Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS
 0606/11
 Paper 1
 October/November 2021
 MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(a)	1080°	B1	
1(b)	$a=4$	B1	
	$b=3$	B1	
	$c=-2$	B1	
2(a)	$(0,14)$	2	B1 for x-coordinate B1 for y-coordinate
2(b)	$y-14=-\frac{1}{2} x$	2	M1 for finding the gradient of a perpendicular line and attempt at the straight line equation using their B A1 Allow unsimplified
2(c)	Area $=\frac{1}{2} \times 14 \times 28$	M1	Must be a complete method making use of their answer to (b)
	196	A1	
3(a)	13 soi	B1	For finding the magnitude of $\binom{12}{-5}$
	$\binom{36}{-15} \square \square$	B1	
3(b)	$\begin{aligned} & 10+4 \lambda=-4 \mu \\ & \text { or }-5+6 \lambda=5 \mu \end{aligned}$	2	M1 for equating like vectors Dep M1 for attempt to solve their simultaneous equations to obtain 2 solutions
	$\mu=-\frac{20}{11}$	A1	
	$\lambda=-\frac{15}{22}$	A1	
4(a)	$a=\frac{7}{2}$	B1	
	$b=1$	B1	
	$c=\frac{1}{6}$	B1	

Question	Answer	Marks	Guidance
4(b)	$\left(3 x^{\frac{2}{5}}-5\right)\left(x^{\frac{2}{5}}-1\right)=0$	2	M1 for recognition of a quadratic in $x^{\frac{2}{5}}$ Dep M1 for solution and a correct attempt to get at least one solution for x
	3.59	A1	
	1	A1	
5(a)	$0=8 a+4 b+12+4$	B1	For p(2)
	$\mathrm{p}^{\prime}(x)=3 a x^{2}+2 b x+6$	M1	For an attempt to obtain $\mathrm{p}^{\prime}(x)$
	$3 a-2 b+6=-7$	M1	Dep for $\mathrm{p}^{\prime}(-1)$
	$\begin{aligned} & 0=2 a+b+4 \\ & -13=3 a-2 b \end{aligned}$	M1	Dep on both previous \mathbf{M} marks for solution of equations to obtain both a and b
	$a=-3 \quad b=2$	A1	
5(b)	$\mathrm{p}^{\prime \prime}(x)=-18 x+4$	M1	For differentiation of their $\mathrm{p}^{\prime}(x)$ to obtain $\mathrm{p}^{\prime \prime}(x)$
	4	A1	FT on twice their b.
6	$\frac{\mathrm{d} y}{\mathrm{~d} x}=m \mathrm{e}^{3 x}+2 x^{2}(+c)$	M1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \mathrm{e}^{3 x}+2 x^{2}(+c)$	A1	
	$\begin{aligned} & 5=2+c \\ & c=3 \end{aligned}$	M1	Dep on previous M mark
	$\mathrm{f}(x)=p \mathrm{e}^{3 x}+q x^{3} \ldots$	M1	
	$y=\frac{2}{3} \mathrm{e}^{3 x}+\frac{2}{3} x^{3} \ldots$	A1	
	$\begin{aligned} & \frac{5}{3}=\frac{2}{3}+d \\ & d=1 \end{aligned}$	M1	Dep on previous M mark
	$(\mathrm{f}(x)=) \frac{2}{3} \mathrm{e}^{3 x}+\frac{2}{3} x^{3}+3 x+1$	A1	
7(a)	6	B1	

Question	Answer	Marks	Guidance
7(b)	$b=192 a$	B1	May be implied by the term in x
	$c=240 a^{2}$	B1	May be implied by the term in x^{2}
	$\frac{c}{240}=\frac{b^{2}}{192^{2}}$	M1	For elimination of a
	$5 b^{2}=768 c$	A1	For correct manipulation to verify the given answer
7(c)	$a=\frac{1}{16}$	B1	
	$c=\frac{15}{16}$	B1	
8(a)	$\begin{aligned} & \sin \frac{A O C}{2}=\frac{3}{5} \\ & \text { or } 6^{2}=5^{2}+5^{2}-(2 \times 5 \times 5) \cos A O C \end{aligned}$	M1	For a complete method to find $A O C$
	$\begin{gathered} A O C=1.2870 \\ A O C=1.287 \end{gathered}$	A1	AG Must see $A O C=1.2870$ or better before rounding for A1
8(b)	Arc length $=1.287 \times 5$	B1	
	Perimeter $=32.4$	B1	
8(c)	Sector area $=$ $\frac{1}{2} \times 5^{2} \times 1.287$	B1	
	Area of triangle $=$ $\frac{1}{2} \times 5^{2} \times \sin 1.287$	B1	
	Total area $=28.1$	B1	
9(a)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2(2 x+1)(x-3)+2(x-3)^{2} \\ & \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}-22 x+12 \end{aligned}$	M1	For differentiation of a quotient, or expansion and subsequent differentiation
	$0=2(x-3)(3 x-2)$	M1	Dep for simplification, equating to zero and attempt to solve
	$(3,0)$	A1	
	$\left(\frac{2}{3}, \frac{343}{27}\right)$	A1	

Question	Answer	Marks	Guidance	
9(b)		4	B1 for correct shape with maximum in the first quadrant B1 for $\left(-\frac{1}{2}, 0\right)$ and (3, 0) with a \|cubic curve	with one max only B1 for $(0,9)$ with a ccubic curve with one max only B1 All correct with a cusp at $x=-\frac{1}{2}$ and a minimum at $x=3$
9(c)	$\frac{343}{27}$	B1	FT on their answer from (a)	
10(a)(i)	$2+(n-1) 0.5=16$ oe	M1	For use of $a+(n-1) d$	
	$n=29$	A1		
10(a)(ii)	$\frac{8}{2}(2(2)+7(0.5))$	M1	For use of sum formula, may be implied if distances have been multiplied by 5 first.	
	$\frac{8}{2}(2(2)+7(0.5)) \times 5$	M1	For multiplication by 5	
	150 (km)	A1		
10(b)(i)	$r=1.25$ oe	B1		
10(b)(ii)	$2(1.25)^{n-1}>16$ or $2(1.25)^{n-1}=16$	M1	For use of $a r^{n-1}$	
	$n-1>\frac{\ln 8}{\ln 1.25}$ or $n-1=\frac{\ln 8}{\ln 1.25}$	M1	Dep for correct method of solution to obtain $n-1$	
	11	A1		
10(b)(iii)	$\frac{2\left(1.25^{8}-1\right)}{1.25-1}$	M1	For use of sum formula may be implied by multiplication by 5	
	$\frac{2\left(1.25^{8}-1\right)}{1.25-1} \times 5$	M1	For multiplication by 5	
	198 (km)	A1	Allow greater accuracy	

Question	Answer	Marks	Guidance
$11(\mathrm{a})$	$3 \cot ^{2} \theta-5 \cot \theta-2=0$	M1	For use of correct identity and simplification to a 3 term quadratic equated to zero.
	$\tan \theta=-3, \tan \theta=\frac{1}{2}$	M1	Dep for solution of quadratic and dealing with cot
	108.4°	A1	
	26.6°	A1	
	$\phi+\frac{\pi}{3}=-\frac{\pi}{6}$	M1	For a correct order of operations
	$\phi=-\frac{\pi}{2}$	A1	
	$\phi+\frac{\pi}{3}=\frac{7 \pi}{6}$	M1	For a correct order of operations
	$\phi=\frac{5 \pi}{6}$	A1	

Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS
 0606/12
 Paper 1
 October/November 2021
 MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

```
Abbreviations
awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
```

Question	Answer	Marks	Guidance
1(a)	$-3<x<1 \quad x>5$	B1	
1(b)	$-\frac{1}{3}(x+3)(x-1)(x-5)$	3	B1 for a negative cubic function B1 for a cubic function multiplied by $\frac{1}{3}$ B1 for $(x+3)(x-1)(x-5)$
2(a)	$a=\frac{10}{3} \text { or } 3 \frac{1}{3}$	B1	
	$b=\frac{7}{3} \text { or } 2 \frac{1}{3}$	B1	
	$c=\frac{9}{2} \text { or } 4 \frac{1}{2} \text { or } 4.5$	B1	
2(b)	$\begin{aligned} & 10\left(2^{p}\right)^{2}-17\left(2^{p}\right)+3=0 \\ & \left(5\left(2^{p}\right)-1\right)\left(2\left(2^{p}\right)-3\right)=0 \\ & 2^{p}=\frac{1}{5}, 2^{p}=\frac{3}{2} \end{aligned}$	M1	For recognition of a quadratic in 2^{p}, attempt to factorise and solve for 2^{p}
	$p=\frac{\ln \frac{1}{5}}{\ln 2} \text { or } p=\frac{\ln 1.5}{\ln 2} \text { oe }$	M1	For correct attempt to deal with $2^{p}=k$
	-2.32	A1	
	0.585	A1	
3(a)	$\lg \frac{1000 a^{2}}{b^{4}}$	4	B1 for $3=\lg 1000$
			B1 for use of power rule once
			B1 for use of addition or subtraction rule once
			B1 All correct

Question	Answer	Marks	Guidance
3(b)	Either $3 \log _{a} 4=\frac{3}{\log _{4} a}$	B1	
	$\begin{aligned} & 2\left(\log _{4} a\right)^{2}-7 \log _{4} a+3=0 \\ & \left(2 \log _{4} a-1\right)\left(\log _{4} a-3\right)=0 \\ & \log _{4} a=\frac{1}{2} \text { or } \log _{4} a=3 \end{aligned}$	M1	For obtaining a quadratic equation and solution
	$a=4^{\frac{1}{2}}$ or $a=4^{3}$	M1	Dep For dealing with the logarithm correctly once, may be implied by a correct solution
	64	A1	
	2	A1	
	Or $2 \log _{4} a=\frac{2}{\log _{a} 4}$	(B1)	
	$\begin{aligned} & 3\left(\log _{a} 4\right)^{2}-7 \log _{a} 4+2=0 \\ & \left(3 \log _{a} 4-1\right)\left(\log _{a} 4-2\right)=0 \\ & \log _{a} 4=\frac{1}{3} \text { or } \log _{a} 4=2 \end{aligned}$	(M1)	For obtaining a quadratic equation and solution
	$a^{\frac{1}{3}}=4 \text { or } a^{2}=4$	(M1)	Dep For dealing with the logarithm correctly once, may be implied by a correct solution
	64	(A1)	
	2	(A1)	
4	$\tan \left(2 x+\frac{\pi}{3}\right)=\frac{1}{\sqrt{3}}$	B1	
	$x=-\frac{7 \pi}{12},-\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{11 \pi}{12}$	3	M1 for using correct order of operations A1 for two correct solutions A1 for two further correct solutions and no other solutions in range

Question	Answer	Marks	Guidance
5	Either Maximum when $\sin \frac{x}{3}=1$ or minimum when $\sin \frac{x}{3}=-1$	M1	For recognition that value of maximum or minimum is necessary
	$c=9$	A1	
	$c=-1$	A1	
	or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5}{3} \cos \frac{x}{3}$ When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, \sin \frac{x}{3}=+1$ or -1	(M1)	For differentiation, equating to zero to obtain values for $\sin \frac{x}{3}$
	$c=9$	(A1)	
	$c=-1$	(A1)	
6(a)	$0=-\frac{5}{4}+\frac{a}{4}+5+b$	M1	For use of the factor theorem
	$-24=-10+a+10+b$	M1	For use of the remainder theorem
	$\begin{aligned} & a+4 b=-15 \\ & a+b=-24 \\ & \text { leading to } \end{aligned}$	M1	Dep on both previous \mathbf{M} marks for solution of their equations without using a calculator
	$a=-27, b=3$	A1	
6(b)	$(2 x+1)\left(5 x^{2} \ldots \ldots \ldots \ldots+\right.$ their $\left.b\right)$	M1	Allow for observation or algebraic long division. Their a and b must be integers.
	$(2 x+1)\left(5 x^{2}-16 x+3\right)$	A1	
	$(2 x+1)(5 x-1)(x-3)$	2	M1 for attempt to factorise their 3 -term quadratic A1 all correct from fully correct working
6(c)	3	B1	FT on their (integer) b
7(a)(i)	b-a	B1	
7(a)(ii)	c-b	B1	

Question	Answer	Marks	Guidance
7(a)(iii)	$n \overrightarrow{A B}=m \overrightarrow{B C}$	M1	For substitution of their (i) and (ii) into $n \overrightarrow{A B}=m \overrightarrow{B C}$
	$n \mathbf{a}+m \mathbf{c}=(m+n) \mathbf{b}$	A1	For correct manipulation to obtain the given answer
7(b)	$\begin{aligned} & 2 \lambda-4 \mu+4=4 \lambda+4 \\ & \text { or } \lambda+7 \mu-7=-2 \lambda-2 \end{aligned}$	M1	For equating like components at least once, allow unsimplified
		M1	Dep for solving their equations to obtain both λ and μ
	$\mu=5$	A1	
	$\lambda=-10$	A1	
8(a)	Either Starting with a 6: 120 ways	B1	May be implied by final answer
	Starting with 5, 7 or 9: 540 ways	B1	May be implied by final answer
	Total 660	B1	
	Or Alternative 1 Ending with a 6: 180 ways	(B1)	May be implied by final answer
	Ending with 0 or 4: 480ways	(B1)	May be implied by final answer
	Total 660	(B1)	
	Or Alternative 2 11 ways of obtaining even 5 -digit numbers which start with $5,6,7,9$	(B1)	For $11 \times k$ May be implied by final answer
	${ }^{5} \mathrm{P}_{3}$ ways of arranging remaining 3 digits: 60	(B1)	For $m \times 60$ where m is from an attempt to list all cases for first and last digits May be implied by final answer
	$11 \times 60=660$	(B1)	
	Or Alternative 3 Total arrangements ${ }^{7} \mathrm{P}_{5}$ minus (all odds + evens starting with $1+$ evens starting with 0 or 4) $=2520-(1440+180+240)$	(B2)	For $2520-(1440+180+240)$
	660	(B1)	

Question	Answer	Marks	Guidance
8(b)	$\frac{n!}{(n-4)!4!}=\frac{6 n!}{(n-2)!2!}$	B1	
	$(n-2)(n-3)=72$	2	B1 for $(n-2)(n-3)$
			B1 for 72
	$n=11$ only	2	M1 for correct attempt to form and solve a quadratic equation A1 for $n=11$ only
9(a)	$A O D=2 \times \tan ^{-1}\left(\frac{2}{3}\right)$	M1	For correct method to find $A O D$
	$\begin{aligned} & A O D=1.1760 \ldots \\ & A O D=1.176[\text { to } 3 \mathrm{dp}] \end{aligned}$	A1	Need to see 4 dp or more to justify 3 dp answer
9(b)	Major arc $M N=(2 \pi-1.176) 12$	B1	
	$N D$ or $M A=12-\sqrt{13}$	B1	
	Perimeter $=$ major arc $M N+M A+N D+16$ oe	B1	For their values in a correct plan, may be implied by a correct answer
	Perimeter $=94.1$	B1	
9(c)	Minor sector area $=\frac{1}{2} \times 1.176 \times 12^{2}$ or Major sector area $=\frac{1}{2} \times(2 \pi-1.176) \times 12^{2}$	B1	
	Area $=$ major sector area - remainder of rectangle or Area $=$ area of circle - minor sector area - remainder of rectangle or Area $=$ circle - rectangle - minor sector + triangle $A O D$	B1	For their values in a correct plan, may be implied by a correct answer
	Area $=350$	B1	Allow greater accuracy
10(a)	At A y $=4$	B1	
	$\text { At } B y=\frac{13}{16} \text { or } 0.8125$	B1	

Question	Answer	Marks	Guidance
10(b)	Either Area of trapezium $=\frac{231}{32}$	B1	Allow unsimplified
	$\begin{aligned} & \int_{-1}^{2} \frac{1}{(x+2)^{2}}+\frac{3}{x+2} \mathrm{~d} x \\ & =\left[-\frac{1}{x+2}+3 \ln (x+2)\right]_{-1}^{2} \end{aligned}$	2	B1 for $-\frac{1}{x+2}$ B1 for $3 \ln (x+2)$
	$\left[\left(-\frac{1}{4}+3 \ln 4\right)-(-1)\right]$	M1	For correct use of limits in their integral, but must have at least one of the two preceding B marks
	$\text { Area }=\frac{207}{32}-\ln 64$	2	A1 for $\frac{207}{32}$ A1 for $-\ln 64$
	$\begin{aligned} & \text { Or } \int_{-1}^{2}-\frac{17}{16} x+\frac{47}{16}-\frac{1}{(x+2)^{2}}-\frac{3}{x+2} \mathrm{~d} x \\ & {\left[\left(-\frac{17}{32} x^{2}+\frac{47}{16} x+\frac{1}{x+2}-3 \ln (x+2)\right)\right]_{-1}^{2}} \end{aligned}$	(3)	B1 for $-\frac{17}{32} x^{2}+\frac{47}{16} x$ B1 for $\int \frac{1}{(x+2)^{2}} \mathrm{~d} x=-\frac{1}{(x+2)}$ B1 for $\int \frac{3}{x+2} \mathrm{~d} x=3 \ln (x+2)$
	$\left(-\frac{17}{8}+\frac{47}{8}+\frac{1}{4}-3 \ln 4\right)-\left(-\frac{17}{32}-\frac{47}{16}+1\right)$	(M1)	For correct use of limits in their integral, but must have at least one of the two preceding B marks
	Area $=\frac{207}{32}-\ln 64$	(2)	A1 for $\frac{207}{32}$ A1 for $-\ln 64$
11(a)(i)	0	B1	
11(a)(ii)	-3	B1	
11(a)(iii)	$\left(\frac{1}{2}(25+15) \times 30\right)+\left(\frac{1}{2}(30+60) \times 10\right)+\left(\frac{1}{2} \times 20 \times 60\right)$	M1	For an unsimplified expression for the required area allowing at most one incorrect length
	Total distance $=1650$	A1	
11(b)(i)	$\begin{aligned} & v=4 \cos \frac{5 \pi}{3}-4 \\ & =-2 \end{aligned}$	M1	
	Speed $=2$	A1	

Question	Answer	Marks	Guidance
$11(\mathrm{~b})(\mathrm{ii})$	$a=-12 \sin 3 t$	B1	
	$\sin 3 t=0$ $3 t=\pi$ Leading to	M1	For equating to zero and attempt to solve to obtain t, allow if in degrees
	$t=\frac{\pi}{3}$	A1	
	$s=k \sin 3 t-4 t(+c)$	M1	
	$s=\frac{4}{3} \sin 3 t-4 t$		

Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS
 0606/13
 Paper 1
 October/November 2021
 MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

```
Abbreviations
awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
```

Question	Answer	Marks	Guidance
1	$\mathbf{3}$	$\begin{array}{l}\text { B1 for a cubic shape with a maximum in } \\ \text { the first quadrant, a minimum in the third } \\ \text { quadrant, extending into the second and } 4^{\text {th }} \\ \text { quadrants. The extensions must not curve } \\ \text { incorrectly and not lead to a complete } \\ \text { stationary point. }\end{array}$	
B1 for x-intercepts $-4,-\frac{1}{2}, 3$ either on			
diagram or stated but must be with a cubic			
graph.			
B1 for y-intercept 3 either on diagram or			
stated but must be with a cubic graph.			

Question	Answer	Marks	Guidance
4(b)	$4 x^{2}+4+\frac{1}{x^{2}} \text { soi }$	B1	
	$\begin{aligned} & \text { Coefficient of } x^{2} \\ & \left(\text { their } 4 \times \text { their } \frac{1}{256}\right) \\ & +\left(\text { their } 4 \times \text { their }-\frac{1}{24}\right) \\ & +\left(\text { their } \frac{7}{36}\right) \end{aligned}$	M1	Allow one sign error, but must have 3 terms in x^{2} only, with an attempt at addition.
	$\frac{25}{576}$	A1	
5(a)	$\frac{a\left(r^{4}-1\right)}{r-1}=17 \frac{a\left(r^{2}-1\right)}{r-1}$	M1	Allow equivalents Allow if ' a ' terms missing (assume to have been cancelled)
	$\left(r^{2}-1\right)\left(r^{2}+1\right)=17\left(r^{2}-1\right)$ or better $r^{4}-17 r^{2}+16=0$ oe $r^{3}+r^{2}-16 r-16=0$ oe	M1	Dep M1 for a correct simplified equation in r only
	$r=4$ only, from correct working	A1	
5(b)	$a r^{5}=64$	M1	For use of $a r^{5}$ with their positive r
	$a=0.0625 \text { or } \frac{1}{16}$	A1	Must be exact A0 if $r=4$ not from correct working in (a)
5(c)	Because $r>1$ oe	B1	FT on their $r>1$ Must have a value for r

Question	Answer	Marks	Guidance
6(a)	Either Starts with 8: 1680	B1	1680 must not be part of a product. May be implied by final answer
	Starts with 7 or 9: 2688	B1	May be implied by final answer
	Total: 4368	B1	
	Or Alternative 1 Starts with 7,8 or 9 and ends in 1,3 or 5 : 3024	(B1)	Allow for 1008 three times May be implied by final answer
	Starts with 8 or 9 and ends in 7: 672 Starts with 7 or 8 and ends in 9: 672	(B1)	For both May be implied by final answer
	Total: 4368	(B1)	
	Or Alternative 2 13 ways of obtaining odd 5 -digit numbers which start with 7,8 or 9	(B1)	Needs to be part of a product. May be implied by final answer
	${ }^{8} \mathrm{P}_{3}$ ways of arranging the remaining 3 digits: 336	(B1)	Needs to be part of a product. May be implied by final answer
	Total $=13 \times 336=4368$	(B1)	
	Or Alternative 3 Last digit is 7 or 9: 1344	B1	May be implied by final answer
	Last digit is 1, 3 or 5:3024	B1	May be implied by final answer
	Total: 4368	B1	
	Or Alternative 4 $\begin{aligned} & { }^{10} \mathrm{P}_{5}-\left({ }^{9} \mathrm{P}_{4} \times 7\right)-\left({ }^{8} \mathrm{P}_{3} \times 5\right)-\left({ }^{8} \mathrm{P}_{3} \times 4\right) \\ & -\left({ }^{8} \mathrm{P}_{3} \times 5\right) \end{aligned}$	B2	Must be complete
	Total: 4368	B1	
6(b)	$\frac{n!}{(n-3)!3!}=\frac{2 n!}{(n-2)!2!} \text { soi }$	B1	
	$(n-2)=6$ soi	B2	Dep B1 on first \mathbf{B} for $(n-2)$ soi Dep B1 on first B for 6 soi
	$n=8$	B1	Dep on previous B marks

Question	Answer	Marks	Guidance
7(a)	$\begin{aligned} & \sin A O Q=\frac{7}{10} \\ & P O A=\pi-A O Q \end{aligned}$ or $\begin{aligned} & 14^{2}=10^{2}+10^{2}-200 \cos A O B \text { oe } \\ & P O A=\frac{2 \pi-A O B}{2} \end{aligned}$	M1	Allow alternatives, but must be a complete method to find $P O A$
	$P O A=2.366195157=2.366$ to 3 dp	A1	Must see an angle correct to more than 3dp used in order to justify 3 dp
7(b)	$\begin{aligned} & \text { Area of sector }=\frac{1}{2} 10^{2}(2.366) \\ & (118.3) \end{aligned}$	B1	Allow unsimplified. Also allow use of 2.37
	Area of triangle $=\frac{1}{2} 10^{2} \sin 2.366$ (35)	B1	Allow unsimplified. Also allow use of 2.37
	Total area $=$ awrt 153	B1	Allow greater accuracy
7(c)	Major arc $P B=10 \times 2.366$	B1	Allow unsimplified. Also allow use of 2.37
	$\begin{aligned} & \sin \frac{P O A}{2}=\frac{A P / 2}{10} \\ & \text { or } A P^{2}=10^{2}+10^{2}-200 \cos P O A \end{aligned}$	M1	For a valid attempt to find $A P$ - may be seen in (a) or (b) but $A P$ must be stated in this part.
	$A P=18.5$	A1	Allow awrt 18.5
	Perimeter: major arc $P B+20+$ their $A P$	B1	For plan, may be implied, but must have an attempt to calculate $A P$
	Total perimeter $=62.2$	A1	Allow awrt 62.2
8(a)	$\begin{aligned} & 2 x^{2}+2 x-2=x^{2}+6 x-2 \\ & x^{2}-4 x=0 \\ & x(x-4)=0 \\ & x=0, x=4 \end{aligned}$	M1	For obtaining an equation in one variable
		M1	Dep for a correct attempt to obtain at least one solution
	(0, -1)	A1	nfww
	$(4,19)$	A1	nfww
	Mid-point (2,9) with sufficient detail	B1	AG

Question	Answer	Marks	Guidance
8(b)	Either Gradient of perpendicular $=-\frac{1}{5}$	M1	
	$y-9=-\frac{1}{5}(x-2)$	M1	Dep on previous \mathbf{M} mark for perpendicular bisector using their midpoint and their perpendicular gradient
	$7-9=-\frac{1}{5}(12-2) \text { oe }$	A1	For checking by substitution, must see evidence.
	Or Alternative 1 Gradient of perpendicular $=-\frac{1}{5}$	(M1)	
	$y-7=-\frac{1}{5}(x-12)$	(M1)	Dep on previous M mark for perpendicular bisector using $(12,7)$ and their perpendicular gradient
	$9-7=-\frac{1}{5}(2-12) \mathrm{oe}$	(A1)	For checking by substitution, must see evidence
	Or Alternative 2 $\text { Gradient of perpendicular }=-\frac{1}{5}$	(M1)	
	Gradient of line joining their $(2,9)$ to $(12,7)==-\frac{1}{5}$	(M1)	
	$(2,9)$ is a common point and gradients of perpendicular bisector and l are the same so C lies on l.	(A1)	
8(c)	$(22,5)$	2	B1 for 22 B1 for 5
	$(-18,13)$	2	$\begin{array}{\|l} \text { B1 for }-18 \\ \text { B1 for } 13 \end{array}$

Question	Answer	Marks	Guidance
9(a)	$\mathrm{e}^{2 y}=m x^{2}+c$	B1	May be implied by later work
	Either $\begin{aligned} & 7.96=4 m+c \\ & 3.76=2 m+c \end{aligned}$	M1	
	$m=2.1$ oe	A1	
	$c=-0.44$ oe	A1	
	$y=\frac{1}{2} \ln \left(2.1 x^{2}-0.44\right) \text { oe }$	A1	Do not isw
	Or gradient $=2.1 \mathrm{oe}$	(B1)	
	Use of either $7.96=4 m+c$ or $3.76=2 m+c$	(M1)	For use with their m
	$c=-0.44$ oe	(A1)	
	$y=\frac{1}{2} \ln \left(2.1 x^{2}-0.44\right) \text { oe }$	(A1)	Must be bracketed correctly
9(b)	$y=\frac{1}{2} \ln \left(\text { their } 2.1 x^{2}-\text { their } 0.44\right) \text { oe }$	M1	Must use the form $y=k \ln \left(p x^{2} \pm q\right) \quad p \neq 1$ and $q \neq 0$ or $\mathrm{e}^{2 y}=m x^{2}+c$
	0.253	A1	
9(c)	$\begin{aligned} & \text { their } 2.1 x^{2}-\text { their } 0.44>0 \text { or }=0 \text { or } \geq 0 \\ & \text { soi } \end{aligned}$	B1	
	Correct attempt to obtain the critical value using their $2.1 x^{2}-0.44=0$	M1	Must be from the form $y=k \ln \left(p x^{2}-q\right)$, $p \neq 1$ and $q>0$
	$x>0.458$ or $x>\sqrt{\frac{22}{105}}$ oe	A1	

Question	Answer	Marks	Guidance
10(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+3)^{\frac{1}{2}}+5 x(+c)$	B1	For $(2 x+3)^{\frac{1}{2}}$, allow unsimplified
		M1	For $k(2 x+3)^{\frac{1}{2}}+5 x$
	$10=3+15+c$	M1	Dep for use of 10 and $x=3$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to obtain c
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+3)^{\frac{1}{2}}+5 x-8 \text { soi }$	A1	
	When $x=11, \frac{\mathrm{~d} y}{\mathrm{~d} x}=5+55-8$ oe $=52$	A1	AG - need to see sufficient detail
10(b)	$\mathrm{f}(x)=\frac{1}{3}(2 x+3)^{\frac{3}{2}}+\frac{5 x^{2}}{2}(-8 x+d)$	B1	For $\frac{1}{3}(2 x+3)^{\frac{3}{2}}$, must be $\int(2 x+3)^{\frac{1}{2}} \mathrm{~d} x$
		M1	For $k(2 x+3)^{\frac{3}{2}}+\frac{5 x^{2}}{2}$
	$\begin{aligned} & \frac{19}{2}=\frac{27}{3}+\frac{45}{2}-24+d \\ & d=2 \end{aligned}$	M1	For use of $y=\frac{19}{2}$ and $x=3$ in their y
	$(\mathrm{f}(x)=) \frac{1}{3}(2 x+3)^{\frac{3}{2}}+\frac{5 x^{2}}{2}-8 x+2$	A1	Allow -8 if obtained from using $\frac{\mathrm{d} y}{\mathrm{~d} x}=52$ in (a) rather than $\frac{\mathrm{d} y}{\mathrm{~d} x}=10$
11(a)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}= \\ & \frac{(x+1)\left(\frac{1}{3} \times 2 x \times\left(x^{2}-5\right)^{-\frac{2}{3}}\right)-\left(x^{2}-5\right)^{\frac{1}{3}}}{(x+1)^{2}} \end{aligned}$ or $\begin{array}{r} (x+1)^{-1}\left(\frac{1}{3} \times 2 x \times\left(x^{2}-5\right)^{-\frac{2}{3}}\right) \\ +\left(x^{2}-5\right)^{\frac{1}{3}}\left(-(x+1)^{-2}\right) \end{array}$	3	B1 for $\frac{1}{3} \times 2 x \times\left(x^{2}-5\right)^{-\frac{2}{3}}$ M1 for an attempt at a quotient or a correct product A1 for all other terms correct
	$\frac{-x^{2}+2 x+15}{3(x+1)^{2}\left(x^{2}-5\right)^{\frac{2}{3}}}$	3	Dep on first 3 marks A1 for $-x^{2}$ in a quadratic numerator A1 for $2 x$ in a quadratic numerator A1 for 15 in a quadratic numerator

Question	Answer	Marks	Guidance
$11(b)$	$-x^{2}+2 x+15=0$	M1	For attempt to solve their $-x^{2}+2 x+15=0$ to obtain $x=.$. Must be a quadratic equation.
$11(\mathrm{c})$	Either Find the gradient either side of the stationary point	B1	
	If gradient changes from +ve to -ve: max If gradient changes from -ve to +ve: min	B1	Dep on previous B1
	Or Alternative 1 Take the second derivative and substitute in the value of x obtained in (b)	(B1)	Allow alternative valid methods Allow a general method as this is not dependent on (a) or (b)
	If second derivative is + ve, then a min If second derivative is - ve, then a max	(B1)	Dep on previous B1
	Or Alternative 2 Consider a y-value to one side of the stationary point	(B1)	Allow alternative valid methods Allow a general method as this is not dependent on (a) or (b)
	If y value of stationary point is greater, then a max. If y value of stationary point is less, then a min.	(B1)	Dep on previous B1

Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS
 0606/11
 Paper 1
 May/June 2021
 MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.
GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.
GENERIC MARKING PRINCIPLE 5:
Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).
GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only dep
dependent	
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(a)		$\begin{array}{l}\text { B1 for a well-drawn cubic graph in the } \\ \text { correct orientation with both arms } \\ \text { extending beyond } x \text {-axis }\end{array}$	
B1 for $x=-1, x=2$ and $x=\frac{2}{3}$ either			

graph

B1 for y=20 either on the graph or

stated with a cubic graph\end{array}\right\}\)

Question	Answer	Marks	Guidance
3(c)	$\text { Discriminant of } \begin{aligned} \mathrm{q}(x) & =3^{2}-4 \times 6 \times 3 \\ & =-63 \end{aligned}$ which is <0	M1	For calculation of discriminant and confirmation that it is <0
	$\mathrm{q}(x)=0$ has no real solutions hence $\mathrm{p}(x)=0$ has only one real solution	A1	For a correct conclusion from correct work.
4	$(a+x)^{3}=a^{3}+3 a^{2} x+3 a x^{2}\left[+x^{3}\right]$	B1	
	$\left(1-\frac{x}{3}\right)^{5}=1-\frac{5}{3} x+\frac{10}{9} x^{2} \ldots$	2	M1 allow one sign error or one arithmetic slip
	$a^{3}=27, \quad a=3$	B1	
	Term in $x: 3 a^{2}-\frac{5}{3} a^{3}=b$	M1	For multiplying their terms, must have sum of 2 relevant products $=b$
	$b=-18$	A1	
	Term in $x^{2}: 3 a-\frac{5}{3}\left(3 a^{2}\right)+\frac{10}{9} a^{3}=c$	M1	For multiplying their terms, must have sum of 3 relevant products $=c$
	$c=-6$	A1	
5(a)	$\mathrm{f} \geqslant-4$	2	M1for a valid method to find the least value of $x^{2}+4 x$ A1 for $\mathrm{f} \geqslant-4, y \geqslant-4$ or $\mathrm{f}(x) \geqslant-4$
5(b)	$\mathrm{g}>1$	B1	Allow $y>1$ or $\mathrm{g}(x)>1$
5(c)	$\left(1+\mathrm{e}^{2 x}\right)^{2}+4\left(1+\mathrm{e}^{2 x}\right)[=21]$	M1	
	$\begin{aligned} & \mathrm{e}^{4 x}+6 \mathrm{e}^{2 x}-16=0 \\ & \left(\mathrm{e}^{2 x}+8\right)\left(\mathrm{e}^{2 x}-2\right)=0 \end{aligned}$	M1	Dep for quadratic in terms of $\mathrm{e}^{2 x}$ and attempt to solve to obtain $\mathrm{e}^{2 x}=k$
	$\begin{aligned} & \mathrm{e}^{2 x}=2 \\ & x=\frac{1}{2} \ln k \end{aligned}$	M1	Dep on both previous M marks, for attempt to solve $\mathrm{e}^{2 x}=k$
	$x=\ln \sqrt{2}$ or $\ln 2^{\frac{1}{2}}$	A1	
6(a)(i)	720	B1	
6(a)(ii)	480	B1	

Question	Answer	Marks	Guidance
6(a)(iii)	[Starts with 6 or 8]: 192	B1	
	[Starts with 9]: 72	B1	
	Total $=264$	B1	
	Alternative [Ends with 9]:48	(B1)	
	[Ends with 1,3 or 5]:216	(B1)	
	Total $=264$	(B1)	
6(b)	$\frac{45 n!}{(n-4)!4!}=\frac{(n+1)(n+1)!}{((n+1)-5)!5!}$	B1	
	$45=\frac{(n+1)^{2}}{5}$ leading to $15=n+1 \text { or } n^{2}+2 n-224=0$	M2	M1 for 15 M1 for $n+1$ OR M1 for $n^{2}+2 n-224=0$ oe M1 for $(n-14)(n+16)=0$
	$n=14$ only	A1	
7(a)(i)	110 (m)	B1	
7(a)(ii)		B2	B1 for a line joining $(0,5)$ and $(10,5)$ B1 for a line joining $(10,-2)$ and $(40,-2)$
7(b)(i)	$v=(2 t+4)^{\frac{1}{2}}(+c)$	M1	For $k(2 t+4)^{\frac{1}{2}}$
	$9=4+c$	M1	Dep for attempt to find c using $v=9$ and $t=6$ in their v
	$(2 t+4)^{\frac{1}{2}}+5$	A1	

Question	Answer	Marks	Guidance
7(b)(ii)	$s=\frac{1}{3}(2 t+4)^{\frac{3}{2}} \quad(+5 t+d)$	M1	For $k(2 t+4)^{\frac{3}{2}}$
	$\frac{1}{3}=\frac{64}{3}+30+d$	M1	Dep for attempt to find d using $s=\frac{1}{3}$ and $t=6$ in their s
	$\frac{1}{3}(2 t+4)^{\frac{3}{2}}+5 t-51$	A1	
8(a)	$\begin{aligned} & x=\frac{\sqrt{3}+1}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} \text { leading to } \\ & x=\frac{5+3 \sqrt{3}}{1} \end{aligned}$	M1	For attempt to rationalise and simplify showing all working
	$x=5+3 \sqrt{3}$	A1	
	Either: $\begin{aligned} & \text { Using } \quad x=5+3 \sqrt{3} \\ & y=(2-\sqrt{3})(52+30 \sqrt{3})+5+3 \sqrt{3}-1 \\ & =14+8 \sqrt{3}+4+3 \sqrt{3} \end{aligned}$ Or: Using $x=\frac{\sqrt{3}+1}{2-\sqrt{3}}$ $\begin{aligned} & y=(2-\sqrt{3}) \frac{(\sqrt{3}+1)^{2}}{(2-\sqrt{3})^{2}}+\frac{\sqrt{3}+1}{2-\sqrt{3}}-1 \\ & =\frac{4+2 \sqrt{3}+\sqrt{3}+1-2+\sqrt{3}}{2-\sqrt{3}} \\ & =\frac{(4 \sqrt{3}+3)}{2-\sqrt{3}} \times \frac{(2+\sqrt{3})}{(2+\sqrt{3})} \\ & =\frac{8 \sqrt{3}+6+12+3 \sqrt{3}}{1} \end{aligned}$	M1	For complete method, showing all steps. Allow one slip in arithmetic
	$11 \sqrt{3}+18$	2	$\begin{aligned} & \text { A1 for } 18 \\ & \text { A1 for } 11 \sqrt{3} \end{aligned}$

Question	Answer	Marks	Guidance
8(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x(2-\sqrt{3})+1$	M1	For attempt at differentiation to obtain form of $\frac{\mathrm{d} y}{\mathrm{~d} x}=k x+1$
	$\begin{aligned} & 0=2 x(2-\sqrt{3})+1 \\ & x=-\frac{1}{2(2-\sqrt{3})} \times \frac{(2+\sqrt{3})}{(2+\sqrt{3})} \end{aligned}$ leading to $x=-\frac{1}{2} \frac{(2+\sqrt{3})}{1}$	M1	Dep on previous M for equating to zero, rationalisation and attempt to simplify
	$x=-1-\frac{\sqrt{3}}{2}$	A1	
9(a)(i)	$(3 y+2)(2 x+1)$	B1	
9(a)(ii)	$\begin{aligned} & (3 \cos \theta+2)(2 \sin \theta+1)=0 \\ & \cos \theta=-\frac{2}{3}, \sin \theta=-\frac{1}{2} \end{aligned}$	M1	For relating to part (i) and a correct attempt to obtain $\cos \theta=\ldots$ or $\sin \theta=\ldots$
	$\begin{aligned} & \theta=131.8^{\circ}, 228.2^{\circ} \\ & \theta=210^{\circ}, 330^{\circ} \end{aligned}$	3	M1 for solving one of the equations to obtain one correct solution A1 for any two correct solutions A1 for a further two correct solutions with no extra solutions within the range
9(b)	$\cos \left(2 \phi+\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2} \text { oe }$	B1	
	$\phi=-\frac{5 \pi}{24},-\frac{\pi}{24}, \frac{19 \pi}{24}, \frac{23 \pi}{24}$	4	M1 for solving to obtain one correct positive solution M1 for solving to obtain one correct negative solution A1 for any two correct solutions A1 for a further two correct solutions with no extra solutions within the range
10(a)	$\sin \frac{A O B}{2}=\frac{7.5}{10}$	M1	For a valid method
	$\begin{gathered} A O B=1.696 \\ =1.70 \text { to } 2 \mathrm{dp} \end{gathered}$	A1	Must see greater accuracy to justify given answer

Question	Answer	Marks	Guidance
10(b)	$A C^{2}=10^{2}+25^{2}-\left(2 \times 10 \times 25 \cos \left(\frac{A O B}{2}\right)\right)$	M1	For a complete and valid method to find $A C$
	$A C=$ awrt 19.9	A1	
	Major arc $A B=$ awrt 45.9 or awrt 45.8	B1	
	Perimeter $=$ awrt 85.5 or awrt 85.6	A1	
10(c)	Area of major sector $A O B=$ $\frac{1}{2} \times 10^{2}(2 \pi-A O B)$	M1	
	awrt 229	A1	
	Area of kite $O A C B=\frac{1}{2} \times 15 \times 25$	B1	Allow working with 2 separate triangles
	Area of their major sector plus area of their kite	M1	
	Total area $=$ awrt 417	A1	

Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS
 0606/12
 Paper 1
 May/June 2021
 MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1	$p^{0} q^{-5} r^{-\frac{2}{3}}$	3	B1 for $a=0$ B1 for $b=-5$ B1 for $c=-\frac{2}{3}$
2(a)		2	B1 for symmetrical V shape in the correct quadrant, touching the x-axis. Must have straight lines. B1 for $x=\frac{4}{3}$ and $y=4$ only, either seen or stated on a modulus graph.
2(b)	$x \leqslant-1, x \geqslant \frac{11}{3}$ or 3.67 or better	3	B1 for -1 from a correct method. B1 for $\frac{11}{3}$ or 3.67 or better, from a correct method.
3(a)	$\overrightarrow{A C}=\mathbf{c}-\mathbf{a}$	B1	May be implied
	$\overrightarrow{O P}=\mathbf{a}+\frac{3}{5} \overrightarrow{A C} \text { or } \mathbf{c}-\frac{2}{5} \overrightarrow{A C}$	M1	Maybe implied, for correct use of ratio $\begin{aligned} & \overrightarrow{O P}=\mathbf{a}+\frac{3}{5}(\text { their } \overrightarrow{A C}) \\ & \text { or } \mathbf{c}-\frac{2}{5}(\text { their } \overrightarrow{A C}) \end{aligned}$
	$\overrightarrow{O P}=\frac{2}{5} \mathbf{a}+\frac{3}{5} \mathbf{c}$	A1	Allow unsimplified
3(b)	$\overrightarrow{O P}=\frac{2}{5} \mathbf{b} \text { oe }$	B1	
	$\begin{aligned} \frac{2}{5} \mathbf{b} & =\frac{2}{5} \mathbf{a}+\frac{3}{5} \mathbf{c} \\ 2 \mathbf{b} & =2 \mathbf{a}+3 \mathbf{c} \end{aligned}$	B1	Dep on previous B mark for equating vectors and rearrangement to obtain $\mathbf{A G}$
	Alternative $\mathbf{b}=\frac{2}{5} \mathbf{a}+\frac{3}{5} \mathbf{c}+\frac{3}{5} \mathbf{b}$	(B1)	Need a clear indication of the method used, in the form of a correct unsimplified statement.
	$2 \mathbf{b}=2 \mathbf{a}+3 \mathbf{c}$	(B1)	Dep for simplification to obtain AG

Question	Answer	Marks	Guidance
4	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{1}{2}(3 x+2)^{\frac{2}{3}}(+c)$	M1	For $k_{1}(3 x+2)^{\frac{2}{3}}$ where k_{1} a constant.
	$4=2+c$	M1	Dep for use of 4 and $x=2$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to obtain c
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{1}{2}(3 x+2)^{\frac{2}{3}}+2$	A1	May be implied by subsequent integration or by $c=2$
	$y=\frac{1}{10}(3 x+2)^{\frac{5}{3}} \quad(+2 x+d)$	M1	For $k_{2}(3 x+2)^{\frac{5}{3}}$ where k_{2} is a constant.
	$6.2=\frac{1}{10}(32)+4+d$	M1	Dep on previous M1 for use of $x=2$ and $y=6.2$ in their y
	$y=\frac{1}{10}(3 x+2)^{\frac{5}{3}}+2 x-1$	A1	Must be an equation
5(a)	$p=16$	2	B1 for $\log _{a} \frac{5 p}{4}=\log _{a} 20$ oe B1 for 16, nfww
5(b)	$\left(3\left(3^{x}\right)-1\right)\left(3^{x}+3\right)=0$	M1	For recognition of a correct quadratic in 3^{x} and attempt to factorise or use quadratic formula
	$\begin{aligned} & 3^{x}=\frac{1}{3} \\ & x=-1 \end{aligned}$	2	M1 dep for a correct attempt to solve $3^{x}=k, k>0$ A1 for one solution only, must be from a correct solution.

Question	Answer	Marks	Guidance
5(c)	$\log _{y} 2=\frac{1}{\log _{2} y}$ or $\log _{2} y=\frac{1}{\log _{y} 2}$ or $\log _{y} 2=\frac{\log _{a} 2}{\log _{a} y}$ and $\log _{2} y=\frac{\log _{a} y}{\log _{a} 2}$	B1	May be implied
	$\begin{aligned} & 4\left(\log _{y} 2\right)^{2}-4\left(\log _{y} 2\right)+1=0 \\ & \left(2 \log _{y} 2-1\right)^{2}=0, \quad \log _{y} 2=\frac{1}{2} \\ & \text { or }\left(\log _{2} y\right)^{2}-4\left(\log _{2} y\right)+4=0 \\ & \left(\log _{2} y-2\right)^{2}=0, \quad \log _{2} y=2 \\ & \text { or }\left(\log _{a} y\right)^{2}-4\left(\log _{a} 2\right)\left(\log _{a} 4\right) \log _{a} y \\ & +4\left(\log _{a} 2\right)^{2}=0 \\ & \left(\log _{a} y-2 \log _{a} 2\right)^{2}=0 \\ & \log _{a} y=2 \log _{a} 2 \end{aligned}$	M1	For obtaining a 3 term quadratic equation in either $\log _{y} 2$ or $\log _{2} y$ and solving to obtain $\log _{y} 2=k$ or $\log _{2} y=k$, may be implied or equivalent using an alternative base.
	$y=4$	A1	nfww
6(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2(3+\sqrt{5}) x-8 \sqrt{5}$ or $x=\frac{8 \sqrt{5}}{2(3+\sqrt{5})}$	M1	Either For differentiation must have one correct term. or for use of ' $b^{2}-4 a c=0$ ', so $x=-\frac{b}{2 a}$ at the stationary point.
	$x=\frac{4 \sqrt{5}}{3+\sqrt{5}} \times \frac{(3-\sqrt{5})}{(3-\sqrt{5})}$ oe leading to $\frac{12 \sqrt{5}-20}{4}$ oe, this is the minimum acceptable working for this method.	M1	Dep for equating their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to zero with attempt to solve and rationalisation using a two term factor, or rationalisation of $x=-\frac{b}{2 a}$, using a two term factor with sufficient detail to imply no use of a calculator. Allow multiple equivalents. Allow one numerical slip or sign error.
	$x=-5+3 \sqrt{5}$	2	$\begin{aligned} & \text { A1 for }-5 \\ & \text { A1 for } 3 \sqrt{5} \end{aligned}$

Question	Answer	Marks	Guidance
6(b)	$\begin{aligned} & y=(3+\sqrt{5})(3 \sqrt{5}-5)^{2} \\ & \quad-8 \sqrt{5}(3 \sqrt{5}-5)+60 \\ & =(3+\sqrt{5})(45+25-30 \sqrt{5}) \\ & \quad-120+40 \sqrt{5}+60 \\ & =210+70 \sqrt{5}-90 \sqrt{5}-150 \\ & \quad-120+40 \sqrt{5}+60 \end{aligned}$	M1	For substitution of their x and simplification with sufficient detail to imply no use of a calculator. Allow one numerical slip or sign error in the expansion of $(3+\sqrt{5})(3 \sqrt{5}-5)^{2}$ or one sign error in the other terms.
	$=20 \sqrt{5}$	2	$\begin{aligned} & \text { A1 for all non surd terms }=0 \\ & \text { A1 for } 20 \sqrt{5} \end{aligned}$
7(a)(i)	20160	B1	
7(a)(ii)	7200	2	B1 for ${ }^{6} \mathrm{P}_{4}$ or $6 \times 5 \times 4 \times 3(=360)$ for 'inner' characters or ${ }^{5} \mathrm{P}_{2}$ or $4 \times 5(=20)$ for 'outer' characters Must be part of a product
7(a)(iii)	360	2	B1 for ${ }^{3} \mathrm{P}_{3}$ or 3! or 6 for arrangements of symbols or ${ }^{5} \mathrm{P}_{3}$ or $5 \times 4 \times 3(=60)$ for the digits Must be part of a product
7(b)	$\frac{n!}{(n-5)!5!}=\frac{6(n-1)!}{((n-1)-4)!4!}$	B1	May be implied by simplification e.g. $\begin{aligned} & \frac{n!}{5!}=6 \frac{(n-1)!}{4!} \\ & \text { or } \frac{n(n-1)(n-2)(n-3)(n-4)}{5!} \\ & \quad=\frac{6(n-1)(n-2)(n-3)(n-4)}{4!} \end{aligned}$
	Simplification of either the numerical factorials or the algebraic factorials	M1	
	$n=30$	A1	

Question	Answer	Marks	Guidance
8(a)	$\lg y=b \lg x+\lg A$	B1	May be implied by subsequent work
	$\begin{aligned} & 4.37=5.36 b+\lg A \\ & 0.57=0.61 b+\lg A \end{aligned}$	M1	For at least one correct equation
	$b=0.8$	A1	
	$\begin{aligned} & \lg A=k \quad(0.082) \\ & A=10^{k} \end{aligned}$	M1	Dep for substitution to obtain $\lg A=k$ and hence A
	$A=1.21$	A1	
	Alternative 1 $\lg y=b \lg x+\lg A$	(B1)	May be implied by subsequent work
	$\text { Gradient }=\frac{4.37-0.57}{5.36-0.61}$	(M1)	
	$b=0.8$	(A1)	
	$\begin{aligned} & \lg A=k \quad(0.082) \\ & A=10^{k} \end{aligned}$	(M1)	Dep for substitution into a correct equation to obtain $\lg A=k$ and hence A
	$A=1.21$	(A1)	
	Alternative 2 $\begin{aligned} & 10^{4.37}=A \times 10^{5.36 b} \\ & \text { or } 10^{0.57}=A \times 10^{0.61 b} \end{aligned}$	(B1)	
	$3.8=4.75 b$	(M1)	For eliminating A correctly Must have B1.
	$b=0.8$	(A1)	
	$A=10^{4.37-(5.36 x(\text { theirb }) \text {) }} \mathrm{oe}$	(M1)	For a correct attempt to find A. Must have B1
	$A=1.21$	(A1)	
8(b)	$y=1.21(3)^{0.8}$ or $\lg y=0.8 \lg 3+0.082$	B1	FT for substitution into their equation
	$y=$ awrt 2.9	B1	
8(c)	$3=1.21 x^{0.8}$ or $\lg 3=0.8 \lg x+0.082$	B1	FT for substitution into their equation
	$x=$ awrt 3.1	B1	

Question	Answer	Marks	Guidance
9(a)	$d=12$	B1	
	$\begin{aligned} & \frac{n}{2}(-8+(n-1) 12)>2000 \\ & 3 n^{2}-5 n-1000>0 \end{aligned}$	M1	For use of sum formula to obtain a three term quadratic inequality or equation
	$\begin{aligned} & n=\frac{5 \pm \sqrt{25+12000}}{6} \\ & n=19.1 \end{aligned}$	M1	Dep for attempt at critical value(s) using their quadratic, may be using a calculator, so may be implied by a correct answer of 20 .
	$n=20$	A1	
9(b)(i)	$r=3$	2	M1 For $a r^{6}=27$ and $a r^{8}=243$ with an attempt to eliminate a to obtain r^{2}. Allow other valid methods.
9(b)(ii)	3^{26}		B1 for $a=\frac{1}{27}$ or 3^{-3} nfww
9(c)	Common ratio or $r=\sin \theta$	B1	May be implied by e.g. $\frac{1}{1-\sin \theta}$ or $\frac{1-\sin ^{n} \theta}{1-\sin \theta}$
	$-1<\sin \theta<1$ or $\|\sin \theta\|<1$ or $-1<r<1$ or $\|r\|<1$ with no incorrect statements seen.	B1	Dep on previous B1
10(a)	$\frac{1}{\sin \alpha}+\frac{1}{\cos \alpha} \quad(=0)$	B1	For dealing correctly with $\operatorname{cosec}^{2} \alpha$ and $\sec ^{2} \alpha$ to obtain an expression in $\sin \alpha$ and $\cos \alpha$ only
	$\begin{aligned} & \tan \alpha=-1 \\ & \text { or } \sin \alpha=-\cos \alpha \end{aligned}$	B1	For an equation in $\tan \alpha$, may be implied by a correct solution.
	$\begin{aligned} & \alpha=-\frac{\pi}{4} \text { or }-0.785 \\ & \alpha=\frac{3 \pi}{4} \text { or } 2.36 \end{aligned}$	2	B1 for one correct solution B1 for a second correct solution and no extra solutions in the range.

Question	Answer	Marks	Guidance
10(b)(i)	$\frac{\cos ^{2} \theta+1-2 \sin \theta+\sin ^{2} \theta}{\cos \theta(1-\sin \theta)}$	M1	For dealing with the fractions correctly and expansion of $(1-\sin \theta)^{2}$
	$\frac{1+1-2 \sin \theta}{\cos \theta(1-\sin \theta)}$ or better	M1	Dep for use of identity, may be implied by $\frac{2(1-\sin \theta)}{\cos \theta(1-\sin \theta)}$
	$\frac{2(1-\sin \theta)}{\cos \theta(1-\sin \theta)}$	M1	Dep on previous M mark for simplification
	$\frac{2}{\cos \theta}=2 \sec \theta$	A1	Need to see this detail for A1 Need to have had θ in every trigonometric ratio.
	Alternative 1 $\left(\frac{\cos \theta}{1-\sin \theta} \times \frac{1+\sin \theta}{1+\sin \theta}\right)+\frac{1-\sin \theta}{\cos \theta}$	(M1)	
	$\frac{\cos \theta(1+\sin \theta)}{\cos ^{2} \theta}+\frac{1-\sin \theta}{\cos \theta}$	(M1)	Dep for use of identity
	$\frac{1+\sin \theta}{\cos \theta}+\frac{1-\sin \theta}{\cos \theta}$	(M1)	Dep on previous M mark for simplification
	$\frac{2}{\cos \theta}=2 \sec \theta$	(A1)	Need to see this detail for A1 Need to have had θ in every trigonometric ratio.
	Alternative 2 $\frac{\left(1-\sin ^{2} \theta\right)+(1-\sin \theta)^{2}}{\cos \theta(1-\sin \theta)}$	(M1)	For dealing with the fractions and using $\cos ^{2} \theta=1-\sin ^{2} \theta$.
	$\frac{(1-\sin \theta)(1+\sin \theta)+(1-\sin \theta)^{2}}{\cos \theta(1-\sin \theta)}$	(M1)	Dep for factorising $1-\sin ^{2} \theta$
	$\frac{1+\sin \theta+1-\sin \theta}{\cos \theta}$	(M1)	Dep for simplification
	$\frac{2}{\cos \theta}=2 \sec \theta$	(A1)	Need to see this detail for A1 Need to have had θ in every trigonometric ratio.

Question	Answer	Marks	Guidance
10(b)(ii)	$\cos 3 \phi=\frac{1}{2}$	B1	
	$\phi=20^{\circ}, 100^{\circ}, 140^{\circ}$	3	M1 for one correct solution of their $\cos 3 \phi=k$ using a correct order of operations A1 for 2 correct solutions A1 for a third correct solution with no extra solutions in the range
11	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(2 x-3) \frac{2 x}{x^{2}+2}-2 \ln \left(x^{2}+2\right)}{(2 x-3)^{2}}$	3	B1 for $\frac{2 x}{x^{2}+2}$ M1 for differentiation of a quotient
	When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4}{6}-2 \ln 6,-2.92$ Gradient of normal $=0.3428$	M1	$\text { For }-\frac{1}{\text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}}$
	When $x=2, y=\ln 6$ or $1.79(176)$	B1	
	Equation of normal: $\begin{aligned} & y-\ln 6=-\frac{1}{\text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}}(x-2) \\ & \text { or } \ln 6=-\frac{1}{\text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}} \times(2)+c \end{aligned}$	M1	Dep for equation of normal using $-\frac{1}{\text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}}$ and their y with $x=2$.
	When $x=0, y=$ awrt 1.11	A1	Must be evaluated.

Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS
 0606/13
 Paper 1
 May/June 2021
 MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1	$(4 k)^{2}-4 k(3 k+1)$	M1	For use of the discriminant to obtain a two term quadratic expression.
	$4 k^{2}-4 k=0$	M1	Dep to find critical values, allow if only one is found
	$k=0, k=1$	A1	For both critical values
	$k<0 \quad k>1$	A1	
2(a)	$x^{2}\left(3 \mathrm{e}^{3 x}\right)+2 x \mathrm{e}^{3 x}$	3	M1 for differentiation of a product A1 for $x^{2}\left(3 \mathrm{e}^{3 x}\right)$ A1 for $+2 x \mathrm{e}^{3 x}$
2(b)(i)	$2 x\left(3 x^{2}+4\right)^{-\frac{2}{3}}$	2	M1 for $k x\left(3 x^{2}+4\right)^{-\frac{2}{3}}$
2(b)(ii)	$\left[\frac{1}{2}\left(3 x^{2}+4\right)^{\frac{1}{3}}\right]_{0}^{2}$	M1	For $k\left(3 x^{2}+4\right)^{\frac{1}{3}}$
	$\left[\frac{1}{2}\left(16^{\frac{1}{3}}\right)-\frac{1}{2}\left(4^{\frac{1}{3}}\right)\right]$	M1	Dep for correct substitution of limits into their integral
	0.466	A1	
3	$\left(\cot ^{2} \theta+1\right)+2 \cot ^{2} \theta=2 \cot \theta+9$	B1	For use of correct identity
	$\begin{aligned} & (3 \cot \theta+4)(\cot \theta-2)=0 \\ & \cot \theta=-\frac{4}{3}, \quad \cot \theta=2 \end{aligned}$	M1	For attempt to solve their quadratic in $\cot \theta$ to obtain $\cot \theta=k$
	$\tan \theta=-\frac{3}{4}, \quad \tan \theta=\frac{1}{2}$	M1	For dealing with $\cot \theta=k$ correctly to get $\tan \theta=\frac{1}{k}$
	$\theta=-0.644$	A1	
	$\theta=0.464$	A1	
4(a)	$64-48 x^{2}+15 x^{4}$	3	B1 for 64 B1 for $-48 x^{2}$ B1 for $15 x^{4}$

Question	Answer	Marks	Guidance
4(b)	$9-\frac{6}{x^{2}}+\frac{1}{x^{4}}$	B1	
	$($ their $64 \times 9)+($ their $-48 \times-6)+($ their 15$)$	M1	For considering terms independent of x, must have 3 terms
	879	A1	
5	$\mathrm{e}^{y}=m x^{2}+c$	B1	May be implied by later work
	$\begin{aligned} & 10=4.74 m+c \\ & 5=2.24 m+c \end{aligned}$	M1	For at least one correct equation
	$5=2.5 \mathrm{~m}$	M1	Dep for attempt to solve for m
	$m=2, c=0.52$	A1	For both
	$y=\ln \left(2 x^{2}+0.52\right)$	A1	
	Alternative $\mathrm{e}^{y}=m x^{2}+c$	(B1)	May be implied by later work
	$\text { Gradient }=m=\frac{10-5}{4.74-2.24}$	(M1)	
	$\begin{aligned} & 10=4.74(\text { their } m)+c \text { or } \\ & 5=2.24(\text { their } m)+c \end{aligned}$	(M1)	
	$m=2, c=0.52$	(A1)	For both
	$y=\ln \left(2 x^{2}+0.52\right)$	(A1)	
6(a)	$\frac{\pi}{3}$	B1	
6(b)	$\frac{\pi a}{3}+4 a$	2	B2 FT for $\left(\right.$ their $\left.\frac{\pi}{3} \times a\right)+4 a$ or B1 FT for their $\frac{\pi}{3} \times a$

Question	Answer	Marks	Guidance
6(c)	$\frac{1}{2}(2 a)^{2} \sin \frac{\pi}{3}$	B1	FT their $\frac{\pi}{3}$
	$\frac{1}{2} a^{2} \frac{\pi}{3}$	B1	FT their $\frac{\pi}{3}$
	$\sqrt{3} a^{2}-\frac{\pi a^{2}}{6}$	B1	FT their $\frac{\pi}{3}$
7(a)(i)	${ }^{8} C_{4}$	M1	For realisation that there are 4 places left and 8 people available to fill them
	70	A1	
7(a)(ii)	1 teacher on committee: 5 ways	B1	
	${ }^{12} C_{8}-5$	M1	
	490	A1	
	Alternative 2 teachers: 70 3 teachers: 210 4 teachers: 175 5 teachers: 35	(2)	B1 for 2 correct cases
	490	(B1)	
7(b)	$\frac{n!}{(n-5)!}=6 \frac{(n-1)!}{(n-1-4)!}$	B1	
	$\frac{n}{(n-5)!}=\frac{6}{(n-5)!}$	M1	For simplification of either n ! and ($n-1$)! or 'cancelling out' of the terms of $(n-5)$!
	$n=6$	A1	nfww
8(a)	$b=2$	B1	
	At (0,3): $3=a+c$	B1	
	$\begin{aligned} & \text { At }\left(\frac{5 \pi}{6}, 0\right): 0=a \cos \frac{5 \pi}{3}+c \\ & 0=\frac{a}{2}+c \end{aligned}$	M1	For use of their b and $\left(\frac{5 \pi}{6}, 0\right)$
	$\begin{aligned} & a=6 \\ & c=-3 \end{aligned}$	A1	For both

Question	Answer	Marks	Guidance			
8(b)	$\left(\frac{\pi}{6}, 0\right)$	$\mathbf{B 1}$	Allow for $x=\frac{\pi}{6}$	$	$	8(c)
:---						
9(a)						

Question	Answer	Marks	Guidance
10(c)	$\mathbf{c}(h-1)+\mathbf{a}\left(\frac{3 h}{4}+\frac{3}{4}\right)=\frac{1}{4} \mathbf{a}+k \mathbf{c}$	M1	For equating their answer to (a) to their answer to (b)
	$\begin{aligned} & \mathbf{c}(h-1)+\mathbf{a}\left(\frac{3 h}{4}+\frac{3}{4}\right)=\frac{1}{4} \mathbf{a}+k \mathbf{c} \\ & h-1=k \end{aligned}$	M1	For attempt to equate like vectors once.
	$h=\frac{4}{3}$	A1	
	$k=\frac{1}{3}$	A1	
11(a)	$\begin{aligned} & x+2 y=10 \\ & x+y=2 \end{aligned}$	M1	For attempt to solve simultaneously
	$(-6,8)$	A1	
	$\begin{aligned} & x+2 y=10 \\ & x+y=-2 \end{aligned}$	M1	For attempt to solve simultaneously
	$(-14,12)$	A1	
	Alternative $\begin{aligned} & x^{2}+x(10-x)+\frac{(10-x)^{2}}{4}=4 \\ & \text { or }(10-2 y)^{2}+2 y(10-2 y)+y^{2}=4 \end{aligned}$	(M1)	For attempt to eliminate one of the variables using $(x+y)^{2}=4$
	$x^{2}+20 x+84=0$ or $y^{2}-20 y+96=0$	(M1)	Dep for attempt to obtain a 3 term quadratic equation $=0$ and solve to obtain at least one solution, allow 1 arithmetic error
	$(-14,12)$	(A1)	
	$(-6,8)$	(A1)	
	Mid-point of $A B$: $(-10,10)$	M1	For attempt to obtain the mid-point using their coordinates for A and B.
	Gradient of line perpendicular to $A B=2$	M1	For attempt to obtain the perpendicular gradient using their coordinates for A and B.
	y-their $10=$ their $2(x-$ their $(-10))$	M1	
	$20-10=2(-5+10)$ oe	A1	For verification

Question	Answer	Marks	Guidance
$11(\mathrm{~b})$	$(10,50)$	$\mathbf{2}$	FT on their midpoint B1 for each coordinate
	$(-20,-10)$	$\mathbf{2}$	FT on their midpoint B1 for each coordinate

Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS
 0606/12
 Paper 1
 March 2021
 MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1	$\begin{aligned} & (3 \ln 5 x-1)(\ln 5 x+1)=0 \\ & \ln 5 x=\frac{1}{3}, \ln 5 x=-1 \end{aligned}$	M1	For recognition of a quadratic in $\ln 5 x$ and attempt to solve to obtain $\ln 5 x=k$
	$\begin{aligned} & x=\frac{1}{5} \mathrm{e}^{\frac{1}{3}}, \frac{\sqrt[3]{\mathrm{e}}}{5}, \mathrm{e}^{\frac{1}{3} \ln 5} \mathrm{oe} \\ & x=\frac{1}{5 \mathrm{e}}, \frac{\mathrm{e}^{-1}}{5}, \mathrm{e}^{-1-\ln 5} \mathrm{oe} \end{aligned}$	3	Dep M1 for dealing with their $\ln 5 x=k$ correctly once A1 for $x=\frac{1}{5} \mathrm{e}^{\frac{1}{3}}$ oe isw A1 for $x=\frac{1}{5 \mathrm{e}}$ oe isw
2	$a=3$	B1	
	$b=\frac{1}{2}$	B1	
	$c=4$	B1	
3(a)	Gradient of line perp to $A B=-\frac{3}{4}$	B1	
	Mid-point of $A B(-1,10)$ soi	B1	
	$y-10=-\frac{3}{4}(x+1) \text { soi }$	M1	For attempt at straight line using their perp gradient and their mid-point
	$\begin{aligned} & a-10=-\frac{3}{4}(7+1) \\ & a=4 \end{aligned}$	A1	Allow $y=4$
3(b)	$(-9,16)$	2	B1 for $x=-9$ B1 FT on their a, dep on M1 from (a) for $y=16$ or $20-$ their a B1 for $-9,16$
4(a)	$2\left(x+\frac{5}{4}\right)^{2}-\frac{49}{8}$	3	B1 for $b=\left(x+\frac{5}{4}\right)^{2}$ or $(x+1.25)^{2}$ B1 for $c=-\frac{49}{8}$ or -6.125

Question	Answer	Marks	Guidance
4(b)	$\left(-\frac{5}{4},-\frac{49}{8}\right)$ oe	2	B1 for $-\frac{5}{4}$ as part of a set of coordinates or $x=-\frac{5}{4}$, FT on - their b B1 for $-\frac{49}{8}$ as part of a set of coordinates or $y=-\frac{49}{8}$ FT on their c Need to be using their answer to (a) and not using differentiation as 'Hence'. B1 for $-\frac{5}{4},-\frac{49}{8}$
4(c)		3	B1 for correct shape, with maximum in the second quadrant and cusps on the x-axes and reasonable curvature for $x<-3$ and $x>0.5$. B1 for $(-3,0)$ and $(0.5,0)$ either seen on the graph or stated, must have attempted a correct shape B1 for $(0,3)$ either seen on the graph or stated, must have attempted a correct shape
4(d)	$\frac{49}{8}$ oe	B1	FT on their $\|c\|$ from (a) Allow $\frac{49}{8}$ from other methods
5(a)	$\binom{-4}{3} t$ or $\binom{0}{0}+\binom{-4}{3} t$ oe	B1	
5(b)	$\binom{12}{6}+\binom{-5}{8} t$ or $\binom{12-5 t}{6+8 t}$	B1	

Question	Answer	Marks	Guidance
5(c)	$\overrightarrow{P Q}=\binom{12}{6}+\binom{-5}{8} t-\binom{-4}{3} t$	M1	For their (b)-their (a), or their (a)-their (b) Allow unsimplified. Both vectors must be in terms of t
	$\binom{12-t}{6+5 t}$ soi	B1	
	$\begin{aligned} & \left\|(\overrightarrow{P Q})^{2}\right\|=(12-t)^{2}+(6+5 t)^{2} \\ & \left\|(\overrightarrow{P Q})^{2}\right\|=26 t^{2}+36 t+180 \end{aligned}$	A1	Allow FT for use of modulus with $\binom{t-12}{-6-5 t}$ and simplification to obtain the given result.
5(d)	Attempt to solve or consider the discriminant of $26 t^{2}+36 t+180=0$	M1	Must be using the equation from part (c) as 'Hence'.
	Conclusion from either $36^{2}-4(26)(180)<0 \text { or } t>0$	A1	Must have stated somewhere that $\left\|(\overrightarrow{P Q})^{2}\right\|=0$ oe has been considered not just $\left\|(\overrightarrow{P Q})^{2}\right\|$.
6(a)(i)	$\begin{aligned} & a=10,6=\frac{a}{1-r} \\ & 10=6-6 r \end{aligned}$	M1	For use of first term and sum to infinity to obtain an equation in r only
	$r=-\frac{2}{3}$	A1	
6(a)(ii)	$S_{7}=10 \frac{\left(1-(\text { their } r)^{7}\right)}{1-\text { their } r}$	M1	For sum formula with \mid their $r \mid<1$.
	$S_{7}=6.35$	A1	
6(b)(i)	$\log _{x} 3$	B1	
6(b)(ii)	$S_{n}=\frac{n}{2}\left(2 \log _{x} 3+(n-1) \log _{x} 3\right)$	M1	For use of sum formula with their (i)
	$\frac{n}{2}(n+1) \log _{x} 3, \frac{n}{2} \log _{x} 3^{n+1}, \frac{n+1}{2} \log _{x} 3^{n}$	A1	Allow other similar equivalents
6(b)(iii)	$\frac{n}{2}(n+1)=3081$	M1	For a correct attempt to solve their $($ ii $)=3081 \log _{x} 3$ to obtain an answer for n. Must be a 3 term quadratic in n only.
	$n=78$	A1	

Question	Answer	Marks	Guidance
6(b)(iv)	$1027=\frac{78}{2}(79) \log _{x} 3 \text { or } 3081 \log _{x} 3$	M1	For using their 78 in a sum equation or using 3081 to obtain x
	$x=27$	A1	
7(a)	$\begin{aligned} & A E^{2}=(\sqrt{17}-1)^{2}+(\sqrt{17}+1)^{2} \\ & =18+2 \sqrt{17}+18-2 \sqrt{17} \end{aligned}$	M1	For attempt to find $A E$. Must see at least 3 terms in an expansion that is not the difference of two squares to be convinced a calculator is not being used.
	$A E=6$	A1	
	$\begin{aligned} & \text { Perimeter }=4 \sqrt{17}+8+\text { their } A E \\ & =4 \sqrt{17}+14 \end{aligned}$	B1	FT on their $A E$
7(b)	$\begin{aligned} & \text { Area }=\frac{1}{2}(3 \sqrt{17}+7)(\sqrt{17}+1) \text { oe } \\ & =\frac{1}{2}(51+3 \sqrt{17}+7 \sqrt{17}+7) \text { oe } \end{aligned}$	M1	For attempt at a trapezium or triangle and rectangle. Must see at least 3 terms in an expansion that is not the difference of two squares to be convinced a calculator is not being used. Allow one arithmetic slip.
	Area $=29+5 \sqrt{17}$	A1	
7(c)	$\tan A E D=\frac{\sqrt{17}+1}{\sqrt{17}-1} \times \frac{\sqrt{17}+1}{\sqrt{17}+1}$	M1	For attempt at rationalisation.
	$\frac{9+\sqrt{17}}{8} \quad \frac{2}{2}$	A1	Must come from $\frac{18+2 \sqrt{17}}{16}$ to be convinced a calculator is not being used.
7(d)	$\begin{aligned} & \sec ^{2} A E D=\tan ^{2} A E D+1 \\ & =\frac{(9+\sqrt{17})^{2}}{64}+1 \\ & \frac{81+17+18 \sqrt{17}+64}{64} \text { oe } \end{aligned}$ if $\frac{(9+\sqrt{17})^{2}}{64}$ and 1 are considered separately.	M1	For use of their (c) in the correct identity and attempt to simplify to obtain a single fraction. Must see at least 3 terms in an expansion that is not the difference of two squares to be convinced a calculator is not being used. Allow one arithmetic slip
	$\frac{81+9 \sqrt{17}}{32}$ oe	A1	cao

Question	Answer	Marks	Guidance
8(a)(i)	$\sin x \frac{\sin x}{\cos x}+\cos x$	B1	
	$\frac{\sin ^{2} x+\cos ^{2} x}{\cos x} \text { oe }$	B1	
	$\frac{1}{\cos x}=\sec x$	B1	Poor notation is B0
8(a)(ii)	$\begin{aligned} & \sec \frac{\theta}{2}=4 \\ & \cos \frac{\theta}{2}=\frac{1}{4} \end{aligned}$	M1	For use of (i) and dealing with sec to obtain $\cos \frac{\theta}{2}=\frac{1}{4}$
	$\begin{aligned} & \frac{\theta}{2}=1.3181,4.9651 \\ & \theta=2.64 \text { or } 0.839 \pi \\ & \theta=9.93 \text { or } 3.16 \pi \end{aligned}$	3	Dep M1 for a correct attempt to solve to obtain at least one solution for θ A1 for one correct solution A1 for a second correct solution and no extra solutions
8(b)	$\begin{aligned} & \tan \left(y+38^{\circ}\right)=\frac{1}{\sqrt{3}} \\ & y=172^{\circ} \\ & y=352^{\circ} \end{aligned}$	3	M1 for dealing with cot and a correct attempt to obtain at least one correct solution, allow for -8° A1 for one correct solution A1 for a second correct solution and no extra solutions
9(a)	$(2 x-1)\left(x^{2}-x-1\right)$	M1	For attempt at factorisation by observation or by algebraic long division
	$(2 x-1)\left(x^{2}-x-1\right)$	A1	cao
9(b)	$\text { At } A x=\frac{1}{2}$	B1	
	$x^{2}-x-1=0$	M1	For a valid attempt to solve their quadratic equation, allow for decimal solutions
	$x=\frac{1 \pm \sqrt{5}}{2} \text { soi }$	A1	
	$\text { At } B x=\frac{1+\sqrt{5}}{2}$	A1	

Question	Answer	Marks	Guidance
9(c)	$\int \frac{1}{x} \mathrm{~d} x=\ln x$	B1	
	$[\ln x]_{\frac{1}{2}}^{\frac{1+\sqrt{5}}{2}}=\ln (1+\sqrt{5})$	B1	Allow $\ln \left(\frac{1+\sqrt{5}}{2}\right)-\ln \frac{1}{2}$
	$\left(\int-2 x^{2}+3 x+1\right) \mathrm{d} x=-\frac{2}{3} x^{3}+\frac{3 x^{2}}{2}+x$	M1	M1 for attempt at $-\frac{2}{3} x^{3}+\frac{3 x^{2}}{2}+x$, must have 2 correct terms.
	$\begin{aligned} & {\left[-\frac{2}{3} x^{3}+\frac{3 x^{2}}{2}+x\right]_{0}^{\frac{1}{2}}} \\ & =\left(-\frac{2}{3} \times \frac{1}{8}\right)+\left(\frac{3}{2} \times \frac{1}{4}\right)+\frac{1}{2} \mathrm{oe} \end{aligned}$	M1	Dep for correct application of the limits 0 and $\frac{1}{2}$ and attempt to evaluate - may be implied by 0.792 or $\frac{19}{24}$.
	$\frac{19}{24}$	A1	
	$\ln (1+\sqrt{5})+\frac{19}{24}$	A1	isw
10(a)	$\frac{(x-1)(6 x)\left(2 x^{2}+10\right)^{\frac{1}{2}}-\left(2 x^{2}+10\right)^{\frac{3}{2}}}{(x-1)^{2}}$	3	B1 for $\frac{3}{2} \times 4 x \times\left(2 x^{2}+10\right)^{\frac{1}{2}}$ oe M1 for correct attempt at differentiation of a quotient A1 for all the other terms correct
	$\left(\frac{\left(2 x^{2}+10\right)^{\frac{1}{2}}}{(x-1)^{2}}\right)\left(4 x^{2}-6 x-10\right)$	2	A2 for all 3 terms correct in the quadratic A1 for 2 terms correct and 1 incorrect term in the quadratic A0 for 1 term correct or no terms correct in the quadratic

Question	Answer	Marks	Guidance
$10(\mathrm{~b})$	$4 x^{2}-6 x-10=0$ $(2 x-5)(x+1)=0$	M1	For attempt to solve their quadratic $=0$ and obtain at least one solution or state that their quadratic equation has no real roots.
	$x=\frac{5}{2}$	A1	
	Rejecting $x=-1$ correctly	A1	May be implied by the statement $x>1$.
	Discounting $\left(2 x^{2}+10\right)^{\frac{1}{2}}=0$	B1	

Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS
 0606/11
 Paper 1
 October/November 2020
 MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles	
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to correct answer only cep
corpendent	
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1	$y= \pm 3(x+2)(x+1)(x-4)$	3	B1 for 3 B1 for $(x+2)(x+1)(x-4)$ B1 for \pm
2(a)	4	B1	
2(b)	1080° or 6π	B1	
2(c)			B1 for shape, it must be symmetrical about the y-axis. B1 for y-intercept of 5 B1 for $\left(\pm 180^{\circ}, 3\right)$
3(a)	$a=\frac{3}{2} \text { or } p^{\frac{3}{2}}$	B1	
	$b=\frac{10}{3} \text { or } q^{\frac{10}{3}}$	B1	
	$c=-\frac{7}{3} \text { or } r^{-\frac{7}{3}}$	B1	
3(b)	$\left(3 x^{\frac{1}{3}}-1\right)\left(2 x^{\frac{1}{3}}-1\right)=0$	M1	For recognising as a quadratic in $x^{\frac{1}{3}}$ and attempt to solve to obtain $x^{\frac{1}{3}}=k$
	$x^{\frac{1}{3}}=\frac{1}{3}, x^{\frac{1}{3}}=\frac{1}{2}$ leading to $x=\frac{1}{27}$ or 0.0370 $x=\frac{1}{8} \text { or } 0.125$) 2	Dep M1 for a valid method of solving $x^{\frac{1}{3}}=k \text { where } k>0$ A1 for both
4(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sin x \times 3 \sec ^{2} 3 x-\tan 3 x \cos x}{\sin ^{2} x}$	3	B1 for $3 \sec ^{2} 3 x$ M1 for differentiation of a quotient or equivalent product A1 for all other terms apart from $3 \sec ^{2} 3 x$ correct
	When $x=\frac{\pi}{3} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \sqrt{3}$	A1	
4(b)	$2 \sqrt{3} h$	B1	FT on their answer to (a)

Question	Answer	Marks	Guidance
4(c)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} t} \\ & 2 \sqrt{3} \times 3=\frac{\mathrm{d} y}{\mathrm{~d} t} \end{aligned}$	M1	For correct use of rates of change using their answer to (a)
	$\frac{\mathrm{d} y}{\mathrm{~d} t}=6 \sqrt{3}$	A1	
5(a)(i)	360	B1	
5(a)(ii)	Starts with 6: $1 \times 4 \times 3 \times 1=12$	B1	
	Starts with 7 or $9:=2 \times 4 \times 3 \times 2$ $=48$	B1	
	Total $=60$	B1	
	Alternative \square		
	Ending in $4: \frac{1}{6} \times 360 \times \frac{3}{5}=36$	(B1)	Allow unsimplified
	Ending in 6: $\frac{1}{6} \times 360 \times \frac{2}{5}=24$	(B1)	Allow unsimplified
	Total $=60$	(B1)	
5(b)(i)	1287	B1	
5(b)(ii)	$1287-{ }^{7} C_{5}$ or 1 doctor: 210 2 doctors: 525 3 doctors: 420 4 doctors: 105 5 doctors: 1	M1	For their (b)(i) $-{ }^{7} C_{5}$ or listing all the other separate cases which must be evaluated, allow 1 error
	1266	A1	
5(b)(iii)	45	B1	
6(a)	Velocity vector $=\binom{-8}{6}$	2	M1 for obtaining 5
	$\binom{30}{10}+\binom{-8}{6} t$	B1	FT for $\binom{30}{10}+($ their velocity vector $) t$
6(b)	13	B1	

Question	Answer	Marks	Guidance
6(c)	$\begin{aligned} & P:\binom{-50}{70} \\ & Q:\binom{-30}{210} \end{aligned}$	M1	Using $t=10$ to find position vector of each particle
	$\sqrt{20^{2}+140^{2}}$	M1	Dep on previous M mark, for use of Pythagoras on difference of the 2 position vectors
	$100 \sqrt{2}$	A1	
7(a)	$\mathrm{f} \in \mathbb{R}$	B1	Allow y but not x
7(b)	$\begin{aligned} & x=5 \ln (2 y+3) \\ & \mathrm{e}^{\frac{x}{5}}=2 y+3 \end{aligned}$	M1	For a complete attempt to obtain inverse
	$\mathrm{f}^{-1}(x)=\frac{\mathrm{e}^{\frac{x}{5}}-3}{2}$	A1	Must be using correct notation
	Domain $x \in \mathbb{R}$	B1	FT on their (a). Must be using correct notation
7(c)		[5	B1 for shape of $y=\mathrm{f}(x)$ B1 for shape of $y=\mathrm{f}^{-1}(x)$ B1 for $5 \ln 3$ or 5.5 and -1 on both axes for $y=\mathrm{f}(x)$ B1 for $5 \ln 3$ or 5.5 and -1 on both axes for $y=\mathrm{f}^{-1}(x)$ B1 All correct, with apparent symmetry which may be implied be previous 2 B marks or by inclusion of $y=x$, and implied asymptotes, may have one or two points of intersection
8(a)(i)	$\frac{1}{\left(1+\frac{1}{\sin \theta}\right)\left(\sin \theta-\sin ^{2} \theta\right)}$	B1	For use of $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$, may be implied
	$\frac{1}{\sin \theta+1-\sin \theta-\sin ^{2} \theta}$	M1	For expansion of brackets
	$\frac{1}{\cos ^{2} \theta}$	M1	For simplification and use of identity
	$\sec ^{2} \theta$	A1	For final result, must see $\frac{1}{\cos ^{2} \theta}$

Question	Answer	Marks	Guidance
8(a)(ii)	$\cos ^{2} \theta=\frac{3}{4}$	B1	For relating to and making use of (a)
	$\cos \theta= \pm \frac{\sqrt{3}}{2}$	M1	For attempt to solve, may be implied by one correct solution
	$\theta=-150^{\circ},-30^{\circ}, 30^{\circ}, 150^{\circ}$	2	A1 for any correct pair A1 for a second correct pair and no extra solutions within the range
8(b)	$\tan \left(3 \phi+\frac{2 \pi}{3}\right)=1$	B1	
	$\begin{aligned} & 3 \phi+\frac{2 \pi}{3}=\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4} \\ & 3 \phi=\frac{7 \pi}{12}, \frac{19 \pi}{12} \end{aligned}$	M1	For correct order of operations
	$\phi=\frac{7 \pi}{36}$	A1	
	$\phi=\frac{19 \pi}{36}$	A1	
9(a)	$\left[\ln x-\frac{1}{2} \ln (2 x+3)\right]_{1}^{a}$	2	B1 for $\ln x$ B1 for $\frac{1}{2} \ln (2 x+3)$
	$\ln a-\frac{1}{2} \ln (2 a+3)+\frac{1}{2} \ln 5$	M1	For correct application of limits, must have at least one B1
	$\ln a \sqrt{\frac{5}{2 a+3}}$	M1	Dep on previous M mark, for application of log laws
	$5 a^{2}-18 a-27=0$	M1	Dep on previous M mark for equating to $\ln 3$ and simplification to a 3 term quadratic $=0$
	$a=\frac{9+6 \sqrt{6}}{5}$	A1	Must have one solution only

Question	Answer	Marks	Guidance
9 (b)	$-\frac{1}{2} \cos \left(2 x+\frac{\pi}{3}\right)+\frac{1}{2} \sin 2 x-x$	3	B1 for $-\frac{1}{2} \cos \left(2 x+\frac{\pi}{3}\right)$ B1 for $+\frac{1}{2} \sin 2 x$ B1 for $-x$
	$\begin{aligned} & \left(-\frac{1}{2} \cos \pi+\frac{1}{2} \sin \frac{2 \pi}{3}-\frac{\pi}{3}\right) \\ & -\left(-\frac{1}{2} \cos \frac{\pi}{3}\right) \end{aligned}$	M1	For correct use of limits in their integral, must have at least one B1 term
	$\frac{3}{4}+\frac{\sqrt{3}}{4}-\frac{\pi}{3}$	A1	
10(a)	$\begin{aligned} & a+d=8 \\ & a+3 d=18 \end{aligned}$	2	B1 for both equations M1 for attempt to solve their equations
	$a=3, d=5$	A1	For both
	$\frac{n}{2}(6+(n-1) 5)>1560$	M1	For correct use of sum formula with their a and d, allow equality
	$5 n^{2}+n-3120>0$	M1	For attempt to solve, allow equality, to obtain at least one critical value
	Positive critical value 24.9 25terms	A1	
10(b)(i)	$\begin{aligned} & \frac{a}{1-r}=72 \text { and either } \\ & a+a r+a r^{2}=\frac{333}{8} \\ & \text { or } \frac{a\left(1-r^{3}\right)}{1-r}=\frac{333}{8} \end{aligned}$	B1	For both
	$a=72(1-r)$ and $a\left(1+r+r^{2}\right)=\frac{333}{8}$ oe $72(1-r)\left(1+r+r^{2}\right)=\frac{333}{8}$ or $\quad 72\left(1-r^{3}\right)=\frac{333}{8}$	M1	For attempt to obtain an equation in terms of r only
	$1-r^{3}=\frac{333}{576}$	A1	
	$r=0.75$	2	M1 for attempt to solve their equation in r

Question	Answer	Marks	Guidance
$10(\mathrm{~b})(\mathrm{ii})$	$a=18$	B1	FT on their r provided $\|r\|<1$

Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS
 0606/12
 Paper 1
 October/November 2020
 MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1	$\begin{aligned} & 2 x^{2}-(k+4) x+(k+4) \quad(=0) \\ & 2 x^{2}+(-k-4) x+(k+4) \quad(=0) \end{aligned}$	B1	
	Discriminant: $(k+4)^{2}-(4 \times 2 \times(k+4))$	M1	Use of discriminant to obtain 2 critical values using their 3 term quadratic
	± 4	A1	For critical values
	$k<-4 k>4$	A1	
2(a)	$y=-\frac{1}{2}(x+5)(x+1)(x-2)$	3	B1 for negative soi B1 for $\frac{1}{2}$ soi B1 for $(x+5)(x+1)(x-2)$ or $x^{3}+4 x^{2}-7 x-10$
2(b)	$-5<x<-1$	B1	
	$x>2$	B1	
3(a)	2	B1	
3(b)	6π or 1080°	B1	
3(c)		3	B1 for passing through $(-\pi, 0)$ and $(3 \pi,-3)$ - must be a curve B1 for correct shape with max on y-axis and a min at $x=3 \pi$ B1 for passing through $(0,1)$ and $(\pi, 0)$ only on the positive x-axis
4(a)	$\begin{aligned} & a+6 d=158 \\ & a+9 d=149 \end{aligned}$	B1	For both equations, may be implied by a correct a and d
	$d=-3$,	B1	
	$a=176$	B1	

Question	Answer	Marks	Guidance
7(a)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(2 x+1) \frac{6 x}{3 x^{2}-5}-2 \ln \left(3 x^{2}-5\right)}{(2 x+1)^{2}} \text { or } \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+1)^{-1} \frac{6 x}{3 x^{2}-5}-2(2 x+1)^{-2} \ln \left(3 x^{2}-5\right) \end{aligned}$	3	B1 for $\frac{6 x}{3 x^{2}-5}$ M1 for attempt at a quotient or equivalent product A1 for all terms other than $\frac{6 x}{3 x^{2}-5}$ correct
	When $x=\sqrt{2}, \quad y=0$	B1	May be implied
	When $x=\sqrt{2}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{6 \sqrt{2}}{2 \sqrt{2}+1}$ or $\frac{24-6 \sqrt{2}}{7}$ or 2.22 oe Normal: $y=-\frac{(2 \sqrt{2}+1)}{6 \sqrt{2}}(x-\sqrt{2})$ oe or $y=-\frac{7}{24-6 \sqrt{2}}(x-\sqrt{2})$ oe or $y=-\frac{1}{2.22}(x-\sqrt{2})$ oe or $y=-\frac{4+\sqrt{2}}{12}(x-\sqrt{2})$ oe or $y=-\frac{9+4 \sqrt{2}}{24+6 \sqrt{2}}(x-\sqrt{2})$ oe $y=-0.451 x+0.638$	2	M1 for attempt at normal using their y and their perp gradient A1 Allow equivalent surd forms
7(b)	$\left(\frac{6 \sqrt{2}}{2 \sqrt{2}+1}\right) h$ or $\frac{24-6 \sqrt{2}}{7} h$ or other equivalent surd forms, or $2.22 h$	B1	FT on their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from (a)
8(a)	${ }^{12} C_{3} \times{ }^{9} C_{4}=220 \times 126$ or ${ }^{12} C_{5} \times{ }^{7} C_{4}=792 \times 35$ or ${ }^{12} C_{4} \times{ }^{8} C_{5}=495 \times 56$ or other equivalents 27720	3	B1 for one correct combination in a product of 2 or 3 combinations Must be numeric B1 for a second appropriate combination in the same product Must be numeric
8(b)(i)	120	B1	
8(b)(ii)	48	B1	

Question	Answer				Marks	Guidance
8(b)(iii)	Starts with 7 or 9		24		B1	May be implied by 12 and 12
	Starts with $8 \quad 18$				B1	
	42				B1	
	Alternative Ends with 3				(B1)	
	Ends with 7 or $9 \quad 24$				(B1)	May be implied by 12 and 12
	42				(B1)	
9(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x-1) \times \frac{1}{2} \times 4(4 x+3)^{-\frac{1}{2}}+2(4 x+3)^{\frac{1}{2}}$				3	B1 for $\frac{1}{2} \times 4(4 x+3)^{-\frac{1}{2}}$ oe M1 for a correct attempt at a product A1 for all other terms correct
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2(4 x+3)^{-\frac{1}{2}}(2 x-1+4 x+3)$ or equivalent				M1	For attempt to simplify to the given form
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4(3 x+1)}{(4 x+3)^{\frac{1}{2}}}$				A1	
9(b)	$-\frac{1}{3}$				B1	FT on their $3 x+1=0$
9(c)	For a complete method using $2^{\text {nd }}$ derivative, or gradient or y values either side or one side of their stationary point e.g.				M1	Must be using values of $x>-\frac{3}{4}$
	x	$<-\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}$		0	\square		
	x	$<-\frac{1}{3}$	$-\frac{1}{3}$	$>-\frac{1}{3}$		
	y	<-2.15	-2.15	>-2.15		
	Minimu				A1	Must be from correct work

Question	Answer	Marks	Guidance
10(a)	$\begin{aligned} & \mathrm{p}(2): 48+4 a+2 b+2=0 \\ & 2 a+b+25=0 \end{aligned}$	B1	For $2 a+b+25=0$ or multiple
	$\begin{aligned} & \mathrm{p}(1)=-2 \mathrm{p}(0) \\ & a+b+12=0 \end{aligned}$	B1	For $a+b+12=0$
	$a=-13, \quad b=1$	2	M1 for attempt to solve their equations in a and b leading to 2 values A1 for both
10(b)(i)	$\mathrm{p}\left(\frac{1}{2}\right)=\frac{6}{8}-\frac{13}{4}+\frac{1}{2}+2$	M1	For attempt to find $\mathrm{p}\left(\frac{1}{2}\right)$ using their a and b
	$0 \square^{\square}$	A1	
10(b)(ii)	$(x-2)(2 x-1)(3 x+1)$	2	M1 for realising that 2 factors are known and $3^{\text {rd }}$ factor can be got by observation or algebraic long division, or for making use of $x-2$ or $2 x-1$ in order to obtain a quadratic factor A1 Must see all factors together
11(a)	$\angle B O C=1.5 \mathrm{rad}$	B1	
	$\sin 0.75=\frac{B C / 2}{r}$	M1	For a complete attempt to find $B C$ - must be using a right-angled triangle to get required result - Given answer
	$B C=2 r \sin 0.75$	A1	
	Perimeter $=2 r+2 r \sin 0.75+4 r+1.5 r$	M1	Dep on first M mark for attempt at perimeter
	$r(7.5+2 \sin 0.75)$	A1	Given answer
11(b)	$\begin{aligned} & \text { Area }=(2 r+2 r \sin 0.75) r-\frac{1}{2} r^{2}(1.5-\sin 1.5) \\ & \text { Area }=3.36 r^{2}-0.75 r^{2}+0.4987 r^{2} \end{aligned}$	3	M1 for a correct plan M1 for $(2 r+2 r \sin 0.75) r$, using their $2 r \sin 0.75$ B1 for segment $\frac{1}{2} r^{2}(1.5-\sin 1.5) \quad=0.251 r^{2}$
	Area $=3.11 r^{2}$	A1	

Question	Answer	Marks	Guidance
12(a)(i)	Area under graph: $\begin{aligned} & \frac{1}{2}(60+40) \times 30+\frac{1}{2}(30+V) \times 30 \quad(=2775) \\ & \text { or } \frac{1}{2}(20 \times 30)+(40+30)+\frac{1}{2}(30+V) \times 30 \end{aligned}$	2	M1 for attempt to find the area under the graph Dep M1 on previous M mark for attempt to equate to 2775 and simplify in order to find V or $V-30$
	55	A1	
12(a)(ii)	0	B1	
12(b)(i)	$v=3 \sin 2 t \quad(+c)$	M1	Must have $\pm 3 \sin 2 t$
	$10=c$	M1	Dep for attempt to find $+c$,
	$v=3 \sin 2 t+10$	A1	
12(b)(ii)	$s=-\frac{3}{2} \cos 2 t+10 t+d$	M1	For attempt to integrate their v, must have $\pm \frac{3}{2} \cos 2 t$
	$d=\frac{3}{2}$	M1	Dep on previous M mark for attempt to find d.
	$s=-\frac{3}{2} \cos 2 t+10 t+\frac{3}{2}$	A1	

Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS
 0606/13
 Paper 1
 October/November 2020
 MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only dep
dependent	
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(a)		3	B1 for a well-drawn cubic graph in correct orientation Both arms extending beyond x-axis Maximum above x-axis B1 for x-intercepts B1 for y-intercept
1(b)	$x<-1$	B1	Dep on a cubic curve in the correct orientation and -1 correct on x-axis
	$2<x<3$ or $3>x>2$	B1	Dep on a cubic curve in the correct orientation and 2 and 3 correct on x-axis
2(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(x^{2}+1\right) 2 \mathrm{e}^{2 x-3}-2 x \mathrm{e}^{2 x-3}}{\left(x^{2}+1\right)^{2}}$ oe or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \mathrm{e}^{2 x-3}}{\left(x^{2}+1\right)}-\frac{2 x \mathrm{e}^{2 x-3}}{\left(x^{2}+1\right)^{2}}$ oe	3	B1 for $\frac{\mathrm{d}}{\mathrm{d} x}\left(\mathrm{e}^{2 x-3}\right)=2 \mathrm{e}^{2 x-3}$ seen in a quotient rule or product rule expression M1 for correct method for differentiating a quotient or equivalent product A1 FT from their $2 \mathrm{e}^{2 x-3}$
2(b)	When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{6 \mathrm{e}}{25}$	M1	For evaluation of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=2$
	$\frac{6 \mathrm{e}}{25} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=2 \quad \text { oe }$	M1	For correct substitution of their evaluated $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d} y}{\mathrm{dt}}=2 \mathrm{in}$ a correct rates of change equation
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{25}{3 \mathrm{e}}, \quad \frac{50}{6 \mathrm{e}}$	A1	
3(a)(i)	$x>\frac{1}{2}$	B1	Must be using x

Question	Answer	Marks	Guidance
3(a)(ii)	$\begin{aligned} & x=4 \ln (2 y-1) \\ & \mathrm{e}^{\frac{x}{4}}=2 y-1 \\ & y=\frac{1}{2}\left(1+\mathrm{e}^{\frac{x}{4}}\right) \end{aligned}$	M1	For full method for inverse using correct order of operations
	$\mathrm{f}^{-1}(x)=\frac{1}{2}\left(1+\mathrm{e}^{\frac{x}{4}}\right)$ or $\mathrm{f}^{-1}(x)=\frac{1}{2}\left(1+\sqrt[4]{\mathrm{e}^{x}}\right)$	A1	Must be using correct notation
	$x \in \mathbb{R}$	B1	
3(b)	$\sqrt{2 x-3}+5=7$	M1	For correct order
	$x=\frac{2^{2}+3}{2}$	M1	Dep on previous M mark, for obtaining x by simplifying and solving using correct order of operations, including squaring
	$x=\frac{7}{2} \text { or } 3.5$	A1	
4(a)(i)		3	$\begin{aligned} & \text { B1 For } v=2 \text { for } 0 \leqslant t \leqslant 50 \\ & \text { B1 For } v=2.5 \text { for } 65 \leqslant t \leqslant 85 \\ & \text { B1 For } v=3.75 \text { for } 85 \leqslant t \leqslant 125 \text { and } \\ & v=0 \text { for } 50 \leqslant t \leqslant 65 \end{aligned}$
4(a)(ii)	300	B1	
4(b)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=-18 \sin \left(3 t+\frac{\pi}{3}\right)$	M1	$\pm 18 \sin \left(3 t+\frac{\pi}{3}\right)$
	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-54 \cos \left(3 t+\frac{\pi}{3}\right)$	M1	$\pm 54 \cos \left(3 t+\frac{\pi}{3}\right)$
	-27 nfww	A1	

Question	Answer	Marks	Guidance
5	$(1+x)\left(1+n\left(-\frac{x}{2}\right)+\frac{n(n-1)}{2}\left(\frac{x^{2}}{4}\right) \cdots\right)$	2	B1 For $\binom{n}{1}\left(-\frac{x}{2}\right)$ B1 For $\binom{n}{2}\left(\frac{x^{2}}{4}\right)$
	$\frac{1}{4}\binom{n}{2} x^{2}-\frac{1}{2}\binom{n}{1} x^{2}=\frac{25}{4} x^{2}$	M1	Correctly using two terms in n to obtain an x^{2} term and equating to $\frac{25}{4} x^{2}$ Dep on one B1
	$\frac{n(n-1)}{8}-\frac{n}{2}=\frac{25}{4}$ oe	A1	
	$n=10$ only	A1	
6(a)	$\lg y=\lg A+b x^{2}$	B1	Stated or may be implied by later work
	If using $\lg y=\lg A+b x^{2}$ as a starting point $5.25=\lg A+3.63 b$ and $6.88=\lg A+4.83 b$ or $5.25=\lg A+1.358(3.63)$ or $6.88=\lg A+1.358(4.83)$ OR If finding the equation of the straight line and then finding $\lg A$ and b by inspection $\lg y-6.88=1.358\left(x^{2}-4.83\right)$ or $\lg y-5.25=1.358\left(x^{2}-3.63\right)$ or $\lg y=1.358 x^{2}+0.31$..(or 0.32. .)	M1	For correctly finding required equation(s)
	$b=1.36, \frac{163}{120} \text { or } 1 \frac{43}{120}$	B1	Must be $b=$ and from correct working
	A in range 2.05 to 2.09	A1	
6(b)	$\begin{aligned} & \lg y=0.3132+(4 \times 1.36) \\ & y=2.09 \times 10^{4 \times 1.36} \end{aligned}$	M1	For $\lg y=($ their $\lg A)+4($ their $b)$ or $y=($ their $A)\left(10^{4(\text { their } b)}\right)$
	Allow 553000 to 576000	A1	
6 (c)	$4=2.09\left(10^{1.36 x^{2}}\right)$ or $\lg 4=0.3132+1.36 x^{2}$	M1	$\begin{aligned} & 4=(\text { their } A)\left(10^{\text {their } b x^{2}}\right) \text { or } \\ & \lg 4=(\text { their } \lg A)+(\text { their } b) x^{2} \end{aligned}$
	awrt 0.46	A1	

Question	Answer	Marks	Guidance
8(c)	$\left(A C^{2}\right)=r^{2}+0.25 r^{2}-(2 \times r \times 0.5 r \cos (\pi-1.45))$	M1	For correct substitution in cosine rule using (π - their 1.45)
	$A C=1.17 r$	A1	
	Perimeter $=2.95 r+1.17 r$	B1	FT on their $A C$
	$r=2.91$	A1	
9(a)	$\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$ or $\overrightarrow{B A}=\mathbf{a}-\mathbf{b}$	B1	
	$\begin{aligned} & \overrightarrow{O X}=\mathbf{a}+\frac{3}{4} \overrightarrow{A B} \text { or } \overrightarrow{O X}=\mathbf{b}+\frac{1}{4} \overrightarrow{B A} \\ & \overrightarrow{O X}=\mathbf{a}+\frac{3}{4}(\mathbf{b}-\mathbf{a}) \text { or } \overrightarrow{O X}=\mathbf{b}+\frac{1}{4}(\mathbf{a}-\mathbf{b}) \end{aligned}$	M1	For correct use of ratio, using their $\overrightarrow{A B}$ or $\overrightarrow{B A}$
	$\overrightarrow{O X}=\frac{\mathbf{a}}{4}+\frac{3}{4} \mathbf{b}$	A1	
9 (b)	$\overrightarrow{A C}=2 \mathbf{b}-\mathbf{a}$	B1	
9(c)	$\overrightarrow{A Y}=-\mathbf{a}+h\left(\frac{\mathbf{a}}{4}+\frac{3}{4} \mathbf{b}\right)$	B1	FT on their $\overrightarrow{O X}$
9(d)	$-\mathbf{a}+h\left(\frac{\mathbf{a}}{4}+\frac{3}{4} \mathbf{b}\right)=m(2 \mathbf{b}-\mathbf{a})$	M1	For equating appropriate vectors and attempt to equate like vectors
	$-1+\frac{h}{4}=-m$	A1	FT from their $\overrightarrow{A Y}$ and $\overrightarrow{A C}$
	$\frac{3 h}{4}=2 m$	A1	FT from their $\overrightarrow{A Y}$ and $\overrightarrow{A C}$
	$h=\frac{8}{5}, m=\frac{3}{5}$	A1	For both
10(a)	$\begin{aligned} & \frac{3 x+10+2(x+1)}{(x+1)(3 x+10)}=\frac{3 x+10+2 x+2}{(x+1)(3 x+10)} \\ & =\frac{5 x+12}{3 x^{2}+13 x+10} \end{aligned}$	B1	For expansion and simplification to obtain given answer

Question	Answer	Marks	Guidance
10(b)	$P\left(0, \frac{6}{5}\right)$ and $Q\left(-\frac{6}{5}, 0\right)$ oe	B1	
	$\text { Area of triangle }=\frac{18}{25} \text { or } 0.72$	B1	
	$\text { Area under curve }=\int_{0}^{2} \frac{1}{x+1}+\frac{2}{3 x+10} \mathrm{~d} x$	M1	For use of part (a) and attempt to integrate to obtain at least one \ln term.
	$=\left[\ln (x+1)+\frac{2}{3} \ln (3 x+10)\right]_{0}^{2}$	2	B1 For $\ln (x+1)$ B1 For $\frac{2}{3} \ln (3 x+10)$
	$=\ln 3+\frac{2}{3} \ln 16-\frac{2}{3} \ln 10$	M1	For correct use of limits. Dep on previous M mark.
	$=\frac{2}{3} \ln 3 \sqrt{3}+\frac{2}{3} \ln 16-\frac{2}{3} \ln 10$	M1	For use of $\ln 3=\frac{2}{3} \ln 3 \sqrt{3}$
	$=\frac{2}{3} \ln 3 \sqrt{3}+\frac{2}{3} \ln \left(\frac{16}{10}\right)=\frac{2}{3} \ln \left(\frac{48 \sqrt{3}}{10}\right)$	M1	For use of multiplication and division rule
	Total area $=\frac{18}{25}+\frac{2}{3} \ln \left(\frac{24 \sqrt{3}}{5}\right) \mathrm{oe}$	A1	For correct answer in the required form dep on the three preceding M marks Must not be obtained using a calculator
11(a)	$2 \cos x=3 \frac{\sin x}{\cos x} \Rightarrow 2 \cos ^{2} x=3 \sin x$	M1	For use of $\tan x=\frac{\sin x}{\cos x}$ and multiplying by $\cos x$
	$2\left(1-\sin ^{2} x\right)=3 \sin x$	M1	For use of correct identity
	$2 \sin ^{2} x+3 \sin x-2=0$	A1	For correct rearrangement to obtain the given answer
	Alternative $\begin{aligned} & 2 \sin ^{2} x+3 \sin x-2 \\ & =2\left(1-\cos ^{2} x\right)+3 \sin x-2 \end{aligned}$	(M1)	For use of correct identity
	$\begin{aligned} & =-2 \cos x \cos x+3 \sin x \\ & =-3 \tan x \cos x+3 \sin x \end{aligned}$	(M1)	For use of $2 \cos x=3 \tan x$
	$-3 \sin x+3 \sin x=0$	(A1)	For use of $\tan x \cos x=\sin x$ and answer 0

Question	Answer	Marks	Guidance
$11(\mathrm{~b})$	$\sin \left(2 \alpha+\frac{\pi}{4}\right)=\frac{1}{2}$ only	B1	For solution of quadratic from (a) to obtain $\sin \left(2 \alpha+\frac{\pi}{4}\right)=\frac{1}{2}$ only
	$2 \alpha+\frac{\pi}{4}=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}$ $2 \alpha=\frac{7 \pi}{12}, \frac{23 \pi}{12}$	M1	For correct order of operations in
	$\alpha=\frac{7 \pi}{24}$	A1	attempt to solve $\sin \left(2 \alpha+\frac{\pi}{4}\right)=\frac{1}{2}$, may be implied by one correct solution
		A1	

Cambridge IGCSE ${ }^{\text {TM }}$

Abstract

ADDITIONAL MATHEMATICS 0606/11 Paper 1 May/June 2020 MARK SCHEME Maximum Mark: 80

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
4	$x=\frac{-(4-2 \sqrt{7})+\sqrt{(4-2 \sqrt{7})^{2}-4(5+4 \sqrt{7})(-1)}}{2(5+4 \sqrt{7})}$	M1	For correct use of quadratic formula, allow inclusion of \pm until final answer
	$\begin{aligned} & x=\frac{-(4-2 \sqrt{7})+\sqrt{16+28-16 \sqrt{7}+20+16 \sqrt{7}}}{2(5+4 \sqrt{7})} \\ & x=\frac{-(4-2 \sqrt{7})+8}{2(5+4 \sqrt{7})} \end{aligned}$	M1	For attempt to simplify discriminant, must see attempt at expansion and subsequent simplification
	$x=\frac{4+2 \sqrt{7}}{2(5+4 \sqrt{7})} \quad$ or $\quad x=\frac{2+\sqrt{7}}{(5+4 \sqrt{7})}$	A1	For either
	$\begin{aligned} & x=\frac{2+\sqrt{7}}{(5+4 \sqrt{7})} \times \frac{5-4 \sqrt{7}}{5-4 \sqrt{7}} \\ & x=\frac{10+5 \sqrt{7}-8 \sqrt{7}-28}{25-112} \end{aligned}$	M1	For attempt to rationalise, must see attempt at expansion and subsequent simplification
	$x=\frac{6}{29}+\frac{\sqrt{7}}{29}$	A1	
5	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x+2) \frac{6 x}{3 x^{2}-1}-\ln \left(3 x^{2}-1\right)}{(x+2)^{2}}$	B1	B1 for $\frac{6 x}{3 x^{2}-1}$
		M1	For attempt to differentiate a quotient or an equivalent product, must have correct order of terms and correct sign
		A1	
	When $x=1, y=\frac{\ln 2}{3}$ or $0.231(0)$	B1	
	When $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0.92298$, allow 0.923	B1	
	$y=0.923 x-0.692$	B1	
6(a)	$\begin{aligned} & x(5 x+6)=8 \\ & 5 x^{2}+6 x-8=0 \end{aligned}$	M1	For attempt to equate and obtain a 3term quadratic in either x or y
	$\left(\frac{4}{5}, 10\right)$	A1	Allow A1 if only x-coordinates or only y-coordinates are given
	$(-2,-4)$	A1	

Question	Answer	Marks	Partial Marks
6(b)	$\text { Midpoint }\left(-\frac{3}{5}, 3\right)$	B1	
	Gradient 5	B1	
	$y-3=-\frac{1}{5}\left(x+\frac{3}{5}\right)$	M1	Attempt at perp bisector using their midpoint and perp gradient
	$x-3=-\frac{1}{5}\left(x+\frac{3}{5}\right)$	M1	For use of $y=x$ and attempt to solve
	$\left(\frac{12}{5}, \frac{12}{5}\right)$	A1	
7(a)	0.8	B1	
7(b)	$\text { Sector area }=\frac{1}{2} 12^{2}(0.8)$ 57.6	B1	Allow unsimplified
	$\begin{aligned} & \tan 0.4=\frac{A M}{12} \\ & A M=12 \tan 0.4 \\ & 5.074 \end{aligned}$	M1	Attempt at $A M$ using their $\frac{\theta}{2}$ Allow unsimplified
	Area of triangle $\begin{aligned} & =\frac{1}{2}(5.074 \times 2) \times 2 \times 12 \\ & 60.88 \end{aligned}$	M1	Area of triangle using their $A M$, allow unsimplified
	Shaded area 3.28	A1	
7(c)	$\begin{aligned} & \sin 0.4=\frac{A M}{O A} \\ & O A=\frac{5.074}{\sin 0.4} \\ & 13.03 \end{aligned}$	M1	Attempt to find $O A$ using their $\frac{\theta}{2}$ and their $A M$
	Perimeter $=2(1.03)+9.6+2(5.074)$	M1	Allow if using their $\frac{\theta}{2}$ and their $C M$
	Perimeter $=21.8$	A1	
8(a)	$\frac{3(2 x+3)+3(2 x-3)}{4 x^{2}-9}$	M1	Must see for M1
	$\frac{12 x}{4 x^{2}-9}$	A1	

Question	Answer	Marks	Partial Marks
8(b)	$\begin{aligned} & \int \frac{3}{2 x-3}+\frac{3}{2 x+3} d x \\ & =\frac{3}{2} \ln (2 x-3)+\frac{3}{2} \ln (2 x+3) \end{aligned}$	B2	B1 for each correct term, having made use of (a)
	$\begin{aligned} & \frac{3}{2} \ln \left(4 x^{2}-9\right)+c \text { or } \\ & \frac{3}{2} \ln ((2 x-3)(2 x+3))+c \text { or } \\ & \ln \left(4 x^{2}-9\right)^{\frac{3}{2}}+c \end{aligned}$	B1	
8(c)	$\ln \left(4 a^{2}-9\right)^{\frac{3}{2}}-\ln 7^{\frac{3}{2}}=\ln 5^{\frac{3}{2}}$	M1	For correct application of limits, allow equivalent forms
	$4 a^{2}-9=35$	A1	For a correct method of dealing with logarithms and eliminating them
	$a=\sqrt{11}$	M1	For solving a quadratic equation, dep on first M mark
		A1	
9(a)	Second term: $\quad a+d=-14$	B1	
	Sum: $\quad 4=a+10 d$	B1	
	$d=2$	B1	
	$a=-16$	B1	
	Last term $=24$	B1	Ft on their d and their a
9(b)(i)	$\begin{aligned} & a r=27 p^{2} \\ & a r^{4}=p^{5} \end{aligned}$	B1	For both equations
	$r=\frac{p}{3}$	B1	
9(b)(ii)	$a=81 p$	M1	M1 for attempt to find a in terms of p
		A1	
	$S_{\infty}=\frac{81 p}{1-\frac{p}{3}} \text { or } \frac{243 p}{3-p}$	B1	Follow through on their a and their r

Question	Answer	Marks	Partial Marks
$9(b)($ iii $)$	$81=\frac{81 p}{1-\frac{p}{3}} \text { or } 81=\frac{243 p}{3-p}$	M1	For attempt to solve using their answer to (ii) as far as $p=\ldots$
	$p=\frac{3}{4}$	A1	
10(a)(i)	$\frac{(\sec \theta+1)-(\sec \theta-1)}{\sec ^{2} \theta-1}$	M1	For dealing with the fractions
	$\frac{2}{\tan ^{2} \theta}$	M1	For use of the correct identity
	$2 \cot ^{2} \theta$	A1	A1 for given answer, must see $\frac{8}{\tan ^{2} \theta}$ first
10(a)(ii)	$2 \cot ^{2} 2 x=6$	M1	M1 for use of (i) and attempt to simplify
		A1	
		M1	M1 for attempt to solve, may be implied by one correct solution
	$\begin{aligned} & 2 x=-150^{\circ},-30^{\circ}, 30^{\circ}, 150^{\circ} \\ & x=-75^{\circ},-15^{\circ}, 15^{\circ}, 75^{\circ} \end{aligned}$	A2	A1 for each pair of correct solutions
10(b)	$\sin \left(y+\frac{\pi}{3}\right)=\frac{1}{2}$	M1	For dealing with cosec and an attempt to solve
	$y+\frac{\pi}{3}=\frac{5 \pi}{6}, \frac{13 \pi}{6}$	M1	M1 for a complete method of solution, may be implied by a correct solution
	$y=\frac{\pi}{2}$	A1	
	$y=\frac{11 \pi}{6}$	A1	

Question	Answer	Marks	Partial Marks
11	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5}{2} \sin 2 x(+c)$	M1	M1 for $k \sin 2 x$
		A1	Condone omission of c
	$\frac{3}{4}=\frac{5}{2} \sin \left(-\frac{\pi}{6}\right)+c$	M1	Dep on first M1 for attempt to find c
	$c=2$	A1	
	$y=-\frac{5}{4} \cos 2 x+2 x(+d)$	M1	M1 for attempt to integrate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
		A1	Condone omission of d
	$\frac{5 \pi}{4}=-\frac{5}{4} \cos \left(-\frac{\pi}{6}\right)-\frac{\pi}{6}+d$	M1	Dep on previous M1 for attempt to find d
	$\begin{aligned} & d=\frac{17 \pi}{12}+\frac{5 \sqrt{3}}{8} \\ & y=-\frac{5}{4} \cos 2 x+2 x+\frac{17 \pi}{12}+\frac{5 \sqrt{3}}{8} \\ & y=-\frac{5}{4} \cos 2 x+2 x+5.53 \end{aligned}$	A1	Must have the equation for A1

Cambridge IGCSE ${ }^{\text {TM }}$

Abstract

ADDITIONAL MATHEMATICS 0606/12 Paper 1 May/June 2020 MARK SCHEME Maximum Mark: 80

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1		B1	Shape
		B1	Correct x-coordinates
		B1	Correct y-coordinate and max in first quadrant
2	$\frac{\mathrm{d} r}{\mathrm{~d} t}=0.5$	B1	
	$\frac{\mathrm{d} V}{\mathrm{~d} r}=4 \pi r^{2}$	B1	
	$\begin{aligned} & \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} r} \times \frac{\mathrm{d} r}{\mathrm{~d} t} \\ & \frac{\mathrm{~d} V}{\mathrm{~d} t}=\pi r^{2} \end{aligned}$	M1	For attempt to use a correct form of the chain rule
	When $r=\frac{1}{4}, \frac{\mathrm{~d} V}{\mathrm{~d} t}=0.125 \pi$	A1	
3(a)	$4096-384 x+15 x^{2}$	B1	For 4096
		B1	For $-384 x$
		B1	For $15 x^{2}$
3(b)	$\left(4096-384 x+15 x^{2}\right)\left(x^{2}-2+\frac{1}{x^{2}}\right)$	B1	For $\left(x^{2}-2+\frac{1}{x^{2}}\right)$
	Term independent of x : $-2(4096)+15$	M1	For use of 2 appropriate terms
	-8177	A1	
4(a)(i)	720	B1	
4(a)(ii)	600	B1	$\text { FT on their (i) } \times \frac{5}{6}$

Question	Answer	Marks	Partial Marks
4(a)(iii)	Starting with 8: $1 \times 4 \times 3 \times 2 \times 1=24$	B1	
	Starting with 3,5 or 7 :$3 \times 4 \times 3 \times 2 \times 2=144$	M1	May be considering each case separately, need all three cases for M1
		A1	
	Total $=168$	A1	
4(a)(iii)	Alternative Plan for adding numbers ending in 2 and numbers ending in 8	M1	
	Ending in 2: $\left(\frac{1}{6} \times 720\right) \times \frac{4}{5}=96$	B1	Allow unsimplified
	Ending in 8: $\left(\frac{1}{6} \times 720\right) \times \frac{3}{5}=72$	B1	Allow unsimplified
	Total $=168$	A1	
4(b)	${ }^{n} C_{3}=6{ }^{n} C_{2}$	B1	$\frac{n(n-1)(n-2)}{3!}$
	$\frac{n(n-1)(n-2)}{3!}=\frac{6 n(n-1)}{2!}$	B1	$\frac{6 n(n-1)}{2!}$
	$n(n-1)[(n-2)-18]=0$	M1	Valid attempt to solve, must have at least one previous B mark
	$n=20$	A1	
4(b)	Alternative $\begin{aligned} & { }^{n} C_{3}=6^{n} C_{2} \\ & (n-2)!2!=(n-3)!3! \end{aligned}$	B1	For dealing with $(n-2)$! and $(n-3)$! to obtain ($n-2$)
	$(n-2)=6 \times 3$	B1	For dealing with 2! and 3! To obtain 6
	$n=20$	M1	Valid attempt to solve, must have at least one previous B mark
		A1	
5(a)	f >9	B1	Allow y but not x
5(b)	It is a one-one function because of the restricted domain	B1	

Question	Answer	Marks	Partial Marks
5(c)	$x=(2 y+3)^{2}$ or equivalent	M1	For a correct attempt to find the inverse
	$y=\frac{\sqrt{x}-3}{2}$	M1	For correct rearrangement
	$\mathrm{f}^{-1}=\frac{\sqrt{x}-3}{2}$	A1	Must have correct notation
5(d)	$x>9$	B1	FT on their (a)
5(e)	$\mathrm{f}(\ln (x+4))=49$	M1	For correct order
	$\begin{aligned} & (2 \ln (x+4)+3)^{2}=49 \\ & \ln (x+4)=2 \end{aligned}$	M1	For correct attempt to solve, dep on previous M mark, as far as $x=$
	$x=\mathrm{e}^{2}-4$	A1	
6(a)	$A\left(-\frac{5}{2}, 0\right)$	B1	
	$\begin{aligned} & x(-5-2 x)+3=0 \\ & 2 x^{2}+5 x-3=0 \\ & (2 x-1)(x+3)=0 \end{aligned}$	M1	For attempt to eliminate one variable, obtain a 3 -term quadratic equation $=0$ and attempt to solve
	$B\left(\frac{1}{2},-6\right)$	A1	Allow A1 if just the x-coordinates or just the y-coordinates are given
6(b)	Area of triangle $=\frac{1}{2}\left(\frac{5}{2}+\frac{1}{2}\right) \times 6,=9$	M1	For attempt at triangle using their values
	$\int_{\frac{1}{2}}^{1}-\frac{3}{x} \mathrm{~d} x=[-3 \ln x]_{\frac{1}{2}}^{1}$	M1	For attempt to integrate, must have ln
	$=3 \ln \frac{1}{2}$	M1	correct application of limits, dep on previous M mark
	$=-3 \ln 2$	M1	realisation that value of integral is negative and making the adjustment
		M1	application of log law, dep on previous M mark
	Area $=9+\ln 8$	A1	

