac{78}{\sin 143.1}$                                                                      | M1   | Attempt to use Lami, one pair of terms                                                                                                    |  |
|          |                                                                                                                                              | A1   | All terms correct                                                                                                                         |  |
|          | $\frac{112}{56/65} = \frac{50}{5/13} = \frac{78}{3/5} = 130$                                                                                 | A1   | Exact values seen and used and shown to be = 130<br>$\cos [180 - (\theta + \alpha)] = 33/65$ and $\sin [180 - (\theta + \alpha)] = 56/65$ |  |
|          |                                                                                                                                              | 3    |                                                                                                                                           |  |

| Question | Answer         | Mark | Guidance                                                                                                                   |
|----------|----------------|------|----------------------------------------------------------------------------------------------------------------------------|
| 2(i)     | [0 = 25 - 10t] | M1   | Use of $v = u + at$ with $u = 25$ , $v = 0$ and $a = -g$<br>or other complete method for finding <i>t</i> to highest point |
|          | t = 2.5        | Al   |                                                                                                                            |
|          |                | 3    |                                                                                                                            |

| Question | Answer                                                                                                                                               | Mark         | Guidance                                                                                                                                 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 2(ii)    | $[20 = 25t - \frac{1}{2}gt^2]$                                                                                                                       | M1           | Applying $s = ut + \frac{1}{2}at^2$ with $s = 20$ , $u = 25$                                                                             |
|          | [t = 1  and  t = 4]                                                                                                                                  | M1           | Solve a 3-term quadratic for <i>t</i> , factorising or formula                                                                           |
|          | Required time = $4 - 1 = 3$ seconds                                                                                                                  | A1           |                                                                                                                                          |
|          | Alternative                                                                                                                                          | method for c | juestion 2(ii)                                                                                                                           |
|          | $[v^2 = 25^2 + 2 \times (-10) \times 20  \rightarrow  v = \pm 15]$                                                                                   | M1           | Using $v^2 = u^2 + 2as$ with $u = 25$ , $s = 20$ and $a = -g$                                                                            |
|          | [-15 = 15 - 10T] or equivalent                                                                                                                       | M1           | Use $v$ at $s = 20$ to find the time, $T$ , taken to reach the maximum height and to return to $s = 20$                                  |
|          | Required time = $1.5 + 1.5 = 3$ seconds                                                                                                              | A1           |                                                                                                                                          |
|          |                                                                                                                                                      | 3            |                                                                                                                                          |
| 2(iii)   | Max height reached at 2.5 s, hence reaches <i>h</i> after 2 s<br>$h-3 = 25 \times 2 - 5 \times 2^2$                                                  | M1           | Using their <i>t</i> from $2(i) - 0.5$ in $s = ut + \frac{1}{2}at^2$<br>Allow finding <i>h</i> without taking note of the additional 3 m |
|          | <i>h</i> = 33 m                                                                                                                                      | A1           |                                                                                                                                          |
|          | Alternative                                                                                                                                          | method for q | uestion 2(iii)                                                                                                                           |
|          | Maximum height = $\frac{1}{2} \times (25 + 0) \times 2.5$ [= 31.25] o.e.<br>In 0.5 s it falls distance $\frac{1}{2} \times 10 \times 0.5^2$ [= 1.25] | M1           | For attempting to find both the maximum height and the distance fallen in 0.5 seconds                                                    |
|          | h = 31.25 - 1.25 + 3 = 33  m                                                                                                                         | A1           |                                                                                                                                          |
|          |                                                                                                                                                      | 2            |                                                                                                                                          |

| Question | Answer                                                   | Mark | Guidance                                                         |
|----------|----------------------------------------------------------|------|------------------------------------------------------------------|
| 3(i)     | $DF = 1500 + 12\ 000 \times g \times 0.08\ [DF = 11100]$ | M1   | Using DF = Resistance + weight component (3 terms)               |
|          | Power = $DF \times 5$                                    | M1   | Using $P = Fv$ (their 2 term DF $\times$ 5)                      |
|          | Power = $11\ 100 \times 5 = 55.5\ kW$                    | A1   | AG                                                               |
|          |                                                          | 3    |                                                                  |
| 3(ii)    | $k \times 5^2 = 1500, k = 60$                            | B1   | AG                                                               |
|          | 9                                                        | 1    |                                                                  |
| 3(iii)   | $DF = 60v^2$                                             | B1   | Using DF = resistance = $60v^2$                                  |
|          | $55500 = DF \times v = 60v^2 \times v = 60v^3$           | M1   | P = Fv used and attempt to solve a 2-term cubic equation for $v$ |
|          | $v = 9.74 \text{ ms}^{-1}$                               | A1   |                                                                  |
|          |                                                          | 3    |                                                                  |

| Question | Answer                                  |                 | Mark       | Guidance                                               |
|----------|-----------------------------------------|-----------------|------------|--------------------------------------------------------|
| 4(i)     | $R = 13 \cos 67.4 = 13 (5/13)$          | [R = 5]         | B1         | Resolve forces perpendicular to plane. Allow 67.4 used |
|          | $F + 13 \sin 67.4 = F + 13(12/13) = 20$ | [ <i>F</i> = 8] | <b>B</b> 1 | Resolve forces parallel to plane. Allow 67.4 used      |
|          |                                         | Paip            | M1         | Use $F = \mu R$                                        |
|          | $\mu = 8/5 = 1.6$                       |                 | A1         | AG Must be from exact working here                     |
|          |                                         |                 | 4          |                                                        |

9709/41

# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question   | Answer                                                                                                 | Mark | Guidance                                                                                                               |  |
|------------|--------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------|--|
| 4(ii)      | $13 \sin 67.4 - F = 1.3a$<br>$F = \mu R = 8 \longrightarrow [4 = 1.3a]$                                | M1   | For applying Newton's second law along the plane and also<br>using $F = \mu R$ (3 terms)                               |  |
|            | $a = 3.08 \text{ ms}^{-2}$                                                                             | A1   | Allow $a = 40/13$                                                                                                      |  |
|            |                                                                                                        | 2    |                                                                                                                        |  |
| 4(iii)     | $s = 0 + 0.5 \times (40/13) \times 2^2 [= 80/13 = 6.15]$                                               | M1   | Use $s = ut + \frac{1}{2}at^2$ with $u = 0$ and their $a \neq \pm g$ to find the distance moved in the first 2 seconds |  |
|            | $WD = 8 \times 6.15$                                                                                   | M1   | $WD = F \times d$                                                                                                      |  |
|            | WD = 49.2 J                                                                                            | A1   | Allow WD = $640/13 \text{ J}$                                                                                          |  |
|            | uestion 4(iii)                                                                                         |      |                                                                                                                        |  |
|            | $s = 0 + 0.5 \times (40/13) \times 2^2 [= 80/13 = 6.15]$                                               | M1   |                                                                                                                        |  |
|            | $[v = (40/13) \times 2]$<br>and [WD = 1.3g(80/13)(12/13) - $\frac{1}{2} \times 1.3 \times (80/13)^2$ ] | M1   | Finding v after 2 seconds<br>and using WD = PE loss – KE gain                                                          |  |
|            | WD = 49.2 J                                                                                            | A1   | Allow WD = $640/13 \text{ J}$                                                                                          |  |
|            | 2                                                                                                      | 3    | 5                                                                                                                      |  |
| Satprep.00 |                                                                                                        |      |                                                                                                                        |  |

| Question | Answer                                                                                                                                                                                                    | Mark       | Guidance                                                                                                                                              |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5(i)     | a = 2t - 8                                                                                                                                                                                                | M1         | Differentiate to find <i>a</i>                                                                                                                        |
|          | $a = 0 \rightarrow t = 4$                                                                                                                                                                                 | M1         | Set $a = 0$ and solve for $t$                                                                                                                         |
|          | $Minimum v = -4 ms^{-1}$                                                                                                                                                                                  | A1         | Full marks available for correct use of a <i>v</i> - <i>t</i> graph<br>or correct use of " $t = -b/2a$ "                                              |
|          | Alternative                                                                                                                                                                                               | method for | question 5(i)                                                                                                                                         |
|          | $v = (t-4)^2 - 4$                                                                                                                                                                                         | M1         | Attempt to complete the square for <i>v</i>                                                                                                           |
|          | [t = 4]                                                                                                                                                                                                   | M1         | Choose the $t$ value which gives minimum $v$                                                                                                          |
|          | $Minimum v = -4 ms^{-1}$                                                                                                                                                                                  | A1         |                                                                                                                                                       |
|          |                                                                                                                                                                                                           | 3          |                                                                                                                                                       |
| 5(ii)    | v = 0 when $(t - 2)(t - 6) = 0$                                                                                                                                                                           | M1         | Find values of $t$ when $v = 0$ , factorise or formula                                                                                                |
|          | t = 2  or  t = 6                                                                                                                                                                                          | A1         |                                                                                                                                                       |
|          | $[s = \frac{1}{3}t^3 - 4t^2 + 12t(+c)]$                                                                                                                                                                   | M1         | Integrate v to find s                                                                                                                                 |
|          | 2                                                                                                                                                                                                         | A1         | Correct integration                                                                                                                                   |
|          | $0 \le t \le 2 \qquad s_1 = 8/3 - 16 + 24 = 32/3 2 \le t \le 6 \ s_2 = (216/3 - 144 + 72) - (8/3 - 16 + 24) = -32/3 6 \le t \le 8 s_3 = (512/3 - 4 \times 8^2 + 12 \times 8) - (216/3 - 144 + 72) = 32/3$ | M1<br>reP  | Attempt to find $s_1$ , $s_2$ and $s_3$<br>Look for consideration of the need for 3 intervals<br>Allow use of symmetry when finding $s_1$ , and $s_3$ |
|          |                                                                                                                                                                                                           | A1         | 2 correct values of displacement                                                                                                                      |
|          | Total distance = 32 m                                                                                                                                                                                     | A1         | All correct                                                                                                                                           |
|          |                                                                                                                                                                                                           | 7          |                                                                                                                                                       |

9709/41

# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                           | Mark | Guidance                                                |
|----------|----------------------------------------------------------------------------------|------|---------------------------------------------------------|
| 6(i)     | Particle A: $T = 4 \sin \theta$<br>Particle B: $T = 2$                           | M1   | Resolve forces for <i>A</i> and for <i>B</i>            |
|          |                                                                                  | M1   | Eliminate T and solve for $\theta$                      |
|          | $\theta = 30$                                                                    | A1   |                                                         |
|          | TE                                                                               | 3    |                                                         |
| 6(ii)(a) | A: $T-4 \sin 20 = 0.4a$<br>B: $2-T=0.2a$<br>System: $2-4 \sin 20 = (0.4 + 0.2)a$ | M1   | Apply Newton's second law to A or to B or to the system |
|          |                                                                                  | A1   | Two correct equations                                   |
|          |                                                                                  | M1   | Solve for <i>a</i> or <i>T</i>                          |
|          | T = 1.79 and $a = 1.05$                                                          | A1   | Both correct                                            |
|          |                                                                                  | 4    |                                                         |
| 6(ii)(b) | $v^2 = 2 \times 1.053 \times 0.5 = 1.053$                                        | M1   | Attempt to find <i>v</i> using their $a \neq \pm g$     |
|          | $v = 1.03 \text{ ms}^{-1}$                                                       | A1   | 2.                                                      |
|          | 24                                                                               | 2    |                                                         |

| Question | Answer                                                                                                       | Mark | Guidance                                                                                       |
|----------|--------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------|
| 6(ii)(c) | Loss in KE = $\frac{1}{2} \times 0.4 \times 1.053 = 0.2106$<br>Gain in PE = $0.4 \times 10 \times d \sin 20$ | M1   | Attempt KE loss or PE gain for particle <i>A</i> only after particle <i>B</i> hits the ground. |
|          |                                                                                                              | A1ft | Both correct, $d$ is distance moved up the plane after $B$ hits ground                         |
|          | $\frac{1}{2} \times 0.4 \times 1.053 = 0.4 \times 10 \times d \sin 20$                                       | M1   | Apply KE loss = PE gain                                                                        |
|          |                                                                                                              | A1   | FT Correct energy equation                                                                     |
|          | Total dist <i>A</i> moves up plane = $0.5 + d = 0.654$ m                                                     | A1   |                                                                                                |
|          |                                                                                                              | 5    |                                                                                                |





#### MATHEMATICS

9709/42 March 2019

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

**GENERIC MARKING PRINCIPLE 1:** Marks must be awarded in line with: the specific content of the mark scheme or the generic level descriptors for the question • the specific skills defined in the mark scheme or in the generic level descriptors for the question • the standard of response required by a candidate as exemplified by the standardisation scripts. • **GENERIC MARKING PRINCIPLE 2:** Marks awarded are always whole marks (not half marks, or other fractions). **GENERIC MARKING PRINCIPLE 3:** Marks must be awarded positively: marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the • scope of the syllabus and mark scheme, referring to your Team Leader as appropriate marks are awarded when candidates clearly demonstrate what they know and can do • marks are not deducted for errors . marks are not deducted for omissions answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the . question as indicated by the mark scheme. The meaning, however, should be unambiguous. **GENERIC MARKING PRINCIPLE 4:** 

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.



#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

#### <u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Question | Answer                         | Marks | Guidance                     |
|----------|--------------------------------|-------|------------------------------|
| 1        | $R = 2.5 \cos 15$              | B1    |                              |
|          | $[F = \mu \times 2.5 \cos 15]$ | M1    | Using $F = \mu R$            |
|          | $[2.5 \sin 15 = 0.03g + F]$    | M1    | Resolve forces along the rod |
|          | $\mu = 0.144$                  | A1    |                              |
|          |                                | 4     |                              |
|          |                                |       |                              |

| Question | Answer                             | Marks | Guidance                                                                                                          |
|----------|------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------|
| 2(i)     | $[0 = 30^2 + 2(-g)s]$              | M1    | Using $v^2 = u^2 + 2as$ with $v = 0$ ,<br>u = 30 and $a = -gFor any complete method for finding maximum height s$ |
|          | s = maximum height = 900/20 = 45 m | A1    | AG                                                                                                                |
|          |                                    | 2     |                                                                                                                   |

| March 2019 |
|------------|
|------------|

| Question | Answer                                                             | Marks     | Guidance                                                                                                                                  |
|----------|--------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 2(ii)    | $[33.75 = 30t - \frac{1}{2}gt^2]$                                  | M1        | Applying $s = ut + \frac{1}{2}at^2$ with $s = 33.75$ , $u = 30$ and $a = -g$                                                              |
|          | $[5t^2 - 30t + 33.75 = 0 \text{ or } 4t^2 - 24t + 27 = 0]$         | M1        | Solve a 3-term quadratic for <i>t</i>                                                                                                     |
|          | t = 1.5 (reject $t = 4.5$ )                                        | A1        |                                                                                                                                           |
|          | v = 30 - 1.5g = 15                                                 | B1ft      | Use $v = u + at$ with $u = 30$ and<br>t = 1.5<br>ft on <i>t</i> value found                                                               |
|          | Alternative method                                                 | for quest | ion 2(ii)                                                                                                                                 |
|          | $v^2 = 30^2 - 2g(33.75) = 225 \rightarrow v = 15$                  | B1        | Use $v^2 = u^2 + 2as$ with $u = 30$ ,<br>a = -g and $s = 33.75$ to find v                                                                 |
|          | $[33.75 = \frac{1}{2} (30 + 15) \times t]$<br>or $[15 = 30 - 10t]$ | M1        | Use $s = \frac{1}{2}(u + v) \times t$ with $s = 33.75$ , $u = 30$ and $v$ as found.<br>or Use $v = u - gt$ with $u = 30$ and $v$ as found |
|          |                                                                    | M1        | Solve for <i>t</i>                                                                                                                        |
|          | <i>t</i> = 1.5                                                     | A1ft      | ft on v value found                                                                                                                       |
|          | 2                                                                  | 4         |                                                                                                                                           |
|          | ".satpre                                                           | p.0       |                                                                                                                                           |

| Question | Answer                                                                       | Marks | Guidance                                             |
|----------|------------------------------------------------------------------------------|-------|------------------------------------------------------|
| 3        |                                                                              | M1    | Attempt to resolve forces horizontally or vertically |
|          | $F \cos \alpha = 15 \cos 20 - 5 (= 9.095)$                                   | A1    |                                                      |
|          | $F \sin \alpha = 15 \sin 20 + 25 (= 30.13)$                                  | A1    |                                                      |
|          | $F = \sqrt{\left(15\cos 20 - 5\right)^2 + \left(15\sin 20 + 25\right)^2}$    | M1    | Use Pythagoras or trigonometry to find $F$           |
|          | $\infty = \tan^{-1} \left[ \frac{(15\sin 20 + 25)}{(15\cos 20 - 5)} \right]$ | M1    | Use trigonometry to find $\alpha$                    |
|          | $\alpha = 73.2$ and $F = 31.5$                                               | A1    |                                                      |
|          |                                                                              | 6     | -                                                    |
|          |                                                                              |       |                                                      |

| Question | Answer                            | Marks | Guidance                                                 |
|----------|-----------------------------------|-------|----------------------------------------------------------|
| 4(i)     | Driving force = 6000/20 [= 300 N] | B1    | Using $F = P/v$                                          |
|          | R = 300 - 80 = 220                | B1ft  | Net force on system = $300 - R - 220 = 0$ ft on DF found |
|          | 52                                | 2     |                                                          |

March 2019

| Question | Answer                                                                                                                                 | Marks | Guidance                                                                                                                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4(ii)    | [New driving force DF = $12500/25 = 500$ N<br>Car: DF - T - R = $1500a$<br>Trailer: T - $80 = 300a$<br>System: DF - $80 - R = 1800a$ ] | M1    | Any one equation from the following:<br>Apply Newton's 2nd law to the car<br>Apply Newton's 2nd law to the trailer<br>Apply Newton's 2nd law to the system of car and trailer. |
|          | Two correct equations                                                                                                                  | A1ft  | Correct DF = 500 must be used. ft on $R$ value found                                                                                                                           |
|          | SATPR                                                                                                                                  | M1    | EITHER solve two dimensionally correct simultaneous equations in $a$ and $T$ to find $a$ or $T$ OR solve the system equation to find $a$                                       |
|          | $a = 0.111 \text{ m s}^{-2}$                                                                                                           | A1    | Allow $a = 1/9$                                                                                                                                                                |
|          | T = 113  N (= 113.3333)                                                                                                                | A1    | Allow $T = 340/3$                                                                                                                                                              |
|          |                                                                                                                                        | 5     |                                                                                                                                                                                |
|          |                                                                                                                                        |       |                                                                                                                                                                                |

| Question | Answer                                                                                         | Marks | Guidance                                                                             |
|----------|------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------|
| 5(i)     | Velocity at $t = 3$ is $3 \times 3 = 9$                                                        | B1    | C .                                                                                  |
|          | $[\frac{1}{2} \times 3 \times 9 + \frac{1}{2} (9+7) \times 2 + \frac{1}{2} \times 3 \times 7]$ | M1    | Attempt distance travelled in the first 8 seconds using Distance = area under graph. |
|          | Distance = 40 m                                                                                | A1    |                                                                                      |
|          |                                                                                                | 3     |                                                                                      |

March 2019

| Question | Answer                                                     | Marks | Guidance                                                                                                                               |
|----------|------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|
| 5(ii)    | [32 = 40 + area of triangle]                               | M1    | Use given displacement to set up equation for area of triangle<br>or attempt to find distance or displacement from $t = 8$ to $t = 16$ |
|          | Area of triangle or displacement/distance =<br>(-)8        | A1    |                                                                                                                                        |
|          | $[\text{Distance} = \frac{1}{2} \times 8 \times V = (-)8]$ | M1    | Set up an equation for the area of triangle involving <i>V</i> or use <i>suvat</i> equations to set up an equation involving <i>V</i>  |
|          | <i>V</i> = -2                                              | A1    |                                                                                                                                        |
|          |                                                            | 4     |                                                                                                                                        |



| Question | Answer                                                                             | Marks | Guidance                                                    |
|----------|------------------------------------------------------------------------------------|-------|-------------------------------------------------------------|
| 6(i)     | $\left[\int \left(0.4t^3 - 4.8t^{\frac{1}{2}}\right) \mathrm{d}t\right]$           | M1    | Attempt to integrate <i>a</i>                               |
|          | $v = 0.1t^4 - 3.2t^{\frac{3}{2}} (+c)$                                             | A1    |                                                             |
|          | $[v = 0 \to 0.1t^4 - 3.2t^{\frac{3}{2}} = 0]$                                      | DM1   | Attempt to solve $v = 0$ , and reach the form $t^{a/b} = k$ |
|          | $[t^{\frac{5}{2}} = 32]$                                                           | M1    | Attempt to solve an equation of the form $t^{a/b} = k$      |
|          | t = 4                                                                              | A1    |                                                             |
|          | $a = 16 \text{ m s}^{-2}$                                                          | B1    |                                                             |
|          |                                                                                    | 6     |                                                             |
| 6(ii)    | $[s = \int 0.1t^4 - 3.2t^{\frac{3}{2}} dt]$                                        | M1    | Attempt to integrate v                                      |
|          | Displacement = $\begin{bmatrix} 0 & 02t^5 - 1 & 28t^{\frac{5}{2}} \end{bmatrix}^5$ | A1    | Correct integration.                                        |
|          |                                                                                    | .00   |                                                             |
|          | Displacement = $-9.05 \text{ m} (-9.05417)$                                        | A1    |                                                             |
|          |                                                                                    | 3     |                                                             |

| Question | Answer                                                                                                                                      | Marks     | Guidance                                                                                                                          |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
| 7(i)     | $R = 0.25g \times 0.6$ [= 1.5]                                                                                                              | B1        |                                                                                                                                   |
|          | $[F = 0.5 \times 0.25g \times 0.6] [F = 0.75]$                                                                                              | M1        | Use $F = \mu R$                                                                                                                   |
|          | [WD against friction = $F \times 8$ ]                                                                                                       | M1        | Using WD = Force × distance moved in direction of force                                                                           |
|          | WD = 6 J                                                                                                                                    | A1        |                                                                                                                                   |
|          |                                                                                                                                             | 4         |                                                                                                                                   |
| 7(ii)    | $\begin{bmatrix} \frac{1}{2} \times 0.25 \times 15^2 = \\ \frac{1}{2} \times 0.25 \times v^2 + 6 + 0.25g \times 8 \times 0.8 \end{bmatrix}$ | M1        | Work-energy equation in the form<br>Initial KE = Final KE + WD against $F$ + PE gain                                              |
|          |                                                                                                                                             | A1ft      | Correct Work–Energy equation for the motion to $Q$ . ft on WD                                                                     |
|          |                                                                                                                                             | M1        | Solving the work-energy equation for <i>v</i>                                                                                     |
|          | $v = 7 \text{ m s}^{-1}$                                                                                                                    | A1        |                                                                                                                                   |
|          | Alternative method                                                                                                                          | for quest | ion 7(ii)                                                                                                                         |
|          | $[-F - 0.25g \sin \alpha = 0.25a]$                                                                                                          | M1        | Applying Newton's second law to the particle along the plane                                                                      |
|          | $a = -11 \text{ m s}^{-2}$                                                                                                                  | A1ft      | ft on friction found in (i)                                                                                                       |
|          |                                                                                                                                             | M1        | Finding the speed of the particle at <i>Q</i> by applying $v^2 = u^2 + 2as$ with $u = 15$ , $s = 8$ or equivalent complete method |
|          | $v = 7 \text{ m s}^{-1}$                                                                                                                    | A1        |                                                                                                                                   |
|          |                                                                                                                                             | 4         |                                                                                                                                   |

| Question | Answer                                                                                                                                                                       | Marks | Guidance                                                                              |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|--|--|
| 7(iii)   | $\begin{bmatrix} 1/_2 \times 0.25 \times 7^2 = 0.25 \times g \times H \end{bmatrix}$<br>Or<br>$\begin{bmatrix} 1/_2 \times m \times 7^2 = m \times g \times H \end{bmatrix}$ | M1    | KE lost from $Q$ to $R$ = PE gain from $Q$ to $R$<br>H is the height of $R$ above $Q$ |  |  |
|          | $H = 7^2/2g = 2.45 \text{ m}$                                                                                                                                                | A1    |                                                                                       |  |  |
|          | Total height $h = 6.4 + H = 8.85$                                                                                                                                            | A1    |                                                                                       |  |  |
|          | Alternative method for question 7(iii)                                                                                                                                       |       |                                                                                       |  |  |
|          | $[\frac{1}{2} \times 0.25 \times 15^2 = 6 + 0.25g \times h]$                                                                                                                 | M1    | Work-energy from <i>P</i> to <i>R</i>                                                 |  |  |
|          |                                                                                                                                                                              | A1    | Correct Work-energy equation from <i>P</i> to <i>R</i>                                |  |  |
|          | h = 8.85                                                                                                                                                                     | A1    | -                                                                                     |  |  |
|          |                                                                                                                                                                              | 3     |                                                                                       |  |  |



March 2019



#### MATHEMATICS

9709/43 October/November 2018

Paper 4 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

#### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

**GENERIC MARKING PRINCIPLE 1:** Marks must be awarded in line with: the specific content of the mark scheme or the generic level descriptors for the question • the specific skills defined in the mark scheme or in the generic level descriptors for the question • the standard of response required by a candidate as exemplified by the standardisation scripts. • **GENERIC MARKING PRINCIPLE 2:** Marks awarded are always whole marks (not half marks, or other fractions). **GENERIC MARKING PRINCIPLE 3:** Marks must be awarded positively: marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the • scope of the syllabus and mark scheme, referring to your Team Leader as appropriate marks are awarded when candidates clearly demonstrate what they know and can do • marks are not deducted for errors . marks are not deducted for omissions answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the . question as indicated by the mark scheme. The meaning, however, should be unambiguous. **GENERIC MARKING PRINCIPLE 4:** 

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

#### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

#### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.



#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
  otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
  marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

#### <u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Question | Answer                         |    | Guidance               |
|----------|--------------------------------|----|------------------------|
| 1        | $[T\sin 70 + T\sin 45 = 0.2g]$ | M1 | Resolving vertically   |
|          | T = 1.21  N (1.21447)          | A1 |                        |
|          | $[P + T\cos 70 = T\cos 45]$    | M1 | Resolving horizontally |
|          | $P = 0.443 \ (0.443389)$       | A1 |                        |
|          |                                | 4  |                        |
|          |                                |    |                        |

| Question | Answer                                | Marks | Guidance                              |  |
|----------|---------------------------------------|-------|---------------------------------------|--|
| 2        | $R = mg + 50\sin 20$                  | B1    |                                       |  |
|          | $[F = 0.3(mg + 50\sin 20)]$           | M1    | Use of $F = \mu R$                    |  |
|          |                                       | M1    | Resolving horizontally                |  |
|          | $50\cos 20 - 0.3(mg + 50\sin 20) = 0$ | A1ft  | ft $R$ ( $R$ containing term in $m$ ) |  |
|          | $m = 14.0 \mathrm{kg} (13.9514)$      | A1    |                                       |  |
|          | 3, 0'                                 | 5     |                                       |  |
| Satprep. |                                       |       |                                       |  |

# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                                          | Marks | Guidance                                  |
|----------|-------------------------------------------------------------------------------------------------|-------|-------------------------------------------|
| 3(i)     | $[\frac{1}{2} \times 1.2 \times 7.5^2 - \frac{1}{2} \times 1.2 \times v^2 = 25]$                | M1    | For use of KE and 25 in a 3 term equation |
|          | $v = 3.82 \mathrm{m  s^{-1}} (3.81881)$                                                         | A1    |                                           |
|          |                                                                                                 | [2]   |                                           |
| 3(ii)    | 1.2gdsin30                                                                                      | B1    | Correct expression for PE                 |
|          | $[\frac{1}{2} \times 1.2 \times 7.5^2 - 25 + 1.2gd\sin 30 = \frac{1}{2} \times 1.2 \times 9^2]$ | M1    | For 4 term work / energy equation         |
|          | d = 6.64  m (6.64166)                                                                           | A1    |                                           |
|          |                                                                                                 | 3     |                                           |
|          |                                                                                                 |       |                                           |

| Question | Answer                                                                                                                       | Marks | Guidance                                       |
|----------|------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|
| 4(i)     |                                                                                                                              | B1    | Three correct straight lines                   |
|          | $v = 6 \text{ m s}^{-1}$ , $t = 5 \text{ s and } t = 17 \text{ s}$                                                           | B1    | Correct trapezium with key values              |
|          | $[\frac{1}{2} \times 6 \times (12 + 20)]$ or $[\frac{1}{2} \times 5 \times 6 + 12 \times 6 + \frac{1}{2} \times 3 \times 6]$ | M1    | Use of trapezium area or use of suvat formulae |
|          | Total distance = 96 m                                                                                                        | A1    | AG                                             |
|          | SatpreP                                                                                                                      | 4     |                                                |

# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                           | Marks | Guidance                                                                                |
|----------|------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------|
| 4(ii)    | $[\frac{1}{2} \times 20 \times v = 96]$                          | M1    | Uses area of triangle = 96 or uses<br>$s = ut + \frac{1}{2} at^2$ to form equation in a |
|          | $v = 9.6 \text{ m s}^{-1} \text{ or } 48 = \frac{1}{2} a (10)^2$ | A1    |                                                                                         |
|          | Acceleration = $9.6 / 10 = 0.96 \text{ m s}^{-2}$                | A1    |                                                                                         |
|          | TPRA                                                             | 3     |                                                                                         |
|          |                                                                  |       |                                                                                         |

| Question | Answer                                                                     |    | Guidance                                                                                          |
|----------|----------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------|
| 5(i)     | [T - 0.3g = 0.3a  or  0.5g - T = 0.5a]                                     | M1 | Use of Newton's second law for <i>P</i> or <i>Q</i> or<br>use of $a = (m_Q - m_P)g / (m_P + m_Q)$ |
|          | T - 0.3g = 0.3a and $0.5g - T = 0.5a$ or $a = (0.5g - 0.3g) / (0.5 + 0.3)$ | A1 |                                                                                                   |
|          | [0.5g - 0.3g = 0.8a]                                                       | M1 | Solve for <i>a</i>                                                                                |
|          | <i>a</i> = 2.5                                                             | A1 |                                                                                                   |
|          | $[h = 0 + \frac{1}{2} \times 2.5 \times 0.6^2]$                            | M1 | For use of $s = ut + \frac{1}{2}at^2$                                                             |
|          | <i>h</i> = 0.45                                                            | A1 |                                                                                                   |
|          | ·satprep·                                                                  | 6  |                                                                                                   |

## Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                           |    | Guidance                                          |
|----------|----------------------------------------------------------------------------------|----|---------------------------------------------------|
| 5(ii)    | Velocity of P when Q reaches floor = $0 + 0.6 \times 2.5 = 1.5 \text{ m s}^{-1}$ |    | ft <i>a</i> from (i) × 0.6                        |
|          | $[0 = 1.5 - gt \to t = \dots] (t = 0.15)$                                        | M1 | Use of <i>suvat</i> to find time to highest point |
|          | Total time = $2 \times 0.15 + 0.6 = 0.9$ s                                       | A1 |                                                   |
|          | E DD                                                                             | 3  |                                                   |
|          |                                                                                  |    |                                                   |

| Question | Answer                                     | Marks | Guidance                   |
|----------|--------------------------------------------|-------|----------------------------|
| 6(i)     | Driving force = 36000 / 20                 | B1    | For use of power = $Fv$    |
|          | $[36000 / 20 - R = 3200 \times 0.2]$       | M1    | Use of Newton's Second Law |
|          | R = 1160  N                                | A1    |                            |
|          |                                            | [3]   |                            |
| 6(ii)    | Driving force $F = 3200gsin1.5 + 1160$     | M1    | Resolving along plane      |
|          | $[Power = (3200gsin1.5 + 1160) \times 30]$ | M1    | Use of $P = Fv$            |
|          | Power = 59900 W (59929.87)                 | A1    |                            |
|          | ··satprep·                                 | 3     |                            |

| Question | Answer                                                        | Marks | Guidance                           |
|----------|---------------------------------------------------------------|-------|------------------------------------|
| 6(iii)   | [-(3200gsin1.5 + 1160) = 3200a]                               | M1    | Use of Newton's Second Law         |
|          | (a = -0.62426)                                                | A1    |                                    |
|          | $[0^2 = 30^2 + 2as]$                                          | M1    | Use of $v^2 = u^2 + 2as$ to find s |
|          | Distance $s = 721 \text{ m} (720.84)$                         | A1    |                                    |
|          |                                                               | 4     |                                    |
|          | OR:                                                           |       |                                    |
| 6(iii)   | $[3200gsin1.5s]$ or $[\frac{1}{2} \times 3200 \times 900]$    | M1    | For PE gain or KE loss             |
|          | $3200gsin1.5s$ and $\frac{1}{2} \times 3200 \times 900$       | A1    | For PE gain and KE loss            |
|          | $[\frac{1}{2} \times 3200 \times 900 = 1160s + 3200gsin1.5s]$ | M1    | For work / energy equation         |
|          | Distance $s = 721 \text{ m} (720.84)$                         | A1    |                                    |
|          |                                                               | 4     |                                    |

|          | 4                                                    |       |                           |
|----------|------------------------------------------------------|-------|---------------------------|
| Question | Answer                                               | Marks | Guidance                  |
| 7(i)     | Acceleration = 0 when $t = 5$ from $25 - t^2 = 0$    | B1    |                           |
|          | $[v = 25t - \frac{1}{3}t^3]$                         | M1    | Use of integration        |
|          | $[Max speed = 25 \times 5 - \frac{1}{3} \times 5^3]$ | M1    | Substitution for <i>t</i> |
|          | Max speed = $83^{1/3}$ m s <sup>-1</sup>             | A1    |                           |
|          |                                                      | 4     |                           |

# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                                                           | Marks | Guidance                                |
|----------|------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------|
| 7(ii)    | $[s = 12^{1/2}t^{2} - \frac{1}{12}t^{4}]$                                                                        | M1    | Use of integration                      |
|          | Distance = $260 \text{ m} (260.4166)$                                                                            | A1    |                                         |
|          |                                                                                                                  | 2     |                                         |
| 7(iii)   | At $t = 9$ , $v = 25 \times 9 - \frac{1}{3} \times 9^3 = -18$                                                    | B1ft  | ft <i>v</i> from (i)                    |
|          | $\left[s = \int_{9}^{25} \left(-3t^{-\frac{1}{2}}\right) dt = \left[-6t^{\frac{1}{2}}\right]\right]$             | M1    | Use of integration                      |
|          | [Change in velocity from $t = 9$ to $t = 25 = \left[-6t^{\frac{1}{2}}\right] = -6 \times 5 + 6 \times 3 = -12$ ] | M1    | Substituting limits                     |
|          | Velocity at $t = 25$ is $-18 - 12 = -30$ m s <sup>-1</sup>                                                       | A1    |                                         |
|          |                                                                                                                  | 4     |                                         |
|          | OR:                                                                                                              |       |                                         |
| 7(iii)   | At $t = 9$ , $v = 25 \times 9 - \frac{1}{3} \times 9^3 = -18$                                                    | B1ft  | ft <i>v</i> from (i)                    |
|          | $[s = \int -3t^{-1/2} dt = -6t^{1/2} (+C)]$                                                                      | M1    | Use of integration                      |
|          | $[t=9, v=-18 \rightarrow C=0, t=25, v=-6 \times 25^{\frac{1}{2}}]$                                               | M1    | Finds <i>C</i> and substitutes $t = 25$ |
|          | Velocity at $t = 25$ is $-30$ m s <sup>-1</sup>                                                                  | A1    |                                         |
|          |                                                                                                                  | 4     |                                         |



#### MATHEMATICS

9709/42 October/November 2018

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

#### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

**GENERIC MARKING PRINCIPLE 1:** Marks must be awarded in line with: the specific content of the mark scheme or the generic level descriptors for the question • the specific skills defined in the mark scheme or in the generic level descriptors for the question • the standard of response required by a candidate as exemplified by the standardisation scripts. • **GENERIC MARKING PRINCIPLE 2:** Marks awarded are always whole marks (not half marks, or other fractions). **GENERIC MARKING PRINCIPLE 3:** Marks must be awarded positively: marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the • scope of the syllabus and mark scheme, referring to your Team Leader as appropriate marks are awarded when candidates clearly demonstrate what they know and can do • marks are not deducted for errors • marks are not deducted for omissions answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the . guestion as indicated by the mark scheme. The meaning, however, should be unambiguous. **GENERIC MARKING PRINCIPLE 4:** 

descriptors.

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level

#### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

#### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.



#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
  otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
  marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

#### <u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Question | Answer                                                                                                                                              | Marks | Guidance                                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------|
| 1        | $[T\cos 45 + T\cos 45 = 2.5\cos 45]$                                                                                                                | M1    | For resolving horizontally                                  |
|          | T = 1.25  N                                                                                                                                         | A1    |                                                             |
|          | $[2.5 \sin 45 = mg]$                                                                                                                                | M1    | For resolving vertically                                    |
|          | Mass of ring = 0.177 kg                                                                                                                             | A1    | Allow $m = \sqrt{2/8}$                                      |
|          | First alternative method for Q1                                                                                                                     |       |                                                             |
|          | $[2.5 = T + mg \cos 45]$                                                                                                                            | M1    | Resolve forces along BR                                     |
|          | $[T = mg\cos 45]$                                                                                                                                   | M1    | Resolve forces perpendicular to BR and eliminate $T$ or $m$ |
|          | T = 1.25  N                                                                                                                                         | A1    |                                                             |
|          | Mass of ring = $0.177$ kg                                                                                                                           | A1    | Allow $m = \sqrt{2/8}$                                      |
|          | Second alternative method for Q1                                                                                                                    |       |                                                             |
|          | or<br>$\frac{2T\cos 45}{\sin 135} = \frac{2.5}{\sin 90} = \frac{mg}{\sin 135}$ $\frac{2.5 - T}{\sin 135} = \frac{T}{\sin 135} = \frac{mg}{\sin 90}$ |       | Attempt to apply Lami's theorem,                            |
|          |                                                                                                                                                     | M1    | All three terms of Lami attempted                           |
|          | T = 1.25 N                                                                                                                                          | A1    |                                                             |
|          | Mass of ring = $0.177$ kg                                                                                                                           | A1    | Allow $m = \sqrt{2/8}$                                      |
|          |                                                                                                                                                     | 4     |                                                             |

| Question | Answer                       | Marks | Guidance                      |
|----------|------------------------------|-------|-------------------------------|
| 2        | $R = 5g\cos 6$               | B1    |                               |
|          | $[F = 0.3 \times 5g \cos 6]$ | M1    | Use of $F = \mu R$            |
|          | $[T = 5g\sin 6 + F]$         | M1    | For resolving along the plane |
|          | T = 20.1  N (20.14425)       | A1    |                               |
|          |                              | 4     |                               |



## Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question        | Answer                                               | Marks | Guidance                                                                                      |
|-----------------|------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------|
| 3(i)            | Acceleration = $-1 \text{ m s}^{-2}$                 | B1    | Allow deceleration = $1 \text{ m s}^{-2}$                                                     |
|                 |                                                      | 1     |                                                                                               |
| 3(ii)           | [V/4 = 1  or  (V+2)/6 = 1]                           | M1    | Use of gradient of line between $t = 4$ and $t = 10$ or use of similar triangles to find V    |
|                 | <i>V</i> = 4                                         | A1    | RA                                                                                            |
|                 | 9                                                    | 2     |                                                                                               |
| 3(iii)          | [Distance = Area = $\frac{1}{2}(6+2) \times 2 = 8$ ] | M1    | Attempt distance travelled in first 6 seconds                                                 |
|                 | Distance $AB = 3 \times 8 = 24$ m                    | A1    |                                                                                               |
|                 | $[\frac{1}{2} \times (T-6) \times 4 = 24]$           | M1    | Attempt to find the distance travelled from $t = 6$ to $t = T$ and set up an equation for $T$ |
|                 | <i>T</i> = 18                                        | A1    |                                                                                               |
|                 |                                                      | 4     |                                                                                               |
| 32. satprep.co. |                                                      |       |                                                                                               |

### Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question      | Answer                                                                                                                                                        | Marks | Guidance                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------|
| 4(i)          | T = 0.7g                                                                                                                                                      | B1    |                                                                                          |
|               | $R = 0.4g \times \frac{4}{5} [= \frac{16}{5} = 3.2]$                                                                                                          | B1    | Normal reaction on particle P                                                            |
|               | $[X + 0.4g \times {}^{3}/_{5} - F - T = 0]$                                                                                                                   | M1    | Attempt to resolve forces along the plane                                                |
|               | <i>X</i> = 6.2                                                                                                                                                | A1    | AG                                                                                       |
|               |                                                                                                                                                               | 4     |                                                                                          |
| 4(ii)         | [0.7g - T = 0.7a]<br>[T - 0.8 - 0.4g × <sup>3</sup> / <sub>5</sub> - F = 0.4a]<br>[0.7g - 0.8 - 0.4g × <sup>3</sup> / <sub>5</sub> - F = (0.7 + 0.4)a] System | M1    | For using Newton's 2nd law for both particle $P$ and particle $Q$ or the system equation |
|               |                                                                                                                                                               | A1    | Both equations correct or system equation correct                                        |
|               |                                                                                                                                                               | M1    | Solve either the system equation or solve two simultaneous equations to find $a$         |
|               | $a = 2 \text{ m s}^{-2}$                                                                                                                                      | A1    |                                                                                          |
|               | 3                                                                                                                                                             | 4     | 5                                                                                        |
| 2. satprep.00 |                                                                                                                                                               |       |                                                                                          |

### Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                    | Marks | Guidance                                                                                                                               |
|----------|-----------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|
| 5(i)     | $[1.2T^{1/2} - 0.6T = 0]$                                 | M1    | Attempt to find time of maximum $v$ , set $a = 0$ and solve for $T$                                                                    |
|          | $T^{1/2} = 2 \longrightarrow T = 4$                       | A1    |                                                                                                                                        |
|          |                                                           | 2     |                                                                                                                                        |
| 5(ii)    | $[da/dt = 0.6t^{1/2} - 0.6]$                              | M1    | Attempt to differentiate a                                                                                                             |
|          | <i>t</i> = 1                                              | A1    | Solve $da/dt = 0$ and find $t$                                                                                                         |
|          | $[v = 0.8t^{3/2} - 0.3t^2 (+ C)]$                         | M1    | Attempt to integrate <i>a</i> to find <i>v</i>                                                                                         |
|          |                                                           | A1    | Correct integration                                                                                                                    |
|          | [ <i>C</i> = 1]                                           | M1    | Use $v = 1$ at $t = 0$ either finding C or by using limits as<br>$v(1) - v(0) = [0.8(1)^{3/2} - 0.3(1)^2] - [0.8(0)^{3/2} - 0.3(0)^2]$ |
|          | Velocity when acceleration is max is 1.5 ms <sup>-1</sup> | A1    | v = 1.5                                                                                                                                |
|          |                                                           | 6     |                                                                                                                                        |

### Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                          | Marks | Guidance                                                                                            |
|----------|-------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------|
| 6(i)     | Power = $350 \times 15 = 5250$ W                | B1    | Allow 5.25 kW                                                                                       |
|          |                                                 | 1     |                                                                                                     |
| 6(ii)    |                                                 | B1    | Using Driving force $DF = P/15$                                                                     |
|          | $DF + 1200g \sin 1 - 350 = 1200 \times 0.12$    | M1    | For using Newton's 2nd law down the slope                                                           |
|          | P = 4270  W (4268.56)                           | A1    |                                                                                                     |
|          |                                                 | 3     |                                                                                                     |
| 6(iii)   | $[1200g \sin 1 - 350 = 1200a]$                  | M1    | Using Newton's 2nd law down the slope                                                               |
|          |                                                 | A1    | Correct equation                                                                                    |
|          | $[18^2 = 20^2 + 2as]$                           | M1    | Using constant acceleration formulae with a complete method to find distance, <i>s</i> , travelled. |
|          | Distance travelled $s = 324 \text{ m} (324.39)$ | A1    |                                                                                                     |

| Question | Answer                                                                                        | Marks | Guidance                              |
|----------|-----------------------------------------------------------------------------------------------|-------|---------------------------------------|
| 6(iii)   | Alternative method for Q6(iii)                                                                |       |                                       |
|          | PE loss = $1200g \times s \sin 1$<br>KE loss = $\frac{1}{2} \times 1200 \times (20^2 - 18^2)$ | M1    | Attempt either PE loss or KE loss     |
|          |                                                                                               | A1    | Both PE loss and KE loss correct      |
|          | $[1200g \times s \sin 1 + \frac{1}{2} \times 1200 \times (20^2 - 18^2) = 350s]$               | M1    | Apply work-energy equation to the car |
|          | Distance travelled $s = 324 \text{ m} (324.39)$                                               | A1    |                                       |
|          |                                                                                               | 4     |                                       |



| Question | Answer                                                                                     | Marks | Guidance                                                                                              |
|----------|--------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------|
| 7(i)     | At liquid surface, speed = $0 + g \times 0.8$ [= 8]                                        | B1    | Using constant acceleration equation $v = u + at$                                                     |
|          | or<br>$0.3g \times \frac{1}{2} (0+v) \times 0.8 = \frac{1}{2} (0.3) v^2 \rightarrow v = 8$ |       | or<br>PE loss = KE gain                                                                               |
|          | PE lost in water = $0.3g \times 1.25$ [ = 3.75]                                            | B1    |                                                                                                       |
|          | $[\frac{1}{2} \times 0.3 \times (8^2 - v^2) + 0.3g \times 1.25 = 1.2]$                     | M1    | Using work-energy for downward motion in the tank<br>PE loss + KE loss = Work done against resistance |
|          | $v = 9 \text{ m s}^{-1}$                                                                   | A1    |                                                                                                       |
|          | Alternative method for Q7(i)                                                               |       |                                                                                                       |
|          | Height above $tank = \frac{1}{2} \times g \times 0.8^2 [= 3.2]$                            | B1    |                                                                                                       |
|          | Total PE loss = $0.3g \times (3.2 + 1.25)$ [= 13.35]                                       | B1    |                                                                                                       |
|          | $[0.3g \times (3.2 + 1.25) = \frac{1}{2} \times 0.3 \times v^2 + 1.2]$                     | M1    | Work-energy equation for the total downward motion                                                    |
|          | $v = 9 \text{ m s}^{-1}$                                                                   | A1    |                                                                                                       |
|          | Z.                                                                                         | 4     |                                                                                                       |
| Satprep. |                                                                                            |       |                                                                                                       |

| Question | Answer                                              | Marks | Guidance                                                                                                                              |
|----------|-----------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------|
| 7(ii)    | [-0.3g - 1.8 = 0.3a]                                | M1    | Using Newton's 2nd law for the upward motion in the tank                                                                              |
|          | <i>a</i> = -16                                      | A1    |                                                                                                                                       |
|          | $[1.25 = 7T + \frac{1}{2} \times (-16) \times T^2]$ | M1    | Using constant acceleration equations to find the time, $T$ , for the particle to travel from the bottom to the surface of the liquid |
|          | T = 0.25 (or 0.625, on the way down)                | A1    | 24                                                                                                                                    |
|          | [v at surface = $7 + (-16) \times 0.25 = 3$ ]       | B1    | Using $v = u + aT$ or equivalent to find v at surface                                                                                 |
|          | $[0=3-gt \to t=0.3]$                                | M1    | Attempt to find the time, <i>t</i> , taken for the particle to travel from the surface to reach maximum height using their $v \neq 7$ |
|          | Total time = $T + t = 0.55$ s                       | A1    |                                                                                                                                       |



| Question | Answer                                                         | Marks      | Guidance                                                                                                                                                     |
|----------|----------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(ii)    | Alternative method for Q7(ii)                                  |            |                                                                                                                                                              |
|          | [-0.3g - 1.8 = 0.3a]                                           | M1         | Using Newton's 2nd law for the upward motion in the tank                                                                                                     |
|          | <i>a</i> = -16                                                 | A1         |                                                                                                                                                              |
|          | $v^2 = 7^2 + 2 \times (-16) \times 1.25 = 9 \rightarrow v = 3$ | <b>B</b> 1 | Using constant acceleration equations to find $v$ at the surface                                                                                             |
|          | $1.25 = \frac{1}{2} (7+3) \times T$<br>or 3 = 7 + (-16) × T    | M1         | Using $s = \frac{1}{2}(u + v) \times T$ or $v = u + aT$ to find the time, <i>T</i> , for the particle to travel from the bottom to the surface of the liquid |
|          | <i>T</i> = 0.25                                                | A1         |                                                                                                                                                              |
|          | $[0=3-gt \to t=0.3]$                                           | M1         | Attempt to find the time, <i>t</i> , taken for the particle to travel from the surface to reach maximum height using their $v \neq 7$                        |
|          | Total time = $T + t = 0.55$ s                                  | A1         |                                                                                                                                                              |

| Question | Answer                                                                             | Marks      | Guidance                                                                                                                                     |
|----------|------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 7(ii)    | Second Alternative method for Q7(ii)                                               |            |                                                                                                                                              |
|          | $[\frac{1}{2} \times 0.3 \times (7^2 - v^2) = 0.3g \times 1.25 + 1.8 \times 1.25]$ | M1         | Work-energy equation for motion from bottom to surface                                                                                       |
|          |                                                                                    | A1         | Correct equation                                                                                                                             |
|          | v = 3                                                                              | <b>B</b> 1 | Find $v$ at surface from rearrangement of work-energy                                                                                        |
|          | $[1.25 = \frac{1}{2}(7+3) \times T]$                                               | M1         | Using $s = \frac{1}{2} (u + v) \times T$ to find the time <i>T</i> , for the particle to travel from the bottom to the surface of the liquid |
|          | <i>T</i> = 0.25                                                                    | A1         |                                                                                                                                              |
|          | $[0 = 3 - 10t \to t = 0.3]$                                                        | M1         | Attempt to find the time, <i>t</i> , taken for the particle to travel from the surface to reach maximum height using their $v \neq 7$        |
|          | Total time = $T + t = 0.55$ s                                                      | A1         |                                                                                                                                              |
|          |                                                                                    | 7          |                                                                                                                                              |


#### MATHEMATICS

9709/41 October/November 2018

Paper 4 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

**GENERIC MARKING PRINCIPLE 1:** Marks must be awarded in line with: the specific content of the mark scheme or the generic level descriptors for the question • the specific skills defined in the mark scheme or in the generic level descriptors for the question • the standard of response required by a candidate as exemplified by the standardisation scripts. • **GENERIC MARKING PRINCIPLE 2:** Marks awarded are always whole marks (not half marks, or other fractions). **GENERIC MARKING PRINCIPLE 3:** Marks must be awarded positively: marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the • scope of the syllabus and mark scheme, referring to your Team Leader as appropriate marks are awarded when candidates clearly demonstrate what they know and can do • marks are not deducted for errors . marks are not deducted for omissions answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the . question as indicated by the mark scheme. The meaning, however, should be unambiguous. **GENERIC MARKING PRINCIPLE 4:** 

descriptors.

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.



#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
  otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
  marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

### <u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Question | Answer                   | Marks | Guidance                       |
|----------|--------------------------|-------|--------------------------------|
| 1        | $4.5 = 2.5 + a \times 5$ | M1    | For use of $v = u + at$        |
|          | a = 0.4                  | A1    |                                |
|          | F - 1.5 = 0.2a           | M1    | For use of Newton's second law |
|          | F=1.58                   | A1    |                                |
|          |                          | 4     |                                |

|          | $\cap$                                                       |       |                                                   |
|----------|--------------------------------------------------------------|-------|---------------------------------------------------|
| Question | Answer                                                       | Marks | Guidance                                          |
| 2(i)     | Resistance = Driving force = $\frac{4080000}{85}$ = 48 000 N | B1    | Correct use of $P = Fv$ and using DF = Resistance |
|          |                                                              | 1     |                                                   |
| 2(ii)    | $DF = \frac{P}{85}$                                          | B1    | $DF = \frac{P}{v}$                                |
|          | $DF - 48\ 000 - 490\ 000\ g \times \frac{1}{200} = 0$        | M1    | For applying Newton's second law (3 terms)        |
|          | $P = 72500 \times 85 = 6.16$ MW                              | A1    | -0-                                               |
|          | satpr                                                        | 3     |                                                   |

9709/41

## Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2018

| Question | Answer                                                                           | Marks | Guidance                                                                                  |
|----------|----------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------|
| 3        | [KE gained = $\frac{1}{2} \times 2500 \times (30^2 - 20^2) (= 625000 \text{ J})$ | M1    | KE gained or PE lost attempted                                                            |
|          | PE lost = $2500 g \times 400 \sin 4 (= 697564.7 J)$                              |       |                                                                                           |
|          |                                                                                  | A1    | Both KE and PE correct                                                                    |
|          | [WD by engine $+2500 g \times 400 \sin 4 + \frac{1}{2} \times 2500 \times 20^2$  | M1    | Using work-energy equation in the form<br>WD by engine + PE lost = WD against F + KE gain |
|          | $=600 \times 400 + - \times 2500 \times 30^{2}$                                  |       |                                                                                           |
|          | Work done by engine + PE lost = $600 \times 400 + 625\ 000$                      | A1    | Work-energy equation all correct                                                          |
|          | Work done = 167 000 J (167 435.2)                                                | A1    |                                                                                           |
|          |                                                                                  | 5     |                                                                                           |
|          |                                                                                  |       |                                                                                           |

| Question | Answer                      | Marks | Guidance                                              |
|----------|-----------------------------|-------|-------------------------------------------------------|
| 4(i)     | $0.6^2 = 0 + 2a \times 0.8$ | M1    | For use of $v^2 = u^2 + 2as$                          |
|          | <i>a</i> = 0.225            | A1    |                                                       |
|          | T - 0.3 g = 0.3a            | M1    | For using Newton's second law for the 0.3 kg particle |
|          | T = 3.07  N (3.0675  N)     | A1    |                                                       |
|          |                             | 4     |                                                       |

| Question | Answer                              | Marks | Guidance                                                          |
|----------|-------------------------------------|-------|-------------------------------------------------------------------|
| 4(ii)    | mg - T = ma, m(10 - 0.225) = 3.0675 | M1    | For using Newton's second law applied to the <i>m</i> kg particle |
|          | m = 0.314  kg (0.31381)             | A1    |                                                                   |
|          |                                     | 2     |                                                                   |

| Question       | Answer                                                      | Marks | Guidance                                             |  |
|----------------|-------------------------------------------------------------|-------|------------------------------------------------------|--|
| 5(i)           | 6                                                           | M1    | For resolving forces horizontally or vertically o.e. |  |
|                | $25 \cos 30 - 15 \cos 40 (= 10.1599)$                       | A1    |                                                      |  |
|                | $25 \sin 30 + 15 \sin 40 - 30 (= -7.8581)$                  | A1    |                                                      |  |
|                |                                                             | M1    | For using a method for either magnitude or direction |  |
|                | Magnitude = $\sqrt{(10.15^2 + 7.858^2)} = 12.8 \text{ N}$   | A1    | Magnitude = 12.844                                   |  |
|                | Angle 37.7° below the horizontal in the direction <i>BA</i> | A1    |                                                      |  |
|                |                                                             | 6     |                                                      |  |
| Zy.satprep.co? |                                                             |       |                                                      |  |

| Question | Answer                                                                   | Marks | Guidance                                               |
|----------|--------------------------------------------------------------------------|-------|--------------------------------------------------------|
| 5(ii)    | $F\cos 40 = 25\cos 30$                                                   | M1    | For equating forces in the direction <i>BC</i> to zero |
|          | <i>F</i> =28.3                                                           | A1    | <i>F</i> = 28.2628                                     |
|          | New resultant force = $28.26\sin 40 + 25 \sin 30 - 30 = 0.667$ N upwards | B1    |                                                        |
|          | TP                                                                       | 3     |                                                        |
|          |                                                                          |       |                                                        |

| Question | Answer                                        | Marks | Guidance                                                                                                                                                                      |
|----------|-----------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6(i)     |                                               | M1    | For using constant acceleration equations such as $s = ut + \frac{1}{2}at^2$ or<br>equivalent complete methods to find expressions for <i>PQ</i> or <i>QR</i> or<br><i>PR</i> |
|          | For $PQ$ $0.8 = 0.6u + 0.18a$                 | A1    |                                                                                                                                                                               |
|          | For $PR$ $1.6 = 1.6u + 1.28a$                 | A1    | or for $QR \ 0.8 = (u + a \times 0.6) \times 1 + 0.5a$                                                                                                                        |
|          |                                               | M1    | Solving simultaneously two relevant equations in <i>u</i> and <i>a</i>                                                                                                        |
|          | Deceleration = $\frac{2}{3}$ ms <sup>-2</sup> | A1    | AG                                                                                                                                                                            |
|          | $u = \frac{23}{15}$                           | BI    |                                                                                                                                                                               |
|          |                                               | 6     |                                                                                                                                                                               |

| Question | Answer                                                                 | Marks | Guidance                                |
|----------|------------------------------------------------------------------------|-------|-----------------------------------------|
| 6(ii)    | $R = mg\cos 3$                                                         | B1    |                                         |
|          | $F = \mu mg \cos 3$                                                    | M1    | For use of $F = \mu R$                  |
|          | $-mg\sin 3 - \mu \times mg\cos 3 = m \times \left(-\frac{2}{3}\right)$ | M1    | For using Newton's second law (3 terms) |
|          | $\mu = 0.0144 (0.014350)$                                              | A1    |                                         |
|          | 6                                                                      | 4     |                                         |
|          |                                                                        |       |                                         |

| Question | Answer                                                                               | Marks | Guidance                                 |
|----------|--------------------------------------------------------------------------------------|-------|------------------------------------------|
| 7(i)     | $v = \int (5.4 - 1.62t) \mathrm{d}t$                                                 | M1    | For using integration of $a$ to find $v$ |
|          | $v = 5.4t - 0.81t^2 (+C)$                                                            | A1    |                                          |
|          | $5.4t - 0.81t^2 = 0$                                                                 | M1    | For solving $v = 0$                      |
|          | $t = 6\frac{2}{3} = \frac{20}{3}s$                                                   | A1    | .5                                       |
|          | 22.000                                                                               | 4     |                                          |
| 7(ii)    | $v(10) = -27 \text{ ms}^{-1}$                                                        | B1    |                                          |
|          | Inverted parabola                                                                    | B1    |                                          |
|          | $v = 0$ at $t = 0$ , negative at $t = 10$ and through $\left(6\frac{2}{3}, 0\right)$ | B1    |                                          |
|          |                                                                                      | 3     |                                          |

October/November 2018

| Question | Answer                                      | Marks | Guidance                                             |
|----------|---------------------------------------------|-------|------------------------------------------------------|
| 7(iii)   | $s = \int \left( 5.4t - 0.81t^2 \right) dt$ | M1    | For using integration of v to find s                 |
|          | $s = 2.7t^2 - 0.27t^3 (+C)$                 | A1    |                                                      |
|          | At $t = 6\frac{2}{3}$ , displacement = 40   | M1    | For evaluating the integral at the time when $v = 0$ |
|          | At $t = 10$ displacement = 0                | M1    | For evaluating the integral at time $t = 10$         |
|          | Total distance = 80 m                       | A1    |                                                      |
|          |                                             | 5     |                                                      |





#### MATHEMATICS

9709/43 May/June 2018

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE<sup>™</sup> is a registered trademark.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

**GENERIC MARKING PRINCIPLE 1:** Marks must be awarded in line with: the specific content of the mark scheme or the generic level descriptors for the question • the specific skills defined in the mark scheme or in the generic level descriptors for the question • the standard of response required by a candidate as exemplified by the standardisation scripts. • **GENERIC MARKING PRINCIPLE 2:** Marks awarded are always whole marks (not half marks, or other fractions). **GENERIC MARKING PRINCIPLE 3:** Marks must be awarded positively: marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the • scope of the syllabus and mark scheme, referring to your Team Leader as appropriate marks are awarded when candidates clearly demonstrate what they know and can do • marks are not deducted for errors . marks are not deducted for omissions answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the . question as indicated by the mark scheme. The meaning, however, should be unambiguous. **GENERIC MARKING PRINCIPLE 4:** 

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.