Question	Answer	Marks	Partial Marks
7(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(x^{2}-1\right) \frac{5}{2}(5 x+2)^{-\frac{1}{2}}+2 x(5 x+2)^{\frac{1}{2}}$	B1	For $\frac{5}{2}(5 x+2)^{-\frac{1}{2}}$
		M1	For differentiation of a product
		A1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(5 x+2)^{-\frac{1}{2}}}{2}\left(5\left(x^{2}-1\right)+4 x(5 x+2)\right)$ or equivalent	M1	Dep on previous M mark for attempt to simplify
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{25 x^{2}+8 x-5}{2 \sqrt{5 x+2}}$	A1	
7(b)	$25 x^{2}+8 x-5=0$	M1	Equating their numerator in (a) to zero and attempt to solve
	$x=0.315$	A1	
	$y=-1.70$	A1	
7(c)	Consideration of gradient or y values either side of stationary point, remembering that $x>0$.	M1	Must be a complete method making use of their (a). Allow consideration of $25 x^{2}+8 x-5$ as a 'minimum curve'. Accept 2nd derivative method.
	Minimum	A1	
8(a)	b-a	B1	
8(b)	$\frac{1}{4} \mathbf{a}+\frac{1}{2}(\mathbf{b}-\mathbf{a}) \text { or }-\frac{3}{4} \mathbf{a}+\frac{1}{2}(\mathbf{a}+\mathbf{b})$	B1	$\text { For } \frac{1}{4} \mathbf{a} \text { or }-\frac{3}{4} \mathbf{a}$
		B1	For $\frac{1}{2}(\mathbf{b}-\mathbf{a})$ or $\frac{1}{2}(\mathbf{a}+\mathbf{b})$
	$\frac{1}{2} \mathbf{b}-\frac{1}{4} \mathbf{a}$	B1	Correct and simplified
8(c)	$n\left(\frac{1}{2} \mathbf{b}-\frac{1}{4} \mathbf{a}\right)$	B1	FT on their answer to (b)
8(d)	$\frac{1}{2}(\mathbf{b}-\mathbf{a})+k \mathbf{b}$	M1	For use of their (a) and $k \mathbf{b}$
		A1	

Question	Answer	Marks	Partial Marks
8(e)	$\begin{aligned} & \frac{1}{2}(\mathbf{b}-\mathbf{a})+k \mathbf{b}=n\left(\frac{1}{2} \mathbf{b}-\frac{1}{4} \mathbf{a}\right) \\ & -\frac{1}{2}=-\frac{n}{4} \\ & \frac{1}{2}+k=\frac{n}{2} \end{aligned}$	M1	For equating their (c) and (d) and then equating like vectors to obtain 2 equations
	$n=2$	A1	
	$k=\frac{1}{2}$	A1	
9(a)(i)	$v=20 \cos 2 t$ when $t=\pi, v=20$	B1	
9(a)(ii)	$20 \cos 2 t=0$	M1	Equating their (i) to zero, must be a cosine and attempt to solve
	$t=\frac{\pi}{4}$	A1	
9(a)(iii)	$a=-40 \sin 2 t$	M1	Attempt to differentiate their v, dep on previous M mark, and use their value for (ii)
	-40	A1	
9(b)(i)	35	B1	
9(b)(ii)	$112.5=\frac{1}{2}(35+x) \times 5$	M1	Use of area under appropriate part of the graph
		A1	
	$x=10$	A1	
9(b)(iii)	$\frac{25}{5}=\frac{10}{t^{\prime}}$	M1	Using a ratio method or otherwise, find extra time to $\mathrm{stop}=2 \mathrm{~s}$ or equivalent
	$t^{\prime}=2$	A1	
	27	A1	

Question	Answer	Marks	Partial Marks
10(a)	$3 x=-\frac{5 \pi}{4}-\frac{\pi}{4}, \frac{3 \pi}{4}$	M1	For a correct attempt to solve, may be implied by one correct solution
	$x=-\frac{\pi}{12}$	A1	
	$x=\frac{\pi}{4}$	A1	
	$x=-\frac{5 \pi}{12}$	A1	
10(b)		B1	Shape - must have three 'parts' with asymptotes
		B1	For correct x-coordinates
	\qquad	B1	For correct y-coordinate

Cambridge IGCSE ${ }^{\text {TM }}$

Abstract

ADDITIONAL MATHEMATICS 0606/13 Paper 1 May/June 2020 MARK SCHEME Maximum Mark: 80

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	$\mathrm{f}>3$	B1	Allow y but not x
	$g \in \mathbb{R}$	B1	Allow y but not x
1(b)	$\ln (x-3)$	B1	
	$\begin{aligned} & \ln (x-3)=9 \\ & x-3=\mathrm{e}^{9} \end{aligned}$	M1	For attempt to equate to 9 and solve, must get rid of \ln
	$x=\mathrm{e}^{9}+3$	A1	
1(c)	$9(9 x-5)-5=112$	M1	For correct order of operation
	$x=2$	A1	
2(a)	Either $2 \log _{4} y=\log _{2} y$ Or $\log _{2} x=2 \log _{4} x$	B1	
	Either $\log _{2} x+\log _{2} y=8$ leading to $\log _{2} x y=8$ Or $2 \log _{4} x+2 \log _{4} y=8$ leading to $\log _{4} x y=4$	M1	For use of log law
	$x y=256$	A1	
2(b)	$2 y^{2}-3 y+1=0$	B1	
	$y=\frac{1}{2}, 1$	M1	For attempt to solve for y
	$x=-1$	A1	
	$x=0$	A1	
3(a)	$v=(2 t+1)^{\frac{1}{2}}(+c)$	B1	For $v=(2 t+1)^{\frac{1}{2}}$ condone absence of c
	$8=1+c, \quad c=7$	M1	For attempt to find c must have $k(2 t+1)^{\frac{1}{2}}$
	$v=(2 t+1)^{\frac{1}{2}}+7$	A1	

Question	Answer	Marks	Partial Marks
3(b)	$s=\frac{1}{3}(2 t+1)^{\frac{3}{2}}+7 t(+d)$	B1	For $\frac{1}{3}(2 t+1)^{\frac{3}{2}}$
		M1	For attempt to integrate their answer to (a), must have $k(2 t+1)^{\frac{1}{2}}$ in (a)
	$4=\frac{1}{3}+d, d=\frac{11}{3}$	M1	Attempt to find d
	$s=\frac{1}{3}(2 t+1)^{\frac{3}{2}}+7 t+\frac{11}{3}$	A1	
4(a)	$2\left(x+\frac{3}{4}\right)^{2}-\frac{41}{8}$	B3	B1 for 2 B1 for $\frac{3}{4}$ B1 for $-\frac{41}{8}$
4(b)	$\left(-\frac{3}{4},-\frac{41}{8}\right)$	B2	B1 for $-\frac{3}{4}$ or $\mathbf{F T}$ on their $-b$ B1 for $-\frac{41}{8}$ or $\mathbf{F T}$ on their c
4(c)		B1	For shape with max in $2^{\text {nd }}$ quadrant
		B1	For x-intercepts $\frac{-3 \pm \sqrt{41}}{4}$
		B1	For y-intercept of 4 and cusps
4(d)	$\frac{41}{8}$	B1	FT on their c

Question	Answer	Marks	Partial Marks
5(a)	$\begin{array}{ll} \mathrm{p}(3): & 162+9 a+36+b=11 \\ \mathrm{p}(-1): & -6+a-12+b=-21 \end{array}$	M1	For attempt at $\mathrm{p}(3)$ and $\mathrm{p}(-1)$
	$\begin{aligned} & 9 a+b+187=0 \\ & a+b+3=0 \end{aligned}$	A1	for both, may be implied by correct work later
	$a=-23, \quad b=20$	M1	attempt to solve simultaneous equations
		A1	For both
	$\mathrm{p}(x)=(x-2)\left(6 x^{2}-11 x-10\right)$	M1	For attempt to factorise or use algebraic long division
		A1	For ($\left.6 x^{2}-11 x-10\right)$
5(b)	$\mathrm{p}(x)=(x-2)(3 x+2)(2 x-5)$	M1	For attempt to factorise or use quadratic formula - must be seen
	$2,-\frac{2}{3}, \frac{5}{2}$	A1	For all three solutions
6(a)	$\frac{1}{13}\binom{5}{-12}$	B1	
6(b)	$\begin{aligned} & 4-2 k=-10 r \\ & 1+3 k=5 r \end{aligned}$	M1	equating like vectors to obtain 2 equations
	$r=-\frac{7}{10}, k=-\frac{3}{2}$	M1	Dep on previous M mark, for attempt to solve simultaneously
		A1	
6(c)(i)	$3 \mathbf{q}-2 \mathbf{p}$	B1	
6(c)(ii)	$9 \mathbf{q - 6 p}$	B1	
6(c)(iii)	A common point of A and the same direction vector	B1	
6(c)(iv)	1:2	B1	
7(a)	$\frac{1}{2} \times 10^{2} \times \theta=35 \text { so } \theta=0.7$	B1	

Question	Answer	Marks	Partial Marks
7(b)	Arc length $C D: 7$	B1	
	$\sin (0.35)=\frac{A B / 2}{12}$	M1	For a complete method to find $A B$, could be using cosine rule
	$A B=8.23(0)$	A1	
	Perimeter $=7+4+8.23=19.2$	A1	
7(c)	$\text { Area of triangle }=\frac{1}{2} 12^{2} \sin 0.7$	M1	For complete attempt at triangle area, may use equivalent method
	Area of triangle $=46.4$	A1	
	Shaded area $=11.4$	A1	Follow through on their area of the triangle
8(a)	$\frac{n}{2}(14+(n-1) 0.4)$	B1	
	$\begin{aligned} & \frac{n}{2}(14+(n-1) 0.4)>300 \\ & 0.4 n^{2}+13.6 n-600>0 \end{aligned}$	M1	Attempt to form a 3 term inequality and find the positive critical value
	Positive critical value 25.29	A1	
	26 terms	A1	
8(b)	$a+a r=9$	B1	
	$\frac{a}{1-r}=36$	B1	
	$36(1+r)(1-r)=9$	M1	attempt at solution of simultaneous equations
	$r=\frac{\sqrt{3}}{2}$	A1	

Question	Answer	Marks	Partial Marks
9	$\begin{aligned} & x(5 x-3)=2 \\ & 5 x^{2}-3 x-2=0 \end{aligned}$	M1	attempt at a 3-term quadratic equation in one variable with solution
	$x=1, x=-\frac{2}{5}$	A1	Allow if $x=-\frac{2}{5}$ not seen
	A (1, 2)	A1	
	$B\left(\frac{3}{5}, 0\right)$	B1	
	$\text { Area of triangle }=\frac{2}{5}$	M1	Using their A and B
	Area under curve: $\int_{1}^{3} \frac{2}{x} \mathrm{~d} x=[2 \ln x]_{1}^{3}$	B1	For $[2 \ln x]_{1}^{3}$
	= $2 \ln 3$	M1	For use of limits
	$\text { Total area }=\frac{2}{5}+\ln 9$	A1	
10(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x(x+2)^{-\frac{1}{2}}+(x+2)^{\frac{1}{2}}$	B1	For $\frac{1}{2}(x+2)^{-\frac{1}{2}}$
		M1	For differentiation of a product
		A1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}(x+2)^{-\frac{1}{2}}[x+2(x+2)]$	M1	For attempt to simplify
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x+4}{2 \sqrt{x+2}}$	A1	
10(b)	$3 x+4=0$	M1	For setting their numerator in (a) to zero and attempt to solve
	$x=-\frac{4}{3}$	A1	
	$y=-\frac{4 \sqrt{6}}{9} \mathrm{oe}$	A1	
10(c)	Using the gradient method or inspection of y-coordinates either side of stationary point. Allow use of second derivative	M1	complete method
	Minimum	A1	Must be from correct work

Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS	0606/12
Paper 12	March 2020
MARK SCHEME	

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(a)			$\mathbf{3}$

Question	Answer	Marks	Guidance
2	$\begin{aligned} & 2 x^{2}+4 x+k-1=k x+3 \\ & 2 x^{2}+(4-k) x+(k-4)=0 \end{aligned}$	2	M1 for attempt to equate the line and curve and simplify to a 3 term quadratic equation $=0$ A1 for a correct equation, allow equivalent form
	$(4-k)^{2}=4 \times 2 \times(k-4)$	M1	Use of discriminant in any form
	$\begin{gathered} k^{2}-16 k+48=0 \\ k=12, k=4 \end{gathered}$ Do not isw	2	Dep M1 on previous M mark, for attempt to solve a quadratic equation in k A1 for both
	Alternative 1		
	$2 x^{2}+4 x+k-1=k x+3$ $2 x^{2}+(4-k) x+(k-4)=0$	(2	M1 for attempt to equate the line and curve and simplify A1 for a correct equation, allow equivalent form
	$\begin{aligned} & k=4 x+4 \\ & 2\left(\frac{k-4}{4}\right)^{2}+(4-k)\left(\frac{k-4}{4}\right)+(k-4)=0 \end{aligned}$	M1	Equating gradients and substitution to obtain a quadratic equation in terms of k
	$\begin{aligned} & k^{2}-16 k+48=0 \\ & \quad k=12 \text { and } k=4 \end{aligned}$ Do not isw	2)	Dep M1 on previous M mark, for attempt to solve a quadratic equation in k A1 for both
	Alternative 2		
	$\begin{aligned} & 2 x^{2}+4 x+k-1=k x+3 \\ & 2 x^{2}+(4-k) x+(k-4)=0 \end{aligned}$	(2	M1 for attempt to equate the line and curve and simplify A1 for a correct equation, allow equivalent form
	$\begin{aligned} & k=4 x+4 \\ & 2 x^{2}-4 x=0 \\ & x=0,2 \end{aligned}$	M1	Equating gradients and substitution to obtain a quadratic equation in terms of x and solution of this equation to obtain $2 x$ values
	$\begin{aligned} & k=4 x+4 \\ & k=12 \text { and } k=4 \end{aligned}$ Do not isw	2)	Dep M1 on previous M mark, for substitution of their x values to obtain k values A1 for both

Question	Answer	Marks	Guidance
3	$b=243$	B1	Must be evaluated
	${ }^{5} C_{1} \times 3^{4} \times(-a)=-81$	M1	Allow equivalent with no negative signs, allow sign error
	$a=\frac{1}{5} \text { oe }$	A1	
	${ }^{5} C_{2} \times 3^{3} \times(-a)^{2}$	M1	Allow with their a^{2}
	$c=\frac{54}{5} \text { or } 10.8 \mathrm{oe}$	A1	Must be from correct working
4	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x}{3 x^{2}-4}-\frac{x^{2}}{2}$	2	M1 for attempt to differentiate, must have at least one term correct A1 All correct
	When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{2}$	B1	
	When $x=2, y=\ln 8-\frac{4}{3}$, or exact equivalent	B1	Allow $\ln 8-\frac{8}{6}$
	Equation of tangent $y-\left(\ln 8-\frac{4}{3}\right)=-\frac{1}{2}(x-2) \mathrm{oe}$	M1	Dep on first M mark, allow unsimplified, allow use of decimals
	$\left(0, \ln 8-\frac{1}{3}\right)$, or exact equivalent	A1	Allow $x=0, y=\ln 8-\frac{1}{3}$
5(a)	$\begin{aligned} & \frac{1}{2}(5-\sqrt{3})(2+4 \sqrt{3}) \\ & \frac{1}{2}(10-2 \sqrt{3}+20 \sqrt{3}-12) \end{aligned}$	M1	Need to see $\frac{1}{2}(10-18 \sqrt{3}-12)$ or $(5-9 \sqrt{3}-6)$ minimum for M1
	$9 \sqrt{3}-1$	A1	
5(b)	$\begin{aligned} & \tan A B C=\frac{5-\sqrt{3}}{1+2 \sqrt{3}} \times \frac{1-2 \sqrt{3}}{1-2 \sqrt{3}} \\ & =\frac{5-\sqrt{3}-10 \sqrt{3}+6}{1-12} \end{aligned}$	M1	Attempt at trig ratio and attempt to rationalise. Need to see $5-11 \sqrt{3}+6$ in the numerator as a minimum for M1 Allow one error only
	$=\sqrt{3}-1$	2	$\begin{aligned} & \text { A1 for } \sqrt{3}, \\ & \text { A1 for }-1 \end{aligned}$

Question	Answer	Marks	Guidance
5(c)	$\begin{aligned} & \sec ^{2} A B C=\tan ^{2} A B C+1 \\ & =(\sqrt{3}-1)^{2}+1 \text { oe } \end{aligned}$	M1	Allow use of correct identity with their (b)
	$=5-2 \sqrt{3}$	A1	
	Alternative		
	$\sec ^{2} A B C=\left(\frac{\sqrt{(5-\sqrt{3})^{2}+(1+2 \sqrt{3})^{2}}}{1+2 \sqrt{3}}\right)^{2}$ leads to $\frac{41-6 \sqrt{3}}{13+4 \sqrt{3}}$ leads to $\frac{533+72-242 \sqrt{3}}{121}$	(M1	For a complete method using triangle $A B D$, with sufficient detail in the expansions and rationalisation
	$=5-2 \sqrt{3}$	A1)	
6(a)	Midpoint $=(2,7)$	B1	
	Gradient of $A B=\frac{6}{8}$ oe	B1	
	Perp bisector: $y-7=-\frac{4}{3}(x-2)$	M1	Must be using a perp gradient and a mid-point
	$4 x+3 y-29=0$	A1	Allow in any order but must be equated to zero.
6(b)	3	B1	FT on their (a)
6(c)	Displacement vector $\overrightarrow{C M}=\binom{-3}{4}$	M1	Allow equivalent vectors or other methods. May be implied by one correct coordinate.
	$(-1,11)$	A1	Allow $x=-1, y=11$

Question	Answer	Marks	Guidance
7(a)	$\begin{aligned} & \mathrm{p}\left(-\frac{1}{2}\right):-\frac{a}{8}+\frac{3}{4}-\frac{b}{2}-12=0 \\ & \mathrm{p}(3): 27 a+27+3 b-12=105 \end{aligned}$	M1	For attempt at an equation using either $\mathrm{p}\left(-\frac{1}{2}\right)$ or $\mathrm{p}(3)$
	$a+4 b=-90$	A1	Allow equivalent with constants collected
	$9 a+b=30$	A1	Allow equivalent with constants collected
	$a=6, b=-24$	2	M1 for attempt to solve their equations, dep on first M mark A1 for both
7(b)	$(2 x+1)\left(3 x^{2}-12\right)$	2	B1 for $3 x^{2}$ B1 for -12 and no extra term in x
7(c)	$x=-\frac{1}{2}$	B1	
	$x= \pm 2$	B1	Dep on both B marks in part (b)
8(a)	$\binom{-20}{48} \quad \square$	B1	
8(b)	$\binom{-20}{48} t$	B1	Follow through on their (a)
8(c)	$\binom{12}{8}+\binom{-25}{45} t \mathrm{oe}$	B1	
8(d)	$\binom{12}{8}+\binom{-5}{-3} t$ oe	B1	
8(e)	$\|\overrightarrow{P Q}\|^{2}=(12-5 t)^{2}+(8-3 t)^{2}$	M1	Attempt to find modulus of their (d) which must contain terms in t
	$\begin{aligned} & \|\overrightarrow{P Q}\|=\sqrt{144-120 t+25 t^{2}+64-48 t+9 t^{2}} \\ & P Q=\sqrt{34 t^{2}-168 t+208} \end{aligned}$	A1	Must see correct expansion leading to given answer.

Question	Answer	Marks	Guidance
8(f)	$34 t^{2}-168 t+204=0$	M1	For dealing with square root correctly and attempt to solve a 3 term quadratic equation
	2.15 only	A1	
9(a)(i)	360	B1	
9(a)(ii)	60	B1	FT on their (b)(i) divided by 6
9(a)(iii)	A complete plan for dealing with odd numbers and numbers greater than 7000, see below	M1	Must be considering each case
	Starts with 8 and ends with odd $=48$	B1	
	Starts with 7 or 9 and ends with odd $=72$	B1	
	120	A1	
	Alternative		
	Their answer to (a)(i) -odd numbers starting with 2 -odd number starting with 3 or 5 -all even numbers	(M1	Must be considering each case
	All even numbers $=120$ Odd and starting with $2=48$ Odd and starting with 3 or $5=72$	2	B1 for 1 correct
	120	A1)	
9(b)	$\frac{n!}{(n-3)!3!}=92 n$	B1	
	$n(n-1)(n-2)=552 n$	M1	Attempt to simplify factorials
	$n\left(n^{2}-3 n-550\right)=0$ $n(n-25)(n+22)=0$	M1	Dep on previous M mark for expansion and simplification to a cubic or quadratic in n and attempt to solve
	$n=25$	A1	For $n=25$ only
10(a)	$\alpha+45^{\circ}=144.7^{\circ}, 324.7^{\circ}$ $\alpha=99.7^{\circ}, 279.7^{\circ}$	3	M1 for attempt to solve using a correct order of operations, may be implied by one correct solution A1 for 1 correct solution A1 for a second correct solution and no extras

Question	Answer	Marks	Guidance
10(b)(i)	$\frac{(\sin \theta+1)-(\sin \theta-1)}{\sin ^{2} \theta-1}$	M1	For dealing with fractions
	$\frac{2}{-\cos ^{2} \theta}$	M1	For simplification of numerator and use of the correct identity
	$\begin{aligned} & -2 \sec ^{2} \theta \\ & a=-2 \end{aligned}$	A1	Must see previous line for A1
10(b)(ii)	$\begin{aligned} & -2 \sec ^{2} 3 \phi=-8 \text { oe } \\ & \sec 3 \phi= \pm 2 \end{aligned}$	M1	For making use of (i) and attempt to simplify in terms of 3ϕ
	$\cos 3 \phi= \pm \frac{1}{2}$	A1	
	$\begin{aligned} & 3 \phi=-\frac{2 \pi}{3},-\frac{\pi}{3}, \frac{\pi}{3}, \frac{2 \pi}{3} \\ & \phi=-\frac{2 \pi}{9},-\frac{\pi}{9}, \frac{\pi}{9}, \frac{2 \pi}{9} \\ & \text { or } \\ & \pm 0.349, \pm 0.698, \end{aligned}$	3	Dep M1 for attempt to solve, may be implied by one correct solution A1 for each pair of correct solutions
11	$[\ln (2 x+3)+\ln (3 x-1)-\ln x]_{1}^{a}$	2	B1 for 1 term correct B1 all correct
	$\begin{aligned} &(\ln (2 a+3)+\ln (3 a-1)-\ln a) \\ &-(\ln 5+\ln 2) \end{aligned}$	M1	Correct substitution of limits, dep on first B1, ignore equality Must have 3 terms involving x
	$\ln \frac{(2 a+3)(3 a-1)}{10 a}=\ln 2.4$	M1	For use of both addition and subtraction rules, ignore equality Or for use of addition rule on each side of an equation.
	$6 a^{2}-17 a-3=0$	A1	
	$a=3$	2	M1 for solution of their quadratic A1 for $a=3$ only

ADDITIONAL MATHEMATICS

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1	$A^{\prime} \cap B$ oe	B1	
	$(X \cap Y) \cup(X \cap Z)$ or $X \cap(Y \cup Z)$	B1	
2	$2 x^{2}+3 x+k=k x-3$	M1	For an attempt to equate and simplify to a 3 term quadratic equation, allow an error in one term
	$2 x^{2}+(3-k) x+(k+3)=0$	A1	
	$(3-k)^{2}-4 \times 2 \times(k+3)$	M1	For attempt to use the discriminant, allow previous error, leading to a quadratic equation in terms of k
	$k^{2}-14 k-15=0$ giving critical values of -1 and 15	A1	For critical values
	$-1<k<15$	A1	
3	Either $7^{x} \times 7^{2 y}$ or $49^{\frac{x}{2}} \times 49^{y}$ or $5^{5 x} \times 5^{2 y}$ or $25^{\frac{5 x}{2}} \times 25^{y}$	M1	For expressing the terms on the left hand side of either one of the 2 equations in terms of powers of $7,49,5$ or 25
	$7^{x} \times 7^{2 y}=7^{0} \text { or } 49^{\frac{1}{2}} \times 49^{y}=49^{0}$	A1	
	$5^{5 x} \times 5^{2 y}=5^{-2} \text { or } 25^{\frac{5 x}{2}} \times 25^{y}=25^{-1}$	A1	
	leading to $x+2 y=0$ and $5 x+2 y=-2$	M1	For attempt to solve two linear equations, with integer coefficients and constants, in terms of x and y
	$x=-\frac{1}{2}, y=\frac{1}{4}$	A1	
4(i)	$\frac{\mathrm{d}}{\mathrm{dx}}\left(\ln \left(4 x^{2}+1\right)\right)=\frac{8 x}{4 x^{2}+1}$	B1	
	3) $\frac{8 x}{\left(4 x^{2}+1\right)}-2 \ln \left(4 x^{2}+1\right)$	M1	For attempt to differentiate a quotient
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(4 x^{2}+1\right)}{(2 x-3)^{2}}$	A1	For all other terms, not including $\frac{8 x}{4 x^{2}+1}$, correct
4(ii)	When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{16}{17}-2 \ln 17$ $=-4.73$	M1	For attempt to find value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=2$ and multiply by h
	Change in $y=-4.73 h$	A1	

Question	Answer	Marks	Guidance
5(i)	f >1	B1	Must be using correct notation
	$\mathrm{g} \in \mathbb{R}$	B1	Must be using correct notation
5(ii)	$\begin{aligned} & \mathrm{g}(0)=1, \mathrm{~g}(1)=2 \\ & \text { and attempt at } \mathrm{f}(2) \end{aligned}$	M1	For attempt at g^{2} and correct order
	$\mathrm{f}(2)=164.8$ awrt 165	A1	
5(iii)		B3	B1 for correct f and $(0,4)$, must be in first and second quadrant B1 for correct f^{1} and $(4,0)$, must be in first and fourth quadrant B1 for $y=x$ and/or symmetry implied, by 'matching intercepts'. No intersection.
6	$\frac{\mathrm{d} y}{\mathrm{~d} x}=k(8 x+5)^{-\frac{1}{2}}$	M1	For attempt to differentiate, must be in the form $k(8 x+5)^{-\frac{1}{2}}$
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4(8 x+5)^{-\frac{1}{2}}$	A1	
	When $x=\frac{1}{2}, y=3$	B1	
	Normal: $y-3=-\frac{3}{4}\left(x-\frac{1}{2}\right)$	M1	For attempt at the normal when $x=\frac{1}{2}$, using correct process for their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and their y.
	$6 x+8 y-27=0$	A1	

Question	Answer	Marks	Guidance
7(i)	$\lg y=\lg A+x \lg b$	B1	For statement, may be implied by subsequent work
	Either$\begin{aligned} & 6=\lg A+3.4 \lg b \\ & \text { or } 3.6=\lg A+2.2 \lg b \end{aligned}$	M1	For one correct equation
		M1	For another correct equation and attempt to solve simultaneously
	$\lg b=2, b=100$	A1	
	$\lg A=-0.8, A=10^{-0.8}$ or 0.158	A1	
	Or Gradient $=\lg b=2$	M1	equating gradient to $\lg b$ and attempt to evaluate
	$b=100$	A1	Must be identified as b
	$\begin{aligned} & 6=\lg A+3.4 \lg b \\ & \text { or } 3.6=\lg A+2.2 \lg b \end{aligned}$	M1	For a correct equation and attempt to find $\lg A$
	$\lg A=-0.8, A=10^{-0.8}$ or 0.158	A1	Must be identified as A
7(ii)	$\lg 900=-0.8+2 x$ oe	M1	For correct use of $y=900$
	$x=1.88$	A1	
8(i)	$\begin{aligned} & B C^{2}=(7+\sqrt{5})^{2}+(7-\sqrt{5})^{2} \\ & =49+14 \sqrt{5}+5+49-14 \sqrt{5}+5 \\ & =108 \end{aligned}$	M1	For use of Pythagoras' theorem and attempt to expand and simplify
	$B C=6 \sqrt{3}$	A1	
	Perimeter $=22+6 \sqrt{5}+6 \sqrt{3}$	A1	

Question	Answer	Marks	Guidance
8(ii)	Either $\begin{aligned} & \frac{1}{2}(4+3 \sqrt{5}+11+2 \sqrt{5})(7+\sqrt{5}) \\ & =\frac{1}{2}(15+5 \sqrt{5})(7+\sqrt{5}) \\ & =\frac{1}{2}(105+35 \sqrt{5}+15 \sqrt{5}+25) \end{aligned}$	M1	Either For a valid method and attempt to expand out and simplify
	$\begin{aligned} & \text { Or } \\ & (4+3 \sqrt{5})(7+\sqrt{5})+\frac{1}{2}(7+\sqrt{5})(7-\sqrt{5}) \\ & =28+21 \sqrt{5}+4 \sqrt{5}+15+\frac{1}{2}(49-5) \end{aligned}$	M1	Or For a valid method and attempt to expand out and simplify
	Area $=65+25 \sqrt{5}$	A2	A1for each term
9(i)	Either $\begin{aligned} & 15^{2}=10^{2}+10^{2}-200 \cos A O B \\ & \cos A O B=-0.125 \end{aligned}$	M1	For use of cosine rule
	$A O B=1.696$ so 1.70 to 2 dp	A1	Must have justification to 2 dp
	Or $\begin{aligned} & \sin \left(\frac{A O B}{2}\right)=\frac{7.5}{10} \\ & \frac{A O B}{2}=0.8481 \end{aligned}$	M1	For use of basic trig
	$A O B=1.696$ so 1.70 to 2 dp	A1	

Question	Answer	Marks	Guidance
9(ii)	Angle $D O C=\frac{\pi}{3}$	B1	
	Either $\begin{aligned} & A O D=B O C=0.5\left(2 \pi-\frac{\pi}{3}-1.696\right) \\ & A O D=B O C=1.77 \end{aligned}$	M1	For attempt to get $A O D$ or $B O C$
	Arc lengths $=17.7$	M1	For attempt at arc length using their previous answer
	Perimeter $=15+10+(2 \times 17.7)=60.4$	A1	
	Or Arc $A B=17$ or $\operatorname{Arc} C D=\frac{10 \pi}{3}$	M1	For either arc length
	(20 $-\operatorname{arc} A B-\operatorname{arc} C D)$	M1	
	Perimeter $=60.4$	A1	
9(iii)	Either Area of each sector $=\frac{1}{2} 10^{2}(1.770)$	M1	For area of sector using their $B O C$
	Area of triangles $=$ $\left(\frac{1}{2} \times 100 \times \sin \frac{\pi}{3}\right)+\left(\frac{1}{2} \times 100 \sin 1.70\right)$	M1	For area of one triangle using the sine rule oe
	Total area $=177+43.3+49.6$	M1	For plan
	Area $=$ awrt 270	A1	
	Or Area of upper segment $=$ $\frac{1}{2} 10^{2}(1.696-\sin 1.696)$	M1	For area of a sector or area of a triangle using the sine rule oe
	Area of lower segment $=$ $\frac{1}{2} 10^{2}\left(\frac{\pi}{3}-\sin \frac{\pi}{3}\right)$	M1	For whichever has not been obtained in previous part
	$\begin{aligned} & \text { Shaded area }=100 \pi-\text { are of the } 2 \text { segments } \\ & \text { Area }=314.2-35.2-9.06 \end{aligned}$	M1	For plan
	Area $=$ awrt 270	A1	

Question	Answer	Marks	Guidance
10	$\begin{aligned} & 1.5=2+\cos 3 x \\ & \cos 3 x=-0.5 \end{aligned}$	M1	For correct attempt to find points of intersection
	$3 x=\frac{2 \pi}{3}, \frac{4 \pi}{3}$	M1	For dealing with $3 x$ correctly
	$x=\frac{2 \pi}{9} \text { or } 40^{\circ}$	A1	
	$x=\frac{4 \pi}{9} \text { or } 80^{\circ}$	A1	
	Either $\int_{\frac{2 \pi}{9}}^{\frac{4 \pi}{9}} 1.5-(2+\cos 3 x) \mathrm{d} x$	M1	For subtraction method - condone omission of or incorrect limits
	$[-0.5 x-k \sin 3 x]_{\frac{2 \pi}{9}}^{\frac{4 \pi}{9}}$	M1	For attempt to integrate - condone omission of or incorrect limits
	$\left[-0.5 x-\frac{1}{3} \sin 3 x\right]_{\frac{2 \pi}{9}}^{\frac{4 \pi}{9}}$	A1	All correct - condone omission of or incorrect limits
	$\left(-\frac{2 \pi}{9}+\frac{\sqrt{3}}{6}\right)-\left(-\frac{\pi}{9}-\frac{\sqrt{3}}{6}\right)$	M1	Dep for application of limits, must be in radians
	$\text { Area }=\frac{\sqrt{3}}{3}-\frac{\pi}{9}$	A1	
	Or $\left(1.5 \times \frac{2 \pi}{9}\right)$	M1	For attempt at rectangle (must include subtraction subsequently)
	$[2 x+k \sin 3 x]_{\frac{2 \pi}{9}}^{\frac{4 \pi}{9}}$	M1	For attempt to integrate - condone omission of or incorrect limits
	$\left[2 x+\frac{1}{3} \sin 3 x\right]_{\frac{2 \pi}{9}}^{\frac{4 \pi}{9}}$	A1	All correct - condone omission of or incorrect limits
	$\left(\left(\frac{8 \pi}{9}-\frac{\sqrt{3}}{6}\right)-\left(\frac{4 \pi}{9}+\frac{\sqrt{3}}{6}\right)\right)$	M1	Dep for application of limits, must be in radians
	Area $=\frac{\sqrt{3}}{3}-\frac{\pi}{9}$	A1	

Question	Answer	Marks	Guidance
11(a)(i)	362880	B1	
11(a)(ii)	$7!\times 2$	B1	For 7!
	10080	B1	For $7!\times 2$ leading to 10080
11(a)(iii)	Total $=4!\times 4!\times 3!=3456$	B3	B1 for treating as 4 separate units 4! B1 for either number of ways of arranging the maths books amongst themselves 4 ! or the number of ways of arranging the physics books amongst themselves 3!
11(b)(i)	18564	B1	
11(b)(ii)	Total 3738	B4	$\begin{array}{lll} \text { B1 } & 4 \text { boys } & 3150 \\ \text { B1 } & 5 \text { boys } & 560 \\ \text { B1 } & 6 \text { boys } & 28 \end{array}$
12	$\frac{\mathrm{d} y}{\mathrm{~d} x}=k \cos \left(x+\frac{\pi}{3}\right)+c$	M1	For attempt to integrate
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \cos \left(x+\frac{\pi}{3}\right)+c$	A1	All correct, condone omission of $+c$
	$5=-2 \cos \frac{2 \pi}{3}+c$	M1	Dep for attempt to find c
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \cos \left(x+\frac{\pi}{3}\right)+4$	A1	
	$y=p \sin \left(x+\frac{\pi}{3}\right) \quad(+q x+d)$	M1	attempt to integrate a second time to obtain $y=p \sin \left(x+\frac{\pi}{3}\right)$
	$y=-2 \sin \left(x+\frac{\pi}{3}\right)+4 x+d$	A1	All correct, condone omission of $+d$
	$\frac{5 \pi}{3}=-2 \sin \frac{2 \pi}{3}+\frac{4 \pi}{3}+d$	M1	Dep for attempt to find a second arbitrary constant
	$\begin{aligned} & y=-2 \sin \left(x+\frac{\pi}{3}\right)+4 x+\frac{\pi}{3}+\sqrt{3} \\ & \text { or } y=-2 \sin \left(x+\frac{\pi}{3}\right)+4 x+2.78 \end{aligned}$	A1	

ADDITIONAL MATHEMATICS

Paper 1
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1(i)		B3	B1 for y intercept $(0,1)$, must have a graph B1 for starting and finishing at ($\pm 90,-1$) B1 for all correct, must be attempt at a curve passing through $(\pm 30,-1)$ and $(\pm 60,-3)$
1(ii)	2	B1	
1(iii)	$120^{\circ} \text { or } \frac{2 \pi}{3}$	B1	
2	$\lg y^{2}=m x+c$	B1	May be implied by subsequent work
	Gradient $=-4 \quad(=m) \quad \square$	B1	
	$c=32$	B1	
	$y=10^{\text {their } \frac{c}{2}+\text { their } \frac{m x}{2}}$	M1	Dep on first B1 Use of $\lg y^{2}=2 \lg y$ and $10^{\text {their } \frac{c}{2}+\text { their } \frac{m x}{2}}$ Or use of $y^{2}=10^{(\text {their } c+\text { their } m x)}$ and $10^{\text {their } \frac{c}{2}+\text { their } \frac{m x}{2}}$
	$y=10^{16-2 x}$	A1	
3	$\left(1-\frac{x}{7}\right)^{14}=1-2 x+\frac{13}{7} x^{2}$	B2	All terms correct or B1 for 2 correct terms
	$(1-2 x)^{4}=1-8 x+24 x^{2} \ldots$ atpror	B2	First three terms correct or B1 for one incorrect term
	Product $=1-10 x+\frac{293}{7} x^{2}$	M1	For attempt to multiply out to obtain (1) $-10 x+m x^{2}, \quad m \neq 16$
	$a=-10, b=\frac{293}{7}$	A1	For both, need to identify a and b
4(i)		B4	B1 for shape, with max in first quadrant B1 for $(-0.5,0)$ and $(5,0)$ B1 for $(0,5)$ B1 all correct, with cusps and correct curvature for $x<0.5$ and $x>5$

Question	Answer	Marks	Guidance
4(ii)	$k=0$	B1	Not from incorrect work
	Stationary point when $y= \pm \frac{121}{8}$ or ± 15.125	M1	For attempt to find y-coordinate of stationary point, must be a complete method i.e. Use of calculus Use of discriminant, Use of completing the square Use of symmetry Allow if seen in part (i), but must be used in (ii)
	$k>\frac{121}{8}$	A1	cao
5a(i)	fg	B1	
5a(ii)	g^{-1}	B1	
5a(iii)	f^{-1}	B1	
5 a (iv)	g^{2}	B1	
5(b)(i)	Undefined at $x=0$ oe	B1	
5(b)(ii)	$4=a+b$ $\mathrm{h}^{\prime}(x)=\frac{p}{x^{3}}$ and attempt at	M1	For attempt at $h(1)$ and differentiation to obtain $h^{\prime}(1)$, must have the form $\mathrm{h}^{\prime}(x)=\frac{p}{x^{3}}$ oe
	$\begin{aligned} & b=-8 \\ & a=12 \end{aligned}$	A1	For both
6(a)	$p^{\frac{7}{2}} q^{\frac{5}{3}} r^{-\frac{7}{3}}$	B3	B1 for each term or for each of $a=\frac{7}{2}$, $b=\frac{5}{3}, c=-\frac{7}{3}$

Question	Answer	Marks	Guidance
6(b)	Either $\log _{7} x+\frac{2}{\log _{7} x}=3$	M1	For change of base.
	$\begin{aligned} & \left(\log _{7} x\right)^{2}-3 \log _{7} x+2=0 \\ & \log _{7} x=1, \quad \log _{7} x=2 \end{aligned}$	M1	Dep for forming a 3 term quadratic equation in $\log _{7} x$ and a correct attempt to solve
	$x=7, x=49$	M1	Dep on both previous M marks for dealing with a base 7 logarithm correctly
		A1	For both
	Or $\frac{1}{\log _{x} 7}+2 \log _{x} 7=3$	M1	For change of base
	$\begin{aligned} & 2\left(\log _{x} 7\right)^{2}-3 \log _{x} 7+1=0 \\ & \log _{x} 7=1, \quad \log _{x} 7=0.5 \end{aligned}$	M1	Dep for forming a 3 term quadratic equation in $\log _{x} 7$ and a correct attempt to solve
	$x=7, x=49$	M1	Dep on both previous M marks for dealing with a base x logarithm correctly
		A1	For both
	$\begin{aligned} & \text { Or } \\ & \frac{\lg x}{\lg 7}+2 \frac{\lg 7}{\lg x}=3 \text { or } \lg 1000 \end{aligned}$	M1	For change of base
	$\begin{aligned} & (\lg x)^{2}-3 \lg 7(\lg x)+2(\lg 7)^{2}=0 \\ & \lg x=2 \lg 7 \quad \lg x=\lg 7 \end{aligned}$	M1	Dep for forming a 3 term quadratic equation in $\lg x$ and a correct attempt to solve
	$x=7, x=49$	M1	Dep on both previous M marks for dealing with a base 10 logarithm correctly
		A1	For both, must be exact
7(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\mathrm{e}^{x^{2}}+1\right)+2 x \mathrm{e}^{x^{2}}(x+5)$	B1	For $2 x \mathrm{e}^{x^{2}}$
		M1	For attempt at differentiating a product or expanding brackets and differentiating a product
		A1	For all other terms, apart from $2 x \mathrm{e}^{x^{2}}$, correct

Question	Answer	Marks	Guidance
7(ii)	When $x=0.5, \frac{\mathrm{~d} y}{\mathrm{~d} x}=9.35$	M1	For attempt to find their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=0.5$ and multiplication by p
	Approximate change $=9.35 p$	A1	
7(iii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} t} \\ & 9.346 \times \frac{\mathrm{d} x}{\mathrm{~d} t}=2 \end{aligned}$	M1	For use of correct rates of change equation using their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=0.5$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=2$
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=0.214$	A1	$\text { FT on } \frac{2}{\text { their } 9.346}$ Must be correct to at least 3 sf
8(a)(i)	Either $\left(\begin{array}{lll} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & 3 \\ 3 & 0 & 1 \end{array}\right)\left(\begin{array}{l} 4 \\ 2 \\ 0 \end{array}\right) \text { or }\left(\begin{array}{ll} 2 & 1 \\ 1 & 3 \\ 1 & 1 \\ 0 & 1 \\ 3 & 0 \end{array}\right)\binom{4}{2}$	B2	For correct matrices in correct order or B1 if one correct matrix and a slip in one element of the other matrix
	$\begin{aligned} & \text { Or } \\ & \left(\begin{array}{lll} 4 & 2 & 0 \end{array}\right)\left(\begin{array}{lllll} 2 & 1 & 1 & 0 & 3 \\ 1 & 3 & 1 & 1 & 0 \\ 1 & 0 & 2 & 3 & 1 \end{array}\right) \\ & \text { or }\left(\begin{array}{ll} 4 & 2 \end{array}\right)\left(\begin{array}{lllll} 2 & 1 & 1 & 0 & 3 \\ 1 & 3 & 1 & 1 & 0 \end{array}\right) \end{aligned}$	B2	For correct matrices in correct order or B1 if one correct matrix and a slip in one element of the other matrix
8(a)(ii)	$\left(\begin{array}{r} 10 \\ 10 \\ 6 \end{array}\right) \text { or }\left(\begin{array}{lllll} 10 & 10 & 6 & 2 & 12 \end{array}\right)$	M1	For matrix multiplication of their (i), with at least 2 elements correct, must be in correct form, may be unsimplified
	$\binom{2}{12}$ Team E	A1	All correct and identifying team E
8(b)(i)	$\frac{1}{6}\left(\begin{array}{rr}4 & 1 \\ -2 & 1\end{array}\right)$	B2	B1 for $\frac{1}{6}$ and B1 for $\left(\begin{array}{rr}4 & 1 \\ -2 & 1\end{array}\right)$

Question	Answer	Marks	Guidance
10(i)	Either $18^{2}=10^{2}+10^{2}-200 \cos A O B$	M1	Attempt to use cosine rule
	$\cos A O B=-0.62$	A1	Allow unsimplified
	```AOB=2.2395 or greater accuracy, so 2.24 (to 2 dp) or }AOB=2.239\ldots.. so 2.24 (to 2 dp AOB=2.240 so 2.24 (to 2 dp)```	A1	Must justify 2 dp
10(i)	Or $\sin \frac{A O B}{2}=\frac{9}{10}$   or $\tan \frac{A O B}{2}=\frac{9}{\sqrt{19}}$   or $\cos \frac{A O B}{2}=\frac{\sqrt{19}}{10}$	M1	Attempt at trig using a right angled triangle
	$\frac{A O B}{2}=\mathrm{awrt} 1.12$	A1	
	```AOB=2.2395 or greater accuracy, so 2.24 (to 2 dp) or }AOB=2.239\ldots.. so 2.24 (to 2 dp AOB=2.240 so 2.24 (to 2 dp)```	A1	Must justify 2 dp
10(ii)	$A O C=2 \pi-2(2.2395)$ or $\frac{A O C}{2}$ or $A B C=\pi-(2.2395)$ oe	M1	For attempt to find angle $A O C$ or $A B C$ $\begin{aligned} & A O C=2 \pi-2(\text { their } A O B) \\ & A B C=\pi-(\text { their } A O B) \mathrm{oe} \end{aligned}$
	$A O C=1.804$ or 1.803	A1	Condone 1.8 or 1.80
	Arc length $=18.04$ or 18.03	M1	For attempt at arc length using $10 \times$ their $A O C$
	$\begin{aligned} & A C=20 \sin \frac{A O C}{2} \text { or } 36 \sin \frac{A B C}{2} \\ & \text { or } \sqrt{10^{2}+10^{2}-200 \cos A O C} \\ & \text { or } \sqrt{18^{2}+18^{2}-648 \cos A B C} \\ & =15.69 \text { or } 15.7 \end{aligned}$	M1	For attempt at $A C$ using their $A O C$, or $A B C$ but $A O C \neq 2.24$ or $\frac{2 \pi}{3}$
	Perimeter $=33.7$	A1	Allow awrt 33.7

Question	Answer	Marks	Guidance
10(iii)	$\begin{aligned} & \text { Area of sector }=50 \times 1.804 \\ & =90.2 \text { or } 90.15 \end{aligned}$	M1	For attempt at sector area $\frac{1}{2} \times 10^{2} \times$ their $A O C$ $A O C$ must be in radians
	Area of triangle $=50 \sin 1.804=48.6$ or 48.66	M1	For attempt at area of triangle $\frac{1}{2} \times 10^{2} \times \sin$ their $A O C$ $A O C$ must be in radians
	Shaded area $=41.6$ or 41.5	A1	Lack of accuracy is penalised here
11	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2(3 x-1)^{\frac{1}{3}}+c$	M1	For $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) a(3 x-1)^{\frac{1}{3}}$, condone omission of $+c$
		A1	All correct, condone omission of c
	$6=4+c$	M1	Dep for attempt to find c
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 2(3 x-1)^{\frac{1}{3}}+2$	A1	All correct, may be implied by $c=2$
	$y=\frac{1}{2}(3 x-1)^{\frac{4}{3}}+2 x+d$	M1	For attempt to integrate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to obtain the form $y=b(3 x-1)^{\frac{4}{3}} \quad(+m x+d)$
		A1	All correct, condone omission of d
	$11=14+d$	M1	Dep for attempt to find d, a second arbitrary constant, having used an arbitrary constant for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	$y=\frac{1}{2}(3 x-1)^{\frac{4}{3}}+2 x-3$	A1	

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
3(iii)	When $x=\sqrt{3}, \quad y=\frac{1}{2}$	B1	for $y=\frac{1}{2}$
	Normal: $y-\frac{1}{2}=\frac{8}{\sqrt{3}}(x-\sqrt{3})$	M1	Dep on M1in part(i). An equation of the normal using their normal gradient, $\sqrt{3}$ and their y
		A1	allow unsimplified
4(i)	$-\frac{1}{13}\left(\begin{array}{rr}-1 & -2 \\ -4 & 5\end{array}\right)$ oe	B2	B1 for $-\frac{1}{13}$ B1 for $\left(\begin{array}{rr}-1 & -2 \\ -4 & 5\end{array}\right)$
4(ii)	$\frac{1}{13}\left(\begin{array}{rr} 1 & 2 \\ 4 & -5 \end{array}\right)\binom{12}{7}$	M1	for pre-multiplication by their inverse from (i)
	$=\frac{1}{13}\binom{26}{13}$	M1	for correct method for matrix multiplication
	$=\binom{2}{1}$	A1	
	$x=1.11$	B1	
	$y=\frac{\pi}{4}$ or 0.785	B1	
5(i)	$\frac{\mathrm{d}}{\mathrm{~d} x}\left(\ln \left(x^{2}+3\right)\right)=\frac{2 x}{\left(x^{2}+3\right)}$	B1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(x^{2}+3\right) \frac{2 x}{\left(x^{2}+3\right)}+2 x \ln \left(x^{2}+3\right)$	M1	for product rule
		A1	FT their $\frac{2 x}{\left(x^{2}+3\right)}$
5(ii)	$\left(x^{2}+3\right) \ln \left(x^{2}+3\right)=\int 2 x+2 x \ln \left(x^{2}+3\right) \mathrm{d} x$	M1	for using their result from (i) for $2 x+k x \ln \left(x^{2}+3\right)$
	$\begin{aligned} & \int x \ln \left(x^{2}+3\right) \mathrm{d} x \\ & \quad=\frac{1}{2}\left(x^{2}+3\right) \ln \left(x^{2}+3\right)-\frac{x^{2}}{2}(+c) \end{aligned}$	A1	

Question	Answer	Marks	Guidance
6(i)	$\begin{aligned} & \ln y=\ln A+x^{2} \ln b \text { or } \\ & \lg y=\lg A+x^{2} \lg b \end{aligned}$	B1	May be implied by a table of values for x^{2} and $\ln y$ or $\lg y$ or axes labelled $\ln y$ or $\lg y$ and x^{2}
		M1	for attempt to plot either $\ln y$ or $\lg y$ against x^{2} using an evenly spaced scale on each axis.
		A2	A2 All points on a correct line (for $1 \leqslant x^{2} \leqslant 9$) with axes correctly labelled A1 One point not on the correct line or a correct line with axes not correctly labelled. A0 Two or more points not on the correct line or one point not on the line and axes incorrect
6(ii)	Gradient $=\ln b$ or $\lg b$ $\ln b \approx 0.7$ or $\lg b \approx 0.3$ leading to	M1	for a complete method using the gradient of their straight-line graph of $\lg y$ or $\ln y$ against x^{2} to obtain b
	$b=2($ allow 1.6-2.4)	A1	from correct working
	Intercept $=\ln A$ or $\lg A$ $\ln A \approx 1.1 \lg A \approx 0.5$ leading to	M1	for a complete method using intercept of their straight-line graph of $\lg y$ or $\ln y$ against x^{2} to find A
	$A=3$ (allow 2.5-3.6)	A1	from correct working
6(iii)	$100=3\left(2^{x^{2}}\right)$ or $\ln 100=$ their $1.1+$ their $0.7 x^{2}$ or $\lg 100=$ their $0.5+$ their $0.3 x^{2}$ or reading from $\lg y=2$ to obtain x^{2} or from $\ln y=4.6$ to obtain x^{2}	M1	for a valid method to find x^{2} Substitution methods should be using values of A and b in range
	leading to $x=2.25$ (allow 2.0-2.7)	A1	for an answer in range from correct working
7(a)(i)	15120	B1	
7(a)(ii)	1680	B1	
7(a)(iii) $\text { Method } 1$	Total $=2310$	B3	B1 1st digit is 7 or 9 1680 or 210×8 B1 1st digit is 8 630 or 210×3
7(a)(iii) Method 2	Total $=2310$	B3	B1 for 5th digit is 2,4 or 61890 or B1 for $5^{\text {th }}$ digit is $8 \quad 420$ or 210×2

Question	Answer	Marks	Guidance
7(b)(i)	3003	$\mathbf{B 1}$	
7(b)(ii)	28	$\mathbf{B 1}$	
7(b)(iii)	Total 1419	B3	B1 Including husband and wife B1 Excluding husband and wife

Question	Answer	Marks	Guidance
9(iv)	When $r=10, \frac{\mathrm{~d} A}{\mathrm{~d} r}=30$	B1	
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{3}{30}$	M1	for $\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{3}{\text { their } 30}$ where their 30 has been obtained from an evaluation of $\frac{\mathrm{d} A}{\mathrm{~d} r}$ at $r=10$
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=0.1 \text { or } \frac{1}{10}$	A1	
9(v)	$\frac{\mathrm{d} \theta}{\mathrm{~d} r}=-\frac{20}{r^{2}} \text { oe }$	B1	
	$\begin{aligned} \frac{\mathrm{d} \theta}{\mathrm{~d} r} & =-\frac{1}{5} \text { oe } \\ \frac{\mathrm{d} \theta}{\mathrm{~d} t} & =\frac{1}{10} \times-\frac{1}{5} \text { oe } \end{aligned}$	M1	for their $\frac{\mathrm{d} r}{\mathrm{~d} t} \times$ their $\frac{\mathrm{d} \theta}{\mathrm{d} r}$ with both evaluated at $r=10$
	$\frac{\mathrm{d} \theta}{\mathrm{d} t}=-\frac{1}{50}$ or -0.02	A1	
10(a)(i)	$\pm \frac{20-20}{5}$	M1	for finding the gradient of the relevant part
	8	A1	
10(a)(ii)	7.5	B1	
10(a)(iii)	$\frac{1}{2}(5+7.5) 20+\left(\frac{1}{2} \times 2.5 \times 20\right)$ or $20 \times 5+\left(\frac{1}{2} \times 2.5 \times 20\right)+\left(\frac{1}{2} \times 2.5 \times 20\right)$ oe	M1	for a correct expression for total area using their 7.5
	150	A1	
10(b)(i)	$x=3 \mathrm{e}^{2 t}+t+c$	M1	for $k \mathrm{e}^{2 t}+t$ Condone omission of c
	$\begin{aligned} & \begin{array}{l} 0=3 \mathrm{e}^{0}+0+c \\ \text { When } t=0, x=0 \text { so } c=-3 \end{array} \end{aligned}$	M1	Dep for substitution to find c
	$x=3 \mathrm{e}^{2 t}+t-3$	A1	

Question	Answer	Marks	Guidance
$10(\mathrm{~b})(\mathrm{ii})$	$\frac{\mathrm{d} v}{\mathrm{~d} t}=12 \mathrm{e}^{2 t} \operatorname{so} 12 \mathrm{e}^{2 t}=24$	M1	for $k \mathrm{e}^{2 t}$ equated to 24
	$2 t=\ln 2$	M1	Dep for correct order of operations to obtain $2 t$
	$t=\frac{1}{2} \ln 2, \ln \sqrt{2}$ or 0.347	A1	

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Marks	Guidance		
1(a)			B1	

Question	Answer	Marks	Guidance
3(iii)	$\begin{aligned} & (2 x-1)(x-2)-12=-25 \\ & 2 x^{2}-5 x+15=0 \end{aligned}$	M1	expansion and simplification to a 3 term quadratic equation equated to zero, using their k.
	$\begin{aligned} & \text { Discriminant: } 25-(4 \times 2 \times 15) \\ & =-95 \end{aligned}$	M1	using discriminant for their three term quadratic equation
	which is <0 so no real solutions	A1	cao for correct discriminant and correct conclusion
4(i)	$a=256$	B1	
	$\begin{aligned} & 8 \times 2^{7} \times b x[=256 x] \text { oe } \\ & \text { or } \frac{8 \times 7 \times 2^{6} \times(b x)^{2}}{2}\left[=c x^{2}\right] \text { oe } \end{aligned}$	M1	
	$b=\frac{1}{4} \quad \text { oe, } \quad c=112$	A2	A1 for each
4(ii)	$\left(256+256 x+112 x^{2}\right)\left(4 x^{2}-12+\frac{9}{x^{2}}\right)$	B1	$\text { for }\left(4 x^{2}-12+\frac{9}{x^{2}}\right)$
	Terms independent of x are $\begin{aligned} & (256 \times(-12))+(112 \times 9) \\ & =-3072+1008 \end{aligned}$	M1	adding and selecting $(\text { their } 256 \times \text { their }(-12))+(\text { their } 112 \times \text { their } 9)$
	$=-2064$	A1	
5(i)	$v=20 \times \frac{1}{\sqrt{3^{2}+4^{2}}}\binom{3}{4}$ oe	M1	finding and using the magnitude of $\binom{3}{4}$
	$v=\binom{12}{16}$	A1	
5(ii)	$\boldsymbol{r}_{p}=\binom{1}{2}+\binom{12}{16} t$	M1	correct use of position vector and their velocity vector
		A1	

Question	Answer	Marks	Guidance
5(iii)	$\binom{17}{18}+\binom{8}{12} t=\binom{1}{2}+\binom{12}{16} t$ Leading to $\begin{aligned} & 17+8 t=1+12 t \\ & \text { or } 18+12 t=2+16 t \end{aligned}$	M1	equating position vectors of both particles at time t and solve either equation for t
	$t=4$	A1	
	Position vector of collision $\binom{49}{66}$	A1	
6	Method 1 $3 x^{2}-2 x+1=2 x+5$ leading to	M1	equating the equations of the line and the curve and rearranging to obtain a three term quadratic equated to zero
	$3 x^{2}-4 x-4=0$	A1	
	$x=-\frac{2}{3} \text { and } x=2$	A1	
	$\int_{-\frac{2}{3}}^{2}\left(2 x+5-\left(3 x^{2}-2 x+1\right)\right) \mathrm{d} x$	M1	subtraction (either way round)
	$\int_{-\frac{2}{3}}^{2}\left(4+4 x-3 x^{2}\right) \mathrm{d} x$	M1	integration to $A x+B x^{2}+C x^{3}$
	$\left[4 x+2 x^{2}-x^{3}\right]_{-\frac{2}{3}}^{2}$	A1	for $4 x+2 x^{2}-x^{3}$ oe
	$\begin{aligned} & (8+8-8)-\left(-\frac{8}{3}+\frac{8}{9}+\frac{8}{27}\right) \\ & =8--\frac{40}{27} \end{aligned}$	M1	Dep on preceding M1 correct use of limits
	$=\frac{256}{27} \text { or } 9.48 \text { or } 9 \frac{13}{27}$	A1	

Question	Answer	Marks	Guidance
6	Method 2 $3 x^{2}-2 x+1=2 x+5$ leading to	M1	equating the line and the curve and rearranging to obtain a three term quadratic equated to zero
	$3 x^{2}-4 x-4=0$	A1	
	$x=-\frac{2}{3} \text { and } x=2$	A1	
	Area of trapezium $=\frac{1}{2}\left(\frac{11}{3}+9\right) \times \frac{8}{3}$	B1	area of the trapezium, allow unsimplified
	Area under curve $=\int_{-\frac{2}{3}}^{2} 3 x^{2}-2 x+1 \mathrm{~d} x$	M1	integration to $A x+B x^{2}+C x^{3}$
	$=\left[x^{3}-x^{2}+x\right]_{-\frac{2}{3}}^{2}$	A1	for $x^{3}-x^{2}+x$
	$\begin{aligned} & =\left((8-4+2)-\left(-\frac{8}{27}-\frac{4}{9}-\frac{2}{3}\right)\right) \\ & 6--\frac{38}{27} \end{aligned}$	M1	DepM1 for correct use of limits.
	$\begin{aligned} & \text { Shaded Area }=\frac{152}{9}-\frac{200}{27} \\ & =\frac{256}{27} \text { or } 9.48 \text { or } 9 \frac{13}{27} \end{aligned}$	A1	
7(a)	Method 1 $\log _{3} x+\frac{\log _{3} x}{\log _{3} 9}=12$	B1	change to base 3 logarithm
	$\begin{aligned} & \frac{3 \log _{3} x}{2}=12 \\ & x=3^{8} \text { or } \sqrt[3]{3^{24}} \end{aligned}$	M1	simplification and dealing with base 3 logarithms to obtain a power of 3
	$x=6561$	A1	