#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

### <u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

9709/43

| Question | Answer                                                | Marks | Guidance                                                                                                  |
|----------|-------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------|
| 1(i)     | $0.4 \text{ (m s}^{-2})$                              | B1    |                                                                                                           |
|          | Total:                                                | 1     |                                                                                                           |
| 1(ii)    | $[9040 = \frac{1}{2}(600 + T) \times 16]$             | M1    | Equating area of the trapezium to the total distance<br>or using $s = \frac{1}{2} (u + v)t$ or equivalent |
|          | Time is 530 (s)                                       | A1    |                                                                                                           |
|          | Total:                                                | 2     |                                                                                                           |
| 1(iii)   | $[s = \frac{1}{2} \times (600 - 530 - 40) \times 16]$ | M1    | Use of triangular area, or equivalent                                                                     |
|          | Distance is 240 (m)                                   | A1    |                                                                                                           |
|          | Total:                                                | 2     |                                                                                                           |



| Question | Answer                                | Marks | Guidance                                               |
|----------|---------------------------------------|-------|--------------------------------------------------------|
| 2        | $[V^2 = 5^2 + 2 \times g \times 7.2]$ | M1    | Use of <i>uvast</i> to find V                          |
|          | <i>V</i> = 13                         | A1    |                                                        |
|          | $[13 = 5 + gt  t = \dots]$ 0.8 (s)    | M1    | Use of <i>uvast</i> to find time for A to reach ground |
|          | $[0 = 6.5 - gt  t = \dots]$ 0.65 (s)  | M1    | Use of <i>uvast</i> to find time from ground to B      |
|          | Total time is 1.45 (s)                | A1    |                                                        |
|          | Total:                                | 5     |                                                        |
|          |                                       |       |                                                        |

| Question | Answer                                                                            | Marks | Guidance                                                                                                                                                                                    |
|----------|-----------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        |                                                                                   | M1    | For resolving forces in any one direction                                                                                                                                                   |
|          | E.g. $X = 18 + 12\sin 60^\circ - 8\sin 30^\circ$ $14 + 6\sqrt{3}$                 | A1    | One correct equation or expression                                                                                                                                                          |
|          | E.g. $Y = 8\cos 30^\circ + 12\cos 60^\circ$ $6 + 4\sqrt{3}$                       | A1    | Second correct equation or expression ( <i>X</i> and <i>Y</i> may denote components of resultant of given 3 forces or may be components of the fourth force that would produce equilibrium) |
|          | $[(14+6\sqrt{3})^2+(6+4\sqrt{3})^2]$ or $[\tan^{-1}(6+4\sqrt{3})/(14+6\sqrt{3})]$ | M1    | Use of Pythagoras or appropriate trig to find magnitude or angle                                                                                                                            |
|          | Magnitude is 27.6 (N)                                                             | A1    | Not for resultant                                                                                                                                                                           |
|          | Direction is 27.9° below 'negative <i>x</i> -axis'                                | A1    | Not for 27.9° only; direction must be clearly specified                                                                                                                                     |
|          | Total:                                                                            | 6     |                                                                                                                                                                                             |

| Question | Answer                                                                                                      | Marks | Guidance                                                                                                                                                                                                                                                                         |
|----------|-------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4        | $\left[\frac{1}{2} \times 0.8 \times v^2\right]$ or $\left[\frac{1}{2} \times 1.6 \times v^2\right]$        | M1    | For KE of either particle                                                                                                                                                                                                                                                        |
|          | Gain in KE = $\frac{1}{2} \times 0.8 \times v^2 + \frac{1}{2} \times 1.6 \times v^2$                        | A1    | Total KE                                                                                                                                                                                                                                                                         |
|          | [Gain in $PE_A = 0.8 g \times 0.5 \times \sin\theta$ ] or [Loss in $PE_B = 1.6 g \times 0.5$ ]              | M1    | For PE change of either particle (irrespective of sign)                                                                                                                                                                                                                          |
|          | Loss in PE = $1.6 g \times 0.5 - 0.8 g \times 0.5 \times 0.6$                                               | A1    | Change of PE                                                                                                                                                                                                                                                                     |
|          | $[1.2v^2 = 8 - 2.4]$                                                                                        | M1    | Energy equation originating from 4 terms                                                                                                                                                                                                                                         |
|          | Speed is 2.16 (m s <sup>-1</sup> )                                                                          | A1    |                                                                                                                                                                                                                                                                                  |
|          | Total:                                                                                                      | 6     |                                                                                                                                                                                                                                                                                  |
|          |                                                                                                             |       | SC for using Newton II equations and $v^2 = u^2 + 2as \text{ (max 2/6)}$<br>$[16 - T = 1.6a \text{ and } T - 8\sin\theta = 0.8a] \rightarrow a = 4.67 \text{ (ms}^{-2})$ B1<br>$[v^2 = 2 \times \frac{14}{3} \times 0.5] \rightarrow \text{speed is } 2.16 \text{ (ms}^{-1})$ B1 |
|          |                                                                                                             |       | Alternative method 1 for Question 4                                                                                                                                                                                                                                              |
|          | $\left[\frac{1}{2} \times 0.8 \times v^2\right]$ or $\left[0.8 g \times 0.5 \times \sin\theta\right]$       | M1    | For KE gain or PE gain of particle A                                                                                                                                                                                                                                             |
|          | $\frac{1}{2} \times 0.8 \times v^2 + 0.8 g \times 0.5 \times 0.6$                                           | Al    | Total energy gain for particle A                                                                                                                                                                                                                                                 |
|          | $[16 - T = 1.6a \text{ and } T - 8\sin\theta = 0.8a \rightarrow T =] 8.53$                                  | M1    | Forms and solves Newton II equations to find tension T                                                                                                                                                                                                                           |
|          | $WD_T = \frac{128}{15} \times 0.5$                                                                          | A1    | Finds WD <sub>Tension</sub>                                                                                                                                                                                                                                                      |
|          | $\left[\frac{1}{2} \times 0.8 \times v^2 + 0.8  g \times 0.5 \times 0.6 = \frac{128}{15} \times 0.5\right]$ | M1    | Energy equation (3 terms)                                                                                                                                                                                                                                                        |

9709/43

| Question | Answer                                                                               | Marks | Guidance                                                      |  |
|----------|--------------------------------------------------------------------------------------|-------|---------------------------------------------------------------|--|
| 4        | Speed is $2.16 (\text{m s}^{-1})$                                                    | A1    |                                                               |  |
|          | Total:                                                                               | 6     |                                                               |  |
|          |                                                                                      |       | Alternative method 2 for Question 4                           |  |
|          | $\left[\frac{1}{2} \times 1.6 \times v^2\right]$ or $\left[1.6  g \times 0.5\right]$ | M1    | For KE gain or PE loss of particle <i>B</i>                   |  |
|          | $1.6 g \times 0.5 - \frac{1}{2} \times 1.6 \times v^2$                               | A1    | Energy change for particle <i>B</i>                           |  |
|          | $[16 - T = 1.6a \text{ and } T - 8\sin\theta = 0.8a \rightarrow T =]$ 8.53           | M1    | Forms and solves Newton II equations to find tension <i>T</i> |  |
|          | $WD_T = \frac{128}{15} \times 0.5$                                                   | A1    | Finds WD <sub>Tension</sub>                                   |  |
|          | $1.6 g \times 0.5 - \frac{1}{2} \times 1.6 \times v^2 = \frac{128}{15} \times 0.5]$  | M1    | Energy equation (3 terms)                                     |  |
|          | Speed is 2.16 (m s <sup>-1</sup> )                                                   | A1    |                                                               |  |
|          | Total:                                                                               | 6     |                                                               |  |
|          |                                                                                      |       |                                                               |  |

| Question | Answer                               | Marks | Guidance                                      |
|----------|--------------------------------------|-------|-----------------------------------------------|
| 5        | $R = 3g\cos 20^{\circ}$              | B1    | Correct normal reaction stated or used        |
|          | $[F = 0.35 \times 3g \cos 20^\circ]$ | M1    | For use of $F = \mu R$                        |
|          | $[P_1 + F = 3g\sin 20^\circ]$        | M1    | Attempted resolving equation for minimum case |
|          | $P_1 = 0.394$ (AG)                   | A1    | Correct given answer from correct work        |
|          | $[P_2 = F + 3g\sin 20^\circ]$        | M1    | Attempted resolving equation for maximum case |
|          | $P_2 = 20.1 (\mathrm{N})$            | A1    |                                               |
|          | Total:                               | 6     |                                               |

| Question | Answer                                                  | Marks | Guidance                                                           |
|----------|---------------------------------------------------------|-------|--------------------------------------------------------------------|
| 6(i)     | $\left[\frac{P}{56} = 40 \times 56\right]$              | M1    | For equating $\frac{Power}{Velocity}$ to Resistance, or equivalent |
|          | Power is 125 (kW)                                       | A1    |                                                                    |
|          | Total:                                                  | 2     |                                                                    |
| 6(ii)    | Driving force is $\frac{125440}{32}$                    | B1ft  | Follow through their power from (i)                                |
|          | $\left[\frac{125440}{32} - 40 \times 32 = 1400a\right]$ | M1    | For 3-term Newton II equation                                      |
|          | $a = 1.89 (\mathrm{m  s^{-2}})$                         | A1    |                                                                    |
|          | Total:                                                  | 3     |                                                                    |

| Question | Answer                                                               | Marks | Guidance                      |
|----------|----------------------------------------------------------------------|-------|-------------------------------|
| 6(iii)   | $\left[\frac{60000}{50} + 1400g\sin\theta - 40 \times 50 = 0\right]$ | M1    | For 3-term Newton II equation |
|          |                                                                      | A1    | Correct equation              |
|          | $\left[\sin\theta^{\circ} = \frac{800}{14000}\right]$                | M1    |                               |
|          | $\theta = 3.3$                                                       | A1    |                               |
|          | Total:                                                               | 4     |                               |
|          |                                                                      |       |                               |

| Question | Answer                                                                                          | Marks | Guidance                                                                                      |
|----------|-------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------|
| 7(i)     | $\left[\frac{dv}{dt} = 12 - 8t\right]$ or e.g. $\left[-4\left[(t - 1.5)^2 - 2.25\right]\right]$ | M1    | For attempted differentiation of $12t - 4t^2$ (or for alternative e.g. completing the square) |
|          | [Maximum v when $t = 1.5 \Rightarrow v = 12 \times 1.5 - 4 \times 1.5^2$ ]                      | M1    | For finding and using <i>t</i>                                                                |
|          | Maximum velocity is 9 (m s <sup>-1</sup> )                                                      | A1    |                                                                                               |
|          | Total:                                                                                          | 3     | .5                                                                                            |
| 7(ii)    | $\left[\frac{\mathrm{d}v}{\mathrm{d}t} = 12 - 8t = -4\right]$                                   | M1    | Finding acceleration for $0 \le t \le 2$ when t = 2                                           |
|          | Acceleration for $2 \le t \le 4$ is $-4$<br>No instantaneous change                             | A1    | Both values correct, with correct statement                                                   |
|          | Total:                                                                                          | 2     |                                                                                               |

9709/43

| Question        | Answer                                                                                         | Marks | Guidance                                                           |  |
|-----------------|------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------|--|
| 7(iii)          | v (m s <sup>-1</sup> )                                                                         | B1    | Quadratic shape (with max) for $0 \le t \le 2$                     |  |
|                 |                                                                                                | B1    | Line with negative gradient from $(2,)$ to $(4,0)$                 |  |
|                 |                                                                                                | B1    | All correct, smooth join and key values indicated                  |  |
|                 | Total:                                                                                         | 3     |                                                                    |  |
| 7(iv)           | Area of triangle is 8                                                                          | B1    | (May be obtained by integrating $16 - 4t$ or use of <i>uvast</i> ) |  |
|                 | $\left[\int (12t - 4t^2)  \mathrm{d}t = 6t^2 - \frac{4}{3}t^3 \right]$                         | M1    | Integration attempt for $0 \le t \le 2$                            |  |
|                 | $\left[ 6 \times 2^2 - \frac{4}{3} \times 2^3 - 6 \times 0^2 + \frac{4}{3} \times 0^3 \right]$ | DM1   | Use of limits 0 and 2; condone absence of zero terms               |  |
|                 | Area under curve is $\frac{40}{3}$ or 13.3                                                     | A1    |                                                                    |  |
|                 | Distance travelled is $\frac{64}{3}$ (m) or 21.3 (m)                                           | A1    |                                                                    |  |
|                 | Total:                                                                                         | 5     | .5                                                                 |  |
| 34. satprep.00' |                                                                                                |       |                                                                    |  |



#### MATHEMATICS

9709/42 May/June 2018

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE<sup>™</sup> is a registered trademark.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

**GENERIC MARKING PRINCIPLE 1:** Marks must be awarded in line with: the specific content of the mark scheme or the generic level descriptors for the question • the specific skills defined in the mark scheme or in the generic level descriptors for the question • the standard of response required by a candidate as exemplified by the standardisation scripts. • **GENERIC MARKING PRINCIPLE 2:** Marks awarded are always whole marks (not half marks, or other fractions). **GENERIC MARKING PRINCIPLE 3:** Marks must be awarded positively: marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the • scope of the syllabus and mark scheme, referring to your Team Leader as appropriate marks are awarded when candidates clearly demonstrate what they know and can do • marks are not deducted for errors . marks are not deducted for omissions answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the . question as indicated by the mark scheme. The meaning, however, should be unambiguous. **GENERIC MARKING PRINCIPLE 4:** 

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.



#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

### <u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

May/June 2018

| Question | Answer                                                                 | Marks | Guidance                           |
|----------|------------------------------------------------------------------------|-------|------------------------------------|
| 1        | KE gain = $\frac{1}{2} \times 80 \times (5.5^2 - 4^2)$ [= 570]         | B1    | Either initial or final KE correct |
|          | WD against Res = $60P$                                                 | B1    |                                    |
|          | $\left[\frac{1}{2} \times 80 \times (5.5^2 - 4^2) + 60P = 1200\right]$ | M1    | Four term work-energy equation     |
|          | <i>P</i> = 10.5                                                        | A1    |                                    |
|          |                                                                        | 4     |                                    |

| Question | Answer                                                                          | Marks | Guidance                            |
|----------|---------------------------------------------------------------------------------|-------|-------------------------------------|
| 2        | Driving force DF = $\frac{P}{15}$                                               | B1    | Correct use of $P = Fv$             |
|          | $\left[ \text{DF} - 240\ 000g\sin 4 - 18\ 000 = 240\ 000 \times (-0.2) \right]$ | M1    | A four-term Newton 2nd law equation |
|          |                                                                                 | A1    | Correct equation                    |
|          | Power is 2 060 000 (W)                                                          | A1    | Allow 2060 kW or 2.06 MW            |
|          | 4. Satorel                                                                      | 4     |                                     |
| aupro.   |                                                                                 |       |                                     |

| Question | Answer                                                                                                                                                                 | Marks | Guidance                                                                                      |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------|--|--|
| 3        | $[3\cos 60 = 2\cos \theta]$                                                                                                                                            | M1    | Attempt to resolve forces horizontally (2 terms)                                              |  |  |
|          | $\theta = 41.4$                                                                                                                                                        | A1    |                                                                                               |  |  |
|          | $[P = 3\sin 60 + 2\sin \theta]$                                                                                                                                        | M1    | Attempt to resolve forces vertically (3 terms)                                                |  |  |
|          | <i>P</i> = 3.92                                                                                                                                                        | A1    |                                                                                               |  |  |
|          |                                                                                                                                                                        | 4     |                                                                                               |  |  |
|          | First alternative method for Q3                                                                                                                                        |       |                                                                                               |  |  |
|          | $\frac{P}{\sin(120-\theta)} = \frac{2}{\sin 150} = \frac{3}{\sin(90+\theta)}$                                                                                          | M1    | Attempt two terms of Lami's equation which can be used to find $\boldsymbol{\theta}$          |  |  |
|          | $\theta = 41.4$                                                                                                                                                        | A1    |                                                                                               |  |  |
|          |                                                                                                                                                                        | M1    | Attempt an equation which can be used to find $P$                                             |  |  |
|          | <i>P</i> = 3.92                                                                                                                                                        | A1    |                                                                                               |  |  |
|          | Second alternative method for Q3                                                                                                                                       |       |                                                                                               |  |  |
|          | [Triangle with sides 2, 3, P and angles opposite of 30, 90 – $\theta$ , 60 + $\theta$ ]<br>$\frac{P}{\sin(60+\theta)} = \frac{2}{\sin 30} = \frac{3}{\sin(90-\theta)}$ | M1    | Attempt two terms from the triangle of forces which can be used to find $\boldsymbol{\theta}$ |  |  |
|          | $\theta = 41.4$                                                                                                                                                        | A1    |                                                                                               |  |  |
|          |                                                                                                                                                                        | M1    | Attempt an equation which can be used to find $P$                                             |  |  |
|          | <i>P</i> = 3.92                                                                                                                                                        | A1    |                                                                                               |  |  |

May/June 2018

| Question | Answer                                                                                                                                                                                               | Marks      | Guidance                                                                                                                                                                |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4(i)     | For example $100 = 4u + 8a$<br>or $100 = \frac{1}{2}(u + v) \times 4$<br>or $148 = 4v + 8a$<br>or any equation in two of the variables $u, v, w, a$                                                  | M1         | Any relevant use of constant acceleration equations in any<br>two of the variables below<br>a is acceleration<br>u is speed at $Av$ is speed at $Bw$ is speed at $C$    |
|          | T PR                                                                                                                                                                                                 | A1         | One correct equation                                                                                                                                                    |
|          | For example $248 = 8u + 32a$<br>or<br>two further correct equations in 3 unknowns such as<br>148 = 4v + 8a and $v = u + 4aor148 = \frac{1}{2}(v + w) \times 4 and 248 = \frac{1}{2}(u + w) \times 8$ | A1         | A second correct equation in the same two variables<br>or<br>two further correct equations leading to three equations in<br>three of the unknowns $u$ , $v$ , $w$ , $a$ |
|          |                                                                                                                                                                                                      | M1         | Attempt to solve for <i>a</i> or <i>u</i><br>This must reach $a = \dots$ or $u = \dots$                                                                                 |
|          | <i>a</i> = 3                                                                                                                                                                                         | A1         | AG                                                                                                                                                                      |
|          | <i>u</i> = 19                                                                                                                                                                                        | <b>B</b> 1 | $\leq$                                                                                                                                                                  |
|          | 34                                                                                                                                                                                                   | 6          |                                                                                                                                                                         |
|          | ·satpre                                                                                                                                                                                              | 9.         |                                                                                                                                                                         |

9709/42

## Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

| Question | Answer                                            | Marks | Guidance                      |
|----------|---------------------------------------------------|-------|-------------------------------|
| 4(ii)    | $61^2 = 19^2 + 2 \times 3 \times s$               | M1    | Attempt equation for $s = AD$ |
|          | $[s = 560 \rightarrow CD = 560 - 248]$            | M1    | Attempt to find CD            |
|          | Distance CD is 312                                | A1    |                               |
|          | T P F                                             | 3     |                               |
|          | Alternative method for 4(ii)                      |       |                               |
|          | Speed at <i>C</i> is $19 + 8 \times 3$ [= 43]     | M1    | Attempt to find speed at C    |
|          | $\left[61^2 = 43^2 + 2 \times 3 \times CD\right]$ | M1    | Attempt to find <i>CD</i>     |
|          | Distance CD is 312                                | A1    |                               |



| Question | Answer                                                                               | Marks | Guidance                                                                                |
|----------|--------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------|
| 5        | $R = 20g \cos 60 [= 100]$                                                            | B1    |                                                                                         |
|          | $F = \mu \times 20g \cos 60 [= 100\mu]$                                              | M1    | Use $F = \mu R$                                                                         |
|          |                                                                                      | M1    | Resolve along plane in either case                                                      |
|          | $(P_{\rm max} =) 20g \sin 60 + F$                                                    | A1    | One correct equation                                                                    |
|          | $(P_{\min} =) 20g \sin 60 - F$                                                       | A1    | Second correct equation                                                                 |
|          | $20g\sin 60 + F = 2(20g\sin 60 - F)$                                                 | M1    | Use of $P_{\text{max}} = 2P_{\text{min}}$ to give four term equation in F or $\mu$ or P |
|          | $\mu = \frac{\sqrt{3}}{3} = 0.577$                                                   | A1    |                                                                                         |
|          |                                                                                      | 7     |                                                                                         |
|          | Iternative solution for final 3 marks if $P_{min}$ is taken as acting down the plane |       |                                                                                         |
|          | $P_{\min} = F - 20g\sin 60$                                                          | A1    |                                                                                         |
|          | $20g\sin 60 + F = 2(F - 20g\sin 60)$                                                 | M1    |                                                                                         |
|          | $\mu = 3\sqrt{3} = 5.196$                                                            | A1    |                                                                                         |
|          |                                                                                      |       |                                                                                         |

| Question | Answer                                   | Marks | Guidance                                                             |
|----------|------------------------------------------|-------|----------------------------------------------------------------------|
| 6(i)     |                                          | M1    | Attempt to integrate a                                               |
|          | $v = 6t - 0.12t^2 (+ c)$                 | A1    |                                                                      |
|          | $0 = 6 \times 20 - 0.12 \times 20^2 + c$ | DM1   | Substitute $v = 0$ , $t = 20$ in an equation with arbitrary constant |
|          | $0.12t^2 - 6t + 72 = 0$                  | DM1   | Substitute $v = 0$ and attempt to solve a 3-term quadratic           |
|          | <i>t</i> = 30                            | A1    |                                                                      |
|          | 9                                        | 5     |                                                                      |
| 6(ii)    | $s = 3t^2 - 0.04t^3 - 72t \ (+k)$        | M1    | Attempt to integrate v                                               |
|          | s(30) - s(20) = -540 - (-560)            | DM1   | Use of limits 20 and their 30                                        |
|          | Distance travelled = 20                  | A1    |                                                                      |
|          |                                          | 3     |                                                                      |



May/June 2018

| Question | Answer                                                                   | Marks | Guidance                                                                  |
|----------|--------------------------------------------------------------------------|-------|---------------------------------------------------------------------------|
| 7(i)     | $[T = 1.6a, 2.4g \sin 30 - T = 2.4a]$<br>System is 2.4g sin 30 = 4a      | M1    | Attempt Newton's 2nd law for A or B or for the system                     |
|          |                                                                          | A1    | Two correct equations                                                     |
|          |                                                                          | M1    | Solve for <i>a</i> or <i>T</i>                                            |
|          | <i>a</i> = 3                                                             | A1    |                                                                           |
|          | <i>T</i> = 4.8                                                           | A1    |                                                                           |
|          |                                                                          | 5     |                                                                           |
| 7(ii)    | Friction force on A is<br>$F = 0.2 \times 1.6g [= 3.2]$                  | B1    | From $F = \mu R$                                                          |
|          | T - F = 1.6a<br>2.4g sin 30 - T = 2.4a<br>System is 2.4g sin 30 - F = 4a | M1    | Attempt Newton's 2 <sup>nd</sup> law for both particles or for the system |
|          |                                                                          | A1    | Correct equations for A and B or correct system equation                  |
|          |                                                                          | M1    | Attempt to solve for <i>a</i>                                             |
|          | a = 2.2                                                                  | A1    |                                                                           |
|          | $v^2 = 2 \times 2.2 \times 1$                                            | M1    | Attempt to find v or $v^2$ when B reaches the barrier                     |
|          | Subsequent acceleration of $A$ is $-2$                                   | B1    |                                                                           |
|          | $4.4 = 2 \times 2 \times s$                                              | M1    | Attempt to find distance A travels while decelerating to $v = 0$          |
|          | Total distance travelled is 2.1 m                                        | A1    |                                                                           |
|          |                                                                          | 9     |                                                                           |

May/June 2018

| Question | Answer                                                                              | Marks | Guidance                                                                                                        |
|----------|-------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------|
| 7(ii)    |                                                                                     |       |                                                                                                                 |
|          | $F = 0.2 \times 1.6g [= 3.2]$                                                       | B1    | From $F = \mu R = 0.2 \times 1.6g = 3.2$                                                                        |
|          |                                                                                     | M1    | Attempt PE loss as <i>B</i> reaches the barrier                                                                 |
|          | PE loss = $2.4g \sin 30$ [= 12]                                                     | A1    |                                                                                                                 |
|          | P A                                                                                 | M1    | Attempt KE gain for both A and B                                                                                |
|          | KE gain = $\frac{1}{2}(1.6 + 2.4)v^2$ [= $2v^2$ ]                                   | A1    |                                                                                                                 |
|          | $[2.4g \sin 30 = \frac{1}{2} \times 4 \times v^{2} + 3.2 \times 1]$ $[v^{2} = 4.4]$ | M1    | Apply work-energy equation for the motion until <i>B</i> reaches the barrier (Three relevant terms)             |
|          | $\text{KE loss} = \frac{1}{2} \times 1.6 \times 4.4$                                | B1    | Find KE loss as A comes to rest after B has stopped                                                             |
|          | $[\frac{1}{2} \times 1.6 \times 4.4 = 3.2d]$                                        | M1    | Apply work-energy equation where $d$ is the extra distance travelled by $A$ leading to a positive value for $d$ |
|          | [ <i>d</i> = 1.1]                                                                   | 0     |                                                                                                                 |
|          | Total distance = 2.1 m                                                              | A1    | Distance = $d + 1$                                                                                              |
May/June 2018

| Question | Answer                                                                           | Marks | Guidance                                                               |  |  |  |
|----------|----------------------------------------------------------------------------------|-------|------------------------------------------------------------------------|--|--|--|
| 7(ii)    | Alternative scheme for first 6 marks of 7(ii) [Work-energy applied to A]         |       |                                                                        |  |  |  |
|          | Friction = $0.2 \times 1.6g$ [= 3.2]                                             | B1    |                                                                        |  |  |  |
|          | $[2.4g \sin 30 - T = 2.4a T - F = 1.6a]$                                         | M1    | Apply Newton's 2nd law to <i>A</i> and <i>B</i> and solve for <i>T</i> |  |  |  |
|          | <i>T</i> = 6.72                                                                  | A1    |                                                                        |  |  |  |
|          | $\left[\frac{1}{2} \times 1.6 \times v^2\right]$                                 | M1    | Attempt KE for A only                                                  |  |  |  |
|          |                                                                                  | A1    | Correct KE for A                                                       |  |  |  |
|          | $[6.72 \times 1 = \frac{1}{2} \times 1.6 \times v^2 + 3.2 \times 1]$             | M1    | Use work/energy equation for A                                         |  |  |  |
|          | Alternative scheme for first 6 marks of 7(ii) [Work-energy applied to <b>B</b> ] |       |                                                                        |  |  |  |
|          | Friction = $0.2 \times 1.6g$ [= 3.2]                                             | B1    |                                                                        |  |  |  |
|          | $[2.4g \sin 30 - T = 2.4a T - F = 1.6a]$                                         | M1    | Apply Newton's 2nd law to A and B and solve for T                      |  |  |  |
|          | <i>T</i> = 6.72                                                                  | A1    |                                                                        |  |  |  |
|          | · Satpre                                                                         | M1    | Find energy loss/gain for <i>B</i><br>Allow either term                |  |  |  |
|          | $\pm(\frac{1}{2} \times 2.4 \times v^2 - 2.4g\sin 30)$                           | A1    |                                                                        |  |  |  |
|          | $2.4g\sin 30 = \frac{1}{2} \times 2.4 \times v^2 + 6.72 \times 1$                | M1    | Use work/energy equation for <i>B</i>                                  |  |  |  |



#### MATHEMATICS

9709/41 May/June 2018

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE<sup>™</sup> is a registered trademark.

## Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are several
  B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
  steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

#### **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Question                          | Answer                                                                                                                     | Marks        | Guidance                                                                                             |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------|
| 1                                 | $-5 = 24t - 5t^2$                                                                                                          | M1           | Use $s = ut + \frac{1}{2}at^2$                                                                       |
|                                   | $5t^2 - 24t - 5 = 0$                                                                                                       | M1           | Solve relevant 3 term quadratic                                                                      |
|                                   | <i>t</i> = 5                                                                                                               | A1           |                                                                                                      |
|                                   |                                                                                                                            | 3            |                                                                                                      |
| Alternative scheme for Question 1 |                                                                                                                            | r Question 1 |                                                                                                      |
|                                   | $0 = 24 - 10t_1  \rightarrow  t_1 = 2.4$                                                                                   | M1           | Attempt to find the time taken to reach the highest point                                            |
|                                   | $0 = 24^{2} + 2 \times (-10) \times h \rightarrow h = 28.8$<br>And $33.8 = \frac{1}{2} gt_{2}^{2} \rightarrow t_{2} = 2.6$ | M1           | Find total height <i>h</i> reached and attempt to find time taken from highest point to ground level |
|                                   | $t = t_1 + t_2 = 5$                                                                                                        | A1           |                                                                                                      |
|                                   |                                                                                                                            |              |                                                                                                      |

| Question | Answer                                                               | Marks    | Guidance                                                                                                                    |
|----------|----------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------|
| 2        | $[10 \cos \alpha = 8 \text{ or } 10 \cos \beta = 6]$                 | M1       | Introduce $\alpha$ or $\beta$ , an angle between the 10N force and the vertical or horizontal and attempt to resolve forces |
|          | $\alpha = 36.9 \text{ or } \beta = 53.1$                             | A1       |                                                                                                                             |
|          | Angle between 6N and 10N is 126.9                                    | B1       |                                                                                                                             |
|          | Angle between 8N and 10N is 143.1                                    | B1       |                                                                                                                             |
|          | 12. Sator                                                            | 4        | 3                                                                                                                           |
|          | Alternative s                                                        | cheme fo | r Question 2                                                                                                                |
|          | $\frac{10}{\sin 90} = \frac{6}{\sin \gamma} = \frac{8}{\sin \delta}$ | M1       | Attempt to use Lami's theorem $\gamma$ (8 and 10), $\delta$ (6 and 10)                                                      |
|          | All correct                                                          | A1       |                                                                                                                             |
|          | Angle between 8N and 10N is $\gamma = 143.1$                         | B1       |                                                                                                                             |
|          | Angle between 6N and 10N is $\delta = 126.9$                         | B1       |                                                                                                                             |

| Question | Answer                                                    | Marks | Guidance                                               |
|----------|-----------------------------------------------------------|-------|--------------------------------------------------------|
| 3(i)     |                                                           | M1    | Attempt to resolve forces along the plane (2 terms)    |
|          | $100 \cos \theta = 8 g \sin 30 \rightarrow \theta = 66.4$ | A1    |                                                        |
|          | $[R = 8 g \cos 30 + 100 \sin \theta]$                     | M1    | Resolve forces perpendicular to the plane (3 terms)    |
|          | R = 161                                                   | A1    |                                                        |
|          |                                                           | 4     |                                                        |
| 3(ii)    | $100\cos 30 - 8g\sin 30 = 8a$                             | M1    | Apply Newton's 2nd law parallel to the plane (3 terms) |
|          | <i>a</i> = 5.83                                           | A1    |                                                        |
|          | TP                                                        | 2     |                                                        |
|          |                                                           |       |                                                        |

| Question | Answer                        | Marks | Guidance                                                     |
|----------|-------------------------------|-------|--------------------------------------------------------------|
| 4(i)     |                               | M1    | Attempt differentiation                                      |
|          | $v = 3t^2 - 8t + 4$           | A1    |                                                              |
|          |                               | 2     |                                                              |
| 4(ii)    | $3t^2 - 8t + 4 = 0$           | M1    | Set $v = 0$ and attempt to solve a relevant 3 term quadratic |
|          | $t = \frac{2}{3}$ and $t = 2$ | A1    | .5                                                           |
|          | ·satpr                        | eP2   |                                                              |

| Question | Answer                                                               | Marks    | Guidance                                                  |
|----------|----------------------------------------------------------------------|----------|-----------------------------------------------------------|
| 4(iii)   | [6t - 8 = 0]                                                         | M1       | Differentiate v and equate to 0                           |
|          | $[t = \frac{4}{3}, v = 3(\frac{4}{3})^2 - 8(\frac{4}{3}) + 4]$       | M1       | Solve for <i>t</i> and attempt <i>v</i>                   |
|          | $v = -\frac{4}{3}$                                                   | A1       |                                                           |
|          |                                                                      | 3        |                                                           |
|          | Alternative scl                                                      | neme for | Question 4(iii)                                           |
|          | $[v = 3(t^{2} - \frac{8}{3}t) + 4 = 3(t - \frac{4}{3})^{2} + \dots]$ | M1       | Attempt to complete the square for <i>v</i>               |
|          | $[t = \frac{4}{3}, v = 3(t - \frac{4}{3})^2 - \frac{4}{3}]$          | M1       | Find value of $t$ for minimum $v$ and attempt to find $v$ |
|          | $v = -\frac{4}{3}$                                                   | A1       |                                                           |

| Question | Answer                                                                    | Marks      | Guidance                                                                                                                            |
|----------|---------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 5(i)     | $[s_1 = \frac{1}{2}(0+12) \times 6]$                                      | M1         | Use constant acceleration equations or<br>find area in $(t,v)$ graph to find the distance<br>$s_1$ travelled in the first 6 seconds |
|          | $[s_2 = 10 \times 12]$                                                    | M1         | Use constant acceleration equations or find area in $(t,v)$ graph to find $s_2$ the distance travelled between 6s and 16s           |
|          | Distance for first 16s is $36 + 10 \times 12 = 156$                       | Al         | 50                                                                                                                                  |
|          | Curve concave up for $0 < t < 6$<br>starting at (0, 0) ending at (6, 36)  | <b>B</b> 1 | Co-ordinates refer to ( <i>t</i> , <i>s</i> ) in a displacement-time graph                                                          |
|          | Line, positive gradient, $6 < t < 16$ starts at (6, 36) ends at (16, 156) | <b>B</b> 1 |                                                                                                                                     |
|          | Curve concave down, 16 < <i>t</i> < 20 from (16 , 156) to (20 , 200)      | <b>B</b> 1 |                                                                                                                                     |
|          |                                                                           | 6          |                                                                                                                                     |
| 5(ii)    | $[44 = \frac{1}{2}(12 + V) \times 4]$                                     | M1         | Use relevant constant acceleration equations or the area property of a $v-t$ graph                                                  |
|          | <i>V</i> = 10                                                             | A1         |                                                                                                                                     |
|          |                                                                           | 2          |                                                                                                                                     |

| Question | Answer                                                      | Marks | Guidance                                                          |
|----------|-------------------------------------------------------------|-------|-------------------------------------------------------------------|
| 6(i)     | $[P = DF \times v = 850 \times 36]$                         | M1    | Apply $P = DF \times v$ with $DF = Resistance$ force              |
|          | Power = rate of working = 30.6 kW                           | A1    |                                                                   |
|          |                                                             | 2     |                                                                   |
| 6(ii)    | $[DF = 1250 g \times 0.1 + 850]$                            | M1    | Driving force comprising of resistance<br>plus a weight component |
|          | $DF = \frac{63000}{v}$                                      | M1    | $DF = \frac{P}{v}$                                                |
|          | $v = 30$ so speed of car is $30 \text{ ms}^{-1}$            | A1    |                                                                   |
|          |                                                             | 3     |                                                                   |
| 6(iii)   | Gain in KE = $\frac{1}{2} \times 1250 \times (24^2 - 20^2)$ | B1    | [= 110 000]                                                       |
|          | Loss in PE = $1250 g \times 176 \times 0.1$                 | B1    | [= 220 000]                                                       |
|          | WD by car's engine = $20000 \times 8$                       | B1    | [= 160 000]                                                       |
|          | [160 000 + 220 000 =<br>WD against resistance + 110 000]    | M1    | 4 term work energy equation                                       |
|          | $WD = 270\ 000\ J = 270\ kJ$                                | A1    |                                                                   |
|          |                                                             | 5     |                                                                   |



| Question | Answer                                                                                                                                                      | Marks     | Guidance                                                                |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------|
| 7(i)     | $\begin{array}{l} A & T - 0.8 \ g \sin 45 = 0.8 a \\ B & 1.2 \ g \sin 30 - T = 1.2 a \\ \text{System} & 1.2 \ g \sin 30 - 0.8 \ g \sin 45 = 2a \end{array}$ | M1        | Apply Newton 2nd law to either <i>A</i> or to <i>B</i> or to the system |
|          |                                                                                                                                                             | A1        | One correct equation                                                    |
|          |                                                                                                                                                             | A1        | A second correct equation                                               |
|          | a = 0.171                                                                                                                                                   | M1        | Solve for <i>a</i>                                                      |
|          | $v^2 = 2 \times a \times 0.4$                                                                                                                               | M1        | Use $v^2 = u^2 + 2as$ with $u = 0$                                      |
|          | v = 0.370 so speed of A is 0.370 ms <sup>-1</sup>                                                                                                           | A1        |                                                                         |
|          |                                                                                                                                                             | 6         |                                                                         |
|          | Alternative scheme for Question 7(i)                                                                                                                        |           |                                                                         |
|          |                                                                                                                                                             | M1        | Attempt KE gain or PE loss                                              |
|          | KE gain = $\frac{1}{2} \times 0.8 \times v^2 + \frac{1}{2} \times 1.2 \times v^2$                                                                           | A1        | <i>v</i> is the required speed of <i>A</i>                              |
|          | PE loss =<br>$1.2 g \times 0.4 \sin 30 - 0.8 g \times 0.4 \sin 45$                                                                                          | A1        |                                                                         |
|          | $\frac{1}{2} \times 0.8 \times v^2 + \frac{1}{2} \times 1.2 \times v^2 =$<br>1.2 g × 0.4 sin 30 - 0.8 g × 0.4 sin 45                                        | <b>M1</b> | 4 term energy equation                                                  |
|          | 4                                                                                                                                                           | M1        | Solving for <i>v</i>                                                    |
|          | $v = 0.370$ so speed of A is $0.370 \text{ ms}^{-1}$                                                                                                        | A1        | .0                                                                      |
|          | .satpr                                                                                                                                                      | ep.       |                                                                         |

| Question | Answer                                                                                                                      | Marks | Guidance                                                                                                       |
|----------|-----------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------|
| 7(ii)    | $R_A = 0.8g\cos 45 = 4\sqrt{2}$<br>$R_B = 1.2g\cos 30 = 6\sqrt{3}$                                                          | B1    | For either $R_A$ or $R_B$                                                                                      |
|          | $F_A = 4\sqrt{2} \ \mu \text{ and } F_B = 6\sqrt{3} \ \mu$                                                                  | M1    | Either $F_A$ or $F_B$ used                                                                                     |
|          | $A  0.8 g \sin 45 + F_A = T$<br>$B  1.2 g \sin 30 - F_B = T$<br>or system equation:<br>$12 \sin 30 - 8 \sin 45 = F_A + F_B$ | M1    | Resolve parallel to the plane either for<br>both particles <i>A</i> and <i>B</i> or for the system<br>equation |
|          | Correct equation(s)                                                                                                         | A1    |                                                                                                                |
|          |                                                                                                                             | M1    | Eliminate $T$ and solve for $\mu$                                                                              |
|          | $\mu = \frac{\left(6 - 4\sqrt{2}\right)}{\left(6\sqrt{3} + 4\sqrt{2}\right)} = 0.0214$                                      | A1    |                                                                                                                |
|          | = 0.0214                                                                                                                    | 6     |                                                                                                                |





### MATHEMATICS

9709/42 March 2018

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

## Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
  is given for valid answers which go beyond the scope of the syllabus and mark scheme,
  referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are several
  B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
  steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

#### **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Question | Answer                                                                                               | Marks | Guidance                                                                                                        |
|----------|------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------|
| 1        | [T-2=0.2a  8-T=0.8a]<br>System is $0.8g - 0.2g = (0.2 + 0.8)a$<br>and $T = 2(0.2)(0.8)g/(0.8 + 0.2)$ | M1    | Attempt Newton's 2nd law for<br>either particle or use a formula for<br>the system for <i>a</i> and/or <i>T</i> |
|          |                                                                                                      | A1    | Two correct equations                                                                                           |
|          | Attempt to solve for <i>a</i> or <i>T</i>                                                            | M1    |                                                                                                                 |
|          | a = 6 T = 3.2                                                                                        | A1    | Both correct NB $a = 6 \text{ AG}$                                                                              |
|          |                                                                                                      | 4     |                                                                                                                 |

| Question | Answer                                                                                                                                                        | Marks | Guidance                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|
| 2        | EITHER:<br>$2P \sin \theta = P \sin 60$                                                                                                                       | (M1   | Resolve vertically (2 terms)                   |
|          | $\theta = 25.7$                                                                                                                                               | A1    |                                                |
|          | $2P\cos\theta + P\cos60 = 10$                                                                                                                                 | M1    | Resolve horizontally (3 terms)                 |
|          | <i>P</i> = 4.34                                                                                                                                               | A1)   |                                                |
|          | OR1:<br>$\left[\frac{2P}{\sin 120} = \frac{P}{\sin(180 - \theta)} = \frac{10}{\sin(60 + \theta)}\right]$                                                      | (M1   | Attempt Lami's theorem using one pair of terms |
|          | $\theta = 25.7$                                                                                                                                               | A1    | Solve for $\theta$                             |
|          | Use a second Lami equation                                                                                                                                    | M1    | 5                                              |
|          | <i>P</i> = 4.34                                                                                                                                               | A1)   |                                                |
|          | <i>OR2:</i> Use sine or cosine rule with triangle of forces using forces <i>P</i> , 2 <i>P</i> and 10 and with angles 60, $\theta$ and 120 – $\theta$ between | (M1   |                                                |
|          | $\theta = 25.7$                                                                                                                                               | A1    |                                                |
|          | Use a second relationship from the triangle of forces                                                                                                         | M1    |                                                |
|          | <i>P</i> = 4.34                                                                                                                                               | A1)   |                                                |
|          |                                                                                                                                                               | 4     |                                                |

| Question | Answer                                                                                                                                                                                                                              | Marks | Guidance                                                                                                                                                                               |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3(i)     | $\frac{1}{2} \times 40 \times v^2 = 40 \times g \times 7.2$                                                                                                                                                                         | M1    | Use of KE gain = PE loss                                                                                                                                                               |
|          | $v = 12 \text{ m s}^{-1}$                                                                                                                                                                                                           | A1    |                                                                                                                                                                                        |
|          |                                                                                                                                                                                                                                     | 2     |                                                                                                                                                                                        |
| 3(ii)    | Work done against friction(WDF)<br>WDF = $40 \times g \times 7.2 - \frac{1}{2} \times 40 \times 10^2 [= 880]$                                                                                                                       | M1    | May be calculated as<br>$\frac{1}{2} \times 40 \times 12^2 - \frac{1}{2} \times 40 \times 10^2$                                                                                        |
|          | $\frac{1}{2} \times 40 \times V^{2} + 40 \times g \times 7.2 = \frac{1}{2} \times 40 \times 11^{2} + 880$<br>or<br>$\frac{1}{2} \times 40 \times V^{2} = \frac{1}{2} \times 40 \times 11^{2} - \frac{1}{2} \times 40 \times 10^{2}$ | M1    | For 4-term work-energy equation<br>with numerical attempt at work<br>done<br>or<br>using the fact that WDF is the same<br>in both cases, extra initial KE =<br>difference in final KEs |
|          | $V = \sqrt{21} = 4.58$                                                                                                                                                                                                              | A1    |                                                                                                                                                                                        |
|          |                                                                                                                                                                                                                                     | 3     |                                                                                                                                                                                        |

| Question | Answer                                                                                                                                   | Marks | Guidance                                                                                                                      |
|----------|------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------|
| 4        | $[R = 12g \cos 25 + P \sin 25$<br>$P \cos 25 = F + 12g \sin 25]$<br>or<br>$[P = F \cos 25 + R \sin 25$<br>$R \cos 25 = F \sin 25 + 12g]$ | M1    | Attempt resolving of forces in any<br>one direction, parallel to,<br>perpendicular to plane<br>or<br>horizontally, vertically |
|          |                                                                                                                                          | A1    | Any one correct equation                                                                                                      |
|          |                                                                                                                                          | A1    | Any second correct equation                                                                                                   |
|          | F = 0.8R                                                                                                                                 | M1    | Use of $F = \mu R$                                                                                                            |
|          | Complete method to find <i>P</i> from 2 equations(3 terms each)                                                                          | M1    |                                                                                                                               |
|          | <i>P</i> = 242                                                                                                                           | A1    |                                                                                                                               |
|          |                                                                                                                                          | 6     |                                                                                                                               |

| Question | Answer                                                                 | Marks | Guidance                                                      |
|----------|------------------------------------------------------------------------|-------|---------------------------------------------------------------|
| 5(i)     | $200 = \frac{1}{2} \times (0 + v) \times 10$                           | M1    | Use of <i>suvat</i>                                           |
|          | $v = 40 \text{ m s}^{-1}$                                              | A1    | AG                                                            |
|          | $200 = \frac{1}{2} \times a \times 10^2$                               | M1    | Second use of <i>suvat</i>                                    |
|          | $a = 4 \text{ m s}^{-2}$                                               | A1    |                                                               |
|          |                                                                        | 4     |                                                               |
| 5(ii)    | $0 = 40^2 - 2 \times g \times s$                                       | M1    | Use of <i>suvat</i> with $a = g$                              |
|          | s = 80 so height above ground = 280 m                                  | A1    |                                                               |
|          |                                                                        | 2     |                                                               |
| 5(iii)   | $EITHER: \\ 0 = 40 - gt_1$                                             | (M1   | Use of <i>suvat</i> to find extra time to highest point       |
|          | <i>t</i> <sub>1</sub> = 4                                              | A1    |                                                               |
|          | $280 = \frac{1}{2}gt_2^2$                                              | M1    | Use of <i>suvat</i> to find time from highest point to ground |
|          | $t_2 = \sqrt{56} = 7.48$ so total time = 21.5 s                        | A1)   |                                                               |
|          | $OR: -200 = 40t_3 - \frac{1}{2}gt_3^2$                                 | (M1   | Use of $s = ut + \frac{1}{2}at^2$<br>with 200, 40 and g used  |
|          | $5t_3^2 - 40t_3 - 200 = 0 \text{ o.e.}$<br>[ $t_3^2 - 8t_3 - 40 = 0$ ] | A1    | Correct quadratic for time under gravity                      |
|          | $[t_3 = 4 \pm \sqrt{56} = 4 \pm 7.48]$                                 | M1    | Solution of relevant 3-term quadratic                         |
|          | $t_3 = 11.48$ so total time is 21.5 s                                  | A1)   |                                                               |
|          |                                                                        | 4     |                                                               |

| Question | Answer                              | Marks | Guidance |
|----------|-------------------------------------|-------|----------|
| 6(i)     | Driving force = $35 \times 60$      | M1    |          |
|          | Power = $35 \times 60^2 = 126000$ W | A1    |          |
|          |                                     | 2     |          |

## 9709/42

| Question | Answer                                                          | Marks | Guidance                                                        |
|----------|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|
| 6(ii)    | Driving force is $DF = \frac{126000}{30}$                       | B1FT  |                                                                 |
|          | $DF - 35 \times 30 = 1200a$                                     | M1    | For 3-term Newton's 2nd law equation, dimensionally correct     |
|          | $a = \frac{3150}{1200} = \frac{21}{8} = 2.625 \text{ m s}^{-2}$ | A1    | AG                                                              |
|          |                                                                 | 3     |                                                                 |
| 6(iii)   | $DF = \frac{126000}{v}$                                         | M1    | For $F = \frac{P}{v}$                                           |
|          | $\frac{126000}{v} = 35v + 1200g \times \frac{7}{48}$            | M1    | For 3-term force equation, or equivalent                        |
|          |                                                                 | A1    | For correct (unsimplified) equation                             |
|          | $35v^{2} + 1750v - 126000 = 0$<br>or $v^{2} + 50v - 3600 = 0$   | M1    | For simplifying and solving of a 3-<br>term quadratic attempted |
|          | $v = 40 \text{ ms}^{-1}$                                        | A1    | v = -90 rejected or ignored                                     |
|          |                                                                 | 5     |                                                                 |
|          |                                                                 |       |                                                                 |

| Question | Answer                                                                           | Marks | Guidance                                                |
|----------|----------------------------------------------------------------------------------|-------|---------------------------------------------------------|
| 7(i)     | $0.2 ({\rm ms^{-2}})$                                                            | B1    | C                                                       |
|          | 3                                                                                | 1     |                                                         |
| 7(ii)    | $a = -1600t^{-3}$                                                                | M1    | For attempted differentiation of $-2 + \frac{800}{t^2}$ |
|          | Acceleration at $t = 20$ is $-0.2$ (m s <sup>-2</sup> )                          | A1    |                                                         |
|          |                                                                                  | 2     |                                                         |
| 7(iii)   | Straight line joining $t = 0, v = 4$ to $t = 10, v = 6$                          | B1    |                                                         |
|          | Curve with correct concavity joining end of line to $t = 20$ , $v = 0$           | B1    |                                                         |
|          | Correct labelling on axes provided the curves pass through (0,4), (10,6), (20,0) | B1    |                                                         |
|          |                                                                                  | 3     |                                                         |

| Question | Answer                                                                            | Marks | Guidance                                        |
|----------|-----------------------------------------------------------------------------------|-------|-------------------------------------------------|
| 7(iv)    | Trapezium area = 50                                                               | B1    | or from integration of $4 + 0.2t$               |
|          | $\int \left(-2 + 800t^{-2}\right) dt = -2t - 800t^{-1}$                           | M1    | Integration attempted                           |
|          |                                                                                   | A1    | Correct indefinite integral                     |
|          | $\begin{bmatrix} -2t - 800t^{-1} \end{bmatrix}_{10}^{20}$<br>= -40 - 40 + 20 + 80 | M1    | Correct use of the limits $t = 10$ and $t = 20$ |
|          | Distance is $50 + 20 = 70$ m                                                      | A1    | Correct total                                   |
|          |                                                                                   | 5     |                                                 |





#### MATHEMATICS

9709/43 October/November 2017

Paper 4 Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are several
  B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
  steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

#### **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Question | Answer                             | Marks | Guidance                                        |
|----------|------------------------------------|-------|-------------------------------------------------|
| 1        | $(X=) 20 \cos 60 + 30 \cos 60 - F$ | B1    |                                                 |
|          | $[F = 20\cos 60 + 30\cos 60]$      | M1    | Use of horizontal component of resultant<br>= 0 |
|          | <i>F</i> = 25                      | A1    |                                                 |
|          |                                    | 3     |                                                 |

| Question | Answer                                                                                                          | Marks | Guidance                           |
|----------|-----------------------------------------------------------------------------------------------------------------|-------|------------------------------------|
| 2(i)     | $[F = 1480 + 7850g\sin 3] (= 5588)$                                                                             | M1    |                                    |
|          | $\left[\frac{P}{10} = 1480 + 7850g\sin 3\right] \to P = \dots$                                                  | M1    | Using $P = Fv$ and solving for $P$ |
|          | Power = 55 900 W                                                                                                | A1    |                                    |
|          | 9                                                                                                               | 3     |                                    |
| 2(ii)    | $[F + 7850g \sin 3 - 1480 = 7850 \times 0.8]$<br>(F = 3652)                                                     | M1    | Use of Newton's Second Law         |
|          | $\begin{bmatrix} \frac{P}{15} + 7850g \sin 3 - 1480 = 7850 \times 0.8 \end{bmatrix}$<br>$\rightarrow P = \dots$ | M1    | Using $P = Fv$ and solving for $P$ |
|          | Power = 54800 W                                                                                                 | A1    |                                    |
|          | ź                                                                                                               | 3     | 2.                                 |
|          | 2                                                                                                               |       | o'                                 |

| Question | Answer                                      | Marks | Guidance                          |
|----------|---------------------------------------------|-------|-----------------------------------|
| 3(i)     | $R = mg \cos 25$                            | B1    |                                   |
|          | $[F = 0.4mg\cos 25]$                        | M1    | Using $F = \mu R$                 |
|          | $[mg\sin 25 - 0.4mg\cos 25 = ma]$           | M1    | Use of Newton's Second Law        |
|          | $a = 0.601 \text{ ms}^{-2}$                 | A1    |                                   |
|          |                                             | 4     |                                   |
| 3(ii)    | $[s = \frac{1}{2} \times 0.601 \times 3^2]$ | M1    | Use of $s = ut + \frac{1}{2}at^2$ |
|          | Distance = 2.70 m                           | A1 FT | FT 4.5 × <i>a</i> from (i)        |
|          |                                             | 2     |                                   |

| Question | Answer                                                                                           | Marks       | Guidance                                                                                                                                      |
|----------|--------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 4(i)     | EITHER:<br>[T-0.35g = 0.35a]<br>or $0.45g - T = 0.45a$<br>or $0.45g - 0.35g = 0.8a]$             | (M1         | Applies Newton's Second Law to one of<br>the particles or forms system equation in<br>$a (m_Bg - m_Ag = (m_A + m_B)a)$                        |
|          | [0.45g - T = 0.45a]<br>or $T - 0.35g = 0.35a] \rightarrow a =$                                   | M1          | Applies Newton's Second Law to form<br>second equation in T and <i>a</i> and solves for<br><i>a</i><br>or solves system equation for <i>a</i> |
|          | $a = 1.25 \text{ m s}^{-2}$                                                                      | A1          |                                                                                                                                               |
|          | $[v^2 = 2 \times 1.25 \times 0.64]  (= 1.6)$                                                     | M1          | Using $v^2 = u^2 + 2as$                                                                                                                       |
|          | $Velocity = 1.26 \text{ ms}^{-1}$                                                                | A1)         |                                                                                                                                               |
|          | <i>OR:</i><br>[PE loss = $0.45g \times 0.64 - 0.35g \times 0.64$ ]                               | (M1         | Attempts PE loss                                                                                                                              |
|          | [KE gain = $\frac{1}{2}$ (0.35 + 0.45) $v^2$ ]                                                   | M1          | Attempts KE gain                                                                                                                              |
|          | PE loss = $0.45g \times 0.64 - 0.35g \times 0.64$<br>and KE gain = $\frac{1}{2}(0.35 + 0.45)v^2$ | A1          |                                                                                                                                               |
|          | $[\frac{1}{2} (0.8) v^2 = 0.1g \times 0.64]  (v^2 = 1.6)$                                        | M1          | Using PE loss = KE gain                                                                                                                       |
|          | Velocity = $1.26 \text{ ms}^{-1}$                                                                | <b>A</b> 1) |                                                                                                                                               |
|          |                                                                                                  | 5           |                                                                                                                                               |
| 4(ii)    | EITHER:<br>[0 = 1.6 - 2  gs] (s = 0.08)                                                          | (M1         | Using $v^2 = u^2 + 2as$                                                                                                                       |
|          | Distance = 0.16 m                                                                                | A1)         | <u>,</u><br>,                                                                                                                                 |
|          | <i>OR</i> :<br>$[0.35gh = \frac{1}{2} (0.35) \times 1.6]$ ( <i>h</i> = 0.08)                     | (M1         | Using PE gain = KE loss for particle A                                                                                                        |
|          | Distance = $0.16 \text{ m}$                                                                      | A1)         |                                                                                                                                               |
|          |                                                                                                  | 2           |                                                                                                                                               |

| Question | Answer                                                                                                                      | Marks | Guidance                     |
|----------|-----------------------------------------------------------------------------------------------------------------------------|-------|------------------------------|
| 5(i)     | $v = \int k(3t^2 - 12t + 2) dt$<br>= $k(3t^3/3 - 12t^2/2 + 2t) + C$                                                         | *M1   | Use of $v = \int a  dt$      |
|          | $v = k\left(t^3 - 6t^2 + 2t\right) + C$                                                                                     | A1    | Condone C missing            |
|          | <i>C</i> = 0.4                                                                                                              | B1    |                              |
|          | 0.1 = k(1 - 6 + 2) + 0.4  [-0.3 = -3k]                                                                                      | DM1   | Substitutes $t = 1, v = 0.1$ |
|          | <i>k</i> = 0.1                                                                                                              | A1    | AG                           |
|          |                                                                                                                             | 5     |                              |
| 5(ii)    | $[s = \int 0.1(t^3 - 6t^2 + 2t) + 0.4 dt$<br>= 0.1(t <sup>4</sup> /4 - 6t <sup>3</sup> /3 + 2t <sup>2</sup> /2) + 0.4t + C] | M1    | Use of $s = \int v  dt$      |
|          | $s = 0.025t^4 - 0.2t^3 + 0.1t^2 + 0.4t$                                                                                     | A1    | C = 0 seen or implied        |
|          | 6                                                                                                                           | 2     |                              |
| 5(iii)   | Substitutes $t = 2$ to show $s = 0$                                                                                         | B1    | AG                           |
|          |                                                                                                                             | 1     |                              |
| L        |                                                                                                                             |       |                              |

| Question | Answer                                                                         | Marks | Guidance                                                                  |
|----------|--------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------|
| 6(i)     | $[Area = \frac{1}{2} (10 + 4) \times 6 = 42 \text{ m}]$<br>Displacement = 42 m | B1    |                                                                           |
|          | ź                                                                              | 1     | 2.                                                                        |
| 6(ii)    | $\frac{v}{2} = \frac{6}{4}$<br>or [gradient =1.5, v = 6 + 1.5 × 6]             | M1    | Using similar triangles or using acceleration = gradient and $v = u + at$ |
|          | $v = 3 \text{ ms}^{-1}$                                                        | A1    |                                                                           |
|          |                                                                                | 2     |                                                                           |
| 6(iii)   | Total distance travelled<br>= $42 + \frac{1}{2}(T - 10) \times 3$              | B1 FT | Area found with FT distance from (i) and FT speed from (ii)               |
|          | $[42 + \frac{1}{2}(T - 10) \times 3 = 49.5] \rightarrow T = \dots$             | M1    | For equation and solving for <i>T</i>                                     |
|          | T = 15  s                                                                      | A1    |                                                                           |
|          |                                                                                | 3     |                                                                           |

| Question | Answer                                                                                         | Marks | Guidance                                                                    |
|----------|------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------|
| 6(iv)    | $V = 1.75 \times 4 = 7 \text{ ms}^{-1}$                                                        | B1    |                                                                             |
|          | $Q$ travels [ $\frac{1}{2}(13+6) \times 7 = 66.5$ m]<br>Distance apart = [ $66.5 + 42 - 7.5$ ] | M1    | Finding area for <i>Q</i> and interpreting total distance between particles |
|          | Distance between <i>P</i> and $Q = 101$ m                                                      | A1    |                                                                             |
|          |                                                                                                | 3     |                                                                             |

| Question | Answer                                                         | Marks | Guidance                                   |
|----------|----------------------------------------------------------------|-------|--------------------------------------------|
| 7(i)     | $R = 0.2g\cos 30 - T\sin 15$                                   | B1    |                                            |
|          | $[F = 0.3 \times (0.2g \cos 30 - T \sin 15)]$                  | M1    | Use of $F = \mu R$                         |
|          | TP                                                             | M1    | For resolving along the plane              |
|          | $T\cos 15 + 0.3 \times (0.2g\cos 30 - T\sin 15) = 0.2g\sin 30$ | A1    |                                            |
|          |                                                                | M1    | For solving a 4 term equation for <i>T</i> |
|          | T = 0.541                                                      | A1    |                                            |
|          |                                                                | 6     |                                            |
| 7(ii)    | $0.3 \times 0.2g \cos 30 \times 3$ [= 1.5588 J]                | B1    | WD against $F =$ friction × distance       |
|          | WD = $0.25 \times 3$ [= 0.75 J]                                | B1    | WD against 0.25 force                      |
|          | $0.2g \times 3 \sin 30$ [= 3 J]                                | B1    | PE loss = mgh                              |
|          | $[\frac{1}{2}(0.2) v^2 = 3 - 1.5588 - 0.75]$                   | M1    | Work/Energy equation                       |
|          | Speed = $2.63 \text{ ms}^{-1}$                                 | A1    |                                            |
|          |                                                                | 5     |                                            |



#### MATHEMATICS

9709/42 October/November 2017

Paper 4 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are several
  B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
  steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

#### **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

## 9709/42

| Question | Answer                                             | Marks | Guidance                                                   |
|----------|----------------------------------------------------|-------|------------------------------------------------------------|
| 1(i)     | $F = 0.2g \sin 20 = 0.684$ N                       | B1    | AG                                                         |
|          |                                                    | 1     |                                                            |
| 1(ii)    | $R = 0.2g \cos 20$                                 | B1    |                                                            |
|          | $F = \mu R \left[= 0.6 \times 0.2g \cos 20\right]$ | M1    | Using $F = \mu R$ $F = 1.1276$                             |
|          | $[0.9 + 0.2g\sin 20 - F = 0.2a]$                   | M1    | Use of Newton's 2nd law along the plane (4 relevant terms) |
|          | $a = 2.28 \text{ ms}^{-2}$                         | A1    |                                                            |
|          |                                                    | 4     |                                                            |

| Question | Answer                                                                                          | Marks | Guidance                                                                                           |
|----------|-------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------|
| 2        | EITHER:                                                                                         | (M1   | Attempt to resolve (either direction with<br>correct number of terms and<br>dimensionally correct) |
|          | $T\sin\theta + 120\sin45 = 15g$                                                                 | A1    | Resolving vertically                                                                               |
|          | $T\cos\theta = 120\cos45$                                                                       | A1    | Resolving horizontally                                                                             |
|          | $[\tan \theta = \frac{(15g - 120\sin 45)}{(120\cos 45)}$<br>or $T = \sqrt{65.15^2 + 84.85^2}$ ] | M1    | For using division to find $\theta$ or for using Pythagoras to find $T$                            |
|          | $\theta = 37.5$                                                                                 | A1    | .5                                                                                                 |
|          | <i>T</i> = 107                                                                                  | A1)   | .0                                                                                                 |
|          | $\frac{OR1:}{\sin(90+\theta)} = \frac{T}{\sin 135} = \frac{15g}{\sin(135-\theta)}$              | (A1   | One correct equation                                                                               |
|          |                                                                                                 | A1    | A second correct equation                                                                          |
|          |                                                                                                 | M1    | Attempt to solve for $\theta$ or $T$                                                               |
|          | $\theta = 37.5$                                                                                 | A1    |                                                                                                    |
|          | <i>T</i> = 107                                                                                  | A1    |                                                                                                    |
|          |                                                                                                 | M1)   | Attempt to use triangle of forces                                                                  |

| Question | Answer                                                                                 | Marks | Guidance                                                                                                                          |
|----------|----------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------|
|          | $OR2: = \frac{T}{\sin 45} = \frac{15g}{\sin(45+\theta)} = \frac{120}{\sin(90-\theta)}$ | (A1   | One correct equation                                                                                                              |
|          |                                                                                        | A1    | A second correct equation                                                                                                         |
|          |                                                                                        | M1    | Attempt to solve for $\theta$ or $T$                                                                                              |
|          | $\theta = 37.5$                                                                        | A1    |                                                                                                                                   |
|          | <i>T</i> = 107                                                                         | A1)   |                                                                                                                                   |
|          | OR3:<br>$[T^2 = 150^2 + 120^2 - 2(150)(120)\cos 45]$                                   | (M1   | Use cosine rule in a triangle with sides 120, 150 and <i>T</i> and with corresponding angles $90 - \theta$ , $45 + \theta$ , $45$ |
|          | TP                                                                                     | A1    | Correct equation                                                                                                                  |
|          | <i>T</i> = 107                                                                         | A1    |                                                                                                                                   |
|          |                                                                                        | M1    | Use sin rule or cosine rule in an attempt to find $\theta$                                                                        |
|          | $120/\sin(90-\theta) = 106.97/\sin 45$                                                 | A1    | A correct equation in $\theta$ such as this                                                                                       |
|          | $\theta = 37.5$                                                                        | A1)   |                                                                                                                                   |
|          |                                                                                        | 6     |                                                                                                                                   |
|          |                                                                                        |       |                                                                                                                                   |

| Question | Answer                                                 | Marks      | Guidance                                                                                                  |
|----------|--------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------|
| 3(i)     | $s_{AB} = 14 \times 5 + \frac{1}{2}a \times 5^2$       | <b>B</b> 1 | or $s_{AB} = \frac{1}{2}(14 + 14 + 5a) \times 5$ OE                                                       |
|          | $s_{AC} = 14 \times 8 + \frac{1}{2}a \times 8^2$ Satpr | B1         | or $s_{AC} = \frac{1}{2}(14 + 14 + 8a) \times 8$ OE                                                       |
|          | [112 + 32a = 2(70 + 12.5a)]                            | M1         | Using $AC = 2AB$ and solving for <i>a</i> or for substituting $a = 4$ and finding <i>AB</i> and <i>AC</i> |
|          | $a = 4 \text{ m s}^{-2}$                               | A1         | AG, If substituting $a = 4$ must show $AB = 120$ and $AC = 240$ OE                                        |
|          |                                                        | 4          |                                                                                                           |
| 3(ii)    | $[v = 14 + 4 \times 8]$                                | M1         | Use of $v = u + at$<br>or any complete method to find $v$                                                 |
|          | Velocity = $46 \text{ m s}^{-1}$                       | A1         |                                                                                                           |
|          |                                                        | 2          |                                                                                                           |

| Question | Answer                                                                  | Marks | Guidance                                                                                                    |
|----------|-------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------|
| 4(i)     | $[12t - \frac{1}{2}gt^2 = 0]$<br>or<br>[0 = 12 - gT] with $t = 2T$ used | M1    | Using $s = ut + \frac{1}{2}at^2$ or equivalent such as finding time <i>T</i> to highest point and doubling. |
|          | t = 2.4  s                                                              | A1    |                                                                                                             |
|          |                                                                         | 2     |                                                                                                             |
| 4(ii)    | Critical point at $t = 1.2$                                             | B1    | Seen in 4(ii)                                                                                               |
|          | Critical point at $t = 2$                                               | B1    | Seen in 4(ii)                                                                                               |
|          | Both moving in same direction $1 < t < 1.2$                             | B1    |                                                                                                             |
|          | Both moving in same direction $2 < t < 2.4$                             | B1    |                                                                                                             |
|          |                                                                         | 4     |                                                                                                             |
|          | 197                                                                     |       |                                                                                                             |

| Question | Answer                                                                                     | Marks | Guidance                                                        |
|----------|--------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------|
| 5(i)     | <i>EITHER:</i><br>Resistance force = $\frac{600}{25}$ = 24 N                               | (B1   |                                                                 |
|          | Weight component = $80 g (0.04)$<br>= $32 N$                                               | B1    | For correct unsimplified numerical form of the weight component |
|          | $[Power = 56 \times 4]$                                                                    | M1    | For use of $P = Fv$ where F is from two<br>relevant force terms |
|          | Power = 224 W                                                                              | A1)   |                                                                 |
|          | Satpi                                                                                      | 4     |                                                                 |
|          | $ \begin{array}{r} OR: \\ PE \text{ gain } = 80g \times 25 \ (0.04) \\ = 800 \end{array} $ | (B1   | For a correct unsimplified numerical expression for PE          |
|          | Time taken = $\frac{25}{4} = 6.25$                                                         | B1    |                                                                 |
|          | [WD by cyclist = $P \times 6.25 = 800 + 600$ ]                                             | M1    | For using $WD = P \times t$ where WD is from two relevant terms |
|          | Power = $224 \text{ W}$                                                                    | A1)   |                                                                 |
|          |                                                                                            | 4     |                                                                 |

| Question | Answer                                                    | Marks | Guidance                                                                          |
|----------|-----------------------------------------------------------|-------|-----------------------------------------------------------------------------------|
| 5(ii)    | Work done by cyclist<br>= $224 \times 10$ (= $2240J$ )    | B1 FT | For stating WD = power $\times$ time<br>FT on <i>P</i> value found in <b>5(i)</b> |
|          | Initial KE = $\frac{1}{2} \times 80 \times 4^2$ [= 640 J] | B1    |                                                                                   |
|          | $[\frac{1}{2} \times 80v^2 = 640 + P \times 10 - 1200]$   | M1    | For using Work/Energy equation                                                    |
|          | Speed = $6.48 \text{ m s}^{-1}$                           | A1    | Allow speed = $\sqrt{42}$                                                         |
|          |                                                           | 4     |                                                                                   |

| Question            | Answer                                                           | Marks | Guidance                                                                                                                |  |
|---------------------|------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------|--|
| 6(i)                | $R = mg \cos \alpha  (R = 9.6m)$                                 | B1    | Allow use of $\alpha = 16.3^{\circ}$ throughout                                                                         |  |
|                     | $\begin{bmatrix} T = mg \\ F = mg \sin \alpha + T \end{bmatrix}$ | M1    | For resolving forces on <i>P</i> and <i>Q</i> and eliminating <i>T</i> or for considering the equilibrium of the system |  |
|                     | $F = mg\sin\alpha + mg$                                          | A1    | (F = 12.8m)                                                                                                             |  |
|                     |                                                                  | M1    | For use of $F = \mu R$                                                                                                  |  |
|                     | Coefficient of friction = $1\frac{1}{3} = \frac{4}{3}$           | A1    | AG so must be from exact working                                                                                        |  |
|                     |                                                                  | 5     |                                                                                                                         |  |
| Zzy.<br>satprep.co. |                                                                  |       |                                                                                                                         |  |

## 9709/42

| Question | Answer                                                                          | Marks | Guidance                                                                                                               |
|----------|---------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------|
| 6(ii)    | <i>EITHER:</i><br><i>P</i> equation is<br>$10 - mg \sin \alpha - F - T = 2.5 m$ | (*M1  | For applying Newton's 2nd law to $P$ (5 terms) or $Q$ (3 terms)                                                        |
|          | Q equation is<br>T - mg = 2.5m                                                  |       |                                                                                                                        |
|          |                                                                                 | *M1   | For applying Newton's 2nd law to the other particle and eliminate <i>T</i>                                             |
|          | $10 - mg \sin \alpha - \mu mg \cos \alpha$ $- mg = 2m (2.5)$                    | A1    | If evaluated then this is<br>10 - 2.8m - 12.8m - 10m = 5m                                                              |
|          |                                                                                 | DM1   | For solving this equation for $m$ as far as $m$ = Dependent on one or other of the previous M marks having been scored |
|          | <i>m</i> = 0.327                                                                | A1)   | Allow $m = \frac{50}{153}$                                                                                             |
|          | <i>OR:</i> [10 - $mg \sin \alpha - F - mg = m(2.5 + 2.5)$ ]                     | (*M1  | For applying Newton's 2nd law to the system. Allow with 5 terms                                                        |
|          |                                                                                 | *M1   | System equation with all 6 terms                                                                                       |
|          | $10 - mg \sin \alpha - \mu mg \cos \alpha - mg = 2m (2.5)$                      | A1    |                                                                                                                        |
|          |                                                                                 | DM1   | For solving this equation for $m$ as far as $m$ = Dependent on one or other of the previous M marks having been scored |
|          | <i>m</i> = 0.327                                                                | A1)   | Allow $m = \frac{50}{153}$                                                                                             |
|          | Patpi                                                                           | 5     |                                                                                                                        |

| Question | Answer                                                      | Marks | Guidance                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(i)     | $-0.01t(t^{2} - 22t + 40) = 0$<br>-0.01t(t - 20)(t - 2) = 0 | M1    | Attempting to solve $v = 0$ for $t$ for a solvable quadratic using factors or quadratic formula and obtaining two non-zero solutions                                                                      |
|          | t = 2  or  t = 20                                           | A1    |                                                                                                                                                                                                           |
|          |                                                             | 2     |                                                                                                                                                                                                           |
| 7(ii)    | $a = -0.03t^2 + 0.44t - 0.4$                                | M1    | For differentiation                                                                                                                                                                                       |
|          | <i>a</i> is greatest (maximum) when<br>0.44 - 0.06t = 0     | M1    | For differentiation <b>or</b> finding values of $t = t_1$ and $t = t_2$ where $a = 0$ and using $t = \frac{1}{2}(t_1 + t_2)$ <b>or</b> completing the square <b>or</b> other method to find maximum value |
|          | Max acceleration when $t = 7.33$                            | A1    | Allow $t = \frac{22}{3}$                                                                                                                                                                                  |
|          | 9                                                           | 3     |                                                                                                                                                                                                           |
| 7(iii)   | $\int (-0.01t^3 + 0.22t^2 - 0.4t) dt$                       | *M1   | For using integration.                                                                                                                                                                                    |
|          | $s(t) = -\frac{0.01}{4}t^4 + \frac{0.22}{3}t^3 - 0.2t^2$    | A1    | Correct Integration<br>Allow + C included                                                                                                                                                                 |
|          | s(20) - s(2)                                                | DM1   | Limits 2 and 20 used correctly<br>Dependent on previous M1 having been<br>scored                                                                                                                          |
|          | Distance = 107 m                                            | A1    | Distance = $\frac{2673}{25} = 106.92$                                                                                                                                                                     |
|          | ··satpr                                                     | eP4   |                                                                                                                                                                                                           |


### MATHEMATICS

9709/41 October/November 2017

Paper 4 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are several
  B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
  steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

### **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Question | Answer                                         | Marks | Guidance                                 |
|----------|------------------------------------------------|-------|------------------------------------------|
| 1        | $[12\cos 25 = 3a]$                             | M1    | For use of Newton's second law           |
|          | $a = 4 \cos 25 = 3.625$                        | A1    |                                          |
|          | $[s = \frac{1}{2} \times 4\cos 25 \times 5^2]$ | M1    | For use of $s = ut + \frac{1}{2}at^2$ OE |
|          | Distance = 45.3 m                              | A1    |                                          |
|          |                                                | 4     |                                          |

| Question | Answer                                          | Marks | Guidance                                                                      |
|----------|-------------------------------------------------|-------|-------------------------------------------------------------------------------|
| 2(i)     | Power = $1150 \times 12 = 13800$ W              | B1    | For use of $P = F \times v$ Allow 13.8 kW                                     |
|          |                                                 | 1     |                                                                               |
| 2(ii)    | Driving force = $\frac{25000}{12}$              | B1    | Using $F = \frac{P}{v}$                                                       |
|          | $\frac{25000}{12} - 1150 - 3700g\sin 4 = 3700a$ | M1    | For applying Newton's 2nd law up the slope, 4 terms                           |
|          | $a = -0.445 \text{ m s}^{-2}$                   | A1    |                                                                               |
|          |                                                 | 3     |                                                                               |
| 2(iii)   | $\frac{25000}{v} - 1150 - 3700g\sin 4 = 0$      | M1    | For stating the equation for constant $v$ , with 3 terms, and solving for $v$ |
|          | $v = 6.70 \text{ m s}^{-1}$                     | A1    |                                                                               |
|          | 2                                               | 2     | 2.5                                                                           |
|          | 2.                                              |       | 0                                                                             |

| Question | Answer                                                                   | Marks      | Guidance                                                          |
|----------|--------------------------------------------------------------------------|------------|-------------------------------------------------------------------|
| 3(i)     | 640 × 18                                                                 | M1         | For use of work done = $F \times d$                               |
|          | Work done = 11 520 J                                                     | A1         |                                                                   |
|          |                                                                          | 2          |                                                                   |
| 3(ii)    | KE at start<br>= $\frac{1}{2} \times 840 \times 14^2 = 82\ 320\ J$       | <b>B</b> 1 |                                                                   |
|          | PE gained = $840g \times 8\sin 30$<br>- $840g \times 10\sin 20 = 4870$ J | B1         |                                                                   |
|          | $\frac{1}{2} \times 840 \times v^2 = 82\ 320 - 11\ 520 - 4870$           | M1         | For using work – energy equation with 4 terms and solving for $v$ |
|          | $v = 12.5 \text{ m s}^{-1}$                                              | A1         |                                                                   |
|          |                                                                          | 4          |                                                                   |

| Question | Answer                                                                                                                                   | Marks | Guidance                                                                         |
|----------|------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------|
| 4(i)     | Acceleration = $\frac{(-25)}{2.5}$ = -10 m s <sup>-2</sup>                                                                               | B1    | AG                                                                               |
|          |                                                                                                                                          | 1     |                                                                                  |
| 4(ii)    | $V = -15 + 7.5 \times 4$                                                                                                                 | M1    | Using <i>v</i> – <i>t</i> graph OE                                               |
|          | $V = 15 \text{ m s}^{-1}$                                                                                                                | A1    |                                                                                  |
|          |                                                                                                                                          | 2     |                                                                                  |
| 4(iii)   | Using $v = 0$ at $t = 4.5$ and $t = 8$                                                                                                   | B1    |                                                                                  |
|          |                                                                                                                                          | M1    | Attempting to use area to find total distance travelled                          |
|          | $\frac{1}{2} \times (4.5 + 2) \times 10$<br>+ $\frac{1}{2} \times (8 - 4.5) \times 15$<br>+ $\frac{1}{2} \times (T - 8) \times 15 = 100$ | M1    | For setting up an equation for total distance travelled and solving for <i>T</i> |
|          | <i>T</i> = 13.5                                                                                                                          | A1    |                                                                                  |
|          |                                                                                                                                          | 4     |                                                                                  |

| Question | Answer                                                                     | Marks | Guidance                                |
|----------|----------------------------------------------------------------------------|-------|-----------------------------------------|
| 5(i)     | Acceleration = $0.4 \text{ m s}^{-2}$                                      | B1    |                                         |
|          |                                                                            | 1     |                                         |
| 5(ii)    | $\frac{100}{t^2} - 0.1t = 0$                                               | M1    | For setting $v = 0$ and solving for $t$ |
|          | t=10 s                                                                     | A1    |                                         |
|          |                                                                            | 2     |                                         |
| 5(iii)   | Distance $t = 0$ to $t = 5$ is<br>$\frac{1}{2}(1.5 + 3.5) \times 5 = 12.5$ | B1    | Trapezium rule or integration           |
|          | $s(t) = \int \left(\frac{100}{t^2} - 0.1t\right) dt$                       | M1    | For integration                         |
|          | $= -\frac{100}{t} - 0.05t^2(+C)$                                           | A1    | Correct integration                     |
|          | s(10) - s(5)                                                               | M1    | Use limits 5 and 10 used or find $+ C$  |
|          | Total distance = $12.5 + 6.25 = 18.75$ m                                   | A1    |                                         |
|          |                                                                            | 5     |                                         |

## 9709/41

| Question | Answer                                                        | Marks | Guidance                                                                       |
|----------|---------------------------------------------------------------|-------|--------------------------------------------------------------------------------|
| 6(i)     |                                                               | M1    | For resolving forces (either direction)                                        |
|          | $X = 75 + 50 \cos 60 (= 100)$<br>Y = 50 sin 60 (= 43.3)       | A1    | For both equations, unevaluated                                                |
|          | Resultant = $\sqrt{(100^2 + 43.3^2)} = 109$ N                 | B1    |                                                                                |
|          | Angle = arctan $\left(\frac{43.3}{100}\right) = 23.4^{\circ}$ | B1    | Must state anticlockwise from the positive <i>x</i> -axis or show in a diagram |
|          |                                                               | 4     |                                                                                |
| 6(ii)    | $50\cos\alpha - F\cos 50 = 0$                                 | B1    | Resolving forces horizontally                                                  |
|          | $50\sin\alpha - 3F - F\sin 50 = 0$                            | B1    | Resolving forces vertically                                                    |
|          | $\tan \alpha = \frac{(3F + F\sin 50)}{(F\cos 50)}$            | M1    | For division to find $\theta$ or for using Pythagoras to find $F$              |
|          | $\alpha = 80.3$                                               | A1    |                                                                                |
|          | F = 13.1                                                      | A1    |                                                                                |
|          |                                                               | 5     |                                                                                |
|          |                                                               |       |                                                                                |

| Question | Answer                           | Marks | Guidance                                                                         |
|----------|----------------------------------|-------|----------------------------------------------------------------------------------|
| 7(i)     |                                  | M1    | For applying Newton's 2nd law to either<br>particle<br>(correct number of terms) |
|          | $T - 0.9 g \sin 15 = 0.9a$       | A1    | $\circ$                                                                          |
|          | $2.5 + 0.4 g \sin 25 - T = 0.4a$ | A1    |                                                                                  |
|          | 1.3 <i>a</i> = 1.86              | M1    | Solving simultaneously for <i>a</i>                                              |
|          | $a = 1.43 \text{ m s}^{-2}$      | A1    |                                                                                  |
|          |                                  | 5     |                                                                                  |

## 9709/41

| Question | Answer                            | Marks | Guidance                                                                 |
|----------|-----------------------------------|-------|--------------------------------------------------------------------------|
| 7(ii)    | $F = 0.8 \times 0.4g \cos 25$     | B1    |                                                                          |
|          | $2.5 + 0.4 g \sin 25 - T - F = 0$ | M1    | For using equilibrium of forces acting on particle <i>B</i> with 4 terms |
|          | $T - 0.9 g \sin \theta = 0$       | M1    | For using equilibrium of forces acting on particle <i>A</i> with 2 terms |
|          |                                   | M1    | For solving for $\theta$                                                 |
|          | $\theta = 8.2^{\circ}$            | A1    |                                                                          |
|          |                                   | 5     |                                                                          |





### MATHEMATICS

9709/43 October/November 2017

Paper 4 Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are several
  B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
  steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

### **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Question | Answer                             | Marks | Guidance                                        |
|----------|------------------------------------|-------|-------------------------------------------------|
| 1        | $(X=) 20 \cos 60 + 30 \cos 60 - F$ | B1    |                                                 |
|          | $[F = 20\cos 60 + 30\cos 60]$      | M1    | Use of horizontal component of resultant<br>= 0 |
|          | <i>F</i> = 25                      | A1    |                                                 |
|          |                                    | 3     |                                                 |

| Question | Answer                                                                                                          | Marks | Guidance                           |
|----------|-----------------------------------------------------------------------------------------------------------------|-------|------------------------------------|
| 2(i)     | $[F = 1480 + 7850g\sin 3] (= 5588)$                                                                             | M1    |                                    |
|          | $\left[\frac{P}{10} = 1480 + 7850g\sin 3\right] \to P = \dots$                                                  | M1    | Using $P = Fv$ and solving for $P$ |
|          | Power = 55 900 W                                                                                                | A1    |                                    |
|          | 9                                                                                                               | 3     |                                    |
| 2(ii)    | $[F + 7850g \sin 3 - 1480 = 7850 \times 0.8]$<br>(F = 3652)                                                     | M1    | Use of Newton's Second Law         |
|          | $\begin{bmatrix} \frac{P}{15} + 7850g \sin 3 - 1480 = 7850 \times 0.8 \end{bmatrix}$<br>$\rightarrow P = \dots$ | M1    | Using $P = Fv$ and solving for $P$ |
|          | Power = 54800 W                                                                                                 | A1    |                                    |
|          | ź                                                                                                               | 3     | 2.                                 |
|          | 2                                                                                                               |       | o'                                 |

| Question | Answer                                      | Marks | Guidance                          |
|----------|---------------------------------------------|-------|-----------------------------------|
| 3(i)     | $R = mg \cos 25$                            | B1    |                                   |
|          | $[F = 0.4mg\cos 25]$                        | M1    | Using $F = \mu R$                 |
|          | $[mg\sin 25 - 0.4mg\cos 25 = ma]$           | M1    | Use of Newton's Second Law        |
|          | $a = 0.601 \text{ ms}^{-2}$                 | A1    |                                   |
|          |                                             | 4     |                                   |
| 3(ii)    | $[s = \frac{1}{2} \times 0.601 \times 3^2]$ | M1    | Use of $s = ut + \frac{1}{2}at^2$ |
|          | Distance = 2.70 m                           | A1 FT | FT 4.5 × <i>a</i> from (i)        |
|          |                                             | 2     |                                   |

| Question | Answer                                                                                           | Marks       | Guidance                                                                                                                                      |
|----------|--------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 4(i)     | EITHER:<br>[T-0.35g = 0.35a]<br>or $0.45g - T = 0.45a$<br>or $0.45g - 0.35g = 0.8a]$             | (M1         | Applies Newton's Second Law to one of<br>the particles or forms system equation in<br>$a (m_Bg - m_Ag = (m_A + m_B)a)$                        |
|          | [0.45g - T = 0.45a]<br>or $T - 0.35g = 0.35a] \rightarrow a =$                                   | M1          | Applies Newton's Second Law to form<br>second equation in T and <i>a</i> and solves for<br><i>a</i><br>or solves system equation for <i>a</i> |
|          | $a = 1.25 \text{ m s}^{-2}$                                                                      | A1          |                                                                                                                                               |
|          | $[v^2 = 2 \times 1.25 \times 0.64]  (= 1.6)$                                                     | M1          | Using $v^2 = u^2 + 2as$                                                                                                                       |
|          | $Velocity = 1.26 \text{ ms}^{-1}$                                                                | A1)         |                                                                                                                                               |
|          | <i>OR:</i><br>[PE loss = $0.45g \times 0.64 - 0.35g \times 0.64$ ]                               | (M1         | Attempts PE loss                                                                                                                              |
|          | [KE gain = $\frac{1}{2}$ (0.35 + 0.45) $v^2$ ]                                                   | M1          | Attempts KE gain                                                                                                                              |
|          | PE loss = $0.45g \times 0.64 - 0.35g \times 0.64$<br>and KE gain = $\frac{1}{2}(0.35 + 0.45)v^2$ | A1          |                                                                                                                                               |
|          | $[\frac{1}{2} (0.8) v^2 = 0.1g \times 0.64]  (v^2 = 1.6)$                                        | M1          | Using PE loss = KE gain                                                                                                                       |
|          | Velocity = $1.26 \text{ ms}^{-1}$                                                                | <b>A</b> 1) |                                                                                                                                               |
|          |                                                                                                  | 5           |                                                                                                                                               |
| 4(ii)    | EITHER:<br>[0 = 1.6 - 2  gs] (s = 0.08)                                                          | (M1         | Using $v^2 = u^2 + 2as$                                                                                                                       |
|          | Distance = 0.16 m                                                                                | A1)         | <u>,</u><br>,                                                                                                                                 |
|          | <i>OR</i> :<br>$[0.35gh = \frac{1}{2} (0.35) \times 1.6]$ ( <i>h</i> = 0.08)                     | (M1         | Using PE gain = KE loss for particle A                                                                                                        |
|          | Distance = $0.16 \text{ m}$                                                                      | A1)         |                                                                                                                                               |
|          |                                                                                                  | 2           |                                                                                                                                               |

| Question | Answer                                                                                                                      | Marks | Guidance                     |
|----------|-----------------------------------------------------------------------------------------------------------------------------|-------|------------------------------|
| 5(i)     | $v = \int k(3t^2 - 12t + 2) dt$<br>= $k(3t^3/3 - 12t^2/2 + 2t) + C$                                                         | *M1   | Use of $v = \int a  dt$      |
|          | $v = k\left(t^3 - 6t^2 + 2t\right) + C$                                                                                     | A1    | Condone C missing            |
|          | <i>C</i> = 0.4                                                                                                              | B1    |                              |
|          | 0.1 = k(1 - 6 + 2) + 0.4  [-0.3 = -3k]                                                                                      | DM1   | Substitutes $t = 1, v = 0.1$ |
|          | <i>k</i> = 0.1                                                                                                              | A1    | AG                           |
|          |                                                                                                                             | 5     |                              |
| 5(ii)    | $[s = \int 0.1(t^3 - 6t^2 + 2t) + 0.4 dt$<br>= 0.1(t <sup>4</sup> /4 - 6t <sup>3</sup> /3 + 2t <sup>2</sup> /2) + 0.4t + C] | M1    | Use of $s = \int v  dt$      |
|          | $s = 0.025t^4 - 0.2t^3 + 0.1t^2 + 0.4t$                                                                                     | A1    | C = 0 seen or implied        |
|          | 6                                                                                                                           | 2     |                              |
| 5(iii)   | Substitutes $t = 2$ to show $s = 0$                                                                                         | B1    | AG                           |
|          |                                                                                                                             | 1     |                              |
| L        |                                                                                                                             |       |                              |

| Question | Answer                                                                         | Marks | Guidance                                                                  |
|----------|--------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------|
| 6(i)     | $[Area = \frac{1}{2} (10 + 4) \times 6 = 42 \text{ m}]$<br>Displacement = 42 m | B1    |                                                                           |
|          | ź                                                                              | 1     | 2.                                                                        |
| 6(ii)    | $\frac{v}{2} = \frac{6}{4}$<br>or [gradient =1.5, v = 6 + 1.5 × 6]             | M1    | Using similar triangles or using acceleration = gradient and $v = u + at$ |
|          | $v = 3 \text{ ms}^{-1}$                                                        | A1    |                                                                           |
|          |                                                                                | 2     |                                                                           |
| 6(iii)   | Total distance travelled<br>= $42 + \frac{1}{2}(T - 10) \times 3$              | B1 FT | Area found with FT distance from (i) and FT speed from (ii)               |
|          | $[42 + \frac{1}{2}(T - 10) \times 3 = 49.5] \rightarrow T = \dots$             | M1    | For equation and solving for <i>T</i>                                     |
|          | T = 15  s                                                                      | A1    |                                                                           |
|          |                                                                                | 3     |                                                                           |

| Question | Answer                                                                                         | Marks | Guidance                                                                    |
|----------|------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------|
| 6(iv)    | $V = 1.75 \times 4 = 7 \text{ ms}^{-1}$                                                        | B1    |                                                                             |
|          | $Q$ travels [ $\frac{1}{2}(13+6) \times 7 = 66.5$ m]<br>Distance apart = [ $66.5 + 42 - 7.5$ ] | M1    | Finding area for <i>Q</i> and interpreting total distance between particles |
|          | Distance between <i>P</i> and $Q = 101$ m                                                      | A1    |                                                                             |
|          |                                                                                                | 3     |                                                                             |

| Question | Answer                                                         | Marks | Guidance                                   |
|----------|----------------------------------------------------------------|-------|--------------------------------------------|
| 7(i)     | $R = 0.2g\cos 30 - T\sin 15$                                   | B1    |                                            |
|          | $[F = 0.3 \times (0.2g \cos 30 - T \sin 15)]$                  | M1    | Use of $F = \mu R$                         |
|          | TP                                                             | M1    | For resolving along the plane              |
|          | $T\cos 15 + 0.3 \times (0.2g\cos 30 - T\sin 15) = 0.2g\sin 30$ | A1    |                                            |
|          |                                                                | M1    | For solving a 4 term equation for <i>T</i> |
|          | T = 0.541                                                      | A1    |                                            |
|          |                                                                | 6     |                                            |
| 7(ii)    | $0.3 \times 0.2g \cos 30 \times 3$ [= 1.5588 J]                | B1    | WD against $F =$ friction × distance       |
|          | WD = $0.25 \times 3$ [= 0.75 J]                                | B1    | WD against 0.25 force                      |
|          | $0.2g \times 3 \sin 30$ [= 3 J]                                | B1    | PE loss = mgh                              |
|          | $[\frac{1}{2}(0.2) v^2 = 3 - 1.5588 - 0.75]$                   | M1    | Work/Energy equation                       |
|          | Speed = $2.63 \text{ ms}^{-1}$                                 | A1    |                                            |
|          |                                                                | 5     |                                            |



### MATHEMATICS

9709/42 October/November 2017

Paper 4 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are several
  B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
  steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

### **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

## 9709/42

| Question | Answer                                             | Marks | Guidance                                                   |
|----------|----------------------------------------------------|-------|------------------------------------------------------------|
| 1(i)     | $F = 0.2g \sin 20 = 0.684$ N                       | B1    | AG                                                         |
|          |                                                    | 1     |                                                            |
| 1(ii)    | $R = 0.2g \cos 20$                                 | B1    |                                                            |
|          | $F = \mu R \left[= 0.6 \times 0.2g \cos 20\right]$ | M1    | Using $F = \mu R$ $F = 1.1276$                             |
|          | $[0.9 + 0.2g\sin 20 - F = 0.2a]$                   | M1    | Use of Newton's 2nd law along the plane (4 relevant terms) |
|          | $a = 2.28 \text{ ms}^{-2}$                         | A1    |                                                            |
|          |                                                    | 4     |                                                            |

| Question | Answer                                                                                          | Marks | Guidance                                                                                           |
|----------|-------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------|
| 2        | EITHER:                                                                                         | (M1   | Attempt to resolve (either direction with<br>correct number of terms and<br>dimensionally correct) |
|          | $T\sin\theta + 120\sin45 = 15g$                                                                 | A1    | Resolving vertically                                                                               |
|          | $T\cos\theta = 120\cos45$                                                                       | A1    | Resolving horizontally                                                                             |
|          | $[\tan \theta = \frac{(15g - 120\sin 45)}{(120\cos 45)}$<br>or $T = \sqrt{65.15^2 + 84.85^2}$ ] | M1    | For using division to find $\theta$ or for using Pythagoras to find $T$                            |
|          | $\theta = 37.5$                                                                                 | A1    | .5                                                                                                 |
|          | <i>T</i> = 107                                                                                  | A1)   | .0                                                                                                 |
|          | $\frac{OR1:}{\sin(90+\theta)} = \frac{T}{\sin 135} = \frac{15g}{\sin(135-\theta)}$              | (A1   | One correct equation                                                                               |
|          |                                                                                                 | A1    | A second correct equation                                                                          |
|          |                                                                                                 | M1    | Attempt to solve for $\theta$ or $T$                                                               |
|          | $\theta = 37.5$                                                                                 | A1    |                                                                                                    |
|          | <i>T</i> = 107                                                                                  | A1    |                                                                                                    |
|          |                                                                                                 | M1)   | Attempt to use triangle of forces                                                                  |

| Question | Answer                                                                                 | Marks       | Guidance                                                                                                                          |
|----------|----------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------|
|          | $OR2: = \frac{T}{\sin 45} = \frac{15g}{\sin(45+\theta)} = \frac{120}{\sin(90-\theta)}$ | (A1         | One correct equation                                                                                                              |
|          |                                                                                        | A1          | A second correct equation                                                                                                         |
|          |                                                                                        | M1          | Attempt to solve for $\theta$ or $T$                                                                                              |
|          | $\theta = 37.5$                                                                        | A1          |                                                                                                                                   |
|          | <i>T</i> = 107                                                                         | A1)         |                                                                                                                                   |
|          | OR3:<br>$[T^2 = 150^2 + 120^2 - 2(150)(120)\cos 45]$                                   | (M1         | Use cosine rule in a triangle with sides 120, 150 and <i>T</i> and with corresponding angles $90 - \theta$ , $45 + \theta$ , $45$ |
|          | TP                                                                                     | A1          | Correct equation                                                                                                                  |
|          | <i>T</i> = 107                                                                         | A1          |                                                                                                                                   |
|          |                                                                                        | M1          | Use sin rule or cosine rule in an attempt to find $\theta$                                                                        |
|          | $120/\sin(90-\theta) = 106.97/\sin 45$                                                 | A1          | A correct equation in $\theta$ such as this                                                                                       |
|          | $\theta = 37.5$                                                                        | <b>A1</b> ) |                                                                                                                                   |
|          |                                                                                        | 6           |                                                                                                                                   |
|          |                                                                                        |             |                                                                                                                                   |

| Question | Answer                                                 | Marks      | Guidance                                                                                                     |
|----------|--------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------|
| 3(i)     | $s_{AB} = 14 \times 5 + \frac{1}{2}a \times 5^2$       | <b>B</b> 1 | or $s_{AB} = \frac{1}{2}(14 + 14 + 5a) \times 5$ OE                                                          |
|          | $s_{AC} = 14 \times 8 + \frac{1}{2}a \times 8^2$ Satpr | B1         | or $s_{AC} = \frac{1}{2}(14 + 14 + 8a) \times 8$ OE                                                          |
|          | [112 + 32a = 2(70 + 12.5a)]                            | M1         | Using $AC = 2AB$ and solving for <i>a</i> or for<br>substituting $a = 4$ and finding <i>AB</i> and <i>AC</i> |
|          | $a = 4 \text{ m s}^{-2}$                               | A1         | AG, If substituting $a = 4$ must show $AB = 120$ and $AC = 240$ OE                                           |
|          |                                                        | 4          |                                                                                                              |
| 3(ii)    | $[v = 14 + 4 \times 8]$                                | M1         | Use of $v = u + at$<br>or any complete method to find $v$                                                    |
|          | Velocity = $46 \text{ m s}^{-1}$                       | A1         |                                                                                                              |
|          |                                                        | 2          |                                                                                                              |

| Question | Answer                                                                  | Marks | Guidance                                                                                                    |
|----------|-------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------|
| 4(i)     | $[12t - \frac{1}{2}gt^2 = 0]$<br>or<br>[0 = 12 - gT] with $t = 2T$ used | M1    | Using $s = ut + \frac{1}{2}at^2$ or equivalent such as finding time <i>T</i> to highest point and doubling. |
|          | t = 2.4  s                                                              | A1    |                                                                                                             |
|          |                                                                         | 2     |                                                                                                             |
| 4(ii)    | Critical point at $t = 1.2$                                             | B1    | Seen in 4(ii)                                                                                               |
|          | Critical point at $t = 2$                                               | B1    | Seen in 4(ii)                                                                                               |
|          | Both moving in same direction $1 < t < 1.2$                             | B1    |                                                                                                             |
|          | Both moving in same direction $2 < t < 2.4$                             | B1    |                                                                                                             |
|          |                                                                         | 4     |                                                                                                             |
|          | 197                                                                     |       |                                                                                                             |

| Question | Answer                                                                                     | Marks | Guidance                                                        |
|----------|--------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------|
| 5(i)     | <i>EITHER:</i><br>Resistance force = $\frac{600}{25}$ = 24 N                               | (B1   |                                                                 |
|          | Weight component = $80 g (0.04)$<br>= $32 N$                                               | B1    | For correct unsimplified numerical form of the weight component |
|          | $[Power = 56 \times 4]$                                                                    | M1    | For use of $P = Fv$ where F is from two<br>relevant force terms |
|          | Power = 224 W                                                                              | A1)   |                                                                 |
|          | Satpi                                                                                      | 4     |                                                                 |
|          | $ \begin{array}{r} OR: \\ PE \text{ gain } = 80g \times 25 \ (0.04) \\ = 800 \end{array} $ | (B1   | For a correct unsimplified numerical expression for PE          |
|          | Time taken = $\frac{25}{4} = 6.25$                                                         | B1    |                                                                 |
|          | [WD by cyclist = $P \times 6.25 = 800 + 600$ ]                                             | M1    | For using $WD = P \times t$ where WD is from two relevant terms |
|          | Power = $224 \text{ W}$                                                                    | A1)   |                                                                 |
|          |                                                                                            | 4     |                                                                 |

| Question | Answer                                                    | Marks | Guidance                                                                          |
|----------|-----------------------------------------------------------|-------|-----------------------------------------------------------------------------------|
| 5(ii)    | Work done by cyclist<br>= $224 \times 10$ (= $2240J$ )    | B1 FT | For stating WD = power $\times$ time<br>FT on <i>P</i> value found in <b>5(i)</b> |
|          | Initial KE = $\frac{1}{2} \times 80 \times 4^2$ [= 640 J] | B1    |                                                                                   |
|          | $[\frac{1}{2} \times 80v^2 = 640 + P \times 10 - 1200]$   | M1    | For using Work/Energy equation                                                    |
|          | Speed = $6.48 \text{ m s}^{-1}$                           | A1    | Allow speed = $\sqrt{42}$                                                         |
|          |                                                           | 4     |                                                                                   |

| Question          | Answer                                                           | Marks | Guidance                                                                                                                |  |  |
|-------------------|------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| 6(i)              | $R = mg \cos \alpha  (R = 9.6m)$                                 | B1    | Allow use of $\alpha = 16.3^{\circ}$ throughout                                                                         |  |  |
|                   | $\begin{bmatrix} T = mg \\ F = mg \sin \alpha + T \end{bmatrix}$ | M1    | For resolving forces on <i>P</i> and <i>Q</i> and eliminating <i>T</i> or for considering the equilibrium of the system |  |  |
|                   | $F = mg\sin\alpha + mg$                                          | A1    | (F = 12.8m)                                                                                                             |  |  |
|                   |                                                                  | M1    | For use of $F = \mu R$                                                                                                  |  |  |
|                   | Coefficient of friction = $1\frac{1}{3} = \frac{4}{3}$           | A1    | AG so must be from exact working                                                                                        |  |  |
|                   |                                                                  | 5     |                                                                                                                         |  |  |
| ź.<br>Satprep.co. |                                                                  |       |                                                                                                                         |  |  |

## 9709/42

| Question | Answer                                                                          | Marks | Guidance                                                                                                               |
|----------|---------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------|
| 6(ii)    | <i>EITHER:</i><br><i>P</i> equation is<br>$10 - mg \sin \alpha - F - T = 2.5 m$ | (*M1  | For applying Newton's 2nd law to $P$ (5 terms) or $Q$ (3 terms)                                                        |
|          | Q equation is<br>T - mg = 2.5m                                                  |       |                                                                                                                        |
|          |                                                                                 | *M1   | For applying Newton's 2nd law to the other particle and eliminate <i>T</i>                                             |
|          | $10 - mg \sin \alpha - \mu mg \cos \alpha$ $- mg = 2m (2.5)$                    | A1    | If evaluated then this is<br>10 - 2.8m - 12.8m - 10m = 5m                                                              |
|          |                                                                                 | DM1   | For solving this equation for $m$ as far as $m$ = Dependent on one or other of the previous M marks having been scored |
|          | <i>m</i> = 0.327                                                                | A1)   | Allow $m = \frac{50}{153}$                                                                                             |
|          | <i>OR:</i> [10 - $mg \sin \alpha - F - mg = m(2.5 + 2.5)$ ]                     | (*M1  | For applying Newton's 2nd law to the system. Allow with 5 terms                                                        |
|          |                                                                                 | *M1   | System equation with all 6 terms                                                                                       |
|          | $10 - mg \sin \alpha - \mu mg \cos \alpha - mg = 2m (2.5)$                      | A1    |                                                                                                                        |
|          |                                                                                 | DM1   | For solving this equation for $m$ as far as $m$ = Dependent on one or other of the previous M marks having been scored |
|          | <i>m</i> = 0.327                                                                | A1)   | Allow $m = \frac{50}{153}$                                                                                             |
|          | Patpi                                                                           | 5     |                                                                                                                        |

| Question | Answer                                                      | Marks | Guidance                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(i)     | $-0.01t(t^{2} - 22t + 40) = 0$<br>-0.01t(t - 20)(t - 2) = 0 | M1    | Attempting to solve $v = 0$ for $t$ for a solvable quadratic using factors or quadratic formula and obtaining two non-zero solutions                                                                      |
|          | t = 2  or  t = 20                                           | A1    |                                                                                                                                                                                                           |
|          |                                                             | 2     |                                                                                                                                                                                                           |
| 7(ii)    | $a = -0.03t^2 + 0.44t - 0.4$                                | M1    | For differentiation                                                                                                                                                                                       |
|          | <i>a</i> is greatest (maximum) when<br>0.44 - 0.06t = 0     | M1    | For differentiation <b>or</b> finding values of $t = t_1$ and $t = t_2$ where $a = 0$ and using $t = \frac{1}{2}(t_1 + t_2)$ <b>or</b> completing the square <b>or</b> other method to find maximum value |
|          | Max acceleration when $t = 7.33$                            | A1    | Allow $t = \frac{22}{3}$                                                                                                                                                                                  |
|          | 9                                                           | 3     |                                                                                                                                                                                                           |
| 7(iii)   | $\int (-0.01t^3 + 0.22t^2 - 0.4t) dt$                       | *M1   | For using integration.                                                                                                                                                                                    |
|          | $s(t) = -\frac{0.01}{4}t^4 + \frac{0.22}{3}t^3 - 0.2t^2$    | A1    | Correct Integration<br>Allow + C included                                                                                                                                                                 |
|          | s(20) - s(2)                                                | DM1   | Limits 2 and 20 used correctly<br>Dependent on previous M1 having been<br>scored                                                                                                                          |
|          | Distance = 107 m                                            | A1    | Distance = $\frac{2673}{25} = 106.92$                                                                                                                                                                     |
|          | ··satpr                                                     | eP4   |                                                                                                                                                                                                           |



### MATHEMATICS

9709/41 October/November 2017

Paper 4 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are several
  B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
  steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

### **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Question | Answer                                         | Marks | Guidance                                 |
|----------|------------------------------------------------|-------|------------------------------------------|
| 1        | $[12\cos 25 = 3a]$                             | M1    | For use of Newton's second law           |
|          | $a = 4 \cos 25 = 3.625$                        | A1    |                                          |
|          | $[s = \frac{1}{2} \times 4\cos 25 \times 5^2]$ | M1    | For use of $s = ut + \frac{1}{2}at^2$ OE |
|          | Distance = 45.3 m                              | A1    |                                          |
|          |                                                | 4     |                                          |

| Question | Answer                                          | Marks | Guidance                                                                      |
|----------|-------------------------------------------------|-------|-------------------------------------------------------------------------------|
| 2(i)     | Power = $1150 \times 12 = 13800$ W              | B1    | For use of $P = F \times v$ Allow 13.8 kW                                     |
|          |                                                 | 1     |                                                                               |
| 2(ii)    | Driving force = $\frac{25000}{12}$              | B1    | Using $F = \frac{P}{v}$                                                       |
|          | $\frac{25000}{12} - 1150 - 3700g\sin 4 = 3700a$ | M1    | For applying Newton's 2nd law up the slope, 4 terms                           |
|          | $a = -0.445 \text{ m s}^{-2}$                   | A1    |                                                                               |
|          |                                                 | 3     |                                                                               |
| 2(iii)   | $\frac{25000}{v} - 1150 - 3700g\sin 4 = 0$      | M1    | For stating the equation for constant $v$ , with 3 terms, and solving for $v$ |
|          | $v = 6.70 \text{ m s}^{-1}$                     | A1    |                                                                               |
|          | 2                                               | 2     | 2.5                                                                           |
|          | 2.                                              |       | 0                                                                             |

| Question | Answer                                                                   | Marks      | Guidance                                                          |
|----------|--------------------------------------------------------------------------|------------|-------------------------------------------------------------------|
| 3(i)     | 640 × 18                                                                 | M1         | For use of work done = $F \times d$                               |
|          | Work done = 11 520 J                                                     | A1         |                                                                   |
|          |                                                                          | 2          |                                                                   |
| 3(ii)    | KE at start<br>= $\frac{1}{2} \times 840 \times 14^2 = 82\ 320\ J$       | <b>B</b> 1 |                                                                   |
|          | PE gained = $840g \times 8\sin 30$<br>- $840g \times 10\sin 20 = 4870$ J | B1         |                                                                   |
|          | $\frac{1}{2} \times 840 \times v^2 = 82\ 320 - 11\ 520 - 4870$           | M1         | For using work – energy equation with 4 terms and solving for $v$ |
|          | $v = 12.5 \text{ m s}^{-1}$                                              | A1         |                                                                   |
|          |                                                                          | 4          |                                                                   |

| Question | Answer                                                                                                                                   | Marks | Guidance                                                                         |
|----------|------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------|
| 4(i)     | Acceleration = $\frac{(-25)}{2.5}$ = -10 m s <sup>-2</sup>                                                                               | B1    | AG                                                                               |
|          |                                                                                                                                          | 1     |                                                                                  |
| 4(ii)    | $V = -15 + 7.5 \times 4$                                                                                                                 | M1    | Using <i>v</i> – <i>t</i> graph OE                                               |
|          | $V = 15 \text{ m s}^{-1}$                                                                                                                | A1    |                                                                                  |
|          |                                                                                                                                          | 2     |                                                                                  |
| 4(iii)   | Using $v = 0$ at $t = 4.5$ and $t = 8$                                                                                                   | B1    |                                                                                  |
|          |                                                                                                                                          | M1    | Attempting to use area to find total distance travelled                          |
|          | $\frac{1}{2} \times (4.5 + 2) \times 10$<br>+ $\frac{1}{2} \times (8 - 4.5) \times 15$<br>+ $\frac{1}{2} \times (T - 8) \times 15 = 100$ | M1    | For setting up an equation for total distance travelled and solving for <i>T</i> |
|          | <i>T</i> = 13.5                                                                                                                          | A1    |                                                                                  |
|          |                                                                                                                                          | 4     |                                                                                  |

| Question | Answer                                                                     | Marks | Guidance                                |
|----------|----------------------------------------------------------------------------|-------|-----------------------------------------|
| 5(i)     | Acceleration = $0.4 \text{ m s}^{-2}$                                      | B1    |                                         |
|          |                                                                            | 1     |                                         |
| 5(ii)    | $\frac{100}{t^2} - 0.1t = 0$                                               | M1    | For setting $v = 0$ and solving for $t$ |
|          | t=10 s                                                                     | A1    |                                         |
|          |                                                                            | 2     |                                         |
| 5(iii)   | Distance $t = 0$ to $t = 5$ is<br>$\frac{1}{2}(1.5 + 3.5) \times 5 = 12.5$ | B1    | Trapezium rule or integration           |
|          | $s(t) = \int \left(\frac{100}{t^2} - 0.1t\right) dt$                       | M1    | For integration                         |
|          | $= -\frac{100}{t} - 0.05t^2(+C)$                                           | A1    | Correct integration                     |
|          | s(10) - s(5)                                                               | M1    | Use limits 5 and 10 used or find $+ C$  |
|          | Total distance = $12.5 + 6.25 = 18.75$ m                                   | A1    |                                         |
|          |                                                                            | 5     |                                         |

## 9709/41

| Question | Answer                                                        | Marks | Guidance                                                                       |
|----------|---------------------------------------------------------------|-------|--------------------------------------------------------------------------------|
| 6(i)     |                                                               | M1    | For resolving forces (either direction)                                        |
|          | $X = 75 + 50 \cos 60 (= 100)$<br>Y = 50 sin 60 (= 43.3)       | A1    | For both equations, unevaluated                                                |
|          | Resultant = $\sqrt{(100^2 + 43.3^2)} = 109$ N                 | B1    |                                                                                |
|          | Angle = arctan $\left(\frac{43.3}{100}\right) = 23.4^{\circ}$ | B1    | Must state anticlockwise from the positive <i>x</i> -axis or show in a diagram |
|          |                                                               | 4     |                                                                                |
| 6(ii)    | $50\cos\alpha - F\cos 50 = 0$                                 | B1    | Resolving forces horizontally                                                  |
|          | $50\sin\alpha - 3F - F\sin 50 = 0$                            | B1    | Resolving forces vertically                                                    |
|          | $\tan \alpha = \frac{(3F + F\sin 50)}{(F\cos 50)}$            | M1    | For division to find $\theta$ or for using Pythagoras to find $F$              |
|          | $\alpha = 80.3$                                               | A1    |                                                                                |
|          | F = 13.1                                                      | A1    |                                                                                |
|          |                                                               | 5     |                                                                                |
|          |                                                               |       |                                                                                |

| Question | Answer                           | Marks | Guidance                                                                         |
|----------|----------------------------------|-------|----------------------------------------------------------------------------------|
| 7(i)     |                                  | M1    | For applying Newton's 2nd law to either<br>particle<br>(correct number of terms) |
|          | $T - 0.9 g \sin 15 = 0.9a$       | A1    | $\circ$                                                                          |
|          | $2.5 + 0.4 g \sin 25 - T = 0.4a$ | A1    |                                                                                  |
|          | 1.3 <i>a</i> = 1.86              | M1    | Solving simultaneously for <i>a</i>                                              |
|          | $a = 1.43 \text{ m s}^{-2}$      | A1    |                                                                                  |
|          |                                  | 5     |                                                                                  |

## 9709/41

| Question | Answer                            | Marks | Guidance                                                                 |
|----------|-----------------------------------|-------|--------------------------------------------------------------------------|
| 7(ii)    | $F = 0.8 \times 0.4g \cos 25$     | B1    |                                                                          |
|          | $2.5 + 0.4 g \sin 25 - T - F = 0$ | M1    | For using equilibrium of forces acting on particle <i>B</i> with 4 terms |
|          | $T - 0.9 g \sin \theta = 0$       | M1    | For using equilibrium of forces acting on particle <i>A</i> with 2 terms |
|          |                                   | M1    | For solving for $\theta$                                                 |
|          | $\theta = 8.2^{\circ}$            | A1    |                                                                          |
|          |                                   | 5     |                                                                          |





Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

### MATHEMATICS

9709/42 March 2017

Paper 4 Mechanics MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are several
  B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
  steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓<sup>\*</sup> implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

### **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓<sup>A</sup>" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Question | Answer                                             | Marks | Guidance                                                 |
|----------|----------------------------------------------------|-------|----------------------------------------------------------|
| 1(i)     | $KE = \frac{1}{2} \times 0.4 \times 12^2 = 28.8 J$ | B1    |                                                          |
|          | Total:                                             | 1     |                                                          |
| 1(ii)    | PE gain = $0.4gh$ [= $4d \sin 30$ ]                | B1    | h = height gained<br>d = distance travelled up the plane |
|          | 4h = 28.8                                          | M1    | Using KE loss = PE gain                                  |
|          | $h = 7.2 \ h = d \sin 30 \ d = 14.4 \ m$           | A1    |                                                          |
|          | Total:                                             | 3     |                                                          |

| Question | Answer                                       | Marks     | Guidance                                            |
|----------|----------------------------------------------|-----------|-----------------------------------------------------|
| 2        | TPI                                          | M1        | Resolve forces horizontally and/or vertically       |
|          | $T_{\rm A}\sin 20 + T_{\rm B}\sin 40 = 16$   | A1        | Correct vertical equation                           |
|          | $T_{\rm A}\cos 20 = T_{\rm B}\cos 40$        | A1        | Correct horizontal equation                         |
|          |                                              | M1        | Attempt to solve for $T_{\rm A}$ and/or $T_{\rm B}$ |
|          | $T_{\rm A} = 14.2 {\rm N}$                   | A1        | $T_{\rm A} = 14.1528$                               |
|          | $T_{\rm B} = 17.4{\rm N}$                    | A1        | $T_{\rm B} = 17.3610$                               |
|          | Total:                                       | 6         |                                                     |
|          | Alternative m                                | ethod for | Question 2                                          |
|          | 2                                            | M1        | Attempt to use Lami's Theorem                       |
|          | $\frac{16}{\sin 120} = \frac{T_A}{\sin 130}$ | A1        |                                                     |
|          | $\frac{16}{\sin 120} = \frac{T_B}{\sin 110}$ | A1        |                                                     |
|          |                                              | M1        | Attempt to solve for $T_{\rm A}$ and/or $T_{\rm B}$ |
|          | $T_{\rm A} = 14.2 {\rm N}$                   | A1        |                                                     |
|          | $T_{\rm B} = 17.4 {\rm N}$                   | A1        |                                                     |
|          | Total:                                       | 6         |                                                     |

| Question | Answer                              | Marks | Guidance                |
|----------|-------------------------------------|-------|-------------------------|
| 3        | $R = 0.6g \cos 21 \ [= 5.60]$       | B1    |                         |
|          | $F = 0.3R = 1.8 \cos 21 \ [= 1.68]$ | M1    | Using $F = \mu R$       |
|          | $P + F = 6 \sin 21[=2.15]$          | M1    | Slipping down           |
|          | P = 2.15 - 1.68 = 0.470 AG          | A1    | Least possible value    |
|          | $P - F = 6 \sin 21$                 | M1    | Slipping up             |
|          | P = 2.15 + 1.68 = 3.83              | A1    | Greatest possible value |
|          | Total:                              | 6     |                         |

| Question | Answer                                              | Marks | Guidance                      |
|----------|-----------------------------------------------------|-------|-------------------------------|
| 4(i)     | 36000 = 800v                                        | M1    | Using $P = Fv$                |
|          | $v = 45 \mathrm{m  s^{-1}}$                         | A1    | Speed of the car              |
|          | $AB = 45 \times 120 = 5400 \mathrm{m}$              | A1    |                               |
|          | Total:                                              | 3     |                               |
| 4(ii)    | -800 = 900a [a = -8/9]                              | M1    | Using Newton's 2nd law        |
|          | $v^2 = 45^2 - \frac{16}{9} \times 450$              | M1    | Using $v^2 = u^2 + 2as$       |
|          | $v = 35 \text{ m s}^{-1}$                           | A1    | Speed of the car at C         |
|          | Total:                                              | 3     | 5                             |
|          | Alternative method for Question 4(ii)               |       |                               |
|          | $0.5 \times 900 \times (45 - v^2)$                  | M1    | Attempt change in KE          |
|          | $0.5 \times 900 \times (45 - v^2) = 800 \times 450$ | M1    | KE loss = WD against Friction |
|          | $v = 35 \text{ ms}^{-1}$                            | A1    | Speed of the car at C         |
|          | Total:                                              | 3     |                               |

| Question | Answer                               | Marks | Guidance                           |
|----------|--------------------------------------|-------|------------------------------------|
| 4(iii)   | CD = 6637.5 - 5400 - 450 = 787.5     | B1    |                                    |
|          | $0 = 35^2 - 2d \times 787.5$         | M1    | Using $v^2 = u^2 + 2as$ , $a = -d$ |
|          | $d = 7/9 = 0.778 \mathrm{m  s^{-2}}$ | A1    | d = deceleration                   |
|          | $P = 900 \times (7/9) = 700$         | A1    | Using $F = ma$                     |
|          | Total:                               | 4     |                                    |

| Question | Answer                                                         | Marks | Guidance                                                                 |
|----------|----------------------------------------------------------------|-------|--------------------------------------------------------------------------|
| 5(i)     | $0=a+b\times 35^{2}$<br>$40=a+b\times 15^{2}$                  | M1    | For matching velocities at $t = 15$ and using $v = 0$ at $t = 35$        |
|          | $[1000b = -40 \rightarrow b = -0.04]$<br>[a = 0.04 × 352 = 49] | M1    | Solve for <i>a</i> and <i>b</i>                                          |
|          | a = 49  and  b = -0.04 AG                                      | A1    | 0                                                                        |
|          | Total:                                                         | 3     |                                                                          |
| 5(ii)    | $0 \le t \le 5$ correct                                        | B1    | Increasing quadratic, from (0,0) to (5,20), concave up                   |
|          | $5 \leq t \leq 15$ correct                                     | B1    | Line from (5,20) to (15,40)                                              |
|          | $15 \leq t \leq 35$ correct                                    | B1    | Decreasing quadratic, from (15,40) to (35,0), concave down               |
|          | 20 and 40 seen correct on v-axis                               | B1    | .5                                                                       |
|          | Total:                                                         | 4     |                                                                          |
| 5(iii)   | $A_1 = \int_0^5 0.8t^2 dt = \frac{100}{3}$                     | B1    |                                                                          |
|          | $A_2 = \frac{1}{2} (20 + 40) \times 10 = 300$                  | M1    | Using trapezium rule or integration for $t = 5$ to $t = 15$              |
|          | $A_{3} = \int_{15}^{35} (a + bt^{2}) dt$                       | M1    | Attempt to integrate the quadratic function<br>from $t = 15$ to $t = 35$ |
|          | $=49t - \frac{1}{3}t^2$                                        |       |                                                                          |
|          | $A_3 = 453.3333 = 1360/3$                                      | A1    |                                                                          |
|          | Total Distance = $2360/3 = 787 \mathrm{m}$                     | A1    |                                                                          |
|          | Total:                                                         | 5     |                                                                          |
# Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

| Question | Answer                                                                               | Marks | Guidance                                                                                                     |
|----------|--------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------|
| 6(i)     |                                                                                      | M1    | Apply Newton's law to either of the particles                                                                |
|          | 12 - T = 1.2a and $T - 8 = 0.8a$                                                     | A1    | Both equations correct                                                                                       |
|          |                                                                                      | M1    | Solve for <i>a</i> and <i>T</i>                                                                              |
|          | $a = 2 \mathrm{m  s^{-2}}$ and $T = 9.6 \mathrm{N}$                                  | A1    |                                                                                                              |
|          | Total:                                                                               | 4     |                                                                                                              |
| 6(ii)    | $[0.64 = \frac{1}{2} \times 2 \times t_1^2]$<br>[v = 2t_1]                           | M1    | Attempt to find time $t_1$ taken for 1.2 kg particle to reach ground and/or its speed <i>v</i> at the ground |
|          | $t_1 = 0.8$                                                                          | A1    |                                                                                                              |
|          | $v = 2 \times 0.8 = 1.6$                                                             | A1    |                                                                                                              |
|          | $\begin{bmatrix} 0 = 1.6 - 10t_2 \\ [1.6^2 = 2 \times 10 \times s_2 ] \end{bmatrix}$ | M1    | For attempting to find the time $t_2$<br>and/or distance travelled $s_2$ as 0.8 kg<br>particle comes to rest |
|          | $t_2 = 0.16$                                                                         | A1    |                                                                                                              |
|          | $s_2 = 0.128$                                                                        | A1    |                                                                                                              |
|          | $t_3 = 1 - 0.8 - 0.16 = 0.04$<br>$s_3 = \frac{1}{2} \times 10 \times 0.04^2$         | B1    | Finding the distance $s_3$ travelled downwards in $t_3$ seconds                                              |
|          | Total distance travelled = $0.64 + 0.128 + 0.008 = 0.776 \mathrm{m}$                 | B1    | 5                                                                                                            |
|          | Total:                                                                               | 8     |                                                                                                              |



#### MATHEMATICS

9709/43 October/November 2016

Paper 4 MARK SCHEME Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Published

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$  IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

| Page 2 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9709     | 43    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are several
  B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
  steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9709     | 43    |

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page  | Page 4 Mark Scheme       |                                                                                                                |            | Syllabus | Paper                                                    |            |    |  |  |
|-------|--------------------------|----------------------------------------------------------------------------------------------------------------|------------|----------|----------------------------------------------------------|------------|----|--|--|
|       |                          | Cambridge International AS/A Lev                                                                               | rel – Oc   | ctober   | November 2016                                            | 9709       | 43 |  |  |
| 1 (i) | P]<br>[V                 | E gain = $50g \times 3.5$ (=1750)<br>WD = $50g \times 3.5 + 25 \times 3.5$ ]                                   | B1<br>M1   |          | For using WD = PE gain + WD against resistance           |            |    |  |  |
|       | W                        | /ork done = 1837.5 J or 1840 J                                                                                 | A1         | [3]      |                                                          |            |    |  |  |
| (ii)  | [ <i>F</i><br>[ <i>F</i> | P = 1837.5/2] or<br>P/v = 50g + 25 and $3.5=2v$ ]                                                              | M1         |          | For using $P = WD/t$ or for using<br>P = Fv and $s = vt$ |            |    |  |  |
|       | Р                        | ower = 919 W                                                                                                   | A1         | [2]      |                                                          |            |    |  |  |
| 2     |                          |                                                                                                                | M1         |          | For resolving horiz                                      | ontally    |    |  |  |
|       |                          |                                                                                                                | M1         |          | For resolving vertice                                    | cally      |    |  |  |
|       | T<br>T                   | $T_A \cos 50^\circ - T_B \cos 10^\circ = 0$ and<br>$T_A \sin 50^\circ - T_B \sin 10^\circ - 20 \mathrm{g} = 0$ | A1         |          |                                                          |            |    |  |  |
|       | To<br>To                 | ension in PA is 306 N<br>ension in PB is 200 N                                                                 | M1<br>A1   | [5]      | For solving equations to find $T_A$ and $T_B$            |            |    |  |  |
|       | A                        | lternative (Lami's Theorem)                                                                                    |            |          |                                                          |            |    |  |  |
|       | [7                       | $T_A/\sin 80^\circ = T_B/\sin 140^\circ = 20  g/\sin 140^\circ$ ]                                              | M1         |          | For applying Lami                                        | 's Theorem |    |  |  |
|       | [7                       | $T_A = 20g \sin 80^{\circ} / \sin 140^{\circ}]$                                                                | M1         |          | For solving for $T_A$                                    |            |    |  |  |
|       | T                        | ension in PA is 306 N                                                                                          | <b>A</b> 1 |          |                                                          |            |    |  |  |
|       | [7                       | $T_B = 20 g \sin 140^{\circ} / \sin 140^{\circ}$                                                               | M1         |          | For solving for $T_B$                                    |            |    |  |  |
|       | Т                        | ension in PB is 200 N                                                                                          | A1         | [5]      |                                                          |            |    |  |  |
|       |                          |                                                                                                                |            |          |                                                          |            |    |  |  |

| Page  | e 5 Mark Scheme                        |                                                                                                  |         |       |                                                                                                                          | Syllabus        | Paper |
|-------|----------------------------------------|--------------------------------------------------------------------------------------------------|---------|-------|--------------------------------------------------------------------------------------------------------------------------|-----------------|-------|
|       |                                        | Cambridge International AS/A Lev                                                                 | el – Oc | tober | November 2016                                                                                                            | 9709            | 43    |
|       | r                                      |                                                                                                  | 1       |       | 1                                                                                                                        |                 |       |
| 3 (i) | [7<br>01                               | Tg - T = 7a and $T - 3g = 3a$ ]<br>T[7g - 3g = 10a]                                              | M1      |       | For applying Newton's second law to P<br>and to Q or for using $m_Pg - m_Qg = (m_P + m_Q)a$                              |                 |       |
|       | A                                      | cceleration is $4 \mathrm{ms}^{-2}$                                                              | A1      |       |                                                                                                                          |                 |       |
|       | [v                                     | $v^2 = 0 + 2 \times 4 \times 0.4$ ] ( $v^2 = 3.2$ )                                              | M1      |       | For using $v^2 = u^2 + 1$                                                                                                | 2 <i>as</i>     |       |
|       | S                                      | peed is $1.79\mathrm{ms}^{-1}$                                                                   | A1      | [4]   |                                                                                                                          |                 |       |
| (ii)  | [0                                     | $0 = 3.2 + 2 \times (-g) \times s$ ] (s = 0.16)                                                  | M1      |       | For using $0 = u^2 + 2$                                                                                                  | 2(-g)s          |       |
|       | 0.<br>So<br>it                         | 16 + 0.4 = 0.56<br>o particle <i>Q</i> does not come to rest before<br>reaches the pulley        | A1      | [2]   |                                                                                                                          |                 |       |
|       | A                                      | lternative                                                                                       |         |       |                                                                                                                          |                 |       |
|       | [v                                     | $y^2 = 3.2 + 2 \times (-g) \times 0.1$ ]                                                         | M1      |       | For using $v^2 = u^2 + u^2$                                                                                              | 2(-g)(0.1)      |       |
|       | v<br>So<br>it                          | $= \sqrt{1.2} (= 1.10)$<br>o particle Q does not come to rest before<br>reaches the pulley       | A1      | [2]   |                                                                                                                          |                 |       |
| 4 (i) | S <sub>A</sub>                         | $g_1 = \frac{1}{2}g \times 2.5^2 (= 31.25)$                                                      | B1      |       |                                                                                                                          |                 |       |
|       | [s                                     | $g_B = 20 \times 1.5 - \frac{1}{2}g \times 1.5^2$ ] (= 18.75)                                    | M1      |       | For using $s = ut + \frac{1}{2}$                                                                                         | $\sqrt{2} at^2$ |       |
|       | <sup>1</sup> / <sub>2</sub><br>H       | $g \times 2.5^2 + 20 \times 1.5 - \frac{1}{2}g \times 1.5^2$<br>eight is 50 m AG                 | A1      | [3]   |                                                                                                                          |                 |       |
| (ii)  | 50                                     | $0 = 0.5 g t_A^2 \qquad (t_A = 3.16)$                                                            | B1      |       | For using $s = \frac{1}{2} at^2$                                                                                         |                 |       |
|       | t <sub>B</sub>                         | $=\sqrt{10} - 1 = 2.16$                                                                          | B1      |       | .5                                                                                                                       |                 |       |
|       | $\begin{array}{c} T\\ 0^2 \end{array}$ | o top,<br>$c^2 = 20^2 - 2gs_B \longrightarrow s_B = 20$                                          | B1      | p.    | 0.                                                                                                                       |                 |       |
|       | T<br>D<br>[ <i>s</i>                   | o top, $[0 = 20 - gt_B] \rightarrow t_B = 2$<br>ownwards,<br>$t_B = \frac{1}{2}g(0.16)^2 = 0.13$ | M1      |       | For using $v = u + at$ to find time to top for<br>B <b>and</b> $s = \frac{1}{2}at^2$ to find downwards<br>distance for B |                 |       |
|       | Т                                      | otal distance is 20.1 m                                                                          | A1      | [5]   |                                                                                                                          |                 |       |

| Page  | e 6 Mark Scheme S                                    |         |       | Syllabus                                                         | Paper            |    |  |
|-------|------------------------------------------------------|---------|-------|------------------------------------------------------------------|------------------|----|--|
|       | Cambridge International AS/A Lev                     | el – Oc | tober | November 2016                                                    | 9709             | 43 |  |
|       |                                                      |         |       |                                                                  |                  |    |  |
| 5 (i) | $6t - 0.3t^2 = 0 \rightarrow t = 20 \text{ (or } 0)$ | B1      |       |                                                                  |                  |    |  |
|       | $[s = 6t^2/2 - 0.3t^3/3 \ (+C)]$                     | M1      |       | For integrating $v(t)$                                           | to obtain $s(t)$ | )  |  |
|       | $[s = 6(20)^2/2 - 0.3(20)^3/3]$                      | DM1     |       | For evaluating $s(t)$                                            | when v=0         |    |  |
|       | Distance OX is 400 m                                 | A1      | [4]   |                                                                  |                  |    |  |
| (ii)  | $[v = kt - 6t^2 (+C)]$                               | M1*     |       | For integrating $a(t)$                                           | to obtain $v(t)$ | )  |  |
|       | $[s = kt^2/2 - 6t^3/3]$                              | M1*     |       | For integrating $v(t)$ to obtain $s(t)$ and for using $s(0) = 0$ |                  |    |  |
|       | $[400 = 0.5k \times 10^2 - 2 \times 10^3]$           | DM1     |       | For using $t = 10$ and $s = 400$ to form equation in $k$         |                  |    |  |
|       | <i>k</i> = 48                                        | A1      | [4]   |                                                                  |                  |    |  |
| 6 (i) | Driving force = $160/5$ (= $32$ N)                   | B1      | n'    |                                                                  |                  |    |  |
|       | $[160/5 - 20 = m \times 0.15]$                       | M1      | 1     | For using Newton's                                               | s Second Lav     | v  |  |
|       | Total mass is 80 kg AG                               | A1      | [3]   |                                                                  |                  |    |  |
| (ii)  | $[300/v - 20 - 80g\sin^2 = 0]$                       | M1      |       | For resolving up hi                                              | 11               |    |  |
|       | Speed is $6.26 \mathrm{ms}^{-1}$ AG                  | A1      | [2]   |                                                                  |                  |    |  |
| (iii) | Driving force = $(20)(0.0 \times (20))$              | D1      |       |                                                                  |                  |    |  |
|       | $300/(0.9 \times 0.20) (-33.2 \text{ N})$            | ы       |       |                                                                  |                  |    |  |
|       |                                                      | M1      |       | For using Newton's                                               | s Second Lav     | V  |  |
|       | $300/(0.9 \times 6.26) - 20 - 80g\sin^2 = 80a$       | A1      |       | .5                                                               |                  |    |  |
|       | Acceleration is $0.0666 \mathrm{ms}^{-2}$            | A1      | [4]   | 0°                                                               |                  |    |  |
|       | sat                                                  | pre     | P     |                                                                  |                  |    |  |

| Page  | Page 7 Mark Scheme |                                                                                                                 |            | Syllabus | Paper                                                                                            |                                             |            |
|-------|--------------------|-----------------------------------------------------------------------------------------------------------------|------------|----------|--------------------------------------------------------------------------------------------------|---------------------------------------------|------------|
|       |                    | Cambridge International AS/A Lev                                                                                | el – Oc    | tober    | November 2016                                                                                    | 9709                                        | 43         |
| 7 (i) | R<br>F             | $= 50 g \cos 10^{\circ} \text{ and}$ $= 50 g \sin 10^{\circ}$                                                   | B1         |          |                                                                                                  |                                             |            |
|       | μ                  | ≥ 0.176                                                                                                         | B1         | [2]      | $\mu \geqslant F \div R  \text{Allow}$                                                           | $\mu \ge \tan 10^\circ$                     | )          |
| (ii)  | Pl                 | $E \log = 50g \times d\sin 10^{\circ}$                                                                          | <b>B</b> 1 |          | d = 5  or  d = 10                                                                                |                                             |            |
|       | W<br>0.            | TD against friction =<br>$19 \times 50 g \cos 10^\circ \times d$                                                | B1<br>M1   |          | d = 5 or $d = 10For using WD by 5WD against friction$                                            | 0N force + I<br>n = KE gain                 | PE loss –  |
|       | 50<br>50           | $0 \times 5 + 50 g \times 10 \sin 10^{\circ} - 0.19 \times 0 g \cos 10^{\circ} \times 10 = 0.5 \times 50 v^{2}$ | A1         |          |                                                                                                  |                                             |            |
|       | S                  | beed is $2.70 \mathrm{ms}^{-1}$                                                                                 | A1         | [5]      |                                                                                                  |                                             |            |
|       |                    |                                                                                                                 | PF         | R        | SC for candidates u<br>law: max $2/5$<br>B1 $v = 2.94$ ms <sup>-1</sup> af<br>B1 Speed is 2.70 m | using Newton<br>fter 5 m<br>s <sup>-1</sup> | n's Second |
| (iii) | 5(<br>0.           | $0 g \sin 20^{\circ} - 19 \times 50 g \cos 20^{\circ} = 50 a$                                                   | M1         |          | For using Newton's                                                                               | s Second Lav                                | N          |
|       | A                  | cceleration is $1.63 \mathrm{ms}^{-2}$                                                                          | A1         | [2]      |                                                                                                  |                                             |            |