Question	Answer	Marks	Guidance
7(a)	Method 2 $\frac{\log _{9} x}{\log _{9} 3}+\log _{9} x=12$	B1	change to base 9
	$\begin{aligned} & 3 \log _{9} x=12 \\ & x=9^{4} \text { or } \sqrt[3]{9^{12}} \end{aligned}$	M1	simplification and dealing with base 9 logarithms to obtain a power of 9
	$x=6561$	A1	
7(b)	Method 1 $\log _{4}\left(3 y^{2}-10\right)=\log _{4}(y-1)^{2}+\frac{1}{2}$	B1	use of power rule
	$\log _{4} \frac{3 y^{2}-10}{(y-1)^{2}}=\frac{1}{2}$	- B1	DepB1 for use of division rule
	$\frac{3 y^{2}-10}{(y-1)^{2}}=2$	B1	$\text { for } \frac{1}{2}=\log _{4} 2$
	$y^{2}+4 y-12=0$	M1	Dep on first two B marks simplification to a three term quadratic.
	$y=2$ only	A1	
7(b)	Method 2 $\log _{4}\left(3 y^{2}-10\right)=\log _{4}(y-1)^{2}+\frac{1}{2}$	B1	use of power rule
	$\log _{4}\left(3 y^{2}-10\right)=\log _{4}(y-1)^{2}+\log _{4} 2$	B1	for $\log _{4} 2$
	$3 y^{2}-10=2(y-1)^{2}$	B1	Dep on first B1 use of the multiplication rule
	$y^{2}+4 y-12=0$	M1	Dep on first and third B marks. simplification to a 3 term quadratic
	$y=2$ only	A1	

Question	Answer	Marks	Guidance
8(i)	$\mathrm{f}>-1$	B1	or $\mathrm{f}(x)>-1, y>-1,(-1, \infty),\{y: y>-1\}$
8(ii)	$\mathrm{e}^{y}=\frac{x+1}{5} \text { oe }$	M1	a complete valid method to obtain the inverse function
	$y=\ln \left(\frac{x+1}{5}\right) \text { or } \mathrm{f}^{-1}(x)=\ln \left(\frac{x+1}{5}\right) \text { oe }$	A1	
	Domain $x>-1$ or $(-1, \infty)$	B1	FT their (i) or correct
8(iii)	$\mathrm{g}(1)=5$ so $\mathrm{fg}(1)=\mathrm{f}(5)$	M1	evaluation using correct order of operations
	$5 \mathrm{e}^{5}-1=741$	A1	awrt 741 or $5 \mathrm{e}^{5}-1$
8(iv)	$\mathrm{g}^{2}(x)=\left(x^{2}+4\right)^{2}+4$	M1	correct use of g^{2}
	$\begin{aligned} & x^{4}+8 x^{2}+16+4=40 \\ & \left(x^{2}+4\right)^{2}=36 \end{aligned}$ or $\begin{aligned} & x^{4}+8 x^{2}-20=0 \\ & \left(x^{2}+10\right)\left(x^{2}-2\right)=0 \end{aligned}$	M1	DepM1 for forming and solving a quadratic in x^{2}
	$x= \pm \sqrt{2}$ only	A1	
9(i)	Method 1 $600 \pi=2 \pi r^{2}+2 \pi r h$	B1	
	$h=\frac{600 \pi-2 \pi r^{2}}{2 \pi r}$	M1	making h subject from a two term expression for SA.
	$\begin{aligned} & V=\pi r^{2} h \\ & V=\pi r^{2}\left(\frac{600 \pi-2 \pi r^{2}}{2 \pi r}\right) \\ & V=\pi r^{2}\left(\frac{300}{r}-r\right) \\ & V=300 \pi r-\pi r^{3} \end{aligned}$	A1	correct substitution and manipulation to obtain given answer

Question	Answer	Marks	Guidance
10(i)	Method 3 $\lg y-4=3\left(x^{2}-2\right)$ or $\lg y-16=3\left(x^{2}-6\right)$ OR $4=3(2)+c$ or $16=3(6)+c$	M1	correct equation or for correct method for finding constant.
	$\lg y=A+B x^{2}$	B1	statement soi by their A and B
	$\begin{aligned} & \text { Hence } y=10^{3 x^{2}-2} \\ & B=3 \end{aligned}$	B1	
	$A=-2$	A1	
10(ii)	$y=10^{-2+3\left(\frac{1}{\sqrt{3}}\right)^{2}}$	M1	correct use of their A and B
	$y=0.1$ oe	A1	
10(iii)	$2=10^{3 x^{2}-2}$	M1	correct use of their A and B
	$\begin{aligned} & \lg 2=3 x^{2}-2 \\ & x=\sqrt{\frac{\lg 2+2}{3}} \end{aligned}$	M1	complete correct method to solve for x
	$x=0.876$	A1	

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(x^{2}+1\right)(2 x-3)^{-\frac{1}{2}}+2 x(2 x-3)^{\frac{1}{2}}$	M1	differentiation of a product
		B1	$\text { for } \frac{\mathrm{d}}{\mathrm{~d} x}(2 x-3)^{\frac{1}{2}}=\frac{1}{2} \times 2(2 x-3)^{-\frac{1}{2}} \text { oe }$
		A1	all else correct i.e. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(x^{2}+1\right) \mathrm{f}(x)+2 x(2 x-3)^{\frac{1}{2}}$
	$=(2 x-3)^{-\frac{1}{2}}\left(x^{2}+1+2 x(2 x-3)\right)$	M1	correctly taking out a factor of $(2 x-3)^{-\frac{1}{2}}$ or correctly using $(2 x-3)^{\frac{1}{2}}$ as denominator
	$=\frac{5 x^{2}-6 x+1}{(2 x-3)^{\frac{1}{2}}}$	A1	
11(ii)	When $x=2, y=5$	B1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=9$, so gradient of normal $=-\frac{1}{9}$	M1	substitution to obtain gradient and correct method for gradient of normal
	Equation of normal $y-5=-\frac{1}{9}(x-2)$	M1	DepM1 for equation of normal
	$x+9 y-47=0$ or $-x-9 y+47=0$	A1	Must be in this form

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(a)	\mathscr{E}		B1

Question	Answer	Marks	Guidance
1(b)	$P=\left\{30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}\right\}$	B1	May be seen or implied in a Venn diagram Allow without set notation
	$Q=\left\{30^{\circ}, 150^{\circ}\right\}$	B1	May be seen or implied in a Venn diagram Allow without set notation
	$P \cap Q=\left\{30^{\circ}, 150^{\circ}\right\}$	B1	Dep on both previous B marks Must be in set notation
2	$\text { Either: } \begin{aligned} & (2 x+3)^{2}(x-1)=3(2 x+3) \\ & (2 x+3)\left(2 x^{2}+x-6\right)(=0) \end{aligned}$	M1	For attempt to equate line and curve and attempt to simplify to $2 x+3 \times$ a quadratic factor or cancelling $2 x+3$ and obtaining a quadratic factor
	$\begin{aligned} & (2 x+3)\left(2 x^{2}+x-6\right)=0 \\ & (2 x+3)(2 x-3)(x+2)=0 \end{aligned}$	M1	Dep for attempt at 3 linear factors from a linear term and a quadratic term
	$\left(-\frac{3}{2}, 0\right)$	B1	
	$\left(\frac{3}{2}, 18\right)$	A1	Dep on first M mark only
	$(-2,-3)$	A1	Dep on first M mark only
	$\begin{array}{ll} \text { Or: } & (2 x+3)^{2}(x-1)=3(2 x+3) \\ & 4 x^{3}+8 x^{2}-9 x-18(=0) \end{array}$	M1	For attempt to equate line and curve and attempt to simplify to a cubic equation, by collecting like terms
	$\begin{aligned} & (x+2)\left(4 x^{2}-9\right) \\ & (2 x-3)\left(2 x^{2}+7 x+6\right) \\ & (2 x+3)\left(2 x^{2}+x-6\right) \\ & (2 x+3)(2 x-3)(x+2)(=0) \end{aligned}$	M1	Dep For attempt to find a factor from a 4 term cubic equation (usually $x+2$), do long division oe to obtain a quadratic factor and factorise this quadratic factor
	$\left(-\frac{3}{2}, 0\right)$	A1	
	$\left(\frac{3}{2}, 18\right)$	A1	
	$(-2,-3)$	A1	
3(i)	1000	B1	

Question	Answer	Marks	Guidance
3(ii)	$\frac{\mathrm{d} B}{\mathrm{~d} t}=400 \mathrm{e}^{2 t}-1600 \mathrm{e}^{-2 t}$	B1	
	$3=\mathrm{e}^{2 t}-4 \mathrm{e}^{-2 t}$ oe	M1	For equating an equation of the form $a \mathrm{e}^{2 t}+b \mathrm{e}^{-2 t}$ to 1200 and dividing by 400
	$\mathrm{e}^{4 t}-3 \mathrm{e}^{2 t}-4=0$	A1	
3(iii)	$\left(\mathrm{e}^{2 t}+1\right)\left(\mathrm{e}^{2 t}-4\right)=0$	M1	For attempt to factorise and solve, dealing with exponential correctly, to obtain $\mathrm{e}^{2 t}=\ldots$
	$t=\ln 2, \frac{1}{2} \ln 4$ or awrt 0.693 only isw if appropriate	A1	
4(a)	$a=\frac{5}{2}$	B1	
	$b=-\frac{3}{2}$	B1	
	$c=\frac{11}{2}$	B1	
4(b)	$\begin{aligned} & 9 x^{\frac{1}{2}}-3 y^{-\frac{1}{2}}=12 \\ & 4 x^{\frac{1}{2}}+3 y^{-\frac{1}{2}}=14 \end{aligned}$	M1	For attempt to solve simultaneous equations. Must reach $k x^{\frac{1}{2}}=\ldots$ or $k y^{-\frac{1}{2}}=\ldots$ oe
	$x=4$	A1	
	$y=\frac{1}{4}$	A1	
5(i)	$9.6=12 \theta$	M1	For use of arc length
	$\theta=0.8$	A1	

Question	Answer	Marks	Guidance
5(ii)	Either $\tan \theta=\frac{A B}{12}, \quad(A B=12.36)$ Or $O B=\frac{12}{\cos \theta} \quad(O B=17.22)$	M1	For attempt to find $A B$ or $O B$ using their θ May be implied by a correct triangle area Allow if using degrees consistently
	Either Area $\triangle O A B=\frac{1}{2} \times 12 \times$ their 12.36 Or Area $\triangle O A B=\frac{1}{2} \times 12 \times$ their $17.22 \times \sin \theta$ (=74.1 or 74.2)	M1	Allow if using degrees consistently For attempt to find area of triangle using their θ
	Area of sector $O A C=\frac{1}{2} \times 12^{2} \times 0.8$ $=57.6$	B1	Allow unsimplified
	Area of shaded region $=16.5$ or 16.6	A1	
6(a)(i)	40320	B1	
6(a)(ii)	No. of ways with maths books as 1 unit $=5$! or 5×4 ! or ${ }^{5} P_{5}$ or 120	B1	
	No. of ways maths books can be arranged amongst themselves $=4$! or ${ }^{4} P_{4}$ or 24	B1	
	Total $=(5!\times 4!$ oe $)=2880$	B1	
6(a)(iii)	No. of ways with maths books as 1 unit and geography books as 1 unit $=3$! or ${ }^{3} P_{3}$ or 3×2 ! or 6	B1	
	No. of ways maths books can be arranged amongst themselves and geography books can be arranged amongst themselves $=4!\times 3$! or ${ }^{4} P_{4} \times{ }^{3} P_{3}$ or 144	B1	
	$\begin{aligned} & \text { Total }=(3!\times 4!\times 3!\text { oe }) \\ & =864 \end{aligned}$	B1	
6(b)(i)	${ }^{12} C_{6}=924$	B1	

Question	Answer	Marks	Guidance
6(b)(ii)	Either: $924-{ }^{8} C_{6}$	M1	For their (i) - the number of teams of just men
	Total $=896$	A1	
	$\begin{array}{lll} \text { Or: } & \text { 5M } 1 \mathrm{~W}:{ }^{8} C_{5} \times{ }^{4} C_{1} & (=224) \\ 4 \mathrm{M} 2 \mathrm{~W}:{ }^{8} C_{4} \times{ }^{4} C_{2} & (=420) \\ 3 \mathrm{M} 3 \mathrm{~W}:{ }^{8} C_{3} \times{ }^{4} C_{3} & (=224) \\ 2 \mathrm{M} 4 \mathrm{~W}:{ }^{8} C_{2} \times{ }^{4} C_{4} & (=28) \end{array}$	M1	For a complete method
	Total $=896$	A1	
7(i)		B1	For correct triangle, may be implied by a correct sine rule or cosine rule.
	$\frac{120}{\sin \alpha} \text { or } \frac{120}{\sin (55-\theta)}=\frac{650}{\sin 35} \text { or } \frac{650}{\sin 145}$	M1	For use of a correct sine rule to obtain $\alpha=\ldots$ or $\theta=\ldots$ Or for a correct cosine rule leading to a value for v, followed by a correct sine rule leading to one of the other angles
	$\alpha=6.08^{\circ}$ or $\beta=138.9$	A1	May be implied by a correct $\theta=\operatorname{awrt} 49^{\circ}$
	Bearing is 048.9° or 049°	A1	
7(ii)	Either $\frac{v_{r}}{\sin (145-\text { their } \alpha)}=\frac{650}{\sin 35} \quad \text { or } \frac{120}{\sin (\text { their } \alpha)}$ Or $v_{r}^{2}=650^{2}+120^{2}-$ $(2 \times 650 \times 120) \cos (145-\text { their } \alpha)$	M1	For use of sine rule or cosine rule to find resultant velocity Do not allow for a right-angled triangle May be seen in (i)
	$v_{r}=745$	A1	For correct resultant velocity, allow awrt 745
	$\text { Time taken }=\frac{1250}{\text { their } 744.7}$	M1	For correct attempt at finding time using their $v, \neq 650,120,770$ or 530
	$=1.68$ hours or I hour 41 mins or 101 mins	A1	

Question	Answer	Marks	Guidance
8(i)	$\mathrm{e}^{y}=\frac{m}{x}+c$	B1	May be implied by subsequent work
	$\text { Either } \begin{aligned} 20 & =2 m+c \\ 8 & =4 m+c \end{aligned}$	M1	For at least 1 correct equation
		M1	Dep For attempt to solve their 2 equations simultaneously to obtain at least one unknown
	leading to $m=-6, c=32$	A1	For both
	$y=\ln \left(32-\frac{6}{x}\right)$	A1	Must have correct brackets Mark the final answer given
	Or: \quad Gradient $=m=(-6)$	M1	For attempt to find gradient and equate it to m
	$\begin{aligned} & 20=2 m+c \text { or } 8=4 m+c \\ & \text { or } \mathrm{e}^{y}-8=m\left(\frac{1}{x}-4\right) \\ & \text { or } \mathrm{e}^{y}-20=m\left(\frac{1}{x}-2\right) \end{aligned}$	M1	For at least 1 correct equation, may be using their m
	leading to $c=32$ and $m=-6$	A1	For both $m=-6, c=32$
	$y=\ln \left(32-\frac{6}{x}\right)$	A1	
8(ii)	$x>\frac{3}{16} \text { oe }$	B1	
8(iii)	$y=\ln 30$ isw	B1	
8(iv)	$2=\ln \left(32-\frac{6}{x}\right)$	M1	For a correct substitution and attempt to re-arrange using 2, their 32 and their -6 , keeping exactness to obtain $x=$
	$x=\frac{6}{32-\mathrm{e}^{2}} \text { oe }$	A1	Must be exact

Question	Answer	Marks	Guidance
9(i)	$5=4+2 \cos 3 x$	M1	For attempt to solve trig equation to obtain one correct solution
	$\frac{\pi}{9}$	A1	
	$-\frac{\pi}{9}$	A1	
9(ii)	Either: $\int_{-\frac{\pi}{9}}^{\frac{\pi}{9}} 4+2 \cos 3 x-5 \mathrm{~d} x$	M1	For use of subtraction method
	$\left[\frac{2}{3} \sin 3 x-x\right]_{-\frac{\pi}{9}}^{\frac{\pi}{9}}$	M1	For attempt to integrate to obtain the form $a \sin 3 x+b x$
		B1	For $\frac{2}{3} \sin 3 x$
		B1	For $-x$, may be implied by $4 x-5 x$
	$\left(\frac{\sqrt{3}}{3}-\frac{\pi}{9}\right)-\left(-\frac{\sqrt{3}}{3}+\frac{\pi}{9}\right)$	M1	Dep on previous M mark for correct application of their limits in radians from (i) retaining exactness
	Shaded area $=\frac{2 \sqrt{3}}{3}-\frac{2 \pi}{9}$ oe isw	A1	

Question	Answer	Marks	Guidance
9 (ii)	$\text { Or: } \quad \text { Area of rectangle }=5 \times \frac{2 \pi}{9}$	M1	$5 \times$ the difference of their limits in exact radians
	Area under curve $=$ $\left[4 x+\frac{2}{3} \sin 3 x\right]_{-\frac{\pi}{9}}^{\frac{\pi}{9}}$	M1	For attempt to integrate to obtain the form $a \sin 3 x+b x$
		B1	For $\frac{2}{3} \sin 3 x$
		B1	For $4 x$
	$\begin{aligned} & \left(\frac{\sqrt{3}}{3}+\frac{4 \pi}{9}\right)-\left(-\frac{\sqrt{3}}{3}-\frac{4 \pi}{9}\right) \\ & \left(=\frac{2 \sqrt{3}}{3}+\frac{8 \pi}{9}\right) \end{aligned}$	M1	Dep on previous M mark for correct application of their limits in exact radians from (i) retaining exactness
	Shaded area $=\frac{2 \sqrt{3}}{3}-\frac{2 \pi}{9}$ oe isw	A1	
10(i)	$800=4 x^{2} h$	B1	
	$h=\frac{800}{4 x^{2}}$ oe or $x h=\frac{800}{4 x}$ oe	B1	
	$(S=) 2 h x+8 x h+4 x^{2}$ oe	M1	Allow if h is substituted at this point
	$S=4 x^{2}+\left(\frac{2000}{x}\right)$	A1	Leading to AG, must have $S=$ or surface area $=$ at some point and no errors

Question	Answer	Marks	Guidance
10(ii)	$\left(\frac{\mathrm{d} S}{\mathrm{~d} x}=\right) 8 x-\frac{2000}{x^{2}}$	B1	For correct differentiation
	When $\frac{\mathrm{d} S}{\mathrm{~d} x}=0, \quad x=\sqrt[3]{250}$ oe	M1	For equating to zero and attempt to solve, must get as far as $x=\ldots$, must be using the form $a x+\frac{b}{x^{2}}$
		A1	For correct positive x
	$S=476$ only	A1	
	$\frac{\mathrm{d}^{2} S}{\mathrm{~d} x^{2}}=8+\frac{4000}{x^{3}}$ $\frac{\mathrm{d}^{2} S}{\mathrm{~d} x^{2}}>0$ or 24 so minimum	B1	For a correct convincing method, with enough detail to reach a correct conclusion of a minimum. Must be using $x=\sqrt[3]{250}$ oe
11		M1	For attempt at differentiating a product
		B1	$\text { For } \frac{2}{3} \times 3(3 x+1)^{-\frac{1}{3}}$
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)(x-2) \times \frac{2}{3} \times 3(3 x+1)^{-\frac{1}{3}}+(3 x+1)^{\frac{2}{3}}$	A1	For all other terms correct
	$y=\frac{4}{3}$	B1	
	When $x=\frac{7}{3}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{13}{3}$	M1	For attempt at normal equation using $-\frac{1}{\text { their } m}$ and their y when $x=\frac{7}{3}$
	Equation of normal: $y-\frac{4}{3}=-\frac{3}{13}\left(x-\frac{7}{3}\right)$	A1	For correct normal equation, may be implied by a correct final answer
	At y-axis, $y=\frac{73}{39}$ $\left(0, \frac{73}{39}\right)$ isw	A1	

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working nfww not from wrong working oe or equivalent rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1	$A \cap B=\varnothing$	B1	
	$Z \subset(X \cap Y)$	B2	B1 for identifying $X \cap Y$
2	$a=\frac{3}{2}$	B1	
	$b=\frac{7}{3}$	B1	
	$c=3$	B1	
3	$x^{2}+(3-m) x+m-4=0$	M1	For equating line and curve and attempting to obtain a quadratic equation equated to zero
	Discriminant: $(3-m)^{2}-4(m-4)$	M1	Dep For use of $b^{2}-4 a c$, could be implied by use of quadratic formula
	$(m-5)^{2}$	A1	
	Always positive or zero for any m, so line and curve will always touch or intersect	A1	For a suitable comment/conclusion
4(i)		B1	$\text { For } \frac{6 x^{3}}{\left(2 x^{3}+5\right)}$
		M1	For attempt to differentiate a quotient
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x-1) \frac{6 x^{2}}{\left(2 x^{3}+5\right)}-\ln \left(2 x^{3}+5\right)}{(x-1)^{2}}$	A1	For all other terms correct
	When $x=2$, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{24}{21}-\ln 21 \text { or } \frac{8}{7}-\ln 21, \text { or }-1.90$	A1	
4(ii)	$-1.90 p$ oe	B1	

Question	Answer	Marks	Guidance
5(i)		B1	For shape with maximum in $1^{\text {st }}$ quadrant
		B1	For $\left(-\frac{1}{3}, 0\right)$ and (5, 0
		B1	For (0,5)
		B1	All correct with cusps and correct shape for $x<-\frac{1}{3}$ and $x>5$
5(ii)		M1	For attempt to find maximum point
	Maximum point when $x=\frac{7}{3}$	A1	For $x=\frac{7}{3}$
	$y=\frac{64}{3}$ so $k=\frac{64}{3}$	A1	
6(i)	$\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta} \times \sin \theta$ oe	M1	For dealing with sec, tan and cosec in terms of sin and cos
	$\frac{1-\sin ^{2} \theta}{\cos \theta}$	M1	For simplification and use of identity
	$\frac{\cos ^{2} \theta}{\cos \theta}$	A1	For simplification to AG
6(ii)	$\cos 2 \theta=\frac{\sqrt{3}}{2}$	M1	For use of part (i) and attempt to solve to get as far as $2 \theta=\ldots$
	$2 \theta=30^{\circ}, 330^{\circ}$	- $\mathrm{M}^{\text {a }}$	For dealing with double angle correctly, may be implied by one correct solution
	$\theta=15^{\circ}, 165^{\circ}$	A1	For both
6(iii)	$\begin{aligned} & \sin \left(\phi+\frac{\pi}{3}\right)= \pm \frac{1}{\sqrt{2}} \\ & \phi+\frac{\pi}{3}=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}, \frac{9 \pi}{4} \end{aligned}$	M1	For correct attempt to solve, may be implied by $\phi+\frac{\pi}{3}=\frac{\pi}{4}$
		M1	Dep For dealing with compound angle correctly
	$\phi=\frac{5 \pi}{12}, \frac{11 \pi}{12}, \frac{17 \pi}{12}, \frac{23 \pi}{12}$	A2	A1 for one correct pair, A1 for a second correct pair with no extra solutions in the range.

Question	Answer	Marks	Guidance
7(i)	$A C^{2}=(2 \sqrt{5}-1)^{2}+(2+\sqrt{5})^{2}$	M1	For use of Pythagoras' theorem and attempt to expand brackets
	$=20-4 \sqrt{5}+1+4+4 \sqrt{5}+5$	A1	For correct unsimplified, must be convinced of non-calculator use
	$A C=\sqrt{30}$	A1	
7(ii)	$\tan A C B=\frac{2 \sqrt{5}-1}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	M1	For attempt at $\tan A C B$ and rationalisation
	$=\frac{4 \sqrt{5}-2-10+\sqrt{5}}{4-5} \mathrm{oe}$	M1	Dep For seeing at least 3 terms in the numerator
	$=12-5 \sqrt{5}$	A1	
7(iii)	$\begin{aligned} & \sec ^{2} A C B=\tan ^{2} A C B+1 \\ & =144-120 \sqrt{5}+125+1 \end{aligned}$	M1	For use of identity using their (ii)
	$=270-120 \sqrt{5}$	A1	
8(i)	$\mathrm{g} \geqslant 1$	B1	Must be using correct notation
8(ii)	$g(\sqrt{62})=125$	B1	
	$\mathrm{f}^{-1}(x)=\frac{1}{3} \ln x$	B1	
	$\frac{1}{3} \ln 125=\ln 5$	B1	For correct order and manipulation to obtain the given answer, need to see $\frac{1}{3} \ln 125$
8(iii)	$3 \mathrm{e}^{3 x}=24$	M1	For dealing with derivatives correctly
	$x=\frac{1}{3} \ln 8$	A1	
	$x=\ln 2$	A1	
8(iv)		B3	B1 for correct g with intercept B1 for $y=x$ and/or implication of symmetry B1 for correct g^{-1} with intercept
9(a)(i)	$7!=5040$	B1	

Question	Answer	Marks	Guidance
9(a)(ii)	Treating the 4 trophies as 1 unit so there are 4 ! ways	B1	Maybe implied by a correct answer
	There are also 4! ways of arranging the football trophies amongst themselves	B1	
	Total $=4!\times 4!=576$	B1	
9(a)(iii)	Treating the 4 football trophies as 1 unit and the 2 cricket trophies as 1 unit so there are 3 ! ways	B1	Maybe implied by a correct answer
	There are also 4 ! ways of arranging the football trophies amongst themselves and 2 ways of arranging the cricket trophies	B1	Maybe implied by a correct answer
	Total $=3!\times 4!\times 2=288$	B1	
9(b)(i)	3003	B1	
9(b)(ii)	28	B1	
9(b)(iii)	3003-1	M1	For their (i)-1
	3002	A1	FT
10(i)		M1	Attempt to integrate to obtain $k(2 x+3)^{\frac{1}{2}}$
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+3)^{\frac{1}{2}} \quad(+c)$	A1	All correct, condone omission of $+c$
	$5=3+c$	M1	Dep For attempt at c
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+3)^{\frac{1}{2}}+2$	M1	For a further attempt to integrate
	$y=\frac{1}{3}(2 x+3)^{\frac{3}{2}}+2 x(+d)$	A1	All correct, condone omission of $+d$
	$-\frac{1}{3}=\frac{8}{3}+1+d$	M1	For attempt at d
	$y=\frac{1}{3}(2 x+3)^{\frac{3}{2}}+2 x-4$	A1	Must have $y=$

Question	Answer	Marks	Guidance
10(ii)	When $x=3, y=11$	M1	For attempt to find y using their (i)
		M1	Dep For attempt at normal
	Normal: $y-11=-\frac{1}{5}(x-3)$	A1	Al1 correct unsimplified
	$x+5 y-58=0$	A1	For correct form
11(i)		B1	For correct triangle, may be implied by subsequent work
	$\frac{120}{\sin \alpha}=\frac{600}{\sin 130}$	M1	For use of the correct sine rule
	$\alpha=8.81{ }^{\circ}$	A1	Allow greater accuracy
	Bearing 041.2° or 041°	A1	Allow greater accuracy
11(ii)	$\frac{v_{r}}{\sin 41.19}=\frac{600}{\sin 130}=\frac{120}{\sin \alpha}$	M1	For use of sine rule using their α or cosine rule
	$v_{r}=515.8$ awrt 516	(1) A1	
	Time taken $=\frac{2500}{515.8}$	M1	For attempt to find time using their v_{r}, not 600,720 or 480
	$=4.85$ or 4.84	A1	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	6	B1	
1(a)(ii)	1	B1	
1(b)		2	B1 for P contained within Q B1 for Q and R separate
1(c)	$S^{\prime} \cap T^{\prime}$ or $(S \cup T)^{\prime}$ oe	B1	
	$\begin{aligned} & (X \cap Y) \cup(X \cap Z) \\ & \text { or } X \cap(Y \cup Z) \text { oe } \end{aligned}$	B1	
2		4	B1 for general shape with maximum point in 1st quadrant B1 for $\left(-\frac{1}{2}, 0\right)$ and $(3,0)$ soi B1 for $(0,3)$ soi B1 dep on first B1, with cusps and correct shape for $x<-\frac{1}{2}$ and $x>3$
3(i)	$729-162 x+15 x^{2}$	3	B1 for 729 B1 for $-162 x$ B1 for $15 x^{2}$ Mark final answer
3(ii)	$\left(729-162 x+15 x^{2}\right)\left(x^{2}-4+\frac{4}{x^{2}}\right)$	B1	for expansion of $\left(x-\frac{2}{x}\right)^{2}$
	Term independent of $x=-2916+60$	M1	for attempt to find independent term, must be considering 2 products using their answer to part (i)
	$=-2856$	A1	
4(i)	$\mathrm{p}^{\prime}(x)=6 x^{2}+2 a x+b$	B1	for $\mathrm{p}^{\prime}(x)=6 x^{2}+2 a x+b$
	$\begin{aligned} & \mathrm{p}^{\prime}(-3)=54-6 a+b,=-24 \\ & \text { leading to } 6 a-b=78 \end{aligned}$	B1	must be convinced of correct substitution and simplification AG

Question	Answer	Marks	Partial Marks
4(ii)	$\mathrm{p}\left(\frac{1}{2}\right): \frac{2}{8}+\frac{a}{4}+\frac{b}{2}-49=0$	M1	for attempt at $\mathrm{p}\left(\frac{1}{2}\right)$ equated to 0
	$\begin{aligned} & 6 a-b=78 \\ & a+2 b=195 \text { oе } \end{aligned}$	M1	M Dep on previous M for attempt to solve both equations
	leading to $a=27$	A1	
	$b=84$	A1	
4(iii)	$(2 x-1)\left(x^{2}+14 x+49\right)$	2	M1 for factorisation by observation or by long division
4(iv)	$(2 x-1)(x+7)^{2}$	B1	
5(i)	$\log _{4} 16+\log _{4} p$	M1	for dealing with product correctly
	$2+p$	A1	
5(ii)	$7 \log _{4} x-\log _{4} 256$	M1	for dealing with power and division correctly
	$7 p-4$	A1	
5(iii)	$\begin{aligned} & 2+p-(7 p-4)=5 \\ & \text { leading to } p=\frac{1}{6} \end{aligned}$	M1	for use of parts (i) and (ii) to obtain a value for p
	so $x=4^{6}$	M1	for correct attempt to deal with $\log _{4}$ in order to obtain x
	$x=1.26$	A1	
6(a)	BA and CB	2	B1 for one correct product of 2 matrices B1 for a second correct product of 2 matrices, with no other incorrect products
6(b)(i)	$\frac{1}{16}\left(\begin{array}{rr}3 & 2 \\ -5 & 2\end{array}\right)$ oe	2	B1 for $\frac{1}{16}$ soi B1 for $\left(\begin{array}{rr}3 & 2 \\ -5 & 2\end{array}\right)$

Question	Answer	Marks	Partial Marks
6(b)(ii)	$\begin{aligned} & \mathbf{X}^{-1} \mathbf{X} \mathbf{Z}=\mathbf{X}^{-1} \mathbf{Y} \\ & \mathbf{Z}=\frac{1}{16}\left(\begin{array}{rr} 3 & 2 \\ -5 & 2 \end{array}\right)\left(\begin{array}{ll} 4 & 1 \\ 2 & 0 \end{array}\right) \end{aligned}$	M1	for pre-multiplication by their inverse matrix
	attempt at matrix multiplication	M1	M1 Dep on previous M mark, must have at least 2 correct elements
	$\mathbf{Z}=\frac{1}{16}\left(\begin{array}{rr}16 & 3 \\ -16 & -5\end{array}\right)$ oe	A1	
7(i)	Area $=\frac{1}{2}(8+6 \sqrt{5})(10-2 \sqrt{5})$	M1	for a correct method of finding the area of the trapezium
	$=10+22 \sqrt{5}$	A2	A1 for 10 with sufficient working seen A1 for $22 \sqrt{5}$ with sufficient working seen
7(ii)	$\cot \theta=\frac{4}{10-2 \sqrt{5}}$	B1	
	$=\frac{4(10+2 \sqrt{5})}{(10-2 \sqrt{5})(10+2 \sqrt{5})}$	M1	for attempt to rationalise an expression for $\cot \theta$, some evidence of expansion must be seen
	$=\frac{1}{2}+\frac{\sqrt{5}}{10}$	A1	
8(a)(i)	0	B1	
8(a)(ii)	Area under curve $=$ $\frac{1}{2}(2 \times 10)+(4 \times 10)+\frac{1}{2}(10+20) \times 4$	M1	for attempt to find the total area under the graph
	$=110$	A1	
8(b)(i)	When $t=\frac{7 \pi}{12}, v=-2.5$	M1	for substitution of $t=\frac{7 \pi}{12}$ and correct attempt to evaluate
	Speed $=2.5$	A1	must be positive
8(b)(ii)	$a=6 \cos 2 t$	M1	for differentiation to get acceleration, must be of the form $m \cos 2 t$
	When acceleration $=0, \cos 2 t=0$	M1	M Dep on previous M mark for equating to zero and correct attempt to solve to get a solution in radians.
	$t=\frac{\pi}{4}$ or 0.785	A1	

Question	Answer	Marks	Partial Marks
9(i)	$\begin{aligned} & \frac{1}{2} r^{2} \theta=36 \\ & \theta=\frac{72}{r^{2}} \end{aligned}$	M1	for use of the area of the sector
	$P=2 r+r \theta$	M1	for attempt to find P making use of the area
	$P=2 r+\frac{72}{r}$	A1	for attempt to simplify to obtain AG
9(ii)	$\frac{\mathrm{d} P}{\mathrm{~d} r}=2-\frac{72}{r^{2}}$	M1	for attempt to differentiate to obtain the form $a+\frac{b}{r^{2}}$ and equate to zero
	When $\frac{\mathrm{d} P}{\mathrm{~d} r}=0, r=6$	A1	
	$P=24$	A1	
	$\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}=\frac{144}{r^{3}}$ positive so minimum	B1	FT on their positive r, for a correct method to determine the nature of the stationary point leading to a correct conclusion. If the second derivative is evaluated, it must be correct for their r.
10(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \mathrm{e}^{2 x}+3 x \quad(+c)$	2	M1 for attempt to integrate to obtain the form $m \mathrm{e}^{2 x}+n x$ A1 all correct
	$c=8$	M1	M1 Dep on previous M mark for attempt to get c
	$y=\mathrm{e}^{2 x}+\frac{3 x^{2}}{2}+8 x(+d)$	2	M1 for attempt to integrate again to obtain the form $p e^{2 x}+q x^{2}(+r x)$ A1 all correct, FT on their $k \mathrm{e}^{2 x}$ and their c
	$d=-6$	M1	M1 Dep on previous M mark for attempt to get d
	$y=\mathrm{e}^{2 x}+\frac{3 x^{2}}{2}+8 x-6$	A1	

Question	Answer	Marks	Partial Marks
10(ii)	When $x=\frac{1}{4}, y=-2.26$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=12.0$	M1	for attempt to obtain both y and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ using their work from (i)
	$y+2.26=-\frac{1}{12}\left(x-\frac{1}{4}\right)$	2	M1 Dep on previous M mark for attempt to obtain the equation of the normal A1 allow unsimplified, must be using correct accuracy or exact equivalents.
11(a)	$2 \sin x\left(\cos ^{2} x-1\right)=0$	M1	for obtaining in terms of sin and cos to obtain one solution correctly
	$\sin x=0, x=0^{\circ}, 180^{\circ}$	B1	for $x=0^{\circ}, 180^{\circ}$ and no other in the given range for the solution of this equation
	$\cos x= \pm \frac{1}{\sqrt{2}}, x=45^{\circ}, 1$	A1	for $x=45^{\circ}, 135^{\circ}$ and no other in the given range for the solution of this equation
11(b)(i)	$\frac{1}{\cos \theta}-\frac{\sin ^{2} \theta}{\cos \theta}$	M1	for dealing with cot and sec
	$\frac{\cos ^{2} \theta}{\cos \theta}$	M1	for correct use of identity
	$\cos \theta$	A1	for all correct working to gain AG
11(b)(ii)	$\begin{aligned} & \cos 3 \theta=\frac{1}{2} \\ & \theta=\frac{5 \pi}{9} \text { or } \frac{\pi}{9} \end{aligned}$	M1	for use of part (i) and attempt to solve correctly to obtain a positive angle, may be implied by one correct solution
	$\theta=-\frac{5 \pi}{9}$ or $-\frac{\pi}{9}$	M1	for use of part (i) and attempt to solve correctly to obtain a negative angle, may be implied by one correct solution
	$\theta= \pm \frac{\pi}{9}, \pm \frac{5 \pi}{9}$	A2	A1 for one correct pair of solutions A1 for a second pair of solutions with no extra solutions within the range

MARK SCHEME

Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1(a)		B3	B1 for 2 cycles, one max and 2 min points in the correct places and up to a max at each end B1 for going between 2 and -4 B1 for starting at $(0,2)$ and finishing at $(360,2)$
1(b)(i)	4	B1	
1(b)(ii)	60° or $\frac{\pi}{3}$	B1	
2(i)	$\begin{aligned} & \left(\mathrm{p}\left(-\frac{1}{2}\right)=\right)-\frac{1}{4}+\frac{5}{4}-2+a=2 \\ & (\mathrm{q}(-2)=) 16-6 a+b=0 \end{aligned}$	M1	For either $\mathrm{p}\left(-\frac{1}{2}\right)=2$ or $\mathrm{q}(-2)=0$
	$a=3$	A1	
	$b=2$	A1	
2(ii)	$\mathrm{r}(x)=2 x^{3}+x^{2}-5 x+1$	M1	For $\mathrm{r}(x)$ using their $\mathrm{p}(x)$ and $\mathrm{q}(x)$
	$\mathrm{r}\left(\frac{2}{3}\right)=\frac{16}{27}+\frac{4}{9}-\frac{10}{3}+1$	M1	For $\mathrm{r}\left(\frac{2}{3}\right)$
	$=-\frac{35}{27}$	A1	Must be exact

Question	Answer	Marks	Guidance
3	$\begin{aligned} & (3+k x)^{6}= \\ & 729+1458 k x+1215 k^{2} x^{2} \end{aligned}$	B2	B1 for $1458 k x$ or $1215 k^{2} x^{2}$
	$\begin{aligned} & \text { Terms in } x^{2} \text { for }(2-x)(3+k x)^{6} \\ & =-1458 k+2430 k^{2} \\ & 2430 k^{2}-1458 k=972 \end{aligned}$	M1	For attempt at further expansion to obtain 2 terms in x^{2} and equating to 972
	$\begin{aligned} & 5 k^{2}-3 k-2=0 \\ & (5 k+2)(k-1)=0 \end{aligned}$	M1	Dep for solution of resulting 3 term quadratic
	$k=-\frac{2}{5}$	A1	
	$k=1$	A1	
4(i)	$\left(x-\frac{9}{2}\right)^{2}-\frac{49}{4}$	B2	$\text { B1 for } \frac{9}{2} \text { or } \frac{49}{4}$
4(ii)	$\left(\frac{9}{2},-\frac{49}{4}\right)$	B1	FT their p and q
4(iii)		B3	B1 for shape B1 for cusps at $(1,0)$ and $(8,0)$ B1 for all correct, passing through $(0,8)$ with maximum in correct position
4(iv)	$\frac{49}{4}$	B1	FT their q
5(i)	$\frac{1}{2} r^{2} \theta=48$	B1	
	$\theta=\frac{96}{r^{2}}$	B1	Dep Must have previous B1
5(ii)	$r \theta=12$	B1	For statement of arc length
	$r \times \frac{96}{r^{2}}=12$	M1	For attempt to use part (i) to find either r or θ
	$r=8$ and $\theta=1.5$	A1	For both

Question	Answer	Marks	Guidance
5(iii)	Area $=48-\left(\frac{1}{2} r^{2} \sin \theta\right)$	M1	For a complete method including a correct attempt for the area of the triangle using their r and θ
	$=16.1$	A1	
6(i)	For $\frac{4 x}{2 x^{2}+3}$	B1	
		M1	For attempt to differentiate a quotient or appropriate product
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}= \\ & \frac{(5 x+2) \frac{4 x}{2 x^{2}+3}-5 \ln \left(2 x^{2}+3\right)}{(5 x+2)^{2}} \end{aligned}$	A1	All other terms correct
	When $x=0 \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-5 \ln 3}{4}$	A1	For given answer
6(ii)	$y=\frac{1}{2} \ln 3 \text { or } 0.549$	B1	May be implied by tangent equation, allow 0.55
	Equation of tangent $y=\left(-\frac{5}{4} \ln 3\right) x+\frac{1}{2} \ln 3$ or $y=-1.37 x+0.549$	B1	
7(a)	$\lg 100=2$	B1	
	$3 \lg x=\lg x^{3}$	B1	
	$\lg \frac{100 x^{3}}{y}$	B1	
7(b)(i)	$\begin{aligned} & 6 x^{2}+7 x-3=0 \\ & (2 x+3)(3 x-1)=0 \end{aligned}$	M1	For obtaining in suitable quadratic form and attempt to solve
	$x=-\frac{3}{2} \quad x=\frac{1}{3}$	A1	For both

Question	Answer	Marks	Guidance
7(b)(ii)	$\begin{aligned} x & =\log _{a} 3 \\ \frac{1}{3} & =\log _{a} 3 \end{aligned}$	M1	For realising connection with part (i) and attempt to solve $\frac{1}{3}=\log _{a} 3$ or $-\frac{3}{2}=\log _{a} 3$
	$a=27$	A1	
	$-\frac{3}{2}=\log _{a} 3$	M1	For realising connection with part (i) and attempt to solve $-\frac{3}{2}=\log _{a} 3$ or $\frac{1}{3}=\log _{a} 3$
	$a=\left(\frac{1}{3}\right)^{\frac{2}{3}} \text { or } 0.481 \text { or }\left(\frac{1}{9}\right)^{\frac{1}{3}} \text { oe }$	A1	
8(i)		M1	For attempt to use chain rule to obtain $k x\left(5 x^{2}+4\right)^{\frac{1}{2}}$ where k is a constant
	$\frac{3}{2}(10 x)\left(5 x^{2}+4\right)^{\frac{1}{2}}$	A1	Allow unsimplified
8(ii)		M1	For attempt to use part (i) if in correct form of $m\left(5 x^{2}+4\right)^{\frac{3}{2}}$
	$\frac{1}{15}\left(5 x^{2}+4\right)^{\frac{3}{2}}(+c)$	A1	FT on their $\frac{1}{k}\left(5 x^{2}+4\right)^{\frac{3}{2}}$
8(iii)		M1	For use of limits if their (ii) Must be in the form $m\left(5 x^{2}+4\right)^{\frac{3}{2}}$
	$\frac{1}{15}\left(\left(5 a^{2}+4\right)^{\frac{3}{2}}-4^{\frac{3}{2}}\right) \quad\left[=\frac{19}{15}\right]$	A1	
	$\left(5 a^{2}+4\right)^{\frac{3}{2}}=27$	M1	Dep For complete and correct method to deal with the power of $\frac{3}{2}$
	leading to $a=1$	A1	
9(i)	3	B1	

Question	Answer	Marks	Guidance
9(ii)		M1	For attempt to differentiate to obtain $a+b \mathrm{e}^{-t}$
	$\frac{\mathrm{d} s}{\mathrm{~d} t}=4-3 \mathrm{e}^{-t}$	A1	All correct
	$2=4-3 \mathrm{e}^{-t}$	M1	Dep for correct attempt to solve equation involving exponential where $\mathrm{e}^{-t}>0$
	leading to $t=\ln \frac{3}{2}$ or $-\ln \frac{2}{3}$	A1	Must be an exact form
9(iii)	When $t=\ln 5, \frac{\mathrm{~d} s}{\mathrm{~d} t}=\frac{17}{5}$	M1	For attempt to find value of $\frac{\mathrm{d} s}{\mathrm{~d} t}$ when $t=\ln 2$
		M1	Dep for attempt to use method of small changes
	$\partial s=\frac{17 h}{5}$	A1	
10(i)	Velocity of $A\binom{6}{8}$	B1	For velocity, may be implied by later work
	When $t=6, \mathbf{r}_{A}=\binom{2}{-5}+6\binom{6}{8}$	M1	For a complete and correct method
	$=\binom{38}{43}$	A1	For 43
10(ii)	$\mathbf{r}_{B}=\binom{16}{37}+\binom{4}{2} t$	B1	
10(iii)	$\binom{16}{37}+\binom{4}{2} t=\binom{2}{-5}+\binom{6}{8} t$	M1	For equating position vectors at a time t
	$\begin{aligned} & 16+4 t=2+6 t \text { or } \\ & 37+2 t=-5+8 t \end{aligned}$	M1	Dep for equating like vectors at least once
	$t=7$	A1	Allow from one correct equation
	Both equations lead to $t=7$	B1	For showing that $t=7$ satisfies both equations thus verifying collision, or equivalent
10(iv)	$\binom{44}{51}$	B1	

Question	Answer	Marks	Guidance
11(a)(i)		B1	For critical values
	$2 \leqslant f \leqslant 4$	B1	Dep For correct inequality and notation
11(a)(ii)	$\begin{aligned} & x=3 \cos y \\ & \cos 2 y=0.5 \end{aligned}$	M1	For attempt to find f^{-1} and equate to 0.5
	$2 y=\frac{\pi}{3}$	M1	Dep For correct attempt to solve, dealing with the double angle
	$y=\frac{\pi}{6}$	A1	
11(b)	$\begin{aligned} & \mathrm{g}^{2}(x)=\mathrm{g}\left(3-x^{2}\right) \\ & =3-\left(3-x^{2}\right)^{2} \end{aligned}$	M1	For correct attempt at g^{2}, allow unsimplified
	$\begin{aligned} & -6+6 x^{2}-x^{4}=-6 \\ & 6 x^{2}-x^{4}=0 \end{aligned}$	M1	Dep for equating to -6 and attempt to solve to obtain a non-zero root
	$x=0$	B1	
	$x= \pm \sqrt{6}$	A1	

Cambridge Assessment International Education

MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1	$\begin{aligned} & \sin \left(x+50^{\circ}\right)=-\frac{1}{\sqrt{2}} \\ & \left(x+50^{\circ}=-45^{\circ}, 225^{\circ}\right) \end{aligned}$	M1	For order of operations - subtraction of 1 , division by $\pm \sqrt{2}$ and attempt at $\sin ^{-1}$
		M1	Dep For obtaining a solution by subtracting 50°
	$x=-95^{\circ}, 175^{\circ}$	A2	A1 for one correct solution A1 for a second correct solution and no others within the range
2	$\frac{\mathrm{d} y}{\mathrm{~d} x}=5 x+\frac{1}{2} \mathrm{e}^{2 x} \quad(+c)$	M1	For attempt to integrate to get $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in the form $5 x+p \mathrm{e}^{2 x}$. Condone omission of $+c$
	When $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=4$ so $c=\frac{7}{2}$	M1	Dep For attempt to get value of c
	$y=\frac{5 x^{2}}{2}+\frac{1}{4} \mathrm{e}^{2 x}+\frac{7}{2} x(+d)$	M1	Dep on first M1 only For attempt to get y in the form including $\frac{5 x^{2}}{2}+p \mathrm{e}^{2 x}$. Condone omission of $+d$.
	When $x=0, y=-3$ so $d=-\frac{13}{4}$	M1	Dep on previous DepM1 For attempt to obtain d, allow if c not found
	$y=\frac{5 x^{2}}{2}+\frac{1}{4} \mathrm{e}^{2 x}+\frac{7}{2} x-\frac{13}{4}$	A1	Must have an equation
3(i)		B2	B1 for correct shape with vertex at $(2,0)$ Dep B1 for passing through or starting at $(0,6)$

Question	Answer	Marks	Guidance
3(ii)	Either $6-3 x=2$ $x=\frac{4}{3}$	B1	For $x=\frac{4}{3}$
	$6-3 x=-2$	M1	For considering - 2
	$x=\frac{8}{3}$	A1	
	Or $9 x^{2}-36 x+32=0$	M1	For squaring each side and attempt to solve a 3 term quadratic $=0$
	$x=\frac{4}{3}$	A1	
	$x=\frac{8}{3}$	A1	
3(iii)	$x<\frac{4}{3}, x>\frac{8}{3}$	B1	FT on their solutions in part (ii), must both be positive and written as 2 separate statements
4(i)		B1	For $\frac{2}{2 x+1}$
		M1	For attempt to differentiate a product
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{3} \frac{2}{2 x+1}+3 x^{2} \ln (2 x+1)$	A1	For all other terms correct
	When $x=0.3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0.161$	A1	For awrt 0.161
4(ii)	0.161h	B1	FT on their numerical answer to part (i)
5(i)	$\begin{aligned} \text { 7th term: } & 924 a^{6} b^{6} x^{6}=924 x^{6} \\ & 924 a^{6} b^{6}=924 \\ & 924 a^{6}(b x)^{6}=924 x^{6} \end{aligned}$	B1	For any correct statement
	$(a b)^{6}=1$ or $a b=1$ so $b=\frac{1}{a}$	B1	Dep on first B1 Must be convinced, nfww

Question	Answer	Marks	Guidance
5(ii)	$\begin{aligned} & \text { 6th term: } 792 a^{7} b^{5} x^{5}=198 x^{5} \\ & 792 a^{7} b^{5}=198 \\ & 792 a^{7}(b x)^{5}=198 x^{5} \end{aligned}$	B1	For any correct statement
	use of $a b=1$ to obtain $a^{2}=\ldots$ or $b^{2}=\ldots$	M1	For attempt to solve their equations simultaneously to obtain an equation in a^{2} or b^{5}
	$a=\frac{1}{2}$	A1	
	$b=2$	A1	
6(i)		M1	For $k x(5 x-125)^{-\frac{1}{3}}$
	$\begin{aligned} & \frac{2}{3} \times 10 x\left(5 x^{2}-125\right)^{-\frac{1}{3}} \\ & \left(\frac{20}{3} x\left(5 x^{2}-125\right)^{-\frac{1}{3}}\right) \end{aligned}$	A1	Allow unsimplified
6(ii)		M1	For $m\left(5 x^{2}-125\right)^{\frac{2}{3}}(+c)$
	$\frac{3}{20}\left(5 x^{2}-125\right)^{\frac{2}{3}}(+c)$	A1	FT on their k from part (i)
6(iii)	$\frac{3}{20}\left((375)^{\frac{2}{3}}-(55)^{\frac{2}{3}}\right)$	M1	Dep on previous M1 For use of limits in their answer to part (ii), must be in the form $m\left(5 x^{2}-125\right)^{\frac{2}{3}}(+c)$
	$=5.63$	A1	Allow greater accuracy

Question	Answer	Marks	Guidance
7(a)	$\left\|\binom{-12}{5}\right\|=13$	B1	For magnitude, may be implied by a correct \mathbf{v}
	$\mathbf{v}=\binom{-36}{15}$ or $3\binom{-12}{5}$	B1	Must be a vector
7(a) Alternative	If $\left.t \left\lvert\, \begin{array}{r}-12 \\ 5\end{array}\right.\right) \mid=39, t=3$	B1	For value of t, may be implied by a correct \mathbf{v}
	$\mathbf{v}=\binom{-36}{15}$ or $3\binom{-12}{5}$	B1	
7(b)		M1	For equating like vectors at least once
	$\begin{aligned} & 17 r+2 s+3=0 \\ & 2 r+6 s+9=0 \end{aligned}$	M1	Dep For solution of resulting equations to obtain 2 solutions
	$r=0$	A1	
	$s=-\frac{3}{2}$ oe	A1	
8(i)	$a(a+4)-12=0$	M1	For correct use of det $=0$
	$a^{2}+4 a-12=0$	M1	Dep For solution of resulting quadratic equation
	leading to $a=-6, a=2$	A1	For both
8(ii)	$\mathbf{A}^{-1}=\frac{1}{20}\left(\begin{array}{rr}8 & -3 \\ -4 & 4\end{array}\right) \mathrm{oe}$	B2	$\begin{aligned} & \text { B1 for } \frac{1}{20} \\ & \text { B1 for }\left(\begin{array}{rr} 8 & -3 \\ -4 & 4 \end{array}\right) \end{aligned}$
8(iii)	$\mathbf{B}=\mathbf{A}^{-1}\left(\begin{array}{rr}2 & 3 \\ 4 & -5\end{array}\right)$	M1	For pre-multiplication by their \mathbf{A}^{-1}
		M1	Dep For multiplication of 2 matrices - need to see at least 2 correct elements - may be unsimplified
	$=\frac{1}{20}\left(\begin{array}{rr}4 & 39 \\ 8 & -32\end{array}\right)$	A1	For final matrix oe

Question	Answer	Marks	Guidance
9(i)	$\begin{aligned} & \mathrm{p}(-3)=0 \text { leading to } \\ & -27 a+9 b-3 c-9=0 \end{aligned}$	M1	For substitution of $x=-3$ and equating to zero
	$\begin{aligned} & \mathrm{p}^{\prime}(x)=3 a x^{2}+2 b x+c \\ & \mathrm{p}^{\prime}(0)=36 \end{aligned}$	M1	For differentiation in the form $r x^{2}+s x+t$ and substitution of $x=0$
	$c=36$	A1	nfww
	$\begin{aligned} & \mathrm{p}^{\prime \prime}(x)=6 a x+2 b \\ & \mathrm{p}^{\prime \prime}(0)=2 b \end{aligned}$	M1	For further differentiation in the form $v x+w$ of their $\mathrm{p}^{\prime}(x)$ and substitution of $x=0$
	$b=43$	A1	nfww
	$a=10$	A1	nfww
9(ii)	$\mathrm{p}\left(\frac{1}{2}\right)$	M1	For use of $x=\frac{1}{2}$ in their $\mathrm{p}(x)$ from part (i)
	21	A1	
10(i)	$a=2$	B1	
	$\cos b x=-\frac{1}{2}$	M1	For a correct attempt to solve $\cos b \frac{\pi}{6}= \pm \frac{a}{4}$ provided $0<a \leqslant 4$ to get $b=\ldots$
	leading to $b=4$	A1	
10(ii)	$\cos 4 x=-\frac{1}{2}$	M1	Dep For attempt to solve their $\cos b x= \pm \frac{a}{4}$ provided $0<a \leqslant 4$ or use of symmetry to get $x=\ldots$
	$x=\frac{\pi}{3}$ so $\left(\frac{\pi}{3}, 0\right)$	A1	
10(iii)	At $M, y=-2$	B1	
	$x=\frac{\pi}{4}$	B1	

Question	Answer	Marks	Guidance
11(i)	$2 r+r \theta=10$	M1	For use of arc length and attempt to get perimeter, must have 2 terms involving r
		M1	Dep For attempt to get r in terms of θ
	$r=\frac{10}{2+\theta}$	A1	
	$A=\frac{1}{2}\left(\frac{10}{2+\theta}\right)^{2} \theta$	M1	For attempt to obtain the area of the sector in terms of θ only, using their r
	$A=\frac{50 \theta}{(2+\theta)^{2}}$	A1	For manipulation to get the required answer nfww AG
11(ii)		M1	For attempt to differentiate a quotient or an equivalent product
	$\frac{\mathrm{d} A}{\mathrm{~d} \theta}=\frac{50(2+\theta)^{2}-100 \theta(2+\theta)}{(2+\theta)^{4}}$ or $\frac{\mathrm{d} A}{\mathrm{~d} \theta}=50(2+\theta)^{-2}-100 \theta(2+\theta)^{-3}$	A1	All correct, allow unsimplified
	When $\frac{\mathrm{d} A}{\mathrm{~d} \theta}=0$	M1	For equating their $\frac{\mathrm{d} A}{\mathrm{~d} \theta}$ to 0 and attempt to solve - need to see at least one line of working
	$\theta=2$	A1	Condone inclusion of -2
	$A=\frac{25}{4}$	A1	

Question	Answer	Marks	Guidance
11(ii) Alternative	Starting again using $\theta=\frac{10-2 r}{2}$ so $A=5 r-r^{2}$	M1	A complete method to obtain $\frac{\mathrm{d} A}{\mathrm{~d} r}$
	$\frac{\mathrm{d} A}{\mathrm{~d} r}=5-2 r$	A1	
	When $\frac{\mathrm{d} A}{\mathrm{~d} r}=0$	M1	For equating to zero and attempt to solve
	$r=2.5$	A1	
	$A=\frac{25}{4}$	A1	
12	$2 x^{2}+7 x=0$ or $y^{2}-3 y-10=0$	M1	For attempt to obtain a simplified quadratic equation in one variable equated to 0
		M1	Dep For solution of quadratic
	$(0,5)$	A1	
	$\left(-\frac{7}{2},-2\right)$	A1	
	Midpoint $\left(-\frac{7}{4}, \frac{3}{2}\right)$	B1	
	Gradient of $A B=2$ $\therefore \perp \text { gradient }=-\frac{1}{2}$	M1	For attempt to obtain gradient of line perpendicular to $A B$ using their coordinates
	\perp bisector: $y-\frac{3}{2}=-\frac{1}{2}\left(x+\frac{7}{4}\right)$	M1	For a correct attempt to obtain equation of perpendicular bisector using their midpoint and their perpendicular gradient
	Consideration of when $y=x$	M1	Dep on previous M1 For attempt to find intersection with the line $y=x$
	$x=y=\frac{5}{12}$	A1	For both

MARK SCHEME

Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1(a)	${ }^{5} C_{3} \times 2^{2} \times(p x)^{3}$	B1	
	$\begin{aligned} & 40 p^{3}=-\frac{8}{25} \\ & p^{3}=-\frac{8}{1000} \end{aligned}$	M1	equating their coefficient of x^{3} to $-\frac{8}{25}$ and finding p^{3}
	$p=-\frac{1}{5} \text { or } p=-0.2$	A1	
1(b)	${ }^{8} C_{4} \times\left(2 x^{2}\right)^{4} \times\left(\frac{1}{4 x^{2}}\right)^{4}$	B1	
	$70 \times 16 \times \frac{1}{256}$	M1	at least two of $70,16, \frac{1}{256}$ correct in an evaluation of a three-term product
	$\frac{35}{8}, 4.375,4 \frac{3}{8}$	A1	cao
2(i)	$\theta=\frac{20-2 r}{r}$	B1	
	Area $=\frac{1}{2} r^{2}\left(\frac{20-2 r}{r}\right)$	M1	use of their θ in terms of r in formula for sector area
	$A=10 r-r^{2}$	A1	simplification to get given answer
	Alternative		
	$s=20-2 r$	B1	
	$=\frac{1}{2} r(20-2 r)$	M1	use of formula for sector area using their expression for s in terms of r
	$A=10 r-r^{2}$	A1	simplification to get given answer
2(ii)	$\frac{\mathrm{d} A}{\mathrm{~d} r}=10-2 r$ When $\frac{\mathrm{d} A}{\mathrm{~d} r}=0, r=5$	M1	for $\frac{\mathrm{d} A}{\mathrm{~d} r}=10-k r$, equating to zero and solving for r
	$\theta=\frac{(20-2 \times 5)}{5}$	M1	Dep substitution of their value of r to get θ
	$\theta=2$	A1	