#### MATHEMATICS

9709/42 October/November 2016

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$  IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

| Page 2 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9709     | 42    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are several
  B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
  steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9709     | 42    |

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme                                                                                     |           |       |                                                                 | Syllabus                | Paper |  |
|--------|-------------------------------------------------------------------------------------------------|-----------|-------|-----------------------------------------------------------------|-------------------------|-------|--|
|        | Cambridge International AS/A Level –                                                            | October   | /Nove | mber 2016                                                       | 9709                    | 42    |  |
| 1 (i)  | $3.5 = 10a \rightarrow a = 0.35 \mathrm{ms}^{-2}$                                               | B1        |       | Allow $a = 3$ .                                                 | Allow <i>a</i> = 3.5/10 |       |  |
|        | $[10\cos 15 - F = 2 \times 0.35]$                                                               | M1        |       | For applying Newton's 2nd law to the particle                   |                         |       |  |
|        | $F = 8.96 \mathrm{N}$ AG                                                                        | A1        | [3]   |                                                                 |                         |       |  |
|        | Alternativo                                                                                     | e to 1(i) |       |                                                                 |                         |       |  |
|        | $s = \frac{1}{2} (0 + 3.5) \times 10 = 17.5 \mathrm{m}$                                         | B1        |       | Distanced me                                                    | oved in 10 se           | cs    |  |
|        | $[10\cos 15 \times 17.5 = F \times 17.5 + \frac{1}{2} 2 (3.5)^2]$                               | M1        |       | Work done by $10 \text{ N}$ force<br>= WD against $F$ + KE gain |                         |       |  |
|        | $F = 8.96 \mathrm{N}$ AG                                                                        | A1        | [3]   |                                                                 |                         |       |  |
| (ii)   | $[R = 2g - 10\sin 15]$                                                                          | M1        |       | Resolving forces vertically                                     |                         |       |  |
|        | $[\mu = 8.96/(2g - 10\sin 15)]$                                                                 | M1        |       | Using $F = \mu R$                                               |                         |       |  |
|        | $\mu = 0.515$                                                                                   | A1        | [3]   |                                                                 |                         |       |  |
| 2 (i)  | $[v = 4t - 40t^{0.5}]$                                                                          | M1*       |       | For different                                                   | iating s to fir         | ıd v  |  |
|        | $[a = 4 - 20t^{-0.5}]$                                                                          | M1*       |       | For different                                                   | iating v to fir         | nd a  |  |
|        | $[4 - 20t^{-0.5} = 0]$                                                                          | DM1       |       | For setting $a = 0$<br>and attempt to solve to find <i>t</i>    |                         |       |  |
|        | <i>t</i> = 25 s                                                                                 | A1        | [4]   |                                                                 |                         |       |  |
| (ii)   | Substitute their <i>t</i> into <i>s</i> or <i>v</i>                                             | M1        |       |                                                                 |                         |       |  |
|        | Displacement= $-2083.3 \text{ m}(= -2080 \text{ 3sf})$<br>and Velocity = $-100 \text{ ms}^{-1}$ | A1        | [2]   | or Displacem                                                    | nent = -6250            | )/3   |  |
|        | v.satp                                                                                          | ep.       | 0     |                                                                 |                         |       |  |

| F | Page 5 | Mark Scheme                                                                                           |            |              | Syllabus Pap                                    |                                                                                         |         |  |
|---|--------|-------------------------------------------------------------------------------------------------------|------------|--------------|-------------------------------------------------|-----------------------------------------------------------------------------------------|---------|--|
|   |        | Cambridge International AS/A Level –                                                                  | October    | /Nove        | mber 2016                                       | 9709                                                                                    | 42      |  |
|   |        |                                                                                                       | I          |              | 1                                               |                                                                                         | -       |  |
| 3 | (i)    | $[X = 60\cos 25 + 50\cos 15]$                                                                         | M1         |              | For resolving direction of 1                    | esolving both forces in the tion of river                                               |         |  |
|   |        | = 103 N                                                                                               | A1         | [2]          | Value of $X$ i                                  | alue of $X$ is 102.7 N                                                                  |         |  |
|   | (ii)   | $Y = 60\sin 25 - 50\sin 15$ [= 12.4]                                                                  | B1         |              | Component j<br>direction of t                   | ponent perpendicular to the ction of the river                                          |         |  |
|   |        | [R2 = X2 + Y2]<br>or<br>$[\alpha = \arctan(Y/X)]$                                                     | M1         |              | For using Py<br>arctan to find<br>its direction | or using Pythagoras or for using<br>retan to find the resultant force or<br>s direction |         |  |
|   |        | Magnitude is $103 \text{ N}$<br>(or $\alpha = 6.9^{\circ}$ with direction specified<br>unambiguously) | A1         |              | Magnitude is                                    | e is 103.4 N                                                                            |         |  |
|   |        | $\alpha = 6.9^{\circ}$ with direction specified<br>unambiguously<br>(or Magnitude = 103 N)            | B1         | [4]          |                                                 |                                                                                         |         |  |
| 4 | (i)    | PE loss = $mg \times 100 \sin 20$                                                                     | B1         |              |                                                 |                                                                                         |         |  |
|   |        | $[\frac{1}{2}mv^2 - \frac{1}{2}m \times 5^2 = mg \times 100\sin 20]$                                  | M1         | $\mathbf{i}$ | Using KE ga                                     | in = PE loss                                                                            |         |  |
|   |        | $v = 26.6 \mathrm{ms}^{-1}$                                                                           | A1         | [3]          |                                                 |                                                                                         |         |  |
|   |        | Alternative met                                                                                       | thod for 4 | (i)          | -                                               |                                                                                         |         |  |
|   |        | $a = g \sin 20 [= 3.42]$                                                                              | B1         |              |                                                 |                                                                                         |         |  |
|   |        | $[v^2 = 5^2 + 2 \times a \times 100]$                                                                 | M1         |              | Using $v^2 = u^2$                               | $^{2} + 2as$                                                                            |         |  |
|   |        | $v = 26.6 \mathrm{ms}^{-1}$                                                                           | A1         | [3]          |                                                 |                                                                                         |         |  |
|   | (ii)   | $KE = \pm (0.5m \times 441 - 0.5m \times 25) [= \pm 208m]$                                            | B1         | 00           |                                                 |                                                                                         |         |  |
|   |        | $[mg \times 100\sin 20 = 8500 + 208m]$                                                                | M1         |              | For using PE<br>Friction + K                    | E loss = WD a<br>E gain                                                                 | against |  |
|   |        | Mass $m = 63.4$ kg                                                                                    | A1         | [3]          |                                                 |                                                                                         |         |  |

| Page 6 | Mark Scheme                                                                                                        |            |       | Syllabus Paper                                                                                                           |                                                |                                |
|--------|--------------------------------------------------------------------------------------------------------------------|------------|-------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|
|        | Cambridge International AS/A Level –                                                                               | October    | /Nove | mber 2016                                                                                                                | 9709                                           | 42                             |
| r      |                                                                                                                    |            |       |                                                                                                                          |                                                |                                |
| 5      | $F = \mu mg \cos 30$                                                                                               | B1         |       |                                                                                                                          |                                                |                                |
|        | $[10+F-mg\sin 30=0]$                                                                                               | M1         |       | Resolving up                                                                                                             | o, first case                                  |                                |
|        | $[75 - F - mg\sin 30 = 0]$                                                                                         | M1         |       | Resolving up                                                                                                             | o, second case                                 | e                              |
|        | [85 = 2mgsin30]<br>or<br>$[10 + \mu mgcos30 - mgsin30 = 0$<br>$75 - \mu mgcos30 - mgsin30 = 0]$                    | M1         |       | Either attempt to solve for $m$<br>or<br>Solve a pair of two 3 term<br>simultaneous equations<br>for either $m$ or $\mu$ |                                                |                                |
|        | $m = 8.5 \mathrm{kg} \mathrm{or} \mu = 0.442$                                                                      | A1         |       |                                                                                                                          |                                                |                                |
|        | $\mu = 0.442 \text{ or } m = 8.5 \text{ kg}$                                                                       | <b>B</b> 1 | [6]   |                                                                                                                          |                                                |                                |
| 6 (i)  | $[Power = 400 \times 25]$                                                                                          | M1         |       | For using $P = F = resistant$                                                                                            | = Fv where<br>ce $= 400$ N                     |                                |
|        | Power = 10000 W                                                                                                    | A1         | [2]   | Allow 10kW                                                                                                               | 7                                              |                                |
| (ii)   | Tension = 100 N                                                                                                    | B1         | [1]   | Considering                                                                                                              | the trailer                                    |                                |
| (iii)  | New driving force<br>= $25000/20 = 1250$ N                                                                         | B1         |       | Driving force when $v = 20$                                                                                              | e = P/v at the                                 | instant                        |
|        | [DF - 300 - T - 3000 gsin4 = 3000a]<br>or<br>[T - 100 - 500 gsin4 = 500a]<br>or<br>[DF - 400 - 3500 gsin4 = 3500a] | M1         |       | For using Ne<br>applied <b>eithe</b><br>trailer <b>or</b> to t<br>trailer.                                               | ewton's secor<br>er to the van<br>he system of | nd law<br>or to the<br>van and |
|        | ×2                                                                                                                 | M1         |       | For using N2 applied to one of the other cases                                                                           |                                                |                                |
|        | [a = -0.4547  may be seen]                                                                                         | M1         | 00    | Solving or us find <i>T</i>                                                                                              | sing substitut                                 | ion to                         |
|        | T = 221  N                                                                                                         | A1         | [5]   | Allow $T = 15$                                                                                                           | 550/7N                                         |                                |

| Page 7     | Mark Scheme                                                                                                                | Syllabus | Paper |                                                                   |                                                                  |                                  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------|----------|-------|-------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|--|
|            | Cambridge International AS/A Level –                                                                                       | October  | /Nove | mber 2016                                                         | 9709                                                             | 42                               |  |
| 7 (i)      | $y = 3 \times 10 = 30 \mathrm{ms}^{-1}$                                                                                    | R1       |       | Velocity afte                                                     | vr 10 seconds                                                    |                                  |  |
| / (I)      | $V = 3 \times 10 = 30$ ms                                                                                                  | DI       |       | velocity after to seconds                                         |                                                                  |                                  |  |
|            | $[s = \frac{1}{2}(30 + 40) \times 30]$                                                                                     |          |       | For determin                                                      | ing distance                                                     | travelled                        |  |
|            | or equivalent complete method                                                                                              | M1       |       | in first 40 see                                                   | conds                                                            |                                  |  |
|            | Total distance = 1050 m                                                                                                    | A1       | [3]   |                                                                   |                                                                  |                                  |  |
| (ii)       | [Distance = $450 \text{ m}$<br>Time taken = $450/15 = 30 \text{ s}$ ]                                                      | M1       |       | For finding d<br>deceleration<br>for this stage                   | listance cove<br>stage and tin                                   | red in<br>ne taken               |  |
|            | Total time of motion for $car = 70 s$                                                                                      | A1       |       | May be impl<br>motorcycle =                                       | ied by time f<br>= 50 s                                          | or                               |  |
|            | [Motorcycle takes 50 s to travel 1500 m<br>$1500 = \frac{1}{2} (30 + 50) \times V$<br>or $1500 = 30 V + 0.5 \times 20 V$ ] | M1       |       | For setting up<br>distance trav<br>graph or othe<br>and up to one | p an equation<br>elled by M/(<br>er) involving<br>e other varial | th for<br>C(v-t)<br>V or $able.$ |  |
|            | $V = 37.5 \mathrm{ms}^{-1}$                                                                                                | A1       |       |                                                                   |                                                                  |                                  |  |
|            | [20 s is split between 5 s accelerating and 15 s decelerating]                                                             | M1       |       | For finding t to speed V                                          | ime taken to                                                     | accelerate                       |  |
|            | $a = 37.5 / 5 = 7.5 \mathrm{ms}^{-2}$                                                                                      | A1       | [6]   |                                                                   |                                                                  |                                  |  |
| (iii)      | Displacement-time graph                                                                                                    | B1       |       | Two of the the correct with                                       | nree graph sta<br>correct curva                                  | ages<br>ture                     |  |
|            |                                                                                                                            | B1       |       | All three stag<br>with correct                                    | ges of the gra<br>curvature                                      | ph correct                       |  |
|            | E S                                                                                                                        | B1       | [3]   | Correct graph<br>t=10,40,70s                                      | h, fully label<br>= 150,1050,                                    | led<br>1500                      |  |
| Satprep.co |                                                                                                                            |          |       |                                                                   |                                                                  |                                  |  |



#### MATHEMATICS

9709/41 October/November 2016

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$  IGCSE is the registered trademark of Cambridge International Examinations.

| Page 2 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9709     | 41    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are several
  B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B
  mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
  steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
  - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme S                                              |      | Paper |
|--------|------------------------------------------------------------|------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9709 | 41    |

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4   | Mark Scheme                                                          |            |       |                                     | Syllabus          | Paper        |
|----------|----------------------------------------------------------------------|------------|-------|-------------------------------------|-------------------|--------------|
|          | Cambridge International AS/A Level – Octob                           | ber/No     | oveml | per 2016                            | 9709              | 41           |
|          |                                                                      |            |       |                                     |                   |              |
| 1        | [0.4g - T = 0.4a $T = 0.6a$                                          |            |       | For apply                           | ing Newton'       | s 2nd law    |
|          | System equation $0.4g = (0.4 + 0.6)a$ ]                              | M1         |       | to either particle or to the system |                   |              |
|          |                                                                      |            |       | For opply                           | ing Nowton'       | a and low    |
|          |                                                                      | M1         |       | to the othe                         | er particle an    | d attempt    |
|          |                                                                      |            |       | to solve for                        | or $a$ and $T$    | a anonpo     |
|          |                                                                      |            |       |                                     |                   |              |
|          | $a = 4 \mathrm{m  s^{-2}}$                                           | A1         |       |                                     |                   |              |
|          | $T = 2.4 \mathrm{N}$                                                 | A1         | [4]   |                                     |                   |              |
| 2 (i)    | $2 = 5a \rightarrow a = 0.4 \text{ ms}^{-2}$                         | <b>B</b> 1 |       |                                     |                   |              |
|          | $[0.1g \sin 20 - F = 0.1 \times 0.4]$                                |            |       | For apply                           | ing Newton'       | s 2nd law    |
|          |                                                                      | M1         |       | to the part                         | ticle             |              |
|          | $F = 0.302 \mathrm{N}$ AG                                            | A1         | [3]   |                                     |                   |              |
|          |                                                                      |            |       |                                     | ··· · · · · 1     |              |
| (11)     | $[R = 0.1g \cos 20 \ (= 0.9397)]$                                    | M1         |       | For attemption $\mu =$              | $\frac{1}{F/R}$   | <i>R</i> and |
|          |                                                                      |            |       |                                     |                   |              |
|          | $\mu = 0.3020/0.9397 = 0.321$                                        | A1         | [2]   |                                     |                   |              |
| 3 (i)    | $[0=6^2-2g\times s]$                                                 | M1         |       | For using                           | $v^2 = u^2 + 2as$ | 5            |
|          | <i>s</i> = 1.8                                                       | A1         |       |                                     |                   |              |
|          | Total height = 2.3 m                                                 | B1         | [3]   |                                     |                   |              |
|          | Alternative                                                          | for 3(     | i)    |                                     |                   |              |
|          | $[6^2 = u^2 - 2a \times 0.5]$                                        |            |       | For using                           | $v^2 = u^2 + 2a$  | s to find    |
|          |                                                                      | M1         |       | the initial                         | velocity          | , to mild    |
|          |                                                                      |            | 1     |                                     |                   |              |
|          | u = 46                                                               | AI         | D'/   |                                     |                   |              |
|          | $0^2 = 46 - 2gs \rightarrow s = \text{total height} = 2.3 \text{ m}$ | B1         | [3]   |                                     |                   |              |
| <b>.</b> |                                                                      |            | •     |                                     |                   |              |

| Page 5 | Mark Scheme                                                                 |            |       |                          |                                          | Paper                         |
|--------|-----------------------------------------------------------------------------|------------|-------|--------------------------|------------------------------------------|-------------------------------|
|        | Cambridge International AS/A Level – Octob                                  | ber/No     | ovemb | oer 2016                 | 9709                                     | 41                            |
|        | <b>12 2 3 4 5 2</b>                                                         |            |       | ъ ·                      |                                          | 2, 6, 1                       |
| (ii)   | $[2.3 = 0 + 0.5gt^2]$                                                       | M1         |       | For using time to re     | s = ut + 0.5<br>ach the grou             | <i>gt<sup>2</sup></i> to find |
|        |                                                                             | 1711       |       |                          | ach the grou                             | nu                            |
|        | t = 0.678                                                                   | A1         |       |                          |                                          |                               |
|        | Total time = $2 \times 0.678 = 1.36$ s                                      | <b>B</b> 1 | [3]   |                          |                                          |                               |
|        | Alternative                                                                 | for 3(i    | ii)   |                          |                                          |                               |
|        | $\left[ 0 = \sqrt{46} - gt \right]$                                         | M1         |       | Using v =<br>taken to th | u - gt to fin<br>he highest po           | d time<br>bint                |
|        | $t = \frac{\sqrt{46}}{10} = 0.678$                                          | A1         |       |                          |                                          |                               |
|        | Total time = $2 \times 0.678 = 1.36$ s                                      | <b>B</b> 1 | [3]   |                          |                                          |                               |
| 4      | TPR                                                                         | M1         |       | For resolv               | ving forces h                            | orizontally                   |
|        | $2F + F\cos 60 = 15\cos \alpha$                                             | A1         |       |                          |                                          |                               |
|        |                                                                             | M1         |       | For resolv               | ving forces v                            | ertically                     |
|        | $F\sin 60 = 15\sin \alpha$                                                  | A1         |       |                          |                                          |                               |
|        |                                                                             | M1         | -     | For using using tan      | Pythagoras $\alpha$ to find $F$ <b>a</b> | or for<br><b>nd</b> α         |
|        | $F = 5.67$ and $\alpha = 19.1$                                              | A1         | [6]   | Allow F                  | =15\sqrt{7} / 7                          |                               |
| 5 (i)  | $a = 0.5 \mathrm{m  s^{-2}}$                                                | B1         | [1]   |                          |                                          |                               |
| (ii)   | [Distance<br>= $25 + 100 + 5(5 + V) + 30V + 10V$ ]                          | M1         | .5    | For attem                | pting to find                            | the                           |
|        | 150 + 45V AG                                                                | Al         |       | uistance t               | luveneu                                  |                               |
|        | $150 + 45V = 465 \rightarrow V = 7 \mathrm{m  s^{-1}}$                      | B1         | [3]   |                          |                                          |                               |
| (iii)  | $\frac{1}{2} \times 80 \times 7^2 - \frac{1}{2} \times 80 \times 5^2 = 960$ | M1         |       | For chang                | ge in KE                                 |                               |
|        | $20 \times (5+7)/2 \times 10$ [=1200]                                       |            |       | For work                 | done against                             | friction                      |
|        |                                                                             | M1         |       | using $F \times d$       |                                          |                               |
|        | [80gh = 960 + 1200]                                                         | MI         |       | For using                | PE loss =                                | t Dog                         |
|        |                                                                             | IVII       |       | ⊾ gain ⊣                 | - wD agains                              | i Kes.                        |
|        | $h = 2.7 \mathrm{m}$                                                        | A1         | [4]   |                          |                                          |                               |

| Page 6 | Mark Scheme                                                                                       |         |            |                                                                                                     |                          | Paper     |
|--------|---------------------------------------------------------------------------------------------------|---------|------------|-----------------------------------------------------------------------------------------------------|--------------------------|-----------|
|        | Cambridge International AS/A Level – Octol                                                        | ber/No  | ovemb      | per 2016                                                                                            | 9709                     | 41        |
| -      | Τ                                                                                                 | 1       |            |                                                                                                     |                          |           |
| 6 (i)  | [Work done = $50 \cos 10 \times 20$ ]                                                             | M1      |            | Using WI                                                                                            | $D = Fd \cos \theta$     |           |
|        | = 984.8 J                                                                                         | A1      | [2]        |                                                                                                     |                          |           |
| (ii)   | $[984.8 = \frac{1}{2} \times 25v^2 + 30 \times 20]$                                               | M1      |            | Using W<br>KE gain +                                                                                | D by DF =<br>- WD agains | t Res.    |
|        | $v = 5.55 \mathrm{m  s^{-1}}$                                                                     | A1      | [2]        |                                                                                                     |                          |           |
| (iii)  |                                                                                                   | M1      |            | For using                                                                                           | Power = $Fv$             |           |
|        | Max power = $50\cos 10 \times 5.55 = 273$ W                                                       | A1      | [2]        | Greatest p                                                                                          | bower is at $v_n$        | nax       |
| (iv)   | $[50\cos 10 - 30 - 25g\sin 5 = 25a]$                                                              | M1      |            | For using the plane                                                                                 | Newton's 21              | nd law up |
|        | $a = -0.102 \mathrm{m  s^{-2}}$                                                                   | A1      |            |                                                                                                     |                          |           |
|        | [0 = 5.55 - 0.102t]                                                                               | M1      |            | For using                                                                                           | v = u + at               |           |
|        | Time $t = 54.4$ s                                                                                 | A1      | [4]        |                                                                                                     |                          |           |
|        | Alternative                                                                                       | for 6(i | <b>v</b> ) |                                                                                                     |                          |           |
|        |                                                                                                   | M1      |            | For using<br>WD by DF + KE loss =<br>PE gain + WD against Res to<br>find distance <i>s</i> up plane |                          |           |
|        | $50 \cos 10 \times s + \frac{1}{2} \times 25 \times 5.55^{2} = 25g \times s \sin 5 + 30 \times s$ | Al      |            | $s = 151 \mathrm{m}$                                                                                |                          |           |
|        |                                                                                                   | M1      |            | For using                                                                                           | $s = \frac{1}{2}(u+v)$   | t         |
|        | t = 302/5.55 = 54.4 s                                                                             | A1      | [4]        |                                                                                                     | · · · ·                  |           |
| 7 (i)  | [15 - 6t = 0]                                                                                     | M1      |            | For differ                                                                                          | entiation                |           |
|        | Max acceleration when $t = 2.5$ s                                                                 | A1      |            | May be st<br>diagram                                                                                | ated from an             | a-t       |
|        | Max acceleration = $18.75 \mathrm{m  s^{-2}}$                                                     | A1      | [3]        |                                                                                                     |                          |           |
| (ii)   | [Speed = $7.5t^2 - t^3 (+ c)$ ]                                                                   | M1      |            | For using integration to obtain speed                                                               |                          |           |
|        | [Distance = $2.5t^3 - 0.25t^4$ (+ ct + d)]                                                        | M1      |            | For using distance                                                                                  | integration t            | o obtain  |
|        | $= 2.5 \times 125 - 0.25 \times 625 = 156.25 \mathrm{m}$                                          | A1      | [3]        | Allow dis                                                                                           | tance = $625/4$          | 4         |

| Page 7 | 7 Mark Scheme                                                             |            |       |                         |                             | Paper            |
|--------|---------------------------------------------------------------------------|------------|-------|-------------------------|-----------------------------|------------------|
|        | Cambridge International AS/A Level – Octob                                | ber/No     | ovemb | per 2016                | 9709                        | 41               |
|        |                                                                           |            |       |                         |                             |                  |
| (iii)  | $v(5) = 7.5 \times 25 - 125 = 62.5 \mathrm{m  s^{-1}}$                    | <b>B</b> 1 |       | Allow v(5               | 5) = 125/2                  |                  |
|        | $\int_{5}^{k} -\frac{625}{t^{2}} dt = \left[\frac{625}{t}\right]_{5}^{k}$ | M1         |       | Integral w              | vith correct li             | mits             |
|        | $=\frac{625}{k} - \frac{625}{5} = \frac{625}{k} - 125$                    | A1         |       |                         |                             |                  |
|        | $\frac{625}{k} - 125 = v(k) - v(5) = -62.5$                               | M1         |       | Use of v(               | (5) = 62.5 and              | v(k) = 0         |
|        | <i>k</i> = 10                                                             | A1         | [5]   |                         |                             |                  |
|        | Alternative                                                               | for 7(i    | ii)   |                         |                             |                  |
|        | $v(5) = 7.5 \times 25 - 125 = 62.5 \mathrm{m  s^{-1}}$                    | <b>B</b> 1 |       |                         |                             |                  |
|        | $v(t) = \int -\frac{625}{t^2} dt = \frac{625}{t} + c$                     | M1         |       | Using ind               | efinite integr              | ration           |
|        | [c = -62.5]<br>v(t) = $\frac{625}{t} - 62.5$                              | A1         |       | For using<br>and settin | v(5) = 62.5<br>g $v(k) = 0$ | to find <i>c</i> |
|        | $v(k) = \frac{625}{k} - 62.5 = 0$                                         | M1         |       |                         |                             |                  |
|        | <i>k</i> = 10                                                             | A1         | [5]   |                         |                             |                  |
|        |                                                                           |            |       |                         |                             |                  |



#### MATHEMATICS

9709/43 May/June 2016

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

| Page 2 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2016 | 9709     | 43    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are
  several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a
  particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
  When two or more steps are run together by the candidate, the earlier marks are implied and
  full credit is given.
- The symbol <sup>↓</sup> implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2016 | 9709     | 43    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2016 | 9709     | 43    |

| Qu    | Answer                                                                                                           | Part<br>Marks | Marks | Notes                                                                       |
|-------|------------------------------------------------------------------------------------------------------------------|---------------|-------|-----------------------------------------------------------------------------|
| 1 (i) | $[PE gain = 8g \times 20sin30^{\circ}]$                                                                          | M1            |       | For using PE gain = <i>mgh</i>                                              |
|       | Change in PE is 800 J                                                                                            | A1            | 2     |                                                                             |
| (ii)  | $[8g \ge 20\sin 30^\circ + 20F = 1146]$                                                                          | M1            |       | For using PE gain + WD<br>against friction = 1146                           |
|       | Frictional force is 17.3 N                                                                                       | A1            | 2     |                                                                             |
| 2 (i) | $s_B = \frac{1}{2} \times 1.2 \times 5^2$<br>Distance travelled is 15 m                                          | B1            |       |                                                                             |
|       | $v_B = 1.2 \times 5$<br>Speed is 6 ms <sup>-1</sup>                                                              | B1            | 2     |                                                                             |
| (ii)  | [4T = 15 + 6(T - 10)] or                                                                                         | M1            |       | For using $s_A = s_B$ after T<br>seconds or after $T + 5$ seconds           |
|       | [4(T+5) = 15 + 6(T-5)]<br>or<br>[4(T+10) = 15 + 6T]                                                              |               |       | or after $T + 10$ seconds                                                   |
|       | T = 22.5 or $T = 17.5$ or $T = 12.5$                                                                             | A1            |       |                                                                             |
|       | Distance $OP = 4 \times 22.5 = 90 \text{ m}$                                                                     | <b>B</b> 1    | 3     |                                                                             |
| 3     |                                                                                                                  | M1            |       | For resolving forces<br>horizontally and/or vertically                      |
|       | $12\cos75^\circ + P\cos\theta^\circ = 18\cos65^\circ$                                                            | A1            | .5    |                                                                             |
|       | $18\sin 65^\circ + 12\sin 75^\circ = 15 + P\sin\theta^\circ$                                                     | A1            | ,0    |                                                                             |
|       | $[P^{2} = (18\sin 65^{\circ} + 12\sin 75^{\circ} - 15)^{2} + (18\cos 65^{\circ} - 12\cos 75^{\circ})^{2}]$<br>or |               |       | For eliminating either $\theta$ or <i>P</i> from the simultaneous equations |
|       | $[\theta = \tan^{-1}(18\sin 65^{\circ} + 12\sin 75^{\circ} - 15)/(18\cos 65^{\circ} - 12\cos 75^{\circ})]$       | M1            |       |                                                                             |
|       | $P = 13.7 \text{ or } \theta = 70.8$                                                                             | A1            |       |                                                                             |
|       | $\theta = 70.8 \text{ or } P = 13.7$                                                                             | <b>B</b> 1    | 6     |                                                                             |

Page 5

# Mark Scheme Cambridge International AS/A Level – May/June 2016

SyllabusPaper970943

| Qu        | Answer                                                                                                                             | Part<br>Marks    | Marks | Notes                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|--------------------------------------------------------------------------------------------------|
| 4         | $R = 15g\cos 20^{\circ}$                                                                                                           | <b>B</b> 1       |       | 140.95                                                                                           |
|           | $F = \mu R = 0.2 \times 15g \text{cos}20^{\circ}$                                                                                  | <b>B</b> 1       |       | 28.19                                                                                            |
|           |                                                                                                                                    | M1               |       | For resolving parallel to the plane ( $F$ acting up plane)                                       |
|           | $X + 0.2 \times 15g\cos 20^{\circ} = 15g\sin 20^{\circ}$                                                                           | A1               |       |                                                                                                  |
|           | Least value of <i>X</i> is 23.1                                                                                                    | A1               |       | AG                                                                                               |
|           | $[X= 15gsin20^{\circ} + 0.2 \times 15gcos20^{\circ}]$                                                                              | M1               |       | For resolving parallel to the plane ( $F$ acting down plane)                                     |
|           | Greatest value of <i>X</i> is 79.5                                                                                                 | A1               | 7     |                                                                                                  |
| 5 (i)     | [20000/v = 650]                                                                                                                    | M1               |       | For using $DF = P/v$ and for<br>resolving forces along the<br>direction of motion                |
|           | Speed is $30.8 \text{ ms}^{-1}$                                                                                                    | A1               | 2     |                                                                                                  |
| (ii)      | $[DF = 650 + 1400g \times \frac{1}{7}]$                                                                                            | M1               |       | For resolving forces along the direction of motion                                               |
|           | $P/10 = 650 + 1400g \times \frac{1}{7}$                                                                                            | M1               |       | For using $DF = P/v$                                                                             |
|           | Power is 26500 W                                                                                                                   | A1               | 3     |                                                                                                  |
| (iii)     | $P = 0.8 \times 26500(21200)$                                                                                                      | B1√ <sup>^</sup> | 2.    | ft $0.8 \times P$ from (ii)                                                                      |
|           | $[21200/20 + 1400g \times \frac{1}{7} - 650 = 1400a]$                                                                              | M1               | ,0'   | For using Newton's Second<br>Law                                                                 |
|           | Acceleration is $1.72 \mathrm{ms}^{-2}$                                                                                            | A1               | 3     |                                                                                                  |
| 6 (i) (a) |                                                                                                                                    | M1               |       | For applying Newton's Second<br>Law to one particle or for using<br>$m_1g - m_2g = (m_1 + m_2)a$ |
|           | 1.3 $g - T = 1.3a$ and $T - 0.7g = 0.7a$<br>or<br>1.3 $g - 0.7g = (1.3 + 0.7)a$ and either 1.3 $g - T = 1.3a$ or $T - 0.7g = 0.7a$ |                  |       |                                                                                                  |
|           |                                                                                                                                    | A1               |       |                                                                                                  |
|           | Tension is 9.1 N                                                                                                                   | <b>B</b> 1       |       |                                                                                                  |

| Page 6 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2016 | 9709     | 43    |

| Qu    | Answer                                                                       | Part<br>Marks    | Marks        | Notes                                                                                                               |
|-------|------------------------------------------------------------------------------|------------------|--------------|---------------------------------------------------------------------------------------------------------------------|
| (b)   | Acceleration is $3 \mathrm{ms}^{-2}$                                         | B1               |              |                                                                                                                     |
|       | $[2 = \frac{1}{2} \times 3 \times t^2]$                                      | M1               |              | For using $s = \frac{1}{2} at^2$                                                                                    |
|       | Time taken is 1.15 seconds                                                   | A1               | 6            |                                                                                                                     |
| (ii)  | $[v^2 = 2 \times 3 \times 2]$                                                | M1               |              | For using $v^2 = u^2 + 2as$ to find<br>the speed on reaching plane                                                  |
|       | $v = \sqrt{12(3.464)}$                                                       | A1√ <sup>^</sup> |              | ft $\sqrt{(4a)}$ or <i>at</i> from (i)                                                                              |
|       | $[0 = 12 - 2gs \rightarrow s = \dots]$                                       | M1               |              | For using $v^2 = u^2 + 2as$ to find<br>the distance 0.7 kg particle<br>continues upwards                            |
|       | Greatest height is 4.6 m                                                     | A1               | 4            |                                                                                                                     |
|       | Alternat                                                                     | ive              |              |                                                                                                                     |
| (ii)  | $[1.3g \times 2 = \frac{1}{2} (1.3)v^2 + 9.1 \times 2]$                      |                  | $\mathbb{N}$ | For using PE loss = KE gain +<br>WD <sub>T</sub> for 1.3 kg or for using<br>WD <sub>T</sub> = KE gain + PE gain for |
|       | $[9.1 \times 2 = \frac{1}{2} (0.7)v^2 + 0.7g \times 2]$                      | M1               |              | 0.7 kg                                                                                                              |
|       | $v = \sqrt{12(3.464)}$                                                       | A1∜              |              | ft $\sqrt{(4a)}$ or <i>at</i> from (i)                                                                              |
|       | $[\frac{1}{2} \times 0.7v^2 = 0.7gs \rightarrow s =]$                        | M1               |              | For using KE loss = PE gain                                                                                         |
|       | Greatest height is 4.6 m                                                     | A1               | 4            |                                                                                                                     |
| 7 (i) | $[6t-2<0 \rightarrow t<]$                                                    | M1               | .5           | For solving $a(t) < 0$                                                                                              |
|       | 0 < t < 1/3                                                                  | A1               | 2            |                                                                                                                     |
| (ii)  | $[v = 3t^2 - 2t + c]$                                                        | M1               |              | For using $v(t) = \int a(t)dt$                                                                                      |
|       |                                                                              | M1               |              | For using $s(t) = \int v(t) dt$                                                                                     |
|       | $s = t^3 - t^2 + \mathbf{c}t + \mathbf{d}$                                   | A1               |              |                                                                                                                     |
|       | $\begin{bmatrix} c+d=7\\ 3c+d=11 \rightarrow c=\dots, d=\dots \end{bmatrix}$ | M1               |              | For using t=1, s=7 and t=3,<br>s=29 to form and solve<br>simultaneous equations                                     |
|       | $s = t^3 - t^2 + 2t + 5$                                                     | A1               | 5            |                                                                                                                     |
| (iii) | $[3t^2 - 2t + 2 = 10]$                                                       | M1               |              | For using $v(t) = 10$                                                                                               |
|       |                                                                              | DM1              |              | For solving 3 term quadratic $v(t) = 10$                                                                            |
|       | <i>t</i> = 2                                                                 | A1               | 3            |                                                                                                                     |



#### MATHEMATICS

9709/42 May/June 2016

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

| Page 2 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2016 | 9709     | 42    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2016 | 9709     | 42    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4

# Mark Scheme Cambridge International AS/A Level – May/June 2016

SyllabusPaper970942

| Qu    | Answer                                                     | Part<br>Marks | Mark | Notes                                                                                                                                                            |
|-------|------------------------------------------------------------|---------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | $[X=7-8\cos\alpha-6\sin\alpha=-3]$                         | M1            |      | For resolving forces horizontally                                                                                                                                |
|       | $X = 7 - 8 \times (4/5) - 6 \times (3/5) = -3$             | A1            |      | Allow $\alpha = 36.9$ used                                                                                                                                       |
|       | $[Y=8\sin\alpha-6\cos\alpha=0]$                            | M1            |      | For resolving forces vertically                                                                                                                                  |
|       | $Y = 8 \times (3/5) - 6 \times (4/5) = 0$                  | A1            |      | Allow $\alpha = 36.9$ used                                                                                                                                       |
|       | Resultant force is 3N to the left                          | <b>B</b> 1    | 5    |                                                                                                                                                                  |
| 2 (i) | $4t^{2} - 8t + 3 = 0$<br>(2t-3)(2t-1)                      | M1            |      | Set $v = 0$ and attempt to factorise or<br>use the quadratic formula or<br>completing the square.                                                                |
|       | t = 0.5 and $t = 1.5$                                      | A1            | 2    |                                                                                                                                                                  |
| (ii)  | $s = -\int (4t^2 - 8t + 3)\mathrm{d}t$                     | M1            |      | Integrating $v$ to find $s$ . Allow minus sign omitted.                                                                                                          |
|       | $-\left[\frac{4}{3}t^{3}-4t^{2}+3t\right]_{0.5}^{1.5}$     | M1            |      | Attempted integration with limits<br>substituted and then subtracted but<br>not necessarily fully evaluated.<br>[= -(0 - 2/3)]<br>Allow first minus sign omitted |
|       | Distance travelled $=2/3$ m                                | A1            | 3    | Must justify sign of answer                                                                                                                                      |
| 3 (i) | [80x sin 22.6 or 80x(5/13)]                                | M1            |      | For using PE change = $mgh$<br>PE change = $8 \times g \times x \sin \alpha$                                                                                     |
|       | $=\frac{400}{13}x=30.8x$                                   | A1            | 2    | Allow $\alpha = 22.6$ used                                                                                                                                       |
| (ii)  | WD against friction = $15 \times x$                        | <b>B</b> 1    |      |                                                                                                                                                                  |
|       | $\frac{1}{2} \times 8 \times 5^2$                          | B1            |      |                                                                                                                                                                  |
|       | $\frac{1}{2} \times 8 \times 5^2 = \frac{400}{13} x + 15x$ | M1            |      | For using KE loss =<br>PE gain + WD against friction                                                                                                             |
|       | $x = \frac{260}{119} = 2.18$                               | A1            | 4    |                                                                                                                                                                  |

| Page 5 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2016 | 9709     | 42    |

| Qu    | Answer                                                                                            | Part<br>Marks    | Mark | Notes                                                                                   |
|-------|---------------------------------------------------------------------------------------------------|------------------|------|-----------------------------------------------------------------------------------------|
| 4 (i) | $\frac{1}{2} \times 6 \times 8.2 + 36 \times 8.2$<br>Or $\frac{1}{2} \times 8.2 \times (36 + 42)$ | M1               |      | For using<br>distance = total area under graph                                          |
|       | Distance = $319.8 \text{ m}$                                                                      | A1               | 2    |                                                                                         |
| (ii)  | <i>s</i> = 80.2                                                                                   | B1√ <sup>^</sup> |      | Distance from $t = 42$ to $t = 52$                                                      |
|       | $80.2 = \frac{8.2 + V}{2} \times 10$                                                              | M1               |      | For equating remaining distance to total area under graph between $t = 42$ and $t = 52$ |
|       | <i>V</i> = 7.84                                                                                   | A1               | 3    | AG                                                                                      |
| (iii) | ATP                                                                                               | M1               |      | Use gradient property for deceleration                                                  |
|       | $d = \frac{8.2 - 7.84}{10} = 0.036$                                                               | A1               | 2    |                                                                                         |
|       | Alternativ                                                                                        | ve for 4(ii      | i)   |                                                                                         |
| (iii) | $80.2 = 8.2 \times 10 + \frac{1}{2} a \times 10^2$                                                | M1               |      | For using $s = ut + \frac{1}{2}at^2$<br>between $t = 42$ and $t = 52$                   |
|       | $a = -0.036 \text{ ms}^{-2}$ or $d = 0.036 \text{ ms}^{-2}$                                       | A1               | 2    |                                                                                         |
| 5     | ZZ.                                                                                               | M1               |      | For resolving forces perpendicular to                                                   |
|       | Sato                                                                                              | eP               | 0    | (3 term equation)                                                                       |
|       | $R + T\sin 20 = 2.5g\cos 30$                                                                      | A1               |      |                                                                                         |
|       | $F = 0.25 \times R$                                                                               | B1               |      | May be implied                                                                          |
|       |                                                                                                   | M1               |      | For resolving forces parallel to the plane (3 term equation)                            |
|       | $T\cos 20 = F + 2.5g\sin 30$                                                                      | A1               |      |                                                                                         |
|       |                                                                                                   | M1               |      | For solving and obtaining <i>T</i>                                                      |
|       | <i>T</i> = 17.5                                                                                   | A1               | 7    |                                                                                         |

Page 6

Mark Scheme Cambridge International AS/A Level – May/June 2016 SyllabusPaper970942

| Qu        | Answer                                                  | Part<br>Marks | Mark | Notes                                                                                                   |  |  |  |  |
|-----------|---------------------------------------------------------|---------------|------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
|           | Alternative scheme                                      |               |      |                                                                                                         |  |  |  |  |
| 5         | $F = 0.25 \times R$                                     | B1            |      | May be implied                                                                                          |  |  |  |  |
|           |                                                         | M1            |      | For resolving forces horizontally (3 term equation)                                                     |  |  |  |  |
|           | $T\cos 50 = F\cos 30 + R\sin 30$                        | A1            |      |                                                                                                         |  |  |  |  |
|           |                                                         | M1            |      | For resolving forces vertically (4 term equation)                                                       |  |  |  |  |
|           | $R\cos 30 + T\sin 50 = F\sin 30 + 2.5g$                 | A1            |      |                                                                                                         |  |  |  |  |
|           | ATP                                                     | M1            |      | For solving and obtaining $T$                                                                           |  |  |  |  |
|           | <i>T</i> = 17.5                                         | A1            | 7    |                                                                                                         |  |  |  |  |
| 6 (i) (a) | $Power = 1550 \times 40 W$                              | M1            |      | Using Power = $Fv$ where<br>F = Resistance force                                                        |  |  |  |  |
|           | Power = $62000 \text{ W} = 62 \text{ kW}$               | A1            | 2    | Answer must be in kW                                                                                    |  |  |  |  |
| (b)       | $(62000 - 22000) = DF \times 40$<br>[DF = 1000]         | <b>B1ft</b>   |      | For stating $P - 22000 = DF \times 40$<br>to find the new driving force.<br>ft on Power found in (i)(a) |  |  |  |  |
|           | DF - 1550 = 1100a                                       | M1            |      | For applying Newton's second law to the car (3 terms)                                                   |  |  |  |  |
|           | $a = -0.5 \text{ ms}^{-2}$ or $d = 0.5 \text{ ms}^{-2}$ | Al            | 3    |                                                                                                         |  |  |  |  |
| (ii)      | DF = 1100g sin 8 + 1550<br>[= 3081]                     | M1            |      | For stating the equilibrium of the three forces                                                         |  |  |  |  |
|           | 80000 = 3081v                                           | M1            |      | For using $P = F_V$<br>with <i>F</i> involving a weight and a<br>resistance term                        |  |  |  |  |
|           | $v = 26(.0) \text{ ms}^{-1}$                            | A1            | 3    |                                                                                                         |  |  |  |  |

 Page 7
 Mark Scheme
 Syllabus
 Paper

 Cambridge International AS/A Level – May/June 2016
 9709
 42

|   | Qu   | Answer                                                                                      | Part<br>Marks | Mark | Notes                                                                                                  |
|---|------|---------------------------------------------------------------------------------------------|---------------|------|--------------------------------------------------------------------------------------------------------|
| 7 | (i)  | [2.4g-T=2.4aT = 1.6a]<br>or the system equation<br>2.4g = (1.6 + 2.4)a]                     | M1            |      | For applying Newton's second law to<br>one of the particles or to the<br>combined system               |
|   |      |                                                                                             | M1            |      | For applying Newton's second law to<br>a second particle if needed and/or<br>solving for <i>a</i>      |
|   |      | $a = 6 \text{ ms}^{-2}$                                                                     | A1            |      |                                                                                                        |
|   |      | $0.5 = \frac{1}{2} \times 6 \times t^2$                                                     | M1            |      | For using $s = ut + \frac{1}{2}at^2$                                                                   |
|   |      | $t = 0.408 \mathrm{s}$                                                                      | A1            | 5    | Accept $t = \sqrt{6/6}$                                                                                |
|   |      | Alternati                                                                                   | ive for 7(i   | i)   |                                                                                                        |
|   | (i)  | [PE loss = $2.4 \times g \times 0.5 = 12$<br>KE gain = $\frac{1}{2}(1.6 + 2.4)v^2 = 2v^2$ ] | M1            | 2    | For attempting to find PE and KE as <i>B</i> reaches the ground                                        |
|   |      | $[12=2v^2]$                                                                                 | M1            |      | Using PE loss = KE gain                                                                                |
|   |      | $v^2 = 6 \rightarrow v = 2.45 \text{ ms}^{-1}$                                              | A1            |      |                                                                                                        |
|   |      | $[0.5 = \frac{1}{2} \times (0 + 2.45) \times t]$                                            | M1            |      | Using $s = \frac{1}{2}(u+v)t$                                                                          |
|   |      | $t = 0.408 \mathrm{s}$                                                                      | A1            | 5    | Accept $t = \sqrt{6/6}$                                                                                |
|   | (ii) | R = 1.6g = 16 and $F = 3/8$ $R = 6$                                                         | <b>B</b> 1    | .5   |                                                                                                        |
|   |      | System is $[2.4g - 6 = (1.6 + 2.4)a]$                                                       | M1            | 00   | For using Newton's second law for<br>both particles or the system                                      |
|   |      | 2.4g - T = 2.4a and $T - 6 = 1.6a$                                                          | A1            |      | Both or system equation                                                                                |
|   |      | [ <i>a</i> = 4.5]                                                                           | M1            |      | For finding <i>a</i> and using<br>$v^2 = u^2 + 2as$ to find <i>v</i> as <i>B</i> reaches<br>the ground |
|   |      | $v = \sqrt{2 \times 4.5 \times 0.5} = \sqrt{4.5} = 2.12 \text{ ms}^{-1}$                    | A1            |      |                                                                                                        |
|   |      | $-6 = 1.6a \rightarrow a = -3.75 \text{ ms}^{-2}$                                           | M1            |      | For finding the deceleration of A and<br>using $v^2 = u^2 + 2as$ to find s the total                   |
|   |      | $0 = 4.5 + 2 \times (-3.75) \times (s - 0.5)$                                               |               |      | distance travelled by A                                                                                |
|   |      | <i>s</i> = 1.1 m                                                                            | A1            | 7    |                                                                                                        |

| Page 8 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2016 | 9709     | 42    |

| Qu   | Answer                                                                                                     | Part<br>Marks | Mark   | Notes                                                                        |
|------|------------------------------------------------------------------------------------------------------------|---------------|--------|------------------------------------------------------------------------------|
|      | First Altern                                                                                               | ative for     | 7(ii)  |                                                                              |
| (ii) | R = 1.6g = 16 and $F = 3/8$ $R = 6$                                                                        | <b>B</b> 1    |        |                                                                              |
|      |                                                                                                            | M1            |        | For attempting PE loss <b>and</b> KE gain as <i>B</i> reaches the ground     |
|      | PE loss = $2.4 \times g \times 0.5[= 12]$<br>KE gain = $\frac{1}{2} \times (1.6 + 2.4) \times v^2[= 2v^2]$ | A1            |        | For both PE and KE correct                                                   |
|      |                                                                                                            | M1            |        | For using PE loss =<br>KE gain + WD against F                                |
|      | $12 = 2v^{2} + 6 \times 0.5 \rightarrow v^{2} = 4.5 \rightarrow v = 2.12$                                  | A1            |        |                                                                              |
|      | Loss of KE = WD against $F$                                                                                | M1            | $\sim$ | For considering the motion of $A$ after $P$ reaches the ground to find a the |
|      | $[\frac{1}{2} \times 1.6 \times 4.5 = 6 \times (s - 0.5)]$                                                 |               |        | total distance travelled                                                     |
|      | <i>s</i> = 1.1 m                                                                                           | A1            | 7      |                                                                              |


Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

#### MATHEMATICS

9709/41 May/June 2016

Paper 4 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

| Page 2 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2016 | 9709     | 41    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2016 | 9709     | 41    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4Mark SchemeSyllabusPaperCambridge International AS/A Level – May/June 2016970941

| Qu    | Answer                                                                                                                                                  | Part<br>Mark | Marks   | Guidance                                                                                                                             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1 (i) | Trapezium seen                                                                                                                                          | B1           |         | <i>v</i> – <i>t</i> graph with three straight lines, with positive, zero and negative gradients, continuous                          |
|       | 0, 3, 9, 13 shown on the <i>t</i> axis                                                                                                                  | <b>B</b> 1   |         |                                                                                                                                      |
|       | v = 2.7 soi in either part                                                                                                                              | <b>B</b> 1   | [3]     |                                                                                                                                      |
| (ii)  | $[0.5 \times (6+13) \times 2.7]$                                                                                                                        | M1           |         | Using area of trapezium                                                                                                              |
|       | Total distance = $25.65 \text{ m}$                                                                                                                      | A1           | [2]     | Allow Distance = $513/20$ m                                                                                                          |
|       | Alternative                                                                                                                                             | method for   | : 1(ii) |                                                                                                                                      |
| (ii)  | Stage 1<br>$s_1 = 0.5 \times 0.9 \times 3^2 = 4.05$<br>Stage 2<br>$s_2 = 2.7 \times 6 = 16.2$<br>Stage 3<br>$s_3 = 0.5 \times (2.7 + 0) \times 4 = 5.4$ | M1           |         | Complete method to find the total<br>distance travelled by the lift using<br>constant acceleration equations<br>for all three stages |
|       | Total distance = $25.65 \text{ m}$                                                                                                                      | A1           | [2]     |                                                                                                                                      |
| 2 (i) | $WD = 40 \times 36 = 1440 J$                                                                                                                            | B1           | [1]     |                                                                                                                                      |
| (ii)  |                                                                                                                                                         | M1           |         | Using PE = <i>mgh</i>                                                                                                                |
|       | $PE = 25 \times g \times 36 \sin 20 = 3080 \text{ J}$                                                                                                   | A1           | [2]     | [PE = 3078.18]                                                                                                                       |
| (iii) | WD by pulling force = (i) + (ii)                                                                                                                        | MI           | .00     | For using<br>WD by pulling force =<br>Gain in PE + WD against F                                                                      |
|       | WD = 4520 J                                                                                                                                             | A1           | [2]     | [WD = 4518.18]                                                                                                                       |
|       | ntive for (iii                                                                                                                                          | )            |         |                                                                                                                                      |
| (iii) | $[(25g\sin 20+40) \times 36]$                                                                                                                           | M1           |         | For attempting to find the pulling<br>force and multiply it by 36 to find<br>the work done                                           |
|       | WD = 4520 J                                                                                                                                             | A1           | [2]     | [WD = 4518.18]                                                                                                                       |

 Page 5
 Mark Scheme
 Syllabus
 Paper

 Cambridge International AS/A Level – May/June 2016
 9709
 41

| Qu    | Answer                                                                                                                | Part<br>Mark | Marks | Guidance                                               |
|-------|-----------------------------------------------------------------------------------------------------------------------|--------------|-------|--------------------------------------------------------|
| 3 (i) | Driving Force = 300                                                                                                   | B1           |       | Using DF = Resistance                                  |
|       | $P = 300 \times 40$                                                                                                   | M1           |       | Using $P = Fv$                                         |
|       | P = 12000  W = 12  kW                                                                                                 | A1           | [3]   | Must give answer in kW                                 |
| (ii)  | $P = 0.9 \times 12000 = 10800$                                                                                        | B1√          |       | ft on 12000                                            |
|       | $\frac{10800}{25} - 300 = 1000a$                                                                                      | M1           |       | Applying Newton's second law with 3 terms to the car   |
|       | $a = 132/1000 = 0.132 \text{ ms}^{-2}$                                                                                | A1           | [3]   |                                                        |
| 4     | $P \cos \theta = 48 \cos \alpha - 14 \sin \alpha$<br>and/or<br>$P \sin \theta = 50 - 48 \sin \alpha - 14 \cos \alpha$ | M1           |       | For resolving forces horizontally<br>and/or vertically |
|       | $P \cos \theta = 48(24/25) - 14(7/25) = 42.16$                                                                        | A1           |       | Allow $\alpha = 16.3$ used throughout                  |
|       | $P \sin \theta = 50 - 48(7/25) - 14(24/25)$<br>= 23.12                                                                | A1           |       |                                                        |
|       |                                                                                                                       | M1           |       | For attempting to find <i>P</i> or $\theta$            |
|       | $P = \sqrt{42.16^2 + 23.12^2} = 48.1$                                                                                 | A1           |       | Allow $P = 34\sqrt{2}$                                 |
|       | $\tan \theta = \frac{23.12}{42.16}$<br>$\theta = 28.7$                                                                | B1           | [6]   |                                                        |

Page 6

## Mark Scheme Cambridge International AS/A Level – May/June 2016

SyllabusPaper970941

| Qu    | Answer                                                 | Part<br>Mark | Marks | Guidance                                                                                   |
|-------|--------------------------------------------------------|--------------|-------|--------------------------------------------------------------------------------------------|
| 5     | $R = 5g \cos \alpha = 4g$ $F = 0.5 \times 4g = 2g$     | B1           |       | For finding the normal reaction <i>R</i> acting on the 5 kg particle and using $F = \mu R$ |
|       |                                                        | M1           |       | For applying Newton's second<br>law to one or both particles or to<br>the system           |
|       | $T - 2g - 5g\sin\alpha = 5a \rightarrow$ $T - 5g = 5a$ | A1           |       | System equation is<br>$10g - 5g \sin \alpha - 2g = 5g = 15a$                               |
|       | 10g - T = 10a                                          | A1           |       |                                                                                            |
|       | [5g = 15a]                                             | M1           |       | For eliminating <i>T</i> and solve for <i>a</i>                                            |
|       | $a = g/3 = 3.33 \text{ ms}^{-2}$                       | A1           |       |                                                                                            |
|       | T = 10g - 10(g/3)<br>= 20g/3 = 66.7 N                  | B1           | [7]   |                                                                                            |
| 6 (i) | a = 12t - 30                                           | M1           |       | For differentiating $v$ to find $a$                                                        |
|       | <i>t</i> < 2.5                                         | A1           | [2]   |                                                                                            |
| (ii)  | v = 0 at $t = 1$ and $t = 4$                           | <b>B</b> 1   |       | Using $v = 6(t - 4)(t - 1)$                                                                |
|       | $s = \int (6t^2 - 30t + 24) dt$                        | M1           | 5     | For using integration to find s                                                            |
|       | $=\frac{6}{3}t^3 - \frac{30}{2}t^2 + 24t$              |              | 0.    |                                                                                            |
|       | $s = \left[2t^3 - 15t^2 + 24t\right]_1^4$              | M1           |       | For using limits                                                                           |
|       | Distance = 27 m                                        | A1           | [4]   |                                                                                            |
| (iii) | $2t^3 - 15t^2 + 24t = 0$                               | M1           |       | State $s = 0$                                                                              |
|       | $2t^2 - 15t + 24 = 0$                                  | M1           |       | Reduce to a quadratic and attempt to solve                                                 |
|       | t = 2.31 and $t = 5.19$                                | A1           | [3]   |                                                                                            |

Page 7

## Mark Scheme Cambridge International AS/A Level – May/June 2016

SyllabusPaper970941

| Qu        | Answer                                                   | Part<br>Mark | Marks   | Guidance                                                                    |
|-----------|----------------------------------------------------------|--------------|---------|-----------------------------------------------------------------------------|
| 7 (i) (a) | $200 - 30g\sin 20 = 30a$                                 | M1           |         | For applying Newton's second<br>law with 3 terms parallel to the<br>plane   |
|           | $a = 3.25 \text{ ms}^{-2}$                               | A1           | [2]     | [ <i>a</i> = 3.2465]                                                        |
| (b)       | $[v^2 = 2 \times 3.2465 \times 12 = 77.9]$               | <b>M1</b>    |         | For using $v^2 = u^2 + 2as$ and<br>attempting to find KE change             |
|           | KE change = $0.5 \times 30 \times 77.9 = 1170 \text{ J}$ | A1           | [2]     | [KE = 1168.7 J]                                                             |
|           | Alternative me                                           | thod for     | 7(i)(b) |                                                                             |
| (b)       | KE change =<br>$200 \times 12 - 30g \times 12 \sin 20$   | M1           |         | Using KE gain =<br>WD by DF – PE gain                                       |
|           | KE change = 1170 J                                       | A1           | [2]     |                                                                             |
| (ii) (a)  | $N = 30g \cos 20$                                        | B1           |         | [N = 281.9]                                                                 |
|           | $F = 0.12 \times 30g \cos 20 [= 33.8]$                   | M1           |         | Using $F = \mu N a$                                                         |
|           | $200 - 30g\sin 20 - 33.8 = 30a$                          | M1           |         | For using Newton's second law<br>with 4 terms applied to the<br>particle    |
|           | $a = 2.12 \text{ ms}^{-2}$                               | A1           | [4]     |                                                                             |
| (b)       | $N + 200 \sin 10 = 30g \cos 20$<br>[ $N = 247.2$ ]       | M1           | .00.    | For resolving forces<br>perpendicular to the plane. Three<br>term equation. |
|           | $F = 0.12 N [= 0.12 \times 247.2 = 29.66]$               | M1           |         | N must be from a 3 term equation                                            |
|           | $200\cos 10 - 29.66 - 30g\sin 20 = 30a$                  | M1           |         | For using Newton's second law<br>with 4 terms applied to the<br>particle    |
|           | $a = 2.16 \text{ ms}^{-2}$                               | A1           | [4]     |                                                                             |

# MARK SCHEME for the March 2016 series

# 9709 MATHEMATICS

9709/42

Paper 4 (Mechanics), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE<sup>®</sup> and Cambridge International A and AS Level components.



| Page 2 | Mark Scheme                                     | Syllabus | Paper |
|--------|-------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – March 2016 | 9709     | 42    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                     | Syllabus | Paper |
|--------|-------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – March 2016 | 9709     | 42    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Pag | je 4          | Mark Scheme                                                                                        |                                                 |     |                                                                        | Syllabus                                           | Paper                                           |
|-----|---------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------|-----|------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
|     |               | Cambridge International AS/A                                                                       | Cambridge International AS/A Level – March 2016 |     |                                                                        | 9709                                               | 42                                              |
|     |               |                                                                                                    |                                                 | -   |                                                                        |                                                    |                                                 |
| 1   |               |                                                                                                    | M1                                              |     | Attempt KE gain o                                                      | or WD agains                                       | st Res                                          |
|     |               | KE gain = $\frac{1}{2} \times 105 \times (10^2 - 5^2)$                                             |                                                 |     | Both correct (unsin                                                    | mplified)                                          | o <b>T</b>                                      |
|     |               | WD against Resistance = $50 \times 40$                                                             | Al                                              |     | KE gain = $3937.5$ .                                                   | J WD = 200                                         | 0 J                                             |
|     |               | Total WD = 5937.5 J                                                                                | <b>B</b> 1                                      | 3   | WD = KE gain + V                                                       | WD against F                                       | Res                                             |
|     |               | Alternat                                                                                           | ive meth                                        | 10d |                                                                        |                                                    |                                                 |
|     |               | $10^2 = 5^2 + 2 \times 50 \times a \ [a = 0.75]$<br>DF - 40 = 105a                                 | M1                                              |     | Using $v^2 = u^2 + 2a$<br>Newton's 2nd law                             | s and applyir to the system                        | ng<br>n                                         |
|     |               | $DF = 40 + 105 \times 0.75 = 118.75$                                                               | A1                                              |     |                                                                        |                                                    |                                                 |
|     |               | Total WD = $118.75 \times 50 = 5937.5 \text{ J}$                                                   | B1                                              | 3   | $WD = DF \times 50$                                                    |                                                    |                                                 |
| 2   | (i)           | DF = 1350                                                                                          | B1                                              |     |                                                                        |                                                    |                                                 |
|     |               | $P = 1350 \times 32 = 43.2 \mathrm{kW}$                                                            | <b>B</b> 1                                      | 2   |                                                                        |                                                    |                                                 |
| (   | ( <b>ii</b> ) | $DF - 1350 - 1200g \times 0.1 = 0$<br>[DF = 2550]                                                  | M1                                              |     | For using Newton<br>the car up the hill<br>Allow use of $\theta = 5$   | 's 2nd law ap<br>(3 terms)<br>5.7°                 | pplied to                                       |
|     |               | DF = 76500/v                                                                                       | M1                                              |     | For using $DF = P/$                                                    | v                                                  |                                                 |
|     |               | $v = 30 \mathrm{ms}^{-1}$                                                                          | A1                                              | 3   |                                                                        |                                                    |                                                 |
| 3   | (i)           |                                                                                                    | M1                                              |     | For resolving force                                                    | es horizontal                                      | ly                                              |
|     |               | $R_x = 40 \times (24/25) - 30 \times (7/25)$<br>[= 30]                                             | A1                                              |     | Allow $R_x = 40 \cos 16.3 -$                                           | 30 sin 16.3                                        |                                                 |
|     |               |                                                                                                    | M1                                              |     | For resolving force                                                    | es vertically                                      |                                                 |
|     |               | $R_y = 50 - 40 \times (7/25) - 30 \times (24/25)$<br>[= 10]                                        | Al                                              | p · | Allow<br>$R_y = 50 - 40 \sin 16$                                       | $.3 - 30\cos 10$                                   | 5.3                                             |
|     |               | $R = \sqrt{R_x^2 + R_y^2}$<br>and<br>$\theta = \tan^{-1} \begin{pmatrix} R_y \\ R_x \end{pmatrix}$ | M1                                              |     | For using Pythago<br>force $R$ and trigon<br>$\theta$ made by the resu | ras to find th<br>ometry to fir<br>Iltant with the | e resultant<br>id the angle<br>e <i>x</i> -axis |
|     |               | R = 31.6 N and<br>$\theta = 18.4^{\circ}$ with the positive <i>x</i> -axis                         | A1                                              | 6   |                                                                        |                                                    |                                                 |

Page 5

## Mark Scheme Cambridge International AS/A Level – March 2016

SyllabusPaper970942

|       | Alternative r                                                                                                                | nethod    | for 3 | (i)                                                                                                                              |
|-------|------------------------------------------------------------------------------------------------------------------------------|-----------|-------|----------------------------------------------------------------------------------------------------------------------------------|
| (i)   |                                                                                                                              | M1        |       | Resolve forces along 40 N direction                                                                                              |
|       | $R_1 = 40 - 50 \times (7/25) \qquad [= 26]$                                                                                  | A1        |       | Allow $R_1 = 40 - 50 \sin 16.3$                                                                                                  |
|       |                                                                                                                              | M1        |       | Resolve forces along 30 N direction                                                                                              |
|       | $R_2 = 30 - 50 \times (24/25)  [=-18]$                                                                                       | A1        |       | Allow $R_2 = 30 - 50 \cos 16.3$                                                                                                  |
|       | $R^2 = R_1^2 + R_2^2$ and $\arctan(-R_2/R_1)$                                                                                | M1        |       | Use Pythagoras and trigonometry                                                                                                  |
|       | $R = 31.6 \text{ N}  \text{and}  \text{direction is} \\ 34.7 - \alpha = 18.4^{\circ} \text{ with positive } x - \text{axis}$ | A1        | 6     | Using $\arctan(18/26) = 34.7^{\circ}$ is the angle between <i>R</i> and the 40 N force                                           |
| (ii)  | P = 40                                                                                                                       | B1        | 1     |                                                                                                                                  |
| 4 (i) | $5\cos\alpha = F$ $[F=4]$                                                                                                    | M1        |       | For resolving forces horizontally<br>Allow use of $\alpha = 36.9^{\circ}$ throughout                                             |
|       | $R + 5\sin\alpha = 8 \qquad [R = 5]$                                                                                         | M1        | 5     | For resolving forces vertically                                                                                                  |
|       | $4 = 5\mu$                                                                                                                   | M1        |       | For using $F = \mu R$                                                                                                            |
|       | $\mu = 0.8$                                                                                                                  | A1        | 4     |                                                                                                                                  |
| (ii)  | $R + 10\sin \alpha = 8 \qquad [R = 2]$<br>and<br>$F = 0.8 \times R \qquad [F = 1.6]$                                         | B1        |       | For resolving forces vertically to find the<br>new value of $R$<br>and using $F = \mu R$                                         |
|       | $10\cos\alpha - F = 0.8a$                                                                                                    | <b>M1</b> |       | For resolving horizontally                                                                                                       |
|       | $a = 8 \mathrm{ms}^{-2}$                                                                                                     | A1        | 3     |                                                                                                                                  |
| 5 (i) | $[2500 - 2000g \times 0.1 - 250 = 2000a]$                                                                                    | hre       | · ·   | For using Newton's 2nd law for the system or for applying Newton's 2nd law to the car and to the trailer and for solving for $a$ |
|       | 1/0 0 105 -2                                                                                                                 |           |       | Allow use of $\alpha = 5.7^{\circ}$ throughout                                                                                   |
|       | $a = 1/8 = 0.125 \mathrm{ms}^{-2}$                                                                                           | AI        |       |                                                                                                                                  |
|       | $2500 - T - 100 - 1200g \times 0.1$<br>= 1200 × 0.125                                                                        |           |       | For applying Newton's 2nd law either to<br>the car or to the trailer to set up an                                                |
|       | or<br>$T - 150 - 800g \times 0.1$<br>$= 800 \times 0.125$                                                                    | M1        |       | equation for T                                                                                                                   |
|       | $T = 1050 \mathrm{N}$                                                                                                        | A1        | 4     |                                                                                                                                  |

| Page 6 | Mark Schen                                                        |          | Syllabus | Paper                                       |                              |                           |
|--------|-------------------------------------------------------------------|----------|----------|---------------------------------------------|------------------------------|---------------------------|
|        | Cambridge International AS/A                                      | Level    | – Ma     | arch 2016                                   | 9709                         | 42                        |
|        |                                                                   |          |          |                                             |                              |                           |
| (ii)   | $-2000g \times 0.1 - 250 = 2000a$                                 |          |          | For applying New                            | ton's 2nd law                | v to the                  |
|        | [ <i>a</i> = – 1.125]                                             | M1       |          | system with no dri<br>equation for <i>a</i> | ving force to                | set up an                 |
|        | 0 = 30 - 1.125t                                                   | M1       |          | For using $v = u + c$                       | at                           |                           |
|        | $t = 26.7 \mathrm{s}$                                             | A1       | 3        | Allow $t = 80/3$ s                          |                              |                           |
|        | Alternative n                                                     | nethod f | for 5    | (ii)                                        |                              |                           |
| (ii)   | $[1/2](2000) 30^2 =$                                              |          |          | Apply work/energ                            | y equation to                | find <i>s</i> the with no |
|        | $250s + 2000 \times g \times 0.1s$ ]                              |          |          | driving force (3 ter                        | rms) as:                     |                           |
|        | $\rightarrow s = 400$                                             | M1       |          | KE loss = WD aga                            | unst F + PE g                | gain                      |
|        | $[400 = \frac{1}{2} (30 + 0)t]$                                   | M1       |          | For using $x = \frac{1}{2}(u$               | (+v)t                        |                           |
|        | $t = 26.7 \mathrm{s}$                                             | A1       | 3        | Allow $t = 80/3$ s                          |                              |                           |
| 6 (i)  | [T = 0.8a for A                                                   |          | 6        | For applying New                            | ton's 2nd law                | v either to               |
|        | 2 - T = 0.2a for B<br>0.2a = (0.2 + 0.8)a system]                 | M1       |          | particle A or to par                        | ticle <i>B</i> or to         | the system                |
|        | 0.2g (0.2 + 0.0) <i>u</i> system]                                 | IVII     |          |                                             |                              |                           |
|        |                                                                   | M1       |          | For applying N2 to needed) and solvin       | o a second pang for <i>a</i> | rticle (if                |
|        | [ <i>a</i> = 2]                                                   | A1       |          |                                             |                              |                           |
|        | $[2.5 = \frac{1}{2} \times 2 \times t^2]$                         |          |          | A complete metho                            | d for finding                | t such as                 |
|        |                                                                   | IVI I    |          | using $s = ut + \frac{y_2}{2}at$            |                              |                           |
|        | $t = 1.58 \mathrm{s}$                                             | A1       | 5        | Allow $t = \frac{1}{2}\sqrt{10}$            |                              |                           |
|        | First Alternativ                                                  | e Metho  | od fo    | or 6(i)                                     |                              |                           |
| (i)    | $[0.2 \times g \times 2.5 \text{ or } \frac{1}{2}(0.2 + 0.8)v^2]$ | M        | P        | Finding PE loss or                          | · KE gain (sy                | stem)                     |
|        | $[0.2 \times g \times 2.5 = \frac{1}{2}(0.2 + 0.8)v^2]$           | M1       |          | Using PE loss = $K$                         | E gain and fi                | nd v                      |
|        | $[v^2 = 10]$                                                      | A1       |          |                                             |                              |                           |
|        | $[2.5 = \frac{1}{2} (0 + \sqrt{10})t]$                            | M1       |          | For using $s = \frac{1}{2}(u$               | (+v)t                        |                           |
|        | $t = 1.58 \mathrm{s}$                                             | A1       | 5        | Allow $t = \frac{1}{2}\sqrt{10}$            |                              |                           |

Page 7

## Mark Scheme Cambridge International AS/A Level – March 2016

SyllabusPaper970942

|      | Second Alternative Method for 6(i)                                                         |         |       |                                                                                    |  |  |  |
|------|--------------------------------------------------------------------------------------------|---------|-------|------------------------------------------------------------------------------------|--|--|--|
| (i)  | $\begin{bmatrix} T = 0.8a & 2 - T = 0.2a \\ \rightarrow & T = 1.6 \text{ N} \end{bmatrix}$ | M1      |       | Apply N2 to <i>A</i> and <i>B</i> and solve for <i>T</i>                           |  |  |  |
|      | $[T \times 2.5 = \frac{1}{2} (0.8) v^2]$                                                   | M1      |       | Use WD by $T = KE$ gain by A, find v                                               |  |  |  |
|      | $[v^2 = 10]$                                                                               | A1      |       |                                                                                    |  |  |  |
|      | $[2.5 = \frac{1}{2} (0 + \sqrt{10})t]$                                                     | M1      |       | Using $s = \frac{1}{2}(u+v)t$                                                      |  |  |  |
|      | $t = 1.58 \mathrm{s}$                                                                      | A1      | 5     | Allow $t = \frac{1}{2}\sqrt{10}$                                                   |  |  |  |
| (ii) | $N = 8$ and $F = 0.1 \times N = 0.8$                                                       | B1      |       |                                                                                    |  |  |  |
|      | T - 0.8 = 0.8a and $2 - T = 0.2aor 0.2g - 0.8 = (0.2 + 0.8)a$                              | M1      |       | For applying N2 to both particles or to the system and solving for <i>a</i>        |  |  |  |
|      | <i>a</i> = 1.2                                                                             | A1      | 6     |                                                                                    |  |  |  |
|      | $v^2 = 0 + 2 \times 1.2 \times 2.5$                                                        | M1      |       | For using $v^2 = u^2 + 2as$                                                        |  |  |  |
|      | $v = \sqrt{6} = 2.45 \mathrm{ms}^{-1}$                                                     | A1      | 5     |                                                                                    |  |  |  |
|      | First Alternativ                                                                           | e Metho | od fo | r 6(ii)                                                                            |  |  |  |
| (ii) | $N = 8$ and $F = 0.1 \times N = 0.8$                                                       | B1      |       |                                                                                    |  |  |  |
|      | $[0.2 \times g \times 2.5 = \frac{1}{2} (0.8 + 0.2) v^2 + 0.8 \times 2.5]$                 | M1      |       | Apply work/energy to the system as<br>PE loss =<br>KE gain + WD against resistance |  |  |  |
|      | ž                                                                                          | A1      |       | Correct Work/Energy equation                                                       |  |  |  |
|      | 22                                                                                         | M1      | 5.    | For solving for <i>v</i>                                                           |  |  |  |
|      | $v = \sqrt{6} = 2.45 \mathrm{ms}^{-1}$                                                     | A1      | 5     |                                                                                    |  |  |  |
|      | Second Alternati                                                                           | ve Meth | nod f | or 6(ii)                                                                           |  |  |  |
| (ii) | $N = 8$ and $F = 0.1 \times N = 0.8$                                                       | B1      |       |                                                                                    |  |  |  |
|      | T - 0.8 = 0.8a and $2 - T = 0.2a$                                                          | M1      |       | Use N2 for $A$ and $B$ and solve for $T$                                           |  |  |  |
|      | $T = 1.76 \mathrm{N}$                                                                      | A1      |       |                                                                                    |  |  |  |
|      | $[T \times 2.5 = 0.8 \times 2.5 + \frac{1}{2} (0.8) v^2]$                                  | M1      |       | Apply Work/Energy equation to A                                                    |  |  |  |
|      | $v = \sqrt{6} = 2.45 \mathrm{ms}^{-1}$                                                     | A1      | 5     |                                                                                    |  |  |  |

| Page 8 | Mark Scheme                                                                                           |                          |      |                                                                                                            |                                                                             | Paper                                                |
|--------|-------------------------------------------------------------------------------------------------------|--------------------------|------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|
|        | Cambridge International AS/A                                                                          | Level                    | – Ma | arch 2016                                                                                                  | 9709                                                                        | 42                                                   |
| 7 (i)  | k = 40                                                                                                | B1                       | 1    |                                                                                                            |                                                                             |                                                      |
| (ii)   | Correct for $0 \le t \le 4$                                                                           | B1√                      |      | Quadratic curve with minimum at $t = 1$ approximately, $v = 0$ at $t = 2$ and $v = k$ at $t = 4$ . If on k |                                                                             |                                                      |
|        | Correct for $4 \le t \le 14$                                                                          | <b>B</b> 1√ <sup>^</sup> |      | Horizontal line at                                                                                         | v = k. ft on k                                                              | -                                                    |
|        | Correct $14 \leq t \leq 20$                                                                           | B1√                      | 3    | Line with negative to $(20, 28)$ . ft on k                                                                 | gradient fro                                                                | m (14, <i>k</i> )                                    |
| (iii)  | For $0 \le t \le 4$ $a = 10t - 10$                                                                    | M1                       |      | Attempting to diffe                                                                                        | erentiate to f                                                              | ind a                                                |
|        | 1 < <i>t</i> ≤ 4                                                                                      | A1                       | 2    |                                                                                                            |                                                                             |                                                      |
| (iv)   | $\int (5t^2 - 10t) dt = \frac{5}{3}t^3 - 5t^2$                                                        | M1                       |      | For attempting to i<br>quadratic expression<br>apply limits over the                                       | ntegrate the<br>on and attem<br>he interval t                               | given<br>pting to<br>= 0 to $t = 4$                  |
|        | $A = \left[\frac{5}{3}t^{3} - 5t^{2}\right]_{0}^{2} = \left(\frac{5}{2}2^{3} - 5 \times 2^{2}\right)$ |                          |      | Use of limits to ob<br>t = 0 to $t = 2$ and B<br>to $t = 4$<br>Full evaluation of                          | tain $A$ , the ir<br>B, the integral $A$ not necess                         | tegral from $t = 2$                                  |
|        | $-\left(\frac{5}{3}0^3 - 5 \times 0^2\right)$                                                         |                          |      | stage $\left[A = -\frac{20}{3}\right]$                                                                     |                                                                             |                                                      |
|        | $B = \left[\frac{5}{3}t^3 - 5t^2\right]_2^4 = \left(\frac{5}{3}4^3 - 5 \times 4^2\right)$             | bre                      | p .  | Full evaluation of stage $\left[B = \frac{100}{3}\right]$                                                  | <i>B</i> not necess                                                         | ary at this                                          |
|        | $-\left(\frac{5}{3}2^3 - 5 \times 2^2\right)$                                                         | A1                       |      |                                                                                                            |                                                                             |                                                      |
|        | $C = (40 \times 10) + 0.5 \times (40 + 28) \times 6$                                                  | <b>B</b> 1√ <sup>^</sup> |      | For finding the dis<br>interval $t = 4$ to $t =$<br>properties or integ                                    | tance travell<br>20 using are<br>ration. ft on                              | ed in the<br>ea<br><i>k</i>                          |
|        | -A + B + C = [20/3 + 100/3 + 400 + 204]                                                               | M1                       |      | For attempting to a distance travelled to $t = 20$ . The dista 4 seconds must has integration method.      | evaluate the t<br>by $P$ in the in<br>unce travelled<br>we been foun<br>ls. | total<br>terval $t = 0$<br>d in the first<br>d using |
|        | Total distance travelled = $644 \text{ m}$                                                            | A1                       | 5    |                                                                                                            |                                                                             |                                                      |

# MARK SCHEME for the October/November 2015 series

# 9709 MATHEMATICS

9709/43

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.



| Page 2 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2015 | 9709     | 43    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2015 | 9709     | 43    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme                                                 |            |        |                                         | Syllabus                                 | Paper         |
|--------|-------------------------------------------------------------|------------|--------|-----------------------------------------|------------------------------------------|---------------|
|        | Cambridge International AS/A Level -                        | - Octol    | ber/No | ovember 2015                            | 9709                                     | 43            |
|        |                                                             |            |        | 1                                       |                                          |               |
| 1      | Tension is 30 N                                             | <b>B1</b>  |        |                                         |                                          |               |
|        | $[R = (4g - 30) \times 0.8]$                                | M1         |        | For resolving fo perpendicular to       | rces acting o<br>the plane.              | n <i>B</i> ,  |
|        | Normal component is 8 N                                     | A1         | 3      |                                         |                                          |               |
| 2      | $F = T\cos\alpha = 0.96T$                                   | <b>B</b> 1 |        |                                         |                                          |               |
|        | $R = 0.2g - T\sin\alpha = 2 - 0.28T$                        | <b>B</b> 1 |        |                                         |                                          |               |
|        | [0.96T = 0.25(2 - 0.28T)]                                   | M1         |        | For using $F = \mu I$                   | R                                        |               |
|        | $[(0.96 + 0.07)T = 0.5 \rightarrow T =]$                    | M1         |        | For solving resu                        | ltant equatio                            | n for T       |
|        | T = 0.485                                                   | A1         | 5      |                                         |                                          |               |
| 3      |                                                             | M1         |        | For resolving fo $-x$ direction         | rces in the <i>x</i>                     | or            |
|        | $120\cos 75^\circ = 150 - 100 - P\cos \theta^\circ$         | A1         |        |                                         |                                          |               |
|        | 12000875 - 150 - 100 - 10050                                | M          |        |                                         | • .1                                     | 1             |
|        |                                                             | NI I       |        | For resolving to                        | rces in the y                            | direction     |
|        | $120\sin75^\circ = P\sin\theta^\circ$                       | A1         |        |                                         |                                          |               |
|        | $[P^2 = 14400 - 12000\cos 75^\circ + 2500]$                 |            |        | For using $P^2$<br>= $(P\cos\theta)^2$  | $+ (Psin\theta)^2$ or                    | r for using   |
|        | $\tan\theta = [120\sin75^{\circ}/(50 - 120\cos75^{\circ})]$ | M1         |        | $P\sin\theta/P\cos\theta = 1$           | $\tan\theta$                             | tion using    |
|        | $P = 117 \text{ or } \theta = 80.7$                         | A1         |        |                                         |                                          |               |
|        | $\theta = 80.7 \text{ or } P = 117$                         | <b>B</b> 1 | 7      |                                         |                                          |               |
| 4 (i)  | 2                                                           |            |        | For applying Ne                         | ewton's secon                            | nd law to A   |
|        | ".sato                                                      | M1         |        | $m_A g - m_B g = (m_A)$                 | $m_{A} + m_{B})a$                        |               |
|        | 0.35g - T = 0.35a                                           |            |        |                                         |                                          |               |
|        | T - 0.15g = 0.15a<br>(0.35 - 0.15)g = (0.35 + 0.15)a        | A1         |        | Two of the three                        | e equations                              |               |
|        | Acceleration is $4 \text{ ms}^{-2}$                         | <b>B</b> 1 |        |                                         |                                          |               |
|        | Tension is 2.1 N                                            | B1         | 4      |                                         |                                          |               |
| (ii)   | $[v_1^2 = 0 + 8 \times 1.6 \ (= 12.8)]$                     | M1         |        | For using $v_1^2 = 0$                   | $) + 2a \times 1.6$                      |               |
|        | $[H = 1.6 + (-12.8) \div (-20)]$                            | M1         |        | For using $H = 1$<br>or for using $h =$ | $.6 + (0 - v_1^2)$<br>$(0 - v_1^2)/(-2)$ | /(-2g)<br>/g) |
|        | Greatest height is 2.24 m                                   | A1         | 3      |                                         |                                          |               |

| Page 5 | 5                                    | Mark Schem                                                                     | е                |        |                                                                                                                                                 | Syllabus                                                                    | Paper                                                   |
|--------|--------------------------------------|--------------------------------------------------------------------------------|------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|
|        | Camb                                 | ridge International AS/A Level                                                 | - Octol          | ber/No | ovember 2015                                                                                                                                    | 9709                                                                        | 43                                                      |
|        |                                      |                                                                                |                  |        |                                                                                                                                                 |                                                                             |                                                         |
| 5 (i)  | $a = (5^2)$                          | $(-3^2) \div (2 \times 500) = 0.016$                                           | B1               |        |                                                                                                                                                 |                                                                             |                                                         |
|        |                                      |                                                                                | M1               |        | For using Newto                                                                                                                                 | on's 2 <sup>nd</sup> law                                                    |                                                         |
|        | DF                                   | $+90g \times 0.05 - R = 90 \times 0.016$                                       | A1               |        |                                                                                                                                                 |                                                                             |                                                         |
|        | [ <i>R</i> =                         | $=\frac{420}{v}-90(0.016-0.5)]$                                                | M1               |        | For using $DF =$                                                                                                                                | P/v                                                                         |                                                         |
|        | R =                                  | $\frac{420}{v} + 43.56$                                                        | A1               | 5      | AG                                                                                                                                              |                                                                             |                                                         |
|        |                                      |                                                                                | PR               |        | SR for assuming<br>(max 2/5)<br>PE loss = 90g(5)<br>KE gain = $\frac{1}{2}$ (9)<br>WD <sub>DF</sub> +PE loss =<br>$\rightarrow R = 420/v + 100$ | g constant R<br>(00)(0.05) and<br>$(00)(5^2-3^2)$<br>= KEgain+W<br>43.56 B1 | and <i>DF</i><br>d<br>B1<br><sup>/</sup> D <sub>R</sub> |
| (ii)   | $v_M^2$                              | $= 3^2 + 2 \times 0.016 \times 250 \rightarrow$                                |                  |        |                                                                                                                                                 |                                                                             |                                                         |
|        |                                      | speed at mid-point is 4.12ms <sup>-1</sup>                                     | B1               |        |                                                                                                                                                 |                                                                             |                                                         |
|        | [De<br>=42                           | ccrease in <i>R</i> from top to mid-way<br>$20[(1\div 3) - (1\div \sqrt{17})]$ |                  |        | Den Caller des                                                                                                                                  | 1:00                                                                        | D Como ide an                                           |
|        | or<br>[De<br>420                     | ccrease in R from midway to b'm =<br>$D[(1 \div \sqrt{17}) - (1 \div 5)]$      | M1               |        | top to midway o                                                                                                                                 | or midway to                                                                | bottom                                                  |
|        | 38.                                  | 1 and 17.9                                                                     | A1               | 3      |                                                                                                                                                 |                                                                             |                                                         |
| 6 (i)  | $\operatorname{Tim}_{=} \frac{1}{0}$ | the taken<br>$\frac{0.08}{0.0002} = 400 \text{ s}$                             | B1               |        | 5                                                                                                                                               |                                                                             |                                                         |
|        | <i>v</i> =                           | $\frac{\mathrm{d}x}{\mathrm{d}t} = 0.16t - 0.0006t^2$                          | B1               |        |                                                                                                                                                 |                                                                             |                                                         |
|        | [spe<br>=                            | eed<br>$-0.16 \times 400 + 0.0006 \times 400^2$ ]                              | M1               |        | For evaluating ±                                                                                                                                | =v(400)                                                                     |                                                         |
|        | Spe                                  | eed at O is $32 \text{ ms}^{-1}$                                               | A1               | 4      |                                                                                                                                                 |                                                                             |                                                         |
| (ii)   | (a) Tim                              | ne to furthest point is 0.16/0.0006 s                                          | B1√ <sup>^</sup> |        | v = 0.16t - v = kt - 0.0                                                                                                                        | $kt^2$ or<br>$0006t^2$ from p                                               | oart (i)                                                |
|        | [0.0                                 | $08(800/3)^2 - 0.0002(800/3)^3]$<br>(×2)                                       | M1*              |        | For evaluating $x(t_{\text{furthest point}})$ (2)                                                                                               | ×2)                                                                         |                                                         |
|        | Dis                                  | tance moved is 3790 m                                                          | A1               | 3      |                                                                                                                                                 |                                                                             |                                                         |
|        | ( <b>b</b> ) [spe                    | $eed = 3790/400 \text{ ms}^{-1}$ ]                                             | dM1*             |        | For using 'avera<br>moved/time tak                                                                                                              | nge speed = t<br>ten'                                                       | otal distance                                           |
|        | Ave                                  | erage speed is 9.48 ms <sup>-1</sup>                                           | A1               | 2      |                                                                                                                                                 |                                                                             |                                                         |

| Page 6 | Mark Scheme                                                                                    |                  |        |                                                                                       |                                                                     | Paper                                          |
|--------|------------------------------------------------------------------------------------------------|------------------|--------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|
|        | Cambridge International AS/A Level -                                                           | - Octol          | ber/No | ovember 2015                                                                          | 9709                                                                | 43                                             |
|        |                                                                                                | -                | 1      | 1                                                                                     |                                                                     |                                                |
| 7 (i)  | Gain in KE<br>= $\frac{1}{2}$ 1250(8 <sup>2</sup> - 5 <sup>2</sup> )                           | B1               |        |                                                                                       |                                                                     |                                                |
|        | Loss in PE = $1250g \times 400\sin^{\circ}400$                                                 | <b>B</b> 1       |        |                                                                                       |                                                                     |                                                |
|        |                                                                                                | M1               |        | For using WD b<br>Loss in PE + W                                                      | y <i>DF</i> = Gain<br>D by resistan                                 | in KE –<br>ace                                 |
|        | $400(DF) = \frac{1}{2} \ 1250 \ (8^2 - 5^2) - 1250g \times 400 \sin 4^\circ + 2000 \times 400$ | A1               |        |                                                                                       |                                                                     |                                                |
|        | Driving force is 1189 N or 1190 N                                                              | A1               | 5      |                                                                                       |                                                                     |                                                |
|        | F                                                                                              | R                |        | SR for using Net<br>(max 2/5)<br>DF + 1250gsin4<br>$a = (8^2-5^2)/2 \times$           | ewton's second<br>$A^{\circ} - 2000 = 12$<br>$400 \rightarrow DF =$ | nd law<br>250 <i>a</i><br>B1<br>= 1190 N<br>B1 |
| (ii)   |                                                                                                | M1               |        | For using Newto<br>acceleration<br>for finding $v_{\rm C}$ an<br>$v^2 = u^2 + 2as$ to | on's second l<br>or<br>id using<br>find accelera                    | aw to find<br>tion                             |
|        | $1189 \times 2 - 2000 = 1250a$ or<br>$22.75^2 = 8^2 + 2a \times 750$                           | A1√              |        | <i>↓ DF</i> from part                                                                 | (i)                                                                 |                                                |
|        | Acceleration is $0.302 \text{ ms}^{-2}$                                                        | A1               | 3      |                                                                                       |                                                                     |                                                |
| (iii)  | $v_c^2 = 64 + 2 \times 0.302 \times 750$                                                       | B1√ <sup>^</sup> |        |                                                                                       | rom part (ii)                                                       |                                                |
|        | $[P/22.75 - 2000 = 1250 \times 0.302]$                                                         | M1               |        | <u>.</u>                                                                              |                                                                     |                                                |
|        | Power is 54.1 kW or 54100 W                                                                    | A1               | 3      |                                                                                       |                                                                     |                                                |

# MARK SCHEME for the October/November 2015 series

# 9709 MATHEMATICS

9709/42

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.



| Page 2 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2015 | 9709     | 42    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2015 | 9709     | 42    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

|   | Page 4 | Mark Scheme                                                                                                                             |          |          |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Paper                   |
|---|--------|-----------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|   |        | Cambridge International AS/A Le                                                                                                         | evel – O | ctober   | /November 2015                                                                                                                                  | 9709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42                      |
| 1 | (i)    |                                                                                                                                         | M1       |          | For resolving force                                                                                                                             | s in the x dire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ection                  |
|   |        | $15 + F\cos 60^\circ = F\cos 30^\circ$                                                                                                  | A1       |          |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|   |        | F = 41.0                                                                                                                                | A1       | 3        | <b>AG</b> $F = 15(1 + 1)$                                                                                                                       | + \sqrt{3})                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
|   | (ii)   | $[G = F(\sin 30^\circ + \sin 60^\circ)]$                                                                                                | M1       |          | For resolving force                                                                                                                             | s in the y dire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ection                  |
|   |        | <i>G</i> = 56.0                                                                                                                         | A1       | 2        | Allow $15(2 + \sqrt{3})$                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| 2 | (i)    | $[V^2 = (V - 10)^2 + 2g \times 35]$                                                                                                     | M1       |          | For using $v^2 = u^2 + 2gs$ to obtain an<br>equation in V only <b>or</b> to obtain two<br>equations in V and H and attempting to<br>eliminate H |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|   |        | 20 V = 100 + 70g                                                                                                                        | A1       |          |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|   |        | <i>V</i> = 40                                                                                                                           | A1       | 3        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|   |        | Alte                                                                                                                                    | rnative  | for 2(i) |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|   | (i)    |                                                                                                                                         | M1       |          | A complete method<br>considering the fina<br>and either<br>$s = ut + \frac{1}{2}at^2$ or $s =$                                                  | to find V by<br>al 35 m using<br>= $(u + v)/2 \times (u + v)/2 \times$ | $\frac{1}{2}v = u + at$ |
|   |        | $V = V - 10 + 10t \rightarrow t = 1 \text{ and}$<br>35 = (V - 10) × 1 + $\frac{1}{2}$ ×10 ×1 <sup>2</sup> or<br>35 = (V - 10 + V)/2 × 1 | A1       |          | 5                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|   |        | v = 40                                                                                                                                  | AI       | 3        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|   | (ii)   | $[40^2 = 0^2 + 20H]$                                                                                                                    | M1       | eP.      | For using $v^2 = u^2 + 2$                                                                                                                       | 2gs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
|   |        | <i>H</i> = 80                                                                                                                           | A1       | 2        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| 3 | (i)    | $[a(t) = 0.00012t^2 - 0.012t + 0.288]$                                                                                                  | M1*      |          | For attempting to d                                                                                                                             | ifferentiate v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v(t)                    |
|   |        | $[a(t) = 0.00012(t^2 - 100t + 2400) = 0.00012(t - 40)(t - 60) = 0]$                                                                     | dM1*     |          | For setting $a(t) = 0$<br>a three term quadra                                                                                                   | and attempti<br>tic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ing to solve            |
|   |        | a(t) = 0 when $t = 40$ and $t = 60$                                                                                                     | A1       | 3        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|   | (ii)   | $[0.00001t^4 - 0.002t^3 + 0.144t^2]$                                                                                                    | M1†      |          | For attempting to in                                                                                                                            | ntegrate $v(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|   |        | $[0.00001(100)^4 - 0.002(100)^3 + 0.144(100)^2]$                                                                                        | dM1†     |          | Integration attempt<br>= 0 to $t = 100$                                                                                                         | ed using corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rect limits <i>t</i>    |
|   |        | Displacement is 440 m                                                                                                                   | A1       | 3        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |

| Page 5 | Mark Sc                                                                                                                                          | Syllabus  | Paper     |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|        | Cambridge International AS/A Le                                                                                                                  | evel – C  | october   | /November 2015                                                  | 9709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 4      |                                                                                                                                                  | M1        |           | For using $R = 2\cos^2 \theta$<br>and $F = \mu R$               | 45°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        | Frictional force = $0.4 \times 2 \cos 45$<br>= $0.4 \sqrt{2}$                                                                                    | A1        |           |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        | KE gain = $\frac{1}{2} \times 0.2 \times V_{\rm C}^2$ and<br>PE loss = $0.2 \times g \times (2.5 + 2\sqrt{2})$                                   | B1        |           |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        |                                                                                                                                                  | M1        |           | For using KE gain<br>= PE loss from A to<br>frictional force    | gain from $A$ to $C$<br>n $A$ to $C$ – Work done by<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        | 0.1 $V_{\rm C}^2 = (5 + 4\sqrt{2}) - 0.4\sqrt{2} \times 4$                                                                                       | A1        |           |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        | Speed at C is $9.16 \mathrm{ms}^{-1}$                                                                                                            | A1        | 6         |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        | First alternativ                                                                                                                                 | ve for th | e last fo | our marks                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        | $\frac{V_2}{V_B} \times 0.2 \times V_B^2 = 0.2 \times g \times 2.5 \rightarrow V_B^2 = 50$                                                       | B1        |           |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        |                                                                                                                                                  | M1        |           | For using KE gain from $B$ to $C - Work$                        | from $B$ to $C$ is done by friction of $C$ is the formula of $C$ | = PE loss<br>ctional force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|        | $0.1 (V_{\rm C}^2 - V_{\rm B}^2) = 0.2 \times g \times (4 \div \sqrt{2}) - 0.4 \sqrt{2} \times 4$                                                | A1        | 2         |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        | Speed at C is $9.16 \mathrm{ms}^{-1}$                                                                                                            | A1        |           |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        | Second alternat                                                                                                                                  | ive for t | he last f | four marks                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        | $\frac{V_2 \times 0.2 \times V_B^2 = 0.2 \times g \times 2.5}{V_B^2 = 50}$                                                                       | B1        | 99        |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        |                                                                                                                                                  | M1        |           | For using Newton's acceleration along $2as$ to find $V_{\rm C}$ | s 2 <sup>nd</sup> law to fi<br>BC <b>and</b> using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\int \frac{du}{dt} v^2 = u^2 + u^2 + \frac{du}{dt} v^2 = u^2 + \frac{du}{dt} v^2 + \frac{du}{dt$ |  |
|        | $\sqrt{2} - 0.4\sqrt{2} = 0.2a \rightarrow a$<br>= $3\sqrt{2}$ ms <sup>-2</sup><br>and $V_{\rm C}^2 = V_{\rm B}^2 + 2 \times 3\sqrt{2} \times 4$ | A1        |           |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|        | Speed at $C$ is 9.16 ms <sup>-1</sup>                                                                                                            | A1        |           |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

| F | Page 6 | Mark Scheme                                                                                                                                                |                |        |                                                                                                                                           | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paper                                                              |
|---|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|   |        | Cambridge International AS/A Le                                                                                                                            | vel – C        | ctober | /November 2015                                                                                                                            | 9709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42                                                                 |
| 5 | (i)    | $0.5g \times \frac{7}{25} - T = 0.5a$<br>T - 0.1g = 0.1a<br>1.4 - 1 = 0.6a<br>For eliminating T and obtaining<br>$a = \frac{2}{3} \text{ ms}^{-2}$         | M1<br>A1<br>B1 |        | For applying Newto<br>or for applying N2<br>Any two correct<br>Allow sin 16.3 for 7                                                       | on 2 <sup>nd</sup> law to<br>to the systen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P or to Q                                                          |
|   |        |                                                                                                                                                            | M1             |        | For substituting for                                                                                                                      | a to find $T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |
|   |        | Tension is 1.07 N                                                                                                                                          | A1             | 5      | Allow $T = 16/15$ N                                                                                                                       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |
|   | (ii)   | $[\nu^2 = 2 \times \left(\frac{2}{3}\right) \times 0.7]$ $[2^2 = 2 \times \frac{2}{3} \times 0.7 + 2 \times 0.28g \times s]$                               | M1             |        | For using $v^2 = u^2 + the particles immediately breaksFor applying v^2 = uP when the string is distance travelled bit reaches the floor$ | 2as to find the solution of the second state of the second stat | he speed of<br>the string<br>he motion of<br>is the<br>break until |
|   |        | Length of string = $2.5 - s = 1.95$ m                                                                                                                      | A1             | 3      | Allow length = $41/$                                                                                                                      | 21 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |
| 6 | (i)    | $[0.195 \cos \theta = F]$ $F = 0.195 \cos 22.6 = 0.195 \times \frac{12}{13}$ $= 0.18 = \frac{9}{50}$ $[R = 0.24 \pm 0.105 \sin \theta]$                    | M1<br>A1       | eP.    | For resolving forces                                                                                                                      | s horizontall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y                                                                  |
|   |        | $[R = 0.24 + 0.195 \sin \theta]$ $R = 0.24 + 0.195 \sin 22.6 =$ $0.24 + 0.195 \times \frac{5}{13} = 0.315$ $= \frac{63}{200}$ Coefficient u = 4/7 or 0.571 | A1<br>M1       |        | For resolving forces<br>For using $\mu = F/R$                                                                                             | s vertically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |
|   |        | Coefficient $\mu = 4/7$ or $0.5/1$                                                                                                                         | Al             | 6      |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |

| Page 7 | Mark Scheme                                                                                   |                  |     |                                                                   | Syllabus                    | Paper                                     |
|--------|-----------------------------------------------------------------------------------------------|------------------|-----|-------------------------------------------------------------------|-----------------------------|-------------------------------------------|
|        | Cambridge International AS/A Level – October/Nov                                              |                  |     | /November 2015                                                    | 9709                        | 42                                        |
|        | 1                                                                                             |                  |     | Γ                                                                 |                             |                                           |
| (ii)   | $R = 0.24 - 0.195 \sin 22.6$<br>= 0.24 - 0.195 × $\frac{5}{13}$<br>= 0.165 = $\frac{33}{200}$ | B1               |     |                                                                   |                             |                                           |
|        | 12 (4)                                                                                        | M1               |     | For using Newton's along the rod                                  | s second law                | for motion                                |
|        | $0.195 \times \frac{12}{13} - \left(\frac{4}{7}\right) \times 0.165$<br>= 0.024 <i>a</i>      | Δ1               |     |                                                                   |                             |                                           |
|        | Acceleration is $3.57 \mathrm{ms}^{-2}$                                                       | A1               | 4   | Allow acceleration                                                | = 25/7                      |                                           |
| 7 (i)  | [WD = 14000 × 25]                                                                             | M1               |     | For using $P = WD$                                                | $-\Delta t$                 |                                           |
|        | Work done is 350 kJ or 350 000 J                                                              | A1               | 2   |                                                                   |                             |                                           |
| (ii)   | 2                                                                                             | M1               |     | For using $DF = P/n$<br>to find the speed of                      | and Newton<br>the car at A  | n's 2 <sup>nd</sup> law<br>or at <i>B</i> |
|        | $14000/v_{\rm A} - 235 = 1600 \times 0.5 \rightarrow v_{\rm A} = 13.53 \text{ ms}^{-1}$       | A1               |     | $v_{\rm A} = 2800/207$                                            |                             |                                           |
|        | $14000 / v_{\rm B} - 235 = 1600 \times 0.25 \rightarrow v_{\rm B} = 22.05 \text{ ms}^{-1}$    | A1               |     | $v_{\rm B} = 2800/127$                                            |                             |                                           |
|        | [KE gain =<br>$\frac{1}{2}$ 1600(22.05 <sup>2</sup> - 13.53 <sup>2</sup> )]                   | <b>M</b> 1       |     | For using KE gain<br>= $\frac{1}{2} m(v_{\rm B}^2 - v_{\rm B}^2)$ | <sub>A</sub> <sup>2</sup> ) |                                           |
|        | KE gain = 242.5 kJ or 242 500 J                                                               | A1               | 5   |                                                                   |                             |                                           |
| (iii)  | w.sa                                                                                          | M1               | eP. | For using WD by D<br>= KE gain + re                               | $\mathbf{PF}$               | В                                         |
|        | $350000 = 242500 + 235 \times AB$                                                             | A1√ <sup>^</sup> |     |                                                                   |                             |                                           |
|        | Distance <i>AB</i> is 457 m                                                                   | A1               | 3   |                                                                   |                             |                                           |

# MARK SCHEME for the October/November 2015 series

# 9709 MATHEMATICS

9709/41

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.



| Page 2 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2015 | 9709     | 41    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are
  several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a
  particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
  When two or more steps are run together by the candidate, the earlier marks are implied and
  full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2015 | 9709     | 41    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

|   | Page | 4 Mark Sch                                            |                  | Syllabus | Paper                               |                |               |
|---|------|-------------------------------------------------------|------------------|----------|-------------------------------------|----------------|---------------|
|   |      | Cambridge International AS/A Lev                      | el – Oc          | tober/N  | November 2015                       | 9709           | 41            |
| 1 | (i)  | $200g \times 0.7$                                     | M1               |          | For using $WD = r$                  | ng × h         |               |
|   |      | Work done = $1400 \text{ J}$                          | A1               | 2        |                                     |                |               |
|   | (ii) | 1400/1.2                                              | M1               |          | For using Power                     | = WD/Time      |               |
|   |      | Average Power = 1170 W                                | A1√ <sup>^</sup> | 2        |                                     |                |               |
| 2 | (i)  | $a = g \sin 30 = 5$                                   | <b>B</b> 1       |          |                                     |                |               |
|   |      | 2.5 = 0 + 5t                                          | M1               |          | Using $v = u + at$                  |                |               |
|   |      | t = 0.5 Time = 0.5 s                                  | A1               | 3        |                                     |                |               |
|   | (ii) | $v^2 = 0 + 2 \times 5 \times 3 = 30$                  | <b>B</b> 1       |          |                                     |                |               |
|   |      | $-1 = 0.5a \rightarrow a = -2$                        | P                | 5        | For applying New particle and using | vton's second  | l law to the  |
|   |      | $0 = 30 + 2 \times (-2) \times s$                     | M1               | 16       | $v^2 = u^2 + 2as$                   |                |               |
|   |      | Distance = 7.5 m                                      | A1               | 3        |                                     |                |               |
|   |      | First alte                                            | ernative         | method   | d for 2(ii)                         |                |               |
|   |      | $v^2 = 0 + 2 \times 5 \times 3 = 30$                  | B1               |          |                                     |                |               |
|   |      | $0.5 \times 0.5 \times 30 = 1 \times \text{distance}$ | M1               |          | KE lost = WD ag                     | ainst Friction | 1             |
|   |      | Distance = 7.5 m                                      | A1               | 3        | [                                   |                |               |
|   |      | Second al                                             | ternativ         | e metho  | od for 2(ii)                        |                |               |
|   |      | PE lost = $0.5 \times 10 \times 3 \sin 30 = 7.5$      | <b>B</b> 1       |          | Using PE lost = $n$                 | ıgh            |               |
|   |      | $7.5 = 1 \times \text{distance}$                      | M1               |          | PE lost = WD aga                    | ainst Friction |               |
|   |      | Distance $= 7.5 \mathrm{m}$                           | A1               | 3        |                                     |                |               |
| 3 | (i)  |                                                       | M1               |          | For applying New lorry up the hill  | vton's second  | l law to the  |
|   |      | $F - 24000g \sin 3 - 3200 = 24000 \times (0.2)$       | A1               |          | [F = 20561]                         |                |               |
|   |      | $Power = Fv = 20561 \times 25$                        | M1               |          | Using $P = Fv$                      |                |               |
|   |      | Power = 514 kW                                        | A1               | 4        |                                     |                |               |
|   | (ii) | $DF = 3200 + 24000g \sin 3$<br>[=15761]               | M1               |          | Using Newton's s<br>the steady case | second law up  | p the hill in |
|   |      | $v = 500000 / 15761 = 31.7 \mathrm{ms}^{-1}$          | A1               | 2        | P = Fv so $v = P/P$                 | F              |               |

| Page  | 5       | 5 Mark Scheme                                          |            |          |                                                       |                                | Paper        |
|-------|---------|--------------------------------------------------------|------------|----------|-------------------------------------------------------|--------------------------------|--------------|
|       |         | Cambridge International AS/A Lev                       | el – Oc    | tober/N  | ovember 2015                                          | 9709                           | 41           |
| 4     | F       | $r = 0.2 \times mg \cos 35$                            | B1         |          | Maximum value o                                       | of F                           |              |
|       |         |                                                        | M1         |          | For resolving force either case                       | es along the                   | plane in     |
|       | 5g      | $g - mg\sin 35 - 0.2 mg\cos 35$ $= 0$                  | A1         |          | Equilibrium, on the plane                             | ne point of m                  | oving up     |
|       | 5g      | $g - Mg\sin 35 + 0.2 Mg\cos 35$ $= 0$                  | A1         |          | Equilibrium, on the plane                             | ne point of m                  | oving down   |
|       | т       | a = 6.78 or $M = 12.2$                                 | M1         |          | For solving either                                    |                                |              |
|       | 6.      | 78 ≤ mass ≤ 12.2                                       | A1         | 6        |                                                       |                                |              |
| 5 (i) |         |                                                        | M1         |          | For resolving force vertically                        | es either hor                  | izontally or |
|       | F       | cos70 + 20 - 10 cos 30<br>= $Rcos15$                   | A1         |          |                                                       |                                |              |
|       | 10      | $0\sin 30 - F\sin 70 = R\sin 15$                       | A1         |          |                                                       |                                |              |
|       |         |                                                        | M1         |          | For solving simul                                     | taneously                      |              |
|       | F       | r = 1.90 N and <i>R</i> = 12.4 N                       | A1         | 5        |                                                       |                                |              |
|       |         | Altern                                                 | native m   | nethod f | or 5(i)                                               |                                |              |
|       | [X<br>Y | X = 0.342 F + 11.34<br>F = 0.94 F - 5]                 | M1         |          | For finding comp<br>the <i>x</i> and <i>y</i> directi | onents of the<br>ons           | forces in    |
|       | (0      | $0.342 F + 11.34)^{2} + (0.94 F - 5)^{2}$<br>= $R^{2}$ | Al         | p.       | ; <b>0</b> .                                          |                                |              |
|       | ta      | m15 = (5 - 0.94F) / (0.342F + 11.34)                   | A1         |          |                                                       |                                |              |
|       |         |                                                        | M1         |          | Solve the tan 15 e substitute to find .               | equation for <i>R</i>          | 두 and        |
|       | F       | r = 1.90  N and $R = 12.4  N$                          | A1         | 5        |                                                       |                                |              |
| (ii)  | 11      | $1.7^2 = 0 + 2a \times 3$                              |            |          |                                                       |                                |              |
|       | а       | = 22.815                                               | <b>B</b> 1 |          |                                                       |                                |              |
|       | R       | $\cos 15 = m \times 22.815$                            | M1         |          | Applying Newton<br>particle in direction              | i's second lav<br>on <i>AB</i> | w to the     |
|       | Μ       | lass of bead = $0.526  \text{kg}$                      | A1         | 3        |                                                       |                                |              |

| Page 6 Mark Scheme |                                                            |                                                  |    |                       | Syllabus Paper                             |
|--------------------|------------------------------------------------------------|--------------------------------------------------|----|-----------------------|--------------------------------------------|
|                    | Cambridge International AS/A Level – October/November 2015 |                                                  |    | lovember 2015 9709 41 |                                            |
|                    | 1                                                          |                                                  |    |                       |                                            |
| 6 (i)              | S                                                          | $= 0.3t^2 - 0.01t^3$                             | M1 |                       | For integration                            |
|                    | s(                                                         | $(5) = 0.3 \times 5^2 - 0.01 \times 5^3 = 6.25$  | A1 |                       |                                            |
|                    | а                                                          | = 0.6 - 0.06t                                    | M1 |                       | For differentiation                        |
|                    | a(                                                         | $(5) = 0.6 - 0.0 \times 5 = 0.3 \text{ ms}^{-2}$ | A1 | 4                     |                                            |
| (ii)               | M                                                          | faximum velocity is when $0.6 - 0.06t = 0$       | M1 |                       | For setting $a = 0$                        |
|                    | [ <i>t</i>                                                 | = 10]                                            | M1 |                       | For solving $a = 0$                        |
|                    | Μ                                                          | $1ax velocity = 3 ms^{-1}$                       | A1 |                       |                                            |
|                    | 0.                                                         | $6t - 0.03t^2 = 1.5$                             |    |                       | Setting velocity = half its maximum and    |
|                    | [ť                                                         | $(2^2 - 20t + 50 = 0]$                           | M1 | RA                    | attempting to solve a three term quadratic |
|                    | T                                                          | imes are 2.93 s                                  | A1 |                       |                                            |
|                    |                                                            | and 17.07 s                                      | A1 | 6                     |                                            |



| Page  | 7                | Mark Sche                                                                                                            | Syllabus Paper |         |                                                                                                       |
|-------|------------------|----------------------------------------------------------------------------------------------------------------------|----------------|---------|-------------------------------------------------------------------------------------------------------|
|       |                  | Cambridge International AS/A Lev                                                                                     | el – Oc        | tober/N | November 2015 9709 41                                                                                 |
| 7 (i) | 36<br>t =        | $5 = 0 + 0.5 \times 0.5t^{2}$<br>= 12                                                                                | B1             |         |                                                                                                       |
|       | $v^2$<br>v       | $= 0 + 2 \times 0.5 \times 36$ $= 6$ $= 6 \times 25$                                                                 | B1             |         |                                                                                                       |
|       | re<br>24         | maining distance<br>= $210 - 36 - 150 = 24$<br>$4 = (6 + 0)/2 \times t$                                              | B1<br>M1       |         | Using $s = (u + v)t/2$                                                                                |
|       | <i>t</i> =<br>Te | = 8<br>otal Time = $12 + 25 + 8 = 45$ s                                                                              | A1             | 5       |                                                                                                       |
| (ii)  | D<br>D           | istance travelled by cyclist<br>= $36 + 6(t - 12)$<br>istance travelled by car<br>= $0.5 \times 4 \times (t - 24)^2$ | M1<br>M1       |         | For attempting distance travelled by cyclist for $t > 12$<br>For attempting distance travelled by car |
|       | 2 <i>t</i>       |                                                                                                                      | M1             |         | Equating expressions and attempting to solve a three term quadratic equation                          |
|       | t =<br>Ti        | = 33  or  t = 18<br>time = 33 s                                                                                      | A1<br>B1       | 5       | Choosing the correct solution                                                                         |

# MARK SCHEME for the May/June 2015 series

# 9709 MATHEMATICS

9709/43

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.


| Page 2 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2015 | 9709     | 43    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2015 | 9709     | 43    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4 | Mark Sche                                                                              |           | Syllabus | Paper                                                                                                                                                                                                    |                                                                                                                                                  |                                                                                                                                 |
|--------|----------------------------------------------------------------------------------------|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|        | Cambridge International AS/A                                                           | Level –   | May/J    | une 2015                                                                                                                                                                                                 | 9709                                                                                                                                             | 43                                                                                                                              |
|        |                                                                                        |           |          |                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                 |
| 1      | $[WD = 500 \times 2.75 \times 40]$                                                     | M1        |          | For using WD =                                                                                                                                                                                           | <i>Fs</i> or for us                                                                                                                              | ing WD = $Pt$                                                                                                                   |
|        | Work done = $55000 \text{ J}$                                                          | A1        |          |                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                 |
|        |                                                                                        | M1        |          | For using Power $P = Fv$                                                                                                                                                                                 | $\mathbf{r} = \Delta \mathbf{W} \mathbf{D} \div \Delta t$                                                                                        | or for using                                                                                                                    |
|        | Power = $\frac{55000}{40}$ = 1375 W<br>or Power = 500 × 2.75 = 1375 W                  | A1        | 4        |                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                 |
| 2 (i)  |                                                                                        | PR        |          | After <i>B</i> reaches<br>constant speed u<br>(no tension and<br>Thus <i>A</i> 's speed<br>is the same as <i>A</i><br>reaches the pulle<br><i>B</i> reached the flo<br>same speed and<br>with speed 3 ms | the floor, A c<br>intil it reaches<br>the surface is<br>when B reach<br>'s speed (3 m<br>ey. Until the<br>por, A and B<br>hence B reaches<br>-1. | continues at<br>es the pulley<br>s smooth).<br>hes the floor<br>$ns^{-1}$ when it<br>instant when<br>have the<br>ches the floor |
|        |                                                                                        | B1        | 1        | $\sim$                                                                                                                                                                                                   |                                                                                                                                                  |                                                                                                                                 |
| (ii)   | Loss of $PE = 0.15gh$                                                                  | B1        |          |                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                 |
|        | Gain of KE = $\frac{1}{2}$ (0.35 + 0.15) × 3 <sup>2</sup>                              | B1        |          |                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                 |
|        | $1.5h = 0.25 \times 9$<br>h = 1.5                                                      | M1<br>A1  | 4        | For using loss o                                                                                                                                                                                         | f PE<br>= gain of I                                                                                                                              | KE                                                                                                                              |
|        | Alternative                                                                            | lethod fo | or nart  | (ii)                                                                                                                                                                                                     |                                                                                                                                                  |                                                                                                                                 |
|        |                                                                                        |           |          | (II)                                                                                                                                                                                                     |                                                                                                                                                  |                                                                                                                                 |
| (ii)   | [0.15g - T = 0.15a  and  T = 0.35a<br>or $0.15g = (0.35+0.15)a$ ]<br>$\Rightarrow a =$ | M1        |          | For applying Ne and to <i>B</i> or for u find <i>a</i>                                                                                                                                                   | ewton's second sing $m_B g = ($                                                                                                                  | nd law to $A$<br>$(m_A + m_B)a$ to                                                                                              |
|        | $a = 3 \mathrm{ms}^{-2}$                                                               | A1        |          |                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                 |
|        | $[3^2 = 0 + 2 \times 3h]$                                                              | M1        |          | For using $v^2 = u$                                                                                                                                                                                      | $^{2} + 2as$                                                                                                                                     |                                                                                                                                 |
|        | <i>h</i> = 1.5                                                                         | A1        | 4        |                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                 |

| Ρ | ag | е | 5 |
|---|----|---|---|
|   |    |   |   |

### Mark Scheme Cambridge International AS/A Level – May/June 2015

SyllabusPaper970943

|      | Alternative Method for part (ii)                                                                                                                                        |     |     |                                                                                                                         |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (ii) | [0.15g - T = 0.15a  and  T = 0.35a<br>$\Rightarrow T = \dots$                                                                                                           | M1  |     | For applying Newton's second law to $A$ and to $B$ to find $T$                                                          |  |  |  |
|      | T = 1.05 N                                                                                                                                                              | A1  |     |                                                                                                                         |  |  |  |
|      | $\begin{bmatrix} 0.15gh - \frac{1}{2} \times 0.15 \times 3^2 = 1.05h \end{bmatrix}$<br>or<br>$\begin{bmatrix} \frac{1}{2} \times 0.35 \times 3^2 = 1.05h \end{bmatrix}$ | M1  |     | For using $PE_B \log - KE_B \text{ gain} = WD$<br>against <i>T</i> or<br>for using $KE_A \text{ gain} = WD$ by <i>T</i> |  |  |  |
|      | <i>h</i> = 1.5                                                                                                                                                          | A1  | 4   |                                                                                                                         |  |  |  |
| 3    |                                                                                                                                                                         | M1  |     | For using $DF = P/v$ and for applying<br>Newton's $2^{nd}$ law at one or both points                                    |  |  |  |
|      | $\frac{P}{4.5} - R = 860 \times 4$                                                                                                                                      | A1  | 111 | 0                                                                                                                       |  |  |  |
|      | $\frac{P}{22.5} - R = 860 \times 0.3$                                                                                                                                   | A1  |     |                                                                                                                         |  |  |  |
|      |                                                                                                                                                                         | M1  |     | For eliminating $R$ to find $P$ or for eliminating $P$ to find $R$                                                      |  |  |  |
|      | $\frac{P}{4.5} - \frac{P}{22.5} = 860(4 - 0.3) \Rightarrow$ $P = 17900$ or                                                                                              | A1  |     |                                                                                                                         |  |  |  |
|      | $-4.5R + 22.5R = 860(4 \times 4.5 - 0.3 \times 22.5) \implies$                                                                                                          |     |     |                                                                                                                         |  |  |  |
|      | R = 537.5 Sat                                                                                                                                                           | bre | P.0 |                                                                                                                         |  |  |  |
|      | <i>R</i> = 537.5                                                                                                                                                        | B1  | 6   | Accept 538                                                                                                              |  |  |  |
| 4    | KE loss = $\frac{1}{2} \times 12000(24^2 - 16^2)$                                                                                                                       | B1  |     |                                                                                                                         |  |  |  |
|      | PE gain = $12000g \times 25$                                                                                                                                            | B1  |     |                                                                                                                         |  |  |  |
|      |                                                                                                                                                                         | M1  |     | For using WD by DF<br>= PE gain – KE loss<br>+ WD against resistance                                                    |  |  |  |

| Page 6 | Mark Scheme                                                                     |         |         |                          |                    | Paper               |
|--------|---------------------------------------------------------------------------------|---------|---------|--------------------------|--------------------|---------------------|
|        | Cambridge International AS/A                                                    | Level – | May/Ju  | une 2015                 | 9709               | 43                  |
| [      |                                                                                 |         | 1       | r                        |                    |                     |
|        | WD by DF<br>= 3000000 - 1920000 + 7500×500                                      | A1      |         |                          |                    |                     |
|        |                                                                                 | M1      |         | For using DF =           | WD by DF÷:         | 500                 |
|        | Driving force = 4830000÷500<br>Driving force is 9660 N                          | A1      | 6       |                          |                    |                     |
|        | Alternativ                                                                      | e Metho | d for 4 |                          |                    |                     |
| 4      | $[16^2 = 24^2 + 2 \times 500a]$                                                 | M1      |         | For using $v^2 = u$      | $^{2} + 2as$       |                     |
|        | $a = -0.32 \text{ ms}^{-2}$                                                     | A1      |         |                          |                    |                     |
|        | Weight component down hill = $12000g \times 25/500$                             | B1      |         |                          |                    |                     |
|        | ST F                                                                            | M1      |         | For using Newto          | on's 2nd law       |                     |
|        | $DF - 7500 - 12000g \times \frac{25}{500}$<br>=12000 × (-0.32)                  | A1      |         |                          |                    |                     |
|        | Driving force is 9660 N                                                         | A1      | 6       |                          |                    |                     |
| 5 (i)  | x-component = $4+8\cos 30^\circ+12\cos 60^\circ$<br>[= $10+4\sqrt{3}$ ]         | B1      |         | 16.928                   |                    |                     |
|        | y-component = $8\sin 30^\circ + 12\sin 60^\circ + 16$<br>[= 20 + 6 $\sqrt{3}$ ] | B1      |         | 30.392                   |                    |                     |
|        | 5                                                                               | M1      |         | For using $R^2 = X$      | $x^2 + Y^2$ or tan | $\theta = Y \div X$ |
|        | $R = 34.8$ or $\theta = 60.9^{\circ}$ with the 4N force                         | A1      | C       | 0.                       |                    |                     |
|        | $\theta = 60.9^{\circ}$ with the 4N force or $R = 34.8$                         | BI      | 5       |                          |                    |                     |
| (ii)   | <i>R</i> = 34.8                                                                 | В1√     |         | ft <i>R</i> from (i)     |                    |                     |
|        | $\theta = 29.1^{\circ}$ with the 16N force                                      | В1√     | 2       | ft 90 – $\theta$ from (i | )                  |                     |

| Ρ       | age 7 | Mark Scheme                                                                                                                     |                        |         |                                              | Syllabus                                                        | Paper            |
|---------|-------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|----------------------------------------------|-----------------------------------------------------------------|------------------|
|         |       | Cambridge International AS/A                                                                                                    | Level –                | May/J   | une 2015                                     | 9709                                                            | 43               |
| <b></b> |       |                                                                                                                                 | [                      |         | Γ                                            |                                                                 |                  |
| 6       | (i)   |                                                                                                                                 | M1                     |         | For resolving fo                             | rces down th                                                    | e plane          |
|         |       | $20 + 5g\sin 10^\circ - F = 0$                                                                                                  | A1                     |         |                                              |                                                                 |                  |
|         |       | $R = 5g\cos 10^{\circ}$                                                                                                         | B1                     |         |                                              |                                                                 |                  |
|         |       | $[\mu = (20 + 8.6824) \div 49.24]$                                                                                              | M1                     |         | For using $\mu = F$                          | $\div R$                                                        |                  |
|         |       | Coefficient of friction is 0.582                                                                                                | A1                     | 5       |                                              |                                                                 |                  |
|         | (ii)  | $5g\sin 10^{\circ} - 0.582 \times 49.24 = 5a$                                                                                   | M1<br>A1√ <sup>≜</sup> |         | For using Newtor ft $\mu$ from (i) ( $\mu$ > | on's 2nd law<br>> 0)                                            |                  |
|         |       | $\left[0=2.5^2-2\times 4s\right]$                                                                                               | M1                     |         | For using $v^2 = u$                          | $^{2}+2as$                                                      |                  |
|         |       | Distance is 0.781 m                                                                                                             | A1                     | 4       |                                              |                                                                 |                  |
|         |       | Alternative M                                                                                                                   | lethod fo              | or part | (ii)                                         |                                                                 |                  |
|         | (ii)  | PE loss = $5gdsin10^{\circ}$                                                                                                    | B1                     |         |                                              |                                                                 |                  |
|         |       |                                                                                                                                 | M1                     |         | For using KE lo<br>against friction          | ss + PE loss =                                                  | = WD             |
|         |       | $\frac{1}{2} \times 5 \times 2.5^2 + 5gd\sin 10^\circ = 0.582 \times 5gd\cos 10^\circ$                                          | A1√                    |         | ft $\mu$ ( $\mu > 0$ )                       |                                                                 |                  |
|         |       | Distance is 0.781 m                                                                                                             | A1                     | 4       |                                              |                                                                 |                  |
| 7       | (i)   | [0.0001t(t - 50)(t - 100) = 0<br>or v(0) = 0, v(50) = 0, v(100) = 0]                                                            | M1                     |         | Either factorise or evaluate $v(0)$          | <i>v</i> ( <i>t</i> ) and solve<br>, <i>v</i> (50) and <i>v</i> | e v(t) = 0 (100) |
|         |       | v(t) = 0 when $t = 0, 50 & 100$                                                                                                 | A1                     | 2       | 0                                            |                                                                 |                  |
|         | (ii)  | $[0.0003t^2 - 0.03t + 0.5 = 0]$                                                                                                 | M1                     | p.      | For using $a(t) =$                           | $\frac{\mathrm{d}v}{\mathrm{d}t}$                               |                  |
|         |       | $t^{2} - 100t + 1667 = 0 \Rightarrow$ $t = \left[\frac{1}{2} \left\{ 100 \pm \sqrt{(100^{2} - 4 \times 1667)} \right\} \right]$ | dM1                    |         | For solving $a(t)$                           | = 0                                                             |                  |

| Page 8 | Mark Schei                                                                                                                                                                     | Mark Scheme |       |                                                            |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|------------------------------------------------------------|--|--|
|        | Cambridge International AS/A                                                                                                                                                   | Level –     | May/J | une 2015 9709 43                                           |  |  |
|        |                                                                                                                                                                                |             | -     | Γ                                                          |  |  |
|        | a = 0 when $t = 21.1$ and when $t = 78.9$                                                                                                                                      | A1          |       |                                                            |  |  |
|        | v(21.1) = 4.81                                                                                                                                                                 | B1          |       |                                                            |  |  |
|        | v(78.9) = -4.81                                                                                                                                                                | B1          |       |                                                            |  |  |
|        | Convex curve from (0,0) to (50,0) with $v > 0$ and has a maximum point.                                                                                                        | B1          |       |                                                            |  |  |
|        | The curve for $(50, 0)$ to $(100, 0)$ is exactly<br>the same as the first curve positioned by<br>rotating the first curve through $180^{\circ}$ about<br>the point $(50, 0)$ . | B1          | 7     |                                                            |  |  |
| ()     |                                                                                                                                                                                |             |       |                                                            |  |  |
| (111)  |                                                                                                                                                                                | M1          |       | For integrating $v(t)$ to obtain $s(t)$                    |  |  |
|        | $s(t) = 0.000025t^4 - 0.005t^3 + 0.25t^2 (+ c)$                                                                                                                                | A1          |       |                                                            |  |  |
|        | [156.25 - 625 + 625]                                                                                                                                                           | M1          | 4     | For using lower and upper limits of 0 and 50 respectively. |  |  |
|        | Greatest distance is 156 m                                                                                                                                                     | A1          | 4     |                                                            |  |  |