Question	Answer	Marks	Guidance
3(i)	$A C^{2}=(5 \sqrt{3}+5)^{2}+(5 \sqrt{3}-5)^{2}$	M1	correct use of Pythagoras or correct use of cosine rule with $\cos 90$
	$\begin{aligned} & =75+25+50 \sqrt{3}+75+25-50 \sqrt{3} \\ & =200 \end{aligned}$	M1	correct expansion to 6 or 8 terms
	$A C=10 \sqrt{2}$	A1	from $A C^{2}=200$
3(ii)	$\tan B C A=\frac{5 \sqrt{3}+5}{5 \sqrt{3}-5} \text { oe }$	B1	
	$\begin{aligned} & =\frac{(5 \sqrt{3}+5)(5 \sqrt{3}+5)}{(5 \sqrt{3}-5)(5 \sqrt{3}+5)} \mathrm{oe} \\ & =\frac{100+50 \sqrt{3}}{50} \mathrm{oe} \end{aligned}$	M1	for rationalisation
	$=2+\sqrt{3}$	A1	
4(i)		M1	for $10(1+\cos 3 x)^{9} \mathrm{f}(\mathrm{x})$
		M1	for $k \sin 3 x(1+\cos 3 x)^{9}$
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-30 \sin 3 x(1+\cos 3 x)^{9}$	A1	
	When $x=\frac{\pi}{2}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=30$	A1	
4(ii)	Use of $\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} t}$ with $\frac{\mathrm{d} y}{\mathrm{~d} t}=6$	M1	$\text { their } \frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=6$
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{5}$ or 0.2	A1	FT from their answer from part (i)

Question	Answer	Marks	Guidance
5(i)	$\log _{9} 4=\frac{\log _{3} 4}{\log _{3} 9}$	B1	change of base
	$\begin{aligned} & =\frac{1}{2} \log _{3} 4 \\ & =\frac{1}{2} \log _{3} 2^{2} \text { or } \log _{3} \sqrt{4} \\ & =\log _{3} 2 \end{aligned}$	B1	Dep must have B1 for change of base and full working
	Alternative A		
	$\log _{9} 4=2 \log _{9} 2$	B1	use of power rule
	$\begin{aligned} & =\frac{2 \log _{3} 2}{\log _{3} 9} \\ & =\frac{2 \log _{3} 2}{2 \log _{3} 3} \\ & =\log _{3} 2 \end{aligned}$	B1	Dep change of base and full working
	Alternative B		
	$\begin{aligned} & x=\log _{9} 4 \Rightarrow 9^{x}=4 \\ & 9^{x}=4 \Rightarrow 3^{2 x}=4 \end{aligned}$	B1	correct use of indices to reach $3^{2 x}=4$
	$\begin{aligned} & \Rightarrow 3^{x}=2 \Rightarrow x=\log _{3} 2 \\ & \therefore \log _{9} 4=\log _{3} 2 \end{aligned}$	B1	Dep full working
	Alternative C		
	$\begin{aligned} & \log _{9} 4=\frac{\log _{10} 4}{\log _{10} 9} \\ & =\frac{2 \log _{10} 2}{2 \log _{10} 3} \end{aligned}$	- B1	change of base and use of power rule
	$=\log _{3} 2$	B1	Dep change of base and full working

Question	Answer	Marks	Guidance
5(ii)	$\begin{aligned} & \log _{3} 2+\log _{3} x=3 \\ & \log _{3} 2 x=3 \end{aligned}$	B1	for $\log _{3} 2 x=3$
	$3^{3}=2 x$	B1	
	$x=13.5, x=\frac{27}{2}$	B1	
	Alternative		
	$\log _{3} x=\log _{3} 27-\log _{3} 2$	B1	
	$=\log _{3} \frac{27}{2}$	B1	
	$x=13.5, x=\frac{27}{2}$	B1	
6(i)	$\frac{\mathrm{d} s}{\mathrm{~d} t}=-6 \mathrm{e}^{-0.5 t}+4$	M1	for $k \mathrm{e}^{-0.5 t}+4$
	$\begin{aligned} & \text { When } \frac{\mathrm{d} s}{\mathrm{~d} t}=0, \mathrm{e}^{-0.5 t}=\frac{2}{3} \\ & -0.5 t=\ln \frac{2}{3} \\ & t=-2 \ln \frac{2}{3} \end{aligned}$	M1	Dep equating to zero and correct order of operations to solve for t
	$t=0.811$	A1	
6(ii)		M1	for $k \mathrm{e}^{-0.5 t}$
	$\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=3 \mathrm{e}^{-0.5 t}$	A1	
6(iii)	$\begin{aligned} & 3 \mathrm{e}^{-0.5 t}=0.3 \\ & \mathrm{e}^{-0.5 t}=0.1 \\ & t=\frac{\ln 0.1}{-0.5} \end{aligned}$	M1	correct order of operations and correct use of \ln to solve $k \mathrm{e}^{-0.5 t}=0.3$ for t
	$s=12 \mathrm{e}^{-0.5 \times 4.605}+4 \times 4.605-12$	M1	Dep use of t to obtain s
	$s=7.62$	A1	
6(iv)	$\mathrm{e}^{-0.5 t}$ is always positive or $\mathrm{e}^{-0.5 t}$ can never be zero or negative	B1	correct comment about $\mathrm{e}^{-0.5 t}$

Question	Answer	Marks	Guidance
7(i)	$\overrightarrow{A D}=m(\mathbf{c}-\mathbf{a})$	B1	
7(ii)	$\overrightarrow{A D}=\overrightarrow{O D}-\mathbf{a}$	B1	for $\overrightarrow{O D}=\frac{2}{3} \mathbf{b}$
	$=\frac{2}{3} \mathbf{b}-\mathbf{a}$	B1	FT their $\overrightarrow{O D}$ if $\overrightarrow{O D}=k \mathbf{b}$
7(iii)	$m(\mathbf{c}-\mathbf{a})=\frac{2}{3} \mathbf{b}-\mathbf{a}$	M1	equating parts (i) and (ii)
	$24 \mathbf{a}(1-m)+24 m \mathbf{c}=16 \mathbf{b}$ Comparing with $15 \mathbf{a}+9 \mathbf{c}=16 \mathbf{b}$	M1	attempt to eliminate or compare like vectors using given condition
	$m=\frac{3}{8}$	A1	
8(i)	$5 \leqslant \mathrm{f}(x) \leqslant 6$ or $[5,6]$ oe	B2	$\begin{aligned} & \text { B1 for } 5 \leqslant \mathrm{f}(x) \leqslant p \quad(p>5) \\ & \text { or for } q \leqslant \mathrm{f}(x) \leqslant 6 \quad(q<6) \end{aligned}$
8(ii)	$x=\sin \frac{y}{4}+5$	M1	complete valid attempt to obtain the inverse with operations in correct order.
	$y=4 \sin ^{-1}(x-5)$	A1	
	Range $0 \leqslant y \leqslant 2 \pi$	B1	
8(iii)	$2\left(\sin \frac{\left(x-\frac{\pi}{3}\right)}{4}+5\right)(=11)$	B1	for $\sin \frac{\left(x-\frac{\pi}{3}\right)}{4}+5$
	$\sin \frac{\left(x-\frac{\pi}{3}\right)}{4}=\frac{1}{2}$	M1	$\text { for } \sin \frac{\left(x-\frac{\pi}{3}\right)}{4}=k$
	$x=4 \sin ^{-1}\left(\frac{1}{2}\right)+\frac{\pi}{3}$ oe	M1	Dep for use of $\sin ^{-1}$ and correct order of operations to obtain x. Allow one $+/-$ or \times / \div sign error
	$x=\pi$ or 3.14	A1	$x=\pi$ and no other solutions in range

Question	Answer	Marks	Guidance
9	$\frac{\mathrm{d}}{\mathrm{~d} x}\left(\ln \left(3 x^{2}+1\right)\right)=\frac{6 x}{3 x^{2}+1}$	B1	$\text { for } \frac{6 x}{3 x^{2}+1}$
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2} \frac{6 x}{3 x^{2}+1}-2 x \ln \left(3 x^{2}+1\right)}{x^{4}}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{-2}{x^{3}}\right) \ln \left(3 x^{2}+1\right)+\left(\frac{1}{x^{2}}\right) \frac{6 x}{\left(3 x^{2}+1\right)}$	M1	differentiation of a quotient or product
	$\begin{aligned} & \frac{x^{2} \mathrm{f}(x)-2 x \ln \left(3 x^{2}+1\right)}{x^{4}} \\ & \text { or for }\left(-\frac{2}{x^{3}}\right) \ln \left(3 x^{2}+1\right)+\left(\frac{1}{x^{2}}\right) \mathrm{f}(x) \end{aligned}$	A1	
	When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-0.410$	A1	
	Gradient of perp $=2.436 \ldots$	M1	use of $-\frac{1}{m}$ with a gradient obtained by differentiation
	When $x=2, y=0.641$ or $\frac{1}{4} \ln 13$	B1	
	Normal: $y-0.641=2.436(x-2)$	M1	Dep
	$y=2.44 x-4.23$	A1	
10(i)	$\begin{aligned} & x+8=12+x-x^{2} \\ & x^{2}=4, x= \pm 2 \end{aligned}$ or $\begin{aligned} & y^{2}-16 y+60=0 \\ & y=6 \text { or } y=10 \end{aligned}$	M1	correct method of solution to obtain x or y
	$\begin{aligned} & x=2, y=10 \\ & x=-2, y=6 \end{aligned}$	A2	A1 for $x=-2$ and $x=2$ or for $y=6$ and $y=10$ or for either point from a correctly solved equation.
10(ii)		M1	for $12 x+p x^{2}+q x^{3}(+c)$
	$12 x+\frac{x^{2}}{2}-\frac{x^{3}}{3} \quad(+c)$	A1	

Question	Answer	Marks	Guidance
10(iii)	$\left[12 x+\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-2}^{2}-\left(\frac{1}{2}(6+10) \times 4\right)$	B1	FT area of the trapezium unsimplified $\left(\frac{1}{2}(6+10) \times 4\right)$ or $\left[\frac{2^{2}}{2}+8 \times 2\right]-\left[\frac{(-2)^{2}}{2}+8 \times(-2)\right]$ (=32)
	$\left[12 \times 2+\frac{2^{2}}{2}-\frac{2^{3}}{3}\right]-\left[12 \times-2+\frac{(-2)^{2}}{2}-\frac{(-2)^{3}}{3}\right]$	M1	correct use of correct limits for area under the curve using their integral of the form $12 x+p x^{2}+q x^{3}$
	$=\frac{128}{3}$ oe	A1	
	$=\frac{32}{3}$ oe	A1	
	Alternative		
	$\begin{aligned} & \int_{-2}^{2} 12+x-x^{2}-x-8 \mathrm{~d} x \\ & =\int_{-2}^{2} 4-x^{2} \mathrm{~d} x \end{aligned}$	M1	subtraction of the two equations with intent to integrate the result
	$=\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{2}$	A1	
	$\left[4 \times 2-\frac{8}{3}\right]-\left[4 \times-2+\frac{8}{3}\right]$	M1	Dep for correct application of limits
	$=\frac{32}{3}$ oe	A1	
11(i)	$\mathrm{p}\left(\frac{1}{2}\right)=a\left(\frac{1}{2}\right)^{3}+17\left(\frac{1}{2}\right)^{2}+b\left(\frac{1}{2}\right)-8$	M1	expression for $\mathrm{p}\left(\frac{1}{2}\right)$
	$\mathrm{p}(-3)=a(-3)^{3}+17(-3)^{2}+b(-3)-8$	M1	expression for $\mathrm{p}(-3)$
	$\begin{aligned} & \frac{a}{8}+\frac{17}{4}+\frac{b}{2}-8=0 \\ & -27 a+153-3 b-8=-35 \end{aligned}$	A1	both equations correct (allow equivalents and terms not collected but powers should be evaluated)
	Leading to $a=b=6$	A1	from correct equations with evidence that both have been found correctly in order to verify that $a=b$

Question	Answer	Marks	Guidance
11 (ii)	$(2 x-1)\left(3 x^{2}+10 x+8\right)$	B2	B1 for $3 x^{2}$ and +8 from factorisation or for $3 x^{2}+10 x \ldots$ from long division
11 (iii)	$(2 x-1)(x+2)(3 x+4)$	B1	cao
11 (iv)	$\sin \theta=\frac{1}{2}$	B1	
	$\theta=30^{\circ}, 150^{\circ}$	B2	B1 for a first correct solution B1 for a second correct solution with no extras in range $0 \leqslant \theta \leqslant 180$ and no solution arising from other factors.

ADDITIONAL MATHEMATICS

0606/11
Paper 1
May/June 2018
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer				Marks	Partial Marks
1	Substitution and simplification to obtain a 3 term quadratic in one variable				M1	substitution of $y=x+4$ or $x=y-4$ and simplification to 3 terms.
	$\begin{aligned} & x^{2}-2 x-8=0 \text { or } 2 x^{2}-4 x-16=0 \\ & \text { or } \\ & y^{2}-10 y+16=0 \text { or } y^{2}-10 y+16=0 \end{aligned}$				A1	correct equation of the form $a x^{2}+b x+c=0 \text { or } a y^{2}+b y+c=0$
	Solution of quadratic equation				M1	M1 dep
	$\begin{aligned} & x=4, y=8 \\ & x=-2, y=2 \end{aligned}$				A2	A1 for each pair
2	Midpoint $\left(\frac{5}{2},-1\right)$				B1	
	Gradient of line $=-\frac{8}{3} \square \square$				B1	
	$\text { Gradient of perp }=\frac{3}{8}$				M1	
	Equation of perp bisector:$y+1=\frac{3}{8}\left(x-\frac{5}{2}\right)$				M1	M1 dep Using their perpendicular gradient and their midpoint
	$\begin{aligned} & 6 x-16 y-31=0 \text { or } \\ & -6 x+16 y+31=0 \end{aligned}$				A1	
3	A B C \checkmark 				$\square 4$	B1 for either each row correct or each column correct - mark to candidate's advantage.
4(i)	$b=4$				B1	
	$c=6$				B1	
	$2=a+4 \sin \frac{\pi}{2}$				M1	Evaluation of a using their b and their c and the given point.
	$a=-2$				A1	

Question	Answer	Marks	Partial Marks
4(ii)	$\sqrt{n} \sqrt{n} / \sqrt{n}$	3	B1 for $-6 \leqslant y \leqslant 2$ B1 for 3 complete cycles B1 for all correct
5(i)	The number of bacteria at the start of the experiment	B1	
5(ii)	$\begin{aligned} & 20000=800 \mathrm{e}^{k t} \text { so } \frac{20000}{800}=\mathrm{e}^{2 k} \\ & \text { or } \ln 20000=\ln 800+\ln \left(\mathrm{e}^{2 k}\right) \end{aligned}$	M1	use of given equation and attempt to solve for $\mathrm{e}^{2 k}$ or use logs correctly
	$2 k=\ln 25$	M1	correct method to obtain $2 k$
	1.61	A1	
5(iii)	$P=800 \mathrm{e}^{3 \ln 5}$	M1	Substitution of $t=3$ in formula using their k
	$=100000$	A1	answer in range 99800 to 100200
6(a)	$\left(\frac{\log _{3} p}{\log _{3} 2} \times \log _{3} 2\right)+\log _{3} q$ or $\log _{3} 2^{\log _{2} p}+\log _{3} q$	B1	
	$\begin{aligned} & \log _{3} p+\log _{3} q \\ & \text { or } \log _{3}\left(2^{\log _{2} p} \times q\right) \end{aligned}$	B1	B1 dep
	$\log _{3} p q$	B1	B1 dep
6(b)	$\left(\log _{a} 5-1\right)\left(\log _{a} 5-3\right)=0$	M1	solution of quadratic equation
	$\begin{aligned} & \log _{a} 5=1, \quad a=5 \\ & \log _{a} 5=3, \quad a=\sqrt[3]{5} \text { or } 1.71 \text { or } 5^{\frac{1}{3}} \end{aligned}$	A2	A1 for $a=5$ A1 for $a=\sqrt[3]{5}$ or 1.71 or $5^{\frac{1}{3}}$
7(i)	$\frac{1}{2}\left(\begin{array}{ll} 3 & 2 \\ 5 & 4 \end{array}\right)$	2	B1 for $\frac{1}{2}$ B1 for $\left(\begin{array}{ll}3 & 2 \\ 5 & 4\end{array}\right)$

Question	Answer	Marks	Partial Marks
7(ii)	$\begin{aligned} & 4 x-2 y=\frac{5}{2} \\ & -5 x+3 y=\frac{7}{2} \end{aligned}$	B1	Relating solution of these equations to matrix in (i) B1 for adapted equation or $\binom{2.5}{3.5}$ or $2\binom{x}{y}$
	$\binom{x}{y}=\frac{1}{2}\left(\begin{array}{ll} 3 & 2 \\ 5 & 4 \end{array}\right)\binom{2.5}{3.5}$ or $2\binom{x}{y}=\frac{1}{2}\left(\begin{array}{ll} 3 & 2 \\ 5 & 4 \end{array}\right)\binom{5}{7}$	M1	Correct method for pre-multiplication by their inverse matrix.
	$\begin{aligned} & \binom{x}{y}=\binom{7.25}{13.25} \text { or }\binom{\frac{29}{4}}{\frac{53}{4}} \\ & x=7.25, y=13.25 \end{aligned}$	A2	A1 for each. Condone in matrix form.
8(a)	$3(2 \mathbf{i}-5 \mathbf{j})-4(\mathbf{i}-3 \mathbf{j})$	M1	For expansion and collection of terms
	$3 \mathbf{p}-4 \mathbf{q}=2 \mathbf{i}-3 \mathbf{j}$	A1	
	Magnitude of their $2 \mathbf{i}-3 \mathbf{j}$ $\sqrt{2^{2}+(-3)^{2}}$	M1	For method to find magnitude
	$\text { Unit vector }=\frac{2 \mathbf{i}-3 \mathbf{j}}{\sqrt{13}}$	A1	
8(b)(i)	$v^{2}=2.73^{2}+1.25^{2}$	B1	Correct use of Pythagoras
	$v=3.00$	B1	
8(b)(ii)	$\tan \theta=\frac{1.25}{2.73}$ oe	M1	Use of a trig funtion to obtain a relevant angle
	Angle to $A B=24.6^{\circ}$ or 0.429 radians	A1	
9(i)	$256 x^{8}-64 x^{6}+7 x^{4}$	3	B1 for each term

Question	Answer	Marks	Partial Marks
9(ii)	$\frac{1}{x^{4}}+\frac{2}{x^{2}}+1$	B1	
	$\begin{aligned} & \left(256 x^{8}-64 x^{6}+7 x^{4}\right)\left(\frac{1}{x^{4}}+\frac{2}{x^{2}}+1\right) \\ & (256 \times 1-64 \times 2+7 \times 1) x^{4} \end{aligned}$	M1	M1 for three correctly obtained products leading to terms in x^{4} using their $256 x^{8}-64 x^{6}+7 x^{4}$ and their $\frac{1}{x^{4}}+\frac{2}{x^{2}}+1$
	$\begin{aligned} & \text { Coefficient of } x^{4} \text { is } 256-128+7 \\ & =135 \end{aligned}$	A1	
10(a)	$\frac{5+6 \sqrt{5}}{6+\sqrt{5}} \times \frac{6-\sqrt{5}}{6-\sqrt{5}}$	M1	for rationalisation
	$=\frac{30-5 \sqrt{5}+36 \sqrt{5}-30}{31} \square$	M1	M1dep for expanding the numerator to obtain four terms.
	$=\frac{31 \sqrt{5}}{31}=\sqrt{5}$	A1	A1 for $\sqrt{5}$ from correct working
10(b)	$\sqrt{3} \times(\sqrt{2})^{6} \times \sqrt{2}=\sqrt{6} \times 2^{3}$		
	$8 \sqrt{6}$	B2	B1 for $\sqrt{6}$ from $\sqrt{3} \times \sqrt{2}$ B1 for 8 from $(\sqrt{2})^{6}$ or 2^{3}

Question	Answer	Marks	Partial Marks
10(c)	EITHER: $x^{2}+\sqrt{2} x-4=0$	B1	3 term quadratic equation equated to zero
	$x=\frac{-\sqrt{2} \pm \sqrt{18}}{2}$	M1	use of the quadratic formula
	for use of $\sqrt{18}=3 \sqrt{2}$	M1	M1 dep
	$\sqrt{2},-2 \sqrt{2}$	A1	For both from full working
	OR: $x^{2}+\sqrt{2} x-4=0$	B1	
	$\begin{aligned} & \left(x+\frac{\sqrt{2}}{2}\right)^{2}=4+\frac{1}{2} \\ & x= \pm \frac{3}{\sqrt{2}}-\frac{\sqrt{2}}{2} \end{aligned}$	M1	Correct use of completing the square method
	$x=-\frac{4}{\sqrt{2}}, \frac{2}{\sqrt{2}}$	M1	M1dep for dealing with $\sqrt{2}$ in denominator
	$x=\sqrt{2}, \quad-2 \sqrt{2}$	A1	
11(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=16-\frac{54}{x^{3}}$	M1	$\text { for } \frac{\mathrm{d} y}{\mathrm{~d} x}=16 \pm \frac{p}{x^{3}}$
	Equating to zero and obtaining x^{3}	M1	M1dep
	$x=\frac{3}{2}, y=36$	3 A 2	A1 for each

Question	Answer	Marks	Partial Marks
11(ii)	EITHER: When $x=1, y=43$ When $x=3, y=51$	B1	B1 for both
	$\left(\frac{1}{2}(43+51) \times 2\right)-\int_{1}^{3} 16 x+\frac{27}{x^{2}} \mathrm{~d} x$		
	Area of trapezium $=\left(\frac{1}{2}(43+51) \times 2\right)$ oe	B1	FT from their P and their Q
	Integration to find area under curve	M1	for $\left[p x^{2}+\frac{q}{x}\right]$
	$=\left[8 x^{2}-\frac{27}{x}\right]$	A1	Integration correct
	$=\left[8 \times 3^{2}-\frac{27}{3}\right]-\left[8 \times 1^{2}-\frac{27}{1}\right]$	M1	M1dep for application of limits
	$\begin{aligned} \text { Required area } & =94-82 \\ & =12 \end{aligned}$	A1	
	OR: When $x=1, y=43$ When $x=3, y=51$	B1	B1 for both
	Equation of $P Q: y=4 x+39$	B1	Equation of line FT from their P and their Q
	Integration of their $4 x+39-16 x-\frac{27}{x^{2}}$	M1	$\text { for }\left[p x+q x^{2}+\frac{r}{x}\right]$
	$=\left[39 x-6 x^{2}+\frac{27}{x}\right]$	A1	All correct
	$\begin{aligned} & =\left[39 \times 3-6 \times 3^{2}+\frac{27}{3}\right] \\ & \\ & \quad-\left[39 \times 1-6 \times 1^{2}+\frac{27}{1}\right] \end{aligned}$	M1	M1dep for application of limits
	$\begin{aligned} \text { Required area } & =72-60 \\ & =12 \end{aligned}$	A1	

Question	Answer	Marks	Partial Marks
12	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x-5)^{\frac{1}{2}}(+c)$	M1	$\text { for } k(2 x-5)^{\frac{1}{2}}$
	$\text { for }(2 x-5)^{\frac{1}{2}}$	A1	
	Substitution to obtain arbitrary constant	M1	M1 dep Using $\frac{\mathrm{d} y}{\mathrm{~d} x}=6$ when $x=\frac{9}{2}$
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=(2 x-5)^{\frac{1}{2}}+4$	A1	$\text { for correct } \frac{\mathrm{d} y}{\mathrm{~d} x}$
	Integration of their $k(2 x-5)^{\frac{1}{2}}+c$	M1	M1 dep on first M1 for integration of $k(2 x-5)^{\frac{1}{2}}$ to obtain $m(2 x-5)^{\frac{3}{2}}$
	$y=\frac{1}{3}(2 x-5)^{\frac{3}{2}}+4 x \quad(+d)$	A1	$\text { for } \frac{1}{3}(2 x-5)^{\frac{3}{2}}+4 x$ FT their (non -zero) constant
	Finding constant	M1	M1 dep for obtaining arbitrary constant for $m(2 x-5)^{\frac{3}{2}}+n x+d$ using $x=\frac{9}{2}, \quad y=\frac{2}{3}$
	$y=\frac{1}{3}(2 x-5)^{\frac{3}{2}}+4 x-20$	A1	for correct equation

ADDITIONAL MATHEMATICS

Paper 1
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Partial Marks
1(i)	$\frac{\pi}{3} \text { or } 60^{\circ}$	B1	
1(ii)		3	B1 for 3 asymptotes at $x=30^{\circ}, 90^{\circ}$ and 150°; the curve must approach but not cross all 3 of the asymptotes and be in the 1st and 4th quadrants B1 for starting at $(0,1)$ and finishing at $(180,1)$ B1 for all correct
2	For an attempt to obtain an equation in x only	M1	
	$9 x^{2}-(k+1) x+4=0$	- A1	correct 3 term equation
	$(k+1)^{2}-(4 \times 9 \times 4)$	M1	M1dep for correct use of $b^{2}-4 a c$ oe
	Critical values $k=11, k=-13$	A1	
	$-13<k<11$	A1	For the correct range
3	$\mathrm{e}^{y}=a x^{2}+b$	B1	may be implied, $b \neq 0$
	$\begin{array}{ll} \text { either } & 3=5 a+b \\ & 1=3 a+b \\ \text { or } \quad & \text { Gradient }=1, \text { so } a=1 \end{array}$	M1	correct attempt to find a or b by use of simultaneous equations or finding the gradient and equating it to a
	Coefficient of x^{2} is 1	A1	
	Intercept is -2	A1	
	$y=\ln \left(x^{2}-2\right)$	A1	For correct form
4(i)	$\begin{aligned} & 3=\ln (5 t+3) \\ & \mathrm{e}^{3}=5 t+3 \text { or better } \end{aligned}$	B1	
	$t=3.42$	B1	
4(ii)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{5}{5 t+3}$	M1	$\text { for } \frac{k_{1}}{5 t+3}$
	When $t=0, \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{5}{3}, 1.67$ or better	A1	all correct

Question	Answer	Marks	Partial Marks
4(iii)	If $t>0$ each term in $\frac{k_{1}}{5 t+3}>0$ so never negative oe	B1	dep on M1 in (ii) FT on their $\frac{k_{1}}{5 t+3}$, provided $k_{1}>0$
4(iv)	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=\frac{k_{2}}{(5 t+3)^{2}}$	M1	
	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\frac{25}{(5 t+3)^{2}}$ When $t=0, \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-\frac{25}{9}$ or -2.78	A1	all correct
5(i)	$a=243, b=-45, c=\frac{10}{3}$	3	B1 for each coefficient, must be simplified
5(ii)	$\left(243-\frac{45}{x}+\frac{10}{3 x^{2}}\right)\left(4+36 x+81 x^{2}\right)$	B1	For $\left(4+36 x+81 x^{2}\right)$
	for having 3 terms independent of x	M1	
	Independent term is $972-1620+270=-378$	A1	
6	attempt to differentiate quotient or equivalent product	M1	
	$\frac{\mathrm{d}}{\mathrm{d} x}(2 x-1)^{\frac{1}{2}}=(2 x-1)^{-\frac{1}{2}}$ for a quotient $\frac{\mathrm{d}}{\mathrm{d} x}(2 x-1)^{-\frac{1}{2}}=-(2 x-1)^{-\frac{3}{2}}$ for a product	B1	
	$\begin{aligned} & \text { either } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{2 x-1}-(x+2)\left[(2 x-1)^{-\frac{1}{2}}\right]}{(\sqrt{2 x-1})^{2}} \\ & \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x-1)^{-\frac{1}{2}}-(x+2)\left[(2 x-1)^{-\frac{3}{2}}\right] \end{aligned}$	A1	All other terms correct
	When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0,2 x-1=x+2$	M1	equate to zero and attempt to solve
	$x=3$	A1	
	$y=\sqrt{5}, \frac{5}{\sqrt{5}}, 2.24$	A1	

Question	Answer	Marks	Partial Marks
7(i)	1000	B1	
7(ii)	$2000=1000 \mathrm{e}^{\frac{t}{4}}$	B1	
	$t=4 \ln 2, \ln 16$	M1	For $4 \ln k$ or $\ln k^{4}, k>0$
	2.77	A1	
7(iii)	$\begin{aligned} B & =1000 \mathrm{e}^{2} \\ & =7389,7390 \end{aligned}$	B1	
8(a)	$3\left(1-\sin ^{2} \theta\right)+4 \sin \theta=4$	M1	use of correct identity
	$\begin{aligned} & (3 \sin \theta-1)(\sin \theta-1)=0 \\ & \sin \theta=\frac{1}{3}, \quad \sin \theta=1 \end{aligned}$	M1	For attempt to solve a 3 term quadratic equation in $\sin \theta$ to obtain $\sin \theta=$
	$\theta=19.5^{\circ}, 160.5^{\circ}$	A1	
	90°	A1	
8(b)	$\begin{aligned} & \tan 2 \phi=\sqrt{3} \\ & 2 \phi=\frac{\pi}{3},-\frac{2 \pi}{3} \end{aligned}$	M1	obtaining an equation in $\tan 2 \phi$ and correct attempt to solve for one solution to reach $2 \phi=k$
	for one correct solution $\phi=\frac{\pi}{6}, \text { or } 0.524$	A1	
	for attempt at a second solution	M1	
	$\phi=-\frac{\pi}{3}, \text { or }-1.05$	A1	for a correct second solution and no other solutions within the range
9(a)(i)	1000	B1	
9(a)(ii)	for use of power rule	M1	
	for addition or subtraction rule	M1	dep on previous M1
	$\lg \frac{1000 a}{b^{2}}$	A1	Allow $\lg \frac{10^{3} a}{b^{2}}$
9(b)(i)	$x^{2}-5 x+6=0$	M1	For attempt to obtain a quadratic equation and solve
	$x=3, x=2$	A1	for both

Question	Answer	Marks	Partial Marks
9b(ii)	$\left(\log _{4} a\right)^{2}-5 \log _{4} a+6=0$	M1	For the connection with (i) and attempt to deal with at least one logarithm correctly, either $4^{\text {their } 3}$ or $4^{\text {their } 2}$
	$a=64$	A1	
	$a=16$	A1	
10(i)	$A C^{2}=(4 \sqrt{3}-5)^{2}+(4 \sqrt{3}+5)^{2}$	M1	For attempt to use the cosine rule
	$-2(4 \sqrt{3}-5)(4 \sqrt{3}+5) \cos 60^{\circ}$	A1	For all correct unsimplified
	$A C^{2}=123$	M1	M1 dep for attempt to evaluate without use of calculator
	$A C=\sqrt{123}$	P1	
	ALTERNATIVE METHOD		
	Taking D as the foot of the perpendicular from A : Find $A D, B D, D C$ $A C^{2}=A D^{2}+D C^{2}$	M1	For a complete method to get $A C^{2}$
	$A C^{2}=\left(\frac{12-5 \sqrt{3}}{2}\right)^{2}+\left(\frac{15+4 \sqrt{3}}{2}\right)^{2}$	A1	For all correct unsimplified
	$A C^{2}=123$	M1	M1dep for attempt to evaluate without use of calculator
	$A C=\sqrt{123}$	A1	

Question	Answer	Marks	Partial Marks
10(ii)	$\frac{A C}{\sin 60^{\circ}}=\frac{4 \sqrt{3}-5}{\sin A C B}$ or $\sin A C B=\frac{A D}{A C}$	M1	For attempt at the sine rule or trigonometry involving right-angled triangles
	For attempt at cosec	M1	dep on first \mathbf{M} mark $\operatorname{cosec} A C B=\frac{2 \sqrt{123}}{\sqrt{3}(4 \sqrt{3}-5)} \text { or } \frac{2 \sqrt{41}}{(4 \sqrt{3}-5)}$ oe
	$\operatorname{cosec} A C B=\frac{2}{\sqrt{3}} \frac{\sqrt{123}}{(4 \sqrt{3}-5)} \times \frac{4 \sqrt{3}+5}{4 \sqrt{3}+5}$	M1	dep on previous \mathbf{M} mark for a statement involving rationalisation using $a \sqrt{3}+b$
	$=\frac{2 \sqrt{41}}{23}(4 \sqrt{3}+5)$	A1	For rationalisation using $\frac{4 \sqrt{3}+5}{4 \sqrt{3}+5}$ oe and simplification
	ALTERNATIVE METHOD		
	$\frac{1}{2}(4 \sqrt{3}-5)(4 \sqrt{3}+5) \sin 60=\frac{23 \sqrt{3}}{4}$	M1	Area of $A B C$
	$\frac{1}{2} \sqrt{123}(4 \sqrt{3}+5) \sin A C B=\frac{23 \sqrt{3}}{4}$	M1	For attempt at a second area of $A B C$ and equating to first area
	For attempt at cosec	M1	dep on first $2 \mathbf{M}$ marks
	$=\frac{2 \sqrt{41}}{23}(4 \sqrt{3}+5)$	A1	Need to be convinced no calculator is being used in simplification

Question	Answer	Marks	Partial Marks
11	When $x=0, y=\frac{1}{2}$	B1	For $y=\frac{1}{2}$
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \mathrm{e}^{4 x}$	B1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}, \text { Gradient of normal }=-2$	B1	FT on their $\frac{\mathrm{d} y}{\mathrm{~d} x}$, must be numeric
	either: Normal $y-\frac{1}{2}=-2 x$ or: \quad Gradient of normal $=-\frac{O A}{O B}$	M1	For an attempt at a normal equation passing through their $\left(0, \frac{1}{2}\right)$ and a substitution of $y=0$
	When $y=0, x=\frac{1}{4}$	A1	
	EITHER: $\int_{0}^{\frac{1}{4}} \frac{1}{8} \mathrm{e}^{4 x}+\frac{3}{8} \mathrm{~d} x$	M1	For attempt to integrate to obtain $k_{1} \mathrm{e}^{4 x}+\frac{3}{8} x, k_{1} \neq \frac{1}{8}, k_{1} \neq \frac{1}{2}$
	$\left[\frac{1}{32} \mathrm{e}^{4 x}+\frac{3 x}{8}\right]_{0}^{\frac{1}{4}}$	A1	For correct integration
	Use of limits	M1	M1dep
	For area of triangle $=\frac{1}{16}$	B1	FT on their $x=\frac{1}{4}$
	$=\frac{\mathrm{e}}{32}$	A1	final answer in correct form
	OR: $\int_{0}^{\frac{1}{4}} \frac{1}{8} \mathrm{e}^{4 x}+\frac{3}{8}-\frac{1}{2}+2 x \mathrm{~d} x$	M1	For attempt at subtraction and attempt to integrate $\text { to obtain } k_{1} \mathrm{e}^{4 x}+\frac{3}{8} x+k_{2} x+k_{3} x^{2}, k_{1} \neq \frac{1}{8}$
	$\left[\frac{1}{32} \mathrm{e}^{4 x}-\frac{1}{8} x+x^{2}\right]_{0}^{\frac{1}{4}}$	A2	-1 for each error for integration
	for use of limits	M1	M1dep
	$=\frac{\mathrm{e}}{32}$	A1	final answer in correct form

Question	Answer	Marks	Partial Marks
12(a)	$p=\frac{1}{4}$	B1	
	$p+q-4 q+6=4$	B1	FT on their p
	$q=\frac{3}{4}$	B1	
12(b)	$\left(x^{\frac{1}{3}}+3\right)\left(x^{\frac{1}{3}}+1\right)=0$	M1	For attempt to factorise and solve, or solve using the quadratic formula oe, a quadratic in $x^{\frac{1}{3}}$ or u
	$\begin{aligned} & x^{\frac{1}{3}}=-1 \text { or } u=-1 \\ & x^{\frac{1}{3}}=-3 \text { or } u=-3 \end{aligned}$	A1	For both
	$x=-1$	A1	
	$x=-27$	A1	

ADDITIONAL MATHEMATICS

0606/13
Paper 1
May/June 2018
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer				Marks	Partial Marks
1	Substitution and simplification to obtain a 3 term quadratic in one variable				M1	substitution of $y=x+4$ or $x=y-4$ and simplification to 3 terms.
	$x^{2}-2 x-8=0 \text { or } 2 x^{2}-4 x-16=0$ or $y^{2}-10 y+16=0 \text { or } y^{2}-10 y+16=0$				A1	correct equation of the form $a x^{2}+b x+c=0 \text { or } a y^{2}+b y+c=0$
	Solution of quadratic equation				M1	M1 dep
	$\begin{aligned} & x=4, y=8 \\ & x=-2, y=2 \end{aligned}$				A2	A1 for each pair
2	Midpoint $\left(\frac{5}{2},-1\right)$				B1	
	$\text { Gradient of line }=-\frac{8}{3}$				B1	
	$\text { Gradient of perp }=\frac{3}{8}$				M1	
	Equation of perp bisector:$y+1=\frac{3}{8}\left(x-\frac{5}{2}\right)$				M1	M1 dep Using their perpendicular gradient and their midpoint
	$\begin{aligned} & 6 x-16 y-31=0 \text { or } \\ & -6 x+16 y+31=0 \end{aligned}$				A1	
3	A B C \checkmark \checkmark 				$\square 4$	B1 for either each row correct or each column correct - mark to candidate's advantage.
4(i)	$b=4$				B1	
	$c=6$				B1	
	$2=a+4 \sin \frac{\pi}{2}$				M1	Evaluation of a using their b and their c and the given point.
	$a=-2$				A1	

Question	Answer	Marks	Partial Marks
4(ii)	$\sqrt{n} \sqrt{n} / \sqrt{n}$	3	B1 for $-6 \leqslant y \leqslant 2$ B1 for 3 complete cycles B1 for all correct
5(i)	The number of bacteria at the start of the experiment	B1	
5(ii)	$\begin{aligned} & 20000=800 \mathrm{e}^{k t} \text { so } \frac{20000}{800}=\mathrm{e}^{2 k} \\ & \text { or } \ln 20000=\ln 800+\ln \left(\mathrm{e}^{2 k}\right) \end{aligned}$	M1	use of given equation and attempt to solve for $\mathrm{e}^{2 k}$ or use logs correctly
	$2 k=\ln 25$	M1	correct method to obtain $2 k$
	1.61	A1	
5(iii)	$P=800 \mathrm{e}^{3 \ln 5}$	M1	Substitution of $t=3$ in formula using their k
	$=100000$	A1	answer in range 99800 to 100200
6(a)	$\left(\frac{\log _{3} p}{\log _{3} 2} \times \log _{3} 2\right)+\log _{3} q$ or $\log _{3} 2^{\log _{2} p}+\log _{3} q$	B1	
	$\begin{aligned} & \log _{3} p+\log _{3} q \\ & \text { or } \log _{3}\left(2^{\log _{2} p} \times q\right) \end{aligned}$	B1	B1 dep
	$\log _{3} p q$	B1	B1 dep
6(b)	$\left(\log _{a} 5-1\right)\left(\log _{a} 5-3\right)=0$	M1	solution of quadratic equation
	$\begin{aligned} & \log _{a} 5=1, \quad a=5 \\ & \log _{a} 5=3, \quad a=\sqrt[3]{5} \text { or } 1.71 \text { or } 5^{\frac{1}{3}} \end{aligned}$	A2	A1 for $a=5$ A1 for $a=\sqrt[3]{5}$ or 1.71 or $5^{\frac{1}{3}}$
7(i)	$\frac{1}{2}\left(\begin{array}{ll} 3 & 2 \\ 5 & 4 \end{array}\right)$	2	B1 for $\frac{1}{2}$ B1 for $\left(\begin{array}{ll}3 & 2 \\ 5 & 4\end{array}\right)$

Question	Answer	Marks	Partial Marks
7(ii)	$\begin{aligned} & 4 x-2 y=\frac{5}{2} \\ & -5 x+3 y=\frac{7}{2} \end{aligned}$	B1	Relating solution of these equations to matrix in (i) B1 for adapted equation or $\binom{2.5}{3.5}$ or $2\binom{x}{y}$
	$\binom{x}{y}=\frac{1}{2}\left(\begin{array}{ll} 3 & 2 \\ 5 & 4 \end{array}\right)\binom{2.5}{3.5}$ or $2\binom{x}{y}=\frac{1}{2}\left(\begin{array}{ll} 3 & 2 \\ 5 & 4 \end{array}\right)\binom{5}{7}$	M1	Correct method for pre-multiplication by their inverse matrix.
	$\begin{aligned} & \binom{x}{y}=\binom{7.25}{13.25} \text { or }\binom{\frac{29}{4}}{\frac{53}{4}} \\ & x=7.25, y=13.25 \end{aligned}$	A2	A1 for each. Condone in matrix form.
8(a)	$3(2 \mathbf{i}-5 \mathbf{j})-4(\mathbf{i}-3 \mathbf{j})$	M1	For expansion and collection of terms
	$3 \mathbf{p}-4 \mathbf{q}=2 \mathbf{i}-3 \mathbf{j}$	A1	
	Magnitude of their $2 \mathbf{i}-3 \mathbf{j}$ $\sqrt{2^{2}+(-3)^{2}}$	M1	For method to find magnitude
	$\text { Unit vector }=\frac{2 \mathbf{i}-3 \mathbf{j}}{\sqrt{13}}$	A1	
8(b)(i)	$v^{2}=2.73^{2}+1.25^{2}$	B1	Correct use of Pythagoras
	$v=3.00$	B1	
8(b)(ii)	$\tan \theta=\frac{1.25}{2.73}$ oe	M1	Use of a trig funtion to obtain a relevant angle
	Angle to $A B=24.6^{\circ}$ or 0.429 radians	A1	
9(i)	$256 x^{8}-64 x^{6}+7 x^{4}$	3	B1 for each term

Question	Answer	Marks	Partial Marks
9(ii)	$\frac{1}{x^{4}}+\frac{2}{x^{2}}+1$	B1	
	$\begin{aligned} & \left(256 x^{8}-64 x^{6}+7 x^{4}\right)\left(\frac{1}{x^{4}}+\frac{2}{x^{2}}+1\right) \\ & (256 \times 1-64 \times 2+7 \times 1) x^{4} \end{aligned}$	M1	M1 for three correctly obtained products leading to terms in x^{4} using their $256 x^{8}-64 x^{6}+7 x^{4}$ and their $\frac{1}{x^{4}}+\frac{2}{x^{2}}+1$
	$\begin{aligned} & \text { Coefficient of } x^{4} \text { is } 256-128+7 \\ & =135 \end{aligned}$	A1	
10(a)	$\frac{5+6 \sqrt{5}}{6+\sqrt{5}} \times \frac{6-\sqrt{5}}{6-\sqrt{5}}$	M1	for rationalisation
	$=\frac{30-5 \sqrt{5}+36 \sqrt{5}-30}{31} \square$	M1	M1dep for expanding the numerator to obtain four terms.
	$=\frac{31 \sqrt{5}}{31}=\sqrt{5}$	A1	A1 for $\sqrt{5}$ from correct working
10(b)	$\sqrt{3} \times(\sqrt{2})^{6} \times \sqrt{2}=\sqrt{6} \times 2^{3}$		
	$8 \sqrt{6}$	B2	B1 for $\sqrt{6}$ from $\sqrt{3} \times \sqrt{2}$ B1 for 8 from $(\sqrt{2})^{6}$ or 2^{3}

Question	Answer	Marks	Partial Marks
10(c)	EITHER: $x^{2}+\sqrt{2} x-4=0$	B1	3 term quadratic equation equated to zero
	$x=\frac{-\sqrt{2} \pm \sqrt{18}}{2}$	M1	use of the quadratic formula
	for use of $\sqrt{18}=3 \sqrt{2}$	M1	M1 dep
	$\sqrt{2},-2 \sqrt{2}$	A1	For both from full working
	OR: $x^{2}+\sqrt{2} x-4=0$	B1	
	$\begin{aligned} & \left(x+\frac{\sqrt{2}}{2}\right)^{2}=4+\frac{1}{2} \\ & x= \pm \frac{3}{\sqrt{2}}-\frac{\sqrt{2}}{2} \end{aligned}$	M1	Correct use of completing the square method
	$x=-\frac{4}{\sqrt{2}}, \frac{2}{\sqrt{2}}$	M1	M1dep for dealing with $\sqrt{2}$ in denominator
	$x=\sqrt{2},-2 \sqrt{2}$	A1	
11(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=16-\frac{54}{x^{3}}$	M1	$\text { for } \frac{\mathrm{d} y}{\mathrm{~d} x}=16 \pm \frac{p}{x^{3}}$
	Equating to zero and obtaining x^{3}	M1	M1dep
	$x=\frac{3}{2}, y=36$	3 A2	A1 for each

Question	Answer	Marks	Partial Marks
11(ii)	EITHER: When $x=1, y=43$ When $x=3, y=51$	B1	B1 for both
	$\left(\frac{1}{2}(43+51) \times 2\right)-\int_{1}^{3} 16 x+\frac{27}{x^{2}} \mathrm{~d} x$		
	Area of trapezium $=\left(\frac{1}{2}(43+51) \times 2\right)$ oe	B1	FT from their P and their Q
	Integration to find area under curve	M1	for $\left[p x^{2}+\frac{q}{x}\right]$
	$=\left[8 x^{2}-\frac{27}{x}\right]$	$\square \mathbf{A 1}$	Integration correct
	$=\left[8 \times 3^{2}-\frac{27}{3}\right]-\left[8 \times 1^{2}-\frac{27}{1}\right]$	M1	M1dep for application of limits
	$\begin{aligned} \text { Required area } & =94-82 \\ & =12 \end{aligned}$	A1	
	OR: When $x=1, y=43$ When $x=3, y=51$	B1	B1 for both
	Equation of $P Q: y=4 x+39$	B1	Equation of line FT from their P and their Q
	Integration of their $4 x+39-16 x-\frac{27}{x^{2}}$	M1	$\text { for }\left[p x+q x^{2}+\frac{r}{x}\right]$
	$=\left[39 x-6 x^{2}+\frac{27}{x}\right]$	A1	All correct
	$\begin{aligned} =[39 \times 3-6 & \left.\times 3^{2}+\frac{27}{3}\right] \\ & -\left[39 \times 1-6 \times 1^{2}+\frac{27}{1}\right] \end{aligned}$	M1	M1dep for application of limits
	$\begin{aligned} \text { Required area } & =72-60 \\ & =12 \end{aligned}$	A1	

Question	Answer	Marks	Partial Marks
12	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x-5)^{\frac{1}{2}}(+c)$	M1	$\text { for } k(2 x-5)^{\frac{1}{2}}$
	$\text { for }(2 x-5)^{\frac{1}{2}}$	A1	
	Substitution to obtain arbitrary constant	M1	M1 dep Using $\frac{\mathrm{d} y}{\mathrm{~d} x}=6$ when $x=\frac{9}{2}$
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=(2 x-5)^{\frac{1}{2}}+4$	A1	$\text { for correct } \frac{\mathrm{d} y}{\mathrm{~d} x}$
	Integration of their $k(2 x-5)^{\frac{1}{2}}+c$	M1	M1 dep on first M1 for integration of $k(2 x-5)^{\frac{1}{2}}$ to obtain $m(2 x-5)^{\frac{3}{2}}$
	$y=\frac{1}{3}(2 x-5)^{\frac{3}{2}}+4 x \quad(+d)$	A1	$\text { for } \frac{1}{3}(2 x-5)^{\frac{3}{2}}+4 x$ FT their (non -zero) constant
	Finding constant	M1	M1 dep for obtaining arbitrary constant for $m(2 x-5)^{\frac{3}{2}}+n x+d$ using $x=\frac{9}{2}, \quad y=\frac{2}{3}$
	$y=\frac{1}{3}(2 x-5)^{\frac{3}{2}}+4 x-20$	A1	for correct equation

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1	attempt at $\mathrm{p}(2)$ or $\mathrm{p}(-3)$	M1	
	$2 \mathrm{p}(2)=\mathrm{p}(-3)$	M1	attempt at correct relationship
	$22=a-b$	A1	may be implied, allow unsimplified
	$\begin{aligned} & \mathrm{p}(-1)=0 \\ & a+b=-2 \end{aligned}$	B1	B1 for $a+b=-2$, allow unsimplified
	$a=10 \quad b=-12$	A1	A1 for both
2(i)	$k \cos 3 x$	M1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=15 \cos 3 x$	A1	A1 all correct
2(ii)	When $x=\frac{\pi}{3}, y=4$	B1	for $y=4$
	attempt to find the equation of the tangent	M1	
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-15 \\ & y-4=-15\left(x-\frac{\pi}{3}\right) \end{aligned}$ Equation of tangent $\binom{y=-15 x+5 \pi+4 \text { or }}{y=-15 x+19.7}$	A1	A1FT for correct equation, using their $\frac{\mathrm{d} y}{\mathrm{~d} x}$, allow unsimplified
3(a)	$\frac{18+12 \sqrt{5}-6 \sqrt{5}-20}{4-\sqrt{5}}$	M1	attempt to deal with the numerator
	$\begin{aligned} & \frac{6 \sqrt{5}-2}{4-\sqrt{5}} \times \frac{4+\sqrt{5}}{4+\sqrt{5}} \\ & \frac{22 \sqrt{5}+22}{11} \end{aligned}$	M1	attempt to rationalise
	$2 \sqrt{5}+2$	A1	must be convinced a calculator has not been used
3(b)	$\begin{aligned} & A C^{2}=(6-2 \sqrt{3})^{2}+(6+2 \sqrt{3})^{2} \\ & -2(6-2 \sqrt{3})(6+2 \sqrt{3})\left(-\frac{1}{2}\right) \end{aligned}$	M1	application of the cosine rule
	simplification of surds	M1	M1Dep
	$A C=2 \sqrt{30}$	A1	

Question	Answer	Marks	Guidance
4(i)	-2	B1	
	$-\frac{1}{2} \leqslant x \leqslant \frac{1}{2}$	B1	
4(ii)	attempt to differentiate a quotient	M1	
	$\text { for } \frac{8 x}{4 x^{2}-1}$	B1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x+2) \frac{8 x}{\left(4 x^{2}-1\right)}-\ln \left(4 x^{2}-1\right)}{(x+2)^{2}}$	A1	everything else correct
4(iii)	When $x=2$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{15}-\frac{\ln 15}{16} \text { or } 0.0974$	M1	attempt to evaluate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=2$ and attempt to use method of small changes
	$\partial y=0.0974 h$	A1	cao
5(i)	$n=10$	B1	
	$10 \times 2^{9} \times a=-1280$	M1	attempt to equate second terms
	$a=-\frac{1}{4}$	A1	
	${ }^{10} C_{2} \times 2^{8} \times\left(-\frac{1}{4}\right)^{2}=720$	M1	attempt to equate third terms
	$b=720$ ata	A1	
5(ii)	$\left[\left(1024-1280 x+720 x^{2}\right)\right]\left(\frac{1}{x^{2}}-2+x^{2}\right)$	B1	expansion of $\left(x-\frac{1}{x}\right)^{2}$
	Independent term $=720-2048$	M1	attempt to find independent term, must be considering 2 terms
	$=-1328$	A1	Must be identified

Question	Answer	Marks	Guidance
6(i)	\mathbf{c} - \mathbf{a}	B1	
6(ii)	attempt to use the ratio	M1	
	$\begin{aligned} & \overrightarrow{O M}=\mathbf{a}+\frac{2}{3}(\mathbf{c}-\mathbf{a}) \\ & \text { or } \mathbf{c}-\frac{1}{3}(\mathbf{c}-\mathbf{a}) \\ & \left(=\frac{2}{3} \mathbf{c}+\frac{1}{3} \mathbf{a}\right) \end{aligned}$	A1	allow unsimplified
6(iii)	$\overrightarrow{O M}=\frac{3}{5} \mathbf{b}$	B1	
6(iv)	$\frac{3}{5} \mathbf{b}=\frac{2}{3} \mathbf{c}+\frac{1}{3} \mathbf{a}$	M1	attempt to equate their (ii) and (iii)
	$5 \mathbf{a}+10 \mathbf{c}=9 \mathbf{b}$	A1	Must be convinced from simplification
6(v)	$\begin{aligned} & \overrightarrow{A B}=\mathbf{b}-\mathbf{a} \\ & =\frac{5}{9} \mathbf{a}+\frac{10}{9} \mathbf{c}-\mathbf{a} \end{aligned}$	M1	use of (iv) with $\mathbf{b}-\mathbf{a}$ or $\mathbf{a}-\mathbf{b}$
	$=-\frac{4}{9} \mathbf{a}+\frac{10}{9} \mathbf{c}$	A1	
7(a)	$\begin{aligned} & 2 a^{2}-4 a=6-3 a \\ & 2 a^{2}-a-6=0 \end{aligned}$	M1	attempt to use determinant correctly, obtain a 3 term quadratic equation and attempt to solve correctly
	$a=2$	A1	
	$a=-\frac{3}{2}$	A1	
7(b)(i)	$\frac{1}{5}\left(\begin{array}{rr} 4 & -1 \\ -3 & 2 \end{array}\right)$	B2	$\begin{aligned} & \text { B1 for } \frac{1}{5} \\ & \text { B1 for }\left(\begin{array}{rr} 4 & -1 \\ -3 & 2 \end{array}\right) \end{aligned}$
7(b)(ii)	$\mathbf{A}^{-1} \mathbf{A C}=\mathbf{A}^{-1} \mathbf{B}$	M1	for pre-multiplying
	$\mathbf{C}=\frac{1}{5}\left(\begin{array}{rr}4 & -1 \\ -3 & 2\end{array}\right)\left(\begin{array}{rr}2 & 0 \\ -3 & 5\end{array}\right)$	M1	M1Dep for attempt at matrix multiplication, at least 2 terms correct, allow with their inverse
	$=\frac{1}{5}\left(\begin{array}{rr}11 & -5 \\ -12 & 10\end{array}\right)$ oe	A1	

Question	Answer	Marks	Guidance
7(c)	$\left(\begin{array}{rr}-\frac{3}{4} & 0 \\ 0 & -\frac{3}{4}\end{array}\right)$	B1	
8(i)	for attempt to integrate to obtain $k_{1} \mathrm{e}^{2 t}+k_{2} t^{2}$	M1	
	$x=6 \mathrm{e}^{2 t}-24 t^{2}(+c)$	A1	all correct, condone omission of $+c$
	When $t=0, x=0 \quad \therefore c=-6$	M1	M1Dep for attempt to find c
	$x=6 \mathrm{e}^{2 t}-24 t^{2}-6$	A1	
8(ii)	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=24 \mathrm{e}^{2 t}-48$	M1	attempt to differentiate to obtain $k_{1} \mathrm{e}^{2 t}+k_{2}$
	When acceleration $=0, \mathrm{e}^{2 t}=2$ oe	M1	equating to zero and attempt to solve
	$t=\frac{1}{2} \ln 2 \text { or } t=\ln \sqrt{2}$ or 0.347	A1	
8(iii)	substitution of their (ii) into given equation for v	M1	
	$v=24-24 \ln 2$ or $24-48 \ln \sqrt{2}$ or 7.36	A1	
9(i)	$\ln y=\ln A+b x$	B1	
9 (ii)	$\ln y$	M1	attempt to plot $\ln y$ against x Allow $\lg y$ against x Allow $\lg y$ against $\lg \mathrm{e}^{x}$
	straight line with all points joined	A1	

Question	Answer	Marks	Guidance
9(iii)	Gradient $=b$	M1	M1Dep on (ii) for attempt to find gradient and equate to b or $b \lg \mathrm{e}$ if $\lg y$ plotted against x
	$b=-0.5$, allow -0.45 to -0.55	A1	value within the given range
	Intercept $=\ln A(=7.6)$	M1	M1Dep on (ii) for attempt to use intercept or coordinates of a point on the curve with their gradient to obtain A
	$A=2000$ allow $1900-2100$	A1	
9(iv)	use of graph or appropriate substitution	M1	
	When $y=500, x=2.77$ allow $2.2-3.0$	A1	
9(v)	use of graph or appropriate substitution	M1	
	$\begin{aligned} & \text { When } x=5, \ln y=5.1 \\ & y=164 \end{aligned}$ $\text { allow } 155-175$	A1	

Question	Answer	Marks	Guidance
10(i)	$y=-3 x^{3}-11 x^{2}-8 x+4$	M1	attempt to differentiate
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-9 x^{2}-22 x-8$	A1	all correct
	When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0,9 x^{2}+22 x+8=0$	M1	M1Dep for equating to zero and correct attempt to solve
	$x=-2$	A1	SC Allow B1 for $x=-2$ if A1 not obtained from differentiation
	$x=-\frac{4}{9}$	A1	
	10(i) Alternate scheme		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(x+2)^{2}(-3)+(1-3 x) 2(x+2)$	M1	attempt to differentiate
	all correct	A1	
	When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0,(x+2)(-4-9 x)=0$ oe	M1	M1Dep for equating to zero and correct attempt to solve
	$x=-2$	A1	SC Allow B1 for $x=-2$ if A1 not obtained from differentiation
	$x=-\frac{4}{9}$	A1	
10(ii)	$D\left(\frac{1}{3}, 0\right)$	B1	Allow mismatch of letters
	C (0,4)	B1	Allow mismatch of letters
10(iii)	Area $=\int_{0}^{\frac{1}{3}}-3 x^{3}-11 x^{2}-8 x+4 \mathrm{~d} x$	M1	correct attempt to integrate a cubic equation
	$=\left[-\frac{3}{4} x^{4}-\frac{11}{3} x^{3}-4 x^{2}+4 x\right]_{0}^{\frac{1}{3}}$	A2	A1 for 3 terms correct A1 for all correct
	$-\frac{3}{4}\left(\frac{1}{81}\right)-\frac{11}{3}\left(\frac{1}{27}\right)-\frac{4}{9}+\frac{4}{3}$	M1	M1Dep for application of limits
	$=\frac{241}{324}$ or 0.744	A1	

MARK SCHEME

Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1(i)	$A^{\prime} \cap B$	B1	
1(ii)	$A \cap B \cap C$	B1	
1(iii)	$A \cup B$	B1	
2(i)	$\mathrm{p}\left(\frac{1}{2}\right)=\frac{a}{8}+\frac{b}{4}-\frac{13}{2}+4$	M1	attempt at $p\left(\frac{1}{2}\right)$
	$\begin{aligned} & \mathrm{p}^{\prime}(x)=3 a x^{2}+2 b x-13 \\ & \mathrm{p}^{\prime}\left(\frac{1}{2}\right)=\frac{3 a}{4}+b-13 \end{aligned}$	M1	attempt at $p^{\prime}\left(\frac{1}{2}\right)$
	leading to $a+2 b=20$ and $3 a+4 b-52=0$	A1	at least one correct equation
	solution of simultaneous equations	DM1	
	$a=12, b=4$	A1	for both
2(ii)	$p(-1)=-12+4+13+4$	M1	
	9	A1	FT on their integer values of a and b
3(a)	$\begin{aligned} {T g^{\frac{1}{2}}}=2 \pi l^{\frac{1}{2}} \\ T^{2} g=4 \pi^{2} l \end{aligned}$	B1	multiplication/dealing with power of $\frac{1}{2}$ or squaring
	$l=\frac{T^{2} g}{4 \pi^{2}} \text { or }\left(\frac{T g^{\frac{1}{2}}}{2 \pi}\right)^{2}$	B1	for either
3(b)	$y^{2}-4 y+3=0$ leading to $y=1, y=3$	M1	reduction to quadratic equation and attempt to solve
	$x^{\frac{1}{3}}=1, x^{\frac{1}{3}}=3$	DM1	attempt to solve $x^{\frac{1}{3}}=k$ (positive k)
	$x=1, x=27$	A2	A1 for each