## MARK SCHEME for the May/June 2015 series

# 9709 MATHEMATICS

9709/42

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.



| Page 2 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2015 | 9709     | 42    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √<sup>k</sup> implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2015 | 9709     | 42    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Ρ | age 4 | Mark Scheme                                                                                                                                                    |          |       |                                                                                                                      |                                     | Paper                           | ł |
|---|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|---|
|   |       | Cambridge International AS/A                                                                                                                                   | Level -  | May/J | une 2015                                                                                                             | 9709                                | 42                              | l |
|   |       |                                                                                                                                                                |          |       |                                                                                                                      |                                     |                                 |   |
| 1 | (i)   | $\begin{bmatrix} s = 0.3 \times 5 + \frac{1}{2} & 0.5 \times 5^2 \end{bmatrix}$<br>[v = 0.3 + 0.5 × 5 = 2.8m]<br>Complete method for finding <i>s</i> required | M1       |       | For using $s = ut$<br>or using $v = u + u + u^2 + 2as$<br>or $s = \frac{(u+v)}{2}t$<br>or $s = vt - \frac{1}{2}at^2$ | $+\frac{1}{2}at^{2}$<br>at followed | by <b>either</b> v <sup>2</sup> |   |
|   |       | Distance = $7.75 \text{ m}$                                                                                                                                    | A1       | 2     |                                                                                                                      |                                     |                                 |   |
|   | (ii)  | $[WD = 8 \times 7.75 \times 0.5]$                                                                                                                              | M1       |       | For using WD =                                                                                                       | Tdcos60°                            |                                 |   |
|   |       | Work done is 31 J                                                                                                                                              | A1       | 2     |                                                                                                                      |                                     |                                 |   |
| 2 | (i)   | $\left[\frac{P}{5} = 80 \times 1.2\right]$                                                                                                                     | M1       |       | For using DF =                                                                                                       | $\frac{P}{v}$ and Newt              | on's 2nd law                    | v |
|   |       | <i>P</i> = 480                                                                                                                                                 | A1       | 2     |                                                                                                                      |                                     |                                 |   |
|   | (ii)  | $\frac{450}{3.6} - 80g \times 0.035 = 80a$                                                                                                                     | M1<br>A1 |       | For using $\frac{P}{v} - V$                                                                                          | Vsinα = ma                          |                                 |   |
|   |       | Acceleration is 1.21 ms <sup>-2</sup>                                                                                                                          | A1       | 3     | Allow $a = \frac{97}{80}$                                                                                            |                                     |                                 |   |
| 3 | (i)   | KE gain $\left[=\frac{1}{2} \times 8 \times 4.5^2\right] = 81 \text{ J}$                                                                                       | B1       |       | 5                                                                                                                    |                                     |                                 |   |
|   |       | $\left[ \text{Decrease} = 8g \times 12 \times \left(\frac{1}{8}\right) \right]$                                                                                | M1       | 0.0   | For using $PE = n$                                                                                                   | ngh and $h = b$                     | $d \sin \alpha$                 |   |
|   |       | PE loss = 120 J                                                                                                                                                | A1       | 3     |                                                                                                                      |                                     |                                 |   |
|   | (ii)  | [81 = 120 - 12R]                                                                                                                                               | M1       |       | For using KE ga resistance                                                                                           | in = PE loss                        | –WD by                          |   |
|   |       | Resisting force is 3.25 N                                                                                                                                      | A1       | 2     | Allow $R = \frac{13}{4}$                                                                                             |                                     |                                 |   |

Page 5

### Mark Scheme Cambridge International AS/A Level – May/June 2015

SyllabusPaper970942

|   | Alternative method for (ii) |                                                                                                                                |     |   |                                                                                                                                       |  |  |
|---|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----|---|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | (ii)                        | [4.52 = 2 × a × 12]   ightarrow<br>[a = $\frac{27}{32}$ = 0.84375]                                                             | M1  |   | For using $v^2 = u^2 + 2as$ to find <i>a</i> <b>and</b><br>using Newton's 2nd law to find <i>R</i>                                    |  |  |
|   |                             | $[8g\sin\alpha - R = 8 \times \frac{27}{32}]$                                                                                  |     |   |                                                                                                                                       |  |  |
|   |                             | Resisting force is 3.25 N                                                                                                      | A1  | 2 |                                                                                                                                       |  |  |
| 4 | (i)                         |                                                                                                                                | M1  |   | For integrating to obtain $v(t)$ .                                                                                                    |  |  |
|   |                             | $v(t) = 0.025t^3 - 0.75t^2 + 5t  (+0)$                                                                                         | A1  |   |                                                                                                                                       |  |  |
|   |                             |                                                                                                                                | M1  |   | For integrating to obtain $s(t)$ .                                                                                                    |  |  |
|   |                             | $s(t) = 0.00625t^4 - 0.25t^3 + 2.5t^2 $ (+0)                                                                                   | A1  | 4 |                                                                                                                                       |  |  |
|   | (ii)                        | 9                                                                                                                              | M1  |   | For setting $s = 0$ ( <i>t</i> not zero) in their<br>attempt at <i>s</i> which was obtained using<br>integration only.                |  |  |
|   |                             | $[t^4 - 40t^3 + 400t^2 = 0 \Rightarrow t^2(t - 20)^2 = 0]$                                                                     | M1  |   | For attempting to solve a quartic equation<br>for $s = 0$ where <i>s</i> was obtained using<br>integration only.                      |  |  |
|   |                             | Time taken is 20 s                                                                                                             | A1  | 3 | t = 20 only                                                                                                                           |  |  |
| 5 | (i)                         |                                                                                                                                | M1  |   | For using $v = u - gt$ to find the time taken<br>by Q. Must be for a complete method for<br>the total time taken to return to point A |  |  |
|   |                             | $-20 = 20 - 10t \Rightarrow \text{ time taken is 4s}$<br>or $0 = 20 - 10t \Rightarrow \text{ time taken is } 2 \times 2s = 4s$ | A1  | 0 | 0                                                                                                                                     |  |  |
|   |                             | [30 = 0 + 4a]                                                                                                                  | M1  |   | For using $v = u + at$ to find the acceleration of <i>P</i>                                                                           |  |  |
|   |                             | Acceleration of <i>P</i> is 7.5 ms <sup>-2</sup>                                                                               | A1√ | 4 | ft on an incorrect positive value of the time taken                                                                                   |  |  |

| Page  | Mark Scheme                                                                                                                                                                                                                      |                |         |                                                                                                                                                                               | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Paper                                       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|       | Cambridge International AS/A                                                                                                                                                                                                     | Level -        | · May/J | une 2015                                                                                                                                                                      | 9709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                          |
| (ii)  |                                                                                                                                                                                                                                  | M1             |         | For using $v^2 = u^2$<br>or $s = \frac{(u+v)}{2}t$<br>or $s = ut + \frac{1}{2}at^2$<br>or $s = vt - \frac{1}{2}at^2$<br>to find the distant                                   | $a^2 + 2as$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
|       | Either $30^2 = 2 \times 7.5 \times OA$<br>or $OA = \frac{(0+30)}{2} \times 4$<br>or $OA = \frac{1}{2} \times 7.5 \times 4^2$<br>or $OA = 30 \times 4 - \frac{1}{2} \times 7.5 \times 4^2$<br>$\rightarrow$ Distance $OA$ is 60 m | Al             | 2       |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |
| 6 (i) | $\left[h = \frac{1}{2} \times 0.5 \times 2\right]$<br>h = 0.5                                                                                                                                                                    | M1<br>A1       | 2       | For using area pr<br>constant accelera                                                                                                                                        | roperty of the<br>ation formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e graph or<br>ae                            |
| (ii)  | $[a = 2 \div 0.5]$                                                                                                                                                                                                               | B1             |         | State the value o property of the g                                                                                                                                           | f <i>a</i> using the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gradient                                    |
|       | [T - mg = ma<br>and<br>(1 - m)g - T = (1 - m)a<br>or                                                                                                                                                                             | M1             |         | For applying bot<br>• Newton'<br>is movin<br>is movin<br>or using $a = f(a)$                                                                                                  | The formula is the formula in the formula is the f | P (while $QQ$ (while $Q$                    |
|       | $a = \{(1-2m) \div (1-m+m)\}g\}$                                                                                                                                                                                                 | pre            | P .     | or using $a - \lfloor (n) \rfloor$                                                                                                                                            | $(M - m) \div (M - m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - <i>m</i> )]g                              |
|       | m = 0.3<br>$[T - 0.3 \times 10 = 4 \times 0.3 $ or<br>$0.7 \times 10 - T = 4 \times 0.7]$                                                                                                                                        | M1<br>A1<br>M1 |         | <ul> <li>For eliminating <i>f</i></li> <li>For substituting</li> <li>Newton <i>i</i> is movin</li> <li>Newton <i>i</i> is movin</li> <li>to find <i>T</i> (tension</li> </ul> | T or rearrang<br>a and m into<br>'s 2nd law to<br>ng)<br>'s 2nd law to<br>ng)<br>n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ing to find $m$<br>P (while $QQ$ (while $Q$ |
|       | Tension is 4.2 N                                                                                                                                                                                                                 | A1             | 6       |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |

| Page 7 | ige 7 Mark Scheme                                                                           |           |          |                                                         | Syllabus                            | Paper                     |  |  |
|--------|---------------------------------------------------------------------------------------------|-----------|----------|---------------------------------------------------------|-------------------------------------|---------------------------|--|--|
|        | Cambridge International AS/A                                                                | Level –   | May/J    | une 2015                                                | 9709                                | 42                        |  |  |
| (iii)  |                                                                                             | M1        |          | For using the gra<br>graph with accel                   | adient proper<br>leration –g        | ty of the                 |  |  |
|        | $(-2-2) \div (t-0.5) = -10$                                                                 | A1        |          |                                                         |                                     |                           |  |  |
|        | T = 0.9                                                                                     | A1        | 3        |                                                         |                                     |                           |  |  |
|        | First Alterna                                                                               | tive metl | hod for  | (iii)                                                   |                                     |                           |  |  |
| (iii)  | [-2 = 2 - 10t]                                                                              | M1        |          | For using $v = u$ - that string is slace                | + <i>at</i> to find th<br>ck        | e total time              |  |  |
|        | t = 0.4                                                                                     | A1        |          |                                                         |                                     |                           |  |  |
|        | Required time $= 0.5 + 0.4 = 0.9$                                                           | A1        | 3        |                                                         |                                     |                           |  |  |
|        | Second Altern                                                                               | ative me  | thod for | r (iii)                                                 |                                     |                           |  |  |
| (iii)  | t = 0.2  s                                                                                  | B1        | 14       | Obtaining the tir<br>v = 0 to $v = 2$ OF                | me taken from $R v = 0$ to $v =$    | n<br>2                    |  |  |
|        | $t = 0.2 \times 2 = 0.4 \text{ s}$                                                          | B1        |          | Obtaining the to slack.                                 | tal time that                       | the string is             |  |  |
|        | Total time = $0.9$ s                                                                        | B1        | 3        | For completing t<br>0.4 + 0.5 = 0.9 s                   | the solution ı                      | ising                     |  |  |
| 7 (i)  |                                                                                             | M1        |          | For resolving for vertically                            | rces at <i>J</i> hori               | zontally <b>or</b>        |  |  |
|        | $0.8T_A + 0.6T_R = 5.6$                                                                     | A1        |          | Allow $T_A \cos 36$                                     | $.9+T_R\cos 53.$                    | 1 = 5.6 oe                |  |  |
|        | $0.6T_A = 0.8T_R$                                                                           | A1        |          | Allow $T_A \sin 36$ .                                   | $\sin 36.9 = T_R \sin 53.1$ oe      |                           |  |  |
|        | 22                                                                                          | M1        |          | For solving the s                                       | simultaneous                        | equations                 |  |  |
|        | Tension in <i>AJ</i> is 4.48 N<br>and tension in <i>RJ</i> is 3.36 N                        | Al        | 5        | for $I_A$ and $I_R$                                     |                                     |                           |  |  |
|        | First Alterna                                                                               | tive Met  | thod for | : (i)                                                   |                                     |                           |  |  |
| (i)    | $\frac{5.6}{\sin 90} = \frac{T_A}{\sin \alpha} = \frac{T_R}{\sin(270 - \alpha)} \mathrm{m}$ | M1        |          | For applying Lat<br>the three forces<br>an obtuse angle | mi's theorem $T_A$ , $T_R$ , and 5. | to two of<br>6 where α is |  |  |
|        | $\frac{5.6}{\sin 90} = \frac{T_A}{0.8} = \frac{T_R}{0.6} \mathrm{m}$                        | A1<br>A1  |          | Allow sin126.9 and sin143.1 for                         | for 0.8<br>0.6 here                 |                           |  |  |
|        |                                                                                             | M1        |          | Solve for $T_A$ and                                     | $T_R$                               |                           |  |  |
|        | $T_A = 4.48$ and $T_R = 3.36$                                                               | A1        | 5        |                                                         |                                     |                           |  |  |

Page 8

### Mark Scheme Cambridge International AS/A Level – May/June 2015

SyllabusPaper970942

|       | Second Alternative Method for (i)                                                          |          |   |                                                                                    |  |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------|----------|---|------------------------------------------------------------------------------------|--|--|--|--|--|
| (i)   | $\frac{5.6}{\sin 90} = \frac{T_A}{\sin \alpha} = \frac{T_R}{\sin(90 - \alpha)} \mathrm{m}$ | M1       |   | For applying triangle of forces to two of the three forces $T_A$ , $T_R$ , and 5.6 |  |  |  |  |  |
|       | $\frac{5.6}{\sin 90} = \frac{T_A}{0.8} = \frac{T_R}{0.6} \mathrm{m}$                       | A1<br>A1 |   | Allow sin 53.1 for 0.8<br>and sin 36.9 for 0.6 here                                |  |  |  |  |  |
|       |                                                                                            | M1       |   | Solve for $T_A$ and $T_R$                                                          |  |  |  |  |  |
|       | $T_A = 4.48$ and $T_R = 3.36$                                                              | A1       | 5 |                                                                                    |  |  |  |  |  |
| (ii)  | $0.2g + F = T_R \times \cos 36.9$                                                          | B1√      |   | ft on $T_R$ and 36.9                                                               |  |  |  |  |  |
|       | $N = T_R \times \sin 36.9$                                                                 | B1√      |   | ft on $T_R$ and 36.9                                                               |  |  |  |  |  |
|       | $[0.2g + \mu \times T_R \times 0.6 = T_R \times 0.8]$                                      | M1       |   | For using $\mu = F \div N$ and obtaining an equation in $\mu$                      |  |  |  |  |  |
|       | $\mu = 0.688 \div 2.016 = 0.341$                                                           | A1       | 4 | AG                                                                                 |  |  |  |  |  |
| (iii) | $[0.2g + mg = \mu N + 0.8T_R]$                                                             | M1       |   | For a four term equation from resolving forces acting on <i>R</i> vertically.      |  |  |  |  |  |
|       | $0.2g + mg = 0.341 \times 2.016 + 3.36 \times 0.8$                                         | A1       |   |                                                                                    |  |  |  |  |  |
|       | m = 0.137 or $0.138$                                                                       | A1       | 3 |                                                                                    |  |  |  |  |  |

## MARK SCHEME for the May/June 2015 series

# 9709 MATHEMATICS

9709/41

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.



| Page 2 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2015 | 9709     | 41    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2015 | 9709     | 41    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Pa  | ge 4 | 4 Mark S                                                                                                                                                               | Scheme    |        |                                                                                                            | Syllabus                         | Paper   |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|------------------------------------------------------------------------------------------------------------|----------------------------------|---------|
|     |      | Cambridge International A                                                                                                                                              | AS/A Lev  | el – M | lay/June 2015                                                                                              | 9709                             | 41      |
| 1 ( | (i)  | $[20 + 25\sin\theta = 2.7g]$                                                                                                                                           | M1        |        | For resolving forces                                                                                       | vertically                       |         |
|     |      | $\sin\theta = 0.28$                                                                                                                                                    | A1        | 2      | AG                                                                                                         |                                  |         |
| (1  | ii)  | $[25 \times 5 \times \sqrt{(1 - 0.28^2)}]$                                                                                                                             | M1        |        | For using $WD = Fdc$                                                                                       | $\cos \theta$                    |         |
|     |      | Work done is 120 J                                                                                                                                                     | A1        | 2      |                                                                                                            |                                  |         |
| 2   |      |                                                                                                                                                                        | M1        |        | For resolving compo<br>directions                                                                          | ponents of $F$ in                | x and y |
|     |      | $F_x = F \cos\theta = 25 \times 0.8 = 20,$<br>$F_y = F \sin\theta = 63 - 25 \times 0.6 = 48$                                                                           | A1        |        |                                                                                                            |                                  |         |
|     |      |                                                                                                                                                                        | M1        |        | For using $F = \sqrt{(F_x^2 + or f_x^2)}$<br>or for using tar                                              | $(F_y^2) + F_y^2 = F_y \div F_x$ |         |
|     |      | $F = 52 \text{ N} \underline{\text{or}} \tan \theta = 2.4$                                                                                                             | A1        |        |                                                                                                            |                                  |         |
|     |      | $\tan\theta = 2.4 \text{ or } F = 52 \text{ N}$                                                                                                                        | B1        | 5      |                                                                                                            |                                  |         |
| 3   |      | $F = 0.25 \left( 6.1 \times \frac{60}{61} \right) [= 1.5]$                                                                                                             | B1        |        | Allow $F = 0.25(6.1c)$                                                                                     | os10.4)                          |         |
|     |      | $[W\sin\alpha - F = ma]$                                                                                                                                               | M1        |        | For using Newton's                                                                                         | 2 <sup>nd</sup> law              |         |
|     |      | $6.1 \times \left(\frac{11}{61}\right) - 0.25 \left(6.1 \times \frac{60}{61}\right)$<br>= 0.61 <i>a</i><br>or<br>6.1 sin 10.4 - 0.25 × 6.1 cos 10.4<br>= 0.61 <i>a</i> | Al        |        | $\begin{bmatrix} a = -\frac{40}{61} = -0.656 \end{bmatrix}$<br>The value of <i>a</i> may brequired answer. | be seen but is                   | not a   |
|     |      | 22                                                                                                                                                                     | M1        |        | For using $0 = v_A^2 + 2$                                                                                  | 2as                              |         |
|     |      | Distance is $4 \div \left(2 \times \frac{40}{40}\right)$                                                                                                               | atpr      | eP     |                                                                                                            |                                  |         |
|     |      | (61) = 3.05 m                                                                                                                                                          | A1        | 5      |                                                                                                            |                                  |         |
|     |      |                                                                                                                                                                        | Alternati | ve met | thod                                                                                                       |                                  |         |
|     |      | $F = 0.25 \left( 6.1 \times \frac{60}{61} \right) \ [= 1.5]$                                                                                                           | B1        |        | Allow $F = 0.25(6.1 \text{ c})$                                                                            | cos 10.4)                        |         |
|     |      | $\text{KE loss} = \frac{1}{2} \times 0.61 \times 2^2$                                                                                                                  | B1        |        | Finding loss of KE                                                                                         |                                  |         |
|     |      | PE loss = $0.61 \times 10 \times x \left(\frac{11}{61}\right)$                                                                                                         | B1        |        | Finding loss of PE                                                                                         |                                  |         |
|     |      | [1.5x = 1.22 + 1.1x]                                                                                                                                                   | M1        |        | Using WD against F                                                                                         | C = KE loss + 1                  | PE loss |
|     |      | $0.4x = 1.22 \rightarrow \text{distance} = 3.05 \text{ m}$                                                                                                             | A1        | 5      |                                                                                                            |                                  |         |

| Page  | e 5            | Mark Scheme                                                                 |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | Paper     |
|-------|----------------|-----------------------------------------------------------------------------|---------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------|
|       |                | Cambridge International A                                                   | S/A Lev | el – M | lay/June 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9709                                        | 41        |
|       | -              |                                                                             |         | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |           |
| 4 (i) |                |                                                                             | M1      |        | For using KE gain =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{1}{2}mv_B^2$ or $x = AB \sin \theta$ |           |
|       |                |                                                                             |         |        | PE loss = $mg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × ABSINØ                                    |           |
|       | Fe             | or KE gain = $4032 \times 10^3$<br>or PE loss = $42 \times 10^6 \sin\theta$ | A1      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |           |
|       | P              | E loss = $42 \times 10^6 \sin\theta$ or<br>KE gain = $4032 \times 10^3$     | B1      | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |           |
| (ii)  |                |                                                                             | M1      |        | For using WD by DF<br>+ WD by resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = KE gain –                                 | PE loss   |
|       | 50             | $000 = 4032 - 42000\sin\theta + 3360$                                       | A1√     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |           |
|       | θ              | = 3.3°                                                                      | A1      | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |           |
| 5     |                | AT                                                                          | M1      | R      | For using DF = $\frac{P}{v}$ for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or DF up and                                | down      |
|       |                | 12                                                                          | M1      |        | For applying Newton down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 's 2 <sup>nd</sup> law up                   | and       |
|       | $\frac{I}{3}$  | $r = -R - 84g \times 0.1 = 84 \times 1.25$                                  | A1      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |           |
|       | $\frac{I}{10}$ | $\frac{P}{0} - R + 84g \times 0.1 = 84 \times 1.25$                         | A1      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |           |
|       | [              | $P\left(\frac{1}{3} - \frac{1}{10}\right) - 168 = 0$                        | M1      |        | For solving equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | for P                                       |           |
|       | P              | = 720                                                                       | A1      |        | c <sup>O</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |           |
|       | [              | $R = \frac{720}{3} - 84 - 105$                                              | M1      | eP     | For substitution for <i>P</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to obtain <i>R</i>                          |           |
|       | R              | = 51                                                                        | A1      | 8      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |           |
| 6 (i) |                |                                                                             | M1      |        | For integrating $a(t)$ to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | find $v(t)$                                 |           |
|       | <i>v</i> (     | $(t) = 0.05t - 0.0001t^2  (+0)$                                             | A1      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |           |
|       | <i>v</i> (     | $200) = 10 - 4 = 6 \text{ ms}^{-1}$                                         | A1      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |           |
|       | v(             | 500) = 25 - 25 = 0                                                          | A1      | 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |           |
| (ii)  |                |                                                                             | M1      |        | For integrating $v(t)$ be 500 to obtain the distance of the d | etween limits<br>ance <i>A</i> travel       | 0 to<br>s |

Page 6

|   |     | l                                                                                                                      | 1   |    |                                                                                                                                            |
|---|-----|------------------------------------------------------------------------------------------------------------------------|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------|
|   |     | $\int_0^{500} \left( 0.05t - 0.0001t^2 \right) dt$                                                                     |     |    |                                                                                                                                            |
|   |     | $\left[\frac{0.05t^2}{2} - \frac{0.0001t^3}{3}\right]_0^{500}$                                                         | A1  |    |                                                                                                                                            |
|   |     | Distance = $0.025 \times 500^2 - 0.0001 \times 500^3 \div 3 = 2083 \mathrm{m}$                                         | A1  |    | Accept 2080                                                                                                                                |
|   |     |                                                                                                                        | M1  |    | For using area property of graph or<br>$s = \frac{1}{2} (u + v)t$ or $s = ut + \frac{1}{2} at^2$<br>to find distance travelled by <i>B</i> |
|   |     | Distance = $\frac{1}{2} \times 6 \times 500 = 1500 \text{ m or}$                                                       | P   | R  |                                                                                                                                            |
|   |     | distance = $\frac{-(0+6)\times 200+-(6+0)\times 300}{2}$<br>or distance = $\left(0+\frac{1}{2}0.03\times 200^2\right)$ |     |    |                                                                                                                                            |
|   |     | + $\left(6 \times 300 + \frac{1}{2}(-0.02)300^2\right)$                                                                | A1  |    |                                                                                                                                            |
|   |     | Distance between A and B is<br>2083 - 1500 = 583  m                                                                    | B1√ | 6  | Can only be scored if distance travelled by <i>A</i> has been found using integration                                                      |
| 7 | (i) | ź                                                                                                                      | M1  |    | For using Newton's 2 <sup>nd</sup> law for both particles                                                                                  |
|   |     | $T - 0.2 \times 3 = 0.3a$ and $7 - T = 0.7a$                                                                           | A1  |    | <u> </u>                                                                                                                                   |
|   |     | Acceleration = $6.4 \text{ ms}^{-2}$                                                                                   | Al  | 69 |                                                                                                                                            |
|   |     | $[v = 0 + 6.4 \times 0.25]$                                                                                            | M1  |    | For using $v = 0 + at$ to find speed when string breaks                                                                                    |
|   |     | $v = 1.6 \text{ ms}^{-1}$                                                                                              | A1  |    |                                                                                                                                            |
|   |     | $\left[\text{Distance} = 0 + \frac{1}{2} 6.4 \times 0.25^2\right]$                                                     | M1  |    | For using $s = ut + \frac{1}{2}at^2$ to find distance<br>moved before break                                                                |
|   |     | Distance = $0.2 \text{ m}$                                                                                             | A1  |    |                                                                                                                                            |
|   |     |                                                                                                                        |     |    | For using $v^2 = u^2 + 2gs$ to find speed when                                                                                             |
|   |     | $[v^2 = 1.6^2 + 2g \times (0.5 - 0.2)]$                                                                                | M1  |    | <i>B</i> hits floor                                                                                                                        |

| Cambridge International AS/A Level – May/June 2015 9709 | 41 |
|---------------------------------------------------------|----|

| (ii) |                                                                                                     | M1 |   | For finding distance travelled by A after<br>break from $v^2 = u^2 + 2as$ |  |  |
|------|-----------------------------------------------------------------------------------------------------|----|---|---------------------------------------------------------------------------|--|--|
|      | Distance travelled after break<br>= $(0 - 1.6^2) \div (2 \times -2) = 0.64$                         | A1 |   | For A, $F = 0.2 \times 3$ and so<br>- 0.2 × 3 = 0.3a so $a = -2$          |  |  |
|      | Total distance travelled<br>= $0.2 + 0.64 = 0.84$                                                   | B1 | 3 | Distance $= 0.84 \mathrm{m}$                                              |  |  |
|      | Alternative method for 7(ii)                                                                        |    |   |                                                                           |  |  |
| (ii) | $T = 2.52$ , $F = 0.2 \times 3$<br>WD by $T = 2.52 \times 0.2$<br>WD by $F = 0.2 \times 3 \times d$ | B1 |   | For stating WD by $T$ on $A$ and WD by $F$                                |  |  |
|      | $[0.6d = 2.52 \times 0.2]$                                                                          | M1 |   | Using WD by $F =$ WD by $T$<br>(No change in KE or PE for $A$ )           |  |  |
|      | WD by $T =$ WD by $F \rightarrow d = 0.84$                                                          | A1 | 3 | Distance = $0.84 \mathrm{m}$                                              |  |  |



## MARK SCHEME for the October/November 2014 series

# 9709 MATHEMATICS

9709/43

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.



| Page 2 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2014 | 9709     | 43    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme S                                              |      | Paper |
|--------|------------------------------------------------------------|------|-------|
|        | Cambridge International AS/A Level – October/November 2014 | 9709 | 43    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

|          | Page | Mark Scheme<br>Cambridge International AS/A Level – October/November 20                                                                  |                  |         |                                              | Syllabus                               | Paper                                   |
|----------|------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|----------------------------------------------|----------------------------------------|-----------------------------------------|
| L        |      | Cambridge International AS/A Leve                                                                                                        | el – Oct         | tober/N | ovember 2014                                 | 9709                                   | 43                                      |
| <b>—</b> |      |                                                                                                                                          | T                |         |                                              |                                        |                                         |
| 1        | (i)  | $DF = P \div 18$                                                                                                                         | B1               |         |                                              |                                        |                                         |
|          |      | $[P \div 18 - 800 = 1400 \times 0.5]$                                                                                                    | M1               |         | For using $DF - R$                           | = ma                                   |                                         |
|          |      | <i>P</i> = 27000                                                                                                                         | A1               | 3       |                                              |                                        |                                         |
|          | (ii) | [1080 - 800 = 1400a]                                                                                                                     | M1               |         | For using $DF = P$                           | • ÷ 25 and D                           | $\mathbf{F} - \mathbf{R} = m\mathbf{a}$ |
|          |      | Acceleration is $0.2 \mathrm{ms}^{-2}$                                                                                                   | A1               | 2       |                                              |                                        |                                         |
| 2        |      |                                                                                                                                          | M1               |         | For applying Nev $Q$                         | vton's 2nd la                          | w to <i>P</i> or to                     |
|          |      | $0.65 \times 10 \times (63/65) - T = 0.65a$ or<br>$T - 0.65 \times 10 \times (16/65) = 0.65a$                                            | A1               |         |                                              |                                        |                                         |
|          |      | $T - 0.65 \times 10 \times (16/65) = 0.65a$ or                                                                                           | B1               |         |                                              |                                        |                                         |
|          |      | $0.65 \times 10 \times (63/65) - T = 0.65a$ or<br>$0.65 \times 10 \times (63 - 16)/65 = 2 \times 0.65a$                                  | PF               |         |                                              |                                        |                                         |
|          |      | [T-1.6 = 6.3 - T] or                                                                                                                     |                  |         |                                              |                                        |                                         |
|          |      | $\begin{bmatrix} T = 6.3 - 0.65 \times (47/13) \end{bmatrix} \text{ or } \\ \begin{bmatrix} T = 1.6 + 0.65 \times (47/13) \end{bmatrix}$ | M1               |         | For eliminating a                            |                                        |                                         |
|          |      | Tension is 3.95 N                                                                                                                        | A1               | 5       |                                              |                                        |                                         |
| 3        | (i)  | $[W\cos\alpha + 7 \times 0.6 = 8]$                                                                                                       | M1               |         | For resolving for                            | ces acting at                          | O vertically                            |
|          |      | $W\cos\alpha = 3.8 \text{ (cwo)}$                                                                                                        | A1               |         | AG                                           |                                        |                                         |
|          |      | $W \sin \alpha = 5.6$                                                                                                                    | B1               | 3       |                                              |                                        |                                         |
|          | (ii) |                                                                                                                                          |                  |         | For using $W^2 = (W \sin q)$                 | $W\sin\alpha)^2 + (W \pm W\cos\alpha)$ | $(\cos \alpha)^2$                       |
|          |      |                                                                                                                                          | M1               | 0       |                                              | <i></i>                                |                                         |
|          |      | $W = 6.77 \text{ or } \alpha = 55.8$                                                                                                     | DA1              | P ·     |                                              |                                        |                                         |
|          |      | $\alpha = 55.8 \text{ or } W = 6.77$                                                                                                     | B1               | 3       |                                              |                                        |                                         |
| 4        | (i)  | $v(8) = 0.25 \times 8 = 2$                                                                                                               | B1               |         |                                              |                                        |                                         |
|          |      | $2 = -6.4 + 19.2 - k \rightarrow k = 10.8$                                                                                               | B1√*             | 2       | ft (12.8 – v)                                |                                        |                                         |
|          | (ii) | [dv/dt = -0.2t + 2.4 (= 0  when  t = 12)]<br>v <sub>max</sub> = -0.1 × 144 + 2.4 × 12 - 10.8]                                            | M1               |         | For finding <i>t</i> whe $dv/dt = 0$ and sub | n<br>stituting into                    | v(t)                                    |
|          |      | Maximum speed is $3.6 \mathrm{ms}^{-1}$                                                                                                  | A1√ <sup>^</sup> | 2       | ft (14.4 – incorrec                          | $\operatorname{ct} k$ )                |                                         |

| Page 5   Mark Scheme |       |                       |                                                                                                                                          |                  |        | Syllabus                                                                     | Paper                                                                                                                 |                            |
|----------------------|-------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------|
|                      |       |                       | Cambridge International AS/A Leve                                                                                                        | el – Oct         | ober/N | lovember 2014                                                                | 9709                                                                                                                  | 43                         |
|                      |       |                       |                                                                                                                                          |                  |        |                                                                              |                                                                                                                       |                            |
|                      | (iii) | Di                    | isplacement $s_1 = \frac{1}{2} 0.25 \times 8^2$ (= 8)                                                                                    | B1               |        |                                                                              |                                                                                                                       |                            |
|                      |       | [D                    | Displacement                                                                                                                             | M1               |        | For using displac                                                            | ement                                                                                                                 |                            |
|                      |       | <i>s</i> <sub>2</sub> | $= \left[-0.1t^{3}/3 + 1.2t^{2} - 10.8t\right]_{8}^{10} $ $(=26.7)$                                                                      |                  |        | $s_2 = \int_8^{18} \left( -0.1t^2 + \right)$                                 | 2.4t - 10.8)d                                                                                                         | t                          |
|                      |       |                       | (20.7)]                                                                                                                                  |                  |        |                                                                              |                                                                                                                       |                            |
|                      |       | Di                    | isplacement is 34.7 m                                                                                                                    | A1               | 3      |                                                                              |                                                                                                                       |                            |
| 5                    |       | [P                    | $P - 8g\sin 5^{\circ} - F = 8a]$                                                                                                         | M1               |        | For using Newton                                                             | n's 2 <sup>nd</sup> law (e                                                                                            | either case)               |
|                      |       | 7 <i>X</i>            | $X - 8g\sin 5^{\circ} - F = 8 \times 0.15$ and<br>$8X - 8g\sin 5^{\circ} - F = 8 \times 1.15$                                            | A1               |        |                                                                              |                                                                                                                       |                            |
|                      |       | X                     | = 8                                                                                                                                      | A1               |        |                                                                              |                                                                                                                       |                            |
|                      |       |                       |                                                                                                                                          | M1               |        | For obtaining a n                                                            | umerical exp                                                                                                          | pression for               |
|                      |       | F<br>F<br>F           | $= 56 - 8gsin5^{\circ} - 8 \times 0.15 \text{ or}$<br>= 64 - 8gsin5^{\circ} - 8 × 1.15 or<br>= 56 × 1.15 - 64 × 0.15 - 8gsin5^{\circ} or | PF               | R      |                                                                              |                                                                                                                       |                            |
|                      |       | F                     | = 47.8(275)                                                                                                                              | A1√ <sup>*</sup> |        | ft X either from e<br>equation or from<br>correct X/F equat                  | rror for one t<br>error in solu<br>ions                                                                               | term in <i>X/F</i> tion of |
|                      |       | R                     | $= 8g\cos 5^{\circ}$ (= 79.695)                                                                                                          | B1               |        |                                                                              |                                                                                                                       |                            |
|                      |       | [µ]                   | $a = 47.8 \div 79.7$ ]                                                                                                                   | M1               |        | For using $\mu = \frac{F}{R}$                                                |                                                                                                                       |                            |
|                      |       | Co                    | pefficient is 0.600 (accept 0.6)                                                                                                         | A1               | 8      |                                                                              |                                                                                                                       |                            |
| 6                    | (i)   |                       |                                                                                                                                          | M1               |        | For using the grad<br>acceleration                                           | dient propert                                                                                                         | y for                      |
|                      |       | A                     | cceleration is $4 \text{ ms}^{-2}$                                                                                                       | A1               | p.c    | 2                                                                            |                                                                                                                       |                            |
|                      |       |                       |                                                                                                                                          | M1               |        | For applying New<br>particles or using<br>(M+m)a = (M-and for using m + bar) | $\begin{array}{l} \text{vton's } 2^{\text{nd}} \text{ law} \\ \text{the formula} \\ m \text{)g} \\ M = 1 \end{array}$ | v to both                  |
|                      |       | Fc<br>4(<br>or        | or $T - mg = 4m$ and $(1 - m)g - T = 1 - m$<br>1 - m + 4 = (1 - m - m)g                                                                  | A1               |        |                                                                              |                                                                                                                       |                            |
|                      |       | P                     | has mass $0.3 \text{ kg}$ and $Q$ has mass $0.7 \text{ kg}$                                                                              | A1               | 5      |                                                                              |                                                                                                                       |                            |

| Page  | Page 6 Mark Scheme                                                                                  |                       | Syllabus | Paper                                      |                            |           |  |
|-------|-----------------------------------------------------------------------------------------------------|-----------------------|----------|--------------------------------------------|----------------------------|-----------|--|
|       | Cambridge International AS/A Leve                                                                   | el – Oct              | tober/N  | lovember 2014                              | 9709                       | 43        |  |
| (ii)  | For using the area property of the graph or $h = \frac{1}{2} at^2$ to obtain $h = 2$                | B1                    | 1        |                                            |                            |           |  |
| (iii) | Distance travelled upwards by<br>$P = \frac{1}{2} 1.4 \times 4$                                     | B1                    |          |                                            |                            |           |  |
|       | Height is 4.8 m                                                                                     | B1                    | 2        |                                            |                            |           |  |
| 7 (i) | $4^2 = 0^2 + 2a \times 12.5 \Rightarrow a = 0.64$                                                   | B1                    |          |                                            |                            |           |  |
|       | $[35 \times 0.96 - 3g \times 0.6 - F = 3 \times 0.64]$                                              | M1                    |          | For using Newton                           | n's 2 <sup>nd</sup> law to | find $F$  |  |
|       | <i>F</i> = 13.68                                                                                    | A1                    |          |                                            |                            |           |  |
|       | WD against $F = 13.68 \times 12.5 = 171 \text{ J}$                                                  | B1                    | 4        |                                            |                            |           |  |
| (ii)  | $R_{\rm from \ O \ to \ A} = 3g \times 0.8 - 35 \times 0.28$                                        | B1                    |          |                                            |                            |           |  |
|       | $[\mu = 13.68 \div 14.2 \ (= 0.96338)]$                                                             | M1                    | RA       | For using $\mu = F \div$                   | - <i>R</i>                 |           |  |
|       | Coefficient is 0.963 (accept 0.96)                                                                  | A1                    | 3        |                                            |                            |           |  |
| (iii) | $[-3g \times 0.6 - 0.96338 \times (3g \times 0.8) = 3a]$                                            | M1                    |          | For applying New block to find <i>a</i>    | vton's 2 <sup>nd</sup> lav | v to the  |  |
|       | Acceleration is $-13.7 \mathrm{ms}^{-2}$                                                            | A1                    |          |                                            |                            |           |  |
|       | [0 = 16 + 2(-13.7)s]                                                                                | M1                    |          | For using $v^2 = u^2$                      | +2as to find               | s         |  |
|       | Distance travelled is 0.584 m                                                                       | A1                    | 4        |                                            |                            |           |  |
|       | Alternati                                                                                           | <mark>ve</mark> for p | oart (i) |                                            |                            |           |  |
| (i)   | Gain in KE = $\frac{1}{2} 3 \times 4^2$ ( = 24 J)                                                   | B1                    |          | .5                                         |                            |           |  |
|       | Gain in PE = $3g \times 12.5 \times 0.6$ ( = 225 J)                                                 | B1                    | 0.0      |                                            |                            |           |  |
|       | $[WD = 35 \times 12.5 \times 0.96 - \frac{1}{2} \times 3 \times 4^{2} - 3g \times 12.5 \times 0.6]$ | M1                    |          | For using WD ag<br>= WD by applied<br>gain | ainst F<br>force – KE g    | gain – PE |  |
|       | WD against F is 171 J                                                                               | A1                    | 4        |                                            |                            |           |  |
|       | Alternative for part (iii)                                                                          |                       |          |                                            |                            |           |  |
|       | WD against $F = 0.96(338) \times 3g \times 0.8s$                                                    | B1                    |          |                                            |                            |           |  |
|       |                                                                                                     | M1                    |          | For using KE loss against friction         | s = PE gain +              | + WD      |  |
|       | $\frac{1}{2} 3 \times 4^2 = 3gs(0.6) + 0.96(338) \times 3g \times 0.8s$                             | A1                    |          |                                            |                            |           |  |
|       | Distance travelled is 0.584 m                                                                       | A1                    | 4        |                                            |                            |           |  |

## MARK SCHEME for the October/November 2014 series

# 9709 MATHEMATICS

9709/42

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.



| Page 2 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2014 | 9709     | 42    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2014 | 9709     | 42    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme                                                                       |            |       |                                                | Syllabus                      | Paper                      |
|--------|-----------------------------------------------------------------------------------|------------|-------|------------------------------------------------|-------------------------------|----------------------------|
|        | Cambridge International AS/A Level – O                                            | ctober     | Noven | nber 2014                                      | 9709                          | 42                         |
| 1 (i)  | [-11 = 11 - 10t]                                                                  | M1         |       | For using v<br>method) to<br>motion            | v = u - gt (or find the dura  | equivalent<br>ation of     |
|        | Time after projection is 2.2 seconds                                              | A1         | 2     |                                                |                               |                            |
| (ii)   | $h = 0 + \frac{1}{2}g \times 2.2^2 = 24.2$                                        | B1√^       |       |                                                |                               |                            |
|        | $V = 0 + g \times 2.2 = 22$                                                       | В1√        | 2     |                                                |                               |                            |
| 2 (i)  | $[X = 25 \times 0.96 - 30 \times 0.8 = 0]$                                        | M1         |       | For resolvit                                   | ng forces in t                | he x                       |
|        | Component in <i>x</i> -direction is zero                                          | A1         | 2     | AG                                             |                               |                            |
| (ii)   | $[Y = 25 \times 0.28 - 20 + 30 \times 0.6 = 5]$                                   | M1         |       | For resolving forces in the <i>y</i> direction |                               |                            |
|        | Resultant has magnitude $5 \text{ N}$ and acts in the positive <i>y</i> direction | A1         | 2     |                                                |                               |                            |
| (iii)  | Replacement has magnitude $30$ N and acts in the –ve <i>y</i> direction           | B1         | 1     |                                                |                               |                            |
| 3 (i)  | $[v_B = 1.2 \times 28 \div 0.96]$                                                 | M1         |       | For using <i>F</i><br>1.2 and 0.9<br>only      | P = Fv and th<br>6 and an equ | the factors ation in $v_B$ |
|        | Speed of the train at <i>B</i> is $35 \text{ ms}^{-1}$                            | <b>A</b> 1 | 2     | AG                                             |                               |                            |
| (ii)   | KE increase = $100000(35^2 - 28^2)$                                               | B1         |       |                                                |                               |                            |
|        | WD by engine<br>= $44.1 \times 10^6 + 2.3 \times 10^6 \text{ J}$                  | M1         |       | For using V<br>increase +                      | WD by engin<br>WD against i   | e = KE<br>resistance       |
|        | Work done is 46 400 kJ or $46.4 \times 10^6$ J                                    | A1         | 3     | or 464000                                      | )00 J                         |                            |
| 4 (i)  | $[X\cos 30^\circ = 40\cos 60^\circ]$                                              | M1         |       | For resolvi                                    | ng forces ho                  | rizontally                 |
|        | $X = 23.1 (= 40 / \sqrt{3})$                                                      | A1         | 2     |                                                |                               |                            |
| (ii)   | $[X\cos 30^{\circ} - 10 = 40\cos 60^{\circ}]$                                     | M1         |       | For resolvi                                    | ng forces ho                  | rizontally                 |
|        | $X = 60 \div \sqrt{3}$ or 34.6                                                    | A1         |       |                                                |                               |                            |
|        | $[R + X\sin 30^\circ + 40\sin 60^\circ = 15g]$                                    | M1         |       | For resolving $(R = 98.038)$                   | ng forces ver<br>8)           | tically                    |
|        | $[\mu = 10 \div (150 - 30/\sqrt{3} - 20\sqrt{3})]$                                | M1         |       | For using <i>H</i>                             | $\vec{r} = \mu R$             |                            |
|        | Coefficient is 0.102                                                              | A1         | 5     |                                                |                               |                            |

| F | Page 5 Mark Scheme                                         |     |                                                                                                       |            |          | Syllabus                                             | Paper                                                         |                                    |
|---|------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------|------------|----------|------------------------------------------------------|---------------------------------------------------------------|------------------------------------|
|   | Cambridge International AS/A Level – October/November 2014 |     |                                                                                                       | 9709       | 42       |                                                      |                                                               |                                    |
| _ |                                                            | ( ) |                                                                                                       |            |          | <b>.</b>                                             |                                                               |                                    |
| 5 | (i)                                                        | (a) | $[F = 0.7 \times 3, WD = 2.1 \times 0.9]$                                                             | MI         |          | For using <i>F</i>                                   | $e = \mu R$ and W                                             | D = Fs                             |
|   |                                                            |     | Work done is 1.89 J                                                                                   | A1         | 2        |                                                      |                                                               |                                    |
|   |                                                            | (b) | Loss of PE = $3 \times 0.9 = 2.7$ J                                                                   | B1         | 1        |                                                      |                                                               |                                    |
|   |                                                            | (c) | [KE gain = 2.7 – 1.89]                                                                                | M1         |          | For 'gain in<br>by friction'                         | n KE = loss i                                                 | n PE – WD                          |
|   |                                                            |     | Gain in KE = 0.81 J                                                                                   | A1         | 2        |                                                      |                                                               |                                    |
|   | (ii)                                                       |     | $\frac{1}{2}(0.3+0.3)v_{\text{at break}}^2 = 0.81$ ]                                                  | M1         |          | For using <sup>1</sup> /<br>KE                       | $\sqrt{2}(m_A+m_B)v$                                          | $^2 = $ gain in                    |
|   |                                                            |     | $v_{\rm floor}^2 = v_{\rm at \ break}^2 + 2g \times 0.54$                                             | M1         |          | For using <i>v</i>                                   | $v^2 = u^2 + 2gs$                                             |                                    |
|   |                                                            |     | Speed at the floor is $3.67 \mathrm{ms}^{-1}$                                                         | A1         | 3        |                                                      |                                                               |                                    |
|   |                                                            |     | Alternative method for                                                                                | or (i) (c) | and (ii) | )                                                    |                                                               |                                    |
|   |                                                            | (c) | [T-2.1 = 0.3a  and  3 - T = 0.3a<br>$\rightarrow a = 1.5]$<br>$[v^2 = 2 \times 1.5 \times 0.9 = 2.7]$ | M1         |          | For applyin<br>both particl<br>using $v^2 = 0$<br>KE | ng Newton's<br>les and findir<br>) + 2 <i>as</i> <b>and</b> a | $2^{nd}$ law to and and attempting |
|   |                                                            |     | $KE = 0.5 \times (0.3 + 0.3) \times 2.7 = 0.81  J$                                                    | A1         | 2        |                                                      |                                                               |                                    |
|   | (ii)                                                       |     | $[v_{at break}^2 = 2.7]$                                                                              | M1         |          | For using the $v_{\text{at break}}^2$                | heir $v^2$ in (i)(                                            | c) as                              |
|   |                                                            |     | $v_{\rm floor}^2 = v_{\rm at \ break}^2 + 2g \times 0.54$                                             | M1         |          | For using v                                          | $u^2 = u^2 + 2gs$                                             |                                    |
|   |                                                            |     | Speed at floor = $3.67 \text{ ms}^{-1}$ (= $1.5\sqrt{6}$ )                                            | A1         | 3        |                                                      |                                                               |                                    |
|   |                                                            |     | Alternative meth                                                                                      | nod for    | (ii)     |                                                      |                                                               |                                    |
|   | (ii)                                                       |     | $[0.3 \times g \times 0.54]$ or $[\frac{1}{2} \times 0.3 \times (v^2 - 2.7)]$                         | M1         |          | For attemp<br>for the falli                          | ting PE loss on ng particle o                                 | or KE gain<br>nly                  |
|   |                                                            |     | $[1.62 = \frac{1}{2} \times 0.3 \times (v^2 - 2.7)]$                                                  | M1         |          | For using F<br>particle                              | PE loss = KE                                                  | gain of this                       |
|   |                                                            |     | Speed at floor = $3.67  \text{ms}^{-1}$ (= $1.5  \sqrt{6}$ )                                          | A1         | 3        |                                                      |                                                               |                                    |
| 6 | (i)                                                        | (a) | (a) Acceleration is $2.8 \mathrm{ms}^{-2}$                                                            | B1         |          | Using acce                                           | leration $= g s$                                              | $\sin \alpha$                      |
|   |                                                            | (b) | $[mg \times 0.28 - 0.5mg \times 0.96 = ma]$                                                           | M1         |          | For using N                                          | Newton's 2 <sup>nd</sup>                                      | law                                |
|   |                                                            |     | Acceleration is $-2 \text{ ms}^{-2}$                                                                  | A1         | 3        |                                                      |                                                               |                                    |

| Page 6 Mark Scheme |                                                                                                          |                                             |      | Syllabus                                 | Paper                                          |                                     |
|--------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------|------|------------------------------------------|------------------------------------------------|-------------------------------------|
|                    | Cambridge International AS/A Level – O                                                                   | national AS/A Level – October/November 2014 |      |                                          |                                                | 42                                  |
|                    |                                                                                                          |                                             |      |                                          | 2 2 -                                          |                                     |
| (ii)               |                                                                                                          | M1                                          |      | For using <i>v</i> for <i>BC</i> and     | $u^2 = u^2 + 2as$<br>using $AB + B$            | for $AB$ and $BC = 5$               |
|                    | $v_B^2 = 2 \times 2.8(AB)$ and<br>$2^2 = 5.6(AB) - 2 \times 2(5 - AB)$                                   | A1√ <sup>^</sup>                            |      | ft incorrect                             | answers in (                                   | i)                                  |
|                    | Distance is 2.5 m                                                                                        | A1                                          | 3    |                                          |                                                |                                     |
|                    | Alternative meth                                                                                         | od for                                      | (ii) |                                          |                                                |                                     |
|                    | $[mg \times 5 \times 0.28 = \frac{1}{2} m 2^{2} + \mu \times mg \times 0.96 \times BC]$                  | M1                                          |      | For using L<br>+ WD again<br>motion from | Loss in $PE = 0$<br>nst Friction f<br>m A to C | Gain in KE<br>or the                |
|                    | $14 = 2 + 4.8 \times BC$                                                                                 | A1                                          |      | Correct equation                         |                                                |                                     |
|                    | $BC = 12/4.8 = 2.5 \mathrm{m}$                                                                           | A1                                          | 3    |                                          |                                                |                                     |
| (iii)              | ATPI                                                                                                     | M1                                          |      | For using <i>t</i> and <i>BC</i>         | $= 2s \div (u + s)$                            | v) for AB                           |
|                    | $T = 2 \times 2.5 \div (0 + \sqrt{14}) + 2 \times 2.5 \div (\sqrt{14} + 2)$                              | A1                                          |      |                                          |                                                |                                     |
|                    | Time taken is 2.21 s                                                                                     | A1                                          | 3    |                                          |                                                |                                     |
| 7 (i)              | v = -4.8                                                                                                 | B1                                          |      |                                          |                                                |                                     |
|                    | $[\pm 4.8 = 3a]$                                                                                         | M1                                          |      | For using v                              | b = 0 + at                                     |                                     |
|                    | Magnitude of acceleration is 1.6 ms <sup>-2</sup>                                                        | A1                                          | 3    |                                          |                                                |                                     |
| (ii)               | [-0.4t + 4 (= 0  when  t = 10)]                                                                          | M1                                          |      | For finding $dv/dt = 0$                  | the value of                                   | t when                              |
|                    | 222                                                                                                      | M1                                          | .0   | For evaluat<br>graph exclu               | ing $v(10)$ as ides the poss                   | v <sub>max</sub> (the<br>ibility of |
|                    | -satpre                                                                                                  | BD.                                         |      | $v(10)$ as $v_{\rm mi}$                  | in)                                            |                                     |
|                    | $v_{\text{max}} = -0.2 \times 100 + 4 \times 10 - 15 \rightarrow$ Maximum velocity is 5 ms <sup>-1</sup> | A1                                          | 3    |                                          |                                                |                                     |
| (iii) (a           | Distance 0 to $3 \text{ s} = \frac{1}{2} \times 3 \times 4.8 \ (= 7.2)$                                  | B1                                          |      |                                          |                                                |                                     |
|                    | Distance 3 to 5s = $-\int_{3}^{5} (-0.2t^{2} + 4t - 15) dt$                                              | M1                                          |      | Attempt to                               | integrate and                                  | l use limits                        |
|                    | Distance = $\pm 4.5333m$                                                                                 | A1                                          |      |                                          |                                                |                                     |
|                    | Average speed = $(7.2 + 4.533) \div 5$<br>= 2.35 ms <sup>-1</sup>                                        | B1                                          |      |                                          |                                                |                                     |

| Page 7 | Mark Scheme<br>Cambridge International AS/A Level – (                                                                                                                             | October | /Nover | nber 2014                   | Syllabus<br>9709 | Paper<br>42  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----------------------------|------------------|--------------|
| (b)    | Distance BC<br>$= \left[ -\frac{0.2t^{3}}{3} + 2t^{2} - 15t \right] \frac{15}{5}$ and<br>Av speed = $(AB + BC) \div 15$<br>Av speed = $(45, 066 \div 15) = 3, 00 \text{ ms}^{-1}$ | M1      | 6      | ft for errors<br>expression | s in coefficier  | nts in cubic |



## MARK SCHEME for the October/November 2014 series

# 9709 MATHEMATICS

9709/41

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.


| Page 2 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2014 | 9709     | 41    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are
  several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a
  particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
  When two or more steps are run together by the candidate, the earlier marks are implied and
  full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2014 | 9709     | 41    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| F | age 4 | 4 Mark Sche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | neme                 |        |                                                                                       | Syllabus                                                                  | Paper                                              |  |
|---|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|--|
|   |       | Cambridge International AS/A Leve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I – Oci              | ober/N | lovember 2014                                                                         | 9709                                                                      | 41                                                 |  |
| 1 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1                   |        | For using Newton terms                                                                | n's 2 <sup>nd</sup> law w                                                 | ith three                                          |  |
|   |       | $\mathrm{DF} - R = 800 \times 1.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1                   |        |                                                                                       |                                                                           |                                                    |  |
|   |       | DF = 22500/18 [ = 1250]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1                   |        |                                                                                       |                                                                           |                                                    |  |
|   |       | Resistance is 290 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1                   | 4      |                                                                                       |                                                                           |                                                    |  |
| 2 |       | For <i>A</i> : right angle between 18 and <i>R</i> and<br>$30^{\circ}$ opposite 18 or<br>$W_A \sin 30^{\circ} = 18$ or<br>For <i>B</i> : right angle between 18 and <i>W</i> and<br>$30^{\circ}$ opposite 18 or<br>$W_B \sin 30^{\circ} = 18\cos 30^{\circ}$<br>For <i>B</i> : right angle between 18 and <i>W</i> and<br>$30^{\circ}$ opposite 18 or<br>$W_B \sin 30^{\circ} = 18\cos 30^{\circ}$ or<br>For <i>A</i> : right angle between 18 and <i>R</i> and<br>$30^{\circ}$ opposite 18 or<br>$W_A \sin 30^{\circ} = 18$<br>Weight of <i>A</i> is 36 N<br>and weight of <i>B</i> is 31.2 N | M1<br>A1<br>B1<br>A1 | 4      | For a triangle of t<br>and W for A or fo<br>for resolving forc<br>parallel to line of | forces with so<br>or <i>B</i><br>– or –<br>ees acting on<br>greatest slop | ides 18, <i>R</i><br><i>A</i> or on <i>B</i><br>be |  |
| 3 | (i)   | $F + W \sin \alpha = 7.2$ $[\mu \times 7.5 \cos \alpha \ge 7.2 - 7.5 \sin \alpha]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1<br>A1<br>M1       | p.c    | For resolving for<br>three terms<br>For using $F \le \mu I$                           | ces parallel to                                                           | o slope with                                       |  |
|   |       | $\mu \ge 17/24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1                   | 4      | AG                                                                                    |                                                                           |                                                    |  |
|   | (ii)  | $[7.2 + 7.5 \times (7/25) - \mu(7.5 \times 24/25) > 0]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1                   |        | For using 'resulta' is $> 0$ ' and $F = \mu$                                          | int force dow<br><i>R</i>                                                 | n the plane                                        |  |
|   |       | $\mu < 31/24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1                   | 2      | AG                                                                                    |                                                                           |                                                    |  |
| 4 | (i)   | End speed = $1.3 + 0.1 \times 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1                   |        |                                                                                       |                                                                           |                                                    |  |
|   |       | $v_{Q}(t) = 0.008t^{2} + v_{Q}(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1                   |        |                                                                                       |                                                                           |                                                    |  |
|   |       | $[3.3 = 0.008 \times 20^2 + v_0(0)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1                   |        | For substituting e                                                                    | end speed and                                                             | 1 t = 20                                           |  |
|   |       | Speed of $Q$ when $t = 0$ is 0.1 ms <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1                   | 4      |                                                                                       |                                                                           |                                                    |  |

| F | Page | le 5 Mark Scheme  |                                                                                                     |         |        |                                                                                                | Syllabus                                                                      | Paper                                                |
|---|------|-------------------|-----------------------------------------------------------------------------------------------------|---------|--------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|
|   |      |                   | Cambridge International AS/A Leve                                                                   | I – Oct | ober/N | ovember 2014                                                                                   | 9709                                                                          | 41                                                   |
|   |      |                   |                                                                                                     |         |        |                                                                                                |                                                                               |                                                      |
|   | (ii) | Di                | istance $AO = (3.3^2 - 1.3^2) \div (2 \times 0.1)$ or<br>$20 \times \frac{1}{2} (1.3 + 3.3) [= 46]$ | B1      |        | or $AO = 1.3(20)$ -                                                                            | $+ \frac{1}{2}(0.1) \times 20$                                                | 2                                                    |
|   |      | Di<br>[=          | istance $OB = 0.008 \times 20^3 \div 3 + 0.1 \times 20$<br>= 70/3 = 23.3]                           | B1      |        |                                                                                                |                                                                               |                                                      |
|   |      | Di                | istance AB is 69.3 m                                                                                | B1      | 3      |                                                                                                |                                                                               |                                                      |
| 5 | (i)  |                   |                                                                                                     | M1      |        | For resolving for<br>including the fric<br>tensions in <i>PB</i> an<br>weights of <i>P</i> and | ces horizonta<br>tional force a<br>d <i>BQ</i> being e<br><i>Q</i> respective | lly on <i>B</i> ,<br>nd using<br>equal to the<br>ly. |
|   |      | Fr                | rictional force = $\mu \times 0.25g$                                                                | B1      |        |                                                                                                |                                                                               |                                                      |
|   |      | 0.                | $3g = 0.2g + \mu 0.25g \Rightarrow$<br>Coefficient of friction is 0.4                               | A1      | 3      |                                                                                                |                                                                               |                                                      |
|   | (ii) |                   | AT                                                                                                  | M1      | RA     | For applying New to <i>B</i>                                                                   | vton's 2 <sup>nd</sup> lav                                                    | to P or                                              |
|   |      | 0.2<br>T -<br>T - | 2g - T = 0.2a or<br>$-0.4 \times 0.25g = 0.25a$ or<br>$-0.4 \times 0.25g = 0.25a$ or                | A1      |        |                                                                                                |                                                                               |                                                      |
|   |      | 0.1<br>0.1        | 2g - T = 0.2a or<br>$2g - \mu 0.25g = (0.2 + 0.25)a$                                                | B1      |        |                                                                                                |                                                                               |                                                      |
|   |      |                   |                                                                                                     | M1      |        | For solving for <i>a</i>                                                                       | and for <i>T</i>                                                              |                                                      |
|   |      | A                 | cceleration is $2.22 \mathrm{ms}^{-2}$                                                              | B1      |        |                                                                                                |                                                                               |                                                      |
|   |      | Те                | ension is 1.56 N                                                                                    | A1      | 6      | 15                                                                                             |                                                                               |                                                      |
| 6 | (i)  | [3                | $g-R=3 \times 5.5$ ]                                                                                | M1      |        | For using Newton                                                                               | n's 2 <sup>nd</sup> law                                                       |                                                      |
|   |      | Re                | esistance is 13.5 N                                                                                 | Al      | 2      |                                                                                                |                                                                               |                                                      |
|   | (ii) | Gi<br>fir<br>gr   | raph consists of two line segments; the<br>rst starts at the origin and has a positive<br>radient.  | B1      |        |                                                                                                |                                                                               |                                                      |
|   |      | Tł<br>ha          | he second starts where first one ends and as positive but less steep gradient.                      | B1      | 2      |                                                                                                |                                                                               |                                                      |

|   | Page  | 6                                              | Mark Sche                                                                                                | me               |        |                                                          | Syllabus                                        | Paper                           |
|---|-------|------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------|--------|----------------------------------------------------------|-------------------------------------------------|---------------------------------|
|   |       |                                                | Cambridge International AS/A Leve                                                                        | I – Oct          | ober/N | lovember 2014                                            | 9709                                            | 41                              |
|   |       | -                                              |                                                                                                          |                  | -      |                                                          |                                                 |                                 |
|   | (iii) | $\begin{bmatrix} v_{B} \\ v_{B} \end{bmatrix}$ | $s_{S}^{2} = 2 \times 10 \times 5 = 100$ or<br>$s_{T}^{2} = v_{T}^{2} + 2 \times 5.5 \times 4$ ]         | M1               |        | For using $v^2 = u^2$                                    | + 2as (for e                                    | ither stage)                    |
|   |       | $v_S$<br>$v_B$                                 | $= 10 \text{ ms}^{-1}$ at surface <b>and</b><br>$= 12 \text{ ms}^{-1}$ at bottom<br>both shown on sketch | A1               |        |                                                          |                                                 |                                 |
|   |       | [1<br>12                                       | $0 = 0 + 10t_1 \text{ or} 2 = 10 + 5.5(t_2 - t_1)]$                                                      | M1               |        | For using $v = u + $                                     | <i>at</i> (for eithe                            | er stage)                       |
|   |       | <i>t</i> <sub>1</sub>                          | = 1 s at surface and shown on sketch                                                                     | A1               |        |                                                          |                                                 |                                 |
|   |       | $t_2$                                          | = 1.36 s at bottom and shown on sketch.                                                                  | A1               | 5      |                                                          |                                                 |                                 |
| 7 |       |                                                |                                                                                                          | M1               |        | To obtain PE cha                                         | nge or KE cl                                    | nange                           |
|   |       | PI                                             | E change = $60g \times 17.5$ or<br>KE change = $\frac{1}{2} 60(8.5^2 - 3.5^2)$                           | A1               | R      | [PE = 10500]                                             |                                                 |                                 |
|   |       | K                                              | E change = $\frac{1}{2} 60(8.5^2 - 3.5^2)$ or<br>PE change = $60g \times 17.5$                           | B1               |        | [KE = 1800]                                              |                                                 |                                 |
|   |       | W                                              | TD against resistance = $6 \times 250$                                                                   | B1               |        | [= 1500]                                                 |                                                 |                                 |
|   |       | W                                              | TD by pulling force = $50\cos\alpha \times 250$                                                          | B1               |        |                                                          |                                                 |                                 |
|   |       |                                                |                                                                                                          | M1               |        | For using 'WD by<br>linear combinatio<br>change and WD a | y the pulling<br>n of PE char<br>against resist | force is a<br>nge, KE<br>ance.' |
|   |       | W                                              | D = 10500 - 1800 + 1500                                                                                  | A1√ <sup>≜</sup> |        | .5                                                       |                                                 |                                 |
|   |       | W                                              | D by the pulling force is<br>10200 J or 10.2 kJ                                                          | A1               |        | 0.                                                       |                                                 |                                 |
|   |       | Fo                                             | or using WD = $Fd\cos\alpha$                                                                             | M1               | 9.     |                                                          |                                                 |                                 |
|   |       | 10                                             | $0200 = 50 \times 250 \cos \alpha$                                                                       | A1               |        |                                                          |                                                 |                                 |
|   |       | α                                              | = 35.3                                                                                                   | A1               | 11     |                                                          |                                                 |                                 |

Page 7

# Mark SchemeSCambridge International AS/A Level – October/November 2014

SyllabusPaper970941

| Alterna                                          | tive solu | ution |                                                                                                    |
|--------------------------------------------------|-----------|-------|----------------------------------------------------------------------------------------------------|
|                                                  | M1        |       | Using $v^2 = u^2 + 2as$                                                                            |
| $(3.5)^2 = (8.5)^2 + 2a(250)$                    | A1        |       |                                                                                                    |
| a = -3/25 = -0.12                                | A1        |       |                                                                                                    |
|                                                  | M2        |       | Applying Newton's 2 <sup>nd</sup> law with 4<br>relevant terms [Allow M1 with 3 relevant<br>terms] |
| $50 \cos \alpha - 6 - 60g(17.5/250) = 60(-0.12)$ | A4        |       | One mark for each correct term                                                                     |
| $[\cos \alpha = 102/125]$                        | M1        |       | Solve for $\cos \alpha$                                                                            |
| $\alpha = 35.3$                                  | A1        | 11    |                                                                                                    |



### MARK SCHEME for the May/June 2014 series

## 9709 MATHEMATICS

9709/43

Paper 4 (Mechanics 1), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2014 | 9709     | 43    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2014 | 9709     | 43    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{n}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Pa                 | Page 4 Mark Scheme     |                                             |           | Syllabus | Paper                                                                     |                                                                                                                           |                                                             |
|--------------------|------------------------|---------------------------------------------|-----------|----------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                    |                        | GCE AS/A LEVEL – N                          | /lay/June | e 2014   | ŀ                                                                         | 9709                                                                                                                      | 43                                                          |
| 1 (1)              |                        | $\mathbf{r}_{\mathbf{r}}$                   | M1        |          | Ear regal                                                                 | vina fanaga acting                                                                                                        | an the block                                                |
| 1 (1)              | [N + com]              | ponent of $X = weight of B_j$               | IVI I     |          | vertically                                                                | y (3 terms required                                                                                                       | d)                                                          |
|                    | Normal co              | omponent is (70 – Xcos15°) N                | A1        | [2]      |                                                                           |                                                                                                                           |                                                             |
| (ii)               | F = Xsin1              | 5°                                          | B1        |          |                                                                           |                                                                                                                           |                                                             |
|                    | [Xsin15 <sup>°</sup> = | $= 0.4(70 - X\cos 15^{\circ})]$             | M1        |          | For using $F = \mu R$                                                     |                                                                                                                           |                                                             |
|                    | Value of 2             | X is 43.4                                   | A1        | [3]      |                                                                           |                                                                                                                           |                                                             |
| 2                  |                        |                                             | M1        |          | For using Newton's 2 <sup>nd</sup> law                                    |                                                                                                                           | W                                                           |
|                    | DF - 600               | $-1250 \times 0.02$ g $= 1250 \times 0.5$   | A1        |          |                                                                           |                                                                                                                           |                                                             |
|                    |                        |                                             | M1        |          | For using                                                                 | g DF = 23000/v                                                                                                            |                                                             |
|                    | v = 23000              | $\div$ (625 + 600 + 250)                    | Alft      |          | ft error in one term for DF above (1 <sup>st</sup> A mark)                |                                                                                                                           | above                                                       |
|                    | Speed of a             | car is $15.6 \mathrm{ms}^{-1}$              | A1        | [5]      |                                                                           |                                                                                                                           |                                                             |
| Alternative Method |                        |                                             |           |          |                                                                           |                                                                                                                           |                                                             |
|                    |                        | AT                                          | M1        |          | For using<br>+ PE gai                                                     | g WD by driving t<br>n + WD against re                                                                                    | force = KE gain<br>esistance                                |
|                    | WD = 125               | $0 \times 0.5s + 1250g \times 0.02s + 600s$ | A1        |          |                                                                           |                                                                                                                           |                                                             |
|                    |                        |                                             | M1        |          | For using WD by driving force = $DF \times s$<br>and $DF=23000/v$         |                                                                                                                           | force = $DF \times s$                                       |
|                    | v = 23000              | ÷ (625 + 600 + 250)                         | Alft      |          | ft error in<br>(1 <sup>st</sup> A ma                                      | n one term for WI<br>ark)                                                                                                 | D above                                                     |
|                    | Speed of a             | car is $15.6 \mathrm{ms}^{-1}$              | A1        | [5]      |                                                                           |                                                                                                                           |                                                             |
| 3                  |                        |                                             | M1        |          | For resol<br>horizonta                                                    | ving forces acting<br>ally.                                                                                               | g on P                                                      |
|                    | 0.8T <sub>1</sub> +12  | $T_2/13 = 2.24$                             | A1        |          |                                                                           |                                                                                                                           |                                                             |
|                    |                        |                                             | M1        |          | For resol                                                                 | ving forces acting                                                                                                        | on <i>P</i> vertically.                                     |
|                    | $0.6T_1 - 5T_1$        | $\Gamma_2/13 = 1.4$                         | A1        |          | .0                                                                        |                                                                                                                           |                                                             |
|                    |                        |                                             | M1        | 9.       | For solvi                                                                 | ing for $T_1$ and $T_2$                                                                                                   |                                                             |
|                    | $T_1 = 2.5 a$          | <u>nd</u> $T_2 = 0.26$                      | A1        | [6]      |                                                                           |                                                                                                                           |                                                             |
|                    |                        |                                             |           |          | <b>SR</b> for u<br>2.24 N ( $T_1/sin15$ )<br>$T_2/sin14$<br>$T_1 = 1(.0)$ | sing Lami's Rule<br>weight missing) (1<br>$7.38 = 2.24/\sin 59$<br>$3.13 = 2.24/\sin 59$<br>(0) and T <sub>2</sub> = 1.56 | for $T_{1,}T_{2}$ and<br>max 3/6)<br>.49 B1<br>.49 B1<br>B1 |

| Pa    | Page 5 Mark Scheme             |                                                     | Syllabus   | Paper  |                                                |                                  |                   |
|-------|--------------------------------|-----------------------------------------------------|------------|--------|------------------------------------------------|----------------------------------|-------------------|
|       |                                | GCE AS/A LEVEL – N                                  | /lay/June  | e 2014 | 1                                              | 9709                             | 43                |
|       |                                |                                                     | [          |        |                                                |                                  |                   |
| 4 (i) | PE loss =                      | $0.4g \times 5 J = 20 J$                            | B1         |        |                                                |                                  |                   |
|       | Initial KE                     | $_{up} = 0.4g \times 5 - 12.8 = 7.2 J$              | B1         |        |                                                |                                  |                   |
|       | [0.4gh = 2]                    | 2g – 12.8]                                          | M1         |        | Uses PE<br>in h                                | gain = KE loss to                | form equation     |
|       | Height rea                     | ached is 1.8 m                                      | A1         | [4]    | AG                                             |                                  |                   |
| (ii)  | $5 = 0 + \frac{1}{2}$          | $gt_{down}^2$ ( $t_{down} = 1$ )                    | B1         |        |                                                |                                  |                   |
|       | $0=6-gt_{t}$                   | up or $1.8 = \frac{1}{2} g t_{up}^2 (t_{up} = 0.6)$ | B1         |        |                                                |                                  |                   |
|       | Total time                     | e is 1.6 s                                          | B1         | [3]    |                                                |                                  |                   |
|       | First Alternative for part (i) |                                                     |            | (i)    |                                                |                                  |                   |
|       | $v^2 = 2 \times 1$             | $0 \times 5 \rightarrow (v = 10)$                   | B1         |        |                                                |                                  |                   |
|       | KE loss =                      | $\frac{1}{2} 0.4(10^2 - v_{up}^2) = 12.8$           | B1         |        |                                                |                                  |                   |
|       | $[v_{up} = 60,$                | $0 = 6^2 - 2gh$ ]                                   | M1         |        | Uses $v^2 = u^2 - 2gs$ to form equation in h   |                                  |                   |
|       | Height rea                     | ached is 1.8 m                                      | A1         | [4]    | AG                                             |                                  |                   |
|       |                                | Second Alte                                         | rnative fo | or par | t (i)                                          |                                  |                   |
|       | 0.4gh = 12                     | 2.8                                                 | M1         |        | Uses PE                                        | gain = KE loss                   |                   |
|       | h = 3.2 m                      |                                                     | A1         |        |                                                |                                  |                   |
|       | [Height re                     | eached = $5 - 12.8/0.4$ g]                          | M1         |        | Uses height reached = 5 – 'height not reached' |                                  |                   |
|       | Height rea                     | ached is 1.8 m                                      | A1         | [4]    | AG                                             |                                  |                   |
|       | Third Alternative for part (i) |                                                     | (i)        |        |                                                |                                  |                   |
|       | $\frac{1}{2} \times 0.4 v^2$   | f = 12.8 (v=8) and                                  | M1         |        | Uses KE                                        | $2 \log = 12.8$ and $v$          | $v^2 = u^2 + 2gs$ |
|       | $[8^2 = 0^2 +$                 | 2gh]                                                | nre        | p.     |                                                |                                  |                   |
|       | h = 3.2  m                     | a                                                   | A1         |        |                                                |                                  |                   |
|       | [Height re                     | eached = 5 - 3.2]                                   | M1         |        | Uses hei<br>5 – 'heig                          | ght reached =<br>ht not reached' |                   |
|       | Height rea                     | ached is 1.8 m                                      | A1         | [4]    | AG                                             |                                  |                   |

| P     | Page 6 Mark Scheme                                         |                                                                     |          | Syllabus | Paper                                                                                                                                                                      |                                                               |                                   |
|-------|------------------------------------------------------------|---------------------------------------------------------------------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------|
|       |                                                            | GCE AS/A LEVEL – N                                                  | May/Jun  | e 2014   | 4                                                                                                                                                                          | 9709                                                          | 43                                |
| 5 (i) |                                                            |                                                                     | M1       |          | For usin<br>PE + W                                                                                                                                                         | g WD by driving<br>D against resistant                        | force = Gain in<br>ce             |
|       | WD again<br>= 4500                                         | st resistance $\times 1200 - 16000 g \times 18$                     | A1       |          |                                                                                                                                                                            |                                                               |                                   |
|       | WD again                                                   | st resistance = $2.52 \times 10^6$ J                                | A1       | [3]      |                                                                                                                                                                            |                                                               |                                   |
|       | 1                                                          | Alternative                                                         | Method f | for par  | rt (i)                                                                                                                                                                     |                                                               |                                   |
|       | [R + 1600                                                  | $00g \times 18/1200 = 4500$ ]                                       | M1       |          | For reso                                                                                                                                                                   | lving along the pla                                           | ane                               |
|       | [WD=(45                                                    | $00 - 16000g \times 18/1200) \times 1200$                           | M1       |          | For usin                                                                                                                                                                   | g WD against resi                                             | stance = Rs                       |
|       | WD again                                                   | st resistance = $2.52 \times 10^6$ J                                | A1       | [3]      |                                                                                                                                                                            |                                                               |                                   |
| (ii)  | KE gain =                                                  | $=\frac{1}{2}$ 16000(21 <sup>2</sup> - 9 <sup>2</sup> ) J           | B1       |          |                                                                                                                                                                            |                                                               |                                   |
|       |                                                            |                                                                     | M1       |          | For usin<br>2400                                                                                                                                                           | or using $F = (KE \text{ gain} + 2000 \times 2400)$           |                                   |
|       | $F = 7680000 \div 2400 = 3200$                             |                                                                     | A1       | [3]      |                                                                                                                                                                            |                                                               |                                   |
|       |                                                            |                                                                     |          |          | SR (max 1/3) for using $v^2=u^2+2as$ and<br>Newton's 2 <sup>nd</sup> law<br>$21^2 - 9^2 = 2a \times 2400$ , $a = 0.075$<br>F $-2000 = 16000 \times 0.075$<br>F $= 3200$ B1 |                                                               | =u <sup>2</sup> +2as and<br>0.075 |
| (iii) | $\begin{bmatrix} P_A = (320) \\ (3200 - 12) \end{bmatrix}$ | $(00 + 1280) \times 9 \text{ and } P_B = (280) \times 21]$          | M1       |          | For usin                                                                                                                                                                   | g P = Fv to find P                                            | $_{\rm A}$ and $P_{\rm B}$        |
|       | $P_A = P_B =$                                              | 40320 W                                                             | A1       | [2]      |                                                                                                                                                                            |                                                               |                                   |
| 6 (i) | Velocity i                                                 | mmediately before is $1.2 \mathrm{ms}^{-1}$                         | B1       |          |                                                                                                                                                                            |                                                               |                                   |
|       | Velocity i                                                 | mmediately after is $-1 \text{ ms}^{-1}$                            | B1       | [2]      |                                                                                                                                                                            |                                                               |                                   |
| (ii)  |                                                            |                                                                     | M1       | p        | For usin<br>0 to 60<br>(W is wa<br>For usin<br>limits 60                                                                                                                   | g distance OW = J<br>all) or<br>g distance WA = -<br>) to 100 | ſvdt with limits<br>-∫vdt with    |
|       | Distance $0.0005 \times 0^{-1}$                            | $OW = 0.025 \times 60^2 - 60^3 \div 3$                              | A1       |          |                                                                                                                                                                            |                                                               |                                   |
|       | Distance 7<br>- [(0.0125<br>(0.0125 ×                      | $WA = 5 \times 100^{2} - 2.5 \times 100) - 60^{2} - 2.5 \times 60]$ | A1       |          |                                                                                                                                                                            |                                                               |                                   |
|       | Distance i                                                 | s 54 + 20 = 74 m                                                    | A1       | [4]      |                                                                                                                                                                            |                                                               |                                   |

| Pa    | age 7                                       | Mark Sche                                                                                              | eme     |        |                       | Syllabus                                         | Paper                                             |
|-------|---------------------------------------------|--------------------------------------------------------------------------------------------------------|---------|--------|-----------------------|--------------------------------------------------|---------------------------------------------------|
|       |                                             | GCE AS/A LEVEL – N                                                                                     | May/Jun | e 2014 | 1                     | 9709                                             | 43                                                |
| (iii) | [dv/dt = 0] 0.0005t(10)                     | dv/dt = 0.05 - 0.001t = 0 or M<br>$0.0005t(100 - t) = 0 \rightarrow t = 0$ or 100]                     |         |        | For using<br>when t = | g $v_{max}$ occurs when<br>the midpoint of t     | $\frac{dv}{dt} = 0 \text{ or}$<br>he roots of the |
|       | Maximum $(= 0.05 \times 10^{-1})$           | speed $50 - 0.0005 \times 50^2$ ) is $1.25 \mathrm{ms}^{-1}$                                           | A1      |        | 4                     |                                                  |                                                   |
|       | Plausible with max. (60, 1.2)               | quadratic curve starting at $(0,0)$ , at $(50, 1.25)$ and terminating at                               | B1      |        |                       |                                                  |                                                   |
|       | Straight li<br>to (100,0)                   | ne segment from (60,-1)                                                                                | B1      | [4]    |                       |                                                  |                                                   |
| 7 (i) |                                             |                                                                                                        | M1      |        | For apply             | ving Newton's 2 <sup>nd</sup>                    | law to P or to Q                                  |
|       | For T – (4<br>0.49g – T                     | $0 \div 160) \times 0.76g = 0.76a$ <u>or</u><br>= 0.49a                                                | A1      |        |                       |                                                  |                                                   |
|       | For $0.49g$<br>T - $(40 \div 0.49g - (40))$ | -T = 0.49a <u>or</u><br>$160) \times 0.76g = 0.76a$ <u>or</u><br>$00 \div 160) \times 0.76g =$<br>76)a | B1      | R      |                       |                                                  |                                                   |
|       | Accelerati<br>and tensio                    | on is $2.4 \text{ ms}^{-2}$<br>n is $3.72 \text{ N}$ (3.724 exact)                                     | A1      | [4]    | $\sim$                |                                                  |                                                   |
| (ii)  | $[v^2 = 2 \times 2]$                        | $2.4 \times 0.3$ ]                                                                                     | M1      |        | For using             | $g v^2 = 0 + 2as$                                |                                                   |
|       | Speed is 1                                  | $.20{\rm ms}^{-1}$                                                                                     | Alft    | [2]    | ft a from             | (i) (a≠±g)                                       |                                                   |
| (iii) |                                             |                                                                                                        | M1      |        | For using<br>with     | g v2 = u2 + 2as<br>n v = 0 and<br>a = -(40 ÷ 160 | )g                                                |
|       | Distance $v = (2 \times 2.4)$               | while Q is on the ground<br>× 0.3) $\div$ 2(40g $\div$ 160)                                            | A 1 ft  |        | ft a from             | (i) and/or $s = 30$                              |                                                   |
|       | (− 0.200 II                                 | 1)                                                                                                     | AIIt    |        | it a nom              | (i) all $0$ is $-30$                             |                                                   |

### MARK SCHEME for the May/June 2014 series

## 9709 MATHEMATICS

9709/42

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2014 | 9709     | 42    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √<sup>k</sup> implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2014 | 9709     | 42    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{n}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

|   | Page | 4                                         | Mark Scheme                                                  |                  |        | Syllabus                                                 | Paper                                                                                |     |  |
|---|------|-------------------------------------------|--------------------------------------------------------------|------------------|--------|----------------------------------------------------------|--------------------------------------------------------------------------------------|-----|--|
|   |      |                                           | GCE AS/A LEVEL – May/June                                    | 2014             |        | 9709                                                     | 42                                                                                   |     |  |
| 1 | (i)  | DF = 2                                    | 22500 ÷ 18                                                   | B1               |        |                                                          |                                                                                      |     |  |
|   | ()   |                                           |                                                              |                  |        | For using Nowton'                                        | a cocond low wi                                                                      | th  |  |
|   |      |                                           |                                                              | M1               |        | 3 terms                                                  | s second law wi                                                                      | un  |  |
|   |      | 22500                                     | $/18 - R = 600 \times 1.4$                                   | A1               |        |                                                          |                                                                                      |     |  |
|   |      | R = 41                                    | 0 N                                                          | A1               | 4      |                                                          |                                                                                      |     |  |
|   | (ii) | Rate o                                    | f working is 6150 W                                          | B1√ <sup>^</sup> | 1      | ft on incorrect R, i.                                    | e. R × 15                                                                            |     |  |
| 2 | (i)  |                                           |                                                              | M1               |        | For using $s = ut + \frac{1}{2}$<br>equation in T from   | $\frac{1}{2}$ at <sup>2</sup> to obtain as<br>s <sub>AP</sub> + s <sub>BP</sub> = 10 | n   |  |
|   |      | 1⁄2 0.5                                   | $T^2 + 0.75T = 10$                                           | A1               |        |                                                          |                                                                                      |     |  |
|   |      | $[T^2 + 3]$                               | 3T - 40 = 0 = (T + 8) (T - 5)]                               |                  |        | For solving the res                                      | ulting 3 term                                                                        |     |  |
|   |      |                                           |                                                              |                  |        | quadratic equation factorising or form                   | either by<br>ula and finding a                                                       | a   |  |
|   |      |                                           |                                                              | M1               |        | value for T                                              |                                                                                      |     |  |
|   |      | T = 5                                     | only                                                         | A1               | 4      | Reject/ignore $T = -8$                                   |                                                                                      |     |  |
|   |      |                                           | Alternative ma                                               | rk sche          | me for | · 2(i)                                                   |                                                                                      |     |  |
|   | (i)  | $x = \frac{1}{2}$                         | $\frac{1}{2} T^2$ 10 - x = $\frac{3}{4} T$                   |                  |        | Set up an equation                                       | for $x$ , the distant                                                                | ice |  |
|   |      | $x = \frac{1}{4}$                         | $[4/3(10-x)]^2$                                              | <b>M</b> 1       |        | travened by partici                                      | e A                                                                                  |     |  |
|   |      | x = 6.2                                   | 25                                                           |                  |        | Solve for <i>x</i>                                       |                                                                                      |     |  |
|   |      |                                           |                                                              | A1               |        | reject/ignore $x = 16$                                   | Ő                                                                                    |     |  |
|   |      | 10-6                                      | $.25 = \frac{3}{4}$ T or $6.25 = \frac{1}{4}$ T <sup>2</sup> | M1               |        | Substitute for <i>x</i> into above equations             | o either of the                                                                      |     |  |
|   |      | T = 5                                     |                                                              | A1               | 0      | Reject/ignore T = -                                      | -5                                                                                   |     |  |
|   | (ii) | Speed                                     | is 2.5 ms <sup>-1</sup>                                      | B1√              | 1      | ft for speed = $0.5T$                                    |                                                                                      |     |  |
| 3 |      |                                           |                                                              | M1               |        | For resolving force<br>horizontally (3 term              | es acting on P<br>ns)                                                                |     |  |
|   |      | $0.8T_1 - T_1 \cos^2$                     | + $0.96T_2 = 10$ or<br>36.9 + $T_2 \cos 16.3 = 10$           | A1               |        | For resolving forces acting on P<br>vertically (3 terms) |                                                                                      |     |  |
|   |      |                                           |                                                              | M1               |        |                                                          |                                                                                      |     |  |
|   |      | 0.6T <sub>1</sub> -<br>T <sub>1</sub> sin | $-0.28T_2 = 0.7g$ or<br>$36.9 - T_2 \sin 16.3 = 0.7g$        | A1               |        |                                                          |                                                                                      |     |  |
|   |      |                                           |                                                              | M1               |        | For solving simulta and finding both T                   | neous equations $_1$ and $T_2$                                                       | 3   |  |
|   |      | $T_1 = 1$                                 | 1.9 <b>and</b> $T_2 = 0.5$                                   | A1               | 6      |                                                          |                                                                                      |     |  |

|   | Page 5     |                                         | Mark Scheme                                               |          |              | Syllabus                                            | Paper                                                                                              |     |
|---|------------|-----------------------------------------|-----------------------------------------------------------|----------|--------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|-----|
|   |            |                                         | GCE AS/A LEVEL – May/June                                 | 2014     |              | 9709                                                | 42                                                                                                 |     |
| 4 | (i)        |                                         |                                                           | M1       |              | For differentiation                                 | to find $a(t)$ for                                                                                 |     |
|   |            |                                         | 12                                                        | IVI I    |              | $l \ge 8$                                           |                                                                                                    |     |
|   |            | a(t) =                                  | $f^{1/3}/3$                                               | A1       |              |                                                     |                                                                                                    |     |
|   |            | [0.25 -                                 | -(1/2)/3 = 1/4 - 1/6]                                     | M1       |              | Decrease = $a(8^{-})$ –                             | <i>a</i> (8 <sup>+</sup> )                                                                         |     |
|   |            | Decrea                                  | ase is $1/12  \text{ms}^{-2}$                             | A1       | 4            | AG                                                  | AG<br>$s_1 = \frac{1}{2} \frac{1}{4} 8^2 = 8$<br>Using definite integration to find s <sub>2</sub> |     |
|   | (ii)       |                                         |                                                           | B1       |              | $s_1 = \frac{1}{2} \frac{1}{4} 8^2 = 8$             |                                                                                                    |     |
|   |            | $s_2 = \int_{8}^{27}$                   | $\frac{1}{2}t^{2/3}dt = \left[0.3t^{5/3}\right]_{8}^{27}$ | M1       |              | Using definite inte                                 |                                                                                                    |     |
|   |            | Distan                                  | ce is 71.3 m                                              | A1       | 3            | $s_1 + s_2 = 71.3$                                  |                                                                                                    |     |
|   |            | -                                       | Alternative method for the                                | final tw | yo ma        | rks                                                 |                                                                                                    |     |
|   |            | $s = \int_{-\frac{1}{2}}^{\frac{1}{2}}$ | $t^{2/3}dt = 0.3t^{5/3} + c$                              | 2        |              | Using indefinite in                                 | tegration to find                                                                                  | 1 s |
|   |            | s (8) =                                 | $\frac{2}{8}$ gives $c = -1.6$                            | M1       | $\sim$       | integration by usin                                 | g the value of $s_1$                                                                               | 1   |
|   |            | s(27)                                   | $= 0.3(27)^{5/3} - 1.6 = 71.3$                            | A1       | $\mathbf{N}$ | Finding <i>s</i> (27)                               |                                                                                                    |     |
| 5 | (i)        | KE ga                                   | in is $10.5v^2$ J                                         | B1       | 1            |                                                     |                                                                                                    |     |
|   | (ii) (a)   | [PE L                                   | $boss = 16(10) x - 5(10) x \sin 30$ ]                     | M1       |              | For use of PE = mg<br>system = loss by B            | gh and Loss by<br>– gain by A                                                                      |     |
|   |            | PE los                                  | s by system is 135x J                                     | A1       | 2            |                                                     |                                                                                                    |     |
|   | (b)        | R = 5                                   | $(10) \times (\sqrt{3} \div 2)$                           | B1       |              |                                                     |                                                                                                    |     |
|   |            | F = 25                                  |                                                           | B1       |              |                                                     |                                                                                                    |     |
|   |            | West                                    | tour is 25 . I                                            |          |              | Ct in a surrant E                                   |                                                                                                    |     |
|   |            | WOIK                                    |                                                           | BIV      | 3            |                                                     |                                                                                                    | _   |
|   | (iii)      | [10.5v                                  | $x^{2} = 135x - 25x$                                      | M1       |              | For using 'Gain in<br>WD against friction           | KE = Loss in P<br>n'                                                                               | E – |
|   |            | $21v^2 =$                               | 220 <i>x</i>                                              | A1       | 2            | AG                                                  |                                                                                                    |     |
| 6 | (i)        | $v^2 = 2$                               | $\times g \times 7.2$                                     | D1       |              |                                                     |                                                                                                    |     |
|   |            |                                         | speed at surface is 12 his $\mathbf{r}^2 + \mathbf{r}$    | DI       |              |                                                     | •                                                                                                  |     |
|   |            | $[6^2 = ]$                              | $2^2 + 2a \times 0.8$ ]                                   | MI       |              | For using $6^2 = v^2 + 2as$<br>and finding <i>a</i> |                                                                                                    |     |
|   | Decelerati |                                         | eration is $67.5 \text{ ms}^{-2}$                         | A1       |              |                                                     |                                                                                                    |     |
|   |            | [0.2g -                                 | $-R = -0.2 \times 67.5$ ]                                 | M1       |              | For using Newton'<br>three terms for P ir           | s 2 <sup>nd</sup> law with<br>a the liquid                                                         |     |
|   |            | R = 15                                  | 5.5                                                       | A1       | 5            |                                                     |                                                                                                    |     |

| Page                 | e 6                | Mark S                                        | cheme                  |             |   | Syllabus                                                                                                 | Paper                                     |  |
|----------------------|--------------------|-----------------------------------------------|------------------------|-------------|---|----------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
|                      |                    | GCE AS/A LEVEL                                | – May/June 2           | 2014        |   | 9709                                                                                                     | 42                                        |  |
| <i>(</i> <b>!</b> •) | <b>12</b> (        | 1/                                            |                        | <b>)</b> (1 |   |                                                                                                          | ,2 1 5 1                                  |  |
| (11)                 | [3.6 =             | $\frac{1}{2}a \times 4^{2}$                   |                        | MI          |   | For using $s = 0 + \frac{1}{2}$                                                                          | at <sup>2</sup> and finding a             |  |
|                      | a=0.4              | $45  {\rm ms}^{-2}$                           |                        | A1          |   |                                                                                                          |                                           |  |
|                      | [T – R             | $1 - 0.2g = 0.2 \times 0.45$ ]                |                        | M1          |   | For using Newton's 2 <sup>nd</sup> law with P i the liquid                                               |                                           |  |
|                      | Tensio             | on is 17.6 N (17.59 ex                        | act)                   | Al√         | 4 | ft incorrect R                                                                                           |                                           |  |
|                      |                    | Alterna                                       | tive Energy M          | lethod      | 1 |                                                                                                          |                                           |  |
| (i)                  |                    |                                               |                        | M1          |   | For using PE lost =<br>liquid + KE gain                                                                  | WD by R in                                |  |
|                      | $0.2g \times$      | $8 = R(0.8) + \frac{1}{2} (0.2) 6^2$          |                        | A1          |   |                                                                                                          |                                           |  |
|                      | R = 15             | 5.5                                           |                        | A1          |   | Finding R                                                                                                |                                           |  |
|                      | 0.2g –             | 15.5 = 0.2a                                   | PR                     | M1          |   | For using Newton's liquid                                                                                | s 2 <sup>nd</sup> law in the              |  |
|                      | a = -6             | 7.5                                           |                        | A1          | 5 |                                                                                                          |                                           |  |
| (ii)                 |                    |                                               |                        | M1          |   | For using $s = (0 + v)$<br>surface of liquid                                                             | $\frac{1}{2} \times t$ to find v at       |  |
|                      | 3.6 =              | $v/2 \times 4$ $v = 1.8$                      |                        | A1          |   |                                                                                                          |                                           |  |
|                      | T(3.6)             | $= R(3.6) + 0.2g(3.6) + \frac{1}{2}(0.2)$     | 1.8 <sup>2</sup>       | <b>M</b> 1  |   | For using WD by T<br>gain + KE gain                                                                      | = WD by R + PE                            |  |
|                      | T = 17             | 7.6 N                                         |                        | A1          | 4 |                                                                                                          |                                           |  |
| 7 (i)                | [ T <sub>A</sub> – | $2.5 = 0.25 \times a$ ] [7.5 – T <sub>B</sub> | $= 0.75 \times a$ ]    | M1          |   | For applying Newto<br>either particle A or                                                               | on's 2 <sup>nd</sup> law to<br>particle B |  |
|                      | $T_A = 2$          | 2.5 + 0.25 <i>a</i>                           | atore                  | A1          |   |                                                                                                          |                                           |  |
|                      | $T_B = 7$          | 2.5 - 0.75a                                   |                        | A1          | 3 |                                                                                                          |                                           |  |
| (ii)                 | F = 0.4            | 4 × 5                                         |                        | B1          |   |                                                                                                          |                                           |  |
|                      | [T <sub>B</sub> -7 | $T_{\rm A}-{\rm F}=0.5a]$                     |                        | M1          |   | For using Newton's 2 <sup>nd</sup> law for P<br>with friction and both tensions<br>represented (4 terms) |                                           |  |
|                      | 7.5 – 0            | 0.75a - (2.5 + 0.25a) - 2 = 0.5               | $5a \rightarrow a = 2$ | A1          | 3 | AG                                                                                                       |                                           |  |

| Page 7 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2014 | 9709     | 42    |

|       | Alternative                                                                              | Alternative method for (ii) |   |                                                                                                                       |  |  |  |  |
|-------|------------------------------------------------------------------------------------------|-----------------------------|---|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| (ii)  | $F = 0.4 \times 5$                                                                       | B1                          |   |                                                                                                                       |  |  |  |  |
|       | $a = 2$ used to find $T_A = 3$ , $T_B = 6$ and used in<br>$T_B - T_A - F = 0.5 \times a$ | M1                          |   | Assume given value of $a$ , find T <sub>A</sub> and T <sub>B</sub> and use the values in 4 term Newton's $2^{nd}$ law |  |  |  |  |
|       | <i>a</i> = 2                                                                             | A1                          |   | Justify the value $a = 2$                                                                                             |  |  |  |  |
| (iii) | $[v^2 = 2 \times 2 \times 0.36]$                                                         | M1                          |   | For using $v^2 = 2as$ with $s = 1 - \frac{1}{2}(5.28 - 4)$                                                            |  |  |  |  |
|       | Speed is $1.2 \text{ ms}^{-1}$                                                           | A1                          | 2 |                                                                                                                       |  |  |  |  |
| (iv)  | $-T_{\rm A} - 2 = 0.5a$ and $T_{\rm A} - 2.5 = 0.25a$                                    | M1                          |   | For applying Newton's $2^{nd}$ law to particle P <b>and</b> substituting for $T_A$                                    |  |  |  |  |
|       | Deceleration is 6 ms <sup>-2</sup>                                                       | A1                          | 2 | a = -6  or  d = 6                                                                                                     |  |  |  |  |



### MARK SCHEME for the May/June 2014 series

## 9709 MATHEMATICS

9709/41

Paper 4 (Mechanics 1), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2014 | 9709     | 41    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2014 | 9709     | 41    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

|   | Page 4 |                       | Mark Sche                                           | eme      | Syllabus Paper |                                |                                 | Paper                |
|---|--------|-----------------------|-----------------------------------------------------|----------|----------------|--------------------------------|---------------------------------|----------------------|
|   |        |                       | GCE A LEVEL – Ma                                    | y/June 2 | 2014           |                                | 9709                            | 41                   |
|   |        |                       |                                                     |          |                |                                |                                 |                      |
| 1 |        | DF = 280              | 00                                                  | B1       |                |                                |                                 |                      |
|   |        | [1330 000             | 0 = 28000 V]                                        | M1       |                | For usin                       | g P = (DF)V                     |                      |
|   |        | V = 47.5              |                                                     | A1       | [3]            |                                |                                 |                      |
| 2 | (i)    | 2.4 = 0.25            | g cosa                                              | B1       |                |                                |                                 |                      |
|   |        | α = 16.3              |                                                     | B1       | [2]            |                                |                                 |                      |
|   | (ii)   | [μ = 0.28-            | ÷0.96]                                              | M1       |                | For usin $\mu = 1$             | g<br>F/R or $\mu = \tan \alpha$ |                      |
|   |        | Least pose<br>is 7/24 | sible value of μ<br>4 or 0.292                      | A1       | [2]            |                                |                                 |                      |
| 3 |        |                       |                                                     | M1       |                | For find:<br>the <i>x</i> dire | ing the componen ection         | t of the forces in   |
|   |        | X = 5 - 76            | $\cos 60^\circ - 3\cos 30^\circ  (= -1.098)$        | A1       |                |                                |                                 |                      |
|   |        |                       |                                                     | M1       | 4              | For find<br>the y dire         | ing the componen ection         | t of the forces in   |
|   |        | $Y = 7 \sin \theta$   | $50^{\circ} - 3\sin 30^{\circ} - 4  (= 0.5622)$     | A1       |                |                                |                                 |                      |
|   |        |                       |                                                     | M1       |                | For usin                       | $g R^2 = X^2 + Y^2 an$          | d tan $\theta = Y/X$ |
|   |        | Resultant             | is $1.23$ N and                                     |          |                |                                |                                 |                      |
|   |        | +ve x-axis            | s oe                                                | A1       | [6]            |                                |                                 |                      |
| 4 |        |                       |                                                     | M1       |                | For usin<br>motion             | $g 0 = u^2 - 2gs \text{ for}$   | the upwards          |
|   |        | For $s = 4$ .         | 05                                                  | A1       |                |                                |                                 |                      |
|   |        | Total dista<br>= 11.2 | ance = $4.05 + (3.15 + 4.05)$<br>4.5  m             | B1       |                | 0                              |                                 |                      |
|   |        | $t_{upwards} = 0$     | .9                                                  | Bl       | 0.             |                                |                                 |                      |
|   |        | For downwards motion  |                                                     | B1       |                |                                |                                 |                      |
|   |        | (3.15 + 4.            | $05) = \frac{1}{2} \operatorname{gt}^2 \to t = 1.2$ |          |                |                                |                                 |                      |
|   |        | Time take             | n is 2.1 s                                          | B1       | [6]            |                                |                                 |                      |

|   | Page 5 |                                | Mark Sche                                              | eme              |      |                                      | Syllabus                                                         | Paper                         |
|---|--------|--------------------------------|--------------------------------------------------------|------------------|------|--------------------------------------|------------------------------------------------------------------|-------------------------------|
|   |        |                                | GCE A LEVEL – Ma                                       | y/June 2         | 2014 |                                      | 9709                                                             | 41                            |
|   |        | Alternati<br>marks             | ve Mark Scheme for final 3                             |                  |      |                                      |                                                                  |                               |
|   |        | [-3.15 = 9                     | $DT + \frac{1}{2} (-g) T^2$ ]                          | M1               |      | For usin                             | $g s = ut + \frac{1}{2}at^2 fo$                                  | r the total                   |
|   |        |                                | 2                                                      |                  |      | displace                             | ment and time                                                    |                               |
|   |        | $[100t^2 - 1]$                 | 80t - 63 = 0]                                          | M1               |      | For solv<br>total tim                | ing a quadratic eq<br>e T                                        | uation for the                |
|   |        | (10T – 21                      | (10T + 3) = 0                                          | A1               |      | T = 2.1                              | only                                                             |                               |
| 5 | (i)    | KE gain =                      | $= 550v^2$                                             | B1               |      |                                      |                                                                  |                               |
|   |        | PE gain =                      | 1000 <i>x</i>                                          | B1               |      |                                      |                                                                  |                               |
|   |        | [1800x = 3                     | $550v^2 + 1000x + 700x]$                               | M1               |      |                                      |                                                                  |                               |
|   |        | <i>k</i> = 5.5                 |                                                        | A1√ <sup>*</sup> | [4]  | ft for i of $x$                      | ncorrect coeff(s)                                                | of $v^2$ and/or               |
|   | (ii)   | At A 5.5v                      | $v^2 = 1760 \rightarrow v^2 = 320$                     | B1               |      |                                      |                                                                  |                               |
|   |        |                                |                                                        | M1               |      | For usin<br>DF –WI                   | g from A, KEgair<br>D against R                                  | n= WD by                      |
|   |        | $550(v^2 - 3)$<br>1800(x - 3)  | (20) = (1760) - 700(x - 1760)                          | A1               |      |                                      |                                                                  |                               |
|   |        | $v^2 = 2x - 3$                 | 3200 (cwo)                                             | A1               | [4]  | AG                                   |                                                                  |                               |
|   |        | <b>Alternati</b><br>[1800 – 70 | ve for part (ii)<br>$00 = 1100a$ and $5.5v^2 = 1760$ ] | M1               |      | For appl<br>accelera<br>$kv^2 = x$ t | ying Newton's 2r<br>tion along AB <b>an</b><br>o find $v^2$ at A | nd Law to find<br>d for using |
|   |        | a = 1 and                      | $v^2 = 320$                                            | A1               |      |                                      |                                                                  |                               |
|   |        | $[v^2 = 320]$                  | (x - 1760)                                             | M1               |      | For usin<br>A to B                   | $g v^2 = u^2 + 2as \text{ for}$                                  | r motion from                 |
|   |        | $v^2 = 2x - 3$                 | 3200                                                   | Al               | [4]  | 2                                    |                                                                  |                               |
| 6 | (i)    |                                |                                                        | M1               |      | For usin<br>particles<br>(M + m)     | g Newton's second<br>and eliminating $a = (M - m)g$              | d law for both<br>Γ, or using |
|   |        | Accelerat                      | ion is $5 \mathrm{ms}^{-2}$                            | A1               |      |                                      |                                                                  |                               |
|   |        |                                |                                                        | M1               |      | For usin                             | $g s = 0 + \frac{1}{2} at^2$                                     |                               |
|   |        | Distance is 0.9 m              |                                                        | A1               | [4]  |                                      |                                                                  |                               |
|   | (ii)   | $\frac{1}{2} 0.6 \times V$     | $V = 0.9 \rightarrow V = 3$                            | B1√^             |      | ft distan                            | ce in (i)                                                        |                               |
|   |        |                                |                                                        | M1               |      | For usin $0 = 1$                     | g<br>V – g(T – 0.6)                                              |                               |
|   |        | T = 0.9                        |                                                        | A1               | [3]  |                                      |                                                                  |                               |

| Page 6 |              | age 6                                               | Mark Sche                                                  | eme      |                 |                                                              | Syllabus Paper                   |                   |  |  |
|--------|--------------|-----------------------------------------------------|------------------------------------------------------------|----------|-----------------|--------------------------------------------------------------|----------------------------------|-------------------|--|--|
|        |              |                                                     | GCE A LEVEL – Ma                                           | y/June 2 | 2014            |                                                              | 9709                             | 41                |  |  |
|        |              |                                                     |                                                            |          |                 |                                                              |                                  |                   |  |  |
|        | (iii)        | $[s_{up} = \frac{1}{2} C]$ $s_{down} =$             | $0.9 \times 3$ and<br>$= 0 + \frac{1}{2} g(1.6 - 0.9)^2$ ] | M1       |                 | For using area property in graph or equivalent               |                                  |                   |  |  |
|        |              | Distance u<br>distan                                | upwards is 1.35 m and<br>ce downwards is 2.45 m            | A1       |                 |                                                              |                                  |                   |  |  |
|        |              | h = 1.1                                             |                                                            | B1√^     | [3]             | ft s <sub>dowr</sub>                                         | $s_{up} - s_{up}$                |                   |  |  |
| 7      | (i)          |                                                     |                                                            | M1       |                 | For usin                                                     | $g s = ut + \frac{1}{2} at^2 to$ | o find the        |  |  |
|        |              |                                                     |                                                            |          |                 | distance<br>find P's                                         | AB, or for using speed at B      | v = u + at to     |  |  |
|        |              | $AB = 3 \times$                                     | $400 + \frac{1}{2} \ 0.005 \times 400^2 = 1600 \mathrm{m}$ |          |                 |                                                              |                                  |                   |  |  |
|        |              | (AG)<br>or                                          | 2                                                          | PR       |                 |                                                              |                                  |                   |  |  |
|        |              | $v_{\rm B} = 3 + 0$<br>$v_{\rm B} = 3 + 0$          | $0.005 \times 400 = 5 \mathrm{ms}^{-1}$                    | A1       |                 |                                                              |                                  |                   |  |  |
|        |              | $v_{\rm B} = 3 + 0$                                 | 1                                                          |          |                 | $\mathbb{N}$                                                 |                                  |                   |  |  |
|        |              | $AB = 3 \times$                                     | $400 + \frac{1}{2} \ 0.005 \times 400^2 = 1600 \mathrm{m}$ | B1       |                 |                                                              |                                  |                   |  |  |
|        | <b>(••</b> ) | (AG)                                                |                                                            |          | [3]             | <b>F</b> .                                                   | c <sup>400</sup> tr 1c00         |                   |  |  |
|        | (11)         |                                                     |                                                            | MI       |                 | For usin                                                     | $g J_0^{-1} v dt = 1600$         |                   |  |  |
|        |              | $[0.02t^2 - 0]$                                     | $0.0001t^3/3 + kt]_0^{400} = 1600$                         | A1       |                 |                                                              |                                  |                   |  |  |
|        |              | 400k = 16                                           | $100 - 0.02 \times 400^2 + 100^3 \div 2$                   |          |                 |                                                              |                                  |                   |  |  |
|        |              | k = 4 - 8 - 8                                       | +16/3 = 4/3                                                | A1       |                 | .5                                                           |                                  |                   |  |  |
|        |              | $\begin{bmatrix} dv/dt = 0\\ (= 0 w) \end{bmatrix}$ | .04 - 0.0002t<br>then t = 200)                             | M1       | р. <sup>с</sup> | For diffe                                                    | erentiating and so               | lving $dv/dt = 0$ |  |  |
|        |              | $v_{\text{max}} = 0.0$                              | $4 \times 200 - 0.0001 \times 200^2 + 4/3$                 | A1√      |                 | ft incorr<br>dv/dt = 0                                       | ect k or incorrect               | value of t from   |  |  |
|        |              | Maximum                                             | n speed is $5.33 \mathrm{ms}^{-1}$                         | A1       | [6]             | For using constant speed $5 \text{ ms}^{-1} = 1400/\text{T}$ |                                  |                   |  |  |
| (i     | iii)         |                                                     |                                                            | M1       |                 |                                                              |                                  |                   |  |  |
|        |              | Time take                                           | n is 280 s                                                 | A1       |                 |                                                              |                                  |                   |  |  |
|        |              | [1400 = 4]                                          | $/3 \times 280 + \frac{1}{2} 280^2 a]$                     | M1       |                 | For usin                                                     | $g s = ut + \frac{1}{2} at^2 ta$ | o find a          |  |  |
|        |              | a = 0.0262                                          | 2                                                          | A1       | [4]             |                                                              |                                  |                   |  |  |

### MARK SCHEME for the October/November 2013 series

## 9709 MATHEMATICS

9709/43

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2013 | 9709     | 43    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2013 | 9709     | 43    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

|   | Pa   | Page 4 Mark Scheme                          |                                          | Syllabus                  | Paper     |                    |                                                                                      |                                                              |  |
|---|------|---------------------------------------------|------------------------------------------|---------------------------|-----------|--------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
|   |      |                                             | GCE A                                    | LEVEL – October/Nov       | vember 20 | 13                 | 9709                                                                                 | 43                                                           |  |
|   |      |                                             |                                          |                           |           |                    |                                                                                      |                                                              |  |
| 1 | (i)  | $[-(1 \div 3)(W\cos\alpha) - W\sin\alpha =$ |                                          | $in\alpha = (W/g)a]$      | M1        |                    | For using Newton' $F = \mu R$                                                        | s 2 <sup>nd</sup> law and                                    |  |
|   |      | (-0.32 - 0                                  | (0.28)g = a                              |                           | A1        |                    |                                                                                      |                                                              |  |
|   |      | a =6.                                       |                                          |                           | A1        | 3                  | AG                                                                                   |                                                              |  |
|   | (ii) | $[0 = 5.4^2]$<br>[mgs(0.28)                 | +2(-6)s or<br>8) = $\frac{1}{2}m(5.4)^2$ | -mgs(0.96)/3]             | M1        |                    | For using $0 = u^2 + 2as$ or<br>for using PE gain = KE loss – WD<br>against friction |                                                              |  |
|   |      | Distance                                    | is 2.43 m                                |                           | A1        | 2                  |                                                                                      |                                                              |  |
| 2 |      |                                             |                                          |                           | M1        |                    | For using $a = (M - for applying Newtoand to B and solvin$                           | - m)g/(M+m) or<br>on's 2 <sup>nd</sup> law to A<br>ng for a. |  |
|   |      | a = 5                                       |                                          |                           | A1        |                    |                                                                                      |                                                              |  |
|   |      | When B r                                    | reaches the flo                          | or Par                    | RA        |                    |                                                                                      |                                                              |  |
|   |      | $v^2 = 2 \times 5$                          | $5 \times 1.6$ ; speed i                 | $s 4ms^{-1}$              | B1ft      | 0                  | ft a $a\neq g$ $v = \sqrt{3}$ .                                                      | 2a)                                                          |  |
|   |      |                                             |                                          |                           | M1        |                    | For using $0 = u^2 - u^2$<br>for using PE gain =                                     | 2gs or<br>= KE loss                                          |  |
|   |      | 0 = 16 - 2                                  | 20s                                      | (s = 0.8)                 | Alft      |                    | ft speed                                                                             |                                                              |  |
|   |      | h + 1.6 +                                   | $0.8 = 3 \rightarrow h =$                | 0.6                       | B1        | 6                  |                                                                                      |                                                              |  |
| 3 |      |                                             |                                          |                           | M1        |                    | For resolving force                                                                  | es on P vertically                                           |  |
|   |      | T <sub>A</sub> (1/2.6)                      | $+ T_{\rm B}(1/1.25) =$                  | = 10.5                    | A1        |                    |                                                                                      |                                                              |  |
|   |      |                                             |                                          |                           | M1        |                    | For resolving force<br>horizontally                                                  | es on P                                                      |  |
|   |      | $T_A(2.4/2.6) = T_B(0.75/1.25)$             |                                          | A1<br>M1                  |           | For solving for T. | and T <sub>P</sub>                                                                   |                                                              |  |
|   |      | Tension i                                   | n AP is 6.5 N                            | and tension in BP is 10 N | . A1      | 6                  |                                                                                      | + D                                                          |  |

| Page 5 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2013 | 9709     | 43    |

|       | First Alternative                                                                                              |           |   |                                                               |  |  |
|-------|----------------------------------------------------------------------------------------------------------------|-----------|---|---------------------------------------------------------------|--|--|
|       |                                                                                                                | M1        |   | For finding two angles in the triangle of forces              |  |  |
|       | 75.7(5)° opposite to 10.5 N<br>36.8(7)° opposite to $T_A$<br>67.3(8)° opposite to $T_B$                        | A1        |   |                                                               |  |  |
|       |                                                                                                                | M1        |   | For using the sine rule to find equations for $T_A$ and $T_B$ |  |  |
|       | $T_A \div \sin 36.8(7) = 10.5 \div \sin 75.7(5)$ and<br>$T_B \div \sin 67.3(8) = 10.5 \div \sin 75.7(5)$       | A1        |   |                                                               |  |  |
|       |                                                                                                                | M1        |   | For solving for $T_{\rm A}$ and $T_{\rm B}$                   |  |  |
|       | Tension in AP is 6.5 N and tension in BP is 10 N.                                                              | A1        | 6 |                                                               |  |  |
|       | Second A                                                                                                       | lternativ | e |                                                               |  |  |
|       | 19                                                                                                             | M1        | 2 | For finding angles at P in the space diagram.                 |  |  |
|       | 104.2(5)° opposite to 10.5 N<br>143.1(3)° opposite to $T_A$<br>112.6(2)° opposite to $T_B$                     | A1        |   |                                                               |  |  |
|       |                                                                                                                | M1        |   | For using Lami's rule to find equations for $T_A$ and $T_B$   |  |  |
|       | $T_{A} \div \sin 143.1(3) = 10.5 \div \sin 104.2(5)\&$<br>$T_{B} \div \sin 112.6(2) = 10.5 \div \sin 104.2(5)$ | A1        |   |                                                               |  |  |
|       | 44                                                                                                             | M1        | 0 | For solving for $T_{\rm A}$ and $T_{\rm B}$                   |  |  |
|       | Tension in AP is 6.5 N and tension in BP is 10 N.                                                              | A1        | 6 |                                                               |  |  |
| 4 (i) | $[Wsin\alpha + F = 40]$                                                                                        | M1        |   | For resolving forces parallel to the plane                    |  |  |
|       | $F = 40 - 300 \times 0.1  (= 10)$                                                                              | A1        |   |                                                               |  |  |
|       | $R = 300\sqrt{(1 - 0.1^2)} \ (= 298.496)$                                                                      | B1        |   |                                                               |  |  |
|       |                                                                                                                | M1        |   | For using $\mu = F/R$                                         |  |  |
|       | Coefficient is 0.0335                                                                                          | A1        | 5 |                                                               |  |  |

|   | Pa   | ge 6                                                                            | Mark Scheme                                                                      |         | Syllabus | Paper                                                                                                                                                               |                                                               |  |
|---|------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
|   |      |                                                                                 | GCE A LEVEL – October/Nove                                                       | mber 20 | 13       | 9709                                                                                                                                                                | 43                                                            |  |
|   | (ii) | [The component of weight (30 N) is greater than<br>the frictional force (10 N)] |                                                                                  |         |          | For comparing the<br>component parallel<br>the frictional force<br>Newton's Second I<br>the acceleration                                                            | weight<br>to the plane and<br>or for using<br>Law and finding |  |
|   |      | Box does                                                                        | not remain in equilibrium                                                        | A1      | 2        |                                                                                                                                                                     |                                                               |  |
| 5 | (i)  |                                                                                 |                                                                                  | B1      |          | The sketch requires three straight<br>line segments with +ve, zero and –<br>ve slopes in order, which together<br>with a segment of the t axis form a<br>trapezium. |                                                               |  |
|   |      |                                                                                 |                                                                                  | M1      |          | For using $v = at$ for $u = -at$ for                                                                                                                                | $T_1 \text{ or } T_3$                                         |  |
|   |      | $T_1 = V \div$                                                                  | 0.3, $T_3 = V$                                                                   | A1      | 3        |                                                                                                                                                                     |                                                               |  |
|   | (ii) | $[S = \frac{1}{2} T_1]$                                                         | $V + T_2 V + \frac{1}{2} T_3 V$ ]                                                | M1      |          | For using the area property for the distance travelled                                                                                                              |                                                               |  |
|   |      |                                                                                 |                                                                                  | M1      |          | For substituting for<br>terms of V                                                                                                                                  | $T_1$ , $T_2$ and $T_3$ in                                    |  |
|   |      | S = 552V                                                                        | $ \begin{aligned} & -V \{ 0.5(T_1 + T_3) \} \\ &= 552V - 13V^2/6 \end{aligned} $ | A1      | -        |                                                                                                                                                                     |                                                               |  |
|   |      | $13V^2 - 33$                                                                    | 312V + 72000=0                                                                   | B1      |          | AG                                                                                                                                                                  |                                                               |  |
|   |      | V = 24                                                                          |                                                                                  | B1      | 5        |                                                                                                                                                                     |                                                               |  |
| 6 | (i)  | [144000/                                                                        | v - 4800<br>= 12500a]                                                            | M1      |          | For using $DF = P/x^{2^{nd}}$ law at A or at B                                                                                                                      | y and Newton's                                                |  |
|   |      | Accelerat                                                                       | ion at A is 0.336 ms <sup>-2</sup>                                               | A1      | 9        |                                                                                                                                                                     |                                                               |  |
|   |      | The speed                                                                       | d at B 24 ms <sup>-1</sup>                                                       | A1      | 3        | AG                                                                                                                                                                  |                                                               |  |
|   | (ii) | WD by D                                                                         | $F = 5800 \times 500 \&$                                                         |         |          |                                                                                                                                                                     |                                                               |  |
|   |      | WD again                                                                        | nst res'ce = $4800 \times 500$                                                   | B1      |          |                                                                                                                                                                     |                                                               |  |
|   |      | Loss in K                                                                       | $E = \frac{1}{2}12500(24^2 - 16^2)$                                              | B1      |          |                                                                                                                                                                     |                                                               |  |
|   |      |                                                                                 |                                                                                  | M1      |          | For using WD by DF = PE gain –<br>KE loss + WD against res'ce                                                                                                       |                                                               |  |
|   |      | 5800x500<br><sup>1</sup> ⁄ <sub>2</sub> 12500(                                  | $0 = 12500 \text{gh} - 24^2 - 16^2) + 4800 \times 500$                           | A1      |          |                                                                                                                                                                     |                                                               |  |
|   |      | Height of                                                                       | °C is 20 m                                                                       | A1      | 5        |                                                                                                                                                                     |                                                               |  |

| Page 7 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2013 | 9709     | 43    |

|       | (ii) Alternative                                                           |            |   |                                                               |
|-------|----------------------------------------------------------------------------|------------|---|---------------------------------------------------------------|
|       | $[16^2 = 24^2 + 2 \times 500a]$                                            | M1         |   | For using $v^2 = u^2 + 2as$                                   |
|       | $a = -0.32 \text{ ms}^{-2}$                                                | A1         |   |                                                               |
|       |                                                                            | M1         |   | For using Newton's second law                                 |
|       | $5800-4800 - 12500g \times (h \div 500) = 12500(-0.32)$                    | A1         |   |                                                               |
|       | Height of C is 20 m                                                        | A1         | 5 |                                                               |
| 7 (i) | $[s=k_1t^2/2 - 0.005t^3/3+(C)]$                                            | M1         |   | For using $s = \int v dt$                                     |
|       | $[k_1(60^2/2) - 0.005(60^3/3) = 540]$                                      | DM1        |   | For using limits 0 and 60 and equating to 540                 |
|       | $k_1 = 0.5$                                                                | A1         |   |                                                               |
|       | $0.5 \times 60 - 0.005 \times 60^2 = k_2 \div \sqrt{60}$                   | M1         |   | For using $v_1(60) = v_2(60)$                                 |
|       | $k_2 = 12\sqrt{60}$                                                        | A1         | 5 | AG                                                            |
| (ii)  |                                                                            | M1         |   | For using $s = 540 + 12\sqrt{60} \int_{60}^{t} (t^{-1/2}) dt$ |
|       | $[s = 540 + 12\sqrt{60}(2\sqrt{t} - 2\sqrt{60}) =]$<br>24\sqrt{(60t)} -900 | <b>A</b> 1 | 2 | Accept any other correct form for s if it is used in (iii)    |
| (iii) | $[24\sqrt{(60t)} - 900 = 1260]$                                            | M1         |   | For solving $s(t) = 1260$ for t                               |
|       | t = 135                                                                    | A1         |   |                                                               |
|       | $v = 12\sqrt{60} \div \sqrt{135}$ speed is 8 ms <sup>-1</sup>              | B1         | 3 |                                                               |