Question	Answer	Marks	Guidance
4(i)	$\frac{1}{2}$	B1	
4(ii)	$\begin{aligned} & \lg y=m x^{2}+c \\ & \lg y=\frac{1}{2} x^{2}+1 \end{aligned}$	B2	-1 for each error
4(iii)	$y=10^{\left(\frac{x^{2}}{2}+1\right)}$	B1	dealing with \lg on their (ii)
	$y=10\left(10^{\frac{x^{2}}{2}}\right)$	B2	B1 for each, dependent on first B1
5(i)	$(0,20)$	B1	
5(ii)	31.7 D	B1	
5(iii)	$2 \mathrm{e}^{2 x}-8 \mathrm{e}^{-2 x}(+c)$	B2	B1 for each correct term
5(iv)	$\begin{aligned} & \text { Area of trapezium }=\frac{1}{2}(20+31.7) \\ & =25.86 \text { or } 25.85 \end{aligned}$	B1	
	$\left[2 \mathrm{e}^{2 x}-8 \mathrm{e}^{-2 x}\right]_{0}^{1}=\left(2 \mathrm{e}^{2}-8 \mathrm{e}^{-2}\right)-(-6)$	M1	substitution of both limits, must have come from integration of the form $a \mathrm{e}^{2 x}+b \mathrm{e}^{-2 x}$.
	19.7	A1	
	Required area $=6.15,6.16,6.17$	A1	
6(a)(i)	$\mathrm{f} \geqslant 3$	B1	must be using a correct notation
6(a)(ii)	$(4 x-1)^{2}+3=4$	M1	correct order
	solution of resulting quadratic equation	DM1	
	$x=0, x=\frac{1}{2}$	A1	both required

Question	Answer	Marks	Guidance
6(b)(i)	$x y-4 y=2 x+1$	M1	'multiplying out'
	$\begin{aligned} & x(y-2)=4 y+1 \\ & x=\frac{4 y+1}{y-2} \end{aligned}$	M1	collecting together like terms
	$\mathrm{h}^{-1}(x)=\frac{4 x+1}{x-2}$	A1	correct answer with correct notation
	Range $\mathrm{h}^{-1} \neq 4$	B1	must be using a correct notation
6(b)(ii)	$\begin{aligned} & \mathrm{h}^{2}(x)=\mathrm{h}\left(\frac{2 x+1}{x-4}\right) \\ & =\frac{2\left(\frac{2 x+1}{x-4}\right)+1}{\left(\frac{2 x+1}{x-4}\right)-4} \end{aligned}$	$\begin{array}{r}\text { M1 } \\ \hline\end{array}$	dealing with h^{2} correctly
	dealing with fractions within fractions	M1	
	$=\frac{5 x-2}{17-2 x}$ oe	A1	
7(i)	$\ln (2 x+1)-\ln (2 x-1)$	B1	
7(ii)	attempt to differentiate	M1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{2 x+1}-\frac{2}{2 x-1}+4$	A1	all correct
	attempt to obtain in required form	DM1	
	$=\frac{16 x^{2}-8}{4 x^{2}-1}$	A1	A1 all correct
7(iii)	When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0,16 x^{2}-8=0$	M1	setting $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and attempt to solve
	$x=\frac{1}{\sqrt{2}} \text { only }$	A1	

Question	Answer	Marks	Guidance
7(iv)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{32 x\left(4 x^{2}-1\right)-8 x\left(16 x^{2}-8\right)}{\left(4 x^{2}-1\right)^{2}}$	M1	attempt at second derivative and conclusion or equivalent method
	When $x=\frac{1}{\sqrt{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ is + ve, so minimum	A1	
8(a)(i)	${ }^{8} C_{6} \times{ }^{6} C_{4}$	B1	either ${ }^{8} C_{6}$ or ${ }^{6} C_{4}$
	420	B1	
8(a)(ii)	${ }^{12} C_{8}+{ }^{12} C_{10}$	B2	B1 for each
	$=561$	B1	
	Alternate scheme: $1001-\left(2 \times{ }^{12} C_{9}\right)$	B1 B1	
	$=561$	B1	
8(b)(i)	136080	B1	
8(b)(ii)	No of ways ending with 0-15120	B1	
	No of ways ending with 5-13440	B1	
	Total 28560	B1	
8(b)(iii)	Starting with 6 or 8-13440	B1	
	Starting with 7 or 9-16800	B1	
	Total $=30240$	B1	
9(i)	$\tan \left(\frac{P A Q}{2}\right)=2.4$	M1	valid method
	$\begin{aligned} & P A Q=2.352(01 \ldots . .) \\ & P A Q=2.35 \text { correct to } 3 \mathrm{sf} \end{aligned}$	A1	must see greater than 3 sf then rounding
9(ii)	$P B Q=0.790$ or 0.792	B1	
9(iii)	$(2.352 \times 10)+(0.790 \times 24)$	M1,A1	M1 for correct attempt at an arc length A1 for one correct arc length
	$=\mathrm{awrt} 42.5$	A1	

Question	Answer	Marks	Guidance
9(iv)	$\left(\left(\frac{1}{2} \times 24^{2} \times 0.790\right)-\left(\frac{1}{2} \times 24^{2} \times \sin 0.790\right)\right)$	B1,B1	B1 for a correct sector area allow, unsimplified B1 for a correct area of a triangle, allow unsimplified
	$+\left(\left(\frac{1}{2} \times 10^{2} \times 2.352\right)-\left(\frac{1}{2} \times 10^{2} \times \sin 2.352\right)\right)$	B1	correct plan, dependent on both previous B marks
	$\begin{aligned} & =22.94+82.1 \\ & =105 \end{aligned}$	B1	
10(a)	$\frac{3}{4}=\sin ^{2} 2 x$	B1	dealing correctly with cosec
	$\begin{aligned} & \sin 2 x= \pm \frac{\sqrt{3}}{2} \\ & 2 x=60,120,240,300 \end{aligned}$	M1	correct method of solution including dealing with $2 x$ correctly, may be implied by one correct solution.
	$x=30,60,120,150$	A2	A1 for each correct pair
10(b)	$\tan \left(y-\frac{\pi}{4}\right)=\frac{1}{\sqrt{3}}$	M1	dealing with order of operations to obtain a first solution
	$y-\frac{\pi}{4}=\frac{\pi}{6}, \frac{7 \pi}{6}$	M1	M1 for attempt to obtain a second solution
	$y=\frac{5 \pi}{12}, \frac{17 \pi}{12}$	A2	A1 for each

MARK SCHEME

Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
4	correct differentiation of $\ln \left(3 x^{2}+2\right)$	B1	
	attempt to differentiate a quotient or a product	M1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(x^{2}+1\right)\left(\frac{6 x}{3 x^{2}+2}\right)-2 x \ln \left(3 x^{2}+2\right)}{\left(x^{2}+1\right)^{2}}$	A1	all other terms correct.
	When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{5\left(\frac{12}{14}\right)-4 \ln 14}{25}$	M1	M1dep for substitution and attempt to simplify
	$=\frac{6}{35}-\frac{4}{25} \ln 14$	A2	A1 for each correct term, must be in simplest form
5(i)	Either Gradient $=-0.2$	B1	
	$\lg y=-0.2 x+c$	B1	$\lg y=m x+c$ soi
	correct attempt to find c	M1	must have previous B1
	$\lg y=0.42-0.2 x$ or $\lg y=\frac{21}{50}-\frac{x}{5}$	A1	line in either form, allow equivalent fractions
	Or $0.3=0.6 m+c$	B1	
	$0.2=1.1 m+c$	B1	
	attempt to solve for both m and c	M1	must have at least one of the previous B marks
	Leading to $\lg y=0.42-0.2 x$ or $\lg y=\frac{21}{50}-\frac{x}{5}$	A1	line in either form, allow equivalent fractions

Question	Answer	Marks	Guidance
5(ii)	Either $y=10^{(0.42-0.2 x)}$	M1	dealing with the index, using their answer to (i)
	$\begin{aligned} & y=10^{0.42}\left(10^{-0.2 x}\right) \\ & y=2.63\left(10^{-0.2 x}\right) \end{aligned}$	A2	A1 for each
	Or $y=A\left(10^{b x}\right) \text { leads to } \lg y=\lg A+b x$ Compare this form with their equation from (i)	M1	comparing their answer to (i) with $\lg y=\lg A+b x$ may be implied by one correct term from correct work
	$\lg A=0.42$ so $A=2.63$	A1	
	$b=-0.2$	A1	A1 for each
6(i)	$y \in \mathbb{R}$ oe	B1	Must have correct notation i.e. no use of x
6(ii)	$y>3$ oe	B1	Must have correct notation i.e. no use of x
6(iii)	$\mathrm{f}^{-1}(x)=\mathrm{e}^{x}$ or $\mathrm{g}(4)=35$	B1	First B1 may be implied by correct answer or by use of 35
	$\mathrm{f}^{-1} \mathrm{~g}(4)=\mathrm{e}^{35}$	B1	
6(iv)	$\frac{y-3}{2}=x^{2}$ or $\frac{x-3}{2}=y^{2}$	M1	valid attempt to obtain the inverse
	$\mathrm{g}^{-1}(x)=\sqrt{\frac{x-3}{2}}$	A1	correct form, must be $\mathrm{g}^{-1}(x)=$ or $y=$
	Domain $x>3$	B1	Must have correct notation
7(i)	$\mathrm{p}\left(\frac{1}{2}\right): \frac{a}{8}+2+\frac{b}{2}+5=0$	M1	substitution of $x=\frac{1}{2}$ and equating to zero (allow unsimplified)
	$\mathrm{p}(-2):-8 a+32-2 b+5=-25$	M1	substitution of $x=-2$ and equating to -25 (allow unsimplified)
	$\begin{array}{ll} \text { leading to } & \begin{array}{l} a+4 b+56=0 \\ 4 a+b-31 \end{array}=0 \text { oe } \end{array}$	M1	M1dep for solution of simultaneous equations to obtain a and b
	$a=12, b=-17$	A2	A1 for each

Question	Answer	Marks	Guidance
7 (ii)	$\begin{aligned} & 12 x^{3}+8 x^{2}-17 x=0 \\ & x=0 \end{aligned}$	B1	for $x=0$
	$x=-\frac{1}{3} \pm \frac{\sqrt{55}}{6} \text { oe }$	B1	
8			
8(i)	$\angle A B C=67.4^{\circ}$	B1	
	$\frac{4}{\sin B A C}=\frac{5}{\sin 67.4^{\circ}}$	M1	attempt at the sine rule, using 4 and 5 (or e.g. use of cosine rule followed by sine rule on triangle shown)
	$\angle B A C=47.6^{\circ}$	A1	may be implied by later work
	Angle required $=180^{\circ}-47.6^{\circ}-67.4^{\circ}=65^{\circ}$	A1	Answer Given
8(ii)	$V^{2}=5^{2}+4^{2}-\left(2 \times 5 \times 4 \times \cos 65^{\circ}\right)$	M1	attempt at the cosine rule or sine rule to obtain V - allow if seen in (i)
	$\begin{aligned} & V=4.91 \\ & \text { or } \frac{4}{\sin B A C}=\frac{V}{\sin 65} \end{aligned}$	A1	
	Distance to travel: $\frac{120}{\sin 67.4^{\circ}}$	M1	distance to travel - allow if seen in (i)
	130 or $\sqrt{120^{2}+50^{2}}$	A1	
	Time taken: $\frac{130}{4.91}$	M1	M1dep for correct method to find the time, must have both of the previous M marks
	26.5	A1	

Question	Answer	Marks	Guidance
9(b)(iii)	Either attempt to integrate, must be in the form $c \mathrm{e}^{-5 t}+d t^{2}$	M1	
	$s=-\frac{3}{5} \mathrm{e}^{-5 t}+\frac{3}{4} t^{2} \quad(+c)$	A1	
	When $t=0, s=0 \quad$ so $c=\frac{3}{5}$	M1	M1dep for attempt to find c and substitute $t=0.5$
	$s=0.738$	A1	
	Or attempt to integrate, must be in the form $c \mathrm{e}^{-5 t}+d t^{2}$	M1	
	$\left[-\frac{3}{5} \mathrm{e}^{-5 t}+\frac{3}{4} t^{2}\right]_{0}^{0.5}$	A1	
	correct use of limits	M1	M1dep
	leading to $s=0.738$	A1	
10(i)	$5 \angle B A C=6.2, \angle B A C=1.24$	B1	
10(ii)	$\sin 0.62=\frac{B D}{5}, B D=2.905,2.91$	B1	valid method to find $B D$
	Arc BFC: $\pi \times B D \quad(=9.13)$	M1	attempt to find arc length $B F C$, using their $B D$
	Perimeter: $9.13+6.2=15.3$	A1	
10(iii)	Area: $\begin{aligned} & \left(\frac{1}{2} \times \pi \times 2.91^{2}\right)- \\ & \quad\left(\left(\frac{1}{2} \times 5^{2} \times 1.24\right)-\left(\frac{1}{2} \times 5^{2} \times \sin 1.24\right)\right) \end{aligned}$	B3	B1 for area of semi circle (= 13.3) B1 for area of sector ($=15.5$) B1 for area of triangle (= 11.8)
	$9.58 \leqslant$ Area $\leqslant 9.62$	B1	final answer

Question	Answer	Marks	Guidance
11(a)	$\tan \left(\phi+35^{\circ}\right)=\frac{2}{5}$	M1	dealing correctly with cot and an attempt at solution of $\tan (\phi+35)=c$, order must be correct, to obtain a value for $\phi+35$
	$\phi+35^{\circ}=21.8^{\circ}, 201.8^{\circ}, 381.8^{\circ}$	M1	M1dep for an attempt at a second solution in the range, $\left(180^{\circ}+\right.$ their first solution in the range oe)
	$\phi=166.8{ }^{\circ}, 346.8^{\circ}$	A2	A1 for each
11(b)(i)	Either $\frac{\frac{1}{\cos \theta}}{\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}}$	M1	expressing all terms in terms of $\sin \theta$ and $\cos \theta$ where necessary
	$=\frac{1}{\cos \theta}\left(\frac{\sin \theta \cos \theta}{\cos ^{2} \theta+\sin ^{2} \theta}\right)$	M1	dealing with the fractions correctly to get $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}$ in denominator or as in left hand column
	$=\frac{\sin \theta}{(1)}$	A1	use of identity, together with a complete and correct solution, withhold A1 for incorrect use of brackets
	Or $\begin{aligned} & \frac{\sec \theta}{\frac{1}{\tan \theta}+\tan \theta} \\ & =\frac{\sec \theta}{\frac{1+\tan ^{2} \theta}{\tan \theta}} \end{aligned}$	M1	dealing with fractions in the denominator correctly to get $\frac{1+\tan ^{2} \theta}{\tan \theta}$ in the denominator, allow $\tan \theta$ taken to the numerator
	$=\frac{\sec \theta \tan \theta}{\sec ^{2} \theta}$	M1	use of the identity to get $\sec ^{2} \theta$
	$=\frac{\tan \theta}{\sec \theta}=\frac{\sin \theta}{\cos \theta} \times \cos \theta=\sin \theta$	A1	expressing all terms in terms of $\sin \theta$ and $\cos \theta$ and simplification to the given answer, withhold A1 for incorrect use of brackets

Question	Answer	Marks	Guidance
$11(\mathrm{~b})(\mathrm{ii})$	$\sin 3 \theta=-\frac{\sqrt{3}}{2}$	M1	correct attempt to solve for θ, order must be correct, may be implied by one correct solution
	$3 \theta=-\frac{2 \pi}{3},-\frac{\pi}{3}, \frac{4 \pi}{3}$		
$\theta=-\frac{2 \pi}{9},-\frac{\pi}{9}, \frac{4 \pi}{9}$	A3	A1 for each	

MARK SCHEME

Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1	$\begin{aligned} & \text { Using } \tan ^{2} \theta+1=\sec ^{2} \theta \text { to obtain } \\ & y=2\left(\tan ^{2} \theta+1\right) \text { or }(x+5)^{2}=\sec ^{2} \theta-1 \\ & (x+5)^{2}+1=\frac{y}{2} \end{aligned}$	M1	use of correct identity
	$y=2\left((x+5)^{2}+1\right)$ oe	A1	
2	$\frac{\mathrm{d} y}{\mathrm{~d} x}=10 \mathrm{e}^{5 x}+3$ an attempt at integration in form $a \mathrm{e}^{5 x}+b x$	M1	
	$y=\frac{10}{5} \mathrm{e}^{5 x}+3 x(+c)$	A1	condone omission of c
	attempt to find c using $x=0, y=9$	M1	M1dep
	$y=2 \mathrm{e}^{5 x}+3 x+7$	A1	
3	$\begin{aligned} & 9<4 k(k-4) \\ & 4 k^{2}-16 k-9 \end{aligned}$	M1	use of the discriminant with correct values
	$(2 k-9)(2 k+1)$	M1	M1dep for solution of their quadratic to obtain critical values
	Critical values $\frac{9}{2},-\frac{1}{2}$	A1	
	$k<-\frac{1}{2}, k>\frac{9}{2}$	A1	
4	$a=3$	B1	
	$b=8$	B1	
	$\frac{5}{2}=3 \cos \left(8 \times \frac{\pi}{12}\right)+c$	M1	substitution of $x=\frac{\pi}{12}$ and $y=\frac{5}{2}$ to find c
	$c=4$	A1	
5(i)	$\frac{5}{14}(7 x-10)^{\frac{2}{5}}$	B2	B1 for $k(7 x-10)^{\frac{2}{5}}$

Question	Answer	Marks	Guidance
5(ii)	$\begin{aligned} & \frac{5}{14}\left[(7 x-10)^{\frac{2}{5}}\right]_{6}^{a}=\frac{25}{14} \\ & \frac{5}{14}(7 a-10)^{\frac{2}{5}}-\frac{5}{14}(7 \times 6-10)^{\frac{2}{5}}=\frac{25}{14} \\ & (7 a-10)^{\frac{2}{5}}-4=5 \end{aligned}$	M1	correct application of limits for $k(7 x-10)^{\frac{2}{5}}$
	$a=\frac{9^{\frac{5}{2}}+10}{7}$	M1	M1dep for evaluation of $(7 \times 6-10)^{\frac{2}{5}}$ and correct order of operations to find a, including dealing with power.
	$a=\frac{253}{7} \text { or } 36 \frac{1}{7}$	A1	
6(i)	$\text { Gradient }=\frac{2.4-0.9}{0.2-0.8}(=-2.5)$	B1	
	$\ln y=-\frac{5}{2} x^{2}+c$	M1	straight line form and correct substitutions to find c
	$\ln y=-\frac{5}{2} x^{2}+2.9$ oe	A1	
	Alternative method $\begin{aligned} & 2.4=p(0.2)+q \\ & 0.9=p(0.8)+q \end{aligned}$	B1	
	Correct method of solution to find p and q from two correct equations	M1	M1dep
	$\ln y=-\frac{5}{2} x^{2}+2.9$	A1	
6(ii)	$y=\mathrm{e}^{\left(-\frac{5}{2} x^{2}+2.9\right)}$	M1	dealing with \ln
	$y=\mathrm{e}^{-\frac{5}{2} x^{2}} \times \mathrm{e}^{2.9}$	M1	M1dep for dealing with the index
	$y=18.2 z^{-\frac{5}{2}}$	A1	

Question	Answer	Marks	Guidance
7(i)	$64-48 x^{2}+15 x^{4}$	B3	B1 for each correct term in final line of response
7(ii)	$\left(64-48 x^{2}+15 x^{4}\right)\left(\frac{1}{x^{2}}+2+x^{2}\right)$	B1	B1 for $\frac{1}{x^{2}}+2+x^{2}$ oe
	at least two correctly obtained products leading to terms in x^{2}	M1	
	Term in $x^{2}: 64+15-96$	A1	FT for correct evaluation of their $64+(2 \times$ their- 48$)+$ their 15
	$=-17$	A1	
8(i)	attempt to differentiate a product	M1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left((x-4) \times \frac{5}{3} \times 3(3 x-1)^{\frac{2}{3}}\right)+(3 x-1)^{\frac{5}{3}}$	A2	A1 for $(+)\left((x-4) \times \frac{5}{3} \times 3(3 x-1)^{\frac{2}{3}}\right)$ A1 for $(+)(3 x-1)^{\frac{5}{3}}$
	$=(3 x-1)^{\frac{2}{3}}((5 x-20)+(3 x-1))$	M1	use of $(3 x-1)^{\frac{5}{3}}=(3 x-1)^{\frac{2}{3}}(3 x-1)$
	$=(3 x-1)^{\frac{2}{3}}(8 x-21)$	A1	
8(ii)	When $x=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=8^{\frac{2}{3}} \times 3$	M1	$(3 \times 3-1)^{\frac{2}{3}} \times k$ or $(9-1)^{\frac{2}{3}} \times k$ or $4 \times k$ (where k is any number)
	$\partial y=8^{\frac{2}{3}} \times 3 \times h$	M1	M1dep for their $\left((9-1)^{\frac{2}{3}} \times k\right) \times h$
	$\partial y=12 h$	A1	
9(a)(i)	720	B1	
9(a)(ii)	240	B1	
9(a)(iii)	$k \times 4!\times 2$ or $240-k \times 4!\times 2$ or correct equivalents with no extra terms added or subtracted	B1	
	$4 \times 4!\times p$ or correct equivalents with no extra terms added or subtracted	B1	
	192	B1	

Question	Answer	Marks	Guidance
9(b)(i)	6435	B1	
9(b)(ii)	With twins: ${ }^{13} C_{6}$ or 1716 Without twins: ${ }^{13} C_{8}$ or 1287	B2	B1 for ${ }^{13} C_{6}$ or 1716 or ${ }^{13} C_{8}$ or 1287 B1 for $\left({ }^{13} C_{6}\right.$ and $\left.{ }^{13} C_{8}\right)$ or (1716 and 1287) with no multiples and no extra terms
	Total: $1716+1287=3003$	B1	3003 from a correct method
10(a)	matrix multiplication, must have at least 2 correct elements	M1	
	$\mathbf{A B}=\left(\begin{array}{cc}13 & 8 \\ 2 a-5 b & 3 a+4 b\end{array}\right)$	A1	
	$\begin{aligned} & 2 a-5 b=18 \\ & 3 a+4 b=4 \end{aligned}$	M1	formation and solution of simultaneous equations
	leading to $a=4, b=-2$	A1	
	Alternate scheme $\begin{aligned} & \mathbf{A B}=\left(\begin{array}{ll} 13 & 8 \\ 18 & 4 \end{array}\right) \\ & \mathbf{A B B}^{-\mathbf{1}}=\left(\begin{array}{ll} 13 & 8 \\ 18 & 4 \end{array}\right) \mathbf{B}^{-1} \end{aligned}$	M1	Correct plan
	Correct inverse	B1	
	$\mathbf{A}=\left(\begin{array}{cc}4 & -1 \\ a & b\end{array}\right)=\frac{1}{23}\left(\begin{array}{ll}13 & 8 \\ 18 & 4\end{array}\right)\left(\begin{array}{cc}4 & -3 \\ 5 & 2\end{array}\right)$	M1	Correct order and method of multiplication with at least two correct elements
	leading to $a=4, b=-2$	A1	
10(b)(i)	$-\frac{1}{17}\left(\begin{array}{ll}1 & 5 \\ 4 & 3\end{array}\right)$ oe	B2	$\begin{aligned} & \text { B1 for }-\frac{1}{17} \\ & \text { B1 for }\left(\begin{array}{ll} 1 & 5 \\ 4 & 3 \end{array}\right) \end{aligned}$
10(b)(ii)	$\mathbf{Z}=-\frac{1}{17}\left(\begin{array}{ll}1 & 5 \\ 4 & 3\end{array}\right)\left(\begin{array}{cc}-1 & 2 \\ 4 & 0\end{array}\right)$	M1	pre-multiplication with two elements correct
	$=-\frac{1}{17}\left(\begin{array}{cc}19 & 2 \\ 8 & 8\end{array}\right)$ oe	A2	A1 for four correct of $-\frac{1}{17}, 19,2,8,8$

Question	Answer	Marks	Guidance
11(i)	1.48	B1	
11(ii)	$\frac{1}{2} \times 10^{2} \times \theta=21.8$	M1	correct use of sector area
	$\theta=0.436$	A1	
11(iii)	$\angle B O C=\frac{2 \pi-1.48-0.436}{2} \quad(=2.18(4))$	B1	2.18(4) or unsimplified
	$\begin{aligned} & B C=20 \sin \left(\frac{1}{2} \angle B O C\right) \text { or } \\ & B C=\frac{10 \times \sin B O C}{\sin \left(\frac{\pi-B O C}{2}\right)} \text { or } \\ & B C=\sqrt{(200-200 \cos B O C} \\ & B C=17.7(5) \end{aligned}$	M2 \square	M1 for a complete correct method to find $B C$ using their angle BOC M1 for a correct plan using 14.8, their $B C$ and $10 \times$ their answer to (ii)
	$\begin{aligned} & \text { Perimeter }=14.8+(2 \times 17.7(5))+4.36 \\ & =54.7 \text { or } 54.6 \end{aligned}$	A1	awrt 54.7 or awrt 54.6

Question	Answer	Marks	Guidance
11(iv)	Area $=$ $\left(\frac{1}{2} \times 10^{2} \times 1.48\right)+21.8+2\left(\frac{1}{2} \times 10^{2} \sin 2.18(4)\right)$	B2	$\begin{aligned} & \text { B1 for }\left(\frac{1}{2} \times 10^{2} \times 1.48\right)+21.8 \\ & \text { B1 for } 2\left(\frac{1}{2} \times 10^{2} \sin 2.18(4)\right) \end{aligned}$
	$=178$	B1	awrt 178 from correct working
	Alternative method 1 $\text { Segment area }=\frac{1}{2}\left(10^{2}(2.18-\sin 2.18)\right)$	B1	B1 for $2 \times \frac{1}{2}\left(10^{2}(2.18(4)-\sin 2.18(4))\right.$
	Area required $=$ $100 \pi-2 \times \frac{1}{2}\left(10^{2}(2.18(4)-\sin 2.18(4))\right)$	B1	
	$=178$	B1	awrt 178 from correct working
	Alternative method 2 Area of trapezium $=\frac{1}{2}((13.5+4.33)(17.1))$	B1	correct area of trapezium $A B C D$ (allow unsimplified)
	$\begin{aligned} & \text { Area of segments }=\frac{1}{2}\left(10^{2}(1.48-\sin 1.48)\right)+ \\ & \frac{1}{2}\left(10^{2}(0.436-\sin 0.436)\right) \end{aligned}$	B1	correct area of both segments (allow unsimplified)
	$=178$	B1	awrt 178 from correct working

Question	Answer	Marks	Guidance
12(i)	$2 x^{2}+5 x-12=0$ or $y^{2}+3 y-28=0$	M1	attempt to get in terms of one variable
	$(2 x-3)(x+4)=0$ or $(y+7)(y-4)=0$	M1	M1dep for solution of a three term quadratic
	leading to $x=-4, y=-7$ and $x=\frac{3}{2}, y=4$	A2	A1 for each 'pair'
	Midpoint $M\left(\frac{\frac{3}{2}-4}{2}, \frac{4+(-7)}{2}\right)\left(=\left(-\frac{5}{4},-\frac{3}{2}\right)\right)$	A1	correctly obtained midpoint
	Gradient of $P Q=2$	B1	may be implied
	$\text { Perp gradient }=-\frac{1}{2}$	M1	$\frac{-1}{\text { their gradient of } P Q}$
	Perp bisector: $y+\frac{3}{2}=-\frac{1}{2}\left(x+\frac{5}{4}\right)$	M1	M1dep for equation of perp bisector using their perp gradient and their midpoint. (unsimplified)
	$\begin{aligned} & y=-\frac{1}{2}(-10)-\frac{17}{8}=\frac{23}{8} \\ & \text { or } \frac{23}{8}=-\frac{1}{2} x-\frac{17}{8} \rightarrow x=-10 \end{aligned}$	A1	all correct so far and for verification using a correct equation

Question	Answer	Marks	Guidance
12(ii)	Area $=\frac{1}{2} \times\left(\frac{17}{8}+1\right) \times \frac{5}{4}$	M1	finding R, S and $R S$
	correct method for finding area	M1	M1dep
	$=\frac{125}{64} \text { or } 1.95 \text { or } 1 \frac{61}{64}$	A1	
	Alternative method 1 $\text { Area }=\frac{1}{2} \times \frac{\sqrt{125}}{4} \times \frac{\sqrt{125}}{8}$	M1	finding $R, S, R M$ and $M S$
	correct method for finding area	M1	M1dep
	$=\frac{125}{64} \text { or } 1.95 \text { or } 1 \frac{61}{64}$	P A1	
	Alternative method 2 $\text { Area }=\frac{1}{2}\left\|\begin{array}{cccc} 0 & 0 & \frac{-5}{4} & 0 \\ 1 & \frac{-17}{8} & \frac{-3}{2} & 1 \end{array}\right\|$	M1	finding R and S to obtain their $\frac{1}{2}\left\|\begin{array}{cccc}0 & 0 & \frac{-5}{4} & 0 \\ 1 & \frac{-17}{8} & \frac{-3}{2} & 1\end{array}\right\|$
	$=\frac{1}{2}\left\|-\frac{5}{4}-\frac{85}{32}\right\|$ oe	M1	M1dep for correct method of evaluation
	$=\frac{125}{64}$ or 1.95 or $1 \frac{61}{64}$	A1	

MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1(i)	$\begin{aligned} & k x-5=x^{2}+4 x \\ & x^{2}+(4-k) x+5=0 \end{aligned}$	M1	equating line and curve equation and collecting terms to form an equation of the form $a x^{2}+b x+c=0$ x terms must be gathered together, maybe implied by later work
	For a tangent $(4-k)^{2}=20$	DM1	correct use of discriminant
	$k=4+2 \sqrt{5}$	A1	Accept $k=4+\sqrt{20}$
	Alternative Gradient of line $=k$ Gradient of curve $=\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+4$ Equating: $k=2 x+4$	M1	
	substitution of $k=2 x+4$ or $x=\frac{k-4}{2}$ in $k x-5=x^{2}+4$ and simplify to a quadratic equation in k or x	DM1	
	$k=4+2 \sqrt{5}$	A1	Accept $k=4+\sqrt{20}$
1(ii)	$\text { Normal gradient }=-\frac{1}{4+2 \sqrt{5}} \times \frac{4-2 \sqrt{5}}{4-2 \sqrt{5}}$	M1	use of negative reciprocal and attempt to rationalise using a form of $a-b \sqrt{5}$ or $a-\sqrt{20}$ or their equivalent from (i)
	$\begin{aligned} & =-\frac{4-2 \sqrt{5}}{-4} \mathrm{oe} \\ & =1-\frac{\sqrt{5}}{2} \end{aligned}$	A1	$-\frac{4-2 \sqrt{5}}{-4}$ oe leading to $1-\frac{\sqrt{5}}{2}$
2	$\mathrm{p}(3)=27+9 a+3 b-48$	M1	attempt to find p(3)
	$3 a+b=9$ oe	A1	
	$\begin{aligned} & \mathrm{p}^{\prime}(x)=3 x^{2}+2 a x+b \\ & \mathrm{p}^{\prime}(1)=3+2 a+b \end{aligned}$	M1	attempt to differentiate and find $\mathrm{p}^{\prime}(1)$ must have 2 terms correct
	$2 a+b=-3$ oe	A1	
	$a=12, b=-27$	A1	for both
3(a)	$x^{3} y^{7}$	B2	B1 for each term

Question	Answer	Marks	Guidance
3(b)(i)	for $(t-2)^{\frac{3}{2}}=(t-2)^{\frac{1}{2}}(t-2)$ soi	M1	
	$(t-2)^{\frac{1}{2}}(4+5(t-2))$	A1	
	$(t-2)^{\frac{1}{2}}(5 t-6)$	A1	
3(b)(ii)	$2 \text { and } \frac{6}{5}$	B1	FT on their $(t-2)^{\frac{1}{2}}(5 t-6)$, must have 2
4(a)(i)	$\mathrm{f}>5, \mathrm{f}(x)>5$	B1	
4(a)(ii)	$\frac{y-5}{3}=\mathrm{e}^{-4 x} \text { or } \frac{x-5}{3}=\mathrm{e}^{-4 y}$	B1	
	$-4 x=\ln \left(\frac{y-5}{3}\right) \text { or }-4 y=\ln \left(\frac{x-5}{3}\right)$	B1	
	leading to $\mathrm{f}^{-1}(x)=-\frac{1}{4} \ln \left(\frac{x-5}{3}\right)$ or $\mathrm{f}^{-1}(x)=\frac{1}{4} \ln \left(\frac{3}{x-5}\right)$ or $\mathrm{f}^{-1}(x)=\frac{1}{4}(\ln 3-\ln (x-5))$ or $\mathrm{f}^{-1}(x)=-\frac{1}{4}(\ln (x-5)-\ln 3)$	B1	
	Domain $x>5$	- B1	
4(b)	$\ln \left(x^{2}+5\right)=2$	B1	
	$x^{2}+5=\mathrm{e}^{2}$	B1	
	$x=1.55$ or better or $\sqrt{\mathrm{e}^{2}-5}$	B1	
5(a)(i)	$\overrightarrow{O M}=\overrightarrow{O C}+\frac{1}{2}(\overrightarrow{O A}-\overrightarrow{O C}) \mathrm{oe}$	M1	may be implied by correct answer.
	$\frac{1}{2}(\mathbf{a}+\mathbf{c})$	A1	

Question	Answer	Marks	Guidance
5(a)(ii)	$\begin{aligned} & \mathbf{b}=\frac{5}{2} \overrightarrow{O M} \text { oe, } \frac{5}{2}(\text { their }(\mathrm{i})) \\ & \text { or } \overrightarrow{O M}=\frac{2}{3}(\mathbf{b}-\overrightarrow{O M}) \end{aligned}$	M1	dealing with ratio correctly to relate \mathbf{b} or $\overrightarrow{O B}$ to $\overrightarrow{O M}$
	$=\frac{5}{4}(\mathbf{a}+\mathbf{c})$	A1	
5(b)(i)	$\begin{aligned} & \|-10 \mathbf{i}+24 \mathbf{j}\|=26 \\ & \mathbf{p}=\frac{39}{26}(-10 \mathbf{i}+24 \mathbf{j}) \end{aligned}$	M1	magnitude of $-10 \mathbf{i}+24 \mathbf{j}$ and use with 39
	$\mathbf{p}=-15 \mathbf{i}+36 \mathbf{j}$	A1	
5(b)(ii)	If parallel to the y-axis, \mathbf{i} component is zero	M1	realising \mathbf{i} component is zero
	so $2 \mathbf{p}+\mathbf{q}=12 \mathbf{j}$	DM1	use of 12
	$\mathbf{q}=30 \mathbf{i}-60 \mathbf{j}$	A1	
5(b)(iii)	$\|\mathbf{q}\|=30 \sqrt{1^{2}+(-2)^{2}}$ or $\sqrt{900} \times \sqrt{5}$	M1	attempt at magnitude of their \mathbf{q}
	$\|\mathbf{q}\|=30 \sqrt{5}$	A1	Answer Given: must have full and correct working
6(i)	$\frac{1}{2} \times 12^{2} \times \theta=150$	M1	use of sector area
	$\theta=2.083$, so $\theta=2.08$ to 2 dp	A1	
6(ii)	Area of triangle $A O B=\frac{1}{2} \times 12^{2} \sin 2.08$	M1	correct method for area of triangle
	$\text { Area of segment }=150-\frac{1}{2} \times 12^{2} \times \sin 2.08$	A1	allow unsimplified, using $\theta=2.08,2.083 \text { or } \frac{150}{72}$
	$\sin 1.04=\frac{\frac{A B}{2}}{12}$	M1	correct trigonometric statement using $\theta=2.08,2.083$ or $\frac{150}{72}$ with attempt to obtain $A B$
	$A B=$ awrt 20.7	A1	
	Shaded area $=$ their $A B \times 8-$ their segment area	M1	execution of a correct 'plan'(rectangle segment)
	awrt 78.4 or 78.5	A1	

Question	Answer	Marks	Guidance
6(iii)	Arc $A B=25$ or 24.96	B1	
	Perimeter $=25+$ their $A B+16$	M1	correct 'plan' (arc + their $A B+2 \times 8$)
	awrt 61.7	A1	
7	differentiation to obtain answer in the form $p\left(3 x^{2}+8\right)^{\frac{2}{3}}$ or $q x\left(3 x^{2}+8\right)^{\frac{2}{3}}$	M1	
	$6 x\left(3 x^{2}+8\right)^{\frac{2}{3}}$	B1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5}{3} \times 6 x\left(3 x^{2}+8\right)^{\frac{2}{3}}$	A1	all correct
	When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ only solution is $x=0$	DM1	$q x\left(3 x^{2}+8\right)^{\frac{2}{3}}=0$ and attempt to solve
	$x=0$ and $3 x^{2}+8=0$ has no solutions	A1	
	Stationary point at (0,32)	A1	
	correct gradient method with substitution of x values either side of zero or equivalent valid method	M1	
	correct conclusion from correct work using a correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$	A1	
8(i)		B5	B1 for shape of modulus function B1 for y intercept $=5$ (for modulus graph only) B1 for x intercept $=2.5$ at the V of a modulus graph B1 for shape of quadratic function for $-1 \leqslant x \leqslant 6$ B1 for intercepts at $x=0$ and $x=5$ for a quadratic graph
8(ii)	$2 x-5= \pm 4$	B1	one correct answer
	$x=\frac{9}{2}$	M1	solution of two different correct linear equations or solution of an equation obtained from squaring both sides or use of symmetry from first solution.
	$x=\frac{1}{2}$	A1	second correct solution

Question	Answer	Marks	Guidance
8(iii)	$\begin{aligned} & 16\left(\frac{1}{2}\right)^{2}-80\left(\frac{1}{2}\right)+36=4 \\ & \text { and } 16\left(\frac{9}{2}\right)^{2}-80\left(\frac{9}{2}\right)+36=4 \end{aligned}$	B1	verification using both x values or for forming and solving $16 x^{2}-80 x+36=0$
8(iv)	using their values from (ii) in an equality of the form $a \leqslant x \leqslant b$ or $a<x<b$	M1	
	$\frac{1}{2} \leqslant x \leqslant \frac{9}{2}$ cao	A1	
9(i)	$5+4\left(\sec ^{2}\left(\frac{x}{3}\right)-1\right)$ leading to given answer	B1	use of correct identity
9(ii)	$3 \tan \left(\frac{x}{3}\right)(+c)$	B1	
9(iii)	attempt to integrate using (i) and/or (ii)	M1	
	Area $=\int_{\frac{\pi}{2}}^{\pi} 4 \sec ^{2}\left(\frac{x}{3}\right)+1 \mathrm{~d} x$	A1	all correct
	$\left[12 \tan \left(\frac{x}{3}\right)+x\right]_{\frac{\pi}{2}}^{\pi}$	DM1	correct method for evaluation using limits in correct order
	$=\left(12 \tan \frac{\pi}{3}+\pi\right)-\left(12 \tan \frac{\pi}{6}+\frac{\pi}{2}\right)$	A1	
	$=8 \sqrt{3}+\frac{\pi}{2}$	A1	
10(a)	differentiation of a quotient or equivalent product	M1	
	correct differentiation of $\mathrm{e}^{3 x}$	B1	
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 \mathrm{e}^{3 x}\left(4 x^{2}+1\right)-8 x \mathrm{e}^{3 x}}{\left(4 x^{2}+1\right)^{2}} \\ & \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 \mathrm{e}^{3 x}}{4 x^{2}+1}-\frac{8 x \mathrm{e}^{3 x}}{\left(4 x^{2}+1\right)^{2}} \end{aligned}$	A1	everything else correct including brackets where needed, allow unsimplified

Question	Answer	Marks	Guidance
$10(\mathrm{~b})(\mathrm{i})$	one term differentiated correctly	M1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-4 \sin \left(x+\frac{\pi}{3}\right)+2 \sqrt{3} \cos \left(x+\frac{\pi}{3}\right)$	All correct	
	When $x=\frac{\pi}{2}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-5$	A1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} t}$	correct use of rates of change	
$-5 \times \frac{\mathrm{d} x}{\mathrm{~d} t}=10$ oe	A1	FT answer to (i)	
	$\frac{\mathrm{d} y}{\mathrm{~d} t}=-2$		

MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Partial Marks
1	$(A \cup B) \cap C$ $(A \cap B) \cup C$	B3	B1 for each
2	attempt at differentiating a quotient, must have minus sign and $(x+1)^{2}$ in the denominator	M1	
	for $\left(5 x^{2}+4\right)^{-\frac{1}{2}}$	B1	
	$\text { for } \frac{1}{2}(10 x)\left(5 x^{2}+4\right)^{-\frac{1}{2}}$	DB1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x+1) \frac{1}{2}(10 x)\left(5 x^{2}+4\right)^{-\frac{1}{2}}-\left(5 x^{2}+4\right)^{\frac{1}{2}}}{(x+1)^{2}}$	A1	all else correct
	When $x=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{11}{112}$		must be exact
	Alternative $y=\left(5 x^{2}+4\right)^{\frac{1}{2}}(x+1)^{-1}$	M1	attempt to differentiate a product
	for $\left(5 x^{2}+4\right)^{-\frac{1}{2}}$	B1	
	for $\frac{1}{2}(10 x)\left(5 x^{2}+4\right)^{-\frac{1}{2}}$	DB1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} 10 x\left(5 x^{2}+4\right)^{-\frac{1}{2}}(x+1)^{-1}+\left(5 x^{2}+4\right)^{\frac{1}{2}}\left(-(x+1)^{-2}\right)$	A1	all else correct
	When $x=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{11}{112}$	A1	A1 must be exact

Question	Answer	Marks	Partial Marks
3(a)	$\mathbf{v}=3 \sqrt{5} \times \frac{1}{\sqrt{5}}(\mathbf{i}-2 \mathbf{j})$	M1	attempt to find the magnitude of $(\mathbf{i}-2 \mathbf{j})$ and use
	$=3 \mathbf{i}-6 \mathbf{j}$	A1	for $3 \mathbf{i}-6 \mathbf{j}$ only
3(b)	$\mathbf{w}=2 \cos 30^{\circ} \mathbf{i}+2 \sin 30^{\circ} \mathbf{j}$	M1	attempt to use trigonometry correctly to obtain components
	$=\sqrt{3} \mathbf{i}+\mathbf{j}$	A1	
4	$\begin{aligned} & 3^{n}-n 3^{n-1}\left(\frac{x}{6}\right)+n(n-1) 3^{n-2}\left(\frac{x}{6}\right)^{2} \\ & 3^{n}=81, \text { so } n=4 \end{aligned}$	B1	
	$4 \times 3^{3} \times-\frac{1}{6}=a$	M1	for $-n 3^{n-1}\left(\frac{x}{6}\right),{ }^{n} C_{1} 3^{n-1}\left(-\frac{x}{6}\right)$ or $\binom{n}{1} 3^{n-1}\left(-\frac{x}{6}\right)$, with/without their n
	$a=-18$	A1	using their n and equating to a to obtain $a=-18$
	$\frac{4 \times 3}{2} \times 3^{2} \times \frac{1}{36}=b$	M1	for $n(n-1) 3^{n-2}\left(\frac{x}{6}\right)^{2},{ }^{n} C_{2} 3^{n-2}\left(\frac{x}{6}\right)^{2}$ or $\binom{n}{2} 3^{n-2}\left(\frac{x}{6}\right)^{2}$, with/without their n
	$b=\frac{3}{2}$	A1	using their n and equating to b to obtain $b=\frac{3}{2}$
5(i)	$v=-12 \sin 3 t$	B1	
5(ii)	12	B1	FT on their (i) of the form $k \sin 3 t$, must be $\|k\|$
5(iii)	$a=-36 \cos 3 t$	B1	allow unsimplified
	$3 t=\frac{\pi}{2}, 1.57$ or better	B1	
	$t=\frac{\pi}{6} \text { or } 0.524$	B1	
5(iv)	4 cao	B1	may be obtained from knowledge of cosine curve

Question	Answer	Marks	Partial Marks
6(i)	$\frac{1}{\sin \theta} \times \frac{1}{\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}}$	M1	$\begin{aligned} & \text { for } \cot \theta=\frac{\cos \theta}{\sin \theta}, \tan \theta=\frac{\sin \theta}{\cos \theta}, \\ & \operatorname{cosec} \theta=\frac{1}{\sin \theta} \end{aligned}$
	dealing with the fractions correctly	M1	
	$\frac{1}{\sin \theta} \times \frac{\sin \theta \cos \theta}{\cos ^{2} \theta+\sin ^{2} \theta}$	M1	use of identity
	$=\cos \theta$	A1	correct simplification, with all correct
	Alternative 1 $\frac{\operatorname{cosec} \theta}{\frac{1}{\tan \theta}\left(1+\tan ^{2} \theta\right)}$	M1	dealing with fractions
	$=\frac{\tan \theta \operatorname{cosec} \theta}{\sec ^{2} \theta}$	M1	use of appropriate identity
	$=\frac{\sin \theta}{\cos \theta} \times \frac{1}{\sin \theta} \times \cos ^{2} \theta$	M1	$\begin{aligned} & \text { for } \cot \theta=\frac{1}{\tan \theta}, \tan \theta=\frac{\sin \theta}{\cos \theta}, \\ & \sec \theta=\frac{1}{\cos \theta}, \operatorname{cosec} \theta=\frac{1}{\sin \theta} \end{aligned}$
	$=\cos \theta$	A1	correct simplification, with all correct
	Alternative 2 $\frac{\operatorname{cosec} \theta}{\frac{1}{\cot \theta}\left(\cot ^{2} \theta+1\right)}$	M1	dealing with fractions
	$=\frac{\cot \theta \operatorname{cosec} \theta}{\operatorname{cosec}^{2} \theta}$	M1	use of appropriate identity
	$\begin{aligned} & =\frac{\cot \theta}{\operatorname{cosec} \theta} \\ & =\frac{\cos \theta}{\sin \theta} \times \sin \theta \end{aligned}$	M1	$\begin{aligned} & \text { for } \cot \theta=\frac{\cos \theta}{\sin \theta}, \tan \theta=\frac{\sin \theta}{\cos \theta}, \\ & \operatorname{cosec} \theta=\frac{1}{\sin \theta} \end{aligned}$
	$=\cos \theta$	A1	correct simplification, with all correct

Question	Answer	Marks	Partial Marks
6(ii)	$\int_{0}^{a} \cos 2 \theta \mathrm{~d} \theta=\left[\frac{1}{2} \sin 2 \theta\right]_{0}^{a}$	B1	
	$\frac{1}{2} \sin 2 a=\frac{\sqrt{3}}{4}$	M1	use of $[k \sin 2 \theta]_{0}^{a}=\frac{\sqrt{3}}{4}$ to obtain $k \sin 2 a=\frac{\sqrt{3}}{4}$
	$2 a=\frac{\pi}{3}$	DM1	attempt to solve equation of the form $k \sin 2 a=\frac{\sqrt{3}}{4}$, with $-1 \leqslant \frac{\sqrt{3}}{4 k} \leqslant 1$, must have a correct order of operations dealing with the double angle
	$a=\frac{\pi}{6}, 0.167 \pi$ or better	A1	
7(i)	$\lg y=\lg A+b x$	B1	straight line form, may be implied by correct values of both A and b later
	Gradient $=b$,	M1	equating gradient to b
	$b=3$	A1	
	Use of substitution into one of the following $\begin{aligned} & 2.2=\lg A+0.5 b \\ & 3.7=\lg A+b \\ & 158.489=A \times 10^{0.5 b} \\ & 5011.872=A \times 10^{b} \end{aligned}$ or equivalent valid method leads to $\lg A=0.7$	M1	
	$A=5,5.01$ or $10^{0.7}$	A1	
	Alternative 1 $\lg y=\lg A+b x$	B1	straight line form, may be implied by correct work later
	$2.2=\lg A+0.5 b$	M1	one correct equation
	$3.7=\lg A+b$	A1	both equations correct
	attempt to solve 2 correct equations	M1	
	leading to $b=3$ and $A=5,5.01$ or $10^{0.7}$	A1	

Question	Answer	Marks	Partial Marks
7(i)	Alternative 2 $\begin{aligned} & y=A\left(10^{b x}\right) \\ & 158.489=A \times 10^{0.5 b} \end{aligned}$	M1	one correct equation
	$5011.872=A \times 10^{b}$	A1	both correct
	$\frac{5011.872}{158.489}=10^{0.5 b}$	M1	attempt to solve 2 correct equations
	leading to $b=3$	A1	correct b
	Use of substitution leads to $A=5,5.01$ or $10^{0.7}$	A1	correct A
7(ii)	Substitute A and b correctly into either $y=A\left(10^{0.6 b}\right), \lg y=\lg A+0.6 b$ or $\lg y=\lg A+0.6 \lg 10^{b}$ or using $\lg y=1.8+0.7$	M1	correct statement using their A and b correctly in either equation or using $\lg y=3 x+0.7$
	$y=316,315$ or $10^{2.5}$	A1	
7(iii)	Substitute A and b correctly into either $600=A\left(10^{b x}\right), \lg 600=\lg A+b x$ or $\lg 600=\lg A+x \lg 10^{b}$ or using $\lg 600=3 x+0.7$	M1	correct statement using their A and b correctly in either equation or using $\lg y=3 x+0.7$
	$x=0.693$	A1	
8(a)(i)	2520	B1	
8(a)(ii)	360	B1	
8(a)(iii)	1080	B1	
8(a)(iv)	$\begin{aligned} & 6 \text { or } 8 \text { to start with } \\ & \text { No of ways }=2 \times 5 \times 4 \times 3 \times 2 \\ & =240 \end{aligned}$	B1	
	$\begin{aligned} & 9 \text { to start with } \\ & \text { No of ways }=1 \times 5 \times 4 \times 3 \times 3 \\ & =180 \end{aligned}$	B1	
	Total number of ways $=420$	DB1	Dependent on both previous B marks

Question	Answer	Marks	Partial Marks
8(a)(iv)	Alternative 1 All numbers $>6000-$ all odd numbers >6000	B1	plan and attempt to use, must be using 1080
	1080-180-480	B1	for 180 and 480
	Total number of ways $=420$	DB1	Dependent on both previous B marks
	Alternative 2 Even numbers >60000 : Odd numbers >60000 7:11	B1	correct ratio
	$\text { Total number of ways }=\frac{7}{18} \times 1080$	B1	
	$=420$	DB1	Dependent on both previous B marks
8(b)(i)	480700	B1	
8(b)(ii)	26460	B1	
8(b)(iii)	With brother and sister ${ }^{23} C_{5}=33649$	B1	for ${ }^{23} C_{5}$ or ${ }^{23} C_{5} \times{ }^{k} C_{k}$
	Without brother and sister ${ }^{23} C_{7}=245157$	B1	for ${ }^{23} C_{7}$ or ${ }^{23} C_{7} \times{ }^{k} C_{k}$
	Total number of ways $=278806$	B1	for ${ }^{23} C_{5}+{ }^{23} C_{7}$ and evaluation
9(a)(i)	3×2	B1	
9(a)(ii)	correct attempt to multiply the 2 matrices	M1	
	$\mathbf{C}=\left(\begin{array}{rr}6 & -6 \\ 5 & 2 \\ 19 & -8\end{array}\right)$	A2	-1 for each incorrect element
9(b)(i)	$\mathbf{X}^{-1}=\frac{1}{13}\left(\begin{array}{cc}-7 & 12 \\ -4 & 5\end{array}\right)$	B2	B1 for correct use of determinant B1 for correct matrix
9(b)(ii)	$\binom{x}{y}=\frac{1}{13}\left(\begin{array}{ll}-7 & 12 \\ -4 & 5\end{array}\right)\binom{26}{52}$	B1	
	attempt to evaluate using inverse from (i) together with pre-multiplication to obtain a 2×1 matrix	M1	
	$x=34, y=12$	A2	A1 for each
10(i)	0.5	B1	for 0.5 from correct work only

Question	Answer	Marks	Partial Marks
10(ii)	$\begin{aligned} & 15^{2}=8^{2}+8^{2}-(2 \times 8 \times 8 \times \cos A O B) \\ & A O B=2.43075 \mathrm{rads} \end{aligned}$	M1	use of cosine rule (or equivalent) to obtain angle $A O B$.
	$D O C=A O B-2($ their $A O D)$	M1	use of angle $A O D$ and symmetry
	$D O C=1.43$ to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better in previous calculations
	Alternative 1 $15=2 \times 8 \times \sin \left(\frac{1+D O C}{2}\right)$	M1	use of basic trigonometry
	use of $\frac{1+0.5 D O C}{2}$	M1	may be implied
	$D O C=1.43$ to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better or 1.215 or better in previous calculations
	Alternative 2		
	$\begin{aligned} & 15^{2}=8^{2}+8^{2}-(2 \times 8 \times 8 \times \cos A O B) \\ & A O B=2.43075 \mathrm{rads} \\ & \angle A O B \times 8=\operatorname{arc} A B \end{aligned}$	M1	use of cosine rule (or equivalent) to obtain angle AOB.
	$\frac{\operatorname{arc} A B-8}{8}=\angle D O C$	M1	attempt at $D O C$, must be a complete method with $A O B$ found
	$D O C=1.43$ to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better or 1.215 or better in previous calculations
	Alternative 3 Equating 2 different forms for the area of triangle $A O B$ $\frac{15 \sqrt{31}}{4}=\frac{1}{2} \times 8^{2} \sin A O B, A O B=2.43075 \mathrm{rads}$	M1	using both different forms of the area of triangle $A O B$
	$D O C=A O B-2($ their $A O D)$	M1	use of angle $A O D$ and symmetry
	$D O C=1.43$ to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better in previous calculations

Question	Answer	Marks	Partial Marks
10(iii)	$\begin{aligned} & \sin \left(\frac{1.43}{2}\right)=\frac{\frac{D C}{2}}{8} \text { or } \\ & D C^{2}=8^{2}+8^{2}-(2 \times 8 \times 8 \times \cos 1.43) \end{aligned}$	M1	use of cosine rule or basic trigomoetry to obtain $D C$
	$D C=10.49$	A1	awrt 10.5, may be implied
	$\begin{aligned} & \text { Perimeter }=10.49+4+4+15 \\ & =33.5 \end{aligned}$	A1	awrt 33.5
10(iv)	$\frac{1}{2} \times 8^{2}(2.43-\sin 2.43)-\frac{1}{2} \times 8^{2}(1.431-\sin 1.431)$	B1	area of one appropriate sector; allow unsimplified; may be implied by a correct segment
	area of one appropriate triangle, allow unsimplified	B1	
	an appropriate segment, allow unsimplified	B1	
	$=42.8$ (allow awrt 42.8)	B1	final answer
	Alternative 1 Area of a trapezium +2 small segments	B1	one appropriate small sector, allow unsimpified (could be doubled)
	$\text { Each small segment }=\frac{1}{2} \times 8^{2}(0.5-\sin 0.5)$	B1	an appropriate triangle, allow unsimplfied (could be doubled)
	$\text { Area of trapezium }=\frac{1}{2}(15+10.5) \times(6.041-2.784)$	B1	attempt at trapezium, must have a correct attempt at finding the distance between the parallel sides - allow unsimplified
	Total area $=42.8$ (allow awrt 42.8)	B1	final answer
	Alternative 2 Area of 2 small sectors + area of triangle $O D C$ - the area of triangle $O A B$ Area of a small sector $=\frac{1}{2} \times 8^{2} \times \frac{1}{2}$	B1	area of small sector, allow unsimplified, (could be doubled)
	Area of triangle $O D C=\frac{1}{2} \times 8^{2} \times \sin 1.43$	B1	area of triangle $O D C$, allow unsimplified
	Area of triangle $O A B=\frac{1}{2} \times 8^{2} \times \sin 2.43$	B1	area of triangle $O A B$, allow unsimplified
	Total area $=42.8($ allow awrt 42.8)	B1	final answer

Question	Answer	Marks	Partial Marks
10(iv)	Alternative 3 Area of rectangle +2 small triangles +2 small segments Each small segment $=\frac{1}{2} \times 8^{2}(0.5-\sin 0.5)$	B1	area of a small segment, allow unsimplified, could be doubled
	$\frac{1}{2} \times \frac{(15-10.49)}{2}(6.041-2.784)$	B1	area of a small triangle, allow unsimplified, could be doubled
	Area of rectangle $=10.49 \times(6.041-2.784)$	B1	allow unsimplified, could be doubled
	Total area $=42.8$ (allow awrt 42.8)	B1	final answer
	Alternative 4 $\begin{aligned} & \text { Sector } A O B \text { - sector } A O D \text { - sector } C O B \text { - triangle } \\ & D O C \end{aligned}$	B1	area of one appropriate sector; allow unsimplified; may be implied by a correct segment
	$\begin{aligned} & \left(\frac{1}{2} \times 8^{2} \times 2.43\right)-2\left(\frac{1}{2} \times 8^{2} \times 0.5\right)-\left(\frac{1}{2} \times 8^{2} \sin 1.43\right) \\ & \text { Area }=\text { sector } A O B-\text { segment } D C \text { - triangle } A O B \end{aligned}$	B1	area of one appropriate triangle, allow unsimplified
	$\left(\frac{1}{2} \times 8^{2} \times 2.43\right)$-(their segment) $-\left(\frac{1}{2} \times 8^{2} \sin 2.43\right)$	B1	an appropriate segment, allow unsimplified
	Total area $=42.8$ (allow awrt 42.8)	B1	final answer
11(i)	$m \mathrm{e}^{2 x-1}$ where m is numeric constant	M1	
	$\mathrm{f}(x)=\frac{1}{2} \mathrm{e}^{2 x-1}(+c)$	A1	condone omission of $+c$
	$\frac{7}{2}=\frac{1}{2}+c$	DM1	correct attempt to find arbitrary constant
	$\mathrm{f}(x)=\frac{1}{2} \mathrm{e}^{2 x-1}+3$	A1	must be an equation
11(ii)	$k \mathrm{e}^{2 x-1}$ where k is a numeric constant	M1	
	$\mathrm{f}^{\prime \prime}(x)=2 \mathrm{e}^{2 x-1}$	A1	
	$2 x-1=\ln \left(\frac{4}{k}\right)$	DM1	attempt to equate to 4 and use logarithms
	$x=\frac{1}{2}+\ln \sqrt{2}$	A1	

Cambridge International Examinations

ADDITIONAL MATHEMATICS

0606/13
Paper 1
May/June 2017
MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer		Marks
1(a)			Partial Marks
1(b)			

Question	Answer	Marks	Partial Marks
5	When $x=4, y=5$	B1	for y
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \times 4(4 x+9)^{-\frac{1}{2}}$	B1	for $2(4 x+9)^{-\frac{1}{2}}$, allow unsimplified
	When $x=4, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{5}$, so perp grad $=-\frac{5}{2}$	M1	obtaining numerical gradient for normal
	Equation of normal $\begin{aligned} & y-5=-\frac{5}{2}(x-4) \\ & (2 y=30-5 x) \end{aligned}$	M1	for equation of normal
	$A(6,0), B(0,15)$	A2	A1 for each
	$\operatorname{Midpoint}\left(3, \frac{15}{2}\right)$	B1	FT on their x / y intercepts
6(a)(i)	dealing with multiplication and addition	M1	implied by 2 correct elements
	$\mathbf{A}+3 \mathbf{C}=\left(\begin{array}{rr}-12 & 7 \\ 11 & 7\end{array}\right)$	A1	
6(a)(ii)	correct attempt to multiply	M1	implied by 2 correct elements
	$\mathbf{B A}=\left(\begin{array}{rr}17 & 9 \\ 14 & 18 \\ -3 & -1\end{array}\right)$	A1	
6(b)(i)	$\mathbf{X}^{-1}=\frac{1}{10}\left(\begin{array}{ll}-2 & 3 \\ -4 & 1\end{array}\right)$	B2	B1 for $\frac{1}{10}$, B1 for $\left(\begin{array}{ll}-2 & 3 \\ -4 & 1\end{array}\right)$
6(b)(ii)	$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\frac{1}{10}\left(\begin{array}{ll}-2 & 3 \\ -4 & 1\end{array}\right)\left(\begin{array}{cc}5 & -10 \\ 15 & 20\end{array}\right)$	M1	pre-multiplication using matrix from (b)(i)
	$=\left(\begin{array}{rr}3.5 & 8 \\ -0.5 & 6\end{array}\right)$	A2	-1 for each incorrect element

Question	Answer	Marks	Partial Marks
7(a)	$\text { LHS }=\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\sin ^{2} \theta}{\cos \theta+\frac{1}{\cos \theta}}$	M1	for obtaining all in terms of $\sin \theta$ and $\cos \theta$
	$=\frac{\frac{\sin ^{2} \theta+\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta+1}{\cos \theta}}$	M1	for simplification using addition of fractions
	$\begin{aligned} & =\frac{\sin ^{2} \theta\left(1+\cos ^{2} \theta\right)}{\cos \theta\left(\cos ^{2} \theta+1\right)} \\ & =\frac{\sin ^{2} \theta}{\cos \theta} \end{aligned}$	M1	for factorisation and subsequent cancelling of common term
	$\tan \theta \sin \theta=$ RHS	A1	correct final simplification
	Alternative $\frac{\sec ^{2} \theta-1-\cos ^{2} \theta+1}{\cos \theta+\sec \theta}$	M1	use of correct identities
	$\begin{aligned} & =\frac{(\sec \theta-\cos \theta)(\sec \theta+\cos \theta)}{(\sec \theta-\cos \theta)} \\ & =\sec \theta-\cos \theta \end{aligned}$	M1	attempt to factorise and simplify
	$=\frac{1-\cos ^{2} \theta}{\cos \theta}$	M1	simplification to obtain terms in $\sin \theta$ and $\cos \theta$ only
	$\begin{aligned} & =\frac{\sin ^{2} \theta}{\cos \theta} \\ & =\tan \theta \sin \theta \end{aligned}$	A1	for final simplification
7(b)	$\sin \phi=\frac{x}{3}, \cos \phi=\frac{3}{y}$	M1	for obtaining $\sin \phi$ and $\cos \phi$ in terms of x and y and attempt to use correct identity
	Using $\sin ^{2} \phi+\cos ^{2} \phi=1$ leads to $\frac{x^{2}}{9}+\frac{9}{y^{2}}=1$ and hence $x^{2} y^{2}+81=9 y^{2}$	M1	attempt at simplification
	81	A1	

Question	Answer	Marks	Partial Marks
	Alternative method using substitution $\left(9 \times \frac{9}{\cos ^{2} \phi}\right)-\left(\frac{9}{\cos ^{2} \phi} \times 9 \sin ^{2} \phi\right)$	M1	attempt to substitute in for x and y
	$=\left(\frac{81}{\cos ^{2} \phi}\right)-\left(\frac{81 \sin ^{2} \phi}{\cos ^{2} \phi}\right)$	M1	simplification of fractions
	$\begin{aligned} & =\frac{81\left(1-\sin ^{2} \phi\right)}{\cos ^{2} \phi} \text { or } \\ & 81\left(\sec ^{2} \phi-\tan ^{2} \phi\right) \end{aligned}$ leading to 81	A1	use of correct identity to obtain 81
8(i)	$\mathrm{p}\left(-\frac{1}{2}\right)=-\frac{2}{8}+\frac{a}{4}-2+b$	M1	for attempt at $p\left(-\frac{1}{2}\right)$
	leading to $a+4 b=9$ oe	A1	
	$\mathrm{p}(1)=2+a+4+b$ leading to $a+b=-18$ oe	B1	
	solution of simultaneous equations	M1	
	$a=-27, b=9$	A1	for both
8(ii)	attempt at factorisation using either long division or observation	M1	
	$(2 x+1)\left(x^{2}-14 x+9\right)$	A1	
8(iii)	attempt to solve $\mathrm{q}(x)=0$	M1	
	$x=7 \pm 2 \sqrt{10},-\frac{1}{2}$	A1	for all 3 solutions
9 (i)	$\left[3 \mathrm{e}^{5 x}+\mathrm{e}^{-5 x}\right]_{-k}^{k}=6$	B2	B1 for each term integrated correctly
	$\left(3 \mathrm{e}^{5 k}+\mathrm{e}^{-5 k}\right)-\left(3 \mathrm{e}^{-5 k}+\mathrm{e}^{5 k}\right)=6$	M1	for use of limits with $a \mathrm{e}^{5 x}+b \mathrm{e}^{-5 x}$
	$2 \mathrm{e}^{5 k}-2 \mathrm{e}^{-5 k}=6$	A1	correct unsimplified
	$\mathrm{e}^{5 k}-\mathrm{e}^{-5 k}=3$	A1	correct simplification to obtain given answer

Question	Answer	Marks	Partial Marks
9 (ii)	$y^{2}-3 y-1=0$	M1	for correct attempt to obtain a quadratic equation in terms of y or $\mathrm{e}^{5 x}$
	$\begin{aligned} & y=\frac{3 \pm \sqrt{9+4}}{2}, y=\mathrm{e}^{5 k}=3.303 \\ & \text { only } \end{aligned}$	DM1	for attempt to solve quadratic equation and solve for k
	$k=0.239$	A1	A0 if more than one solution is given
10(i)	for attempt to differentiate a product	M1	
	$\frac{5}{5 x+1}$	B2	B1 for $\frac{1}{5 x+1}$
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(10 x+2) \times \frac{5}{5 x+1}+10 \ln (5 x+1)$	A1	all else correct
10(ii)	$(10 x+2) \times \frac{5}{5 x+1}=10$	B1	simplification to obtain 10, allow if seen in (i)
	$\begin{aligned} & 10 \int \ln (5 x+1) \mathrm{d} x \\ & \quad=(10 x+2) \ln (5 x+1)-10 x \end{aligned}$	M1	use of result from part (i)
	$\begin{aligned} & \int \ln (5 x+1) \mathrm{d} x \\ & \quad=\frac{(5 x+1)}{5} \ln (5 x+1)-x \end{aligned}$	A1	
10(iii)	$[(x+0.2) \ln (5 x+1)-x]_{0}^{\frac{1}{5}}$	M1	use of limits in result from (ii)
	$=-\frac{1}{5}+\frac{2}{5} \ln 2=\frac{-1+\ln 4}{5} \text { cao }$	A1	
11(i)	attempt to differentiate	M1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=6-\frac{3}{2} x^{\frac{1}{2}}$	A1	
	When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$	M1	equating to zero and attempt to solve
	$x=16, y=32$	A1	both correct

Question	Answer	Marks	Partial Marks
11(ii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{3}{4} x^{-\frac{1}{2}}$	B1	correct differentiation
	This is negative so a maximum point	DB1	correct conclusion
11(iii)	When $x=4, \frac{\mathrm{~d} y}{\mathrm{~d} x}=3$	B1	
	$\partial y \approx \frac{\mathrm{~d} y}{\mathrm{~d} x} \times h$	M1	use of small increases
	$\approx 3 h$	A1	FT their (iii)
12(i)	attempt to differentiate	M1	
	$6 \cos 2 t+6$	A1	
12(ii)	$\cos 2 t=-1$	M1	attempt to equate (i) to zero and solve
	$t=\frac{\pi}{2}$	A1	
12(iii)	attempt to integrate	M1	
	$x=-\frac{3}{2} \cos 2 t+3 t^{2}+2 t \quad(+c)$	A2	-1 for each error
	When $t=0, x=0$, so $c=\frac{3}{2}$	M1	attempt to find c
	$x=\frac{3}{2}-\frac{3}{2} \cos 2 t+3 t^{2}+2 t$	A1	

MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

Question	Answer	Marks	Part Marks
1 (a) (i)	0	B1	
(ii)	10	B1	
(b)		B1	either $X \cap Y=Y$ or $X \cap Z=Z$
	\bigcirc	B1	$Y \cap Z=\varnothing$
		B1	completely correct Venn diagram.

Question	Answer	Marks	Part Marks
2 (i) (ii)	$\left(90^{\circ},-2\right)$	B1 B1 B1 B1	2 complete cycles having a maximum at $y=4$ and a minimum at $y=-2$ completely correct curve
3	$\begin{aligned} & a^{5}+5 a^{4}\left(\frac{x}{4}\right)+10 a^{3}\left(\frac{x}{4}\right)^{2} \\ & a^{5}=32, \text { so } a=2 \\ & b=5 \times \frac{1}{4} \times(\text { their } a)^{4} \end{aligned}$ leading to $b=20$ $c=10 \times \frac{1}{16} \times(\text { their } a)^{3}$ leading to $c=5$	B1 M1 A1 M1 A1	correct attempt to obtain b
4 (a) (i) (ii) (b)	$\begin{aligned} & \frac{1}{10}\left(\begin{array}{rr} 4 & 3 \\ -2 & 1 \end{array}\right) \\ & \mathbf{M}=\frac{1}{10}\left(\begin{array}{rr} 4 & 3 \\ -2 & 1 \end{array}\right)\left(\begin{array}{rr} -1 & -5 \\ 4 & 2 \end{array}\right) \\ & \mathbf{M}=\frac{1}{5}\left(\begin{array}{rr} 4 & -7 \\ 3 & 6 \end{array}\right) \quad \text { oe } \\ & -3 a+2=4(6 a-4) \\ & a=\frac{2}{3} \end{aligned}$	B1 B1 M1 A2,1,0 M1 A1	$\begin{aligned} & \text { for } \frac{1}{\text { determinant }} \\ & \text { for matrix } \end{aligned}$ pre-multiplication by the matrix from part (i) -1 each element error correct use of a determinant

Question	Answer	Marks	Part Marks
5 (i) (ii)	$\left.\left.\begin{array}{rl} \text { LHS } & =\frac{1}{\sin \theta}-\sin \theta \\ & =\frac{1-\sin ^{2} \theta}{\sin \theta} \\ & =\frac{\cos ^{2} \theta}{\sin \theta} \\ & =\cot \theta \cos \theta \end{array}\right\} \begin{array}{rl} \cot \theta \cos \theta=\frac{1}{3} \cos \theta \\ 3 \cot \theta \cos \theta-\cos \theta=0 \end{array}\right](3 \cot \theta-1)=0 .$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1,A1 } \end{aligned}$	dealing with $\operatorname{cosec} \theta$ and attempt at dealing with fractions correct use of identity completely correct proof use of part (i), manipulation and factorisation dealing with $\cot \theta$ and attempt to solve A1 for each pair of solutions (allow 1.57 and 4.71)
(a) (i) (ii) (iii) (b) (i) (ii) (iii)	403207205040351Twins in team of $4{ }^{5} C_{2}=10$ Twins in team of 3$=5$ Total $=15$ www =	B1 B1	

Question	Answer	Marks	Part Marks
7 (a) (b)	$\begin{aligned} & \frac{102}{17}\binom{8}{-15} \\ & \binom{48}{-90} \\ & \binom{2 p-2 q+4}{10 p+2 q+3}=\binom{p^{2}}{27} \\ & 2 p-2 q+4=p^{2} \\ & 10 p+2 q+3=27 \end{aligned}$ leading to $p^{2}-12 p+20=0$ $\begin{aligned} & p=2, q=2 \\ & p=10, q=-38 \end{aligned}$	M1 A1 M1 M1 A1 M1 A1 A1	attempt to obtain magnitude of $\binom{8}{-15}$ and use it dealing with the scalar and with addition equating like vectors and simplifying both equations correct elimination of q and subsequent solution of quadratic
8 (i) (ii) (iii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \cos 2 x(+c) \\ & 5=-2 \cos \pi+c \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3-2 \cos 2 x \\ & y=3 x-\sin 2 x(+c) \\ & -\frac{1}{2}=\frac{\pi}{4}-\frac{1}{2}+c \\ & y=3 x-\sin 2 x-\frac{\pi}{4} \quad \text { oe } \end{aligned}$ When $x=\frac{\pi}{12}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=3-\sqrt{3}$ Normal equation: $y+\frac{1}{2}=\frac{1}{\sqrt{3}-3}\left(x-\frac{\pi}{12}\right)$ $y=-0.789 x-0.294 \text { cao }$	M1 A1 M1 A1	integration to obtain the form $a \cos 2 x$ correct, condone omission of c attempt to find c May be implied by a correct c integration to obtain the form $a \sin 2 x$ correct, condone omission of c attempt to find c attempt to obtain perpendicular gradient and normal equation FT on their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from (i). Allow unsimplified

Question	Answer	Marks	Part Marks
9 (i)	$\begin{aligned} & \frac{1}{2} \times 10^{2} \times \theta=20 \pi \\ & \theta=\frac{2 \pi}{5} \end{aligned}$	M1 A1	use of sector area to obtain θ
(ii)	Arc length $A B=4 \pi$	B1FT	FT their θ
	$\begin{aligned} & B C^{2}=10^{2}+10^{2}-(2 \times 10 \times 10 \times \cos 2 \theta) \\ & \text { or } \frac{B C}{\sin \frac{4 \pi}{5}}=\frac{10}{\sin \frac{\pi}{10}} \\ & B C=19.02 \\ & \text { Perimeter }=50.6 \end{aligned}$	M1 A1 A1	valid attempt to obtain $B C$
(iii)	Area $=$ Either $\left(\frac{1}{2} \times 19.02^{2} \sin \frac{\pi}{5}\right)$	M1	area of triangle $A C B$
	$+\left(20 \pi-\left(\frac{1}{2} \times 10^{2} \sin \frac{2 \pi}{5}\right)\right)$	M1	area of relevant segment
	= 121.6 allow awrt 122	A1	
	Or		
	$20 \pi+2\left(\frac{1}{2} \times 10 \times 10 \sin \frac{4 \pi}{5}\right)$ $=121.6 \text { allow awrt } 122$	$\begin{gathered} \text { M1,M1 } \\ \text { A1 } \end{gathered}$	M1 for area of triangle $A O B$ or $A O C$ M1 for a complete method

Question	Answer	Marks	Part Marks
10	$\begin{aligned} & (2 x-5)^{\frac{3}{2}}=3 \sqrt{3} \\ & x=4 \end{aligned}$ At $A x=2.5$ Either Area $=\frac{1}{2} \times \frac{3}{2} \times 3 \sqrt{3}-\int_{2.5}^{4}(2 x-5)^{\frac{3}{2}} \mathrm{~d} x$ $=\frac{9 \sqrt{3}}{4}-\left[\frac{1}{5}(2 x-5)^{2.5}\right]_{2.5}^{4}$ $\begin{aligned} & =\frac{9 \sqrt{3}}{4}-\left(\frac{1}{5}(3)^{2.5}-0\right) \\ & =\frac{9 \sqrt{3}}{20} \end{aligned}$ Or line $A B$: $y=2 \sqrt{3} x-5 \sqrt{3}$ $\begin{aligned} \text { Area } & =\int_{2.5}^{4} 2 \sqrt{3} x-5 \sqrt{3}-(2 x-5)^{\frac{3}{2}} \mathrm{~d} x \\ & =\left[\sqrt{3} x^{2}-5 \sqrt{3} x-\frac{(2 x-5)^{\frac{5}{2}}}{5}\right]_{2.5}^{4} \\ & =\frac{9 \sqrt{3}}{4}-\frac{9 \sqrt{3}}{5} \\ & =\frac{9 \sqrt{3}}{20} \end{aligned}$	M1 A1 B1 M1 M1 A1 DM1 $\mathbf{A 1}$ $\mathbf{M 1}$ $\mathbf{M 1}$ $\mathbf{A 1}$ $\mathbf{A 1}$	attempt to find x-coordinate of B x-coordinate of B x-coordinate of A plan and attempt to find the area of the triangle. Allow unsimplified attempt at integration, must be in the form $(2 x-5)^{2.5}$ correct integration attempt to use limits correctly equation of $A B$ and attempt to integrate attempt at integration, must contain the form $(2 x-5)^{2.5}$ correct integration attempt to use correct limits correctly
11 (i) (ii)	$\ln y=\ln A+b x$ $\begin{aligned} & 0.7=\ln A+b \\ & 3.7=\ln A+2.5 b \end{aligned}$ leading to $b=2$ and $\ln A=-1.3$, so $A=0.273$ or $\mathrm{e}^{-1.3}$ $\ln y=-1.3+2 x$ $\ln y=2.7$ $y=14.9$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \\ \mathbf{A 1} \\ \text { A1 } \\ \text { M1,A1 } \\ \hline \mathbf{M 1} \\ \hline \mathbf{A 1} \end{gathered}$	may be implied by later work use of either point correctly in above equation or equivalent one correct equation M1 for dealing with \ln correctly to obtain A. valid attempt to find y. Must include correct substitution and dealing with \ln correctly.

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/11
Paper 1
October/November 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	11

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

Question	Answer	Marks	Part Marks
(a) (i) (ii) (iii) (b) (i) (ii)	10 22 4 $Q \subset R$ $P \cap Q=\varnothing$, or $\}$	B1 B1 B1 B1 B1	
2	$a=1, \quad b=-3, c=-1$	B3	B1 for each
3	$\begin{aligned} & 3 y^{2}+5 y-2=0 \\ & y=\frac{1}{3}, \quad y=-2 \\ & x=3^{\frac{1}{3}}, \quad x=3^{-2} \\ & x=1.44, \quad x=\frac{1}{9} \end{aligned}$	$\begin{gathered} \text { B1, B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1, A1 } \end{gathered}$	B1 for $5 y$ or $5 \log _{3} x$, B1 for -2 for correct attempt at the solution of their quadratic equation for dealing with one base 3 logarithm correctly A1 for each
4 (i) (ii)	$32 x^{10}-\frac{80}{3} x^{7}+\frac{80}{9} x^{4}$ Coefficients needed: $\begin{aligned} & \left(3 \times \text { their }-\frac{80}{3}\right)+(1 \times \text { their } 32) \\ & =-48 \end{aligned}$	B3 M1 A1	B1 for each term, powers of x must be simplified for dealing with 2 terms Allow A1 for $-48 x^{7}$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	11

Question	Answer	Marks	Part Marks
5 (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{2(3 x+2)}$ When $x=-\frac{1}{3}, y=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3}{2}$ Equation of normal: $y=-\frac{2}{3}\left(x+\frac{1}{3}\right)$ $Q\left(0,-\frac{2}{9}\right)$ or $(0,0.22)$ or better $R\left(0, \frac{1}{2} \ln 2\right)$ or $(0,0.35)$ or better $\begin{aligned} \text { Area of } P Q R & =\frac{1}{2}\left(\frac{1}{2} \ln 2+\frac{2}{9}\right) \times \frac{1}{3} \\ & =0.0948 \end{aligned}$	B1 B1 M1 A1 B1 ft B1 B1	for correct derivative of log function for $y=0$ M1 for attempt at a gradient of a perpendicular from differentiation and the equation of the normal Follow through on their c from part (i) Allow 0.095
6 (a) (b) (i) (ii)	$\mathbf{Y X}, \mathbf{X Z}$ $\begin{aligned} \frac{1}{18} & \left(\begin{array}{cc} 7 & 1 \\ -4 & 2 \end{array}\right) \\ \mathbf{C} & =\mathbf{A}^{-1} \mathbf{B} \\ & =\frac{1}{18}\left(\begin{array}{cc} 7 & 1 \\ -4 & 2 \end{array}\right)\left(\begin{array}{ll} -4 & 2 \\ 10 & 4 \end{array}\right) \\ & =\left(\begin{array}{cc} -1 & 1 \\ 2 & 0 \end{array}\right) \end{aligned}$	B1, B1 M1 A1, A1	B2 for both with no extras B1 for 1 correct with or without extras B1 for both correct with extras B0 for anything else $\mathbf{B} 1$ for $\frac{1}{18}, \mathbf{B} 1$ for $\left(\begin{array}{cc}7 & 1 \\ -4 & 2\end{array}\right)$ for pre-multiplication A1 for any correct pair of elements, but must be from correct matrices

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	11

Question	Answer	Marks	Part Marks
$7 \quad$ (i) (ii) (iii) (iv) (v)	$(0, \sqrt{3})$ or $(0,1.73)$ or better $\left(\frac{\pi}{6}, 2\right)$ or $(0.524,2)$ or better $\cos \left(x-\frac{\pi}{6}\right)=0$ $x=\frac{2 \pi}{3}$ oe or 2.09 or better $2 \sin \left(x-\frac{\pi}{6}\right)$ $\begin{aligned} \text { Area } & =\left[2 \sin \left(x-\frac{\pi}{6}\right)\right]_{0}^{\frac{2 \pi}{3}} \\ & =2+1 \\ & =3 \end{aligned}$	B1 B1, B1 M1 A1 B1 M1 A1	B1 for each for correct attempt to solve trigonometric equation for correct use of their limits, in radians, into $k \sin \left(x-\frac{\pi}{6}\right)$.
8 (i) (ii) (iii)	$47-24=12 \theta$ $\theta=\frac{23}{12}$, so $\theta=1.917$ or better $\theta=1.92$ to 2 dp $\sin \frac{\theta}{2}=\frac{C D / 2}{12}$ $C D=\text { awrt } 19.6 \text { or } 19.7$ Area of sector $=$ awrt 138 Area of triangle $A O B=$ awrt 67 or 68 Area of segment $=$ awrt 70 or 71 $A D \times A B+$ segment area $=425$ leading to $A D=$ awrt 18.1 or 18.0 Alternative method: Area of sector = awrt 138 Difference in length between $B C$ (or $A D$) and $O M$ where M is the midpoint of $C D=6.88$, allow awrt 6.9 Remaining area consists of two trapezia each of width 9.85 and each of area 143.4 $\frac{1}{2}(2 B C-6.88) \times 9.85=143.4 \mathrm{oe}$ leading to $A D=$ awrt 18.1 or 18.0	M1 M1 A1 B1 M1 M1 M1 A1 B1 M1 M1 M1 A1	for complete correct method to get $\theta=$ must have evidence of working to more than 2 dp , allow if 1.916 seen (truncated) for a complete method, may use cosine rule to get $C D$ for sector area, allow unsimplified for a correct attempt at area for segment area (their sector area - their triangle area) for complete method to find $A D$ Allow A1 for 18 for sector area for attempt to find difference between parallel sides for area of one trapezium $\frac{1}{2}(2 B C-$ their 6.88$) \times$ their 9.85 oe for attempt to find either $B C$ or $A D$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	11

Question	Answer	Marks	Part Marks
9 (i) (ii) (iii)	$\begin{aligned} & \mathrm{p}\left(\frac{3}{2}\right): \frac{27 a}{8}-\left(4 \times \frac{9}{4}\right)+\frac{3 b}{2}+18 \quad(=0) \\ & \mathrm{p}^{\prime}\left(\frac{3}{2}\right)=\left(3 a \times \frac{9}{4}\right)-\left(8 \times \frac{3}{2}\right)+b(=0) \end{aligned}$ leading to $9 a+4 b+24=0$ oe and $27 a+4 b-48=0$ oe leading to $a=4, b=-15$ $(x+2)(2 x-3)^{2}$ oe $\begin{aligned} & (x+2)(2 x-3)^{2}=x+2 \\ & x+2=0, x=-2 \end{aligned}$ $(2 x-3)^{2}=1$ leading to $x=1, x=2$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1, A1 } \\ \hline \text { B1 } \\ \hline \text { M1 } \\ \text { A1 } \end{gathered}$	for attempt at $\mathrm{p}\left(\frac{3}{2}\right)$ for differentiation and attempt at $\mathrm{p}^{\prime}\left(\frac{3}{2}\right)$ for solution of simultaneous equations, to get either a or b for both M1 for attempt at long division or factorisation Must be using $(x+2)$ correctly using part (ii) to get $x=-2$ for solution of the quadratic equation
10 (a) (i) (ii) (b) (i) (ii) (iii)	$20 U+\frac{1}{2}\left(U+\frac{U}{2}\right) 10=165$ leading to $U=6$ Gradient of line: - 0.3 27 $\begin{aligned} & t^{2}=8 \ln 4 \\ & t=3.33 \text { or better } \end{aligned}$ $\text { acceleration }=3 \frac{2 t}{8} \mathrm{e}^{\frac{t^{2}}{8}}\left(\mathrm{e}^{\frac{t^{2}}{8}}-4\right)^{2}$ When $t=1, a=6.98$	M1 DM1 A1 M1, A1 B1 M1 A1 M1, A1 M1, A1	for realising that area under the graph is needed and attempt to find an area for equating their area to 165 and attempt to solve M1 for use of the gradient, must be negative for a correct attempt to solve $\mathrm{e}^{\frac{t^{2}}{8}}=4$ M1 for a correct attempt to differentiate using the chain rule M1 for use of $t=1$ in their acceleration

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	11

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS
 0606/12

Paper 1
October/November 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	12

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

Question	Answer	Marks	Part Marks
(a) (i) (ii) (iii) (b) (i) (ii)	10 22 4 $Q \subset R$ $P \cap Q=\varnothing$, or $\}$	B1 B1 B1 B1 B1	
2	$a=1, \quad b=-3, c=-1$	B3	B1 for each
3	$\begin{aligned} & 3 y^{2}+5 y-2=0 \\ & y=\frac{1}{3}, \quad y=-2 \\ & x=3^{\frac{1}{3}}, \quad x=3^{-2} \\ & x=1.44, \quad x=\frac{1}{9} \end{aligned}$	$\begin{gathered} \text { B1, B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1, A1 } \end{gathered}$	B1 for $5 y$ or $5 \log _{3} x$, B1 for -2 for correct attempt at the solution of their quadratic equation for dealing with one base 3 logarithm correctly A1 for each
4 (i) (ii)	$32 x^{10}-\frac{80}{3} x^{7}+\frac{80}{9} x^{4}$ Coefficients needed: $\begin{aligned} & \left(3 \times \text { their }-\frac{80}{3}\right)+(1 \times \text { their } 32) \\ & =-48 \end{aligned}$	B3 M1 A1	B1 for each term, powers of x must be simplified for dealing with 2 terms Allow A1 for $-48 x^{7}$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	12

Question	Answer	Marks	Part Marks
5 (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{2(3 x+2)}$ When $x=-\frac{1}{3}, y=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3}{2}$ Equation of normal: $y=-\frac{2}{3}\left(x+\frac{1}{3}\right)$ $Q\left(0,-\frac{2}{9}\right)$ or $(0,0.22)$ or better $R\left(0, \frac{1}{2} \ln 2\right)$ or $(0,0.35)$ or better $\begin{aligned} \text { Area of } P Q R & =\frac{1}{2}\left(\frac{1}{2} \ln 2+\frac{2}{9}\right) \times \frac{1}{3} \\ & =0.0948 \end{aligned}$	B1 B1 M1 A1 B1 ft B1 B1	for correct derivative of log function for $y=0$ M1 for attempt at a gradient of a perpendicular from differentiation and the equation of the normal Follow through on their c from part (i) Allow 0.095
$6 \quad$ (a) (b) (i) (ii)	$\begin{aligned} & \mathbf{Y X}, \mathbf{X Z} \\ & \begin{aligned} & \frac{1}{18}\left(\begin{array}{cc} 7 & 1 \\ -4 & 2 \end{array}\right) \\ & \mathbf{C}=\mathbf{A}^{-1} \mathbf{B} \\ &=\frac{1}{18}\left(\begin{array}{cc} 7 & 1 \\ -4 & 2 \end{array}\right)\left(\begin{array}{cc} -4 & 2 \\ 10 & 4 \end{array}\right) \\ & \quad=\left(\begin{array}{cc} -1 & 1 \\ 2 & 0 \end{array}\right) \end{aligned} \end{aligned}$	B2 B1, B1 M1 A1, A1	B2 for both with no extras B1 for 1 correct with or without extras B1 for both correct with extras B0 for anything else $\mathbf{B} 1$ for $\frac{1}{18}, \mathbf{B} 1$ for $\left(\begin{array}{cc}7 & 1 \\ -4 & 2\end{array}\right)$ for pre-multiplication A1 for any correct pair of elements, but must be from correct matrices

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	12

Question	Answer	Marks	Part Marks
$7 \quad$ (i) (ii) (iii) (iv) (v)	$(0, \sqrt{3})$ or $(0,1.73)$ or better $\left(\frac{\pi}{6}, 2\right)$ or $(0.524,2)$ or better $\cos \left(x-\frac{\pi}{6}\right)=0$ $x=\frac{2 \pi}{3}$ oe or 2.09 or better $2 \sin \left(x-\frac{\pi}{6}\right)$ $\begin{aligned} \text { Area } & =\left[2 \sin \left(x-\frac{\pi}{6}\right)\right]_{0}^{\frac{2 \pi}{3}} \\ & =2+1 \\ & =3 \end{aligned}$	B1 B1, B1 M1 A1 B1 M1 A1	B1 for each for correct attempt to solve trigonometric equation for correct use of their limits, in radians, into $k \sin \left(x-\frac{\pi}{6}\right)$.
8 (i) (ii) (iii)	$47-24=12 \theta$ $\theta=\frac{23}{12}$, so $\theta=1.917$ or better $\theta=1.92$ to 2 dp $\sin \frac{\theta}{2}=\frac{C D / 2}{12}$ $C D=\text { awrt } 19.6 \text { or } 19.7$ Area of sector $=$ awrt 138 Area of triangle $A O B=$ awrt 67 or 68 Area of segment $=$ awrt 70 or 71 $A D \times A B+$ segment area $=425$ leading to $A D=$ awrt 18.1 or 18.0 Alternative method: Area of sector = awrt 138 Difference in length between $B C$ (or $A D$) and $O M$ where M is the midpoint of $C D=6.88$, allow awrt 6.9 Remaining area consists of two trapezia each of width 9.85 and each of area 143.4 $\frac{1}{2}(2 B C-6.88) \times 9.85=143.4 \mathrm{oe}$ leading to $A D=$ awrt 18.1 or 18.0	M1 M1 A1 B1 M1 M1 M1 A1 B1 M1 M1 M1 A1	for complete correct method to get $\theta=$ must have evidence of working to more than 2 dp , allow if 1.916 seen (truncated) for a complete method, may use cosine rule to get $C D$ for sector area, allow unsimplified for a correct attempt at area for segment area (their sector area - their triangle area) for complete method to find $A D$ Allow A1 for 18 for sector area for attempt to find difference between parallel sides for area of one trapezium $\frac{1}{2}(2 B C-$ their 6.88$) \times$ their 9.85 oe for attempt to find either $B C$ or $A D$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	12

Question	Answer	Marks	Part Marks
9 (i) (ii) (iii)	$\begin{aligned} & \mathrm{p}\left(\frac{3}{2}\right): \frac{27 a}{8}-\left(4 \times \frac{9}{4}\right)+\frac{3 b}{2}+18 \quad(=0) \\ & \mathrm{p}^{\prime}\left(\frac{3}{2}\right)=\left(3 a \times \frac{9}{4}\right)-\left(8 \times \frac{3}{2}\right)+b(=0) \end{aligned}$ leading to $9 a+4 b+24=0$ oe and $27 a+4 b-48=0$ oe leading to $a=4, b=-15$ $(x+2)(2 x-3)^{2}$ oe $\begin{aligned} & (x+2)(2 x-3)^{2}=x+2 \\ & x+2=0, x=-2 \end{aligned}$ $(2 x-3)^{2}=1$ leading to $x=1, x=2$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1, A1 } \\ \hline \text { B1 } \\ \hline \text { M1 } \\ \text { A1 } \end{gathered}$	for attempt at $\mathrm{p}\left(\frac{3}{2}\right)$ for differentiation and attempt at $\mathrm{p}^{\prime}\left(\frac{3}{2}\right)$ for solution of simultaneous equations, to get either a or b for both M1 for attempt at long division or factorisation Must be using $(x+2)$ correctly using part (ii) to get $x=-2$ for solution of the quadratic equation
10 (a) (i) (ii) (b) (i) (ii) (iii)	$20 U+\frac{1}{2}\left(U+\frac{U}{2}\right) 10=165$ leading to $U=6$ Gradient of line: - 0.3 27 $\begin{aligned} & t^{2}=8 \ln 4 \\ & t=3.33 \text { or better } \end{aligned}$ $\text { acceleration }=3 \frac{2 t}{8} \mathrm{e}^{\frac{t^{2}}{8}}\left(\mathrm{e}^{\frac{t^{2}}{8}}-4\right)^{2}$ When $t=1, a=6.98$	M1 DM1 A1 M1, A1 B1 M1 A1 M1, A1 M1, A1	for realising that area under the graph is needed and attempt to find an area for equating their area to 165 and attempt to solve M1 for use of the gradient, must be negative for a correct attempt to solve $\mathrm{e}^{\frac{t^{2}}{8}}=4$ M1 for a correct attempt to differentiate using the chain rule M1 for use of $t=1$ in their acceleration

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	12

ADDITIONAL MATHEMATICS

0606/13
Paper 1
October/November 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

Question	Answer	Marks	Part Marks
1		B1 B1 B1	for symmetrical shape as in the diagram with curved maxima of equal height and cusps on the x-axis for a complete 'curve' with all low points on the x-axis and all high points on $y=2$ for a complete 'curve' meeting the x-axis at $x=30^{\circ}, 90^{\circ}, 150^{\circ}$ only.
2	$=\frac{4 m^{2}-9}{2 m+3}$ $=\frac{(2 m-3)(2 m+3)}{2 m+3}$ $=2 m-3$ Alternative Method $\begin{aligned} & \left(4 m \sqrt{m}-\frac{9}{\sqrt{m}}\right) \\ & \quad=\left(2 \sqrt{m}+\frac{3}{\sqrt{m}}\right)(A m+B) \end{aligned}$ Comparing coefficients $2 A=4,3 A+2 B=0,3 B=-9$	M1 A1 re $=$ A1 M1 A1 A1	for multiplying each term by \sqrt{m}, using a common denominator of \sqrt{m} or for multiplying numerator and denominator by $2 \sqrt{m}-\frac{3}{\sqrt{m}}$ for a correct expression that will cancel $\frac{(2 m-3)(2 m+3)}{2 m+3}, \frac{\left(4 m^{2}-9\right)(2 m-3)}{\left(4 m^{2}-9\right)}$ $\frac{(2 m-3)(2 m+3)(2 m-3)}{(2 m+3)(2 m-3)}$, or equivalents for $2 m-3$ or $A=2, B=-3$ for correct expansion for correct comparisons to obtain A and B for $2 m-3$ or $A=2, B=-3$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Question	Answer	Marks	Part Marks
(ii)	$\begin{aligned} & 3 x^{2}-2 x p+(p+3)=0 \\ & (-2 p)^{2}-4 \times 3 \times(p+3) \geqslant 0 \text { oe } \\ & p^{2} \geqslant 3(p+3) \text { or } 4 p^{2}-12 p-36 \geqslant 0 \\ & p^{2}-3 p-9 \geqslant 0 \end{aligned}$ Correct method of solution $p^{2}-3 p-9=0$ leading to critical values $\begin{aligned} & p=\frac{3 \pm 3 \sqrt{5}}{2} \\ & p \leqslant \frac{3-3 \sqrt{5}}{2}, p \geqslant \frac{3+3 \sqrt{5}}{2} \end{aligned}$	DM1 A1 M1 A1 A1	for obtaining a 3 -term quadratic in the form $a x^{2}+b x+c(=0)$ for correct substitution of their a, b and c into ‘ $b^{2}-4 a c$ 'and use of discriminant. for full correct working, \geqslant the only sign used, \geqslant used before division by 4 and \geqslant used in answer line and penultimate line. for correct substitution in the quadratic formula or for correct attempt to complete the square. (allow 1 sign error in either method) for both correct critical values for correct range
4 (i) (ii)	$\begin{aligned} & 64-48 x+15 x^{2} \\ & \left(4 \times^{\prime} 64^{\prime}\right)+\left(2 \times^{\prime}-48^{\prime}\right)+\left(3 \times 155^{\prime}\right) \end{aligned}$ $=205 \mathrm{cao}$	B3 M1 A1 A1	for each correct term for correctly obtaining three products using their coefficients in (i) for two correct out of three products (unsimplified) cao for 205 selected as final answer
5 (i)	$\begin{aligned} & \log _{9} x y=\log _{9} x+\log _{9} y \\ & =\frac{\log _{3} x}{\log _{3} 9}+\frac{\log _{3} y}{\log _{3} 9} \\ & =\frac{\log _{3} x}{2}+\frac{\log _{3} y}{2}=\frac{5}{2} \\ & \log _{3} x+\log _{3} y=5 \end{aligned}$ Alternative method $\begin{aligned} & \log _{9} x y=\frac{5}{2} \\ & x y=9^{\frac{5}{2}}=3^{5} \\ & \log _{3} x y=5 \\ & \log _{3} x+\log _{3} y=5 \end{aligned}$	M1 M1 A1 M1 M1 A1	for use of $\log A B=\log A+\log B$ for correct method for change of base. Division by $\log _{3} 9$ should be seen and not implied. for dealing with 2 correctly and 'finishing off' for obtaining $x y$ as a power of 3 for correct use of $\log _{3}$ for using law for logs and arriving at correct answer

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Question	Answer	Marks	Part Marks
(ii)	$\begin{aligned} & \log _{3} x\left(5-\log _{3} x\right)=-6 \\ & -\left(\log _{3} x\right)^{2}+5 \log _{3} x=-6 \\ & \left(\log _{3} x\right)^{2}-5 \log _{3} x-6=0 \end{aligned}$ leading to $\log _{3} x=6, \log _{3} x=-1$ $\begin{aligned} & x=729, \quad x=\frac{1}{3} \\ & y=\frac{1}{3}, y=729 \end{aligned}$	M1 A1 A1 DM1 A1	for substitution, correct expansion of brackets and manipulation to get a 3 term quadratic for a correct quadratic equation in the form $a x^{2}+b x+c=0$ for both solutions for method of solution of $\log _{3} x=k$ or $\log _{3} y=k$ for all x and y correct
6 (i) (ii) (iii)	$\begin{aligned} & \frac{6 x}{3 x^{2}-11} \\ & p=\frac{1}{6} \\ & \frac{1}{6} \ln \left(3 a^{2}-11\right)-\frac{1}{6} \ln 1=\ln 2 \\ & \ln \left(3 a^{2}-11\right)=\ln 2^{6} \\ & 3 a^{2}-11=64 \\ & a=5 \text { only } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \hline \text { B1 } \\ \hline \text { M1 } \\ \hline \text { DM1 } \\ \hline \text { DM1 } \\ \hline \text { A1 } \end{gathered}$	M1 for $\frac{m x}{3 x^{2}-11}$ FT for $p=\frac{1}{m}$ for correct use of limits in $p \ln \left(3 x^{2}-11\right)$ May be implied by following equation for dealing with logs correctly for solution of $3 a^{2}-11=k$ for 5 obtained from an exact method

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Question	Answer	Marks	Part Marks
$7 \quad$ (i)	$\ln y=\ln A+\frac{b}{x}$	B1	for equation, may be implied, must be using \ln unless recovered
	Gradient: $b=-0.8$	B1	for $b=-0.8$ oe
	Intercept or use of equation: $\ln A=4.7$	B1	for $\ln \mathrm{A}=4.7$ oe, allow 4.65 to 4.75
	$A=110$	B1	for $\mathrm{A}=110$, allow 105 to 116 Allow A in terms of e
	Alternative Method $3.5=\ln A+1.5 b$ and $1.5=\ln A+4 b$	B1	for one equation
	leading to $b=-0.8$	B1	for $b=-0.8$
	$\ln A=4.7$	$\begin{aligned} & \text { B1 } \\ & \mathbf{D} 1 \end{aligned}$	for $\ln A=4.7$
	and $A=110$		for $A=110$ or $\mathrm{e}^{4.7}$
	Alternative Method $\mathrm{e}^{1.5}=A \mathrm{e}^{4 b}$	B1	for ${ }^{1.5}=A \mathrm{e}^{4 b}$ or $4.48=A \mathrm{e}^{4 b}$
	$\mathrm{e}^{3.5}=A \mathrm{e}^{1.5 b}$	B1	for $\mathrm{e}^{3.5}=A \mathrm{e}^{1.5 b}$ or $33.1=A \mathrm{e}^{1.5 b}$
	leading to $b=-0.8$	B1	for $b=-0.8$
	and $A=110$		for $A=110$ or $\mathrm{e}^{4.7}$
(ii)	When $x=0.32, \frac{1}{x}=3.125, \ln y=2.2$	M1	for a complete method to obtain y, using either the
	$y=9($ allow 8.5 to 9.5$)$ or $\mathrm{e}^{2.2}$	A1	using their values in the equation for y.
(iii)	When $y=20, \ln y=3, \frac{1}{x}=2.125$	M1	for a complete method to obtain x, using either the graph, using their values in the equation for $\ln y$ or using their values in the equation for y.
	so $x=0.47$ (allow 0.45 to 0.49)	A1	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Question	Answer	Marks	Part Marks
8 (a) (i)	$\begin{aligned} & \frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-\sin \theta}=\frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta}-\sin \theta} \\ & =\frac{1}{1-\sin ^{2} \theta} \text { or }=\frac{\frac{1}{\sin \theta}}{\frac{(1-\sin \theta)}{\sin \theta}} \\ & =\frac{1}{\cos ^{2} \theta} \\ & =\sec ^{2} \theta \end{aligned}$ Alternative Method using cosec $\begin{aligned} & \frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-\sin \theta}=\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-\frac{1}{\operatorname{cosec} \theta}} \\ & =\frac{\operatorname{cosec}^{2} \theta}{\operatorname{cosec}^{2} \theta-1} \\ & =\frac{1+\cot ^{2} \theta}{\cot ^{2} \theta} \\ & =\tan ^{2} \theta+1=\sec ^{2} \theta \\ & \cos ^{2} \theta=\frac{1}{4}, \cos \theta= \pm \frac{1}{2} \\ & \text { or } \tan ^{2} \theta=3, \tan \theta= \pm \sqrt{3} \\ & \text { or } \sin ^{2} \theta=\frac{3}{4}, \sin \theta= \pm \frac{\sqrt{3}}{2} \\ & \theta=60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ} \\ & \tan \left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{3}} \\ & x=\frac{\pi}{6}-\frac{\pi}{4}, \frac{7 \pi}{6}-\frac{\pi}{4}, \frac{13 \pi}{6}-\frac{\pi}{4} \\ & x=\left(-\frac{\pi}{12}\right), \frac{11 \pi}{12}, \frac{23 \pi}{12} \end{aligned}$	A1 A1 M1 A1,A1	for using $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$ and either attempt to multiply top and bottom by $\sin \theta$ or an attempt to combine terms in denominator. for correct use of $1-\sin ^{2} \theta=\cos ^{2} \theta$ for completing the proof for using $\sin \theta=\frac{1}{\operatorname{cosec} \theta}$ and an attempt to combine terms in denominator. for use of $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$ for completing the proof for using (i) to obtain a value for $\cos ^{2} \theta, \tan ^{2} \theta$ or $\sin ^{2} \theta$ and then taking the square root. for two correct values for two further correct values and no extras in range. for correct order of operations, can be implied by $x=-\frac{\pi}{12}$ A1 for $x=\frac{11 \pi}{12}$ A1 for $x=\frac{23 \pi}{12}$ If there are extra solutions in range in addition to the two correct ones then A1A0

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Question	Answer	Marks	Part Marks
9 (a) (i)	${ }^{18} C_{5}=8568 \mathrm{mmm}$	B1	
(ii)	Either		
	${ }^{10} C_{4} \times{ }^{8} C_{1}=1680$	B1	for a correct plan
	${ }^{10} C_{3} \times{ }^{8} C_{2}=3360$	B2,1,0	B2 4 correct numbers with no extras
	${ }^{10} C_{2} \times{ }^{8} C_{3}=2520$		
	${ }^{10} C_{1} \times{ }^{8} C_{4}=700$		
	Total $=8260$	B1	for correct total
	Or		
	their ${ }^{18} C_{5}-\left({ }^{10} C_{5}+{ }^{8} C_{5}\right)$	B1	for correct plan
	their $C_{5}-\left(C_{5}+C_{5}\right)$	B1	for 252 subtracted
	$8568-(252+56)$	B1	for 56 subtracted
	Total $=8260$	B1	for correct total
(b) (i)	${ }^{10} P_{6}=151200$	B1	
(ii)	$4 \times{ }^{8} P_{4} \times 3$	M1	for correct unsimplified
	$=20160$	A1	for correct numerical answer
(iii)	Answer to (i) - ${ }^{7} P_{6}$	M1	for correct plan
		A1	for correct unsimplified
	$=146160$	A1	for correct numerical answer
	Alternative:		
	1 symbol: 45360	B2,1,0	B2 for all 3 correct
	2 symbols: 75600		B1 for 2 correct (out of 2 or 3)
	3 symbols: 25200		
	Total: 146160	B1	for correct sum

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Question	Answer	Marks	Part Marks
10 (i) (ii)	$\mathrm{f}(x)=3 x^{2}-4 \mathrm{e}^{2 x}(+c)$ passing through $(0,-3)$ $\begin{aligned} & -3=3 \times 0-4 \mathrm{e}^{0}+c \\ & \mathrm{f}(x)=3 x^{2}-4 \mathrm{e}^{2 x}+1 \\ & \mathrm{f}^{\prime}(0)=-8 \end{aligned}$ Normal: $y+3=\frac{1}{8} x$ $\begin{aligned} & 8 y+24=x \\ & y=2-3 x \end{aligned}$ leads to $x=\frac{8}{5}$ oe $\text { Area }==\frac{1}{2} \times 3 \times \frac{8}{5}=2.4 \mathrm{oe}$	M1 A1 A1 DM1 A1 B1 M1 DM1 A1 B1	for one correct term for one correct term $3 x^{2}$ or $-4 \mathrm{e}^{2 x}$ for a second correct term with no extras for correct method to find c. for correct equation for $m=\frac{1}{8}$ for equation of normal using $m=\frac{1}{8}$ for solving normal equation simultaneously with y $=2-3 x$ to get a value of x for $x=\frac{8}{5}, 1.6$ oe FT for a numerical answer equal to $\left\lvert\, \frac{1}{2} \times 3 \times\right. \text { their } x \mid$
11 (i) (ii) (iii)	$a=8 t-8$ When $t=3, a=16$ $0.5,1.5$ $s=\frac{4}{3} t^{3}-4 t^{2}+3 t$ when $t=\frac{1}{2}, s=\frac{2}{3}$ when $t=\frac{3}{2}, s=0$ total distance travelled $=\frac{4}{3}$ Alternative method		for $8 t-8$ for 16 B1 for each for at least two terms correct all correct for calculating displacement when either $t=\frac{1}{2}$ or $t=\frac{3}{2}$ for calculating displacement at $t=\frac{1}{2}$ and doubling. for $\frac{4}{3}$ oe allow 1.33 As before DM1 for calculating displacement when $t=0.5$ or for calculating distance travelled between $t=0.5$ and $t=1.5$ DM1 for doubling distance travelled between $t=0.5$ and $t=1.5$ or for adding that distance to displacement at $t=0.5$ A1 for $\frac{4}{3}$ oe allow 1.33

ADDITIONAL MATHEMATICS

0606/11
Paper 1
May/June 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	11

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

Question	Answer	Marks	Guidance
1 (i) (ii)	$\begin{aligned} & -27 \\ & 9-8 k=0 \\ & k=\frac{9}{8} \end{aligned}$ Or $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=4 x-3$ when $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, x=\frac{3}{4}$ so $k=\frac{9}{8}$ Or completing the square $\begin{aligned} & y=2\left(x-\frac{3}{4}\right)^{2}+k-\frac{9}{8} \\ & k=\frac{9}{8} \end{aligned}$	B1 M1 A1 M1 A1 M1 A1	for use of discriminant with a complete method to get to $k=$ for a complete method to get to $k=$ for a complete method to get to $k=$
2 (a) (b)	$2^{4(3 x-1)}=2^{3(x+2)}$ or $4^{2(3 x-1)}=4^{\frac{3}{2}(x+2)}$ or $8^{\frac{4}{3}(3 x-1)}=8^{x+2}$ or $16^{3 x-1}=16^{\frac{3}{4}(x+2)}$ leading to $x=\frac{10}{9} \quad$ cao $\begin{aligned} & p=\frac{5}{3} \\ & q=-2 \end{aligned}$	B1 M1 A1 B1 B1	B1 for a correct statement for equating indices

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	11

Question	Answer	Marks	Guidance
3	On x-axis, $2 x^{2}-7=1$ $x=2$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 x}{2 x^{2}-7}$ When $x=2, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=8$ Gradient of normal $=-\frac{1}{8}$ Equation of normal $y=-\frac{1}{8}(x-2)$ Required form $x+8 y-2=0$	M1 A1 B1 M1 A1	for equating to 1 for attempt at perpendicular through their $(2,0)$, must be using $y=0$ must be equated to zero with integer coefficients
4 (a) (b)	$\begin{aligned} & \mathbf{A}^{2}=\left(\begin{array}{rr} 7 & -2 \\ -3 & 6 \end{array}\right) \\ & \mathbf{A}^{2}-2 \mathbf{B}=\left(\begin{array}{rr} 1 & -2 \\ -5 & 2 \end{array}\right) \\ & \left(\begin{array}{rr} 4 & 1 \\ 10 & 3 \end{array}\right)\binom{x}{y}=\binom{1}{1} \\ & \operatorname{so}\binom{x}{y}=\frac{1}{2}\left(\begin{array}{rr} 3 & -1 \\ -10 & 4 \end{array}\right)\binom{1}{1} \end{aligned}$ leading to $\binom{x}{y}=\binom{1}{-3}$ $\begin{aligned} & x=1 \\ & y=-3 \end{aligned}$	B1 M1 A1 M1 DM1 A1 A1	for their $\mathbf{A}^{2}-2 \mathbf{B}$ for pre-multiplication by their inverse matrix DM1 for attempt at matrix multiplication Allow in matrix form
5 (i) (ii)	$\begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{4 x}}{4}-x \mathrm{e}^{4 x}\right) & =\mathrm{e}^{4 x}-\left(\left(x \times 4 \mathrm{e}^{4 x}\right)+\mathrm{e}^{4 x}\right) \\ & =-4 x \mathrm{e}^{4 x} \\ \int_{0}^{\ln 2} x \mathrm{e}^{4 x} \mathrm{~d} x & =-\frac{1}{4}\left[\frac{\mathrm{e}^{4 x}}{4}-x \mathrm{e}^{4 x}\right]_{0}^{\ln 2} \\ & =-\frac{1}{4}\left(\left(\frac{16}{4}-16 \ln 2\right)-\frac{1}{4}\right) \\ & =4 \ln 2-\frac{15}{16} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \\ \text { B1FT } \\ \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	$\text { for } \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)=\mathrm{e}^{4 x}$ for attempt to differentiate a product for a correct product for correct final answer FT for use of their $\frac{1}{p} \times\left(\frac{\mathrm{e}^{4 x}}{4}-x \mathrm{e}^{4 x}\right)$, must be numerical p, but $\neq 0$ for $\mathrm{e}^{4 \ln 2}=16$ for correct use of limits, must be an integral of the correct form

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	11

Question	Answer	Marks	Guidance
6 (i) (ii) (iii)	$2-\sqrt{5}<\mathrm{f}(x) \leqslant 2$ $\mathrm{f}^{-1}(x)=(2-x)^{2}-5$ Domain $2-\sqrt{5}<x \leqslant 2$ Range y or $-5 \leqslant \mathrm{f}^{-1}(x)<0$ $\begin{aligned} & \operatorname{fg}(x)=\mathrm{f}\left(\frac{4}{x}\right) \\ & =2-\sqrt{\frac{4}{x}+5} \end{aligned}$ leading to $x=-4$	B2 M1 A1 B1 B1 M1 DM1 A1	B1 for $\leqslant 2$ B1 for $2-\sqrt{5}<$ or awrt -0.24 Must be using $\mathrm{f}, \mathrm{f}(x)$ or $y, 2-\sqrt{5}<$, if not then B1 max for a correct method to find the inverse Must be using the correct variables for the B marks for correct order of functions for solution of equation
$7 \quad$ (i) (ii)	Finding an angle of 68.2° or 21.8° $\frac{4.5}{\sin 68.2}=\frac{2.4}{\sin \alpha}$ leading to $\alpha=29.7^{\circ}$ (allow ± 0.1) Direction is 82.1° to the bank, upstream(allow $\pm 0.1^{\circ}$) $\frac{4.5}{\sin 68.2}=\frac{2.4}{\sin 29.7}=\frac{v_{r}}{\sin 82.1}$ leading to $v_{r}=4.8$ $\text { time taken }=\frac{80.78}{4.8}=16.8$ Alternative method: Finding an angle of 68.2° or 21.8° $4.5^{2}=2.4^{2}+v_{r}^{2}-\left(2 \times 2.4 \times v_{r} \cos 68.2\right)$ leading to $v_{r}=4.8$ Use of sine rule to obtain angle and direction to obtain direction is 82.1° to the bank, upstream Use of time taken $=\frac{80.78}{4.8}=16.8$	B1 B1 B1 B1 B1 B1 M1 A1 B1 B1 B1 B1 B1 B1 M1 A1	for the sine rule for the sine rule for resultant velocity for attempt to find $A B$ and hence the time taken for correct use of the cosine rule for resultant velocity for use of the sine rule for $\alpha=29.7^{\circ}$ for 82.1° for attempt to find $A B$ and hence the time taken

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	11

Question	Answer	Marks	Guidance
8 (i)	$\begin{aligned} & y-6=-\frac{4}{12}(x+8) \\ & (3 y+x=10) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	for a correct method allow unsimplified
(ii)	$\begin{aligned} & y-7=3(x+1) \\ & (y=3 x+10) \end{aligned}$	DM1 A1	for attempt at a perpendicular line using $(-1,7)$ allow unsimplified
(iii)	point of intersection $(-2,4)$ which is the midpoint of $A B$	M1 M1 A1	for attempt to find the point of intersection using simultaneous equations for attempt to find midpoint for all correct
	Alternative method: Midpoint (-2, 4) Verification that this point lies on $C P$.	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	for attempt to find midpoint for full verification for all correct
(iv)	$C P=\sqrt{10}$ or 3.16	B1	
(v)	$\begin{aligned} \text { Area } & =\frac{1}{2} \times \sqrt{10} \times 4 \sqrt{10} \\ & =20 \end{aligned}$	M1 A1	for correct method using $\boldsymbol{C P}$ for 19.9-20.1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	11

Question	Answer	Marks	Guidance
$\begin{array}{ll}9 & \text { (i) } \\ \\ & \\ \\ \\ \\ \\ & \text { (ii) }\end{array}$	$\begin{aligned} & 2 \cos x \cot x=\cot x+2 \cos x \\ & 2 \cos x \frac{\cos x}{\sin x}+1=\frac{\cos x}{\sin x}+2 \cos x \\ & 2 \cos ^{2} x+\sin x=\cos x+2 \cos x \sin x \\ & 2 \cos ^{2} x-2 \cos x \sin x=\cos x-\sin x \\ & 2 \cos x(\cos x-\sin x)=\cos x-\sin x \\ & (2 \cos x-1)(\cos x-\sin x)=0 \end{aligned}$ Alternative method: $a \cos ^{2} x-a \cos x \sin x-b \cos x$ $+b \sin x=0$ $a \cos x \cot x-a \cos x-b \cot x+b=0$ $a=2, \quad b=1$ $(2 \cos x-1)(\cos x-\sin x)=0$ $\cos x=\frac{1}{2}, \tan x=1$ $x=\frac{\pi}{3}, x=\frac{\pi}{4}$ Alternative method: $(2 \cos x-1)(\cot x-1)=0$ Leading to $\cos x=\frac{1}{2}, \tan x=1$ $x=\frac{\pi}{3}, x=\frac{\pi}{4}$	$\begin{gathered} \text { M1 } \\ \text { DM1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { M1 } \\ \text { DM1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1,A1 } \\ \text { M1 } \\ \text { A1,A1 } \end{gathered}$	for use of $\cot x=\frac{\cos x}{\sin x}$ for both terms for multiplication throughout by $\sin x$ for attempt to factorise for completely correct solution www for expansion of RHS for division by $\sin x$ for comparing like terms to obtain both a and b for both correct www for either A1 for each, penalise extra solutions within the range by withholding the last A mark for attempt to factorise the original equation and attempt to solve A1 for each, penalise extra solutions within the range by withholding the last A mark
(i) (ii) (iii)	$\begin{aligned} & \mathrm{f}(-2)=-32-2 k+p=0 \\ & \mathrm{f}^{\prime}\left(\frac{1}{2}\right)=\frac{12}{4}+k=0 \end{aligned}$ leading to $k=-3$ and $p=26$ $(x+2)\left(4 x^{2}-8 x+13\right)$ Showing that $4 x^{2}-8 x+13=0$ has no real roots so $x=-2$ only www	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1,A1 } \\ \text { B1FT } \\ \text { B1 } \\ \text { M1, } \\ \text { A1 } \end{gathered}$	for attempt at $\mathrm{f}(-2)$ for attempt at $\mathrm{f}^{\prime}\left(\frac{1}{2}\right)$ A1 for each FT for their $\frac{p}{2}$ all correct M1 for a valid attempt at solution of equation leading to no solution or consideration of the discriminant

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	11

Question	Answer	Marks	Guidance
11 (i)	$\begin{aligned} & A B=2 r \sin \theta \\ & \text { or } \sqrt{r^{2}+r^{2}-2 r^{2} \cos 2 \theta} \\ & \text { or } \frac{r \sin 2 \theta}{\sin \left(\frac{\pi}{2}-\theta\right)} \\ & \text { or } \frac{r \sin 2 \theta}{\cos \theta} \end{aligned}$	B1	
(ii)	$\begin{aligned} & 2 r \sin \theta+2 r \theta=20 \\ & r=\frac{10}{\theta+\sin \theta} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for use of (i) + arc length $=20$, oe must be convinced
(iii)	$\frac{\mathrm{d} r}{\mathrm{~d} \theta}=-\frac{10(1+\cos \theta)}{(\theta+\sin \theta)^{2}}$	$\begin{gathered} \text { M1 } \\ \mathbf{A 2 , 1 , 0} \end{gathered}$	for a correct attempt to differentiate -1 each error
	When $\theta=\frac{\pi}{6}, \frac{\mathrm{~d} r}{\mathrm{~d} \theta}=-17.8$	A1	allow awrt -17.8
(iv)	$\frac{\mathrm{d} r}{\mathrm{~d} t}=15$	B1	may be implied
	$\frac{\mathrm{d} \theta}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} t} \div \frac{\mathrm{d} r}{\mathrm{~d} \theta}$	M1	for use of $\frac{15}{\text { their (iii) }}$
	$\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-0.842$	A1	allow -0.84 or -0.843