### MARK SCHEME for the October/November 2013 series

## 9709 MATHEMATICS

9709/42

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                            | Syllabus | Paper |  |
|--------|----------------------------------------|----------|-------|--|
|        | GCE AS/A LEVEL – October/November 2012 | 9709     | 42    |  |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                            | Syllabus | Paper |
|--------|----------------------------------------|----------|-------|
|        | GCE AS/A LEVEL – October/November 2012 | 9709     | 42    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.
| Page 4 | Mark Scheme                            | Syllabus | Paper |
|--------|----------------------------------------|----------|-------|
|        | GCE AS/A LEVEL – October/November 2013 | 9709     | 42    |

| 1             | Applying<br>T cos $\beta$ = W sin $\alpha$                                                                 | M1<br>A1 |   | For resolving forces parallel to the line of greatest slope<br>T $(24/25) = 5.1 (8/17)$ or<br>T cos $16.26 = 5.1 \sin 28.07$ |
|---------------|------------------------------------------------------------------------------------------------------------|----------|---|------------------------------------------------------------------------------------------------------------------------------|
|               | Tension is 2.5 N                                                                                           | A1       | 3 |                                                                                                                              |
| First Alterna | tive Marking Scheme                                                                                        |          |   |                                                                                                                              |
|               |                                                                                                            | M1       |   | For resolving forces vertically or horizontally                                                                              |
|               | Applying<br>$R \cos \alpha + T \sin (\alpha + \beta) = W$ and<br>$R \sin \alpha = T \cos (\alpha + \beta)$ | A1       |   | R cos $28.07 + T sin 44.33 = 5.1$<br>and<br>R sin $28.07 = T cos 44.33$                                                      |
|               | Tension is 2.5 N                                                                                           | A1       | 3 |                                                                                                                              |
| Second Alter  | native Marking Scheme                                                                                      |          |   |                                                                                                                              |
|               |                                                                                                            | M1       |   | Using Triangle of forces                                                                                                     |
|               | Applying<br>T / sin $\alpha = 5.1$ / sin (90 + $\beta$ )                                                   | A1       |   | T / sin 28.07 = 5.1 / sin 106.26                                                                                             |
|               | Tension is 2.5 N                                                                                           | A1       | 3 |                                                                                                                              |
|               |                                                                                                            |          |   |                                                                                                                              |

| 2 |                                                                                                     | M1 |   | For using KE = $\frac{1}{2}$ m v <sup>2</sup><br>or WD = F d cos $\alpha$ |
|---|-----------------------------------------------------------------------------------------------------|----|---|---------------------------------------------------------------------------|
|   | Gain in KE = $\frac{1}{2} 25 \times 3^2$<br>or<br>WD by pulling force = $220 \times 15 \cos \alpha$ | A1 |   |                                                                           |
|   | WD by pulling force = $220 \times 15 \cos \alpha$<br>or<br>Gain in KE = $\frac{1}{2} 25 \times 3^2$ | B1 |   |                                                                           |
|   | $[3300 \cos \alpha = 112.5 + 3000]$                                                                 | M1 |   | For using WD by pulling<br>force = KE gain + WD<br>against resistance     |
|   | $\alpha = 19.4$                                                                                     | A1 | 5 |                                                                           |

|   | Page 5 Mark Scheme                     |                         |                                                 | Syllabus | Paper |                                                    |                                             |
|---|----------------------------------------|-------------------------|-------------------------------------------------|----------|-------|----------------------------------------------------|---------------------------------------------|
|   | GCE AS/A LEVEL – October/November 2013 |                         |                                                 | 9709     | 42    |                                                    |                                             |
| 3 | (i)                                    |                         |                                                 | M1       |       | For using $F = P/v$<br>law with $a = 0$            | and Newton's 2 <sup>nd</sup>                |
|   |                                        | 100/                    | $4 - 4k = 0 \longrightarrow k = 6.25$           | A1       | 2     | AG                                                 |                                             |
|   | (ii)                                   |                         |                                                 | M1       |       | For using Newton $a = 0$ uphill $\rightarrow 3$ to | 's 2 <sup>nd</sup> law with<br>erm equation |
|   |                                        | 100/                    | $v - 70g \times 0.05 - 6.25v = 0$               | A1       |       |                                                    |                                             |
|   |                                        | [6.2<br>[v <sup>2</sup> | $5v^2 + 35v - 100 = 0$ ] or<br>+ 5.6v - 16 = 0] | M1       |       | For solving a 3-ter                                | m quadratic for v                           |
|   |                                        | Max                     | timum speed is 2.08 ms <sup>-1</sup>            | A1       | 4     |                                                    |                                             |

| 4 | TPR                                                                                                           | M1 |   | For resolving three forces parallel to the plane                          |
|---|---------------------------------------------------------------------------------------------------------------|----|---|---------------------------------------------------------------------------|
|   | $0.6g\sin\alpha = F + P\cos\alpha$                                                                            | A1 | 0 | Value of $\alpha$ used or values of sin $\alpha$<br>and cos $\alpha$ used |
|   |                                                                                                               | M1 |   | For resolving three forces perpendicular to the plane                     |
|   | $R = 0.6g \cos \alpha + P \sin \alpha$                                                                        | A1 |   | Value of $\alpha$ used or values of sin $\alpha$ and cos $\alpha$ used    |
|   |                                                                                                               | M1 |   | For using $F = \mu R$                                                     |
|   | $\begin{array}{l} 0.6g \sin \alpha - P \cos \alpha = \\ 0.4 \ (0.6g \cos \alpha + P \sin \alpha) \end{array}$ | A1 |   | Value of $\alpha$ used or values of sin $\alpha$ and cos $\alpha$ used    |
|   | 6(12/13) - P(5/13) = 2.4(5/13) + 0.4P(12/13)                                                                  | M1 |   | For solving the resultant equation for P                                  |
|   | P = 6.12                                                                                                      | A1 | 8 |                                                                           |

| Page 6 | Mark Scheme                            | Syllabus | Paper |
|--------|----------------------------------------|----------|-------|
|        | GCE AS/A LEVEL – October/November 2013 | 9709     | 42    |

| Alternative Marking Scheme                                                 |    |   |                                                                        |  |  |  |  |
|----------------------------------------------------------------------------|----|---|------------------------------------------------------------------------|--|--|--|--|
|                                                                            | M1 |   | For resolving three forces vertically                                  |  |  |  |  |
| $W = R \cos \alpha + F \sin \alpha$                                        | A1 |   | Value of $\alpha$ used or values of sin $\alpha$ and cos $\alpha$ used |  |  |  |  |
|                                                                            | M1 |   | For resolving three forces horizontally                                |  |  |  |  |
| $P = R \sin \alpha - F \cos \alpha$                                        | A1 |   | Value of $\alpha$ used or values of sin $\alpha$ and cos $\alpha$ used |  |  |  |  |
|                                                                            | M1 |   | For using $F = \mu R$<br>in both equations                             |  |  |  |  |
| 0.6g = R(5/13) + 0.4R(12/13) and<br>P = R(12/13) - 0.4R(5/13)              | A1 |   | Value of $\alpha$ used or values of sin $\alpha$ and cos $\alpha$ used |  |  |  |  |
| 78 = R(5 + 4.8) and 13P = R(12 − 2)<br>$\rightarrow$ 13P = (78 ÷ 9.8) × 10 | M1 | 0 | For finding R and substituting into<br>an expression for P             |  |  |  |  |
| P = 6.12                                                                   | A1 | 8 |                                                                        |  |  |  |  |

| 5 (i) | $[s = t^2/2 - 0.1t^3/3]$                                                                                     | M1*  |        | For integrating to find s for $0 \le t \le 5$                                                                                                 |
|-------|--------------------------------------------------------------------------------------------------------------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|       | $[s_1 = 25/2 - 0.1 \times 125/3]$                                                                            | DM1* |        | For obtaining $s_1$ by using limits 0 to<br>5 or having zero for constant of<br>integration (can be implied) and<br>substituting $t = 5$      |
|       | s <sub>1</sub> = 8.33                                                                                        | A1   | 3      |                                                                                                                                               |
| (ii)  | <sup>s</sup> .satpre                                                                                         | P.   | M<br>1 | For using $s = v(5) \times (45 - 5)$ for $5 \le t \le 45$                                                                                     |
|       | $s_2 = 2.5 \times 40$                                                                                        | A1   |        |                                                                                                                                               |
|       | $[s = 9t^2/2 - 0.1t^3/3 - 200t$ for $45 \le t \le 50]$                                                       | M1   |        | For integrating to find s for $45 \le t$<br>$\le 50$ and implying the use of limits<br>45 and 50 or equivalent via<br>constant of integration |
|       | $s_{3} = [9(50)^{2} / 2 - 0.1(50)^{3} / 3 - 200(50)] - [9(45)^{2} / 2 - 0.1(45)^{3} / 3 - 200(45)] [= 8.33]$ | A1   |        | For applying the limits at 45 and 50 correctly or equivalent via constant of integration                                                      |

| Page 7 | Mark Scheme                            | Syllabus | Paper |
|--------|----------------------------------------|----------|-------|
|        | GCE AS/A LEVEL – October/November 2013 | 9709     | 42    |

| Alternative mark scheme for previous 2 marks |                                                                                                                                                                                                                                              |      |   |                                                     |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|-----------------------------------------------------|--|
|                                              | Recognising the symmetry of the velocity<br>distribution due to the correspondence of the<br>points<br>$(0,0) \rightarrow (50,0)$ and $(5,2.5) \rightarrow (45,2.5)$<br>Complete the idea of symmetry with one<br>further property and hence | (M1) |   | Property is any one of $a(0) = -a(50)$              |  |
|                                              | State $s_3 = s_1 = 8.33$                                                                                                                                                                                                                     | (A1) |   | a(5) = a(50)<br>a(5) = a(45)<br>v(2.5) = v(47.5) oe |  |
|                                              | Distance from O to A is 117m                                                                                                                                                                                                                 | A1   |   |                                                     |  |
|                                              | Average speed is 2.33 ms <sup>-1</sup>                                                                                                                                                                                                       | B1ft | 6 | ft answer for total distance                        |  |

| 6 (i)         | AT PF                                                                                               | M1   |   | For applying Newton's 2 <sup>nd</sup> law to A or B      |
|---------------|-----------------------------------------------------------------------------------------------------|------|---|----------------------------------------------------------|
|               | T - 0.4g = 0.4a or $1.6g - T = 1.6a$                                                                | A1   | 0 |                                                          |
|               | 1.6g - T = 1.6a or $T - 0.4g = 0.4aor 1.6g - 0.4g = (1.6 + 0.4)a$                                   | B1   |   |                                                          |
|               | T = 6.4                                                                                             | A1   |   |                                                          |
|               | Work done by tension is 7.68 J                                                                      | B1ft | 5 |                                                          |
| Alternative n | nark scheme for 6 (i)                                                                               |      |   |                                                          |
|               | 22                                                                                                  | M1   |   | For applying Newton's 2 <sup>nd</sup> law to A or B      |
|               | T - 0.4g = 0.4a or $1.6g - T = 1.6a$                                                                | A1   |   |                                                          |
|               | 1.6g - T = 1.6a or $T - 0.4g = 0.4aor 1.6g - 0.4g = (1.6 + 0.4)a$                                   | B1   |   |                                                          |
|               | WD by T = initial PE – final KE<br>= $1.6 \times g \times 1.2 - \frac{1}{2} \times 1.6 \times 14.4$ | M1   |   | For finding $v^2$ and applying Work/Energy equation to B |
|               | WD by $T = 19.2 - 11.52 = 7.68$                                                                     | A1   | 5 |                                                          |

| Page 8                                                       | Page 8 Mark Scheme |                                                          |          | Syllabus | Paper                                                                                            |                                |
|--------------------------------------------------------------|--------------------|----------------------------------------------------------|----------|----------|--------------------------------------------------------------------------------------------------|--------------------------------|
|                                                              |                    | GCE AS/A LEVEL – October/No                              | vember 2 | 2013     | 9709                                                                                             | 42                             |
|                                                              | 1                  |                                                          |          |          |                                                                                                  |                                |
| 6 (ii)                                                       | [1.6               | $\times 10 \times 1.2 = \frac{1}{2} 1.6 v^2 + 7.68$ ]    | M1       |          | For using PE loss =<br>KE gain + W<br>to find $v^2$                                              | =<br>/D by T                   |
|                                                              | $v^2 =$            | 14.4                                                     | A1       |          |                                                                                                  |                                |
| $14.4 = 2 \times 10 \times h$<br>h = 0.72<br>H = 2 × 1.2 + h |                    | $h = 2 \times 10 \times h$<br>0.72<br>$2 \times 1.2 + h$ | M1       |          | For using PCE for<br>B reaches the groun<br>$0 = u^2 - 2gh$<br>and $H = 2 \times 1.2 + 1$        | A's motion after<br>nd or<br>h |
|                                                              | Grea               | atest height is 3.12 m                                   | A1       | 4        |                                                                                                  |                                |
| First Alterna                                                | tive N             | Aarking Scheme for 6 (ii)                                |          |          |                                                                                                  |                                |
|                                                              | [v <sup>2</sup> =  | $= 2 \times 6 \times 1.2$ ]                              | M1       |          | For using $v^2 = 2as^2$                                                                          | to find $v^2$                  |
|                                                              | $v^2 =$            | 14.4                                                     | A1       |          |                                                                                                  |                                |
| $14.4 = 2 \times 10 \times h$<br>h = 0.72<br>H = 2 × 1.2 + h |                    | $h = 2 \times 10 \times h$<br>0.72<br>$2 \times 1.2 + h$ | M1       | 101      | For using PCE for<br>B reaches the groun<br>$0 = u^2 - 2gh$<br>and $H = 2 \times 1.2 + 10^{-10}$ | A's motion after<br>nd or<br>h |
|                                                              | Grea               | atest height is 3.12 m                                   | A1       | 4        |                                                                                                  |                                |
| Second Alter                                                 | nativ              | e Marking Scheme for 6 (ii)                              |          | -        |                                                                                                  |                                |
|                                                              | WD<br>7.68         | by T = Increase in PE<br>= $0.4 \times g \times s$       | M1       |          | For applying WD b<br>A's complete motion                                                         | by T to particle               |
|                                                              | $\mathbf{s} = 1$   | 1.92                                                     | A1       |          |                                                                                                  |                                |
| H = 1.2 + s                                                  |                    | 1.2 + s                                                  | M1       | 1        | For adding 1.2 to s                                                                              |                                |
|                                                              | H =                | 1.2 + 1.92 = 3.12 Height = $3.12$ m                      | A1       | 4        |                                                                                                  |                                |
|                                                              |                    | arpre                                                    |          |          |                                                                                                  |                                |

|   | Page 9 |                   | Mark Scheme                                                                                           | Syllabus | Paper |                                                 |                                         |
|---|--------|-------------------|-------------------------------------------------------------------------------------------------------|----------|-------|-------------------------------------------------|-----------------------------------------|
|   |        |                   | GCE AS/A LEVEL – October/Nov                                                                          | ember 2  | 2013  | 9709                                            | 42                                      |
| 7 | (i)    | [s =              | $\frac{1}{2} 5 \times 0.4 + 19 \times 0.4 + \frac{1}{2} 4 \times 0.4$ ]                               | M1       |       | For using the area distance                     | property for                            |
|   |        | Dist              | ance = 9.4                                                                                            | A1       | 2     |                                                 |                                         |
|   | (ii)   | Acc               | eleration is $0.08 \text{ ms}^{-2}$                                                                   | B1       |       |                                                 |                                         |
|   |        | Dec               | eleration is $0.1 \text{ms}^{-2}$                                                                     | B1       | 2     |                                                 |                                         |
|   | (iii)  | [T –              | (800 + 100) g = (800 + 100)a]                                                                         | M1       |       | For applying Newt<br>the <u>elevator and bo</u> | on's 2 <sup>nd</sup> law to<br><u>x</u> |
|   |        | Τ-                | 900g = 900a                                                                                           | A1       |       |                                                 |                                         |
|   |        | T =<br>T =<br>T = | 9072 N in 1 <sup>st</sup> stage<br>9000 N in 2 <sup>nd</sup> stage<br>8910 N in 3 <sup>rd</sup> stage | A 1      | 3     |                                                 |                                         |
|   |        | 1                 | 6910 IV III 5 Stage                                                                                   | 711      | 5     |                                                 |                                         |
|   | (iv)   | [R –              | 100g = 100a]                                                                                          | M1       |       | For applying Newt<br>the <u>box</u>             | on's 2 <sup>nd</sup> law to             |
|   |        | R =               | 1008 N                                                                                                | A1       |       | For obtaining the g<br>the force on the bo      | reatest value of<br>x                   |
|   |        | R =               | 990 N                                                                                                 | A1       | 3     | For obtaining the le<br>force on the box        | east value of the                       |

## MARK SCHEME for the October/November 2013 series

# 9709 MATHEMATICS

9709/41

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                            | Syllabus | Paper |
|--------|----------------------------------------|----------|-------|
|        | GCE AS/A LEVEL – October/November 2013 | 9709     | 41    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √<sup>h</sup> implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                            | Syllabus | Paper |
|--------|----------------------------------------|----------|-------|
|        | GCE AS/A LEVEL – October/November 2013 | 9709     | 41    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

|   | Page | 4               | Mark Sc                                                                 | Syllabus | Paper |                                                                      |                                         |                              |
|---|------|-----------------|-------------------------------------------------------------------------|----------|-------|----------------------------------------------------------------------|-----------------------------------------|------------------------------|
|   |      |                 | GCE AS/A LEVEL – Oct                                                    | ober/No  | ovemb | er 2013                                                              | 9709                                    | 41                           |
| 1 | ITe  | osa = m         | σ]                                                                      | M1       |       | For resolv                                                           | ing forces vertica                      | 11 <sub>v</sub>              |
| 1 |      |                 |                                                                         | 1011     |       | 1011050101                                                           | ing forces vertica                      | lly                          |
|   | Ten  | IS101 1S 2      | 3.4 N                                                                   | AI       |       |                                                                      |                                         |                              |
|   | [F = | = Tsinα]        |                                                                         | M1       |       | For resolv                                                           | ing forces horizon                      | ntally                       |
|   | F =  | 1.6             |                                                                         | A1       | 4     |                                                                      |                                         |                              |
| 2 | (i)  | [WD =           | $= 30 \times 20 \times 0.6 \\ + 40 \times 20 \times 0.8]$               | M1       |       | For using '                                                          | WD = Fdcosθ                             |                              |
|   |      | Work            | done is 1000 J                                                          | A1       | 2     |                                                                      |                                         |                              |
|   | (ii) |                 |                                                                         | M1       |       | For applying with $a = 0$                                            | ng $F = \mu W$ and N                    | lewton's 2 <sup>nd</sup> law |
|   |      | $30 \times 0.0$ | $.6 + 40 \times 0.8 - 0.625 W = 0$                                      | A1       |       |                                                                      |                                         |                              |
|   |      | Weigh           | t is 80 N                                                               | A1       | 3     |                                                                      |                                         |                              |
| 3 | (i)  |                 | 67                                                                      | M1       |       | For applying Newton's 2 <sup>nd</sup> law to the bicycle/cyclist     |                                         |                              |
|   |      | F – 78          | $0 \times (36 \div 325) - 32$<br>= 78 × (-0.2)                          | A2       |       | (A2 for all correct, A1 for one error, A0 fo<br>more than one error) |                                         | one error, A0 for            |
|   |      | F = 10          | 3 (102.8 exact)                                                         | A1       | 4     |                                                                      |                                         |                              |
|   | (ii) | $[0 = 7^2]$     | $(2^{2}+2(-0.2)s]$                                                      | M1       |       | For using                                                            | $0 = u^2 + 2as$                         |                              |
|   |      | Distan          | ce is 122 5 m                                                           |          |       |                                                                      |                                         |                              |
|   |      | Distail         | (accept 122 or 123)                                                     | A1       | 2     |                                                                      |                                         |                              |
| 4 | (i)  | [– µmք          | g = ma]                                                                 | M1       |       | For using 1                                                          | Newton's $2^{nd}$ law $F = \mu R$ and R | ,<br>= mg                    |
|   |      | Decele          | erations of P and Q are $2 \text{ ms}^{-2}$ and 2.5 ms <sup>-2</sup> .  | A1       | 2     |                                                                      |                                         |                              |
|   | (ii) |                 |                                                                         | M1       |       | For using $s = ut + \frac{1}{2} at^2$<br>and $s_P = s_Q + 5$         |                                         | <sub>Q</sub> + 5             |
|   |      | $8t-t^2$        | $= 3t - 1.25t^2 + 5$                                                    | A1       |       |                                                                      |                                         |                              |
|   |      | $t = \sqrt{12}$ | 20 - 10 (=0.95445)                                                      | A1       |       | For using $v = u + at$ for both P and Q                              |                                         |                              |
|   |      |                 |                                                                         | M1       |       |                                                                      |                                         |                              |
|   |      | Speed           | of P = $6.09 \text{ ms}^{-1}$ ,<br>speed of Q = $0.614 \text{ ms}^{-1}$ | A1       | 5     |                                                                      |                                         |                              |

|   | Page 5 |                          | Mark Scheme                                                                 |        |         |              | Syllabus                    | Paper                         |
|---|--------|--------------------------|-----------------------------------------------------------------------------|--------|---------|--------------|-----------------------------|-------------------------------|
|   |        |                          | GCE AS/A LEVEL – Octo                                                       | ber/No | ovemb   | er 2013      | 9709                        | 41                            |
| 5 | (i)    | Gain ir                  | n PE =15000g × 16                                                           | B1     |         |              |                             |                               |
| - | (-)    | WD                       | reinet registeres -                                                         | 21     |         |              |                             |                               |
|   |        | wD ag                    | $1800 \times 1440$                                                          | B1     |         |              |                             |                               |
|   |        |                          |                                                                             |        |         | For using:-  | -                           |                               |
|   |        |                          |                                                                             |        |         | Gain in PE   | E                           |                               |
|   |        |                          |                                                                             | M1     |         | +            | WD against resi             | stance                        |
|   |        | Work                     | done is 4.99x10 <sup>6</sup> J                                              | A1     | 4       |              |                             |                               |
|   | (ii)   |                          |                                                                             |        |         | For using :  | _<br>                       |                               |
|   |        |                          |                                                                             |        |         | Increase in  | KE + WD agair               | nst resistance                |
|   |        |                          |                                                                             | M1     |         |              |                             |                               |
|   |        | 5030 0                   | 00 =<br>$000(24^2 - 15^2) + 16004$                                          | A 1    |         |              |                             |                               |
|   |        | 72 13                    | 000(24 - 13) + 1000d                                                        | AI     | Z6      |              |                             |                               |
|   |        | Distan                   | ce is 1500 m                                                                | Al     | 3       |              |                             |                               |
| 6 | (i)    |                          |                                                                             | M1     |         | For applyin  | ng Newton's 2 <sup>nd</sup> | law to A or to B              |
|   |        | т 0.2                    | 0.2                                                                         |        |         |              |                             |                               |
|   |        | 1 – 0.3                  | 3g = 0.3a  or<br>0.7g - T = 0.7a                                            | A1     |         |              |                             |                               |
|   |        | 0.7g –                   | T = 0.7a  or                                                                |        |         |              |                             |                               |
|   |        | 1                        | -0.3g = 0.3a  or<br>0.7g - 0.3g = (0.7 + 0.3)a                              | B1     |         |              |                             |                               |
|   |        | Tensio                   | n is 4.2 N                                                                  | A1     | 4       |              |                             |                               |
|   | (ii)   | a = 4                    | 2                                                                           | B1     |         | May be sco   | ored in (i)                 |                               |
|   |        | $s_{taut} = 1$           | (= 0.32) (= 0.32)                                                           | B1     | P.      |              |                             |                               |
|   |        | [(0.52                   | $+ 0.32) = -1.6t + 5t^2$ ]                                                  | M1     |         | For using s  | $u = ut + \frac{1}{2} gt^2$ |                               |
|   |        |                          |                                                                             |        |         | For solving  | g the resultant qu          | adratic                       |
|   |        | [(t-0.                   | 6)(5t+1.4) = 0]                                                             | M1     |         | equation.    |                             |                               |
|   |        | Time t                   | aken is 0.6 s                                                               | A1     | 5       |              |                             |                               |
|   | 1      |                          | Alternative Marking S                                                       | cheme  | for the | last three m | arks                        |                               |
|   |        | $0^2 = 1.$<br>$t_{up} =$ | $6^2 - 2gs_{up},$<br>$2s_{up}/(1.6 + 0)$ (= 0.16)                           | M1     |         | For using k  | kinematic formul            | lae to find t <sub>up</sub>   |
|   |        | 0.52 +                   | $ s_{taut} + s_{up} = 0 + \frac{1}{2} g t_{down}^{2} \\ (t_{down} = 0.44) $ | M1     |         | For using k  | kinematic formul            | lae to find t <sub>down</sub> |
|   |        | Time t                   | $aken = t_{up} + t_{down} = 0.6 s$                                          | B1     |         |              |                             |                               |

|   | Page 6 Mark Scheme                         |                                              |       | Syllabus | Paper                                    |                                                |                                   |
|---|--------------------------------------------|----------------------------------------------|-------|----------|------------------------------------------|------------------------------------------------|-----------------------------------|
|   |                                            | GCE AS/A LEVEL – Octo                        | ber/N | ovemb    | er 2013                                  | 9709                                           | 41                                |
| 7 | (i)                                        |                                              | M1    |          | For integra<br>(may be im<br>integration | ting 0.6t and usi<br>plied by absence          | ng $v(0) = 0$<br>e of constant of |
|   | $\mathbf{v}(t)=0.$                         | 3t <sup>2</sup>                              | A1    |          |                                          |                                                |                                   |
|   |                                            |                                              |       |          | be implied integration                   | ting v(t) and using by absence of contracts () | ng $s(0) = 0$ (may onstant of     |
|   |                                            |                                              | MI    |          |                                          |                                                |                                   |
|   | s(t) = 0.                                  | $1t^3$                                       | A1    |          |                                          |                                                |                                   |
|   | Velocity<br>100 m                          | v is 30 ms <sup>-1</sup> and displacement is | A1    | 5        |                                          |                                                |                                   |
|   | (ii)                                       |                                              |       |          | For integra                              | ting –0.4t and us                              | sing v(10) = 30                   |
|   |                                            |                                              | M1    |          |                                          |                                                |                                   |
|   | v(t) = -                                   | $0.2t^2 + 50$                                | A1    | T/       |                                          |                                                |                                   |
|   | At A, –0                                   | $0.2t^2 + 50 = 0 \implies t = \sqrt{250}$    | B1    |          |                                          |                                                |                                   |
|   |                                            |                                              | M1    |          | For integra                              | ting v(t) and usi                              | ng s(10) = 100                    |
|   | $\mathbf{s}(\mathbf{t}) = -\mathbf{t}^{T}$ | $\frac{3}{15} + 50t - \frac{1000}{3}$        | A1    |          |                                          |                                                |                                   |
|   |                                            |                                              | M1    |          | For finding                              | g s(√250)                                      |                                   |
|   | Distance                                   | e OA is 194 m                                | A1    | 7        |                                          |                                                |                                   |
|   |                                            | ZZZZ sat                                     | pr    | ep.      | .5<br>.0                                 |                                                |                                   |

# MARK SCHEME for the May/June 2013 series

# 9709 MATHEMATICS

9709/43

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9709     | 43    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Page 3 Mark Scheme             |      | Paper |
|--------|--------------------------------|------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9709 | 43    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{n}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4 |                  | Mark Scheme                                          |            | Syllabus | Paper                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
|--------|------------------|------------------------------------------------------|------------|----------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
|        |                  | GCE AS/A LEVEL – May                                 | /June 2    | 2013     |                                                   | 9709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43                               |  |
| 1      | [(W / g)         | $a = W \sin \alpha - 0.02 W \cos \alpha$ ]           | M1         |          | For us                                            | ing Newton's s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | econd law                        |  |
|        | a = (sin         | $14^{\circ} - 0.02 \cos 14^{\circ}) g$<br>(= 2.225 ) | A1         |          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
|        | $[v^2 = 8^2]$    | $+ 2 \times 2.225 \dots \times 50$ ]                 | M1         |          | For us                                            | $\operatorname{ing} v^2 = u^2 + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a s                              |  |
|        | Speed is         | s 16.9 m s <sup>-1</sup>                             | A1         | [4]      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
|        | 1                | Alternative                                          | Schem      | e        | T                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
| 1      | WD aga           | ainst friction = 0.02 W $\cos \alpha \times 50$      | B1         |          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
|        | PE loss          | $=$ W $\times$ 50 sin $\alpha$                       | B1         |          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
|        |                  |                                                      | M1         |          | For us<br>– WD                                    | ing Gain in KE<br>against friction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = Loss in PE                     |  |
|        | Speed is         | s 16.9 m s <sup>-1</sup>                             | A1         | [4]      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
| 2 (i)  |                  |                                                      | M1         |          | PE los                                            | s = B's loss – A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A's gain                         |  |
|        | Loss of          | $PE = 2g \times 3.24 - 1.6 g (3.24 \times 0.8)$      | A1         |          | $\mathbf{\Lambda}$                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
|        | Loss is          | 23.328 J.                                            | A1         | [3]      | AG                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
| (ii)   | 1/2 (1.6 -       | + 2) $v^2 = 23.328$                                  | B1         |          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
|        | Speed is         | $s 3.6 \text{ m s}^{-1}$                             | <b>B</b> 1 | [2]      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
|        |                  |                                                      | eP         | .00      | SR (m<br>second<br>$v^2 = u^2$<br>2g - 1<br>a = 2 | $\begin{array}{l} \text{(ax 1/2) for usin} \\ \text{(d law and)} \\ (d law a$ | g Newton's<br>1.6g × 0.8<br>1.6a |  |
|        |                  |                                                      |            |          | $v^2 = 2$                                         | $\times 2 \times 3.24$ v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 3.6 B1                         |  |
| 3      |                  |                                                      | M1         |          | For us                                            | ing $DF = P / v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |  |
|        |                  |                                                      | M1         |          | For us<br>both sj                                 | ing Newton's 2<br>peeds / accelera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>nd</sup> law for<br>tions   |  |
|        | 1000 P<br>1000 P | / 14 - R = 800 x 1.4 and<br>/ 25 - R = 800 x 0.33    | A1         |          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
|        |                  |                                                      | M1         |          | For so                                            | lving for P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |  |
|        | P = 27.2         | 2                                                    | A1         |          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |
|        | R = 825          | i                                                    | B1         | [6]      | Accep                                             | t 825.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |  |

|   | Page 5 |                                           | Mark Scheme                                                                                                         | Syllabus | Paper |                                                                                                            |                                                                             |                                                      |  |
|---|--------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------|-------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|--|
|   |        |                                           | GCE AS/A LEVEL – May                                                                                                | /June 2  | 2013  |                                                                                                            | 9709                                                                        | 43                                                   |  |
| r |        |                                           |                                                                                                                     | 1        | 1     | [                                                                                                          |                                                                             |                                                      |  |
| 4 | (i)    |                                           |                                                                                                                     | M1       |       | For in                                                                                                     | ntegrating a (t) to                                                         | obtain v (t)                                         |  |
|   |        | V (t) = 1                                 | $5 t + 0.006 t^2$                                                                                                   | A1       |       | Const<br>absen                                                                                             | Constant of integration zero or absent                                      |                                                      |  |
|   |        | [0.006 t2 t2 + 250t (t - 50) t2           | $\begin{array}{l} 2^{2} + 1.5 \text{ t} - 90 = 0 \implies \\ t - 15000 = 0] \implies \\ (t + 300) = 0] \end{array}$ | DM1      | F 43  | For using v (t) = 90 and solving for<br>t (dependent on integration)                                       |                                                                             |                                                      |  |
|   |        | Leaves t                                  | the ground when $t = 50$                                                                                            | AI       | [4]   |                                                                                                            |                                                                             |                                                      |  |
|   | (ii)   |                                           |                                                                                                                     | M1       |       | For in<br>0 to c                                                                                           | ntegrating v (t) an<br>andidate's answe                                     | nd using limits<br>er for part (i)                   |  |
|   |        | s = 0.75                                  | $t^2 + 0.002 t^3$                                                                                                   | A1ft     |       | ft if th<br>integr<br>s = 0.                                                                               | here is a non-zero<br>ration C in part (<br>$75 t^2 + 0.002 t^3 +$          | o constant of<br>i)<br>- C t                         |  |
|   |        | Distance                                  | e is 2125 m                                                                                                         | A1ft     | [3]   | Accept 2120 or 2130<br>ft t from part (i) in<br>$0.75 t^2 + 0.002 t^3$                                     |                                                                             |                                                      |  |
| 5 | (i)    | [T = 2 x<br>[for P 17<br>and<br>for Q 7 t | $1.7 - 2 \ge 0.7]$<br>7 t - 5 t <sup>2</sup> = 0<br>t = 5 t <sup>2</sup> = 0]                                       | M1       |       | T = 2<br>2 x tin<br>or For<br>return<br>return                                                             | x time to max. Height<br>rusing $T = time$<br>to ground – time<br>to ground | neight for P –<br>nt for Q<br>for P to<br>e for Q to |  |
|   |        | T = 2                                     |                                                                                                                     | A1       | [2]   | SR (max $1/2$ ) for candidates who<br>find difference in time to maximum<br>height<br>T = 1.7 $0.7 = 1$ D1 |                                                                             | lidates who<br>e to maximum                          |  |
|   | (ii)   |                                           |                                                                                                                     | M1       | 0     | For us $s = u^{2}$                                                                                         | sing $h_P - h_Q = 5$<br>t - 5 t <sup>2</sup> for both I                     | and<br>P and Q                                       |  |
|   |        | 17(t+2)<br>$17t-5t^{2}$                   | $(t - 2)^{2} - (7t - 5t^{2}) = 5 \text{ or } (7t - 2)^{2} = 5$                                                      | rep      |       |                                                                                                            |                                                                             |                                                      |  |
|   |        |                                           |                                                                                                                     | A1       | ft    | ft T fi                                                                                                    | rom part (i)                                                                |                                                      |  |
|   |        | t = 0.9 o                                 | r t = 2.9                                                                                                           | A1       |       |                                                                                                            |                                                                             |                                                      |  |
|   |        |                                           |                                                                                                                     | M1       |       | For us                                                                                                     | sing $v = u - 10 t$                                                         | for P and Q                                          |  |

| Page 6 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9709     | 43    |

|   |      | $v_{P} = 17 - 10 (0.9 + 2),$<br>$v_{Q} = 7 - 10 \times 0.9 \Rightarrow$<br>Magnitudes are 12 m s <sup>-1</sup> & 2 m s <sup>-1</sup><br>The direction for both is vertically                                                                                                                                                      | A1         | ft  | ft using $t_P$ and $t_P - T$ or using $t_Q$ and $t_Q + T$                                                       |
|---|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-----------------------------------------------------------------------------------------------------------------|
|   |      | downwards                                                                                                                                                                                                                                                                                                                         | A1         | [6] |                                                                                                                 |
| 6 | (i)  |                                                                                                                                                                                                                                                                                                                                   | M1         |     | For resolving the applied forces on<br>the box in the <i>x</i> -direction or the <i>y</i> -<br>direction.       |
|   |      | 100 cos 30° + 120 cos 60° - F cosa =<br>136 (F cos $\alpha$ = 10.6025)<br>or<br>100 sin 30° - 120 sin 60° + F sin $\alpha$ =0<br>(F sin $\alpha$ =53.9230)<br>100 sin 30° - 120 sin 60° + F sin $\alpha$ = 0<br>(F sin $\alpha$ =53.9230)<br>or<br>100 cos 30° + 120 cos 60° - F cos $\alpha$<br>= 136 (F cos $\alpha$ = 10.6025) | A1<br>B1   |     |                                                                                                                 |
|   |      |                                                                                                                                                                                                                                                                                                                                   | M1         |     | for using<br>$F^2 = (F \cos \alpha)^2 + (F \sin \alpha)$<br>or $\tan \alpha = F \sin \alpha \div F \cos \alpha$ |
|   |      | $F = 55.0 \text{ or } \alpha = 78.9$                                                                                                                                                                                                                                                                                              | <b>A</b> 1 |     |                                                                                                                 |
|   |      | $\alpha = 78.9 \text{ or } F = 55.0$                                                                                                                                                                                                                                                                                              | <b>B</b> 1 | [6] |                                                                                                                 |
|   | (ii) | Magnitude is 136 N                                                                                                                                                                                                                                                                                                                | B1         |     | S /                                                                                                             |
|   |      | R = 40 g                                                                                                                                                                                                                                                                                                                          | B1         | .00 |                                                                                                                 |
|   |      | Coefficient is 0.34                                                                                                                                                                                                                                                                                                               | B1         | [3] |                                                                                                                 |

|   | Page 7 Mark Scheme |                            | e                                                   |         |      | Syllabus          | Paper                                                   |                             |
|---|--------------------|----------------------------|-----------------------------------------------------|---------|------|-------------------|---------------------------------------------------------|-----------------------------|
|   |                    |                            | GCE AS/A LEVEL – May                                | /June 2 | 2013 |                   | 9709                                                    | 43                          |
|   |                    |                            |                                                     | 1       | 1    | [                 |                                                         |                             |
| 7 | (i)                |                            |                                                     | M1      |      | For ap<br>or to I | oplying Newton<br>B                                     | 's 2 <sup>nd</sup> law to A |
|   |                    | T – (2 /<br>0.9 g - T      | T – (2 / 7) 1.26 g = 1.26 a or<br>0.9 g - T = 0.9 a |         |      |                   |                                                         |                             |
|   |                    | 0.9g - 1<br>T - (2 /<br>or |                                                     |         |      |                   |                                                         |                             |
|   |                    | 0.9 g – (                  | (2 / 7) 1.26 g = $(0.9 + 1.26)$ a                   | B1      |      |                   |                                                         |                             |
|   |                    | Acceler                    | ation is 2.5 m s <sup>-2</sup>                      | B1      |      | AG                |                                                         |                             |
|   |                    | Tension                    | n is 6.75 N                                         | A1      | [5]  |                   |                                                         |                             |
|   | (ii)               | $[v^2 = 2 >$               | $(2.5) \times 0.45$                                 | M1      |      | For us            | sing $v^2 = 2 a h$                                      |                             |
|   |                    | Speed is                   | s 1.5 m s <sup>-1</sup>                             | A1      | [2]  |                   |                                                         |                             |
|   | (iii)              | [-(2/7                     | r) 1.26 g = 1.26 a]                                 | M1      |      | For ap            | oplying Newton                                          | 's 2 <sup>nd</sup> law to A |
|   |                    | a = -20                    | )/7                                                 | A1      |      |                   |                                                         |                             |
|   |                    | $[v^2 = 2.2]$              | 25 + 2 (-20 / 7) (0.03)]                            | M1      |      | For us            | $\operatorname{sing} \mathbf{v}^2 = \mathbf{v_B}^2 + 2$ | a s                         |
|   |                    | Speed is                   | s 1.44 m s <sup>-1</sup>                            | A1      | [4]  |                   |                                                         |                             |

# MARK SCHEME for the May/June 2013 series

# 9709 MATHEMATICS

9709/42

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9709     | 42    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9709     | 42    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{n}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9709     | 42    |

| 1 | (i)  | $[24 = \mu 30]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                                             |               | For using $R = W$ ,<br>$F = T$ and $F = \mu R$                                                                           |
|---|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------|
|   |      | Coefficient is 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1                                             | [2]           |                                                                                                                          |
|   | (ii) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                                             |               | For resolving forces vertically and using $F = \mu R$                                                                    |
|   |      | $F = 0.8(30 - 25\sin 30^\circ)$ (=14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1                                             |               |                                                                                                                          |
|   |      | $[25 \cos 30^{\circ} - F = (30 \div g)a]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                                             |               | For using of Newton's 2nd law                                                                                            |
|   |      | Acceleration is $2.55 \text{ ms}^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1                                             | [4]           |                                                                                                                          |
| 2 | (i)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                                             |               | For using work done by pulling force<br>= increase in KE – decrease in PE +<br>WD by resistance                          |
|   |      | $1150 = \frac{1}{2} 16 \times 10^2 - 16g(50 \times 0.05)$<br>+ WD by resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1                                             |               |                                                                                                                          |
|   |      | WD by resistance = 750 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1                                             | [3]           |                                                                                                                          |
|   | (ii) | $1150 = \text{increase in KE} + 16 \text{ g}(50 \times 0.05) + 750$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1                                             |               | For WD by pulling force = KE gain<br>+ PE gain + WD by resistance                                                        |
|   |      | KE gain = $0 \rightarrow$ speed at top = speed at bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1                                             | [2]           | AG                                                                                                                       |
| 3 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                                             |               | For resolving forces acting on P horizontally or vertically                                                              |
|   |      | $T_A \times (40/50) + T_B \times (40/104) = 21 \text{ or}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |               |                                                                                                                          |
|   |      | $T_A \times (30/50) = T_B \times (96/104)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1                                             |               |                                                                                                                          |
|   |      | $T_{A} \times (30/50) = T_{B} \times (96/104)$<br>$T_{A} \times (30/50) = T_{B} \times (96/104) \text{ or}$<br>$T_{A} \times (40/50) + T_{B} \times (40/104) = 21$                                                                                                                                                                                                                                                                                                                                                                   | A1<br>B1                                       |               |                                                                                                                          |
|   |      | $T_{A} \times (30/50) = T_{B} \times (96/104)$<br>$T_{A} \times (30/50) = T_{B} \times (96/104) \text{ or}$<br>$T_{A} \times (40/50) + T_{B} \times (40/104) = 21$<br>Solve for T <sub>A</sub> and T <sub>B</sub>                                                                                                                                                                                                                                                                                                                    | A1<br>B1<br>M1                                 |               | Solving for both                                                                                                         |
|   |      | $T_A \times (30/50) = T_B \times (96/104)$<br>$T_A \times (30/50) = T_B \times (96/104)$ or<br>$T_A \times (40/50) + T_B \times (40/104) = 21$<br>Solve for $T_A$ and $T_B$<br>Tension in AP is 20 N and tension in BP is 13 N                                                                                                                                                                                                                                                                                                       | A1<br>B1<br>M1<br>A1                           | [5]           | Solving for both<br>Both $T_A = 20$ and $T_B = 13$                                                                       |
|   |      | $T_A \times (30/50) = T_B \times (96/104)$ $T_A \times (30/50) = T_B \times (96/104) \text{ or}$ $T_A \times (40/50) + T_B \times (40/104) = 21$ Solve for T <sub>A</sub> and T <sub>B</sub> Tension in AP is 20 N and tension in BP is 13 N <b>First Alternative</b>                                                                                                                                                                                                                                                                | A1<br>B1<br>M1<br>A1                           | [5]           | Solving for both<br>Both $T_A = 20$ and $T_B = 13$                                                                       |
| 3 |      | $T_A \times (30/50) = T_B \times (96/104)$ $T_A \times (30/50) = T_B \times (96/104) \text{ or}$ $T_A \times (40/50) + T_B \times (40/104) = 21$ Solve for T <sub>A</sub> and T <sub>B</sub> Tension in AP is 20 N and tension in BP is 13 N <b>First Alternative</b>                                                                                                                                                                                                                                                                | A1<br>B1<br>M1<br>A1<br>Mark<br>M1             | [5]<br>ing So | Solving for both<br>Both $T_A = 20$ and $T_B = 13$<br><b>Cheme</b><br>For using the sine rule in the triangle of forces  |
| 3 |      | $T_{A} \times (30/50) = T_{B} \times (96/104)$ $T_{A} \times (30/50) = T_{B} \times (96/104) \text{ or }$ $T_{A} \times (40/50) + T_{B} \times (40/104) = 21$ Solve for T <sub>A</sub> and T <sub>B</sub> Tension in AP is 20 N and tension in BP is 13 N <b>First Alternative</b> $21/\sin 75.75 \text{ (or } 75.7 \text{ or } 75.8) =$ $T_{A}/\sin 67.4 \text{ (or } T_{B}/\sin 36.9)$                                                                                                                                             | A1<br>B1<br>M1<br>A1<br>Mark<br>M1<br>A1       | [5]<br>ing So | Solving for both<br>Both $T_A = 20$ and $T_B = 13$<br><b>Cheme</b><br>For using the sine rule in the triangle of forces  |
| 3 |      | $T_{A} \times (30/50) = T_{B} \times (96/104)$ $T_{A} \times (30/50) = T_{B} \times (96/104) \text{ or}$ $T_{A} \times (40/50) + T_{B} \times (40/104) = 21$ Solve for T <sub>A</sub> and T <sub>B</sub> Tension in AP is 20 N and tension in BP is 13 N <b>First Alternative</b> $21/\sin 75.75 \text{ (or } 75.7 \text{ or } 75.8) = T_{A}/\sin 67.4 \text{ (or } T_{B}/\sin 36.9)$ $21/\sin 75.75 \text{ (or } 75.7 \text{ or } 75.8) = T_{B}/\sin 36.9 \text{ (or } T_{A}/\sin 67.4) \text{ or } T_{B}/\sin 36.9 = 20/\sin 67.4$ | A1<br>B1<br>M1<br>A1<br>Mark<br>M1<br>A1<br>B1 | [5]<br>ing So | Solving for both<br>Both $T_A = 20$ and $T_B = 13$<br><b>Etheme</b><br>For using the sine rule in the triangle of forces |

|   | Page 5 |                                                          | Mark Scheme                                                                                                                                                              | Syllabus | Paper |                                                                                  |            |  |
|---|--------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----------------------------------------------------------------------------------|------------|--|
|   |        |                                                          | GCE AS/A LEVEL – May/Ju                                                                                                                                                  | ine 20   | 13    | 9709                                                                             | 42         |  |
|   |        | Tension                                                  | in AP is 20N and tension in BP is 13N                                                                                                                                    | A1       | [5]   | Both $T_A = 20$ and $T_B$                                                        | = 13       |  |
|   |        |                                                          | Second Alternative Ma                                                                                                                                                    | rking    | Schen | ne                                                                               |            |  |
| 3 |        |                                                          |                                                                                                                                                                          | M1       |       | For using Lami's Ru                                                              | le         |  |
|   |        | 21/sin 104.3 = $T_A$ /sin 112.6<br>(or $T_B$ /sin 143.1) |                                                                                                                                                                          | A1       |       |                                                                                  |            |  |
|   |        | 21/sin 10<br>or $T_B$ /sir<br>or $T_A$ /sir              | $\begin{array}{l} 04.3 &= T_{\rm B}/\sin 143.1 \\ ({\rm or} \ T_{\rm A}/\sin 112.6) \\ {\rm n} \ 143.1 &= 20/\sin 112.6 \\ {\rm n} \ 112.6 &= 13/\sin 143.1 \end{array}$ | B1       |       |                                                                                  |            |  |
|   |        | Solve fo                                                 | r $T_A$ and $T_B$                                                                                                                                                        | M1       |       | For using the equations to find $T_{\rm A}$ and $T_{\rm B}$                      |            |  |
|   |        | Tension                                                  | in AP is 20 N and tension in BP is 13 N                                                                                                                                  | A1       | [5]   | Both $T_A = 20$ and $T_B = 13$                                                   |            |  |
| 4 | (i)    | a = (16 -                                                | ÷ 65)g                                                                                                                                                                   | B1       | X     |                                                                                  |            |  |
|   |        | $[8^2 = 2(1$                                             | 6 ÷ 65)gS]                                                                                                                                                               | M1       |       | For using $v^2 = 2as$ to                                                         | find S     |  |
|   |        | S = 13                                                   |                                                                                                                                                                          | A1       |       |                                                                                  |            |  |
|   |        | $[v^2 = 2(1)$<br>or $v^2 \div 8$                         | $6 \div 65)g \times 6.5$<br>$2^2 = \frac{1}{2}$                                                                                                                          | M1       |       | For using $v^2 = 2a(\frac{1}{2}S)$<br>or $v^2 \alpha s$                          | )          |  |
|   |        | Speed is                                                 | 5.66 ms <sup>-1</sup>                                                                                                                                                    | A1       | [5]   |                                                                                  |            |  |
|   | (ii)   | $[s = \frac{1}{2} a]$ or s ÷ 13                          | $(64 \div 4a^2)$<br>$a = (1/2)^2$                                                                                                                                        | M1       |       | For using<br>$8 = 0 + aT$ and $s = \frac{1}{2}a$<br>or s $\alpha$ t <sup>2</sup> | $a(T/2)^2$ |  |
|   |        | Distance                                                 | e is 3.25 m                                                                                                                                                              | A1       | [2]   |                                                                                  |            |  |
|   |        |                                                          | Alternative Markin                                                                                                                                                       | ng Sche  | eme   |                                                                                  |            |  |
| 4 | (i)    | $[\frac{1}{2} m v^2]$                                    | = mgh                                                                                                                                                                    |          |       |                                                                                  |            |  |
|   |        | and $S = 1$                                              | $h \div \sin \alpha$                                                                                                                                                     | M1       |       | For using KE gain =                                                              | PE loss    |  |
|   |        | $S = (8^2 \div$                                          | $(-20) \div (16 \div 65)$                                                                                                                                                | A1       |       | Or AEF                                                                           |            |  |
|   |        | S = 13                                                   |                                                                                                                                                                          | A1       |       |                                                                                  |            |  |
|   |        | $\frac{1}{2}$ m v <sup>2</sup> =                         | $= mg(\frac{1}{2} 13 \times (16/65))$                                                                                                                                    | M1       |       | Or AEF                                                                           |            |  |
|   |        | Speed is                                                 | $5.66 \text{ ms}^{-1}$                                                                                                                                                   | A1       | [5]   |                                                                                  |            |  |
|   | (ii)   |                                                          |                                                                                                                                                                          | M1       |       | For eliminating $at^2$ fr<br>s = $\frac{1}{2}at^2$ and $13 = \frac{1}{2}a$       | $(2t)^2$   |  |
|   |        | Distance                                                 | e is 3.25 m                                                                                                                                                              | A1       | [2]   |                                                                                  |            |  |
| 5 | (i)    | Driving                                                  | force = 1000P/25                                                                                                                                                         | B1       |       |                                                                                  |            |  |

| Page 6 |       | je 6                                            | Mark Scheme                                                                                                                                 | Syllabus | Paper  |                                              |                                      |  |
|--------|-------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|----------------------------------------------|--------------------------------------|--|
|        |       |                                                 | GCE AS/A LEVEL – May/Ju                                                                                                                     | ne 20    | 13     | 9709                                         | 42                                   |  |
|        |       |                                                 |                                                                                                                                             | M1       |        | For using Newton's 2                         | 2 <sup>nd</sup> law                  |  |
|        |       | 1000P/2                                         | $5 - 600 = 1000 \times 0.2$                                                                                                                 | A1       |        |                                              |                                      |  |
|        |       | P = 20                                          |                                                                                                                                             | A1       | [4]    |                                              |                                      |  |
|        | (ii)  |                                                 |                                                                                                                                             | M1       |        | For using Newton's $a = 0$                   | 2 <sup>nd</sup> law with             |  |
|        |       | 20000/v                                         | $20000/v_{max} - 600 = 0$                                                                                                                   |          |        | ft for their P in (i)                        |                                      |  |
|        |       | Steady s                                        | peed is $33.3 \text{ ms}^{-1}$                                                                                                              | A1       | [3]    |                                              |                                      |  |
| 6      | (i)   | For sket<br>consistir<br>then – <sup>ve</sup> , | ch of single valued, continuous graph<br>ng of 3 straight line segments with $+^{ve}$ ,<br>then $+^{ve}$ slope                              | B1       |        |                                              |                                      |  |
|        |       | Sketch a and v(8)                               | ppears to show $v(0) = 0$<br>> $v(26) > v(20)$                                                                                              | B1       | [2]    |                                              |                                      |  |
|        | (ii)  | For shace<br>trapezium<br>from t =              | ling the triangle from $t = 0$ to $t = 8$ , the<br>m from $t = 8$ to $t = 20$ and the trapezium<br>20 to a value of t seen to be between 20 |          | X      |                                              |                                      |  |
|        |       | and 26                                          |                                                                                                                                             | B1       | [1]    |                                              |                                      |  |
|        | (iii) |                                                 |                                                                                                                                             | M1       |        | For using area proper                        | ty to find s(20)                     |  |
|        |       | $s(20) = \frac{1}{2}$                           | $\frac{1}{2}(8 \times 8) + \frac{1}{2}(8 + 2) \times 12  (= 92)$                                                                            | A1       |        |                                              |                                      |  |
|        |       |                                                 |                                                                                                                                             | M1       |        | For using the gradien find acceleration in 3 | t property to<br><sup>rd</sup> phase |  |
|        |       | a = (6.5                                        | (-2)/6 (= 0.75)                                                                                                                             | A1       |        |                                              |                                      |  |
|        |       | [s(t) = 9]                                      | $2 + 2(t - 20) + 0.375(t - 20)^2$                                                                                                           | M1       | .0     |                                              |                                      |  |
|        |       | Displace<br>0.3                                 | ement is $75t^2 - 13t + 202$ metres                                                                                                         | A1       | [6]    |                                              |                                      |  |
|        |       |                                                 | Alternative Marking Scheme for                                                                                                              | or fina  | l 2 ma | arks of Q6                                   |                                      |  |
|        |       | [v(t) = 2]<br>s(t) = 0.2<br>92 = 0.3            | + 0.75(t - 20)<br>$375t^2 - 13t + A$ where<br>$75 \times 400 - 13 \times 20 + A$ ]                                                          | M1       |        | For finding v(t), integrating $s(20) = 92$   | grating and                          |  |
|        |       | Displace                                        | ement is $75t^2 - 13t + 202$ metres                                                                                                         | A1       |        |                                              |                                      |  |
| 6      | (iii) | First Al                                        | ternative Marking Scheme for part (iii)                                                                                                     | of Q6    |        |                                              |                                      |  |
|        |       | a = (6.5                                        | (-2) / (26 - 20) = 0.75                                                                                                                     | B1       |        |                                              |                                      |  |
|        |       | v = 0.75                                        | t (+ C1)                                                                                                                                    | M1       |        | Integrating                                  |                                      |  |
|        |       | v = 0.75                                        | t – 13                                                                                                                                      | A1       |        | Using v(20) = 2<br>or v(26) = 6.5            |                                      |  |

| Page |       | ge 7 Mark Scheme       |                                                                              |          |     |                                                         | Syllabus              | Paper                       |
|------|-------|------------------------|------------------------------------------------------------------------------|----------|-----|---------------------------------------------------------|-----------------------|-----------------------------|
|      |       |                        | GCE AS/A LEVEL – May/Ju                                                      | ne 20    | 13  |                                                         | 9709                  | 42                          |
|      |       | s(20) = 9              | 22  or  s(26) = 117.5                                                        | B1       |     | Using                                                   | area in diagran       | 1                           |
|      |       | s = 0.375              | $5t^2 - 13t (+ C_2)$                                                         | M1       |     | Integrating                                             |                       |                             |
|      |       | s = 0.375              | $5t^2 - 13t + 202$                                                           | A1       | [6] | Using                                                   | s(20) or s(26) t      | to find $C_2 = 202$         |
| 6    | (iii) | Second .               | Alternative Marking Scheme for part (i                                       | ii) of Q | 26  | 1                                                       |                       |                             |
|      |       | s = 0.375              | 5t2 - 13t + 202                                                              |          |     | Given                                                   | l                     |                             |
|      |       | v = 0.75               | t – 13                                                                       | M1       |     | Differ                                                  | rentiating            |                             |
|      |       | a = 0.75               |                                                                              | M1       |     | Differ                                                  | rentiating            |                             |
|      |       | a = (6.5-              | (-2)/(26-20) = 0.75                                                          | B1       |     | Check                                                   | agreement from        | n graph                     |
|      |       | v(20) = 0<br>v(26) = 0 | 0.75(20) - 13 = 2 or<br>0.75(26) - 13 = 6.5                                  | B1       |     | Check v agrees at a point between $t = 20$ and $t = 26$ |                       |                             |
|      |       | Show s(2               | 20) = 92 or s(26) = 117.5                                                    | B1       |     | Using area under graph                                  |                       |                             |
|      |       | s(20) = 0<br>s(26) = 0 | $0.375(20)^2 - 13(20) + 202 = 92$ or<br>$0.375(26)^2 - 13(26) + 202 = 117.5$ | B1       |     | Check s agrees at a point between $t = 20$ and $t = 26$ |                       |                             |
| 7    | (i)   |                        |                                                                              | M1       |     | For ap<br>or B                                          | oplying Newton        | 's 2 <sup>nd</sup> law to A |
|      |       | T – 0.26<br>0.52g – 7  | $g(16 \div 65) = 0.26a \text{ or}$<br>$\Gamma = 0.52a$                       | A1       |     |                                                         |                       |                             |
|      |       | For {0.5               | 2g - T = 0.52a  or                                                           |          |     |                                                         |                       |                             |
|      |       | 1 - 0.26<br>or 0.52g   | $g(16 \div 65) = 0.26a\}$<br>- 0.26g(16 ÷ 65) = (0.52 + 0.26)a               | B1       |     |                                                         |                       |                             |
|      |       | Accelera               | tion is $5.85 \text{ ms}^{-2}$                                               | B1       | 0   |                                                         |                       |                             |
|      |       | Tension                | is 2.16 N                                                                    | A1       | [5] |                                                         |                       |                             |
|      | (ii)  | $[v^2=2 \times$        | (76/13) × 0.6]                                                               | M1       |     | For us                                                  | sing $v^2 = 2as$      |                             |
|      |       | Speed is               | $2.65 \text{ ms}^{-1}$                                                       | A1       |     |                                                         |                       |                             |
|      |       | 0 = 91.2               | /13 – 2(160/65)s                                                             | M1       |     | For us                                                  | sing $0 = v_B^2 - 2($ | g sinα)s                    |
|      |       | S = 57/4               | 0 (= 1.425)                                                                  | A1       |     |                                                         |                       |                             |
|      |       | [AP = 2.               | 5 - 0.6 - 1.425]                                                             | M1       |     | For us $AP = 2$                                         | sing<br>2.5 – 0.6 – s |                             |
|      |       | Distance               | AP is 0.475 m                                                                | A1       | [6] |                                                         |                       |                             |

# MARK SCHEME for the May/June 2013 series

# 9709 MATHEMATICS

9709/41

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9709     | 41    |

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9709     | 41    |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{n}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4            |                               | age 4                               | Mark So                                                                           | Syllabus   |         |                                      |                                            |                        |       |
|-------------------|-------------------------------|-------------------------------------|-----------------------------------------------------------------------------------|------------|---------|--------------------------------------|--------------------------------------------|------------------------|-------|
|                   |                               |                                     | GCE AS/A LEVEL                                                                    | – May/     | June 2  | 2013                                 | 9709                                       | 41                     |       |
|                   |                               |                                     |                                                                                   | T          | 1       |                                      |                                            |                        |       |
| 1                 | (i)                           | Less than                           |                                                                                   | B1         |         |                                      |                                            |                        |       |
|                   |                               | F = 1.25W                           | V so W <f< td=""><td>B1</td><td>[2]</td><td></td><td></td><td></td><td></td></f<> | B1         | [2]     |                                      |                                            |                        |       |
|                   | (ii)                          | [P - 60 ×                           | $1.25 = 6 \times 4$ ]                                                             | M1         |         | For applying                         | Newton's secon                             | d law.                 |       |
|                   |                               | P = 99                              |                                                                                   | A1         | [2]     |                                      |                                            |                        |       |
| 2                 |                               | Increase i<br>sin2.5°               | $n PE = 1250 \times 10 \times 600$                                                | B1         |         |                                      |                                            |                        |       |
|                   |                               | Decrease                            | in KE = $\frac{1}{2} 1250(30^2 - v_{top}^2)$                                      | B1         |         |                                      |                                            |                        |       |
|                   |                               | WD again                            | st resistance = $400 \times 600$                                                  | B1         |         |                                      |                                            |                        |       |
|                   |                               | [562500 -<br>- 450000]              | $-625v_{top}^2 = 327145 + 240000$                                                 | M1         |         | For using WI<br>in KE + WD           | D by DF = Increa<br>against resistance     | ase in PE – deci<br>ce | rease |
|                   |                               | Speed is 2                          | $26.7 \text{ ms}^{-1}$                                                            | A1         | [5]     |                                      |                                            |                        |       |
| <b>Spo</b><br>4). | ecial Rul                     | ing for cand                        | lidates who assume, without jus                                                   | tification | n, that | the driving force                    | ce (DF) is consta                          | unt (maximum n         | nark  |
|                   |                               | [DF – We<br>= Mass ×                | ight component – Resistance<br>Accel'n]                                           | M1         |         | For applying                         | Newton's secon                             | d law.                 |       |
|                   |                               | 750 - 545                           | -400 = 1250a                                                                      | A1         |         |                                      |                                            |                        |       |
|                   |                               | $v^2 = 30^2 +$                      | 2 ×(-0.156) × 600                                                                 | B1ft       |         | ft value of a                        |                                            |                        |       |
|                   |                               | Speed is 2                          | $26.7 \text{ ms}^{-1}$                                                            | B1         | [4]     |                                      |                                            |                        |       |
| 3                 | (i)                           |                                     |                                                                                   | M1         |         | For using 0 =                        | = u <sup>2</sup> – 2gs                     |                        |       |
|                   |                               | $u^2 = 2 \times 1$                  | $0 \times 45$ ; speed is $30 \text{ms}^{-1}$                                      | A1         | [2]     |                                      |                                            |                        |       |
|                   | (ii)                          | [40 = 30t]                          | $-5t^2 \rightarrow t = 2, 4]$                                                     | tor        | 00      | For using s =                        | ut $-\frac{1}{2}$ gt <sup>2</sup> with s   | s = 40, u = 30 a       | nd T  |
|                   |                               | $[5 = \frac{1}{2} 10]$              | $t^2 \rightarrow t = 1$ ]                                                         | M1         |         | $= t_2 - t_1 \text{ or } s = T = 2t$ | $=$ ut + $\frac{1}{2}$ gt <sup>2</sup> s = | 5, u = 0 and           |       |
|                   |                               | Time abo                            | ve the ground is 2 s                                                              | A1ft       | [2]     |                                      |                                            |                        |       |
| Spe<br>mo         | e <b>cial Rul</b><br>vement o | <b>ing</b> for cand<br>only. (maxin | lidates who assume, without jus<br>num mark 1).                                   | tification | n, that | the length of tin                    | me required is th                          | at of the upwar        | ď     |
|                   | (ii)                          | $5 = \frac{1}{2} 10t$<br>required i | $t^2 \rightarrow t = 1$ , the length of time<br>s 1 s                             | B1         | B1      |                                      |                                            |                        |       |
|                   | (iii)                         | Max. heig<br>÷ 4) (= 21             | sht above top of cliff = $\frac{1}{2}$ g(17<br>.25)                               | B1         |         |                                      |                                            |                        |       |
|                   |                               | $[0 = V^2 -$                        | 2g(40 + 21.25)                                                                    | M1         |         | For using 0 =                        | $u^2 - 2gs$                                |                        |       |
|                   |                               | Speed is 3                          | $35 \text{ ms}^{-1}$                                                              | A1         | [3]     |                                      |                                            |                        |       |

| Page 5 | ) |
|--------|---|
|--------|---|

## Mark Scheme GCE AS/A LEVEL – May/June 2013

SyllabusPaper970941

| Alternative Marking Scheme for (iii) |       |                                                                                                      |                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|--------------------------------------|-------|------------------------------------------------------------------------------------------------------|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                      | (iii) |                                                                                                      |                 |     | For using $40 = Vt - 5t^2 \rightarrow t_2 = -t_1 = -t_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|                                      |       |                                                                                                      | M1              |     | $v_2 - v_1 - v_2 = v_1 - v_2 = v_2 $ |  |  |  |  |  |  |
|                                      |       | $17 = V^2/25 - 32$                                                                                   | A1              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                      |       | Speed is 35 ms <sup>-1</sup>                                                                         | A1              | [3] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 4                                    | (i)   | DF = 1500 000/37.5 (= 40 000)                                                                        | B1              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                      |       | [DF - R = ma]                                                                                        | M1              |     | For using Newton's second law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|                                      |       | DF – 30 000 = 400 000a                                                                               | A1              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                      |       | Acceleration is 0.025 ms <sup>-2</sup>                                                               | A1              | [4] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                      | (ii)  | $[1500\ 000/v - 30\ 000 = 0]$                                                                        | M1              | R   | For using Newton's $2^{nd}$ law with $a = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                                      |       | Steady speed is 50 ms <sup>-1</sup>                                                                  | A1              | [2] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 5                                    | (i)   | $R = 2.6 \times (12 \div 13) (= 2.4)$                                                                | B1              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                      |       | $[F = 0.2 \times 2.4]$                                                                               | M1              |     | For using $F = \mu R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                      |       | $[T - 2.6(5 \div 13) - F = 0.26a, 5.4 - T = 0.54a]$                                                  | M1              |     | For applying Newton's 2 <sup>nd</sup> law to A or to B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                                      |       | For any two of $T - 1 - 0.48 = 0.26a$ , 5.4<br>- $T = 0.54a$ or<br>(5.4 - 1 - 0.48) = (0.54 + 0.26)a | <mark>A1</mark> |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                      |       | Acceleration is $4.9 \text{ ms}^{-2}$                                                                | B1              |     | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                      |       | Tension is 2.75 N (2.754 exact)                                                                      | A1              | [6] | c <sup>O</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                                      | (ii)  | $[s = \frac{1}{2} 4.9 \times 0.4^2]$                                                                 | M1              | eP  | For using $s = \frac{1}{2} at^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                                      |       | Distance is 0.392 m                                                                                  | A1              | [2] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 6                                    | (i)   |                                                                                                      | M1              |     | For resolving forces in the <i>x</i> and <i>y</i> directions (or for sketching a marked triangle of forces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|                                      |       | $F\cos\theta = 2.5 \times 24 \div 25 + 2.6 \times 5 \div 13$                                         | A1              |     | (= 3.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                                      |       | $Fsin\theta = 2.6 \times 12 \div 13 - 2.5 \times 7 \div 25$                                          | A1              |     | (= 1.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                                      |       |                                                                                                      | M1              |     | For using $F^2 = (F\cos\theta)^2 + (F\sin\theta)^2$ to find F or<br>tan $\theta = F\sin\theta \div F\cos\theta$ to find $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                                      |       | For $F = 3.80$ N or $tan\theta = 0.5$                                                                | A1              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                      |       | For $tan\theta = 0.5$ or $F = 3.80$ N                                                                | B1              | [6] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |

|   | Page 6 |                                                                   | Mark Scheme                                                            |      |                                      |                                                            | Syllabus                                                                                | Paper                  |     |
|---|--------|-------------------------------------------------------------------|------------------------------------------------------------------------|------|--------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------|-----|
|   |        |                                                                   | GCE AS/A LEVEL – May/June 2013                                         |      |                                      | 9709                                                       | 41                                                                                      |                        |     |
|   |        |                                                                   |                                                                        | -    |                                      |                                                            |                                                                                         |                        |     |
|   | (ii)   | [3.80 = 0.5a]                                                     |                                                                        | M1   |                                      | For using Net<br>the resultant                             | ewton's 2 <sup>nd</sup> law with the magnitude<br>t force equal to the value of F founc |                        |     |
|   |        | Acceleration is 7.60 $ms^{-2}$                                    |                                                                        | A1ft |                                      | ft value of F found in (i)                                 |                                                                                         |                        |     |
|   |        | Direction <i>x</i> -axis.                                         | B1ft                                                                   | [3]  | ft value of $tan\theta$ found in (i) |                                                            |                                                                                         |                        |     |
| 7 | (i)    | $\begin{bmatrix} 0.0000117(1200t^2 - 12t^3) \\ = 0 \end{bmatrix}$ |                                                                        |      |                                      | For differentiating and solving $ds/dt = 0$                |                                                                                         |                        |     |
|   |        | $1200t^2 = 12t^3 \Rightarrow t = 0, 100$                          |                                                                        |      |                                      | Accept just $t = 100$ , if it is used to find distance AB. |                                                                                         |                        |     |
|   |        | Distance .                                                        | AB = 1170 m                                                            | A1   | [3]                                  |                                                            |                                                                                         |                        |     |
|   | (ii)   |                                                                   |                                                                        | M1   |                                      | For differenti                                             | ating again and                                                                         | solving $d^2s/dt^2 =$  | = 0 |
|   |        | 2400t - 30                                                        | $6t^2 = 0 \rightarrow t = 0, 200/3$                                    | A1   | R                                    | Accept just t                                              | = 200/3, if it is u                                                                     | used to find $v_{max}$ | •   |
|   |        | $[\mathbf{v}_{\max}=0.0]$                                         | $\frac{0000117\{1200(200/3)^2 - 12(200/3)^3\}]}{12(200/3)^3\}}$        | M1   |                                      | For substituti                                             | ng into v(t)                                                                            |                        |     |
|   |        | Maximun                                                           | n speed is $20.8 \text{ ms}^{-1}$                                      | A1   | [4]                                  |                                                            |                                                                                         |                        |     |
|   | (iii)  | At A a(t)                                                         | = 0                                                                    | B1   |                                      |                                                            |                                                                                         |                        |     |
|   |        | At B a(t) = 0.0000117<br>-1.40 ms                                 | =<br>7(2400 × 100 - 36 × 100 <sup>2</sup> ) =<br>$^{2}$ (-1.404 exact) | B1   | [2]                                  |                                                            |                                                                                         |                        |     |
|   | (iv)   | Sketch ha                                                         | s v increasing                                                         |      |                                      |                                                            |                                                                                         |                        |     |
|   |        | from 0 to<br>0, with mathematical to $t = 0$ .                    | maximum and decreasing to aximum closer to $t = 100$ than              | B1   |                                      | 0.5                                                        |                                                                                         |                        |     |
|   |        | Sketch ha inflexion                                               | s zero gradient at $t = 0$ and<br>closer to $t = 0$ than $t = 100$ .   | B1   | [2]                                  |                                                            |                                                                                         |                        |     |