ADDITIONAL MATHEMATICS

Paper 1
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	12

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

Question	Answer	Marks	Guidance
1 (a) (b)	$Y \subset X$ or $Y \subseteq X$ only $Y \cap Z=\varnothing$ or $\}$ only (i) (ii)	B1 B1 B1 B1	
2 (i) (ii)	$\begin{aligned} & 32-\frac{20}{x}+\frac{5}{x^{2}} \\ & (3 \times 32)+\left(-\frac{20}{x} \times 4 x\right)=16 \end{aligned}$ Accept $16 x^{\circ}$	B3 M1 A1	B1 for each correct term - must be integers for $(3 \times$ their 32$)+\left(\frac{\text { their }(-20)}{x} \times 4 x\right)$
3 (i) (ii)	$\begin{aligned} & \mathbf{b}-\mathbf{c}=\binom{6}{-2} \\ & 4+y^{2}=36+4 \\ & y= \pm 6 \\ & \mu+4=2 \lambda \text { or }-4 \mu+24=7 \lambda \\ & \mu-4=-\lambda \text { or } 8 \mu-8=\lambda \\ & \text { leading to } \mu=\frac{4}{3}, \lambda=\frac{8}{3} \text { oe } \end{aligned}$ allow 1.33 and 2.67 or better	B1 M1 A1 B1 B1 DB1	may be implied by further correct working for one correct attempt at using the modulus for one correct equation in μ and λ for a second correct equation in μ and λ for both, must have both previous B marks

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	12

Question	Answer	Marks	Guidance
4	$\begin{aligned} & (4+\sqrt{5}) x^{2}+(2-\sqrt{5}) x-1=0 \\ & x=\frac{-(2-\sqrt{5}) \pm \sqrt{(2-\sqrt{5})^{2}-4(4+\sqrt{5})(-1)}}{2(4+\sqrt{5})} \\ & x=\frac{-(2-\sqrt{5}) \pm \sqrt{9-4 \sqrt{5}+16+4 \sqrt{5}}}{2(4+\sqrt{5})} \\ & =\frac{-(2-\sqrt{5})+5}{2(4+\sqrt{5})} \\ & =\frac{3+\sqrt{5}}{2(4+\sqrt{5})} \\ & =\frac{(3+\sqrt{5})(4-\sqrt{5})}{2(4+\sqrt{5})(4-\sqrt{5})} \\ & =\frac{7+\sqrt{5}}{22} \end{aligned}$	M1 A1 DM1 A1 M1 A1	You must be convinced that a calculator is not being used. for use of quadratic formula (allow one sign error), allow $b^{2}=9-4 \sqrt{5}$ all correct for attempt to simplify the discriminant (minimum of 4 terms must be seen in discriminant, 2 terms involving $\sqrt{ } 5$ and 2 constant terms) for $\frac{3+\sqrt{5}}{2(4+\sqrt{5})}$ or $\frac{3+\sqrt{5}}{8+2 \sqrt{5}}$, ignore negative solution if included for attempt to rationalise an expression of the form $\frac{a \pm b \sqrt{5}}{c \pm d \sqrt{5}}$ as part of their solution of the quadratic Must obtain an integer denominator Final A1 can only be awarded if all previous marks have been obtained
5 (i)	$\begin{aligned} (1-\cos \theta) & (1+\sec \theta) \\ = & 1-\cos \theta+\frac{1}{\cos \theta}-\frac{\cos \theta}{\cos \theta} \\ = & \sec \theta-\cos \theta \\ = & \frac{1}{\cos \theta}-\cos \theta \\ = & \frac{1-\cos ^{2} \theta}{\cos \theta} \\ = & \frac{\sin ^{2} \theta}{\cos \theta} \\ = & \sin \theta \tan \theta \quad \mathrm{www} \end{aligned}$	DM1 A1 A1	M1 for expansion and use of $\sec \theta=\frac{1}{\cos \theta}$ consistently, allow one sign error for attempt at a single fraction, dependent on first M1

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	12

Question	Answer	Marks	Guidance
(ii)	Alternative method: $\begin{aligned} (1-\cos \theta) & \left(\frac{\cos \theta+1}{\cos \theta}\right) \\ = & \frac{1-\cos ^{2} \theta}{\cos \theta} \\ = & \frac{\sin ^{2} \theta}{\cos \theta} \\ = & \sin \theta \tan \theta \quad \mathrm{www} \end{aligned}$ $\sin \theta \tan \theta=\sin \theta$ $\sin \theta(\tan \theta-1)=0$ $\tan \theta=1, \theta=\frac{\pi}{4}$, allow 0.785 or better $\sin \theta=0, \theta=0, \pi$ or 3.14 or better	DM1 A1 A1 B1 B1 B1	for attempt at a single fraction for second factor and use of $\sec \theta=\frac{1}{\cos \theta}$ for expansion for $\theta=\frac{\pi}{4}$ from $\tan \theta=1$ for $\theta=0$ from $\sin \theta=0$ for $\theta=\pi$ from $\sin \theta=0$
6	$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{3 x}(4 x+1)^{\frac{1}{2}}\right) \\ & =\mathrm{e}^{3 x} \frac{1}{2} \times 4(4 x+1)^{-\frac{1}{2}}+3 \mathrm{e}^{3 x}(4 x+1)^{\frac{1}{2}} \end{aligned}$ $\begin{aligned} & =\frac{2 \mathrm{e}^{3 x}}{(4 x+1)^{\frac{1}{2}}}+3 \mathrm{e}^{3 x}(4 x+1)^{\frac{1}{2}} \\ & =\frac{\mathrm{e}^{3 x}}{(4 x+1)^{\frac{1}{2}}}(2+12 x+3) \\ & =\frac{\mathrm{e}^{3 x}}{(4 x+1)^{\frac{1}{2}}}(12 x+5) \end{aligned}$	B1 B1 B1 DM1 A1	for $r \mathrm{e}^{3 x}(4 x+1)^{-\frac{1}{2}}$ must be part of a sum, $r=\frac{1}{2}$ or 2 or $\frac{1}{2} \times 4$ for $s \mathrm{e}^{3 x}(4 x+1)^{\frac{1}{2}}$ must be part of a sum, s is 1 or 3 for all correct, allow unsimplified for $\frac{\mathrm{e}^{3 x}}{(4 x+1)^{\frac{1}{2}}}(a+b x)$, dependent on first $2 \mathbf{B}$ marks, must be using a correct method, collecting terms in the numerator correctly
$7 \quad \text { (i) }$ (ii)	$\begin{aligned} & \cos 3 x=\frac{1}{2}, \quad x=\frac{\pi}{9} \text { or } \begin{array}{l} 0.349,20^{\circ}, \\ \text { allow } 0.35 \end{array} \\ & B\left(\frac{\pi}{3}, 3\right) \text { or }(1.05,3),\left(60^{\circ}, 3\right) \end{aligned}$	M1 A1 B1B1	for correct attempt to solve the trigonometric equation B1 for each, must be in correct position or in terms of $x=$ and $y=$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	12

Question	Answer	Marks	Guidance
(iii)	$\begin{aligned} \int_{\frac{\pi}{9}}^{\frac{\pi}{3}}-2 \cos 3 x \mathrm{~d} x & =\left[x-\frac{2}{3} \sin 3 x\right]_{\frac{\pi}{9}}^{\frac{\pi}{3}} \\ & =\frac{\pi}{3}-\left(\frac{\pi}{9}-\left(\frac{2}{3} \times \frac{\sqrt{3}}{2}\right)\right) \\ & =\frac{2 \pi}{9}+\frac{\sqrt{3}}{3} \text { oe or } 1.28 \end{aligned}$	M1 A1 DM1 A1	for $x \pm a \sin 3 x$ attempt to integrate at least one term for correct integration for correct use of limits from (i) and (ii), must be in radians
8 (i) (ii) (iii)	$\lg y=x^{2} \lg b+\lg A$ $\lg b= \pm 0.21$ $b=0.617$ allow $0.62,10^{-0.21}$ $\lg A=0.94$ allow 0.93 to 0.95 $A=8.71$ allow awrt 8.5 to 8.9 Alternative method 5.37 or $10^{0.73}=A b$ 1.259 or $10^{0.1}=A b^{4}$ $b^{3}=10^{-0.63}$ $b=0.617$ allow $0.62,10^{-0.21}$ $A=8.71$ allow awrt 8.5 to 8.9 $x=1.5, x^{2}=2.25$ $y=2.93$, allow awrt 2.9 or 3.0 $\lg y=0.301, \quad$ or $2=8.71(0.617)^{x^{2}}$, $x=1.74$, allow $\sqrt{3}$ or awrt 1.7, 1.8	B1 M1 A1 M1 A1	for $\lg b= \pm 0.21$ may be implied for both equations, allow correct to 2 sf for correct use of graph $y=$ theirA \times theirb $b^{1.5^{2}}$ or $\lg y=\lg$ their $A+\left(1.5^{2} \lg\right.$ theirb $)$ for correct use of graph to read off x^{2} $\begin{aligned} & 2=\text { theirA }(\text { theirb })^{x^{2}} \text { or } \\ & \lg 2=(\lg \text { theirb }) x^{2}+\lg (\text { their } A) \end{aligned}$
9 (i)	$y=\frac{2}{3}(3 x+10)^{\frac{1}{2}}(+c)$ passes through $\left(2,-\frac{4}{3}\right)$, so $c=-4$ $y=\frac{2}{3}(3 x+10)^{\frac{1}{2}}-4$ oe	B1 B1 M1 A1	for $p(3 x+10)^{\frac{1}{2}}$ where p is a constant for $\frac{2}{3}(3 x+10)^{\frac{1}{2}}$ oe unsimplified for attempt to find c, must have attempt to integrate, must have the first B1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	12

Question	Answer	Marks	Guidance
(ii)	When $x=5$, $y=-\frac{2}{3}$ perpendicular gradient $=-5$ Equation of normal: $y+\frac{2}{3}=-5(x-5)$ When $y=-\frac{5}{3}$, $x=5.2 \mathrm{oe}$	B1 B1 M1 A1 DM1 A1	for attempt at the normal using their perpendicular gradient and their y value (but not $y=-\frac{4}{3}$ or $-\frac{5}{3}$). for use of $y=-\frac{5}{3}$ in their normal equation to get as far as $x=\ldots$
10 (i)	$\begin{aligned} & \text { Area: } \quad 20=\pi x^{2}+x y \\ & y=\frac{20-\pi x^{2}}{x} \\ & P=2 \pi x+2 x+2 y \\ & =2 \pi x+2 x+2\left(\frac{20}{x}-\pi x\right) \\ & =2 x+\frac{40}{x} \end{aligned}$ Alternative method: $\begin{aligned} & 20=\pi x^{2}+x y \\ & P=2 \pi x+2 y+2 x \\ & =\frac{2}{x}\left(\pi x^{2}+x y\right)+2 x \end{aligned}$ $\begin{aligned} & =\frac{2}{x}(20)+2 x \\ & =2 x+\frac{40}{x} \end{aligned}$	B1 B1 M1 A1 B1 M1 B1 A1	for attempt to use perimeter and obtain in terms of x only all steps seen, www AG for attempt to use perimeter and write in $\frac{\pi x^{2}+x y}{x}$ for replacing $\pi x^{2}+x y$ with 20 all steps seen, www AG

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	12

ADDITIONAL MATHEMATICS

0606/13
Paper 1
May/June 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	13

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

Question	Answer	Marks	Guidance
1 (i) (ii)	$\begin{aligned} & -27 \\ & 9-8 k=0 \\ & k=\frac{9}{8} \end{aligned}$ Or $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=4 x-3$ when $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, x=\frac{3}{4}$ so $k=\frac{9}{8}$ Or completing the square $\begin{aligned} & y=2\left(x-\frac{3}{4}\right)^{2}+k-\frac{9}{8} \\ & k=\frac{9}{8} \end{aligned}$	B1 M1 A1 M1 A1 M1 A1	for use of discriminant with a complete method to get to $k=$ for a complete method to get to $k=$ for a complete method to get to $k=$
2 (a) (b)	$2^{4(3 x-1)}=2^{3(x+2)}$ or $4^{2(3 x-1)}=4^{\frac{3}{2}(x+2)}$ or $8^{\frac{4}{3}(3 x-1)}=8^{x+2}$ or $16^{3 x-1}=16^{\frac{3}{4}(x+2)}$ leading to $x=\frac{10}{9} \quad$ cao $\begin{aligned} & p=\frac{5}{3} \\ & q=-2 \end{aligned}$	B1 M1 A1 B1 B1	B1 for a correct statement for equating indices

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	13

Question	Answer	Marks	Guidance
3	On x-axis, $2 x^{2}-7=1$ $x=2$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 x}{2 x^{2}-7}$ When $x=2, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=8$ Gradient of normal $=-\frac{1}{8}$ Equation of normal $y=-\frac{1}{8}(x-2)$ Required form $x+8 y-2=0$	M1 A1 B1 M1 A1	for equating to 1 for attempt at perpendicular through their $(2,0)$, must be using $y=0$ must be equated to zero with integer coefficients
4 (a) (b)	$\begin{aligned} & \mathbf{A}^{2}=\left(\begin{array}{rr} 7 & -2 \\ -3 & 6 \end{array}\right) \\ & \mathbf{A}^{2}-2 \mathbf{B}=\left(\begin{array}{rr} 1 & -2 \\ -5 & 2 \end{array}\right) \\ & \left(\begin{array}{rr} 4 & 1 \\ 10 & 3 \end{array}\right)\binom{x}{y}=\binom{1}{1} \\ & \operatorname{so}\binom{x}{y}=\frac{1}{2}\left(\begin{array}{rr} 3 & -1 \\ -10 & 4 \end{array}\right)\binom{1}{1} \end{aligned}$ leading to $\binom{x}{y}=\binom{1}{-3}$ $\begin{aligned} & x=1 \\ & y=-3 \end{aligned}$	B1 M1 A1 M1 DM1 A1 A1	for their $\mathbf{A}^{2}-2 \mathbf{B}$ for pre-multiplication by their inverse matrix DM1 for attempt at matrix multiplication Allow in matrix form
5 (i) (ii)	$\begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{4 x}}{4}-x \mathrm{e}^{4 x}\right) & =\mathrm{e}^{4 x}-\left(\left(x \times 4 \mathrm{e}^{4 x}\right)+\mathrm{e}^{4 x}\right) \\ & =-4 x \mathrm{e}^{4 x} \\ \int_{0}^{\ln 2} x \mathrm{e}^{4 x} \mathrm{~d} x & =-\frac{1}{4}\left[\frac{\mathrm{e}^{4 x}}{4}-x \mathrm{e}^{4 x}\right]_{0}^{\ln 2} \\ & =-\frac{1}{4}\left(\left(\frac{16}{4}-16 \ln 2\right)-\frac{1}{4}\right) \\ & =4 \ln 2-\frac{15}{16} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \\ \text { B1FT } \\ \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	$\text { for } \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)=\mathrm{e}^{4 x}$ for attempt to differentiate a product for a correct product for correct final answer FT for use of their $\frac{1}{p} \times\left(\frac{\mathrm{e}^{4 x}}{4}-x \mathrm{e}^{4 x}\right)$, must be numerical p, but $\neq 0$ for $\mathrm{e}^{4 \ln 2}=16$ for correct use of limits, must be an integral of the correct form

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	13

Question	Answer	Marks	Guidance
6 (i) (ii) (iii)	$2-\sqrt{5}<\mathrm{f}(x) \leqslant 2$ $\mathrm{f}^{-1}(x)=(2-x)^{2}-5$ Domain $2-\sqrt{5}<x \leqslant 2$ Range y or $-5 \leqslant \mathrm{f}^{-1}(x)<0$ $\begin{aligned} & \operatorname{fg}(x)=\mathrm{f}\left(\frac{4}{x}\right) \\ & =2-\sqrt{\frac{4}{x}+5} \end{aligned}$ leading to $x=-4$	B2 M1 A1 B1 B1 M1 DM1 A1	B1 for $\leqslant 2$ B1 for $2-\sqrt{5}<$ or awrt -0.24 Must be using $\mathrm{f}, \mathrm{f}(x)$ or $y, 2-\sqrt{5}<$, if not then B1 max for a correct method to find the inverse Must be using the correct variables for the B marks for correct order of functions for solution of equation
$7 \quad$ (i) (ii)	Finding an angle of 68.2° or 21.8° $\frac{4.5}{\sin 68.2}=\frac{2.4}{\sin \alpha}$ leading to $\alpha=29.7^{\circ}$ (allow ± 0.1) Direction is 82.1° to the bank, upstream(allow $\pm 0.1^{\circ}$) $\frac{4.5}{\sin 68.2}=\frac{2.4}{\sin 29.7}=\frac{v_{r}}{\sin 82.1}$ leading to $v_{r}=4.8$ $\text { time taken }=\frac{80.78}{4.8}=16.8$ Alternative method: Finding an angle of 68.2° or 21.8° $4.5^{2}=2.4^{2}+v_{r}^{2}-\left(2 \times 2.4 \times v_{r} \cos 68.2\right)$ leading to $v_{r}=4.8$ Use of sine rule to obtain angle and direction to obtain direction is 82.1° to the bank, upstream Use of time taken $=\frac{80.78}{4.8}=16.8$	B1 B1 B1 B1 B1 B1 M1 A1 B1 B1 B1 B1 B1 B1 M1 A1	for the sine rule for the sine rule for resultant velocity for attempt to find $A B$ and hence the time taken for correct use of the cosine rule for resultant velocity for use of the sine rule for $\alpha=29.7^{\circ}$ for 82.1° for attempt to find $A B$ and hence the time taken

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	13

Question	Answer	Marks	Guidance
8 (i)	$\begin{aligned} & y-6=-\frac{4}{12}(x+8) \\ & (3 y+x=10) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	for a correct method allow unsimplified
(ii)	$\begin{aligned} & y-7=3(x+1) \\ & (y=3 x+10) \end{aligned}$	DM1 A1	for attempt at a perpendicular line using $(-1,7)$ allow unsimplified
(iii)	point of intersection $(-2,4)$ which is the midpoint of $A B$	M1 M1 A1	for attempt to find the point of intersection using simultaneous equations for attempt to find midpoint for all correct
	Alternative method: Midpoint (-2, 4) Verification that this point lies on $C P$.	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	for attempt to find midpoint for full verification for all correct
(iv)	$C P=\sqrt{10}$ or 3.16	B1	
(v)	$\begin{aligned} \text { Area } & =\frac{1}{2} \times \sqrt{10} \times 4 \sqrt{10} \\ & =20 \end{aligned}$	M1 A1	for correct method using $\boldsymbol{C P}$ for 19.9-20.1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	13

Question	Answer	Marks	Guidance
9 (i)	$\begin{aligned} & 2 \cos x \cot x=\cot x+2 \cos x \\ & 2 \cos x \frac{\cos x}{\sin x}+1=\frac{\cos x}{\sin x}+2 \cos x \\ & 2 \cos ^{2} x+\sin x=\cos x+2 \cos x \sin x \\ & 2 \cos ^{2} x-2 \cos x \sin x=\cos x-\sin x \\ & 2 \cos x(\cos x-\sin x)=\cos x-\sin x \\ & (2 \cos x-1)(\cos x-\sin x)=0 \end{aligned}$ Alternative method: $a \cos ^{2} x-a \cos x \sin x-b \cos x$ $+b \sin x=0$ $a \cos x \cot x-a \cos x-b \cot x+b=0$ $a=2, \quad b=1$ $(2 \cos x-1)(\cos x-\sin x)=0$ $\cos x=\frac{1}{2}, \tan x=1$ $x=\frac{\pi}{3}, x=\frac{\pi}{4}$ Alternative method: $(2 \cos x-1)(\cot x-1)=0$ Leading to $\cos x=\frac{1}{2}, \tan x=1$ $x=\frac{\pi}{3}, x=\frac{\pi}{4}$	$\begin{gathered} \text { M1 } \\ \text { DM1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { M1 } \\ \hline \text { DM1 } \\ \text { DM1 } \\ \text { A1 } \\ \hline \text { M1 } \\ \text { A1,A1 } \\ \hline \text { M1 } \\ \text { A1,A1 } \end{gathered}$	for use of $\cot x=\frac{\cos x}{\sin x}$ for both terms for multiplication throughout by $\sin x$ for attempt to factorise for completely correct solution www for expansion of RHS for division by $\sin x$ for comparing like terms to obtain both a and b for both correct www for either A1 for each, penalise extra solutions within the range by withholding the last A mark for attempt to factorise the original equation and attempt to solve A1 for each, penalise extra solutions within the range by withholding the last A mark
10 (i) (ii) (iii)	$\begin{aligned} & \mathrm{f}(-2)=-32-2 k+p=0 \\ & \mathrm{f}^{\prime}\left(\frac{1}{2}\right)=\frac{12}{4}+k=0 \end{aligned}$ leading to $k=-3$ and $p=26$ $(x+2)\left(4 x^{2}-8 x+13\right)$ Showing that $4 x^{2}-8 x+13=0$ has no real roots so $x=-2$ only www	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1,A1 } \\ \text { B1FT } \\ \text { B1 } \\ \text { M1, } \\ \text { A1 } \end{gathered}$	for attempt at $\mathrm{f}(-2)$ for attempt at $\mathrm{f}^{\prime}\left(\frac{1}{2}\right)$ A1 for each FT for their $\frac{p}{2}$ all correct M1 for a valid attempt at solution of equation leading to no solution or consideration of the discriminant

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	13

Question	Answer	Marks	Guidance
11 (i)	$\begin{aligned} & A B=2 r \sin \theta \\ & \text { or } \sqrt{r^{2}+r^{2}-2 r^{2} \cos 2 \theta} \\ & \text { or } \frac{r \sin 2 \theta}{\sin \left(\frac{\pi}{2}-\theta\right)} \\ & \text { or } \frac{r \sin 2 \theta}{\cos \theta} \end{aligned}$	B1	
(ii)	$\begin{aligned} & 2 r \sin \theta+2 r \theta=20 \\ & r=\frac{10}{\theta+\sin \theta} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for use of (i) + arc length $=20$, oe must be convinced
(iii)	$\frac{\mathrm{d} r}{\mathrm{~d} \theta}=-\frac{10(1+\cos \theta)}{(\theta+\sin \theta)^{2}}$	$\begin{gathered} \text { M1 } \\ \mathbf{A 2 , 1 , 0} \end{gathered}$	for a correct attempt to differentiate -1 each error
	When $\theta=\frac{\pi}{6}, \frac{\mathrm{~d} r}{\mathrm{~d} \theta}=-17.8$	A1	allow awrt -17.8
(iv)	$\frac{\mathrm{d} r}{\mathrm{~d} t}=15$	B1	may be implied
	$\frac{\mathrm{d} \theta}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} t} \div \frac{\mathrm{d} r}{\mathrm{~d} \theta}$	M1	for use of $\frac{15}{\text { their (iii) }}$
	$\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-0.842$	A1	allow -0.84 or -0.843

MARK SCHEME for the March 2016 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE ${ }^{\circledR}$ and Cambridge International A and AS Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0606	12

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

Question	Answer	Marks	Guidance
1	$\begin{aligned} & a x+9=-2 x^{2}+3 x+1 \\ & 2 x^{2}+(a-3) x+8=0 \end{aligned}$ For 2 distinct roots, $(a-3)^{2}>64$ Critical values -5 and 11 $a>11, \quad a<-5$	M1 M1 A1 A1	for attempt to equate the line and the curve and obtain a 3 term quadratic equation for use of the discriminant for critical values for correct range
2	$a=-\frac{13}{6}, b=0, c=1$	B3	B1 for each
3	$\begin{aligned} & \log _{5} \sqrt{x}+\log _{25} x=3 \\ & \frac{1}{2} \log _{5} x+\frac{\log _{5} x}{\log _{5} 25}=3 \\ & \log _{5} x=3 \\ & x=125 \text { cao } \end{aligned}$ Alternative scheme: $\begin{aligned} & \frac{\log _{25} \sqrt{x}}{\log _{25} 5}+\log _{25} x=3 \\ & \frac{\frac{1}{2} \log _{25} x}{\log _{25} 5}+\log _{25} x=3 \\ & \log _{25} x=\frac{3}{2} \\ & x=125 \text { cao } \end{aligned}$	B1,B1 B1 B1 B1 B1	B1 for $\frac{1}{2} \log _{5} x$ B1 for $\frac{\log _{5} x}{\log _{5} 25}$ for final answer for change of base for $\frac{1}{2} \log _{25} x$ (must be from correct work) for final answer

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0606	12

Question	Answer	Marks	Guidance
4 (i) (ii)	 $2-x=3+2 x$ leading to $x=-\frac{1}{3}$ $2-x=-3-2 x$ leading to $x=-5$ Alternative: $(2-x)^{2}=(3+4 x)^{2}$ leading to $15 x^{2}+28 x+5=0$ $x=-\frac{1}{3}, x=-5$	B1 B1 B1 B1 B1 M1 A1 M1	for a line in correct position for $(0,2),(2,0)$ for correct shape for $y=\|3+2 x\|$, touching the x-axis for $(-1.5,0),(0,3)$ for $x=-\frac{1}{3}$ for correct attempt to deal with 'negative' branch. for $x=-5$ for equating and squaring to obtain a 3 term quadratic equation A1 for each.
5 (a) (i) (ii) (iii) (b) (i) (ii)	$\begin{aligned} & { }^{9} P_{6}=60480 \\ & { }^{4} P_{2} \times{ }^{3} P_{2} \times 2=144 \\ & 840 \times 2 \\ & 1680 \\ & { }^{10} C_{6} \times{ }^{5} C_{3} \\ & 2100 \\ & { }^{8} C_{4} \times{ }^{4} C_{2} \\ & 420 \end{aligned}$	B1 M1,A1 B1,B1 M1 A1 M1 A1	Must be evaluated M1 for attempt a product of 3 perms B1 for either 840, or realising that there are 2 possible positions for the symbols for unsimplified form for unsimplified form
$6 \quad$ (i) (ii) (iii) (iv)	$\begin{aligned} & \mathrm{f}(x)>6 \\ & \mathrm{f}^{-1}(x)=\frac{1}{4} \ln (x-6) \end{aligned}$ Domain: $x>6$ Range: $\mathrm{f}^{-1}(x) \in \mathbb{R}$ $\begin{aligned} & \mathrm{f}^{\prime}(x)=4 \mathrm{e}^{4 x} \\ & 6+\mathrm{e}^{4 x}=4 \mathrm{e}^{4 x} \end{aligned}$ leading to $x=\frac{1}{4} \ln 2$	B1 M1 A1 B1 B1 B1 M1 A1	Allow B1 for $y>6$ for a complete method must be $\mathrm{f}^{-1}(x)=$ or $y=\ldots$ must be using the correct variable in both for a complete, correct method

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0606	12

Question	Answer	Marks	Guidance
$7 \quad$ (i) (ii) (iii)	$\begin{aligned} & \mathrm{f}\left(\frac{1}{2}\right)=\frac{a}{8}+\frac{7}{4}-\frac{9}{2}+b \quad(=0) \\ & a+8 b=22 \\ & 8 a+28-18+b=5(-a+7+9+b) \\ & 13 a-4 b=70 \end{aligned}$ leading to $a=6, b=2$ $(2 x-1)\left(3 x^{2}+5 x-2\right)$ $(2 x-1)(3 x-1)(x+2)$	M1 M1 DM1 A1 B2,1,0 M1 A1FT	for attempt at $\mathrm{f}\left(\frac{1}{2}\right)$ for attempt at $\mathrm{f}(2)=5 \mathrm{f}(-1)$ Allow if the 'wrong way' round for attempt to solve simultaneous equations A1 for both -1 each error for attempt to factorise their quadratic factor must be 3 linear factors
(i) (ii) (iii)	$\lg y=\lg A+b \lg x$ Gradient $=1.2$ so $b=1.2$ $\begin{aligned} & \text { Intercept }=1.44 \\ & A=27.5 \end{aligned}$ when $x=100, \lg x=2$ $\lg y=3.84$ (allow 3.8 to 3.9) when $y=8000, \lg 8000=3.9, \lg x=2.05$ leading to $x=113,10^{2.05}$ or 112		may be implied by later work for attempt at gradient for $b=1.2$ for attempt to find y-intercept for, allow awrt 28 for correct use of graph or equation for correct use of graph or equation

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0606	12

Question	Answer	Marks	Guidance
9 (i) (ii) (iii) (iv)	$\begin{aligned} & \frac{7}{2} r^{2} \theta=\frac{1}{2} r^{2}(2 \pi-\theta) \\ & \theta=\frac{\pi}{4} \text { oe } \\ & r+r+\frac{\pi}{4} r=20, \text { leading to } \\ & r=7.180(3 . .) \end{aligned}$ $\begin{aligned} \text { Perimeter } & =\frac{\pi}{4} r+2 r \tan \frac{\pi}{8} \\ & =5.6394+5.9484 \\ & =11.6 \end{aligned}$ $\begin{aligned} \text { Area } & =(r \times A C)-\frac{1}{2} r^{2} \frac{\pi}{4} \\ & =21.356-20.246 \\ 1.08 & \leqslant \text { Area } \leqslant 1.11 \end{aligned}$ $=21.356-20.246 \quad \text { or equivalent }$ method using triangles	B1,B1 B1	for a valid method allow in degrees for valid method Must show enough accuracy to get A1 B1 for arc length, B1 for twice $A C$ for 11.6 B1 for area of quadrilateral, allow unsimplified, B1 for sector area for area in given range
10 (i) (ii) (iii)	$x \times \frac{3}{2} \times 2(2 x-1)^{\frac{1}{2}}+(2 x-1)^{\frac{3}{2}}$ $\begin{aligned} 3 \int x(2 x-1)^{\frac{1}{2}} \mathrm{~d} x & =x(2 x-1)^{\frac{3}{2}}-\int(2 x-1)^{\frac{3}{2}} \mathrm{~d} x \\ & =x(2 x-1)^{\frac{3}{2}}-\frac{1}{2} \times \frac{2}{5}(2 x-1)^{\frac{5}{2}} \end{aligned}$ $\begin{aligned} & \int x(2 x-1)^{\frac{1}{2}} \mathrm{~d} x=\frac{1}{3}(2 x-1)^{\frac{3}{2}}\left(x-\frac{1}{5}(2 x-1)\right) \\ &=\frac{(2 x-1)^{\frac{3}{2}}}{15}(3 x+1) \\ &\left(\frac{1}{15} \times 4\right)-0 \end{aligned}$	B1 M1 A1 M1 B1,B1 M1 DM1 A1 M1 A1FT	for $\frac{3}{2} \times 2(2 x-1)^{\frac{1}{2}}$ for attempt at differentiation of a product for all else correct for attempt to use part (i) B1 for $x(2 x-1)^{\frac{3}{2}}$, allow if divided by 3 B1 for $\frac{1}{2} \times \frac{2}{5}(2 x-1)^{\frac{5}{2}}$, allow if divided by 3 for taking out a common factor of $(2 x-1)^{\frac{3}{2}}$ for attempt to obtain a linear factor for attempt to use limits correctly FT on their $\frac{p x+q}{15}$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0606	12

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some
Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

1	$k x^{2}+(2 k-8) x+k=0$ $\begin{aligned} & b^{2}-4 a c>0 \text { so }(2 k-8)^{2}-4 k^{2}(>0) \\ & 4 k^{2}-32 k+64-4 k^{2}(>0) \end{aligned}$ leading to $k<2$ only	M1 DM1 DM1 A1	for attempt to obtain a 3 term quadratic in the form $a x^{2}+b x+c=0$, where b contains a term in k and a constant for use of $b^{2}-4 a c$ for attempt to simplify and solve for k A1 must have correct sign
2	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=-5 x(+c)$ When $x=-1, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2$ leading to $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-5 x-3 \\ & y=-\frac{5 x^{2}}{2}-3 x+d \end{aligned}$ When $x=-1, y=3$ leading to $y=\frac{5}{2}-\frac{5 x^{2}}{2}-3 x$ Alternative scheme: $y=a x^{2}+b x+c \text { so } \frac{\mathrm{d} y}{\mathrm{~d} x}=2 a x+b$ When $x=-1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=2$ so $-2 a+b=2$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 a$ so $a=-\frac{5}{2}, b=-3, c=\frac{5}{2}$	A1 DM1 A1	for attempt to integrate, do not penalise omission of arbitrary constant. Must have $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$ for attempt to integrate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$, but penalise omission of arbitrary constant. for use of $y=a x^{2}+b x+c$, differentiation and use of conditions to give an equation in a and b for a correct equation for a second differentiation to obtain a for a, b and c all correct

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

3	Alternate scheme: $\begin{aligned} \text { LHS } & =\tan \theta+\cot \theta \\ & =\tan \theta+\frac{1}{\tan \theta} \\ & =\frac{\tan ^{2} \theta+1}{\tan \theta} \\ & =\frac{\sec ^{2} \theta}{\tan \theta} \\ & =\frac{\sec \theta}{\tan \theta} \times \sec \theta \\ & =\operatorname{cosec} \theta \sec \theta \end{aligned}$	B1 B1 M1 M1 A1 B1 M1 B1 M1 A1	may be implied by the next line for dealing with $\tan \theta$ and $\cot \theta$ in terms of $\sin \theta$ and $\cos \theta$ for attempt to obtain as a single fraction for the use of $\sin ^{2} \theta+\cos ^{2} \theta=1$ in correct context Must be convinced as AG may be implied by subsequent work for attempt to obtain as a single fraction for use of the correct identity for 'splitting' $\sec ^{2} \theta$ Must be convinced as AG
$4 \quad$ (a) (i) (ii) (iii) (b)		B1 B1 B1 B1 B1, B1 B1 B1 B1 B1	for realising that the music books can be arranged amongst themselves and consideration of the other 5 books for the realisation that the above arrangement can be either side of the clock. B1 for ${ }^{10} C_{6}$, B1 for ${ }^{7} C_{6}$ for 1 case correct, must be considering more than 1 different case, allow C notation for the other 2 cases, allow C notation for final result

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

5 (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-3) \frac{4 x}{2 x^{2}+1}+\ln \left(2 x^{2}+1\right)$ when $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{8}{9}+\ln 9$ oe or 1.31 or better $\begin{aligned} & \partial y \approx(\text { answer to }(\mathbf{i})) \times 0.03 \\ & =0.0393, \text { allow awrt } 0.039 \end{aligned}$	B1 M1 A1 A1 M1 A1FT	for correct differentiation of \ln function for attempt to differentiate a product for correct product, terms must be bracketed where appropriate for correct final answer for attempt to use small changes follow through on their numerical answer to (i) allow to 2 sf or better
6 (i) (ii) (iii) (iv) (v)	$\begin{aligned} & A \cap B=\{3\} \\ & A \cup C=\{1,3,5,6,7,9,11,12\} \\ & A^{\prime} \cap C=\{1,5,7,11\} \\ & (D \cup B)^{\prime}=\{1,9\} \end{aligned}$ Any set containing up to 5 positive even numbers $\leqslant 12$	B1 B1 B1 B1 B1	
$7 \begin{array}{ll}7 & \text { (i) } \\ & \\ & \\ & \\ \\ & \\ \text { (ii) }\end{array}$	$\begin{aligned} \text { Gradient } & =\frac{0.2}{0.8}=0.25 \\ b & =0.25 \end{aligned}$ Either $\quad 6=0.25(2.2)+c$ Or $\quad 5.8=0.25(1.4)+c$ leading to $A=233$ or $\mathrm{e}^{5.45}$ Alternative schemes: Either Or $6=b(2.2)+c$ $5.8=b(1.4)+c$ $\begin{aligned} \mathrm{e}^{6} & =A\left(\mathrm{e}^{2.2}\right)^{b} \\ \mathrm{e}^{5.8} & =A\left(\mathrm{e}^{1.4}\right)^{b} \end{aligned}$ Leading to $A=233$ or $\mathrm{e}^{5.45}$ and $b=0.25$ Either $\quad y=233 \times 5^{0.25}$ Or $\quad \ln y=0.25 \ln 5+\ln 233$ leading to $y=348$	M1 A1 M1 A1 M1 DM1 A1, A1 M1 A1	for attempt to find the gradient for a correct substitution of values from either point and attempt to obtain c or solution by simultaneous equations dealing with $c=\ln A$ for 2 simultaneous equations as shown for attempt to solve to get at least one solution for one unknown A1 for each for correct use of either equation in attempt to obtain y using their value of A and of b found in (i)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

8	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2\left(x^{2}+5\right)^{\frac{1}{2}}-\frac{1}{2}(2 x)\left(x^{2}+5\right)^{-\frac{1}{2}}(2 x-1)}{x^{2}+5}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=2\left(x^{2}+5\right)^{-\frac{1}{2}}-\frac{1}{2}(2 x)\left(x^{2}+5\right)^{-\frac{3}{2}}(2 x-1)$ When $x=2, y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{9}$ (allow 0.444 or 0.44) Equation of tangent: $y-1=\frac{4}{9}(x-2)$ $(9 y=4 x+1)$	B1 M1 A1 B1, B1 M1 A1	for $\frac{1}{2}(2 x)\left(x^{2}+5\right)^{-\frac{1}{2}}$ for a quotient or $-\frac{1}{2}(2 x)\left(x^{2}+5\right)^{-\frac{3}{2}}$ for a product allow if either seen in separate working for attempt to differentiate a quotient or a correct product for all correct, allow unsimplified B1 for each for attempt at straight line, must be tangent using their gradient and y allow unsimplified.
9 (i) (ii)	$\begin{aligned} & \begin{array}{l} \frac{2}{3}(4+x)^{\frac{3}{2}}(+c) \\ \text { Area of trapezium } \end{array}=\left(\frac{1}{2} \times 5 \times 5\right) \\ & = \\ & \begin{aligned} & \text { Area }=\left[\frac{2}{3}(4+x)^{\frac{3}{2}}\right]_{0}^{5}-\left(\frac{1}{2} \times 5 \times 5\right) \\ &=\left(\frac{2}{3} \times 27\right)-\frac{16}{3}-\frac{25}{2} \\ &=\frac{1}{6} \text { or awrt } 0.17 \end{aligned} \end{aligned}$ Alternative scheme: Equation of $A B \quad y=\frac{1}{5} x+2$ $\begin{aligned} \text { Area } & =\int_{0}^{5} \sqrt{4+x}-\left(\frac{1}{5} x+2\right) \mathrm{d} x \\ & =\left[\frac{2}{3}(4+x)^{\frac{3}{2}}-\frac{x^{2}}{10}-2 x\right]_{0}^{5} \\ & =\left(\frac{2}{3} \times 27\right)-\frac{16}{3}-\frac{25}{2} \\ & =\frac{1}{6} \text { or awrt } 0.17 \end{aligned}$	A1 A1 A1	B1 for $k(4+x)^{\frac{3}{2}}$ only, B1 for $\frac{2}{3}(4+x)^{\frac{3}{2}}$ only Condone omission of c for attempt to find the area of the trapezium for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0) for $18-\frac{16}{3}$ or equivalent for a correct attempt to find the equation of $A B$ for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0) for $18-\frac{16}{3}$ or equivalent for 12.5 or equivalent

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

10 (i)	All sides are equal to the radii of the circles which are also equal	B1	for a convincing argument
(ii)	$\text { Angle } C B E=\frac{2 \pi}{3}$	B1	must be in terms of π, allow 0.667π, or better
(iii)	$D E=10 \sqrt{3}$	M1 A1	for correct attempt to find $D E$ using their angle CBE for correct $D E$, allow 17.3 or better
	Arc $C E=10 \times \frac{2 \pi}{3}$	M1	for attempt to find arc length with their angle CBE (20.94)
	$\text { Perimeter }=20+10 \sqrt{3}+\frac{20 \pi}{3}$	M1	for $10+10+D E+$ an arc length
	$=58.3$ or 58.2	A1	allow unsimplified
(iv)	Area of sector: $\frac{1}{2} \times 10^{2} \times \frac{2 \pi}{3}=\frac{100 \pi}{3}$	M1	for sector area using their angle $C B E$ allow unsimplified, may be implied
	Area of triangle: $\frac{1}{2} \times 10^{2} \times \sin \frac{2 \pi}{3}=25 \sqrt{3}$	M1	for triangle area using their angle $D B E$ which must be the same as their angle $C B E$, allow unsimplified, may be implied
	Area $=\frac{100 \pi}{3}+25 \sqrt{3}$ or awrt 148	A1	allow in either form

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	11

12	$x^{2}+6 x-16=0 \text { or } y^{2}+10 y-75=0$ leading to $(x+8)(x-2)=0 \text { or }(y-5)(y+15)=0$ so $x=2, y=5$ and $x=-8, y=-15$ Midpoint ($-3,-5$) $\text { Gradient }=2, \text { so perpendicular gradient }=-\frac{1}{2}$ Perpendicular bisector: $\begin{aligned} & y+5=-\frac{1}{2}(x+3) \\ & (2 y+x+13=0) \end{aligned}$ Point $C(-13,0)$ $\begin{aligned} \text { Area } & =\frac{1}{2}\left\|\begin{array}{cccc} -13 & 2 & -8 & -13 \\ 0 & 5 & -15 & 0 \end{array}\right\| \\ & =125 \end{aligned}$ Alternative method for area: $\begin{aligned} C M^{2} & =125, A B^{2}=500 \\ \text { Area } & =\frac{1}{2} \times \sqrt{125} \times \sqrt{500} \\ & =125 \end{aligned}$	M1 DM1 A1, A1 B1 M1 M1 M1 A1 M1 A1	for attempt to obtain a 3 term quadratic in terms of one variable only for attempt to solve quadratic equation A1 for each 'pair' of values. for attempt at straight line equation, must be using midpoint and perpendicular gradient for use of $y=0$ in their line equation (but not $2 x-y+1=0$) for correct attempt to find area, may be using their values for A, B and $C(C$ must lie on the x-axis) for correct attempt to find area may be using their values for A, B and C

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some
Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	12

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

1	$k x^{2}+(2 k-8) x+k=0$ $\begin{aligned} & b^{2}-4 a c>0 \text { so }(2 k-8)^{2}-4 k^{2}(>0) \\ & 4 k^{2}-32 k+64-4 k^{2}(>0) \end{aligned}$ leading to $k<2$ only	$\begin{gathered} \text { M1 } \\ \text { DM1 } \\ \text { DM1 } \\ \text { A1 } \end{gathered}$	for attempt to obtain a 3 term quadratic in the form $a x^{2}+b x+c=0$, where b contains a term in k and a constant for use of $b^{2}-4 a c$ for attempt to simplify and solve for k A1 must have correct sign
2	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=-5 x(+c)$ When $x=-1, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2$ leading to $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-5 x-3 \\ & y=-\frac{5 x^{2}}{2}-3 x+d \end{aligned}$ When $x=-1, y=3$ leading to $y=\frac{5}{2}-\frac{5 x^{2}}{2}-3 x$ Alternative scheme: $y=a x^{2}+b x+c \text { so } \frac{\mathrm{d} y}{\mathrm{~d} x}=2 a x+b$ When $x=-1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=2$ so $-2 a+b=2$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 a$ so $a=-\frac{5}{2}, b=-3, c=\frac{5}{2}$	M1 A1 DM1 A1 P M1 A1 DM1 A1	for attempt to integrate, do not penalise omission of arbitrary constant. Must have $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$ for attempt to integrate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$, but penalise omission of arbitrary constant. for use of $y=a x^{2}+b x+c$, differentiation and use of conditions to give an equation in a and b for a correct equation for a second differentiation to obtain a for a, b and c all correct

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	12

3	Alternate scheme: $\begin{aligned} \text { LHS } & =\tan \theta+\cot \theta \\ & =\tan \theta+\frac{1}{\tan \theta} \\ & =\frac{\tan ^{2} \theta+1}{\tan \theta} \\ & =\frac{\sec ^{2} \theta}{\tan \theta} \\ & =\frac{\sec \theta}{\tan \theta} \times \sec \theta \\ & =\operatorname{cosec} \theta \sec \theta \end{aligned}$	B1 B1 M1 M1 A1 B1 M1 B1 M1 A1	may be implied by the next line for dealing with $\tan \theta$ and $\cot \theta$ in terms of $\sin \theta$ and $\cos \theta$ for attempt to obtain as a single fraction for the use of $\sin ^{2} \theta+\cos ^{2} \theta=1$ in correct context Must be convinced as AG may be implied by subsequent work for attempt to obtain as a single fraction for use of the correct identity for 'splitting' $\sec ^{2} \theta$ Must be convinced as AG
$4 \quad$ (a) (i) (ii) (iii) (b)		B1 B1 B1 B1 B1, B1 B1 B1 B1 B1	for realising that the music books can be arranged amongst themselves and consideration of the other 5 books for the realisation that the above arrangement can be either side of the clock. B1 for ${ }^{10} C_{6}$, B1 for ${ }^{7} C_{6}$ for 1 case correct, must be considering more than 1 different case, allow C notation for the other 2 cases, allow C notation for final result

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	12

5 (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-3) \frac{4 x}{2 x^{2}+1}+\ln \left(2 x^{2}+1\right)$ when $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{8}{9}+\ln 9$ oe or 1.31 or better $\begin{aligned} & \partial y \approx(\text { answer to }(\mathbf{i})) \times 0.03 \\ & =0.0393, \text { allow awrt } 0.039 \end{aligned}$	B1 M1 A1 A1 M1 A1FT	for correct differentiation of \ln function for attempt to differentiate a product for correct product, terms must be bracketed where appropriate for correct final answer for attempt to use small changes follow through on their numerical answer to (i) allow to 2 sf or better
6 (i) (ii) (iii) (iv) (v)	$\begin{aligned} & A \cap B=\{3\} \\ & A \cup C=\{1,3,5,6,7,9,11,12\} \\ & A^{\prime} \cap C=\{1,5,7,11\} \\ & (D \cup B)^{\prime}=\{1,9\} \end{aligned}$ Any set containing up to 5 positive even numbers $\leqslant 12$	B1 B1 B1 B1 B1	
$7 \begin{array}{ll}7 & \text { (i) } \\ & \\ & \\ & \\ \\ & \\ \text { (ii) }\end{array}$	$\begin{aligned} \text { Gradient } & =\frac{0.2}{0.8}=0.25 \\ b & =0.25 \end{aligned}$ Either $\quad 6=0.25(2.2)+c$ Or $\quad 5.8=0.25(1.4)+c$ leading to $A=233$ or $\mathrm{e}^{5.45}$ Alternative schemes: Either Or $6=b(2.2)+c$ $5.8=b(1.4)+c$ $\begin{aligned} \mathrm{e}^{6} & =A\left(\mathrm{e}^{2.2}\right)^{b} \\ \mathrm{e}^{5.8} & =A\left(\mathrm{e}^{1.4}\right)^{b} \end{aligned}$ Leading to $A=233$ or $\mathrm{e}^{5.45}$ and $b=0.25$ Either $\quad y=233 \times 5^{0.25}$ Or $\quad \ln y=0.25 \ln 5+\ln 233$ leading to $y=348$	M1 A1 M1 A1 M1 DM1 A1, A1 M1 A1	for attempt to find the gradient for a correct substitution of values from either point and attempt to obtain c or solution by simultaneous equations dealing with $c=\ln A$ for 2 simultaneous equations as shown for attempt to solve to get at least one solution for one unknown A1 for each for correct use of either equation in attempt to obtain y using their value of A and of b found in (i)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	12

8	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2\left(x^{2}+5\right)^{\frac{1}{2}}-\frac{1}{2}(2 x)\left(x^{2}+5\right)^{-\frac{1}{2}}(2 x-1)}{x^{2}+5}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=2\left(x^{2}+5\right)^{-\frac{1}{2}}-\frac{1}{2}(2 x)\left(x^{2}+5\right)^{-\frac{3}{2}}(2 x-1)$ When $x=2, y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{9}$ (allow 0.444 or 0.44) Equation of tangent: $y-1=\frac{4}{9}(x-2)$ $(9 y=4 x+1)$	B1 M1 A1 B1, B1 M1 A1	for $\frac{1}{2}(2 x)\left(x^{2}+5\right)^{-\frac{1}{2}}$ for a quotient or $-\frac{1}{2}(2 x)\left(x^{2}+5\right)^{-\frac{3}{2}}$ for a product allow if either seen in separate working for attempt to differentiate a quotient or a correct product for all correct, allow unsimplified B1 for each for attempt at straight line, must be tangent using their gradient and y allow unsimplified.
9 (i) (ii)	$\begin{aligned} & \begin{array}{l} \frac{2}{3}(4+x)^{\frac{3}{2}}(+c) \\ \text { Area of trapezium } \end{array}=\left(\frac{1}{2} \times 5 \times 5\right) \\ & = \\ & \begin{aligned} & \text { Area }=\left[\frac{2}{3}(4+x)^{\frac{3}{2}}\right]_{0}^{5}-\left(\frac{1}{2} \times 5 \times 5\right) \\ &=\left(\frac{2}{3} \times 27\right)-\frac{16}{3}-\frac{25}{2} \\ &=\frac{1}{6} \text { or awrt } 0.17 \end{aligned} \end{aligned}$ Alternative scheme: Equation of $A B \quad y=\frac{1}{5} x+2$ $\begin{aligned} \text { Area } & =\int_{0}^{5} \sqrt{4+x}-\left(\frac{1}{5} x+2\right) \mathrm{d} x \\ & =\left[\frac{2}{3}(4+x)^{\frac{3}{2}}-\frac{x^{2}}{10}-2 x\right]_{0}^{5} \\ & =\left(\frac{2}{3} \times 27\right)-\frac{16}{3}-\frac{25}{2} \\ & =\frac{1}{6} \text { or awrt } 0.17 \end{aligned}$	A1 A1 A1	B1 for $k(4+x)^{\frac{3}{2}}$ only, B1 for $\frac{2}{3}(4+x)^{\frac{3}{2}}$ only Condone omission of c for attempt to find the area of the trapezium for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0) for $18-\frac{16}{3}$ or equivalent for a correct attempt to find the equation of $A B$ for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0) for $18-\frac{16}{3}$ or equivalent for 12.5 or equivalent

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	12

10 (i)	All sides are equal to the radii of the circles which are also equal	B1	for a convincing argument
(ii)	$\text { Angle } C B E=\frac{2 \pi}{3}$	B1	must be in terms of π, allow 0.667π, or better
(iii)	$D E=10 \sqrt{3}$	M1 A1	for correct attempt to find $D E$ using their angle CBE for correct $D E$, allow 17.3 or better
	Arc $C E=10 \times \frac{2 \pi}{3}$	M1	for attempt to find arc length with their angle CBE (20.94)
	$\text { Perimeter }=20+10 \sqrt{3}+\frac{20 \pi}{3}$	M1	for $10+10+D E+$ an arc length
	$=58.3$ or 58.2	A1	allow unsimplified
(iv)	Area of sector: $\frac{1}{2} \times 10^{2} \times \frac{2 \pi}{3}=\frac{100 \pi}{3}$	M1	for sector area using their angle $C B E$ allow unsimplified, may be implied
	Area of triangle: $\frac{1}{2} \times 10^{2} \times \sin \frac{2 \pi}{3}=25 \sqrt{3}$	M1	for triangle area using their angle $D B E$ which must be the same as their angle $C B E$, allow unsimplified, may be implied
	Area $=\frac{100 \pi}{3}+25 \sqrt{3}$ or awrt 148	A1	allow in either form

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	12

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	12

12	$x^{2}+6 x-16=0 \text { or } y^{2}+10 y-75=0$ leading to $(x+8)(x-2)=0 \text { or }(y-5)(y+15)=0$ so $x=2, y=5$ and $x=-8, y=-15$ Midpoint ($-3,-5$) $\text { Gradient }=2, \text { so perpendicular gradient }=-\frac{1}{2}$ Perpendicular bisector: $\begin{aligned} & y+5=-\frac{1}{2}(x+3) \\ & (2 y+x+13=0) \end{aligned}$ Point $C(-13,0)$ $\begin{aligned} \text { Area } & =\frac{1}{2}\left\|\begin{array}{cccc} -13 & 2 & -8 & -13 \\ 0 & 5 & -15 & 0 \end{array}\right\| \\ & =125 \end{aligned}$ Alternative method for area: $\begin{aligned} C M^{2} & =125, A B^{2}=500 \\ \text { Area } & =\frac{1}{2} \times \sqrt{125} \times \sqrt{500} \\ & =125 \end{aligned}$	M1 DM1 A1, A1 B1 M1 M1 M1 A1 M1 A1	for attempt to obtain a 3 term quadratic in terms of one variable only for attempt to solve quadratic equation A1 for each 'pair' of values. for attempt at straight line equation, must be using midpoint and perpendicular gradient for use of $y=0$ in their line equation (but not $2 x-y+1=0$) for correct attempt to find area, may be using their values for A, B and $C(C$ must lie on the x-axis) for correct attempt to find area may be using their values for A, B and C

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some
Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

Abbreviations

Awrt answers which round to
Cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

(i) (ii) (iii)		B1 B1 B1	
2	$\begin{aligned} & \cos \left(3 x-\frac{\pi}{4}\right)=(\pm) \frac{1}{\sqrt{2}} \text { oe } \\ & 3 x-\frac{\pi}{4}=-\frac{\pi}{4}, \frac{\pi}{4}, \frac{3 \pi}{4} \\ & x=\left(-\frac{\pi}{4}+\frac{\pi}{4}\right) \div 3,\left(\frac{\pi}{4}+\frac{\pi}{4}\right) \div 3,\left(\frac{3 \pi}{4}+\frac{\pi}{4}\right) \div 3 \text { oe } \\ & x=0 \text { and } \frac{\pi}{6}(\text { or } 0 \text { and } 0.524) \\ & \left.x=\frac{\pi}{3} \text { (or } 1.05\right) \end{aligned}$	DM1 A2/1/0	division by 2 and square root correct order of operations in order to obtain a solution A2 for 3 solutions and no extras in the range A1 for 2 solutions A0 for one solution or no solutions

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

5	When $x=\frac{\pi}{4}, y=2$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=5 \sec ^{2} x$ When $x=\frac{\pi}{4}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=10$ Equation of normal $y-2=-\frac{1}{10}\left(x-\frac{\pi}{4}\right)$ $10 y+x-20-\frac{\pi}{4}=0$ or $10 y+x-20.8=0$ oe	B1 B1 B1 M1 A1	$y=2$ $5 \sec ^{2} x$ 10 from differentiation $y-\text { their } 2=-\frac{1}{\text { their } 10}\left(x-\frac{\pi}{4}\right)$ allow unsimplified
(i) (ii) (iii)	$\begin{aligned} & (2,16) \\ & k=0 \\ & k>16 \end{aligned}$	B1 B1 B1 M1 A1 B1 B1	shape intercepts on x-axis intercept on y-axis for a curve with a maximum and two arms $\begin{aligned} & (2, \pm 16) \text { seen or }(2, k) \text { where } k>0 \\ & (2,16) \text { or } x=2 \text { and } y=16 \text { only } \end{aligned}$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

7	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sin 3 x \quad(+c) \\ & 4 \sqrt{3}=2 \frac{\sqrt{3}}{2}+c \end{aligned}$ $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sin 3 x+3 \sqrt{3} \\ & y=-\frac{2}{3} \cos 3 x+3 \sqrt{3} x \quad(+d) \\ & -\frac{1}{3}=-\frac{2}{3} \cos \frac{\pi}{3}+3 \sqrt{3}\left(\frac{\pi}{9}\right)+d \\ & y=-\frac{2}{3} \cos 3 x+3 \sqrt{3} x-\frac{\sqrt{3}}{3} \pi \end{aligned}$	B1 M1 A1 B1FT M1 A1	$2 \sin 3 x$ finding constant using $\frac{\mathrm{d} y}{\mathrm{~d} x}=k \sin 3 x+c$ making use of $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 \sqrt{3}$ and $x=\frac{\pi}{9}$ Allow with $c=5.20$ or $\sqrt{27}$ FT integration of their $k \sin 3 x$ finding constant d for $k \cos 3 x+c x+d$ Allow $y=-0.667 \cos 3 x+5.20 x-0.577 \pi$ or better
8 (a) (b)	$\begin{aligned} & (2+k x)^{8}=256+1024 k x+1792 k^{2} x^{2}+1792 k^{3} x^{3} \\ & k=\frac{1}{4} \\ & p=112 \\ & q=28 \\ & { }^{9} C_{3} x^{6}\left(-\frac{2}{x^{2}}\right)^{3} \\ & 84 x^{6}\left(-\frac{8}{x^{6}}\right) \text { leading to } \\ & \quad-672 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1FT } \\ \text { B1FT } \\ \text { M1 } \\ \text { DM1 } \\ \text { A1 } \end{gathered}$	FT 1792 multiplied by their k^{2} FT 1792 multiplied by their k^{3} correct term seen Term selected and 2^{3} and ${ }^{9} C_{3}$ correctly evaluated

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

11	$x^{2}-2 x-3=0$ or $y^{2}-6 y+5=0$ leading to $(3,5)$ and $(-1,1)$ Midpoint $(1,3)$ $($ Gradient -1$)$ Perpendicular bisector $y=4-x$ Meets the curve again if $x^{2}+10 x-15=0$ or $y^{2}-18 y+41=0$	M1	substitution and simplification to obtain a three term quadratic equation in one variable
A1,A1	A1 for each 'pair' from a correct quadratic equation, correctly obtained. midpoint		
leading to $x=-5 \pm 2 \sqrt{10}, y=9 \mp 2 \sqrt{10}$	M1	M1 $C D^{2}=(4 \sqrt{10})^{2}+(4 \sqrt{10})^{2}$ perpendicular bisector, must be using their perpendicular gradient and their midpoint substitution and simplification to obtain a three term quadratic equation in one variable.	
A1 for each 'pair'			
$C D=8 \sqrt{5}$	M1	Pythagoras using their coordinates from solution of second quadratic. $\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}$ must be seen if not using correct coordinates. A1 for $8 \sqrt{5}$ from $\sqrt{320}$ and all correct so far.	

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0606	13

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	11

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

(ii) (iii) (a) (b) (iv)	180° or π radians or 3.14 radians (or better) 2 3	B1 B1 B1 B1 B1 B1	$y=\sin 2 x$ all correct for either $\uparrow \downarrow \uparrow$ starting at their highest value and ending at their lowest value Or a curve with highest value at $y=3$ and lowest value at $y=-1$ completely correct graph
2 (i)	$\begin{aligned} \tan \theta & =\frac{(8+5 \sqrt{2})(4-3 \sqrt{2})}{(4+3 \sqrt{2})(4-3 \sqrt{2})} \\ & =\frac{32-24 \sqrt{2}+20 \sqrt{2}-30}{16-18} \\ & =1+2 \sqrt{2} \text { cao } \end{aligned}$	M1 A1	attempt to obtain $\tan \theta$ and rationalise. Must be convinced that no calculators are being used

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	11

(ii)	$\begin{aligned} \sec ^{2} \theta & =1+\tan ^{2} \theta \\ = & 1+(-1+2 \sqrt{2})^{2} \\ = & 1+1-4 \sqrt{2}+8 \\ = & 10-4 \sqrt{2} \end{aligned}$ Alternative solution: $\begin{aligned} A C^{2} & =(4+3 \sqrt{2})^{2}+(8+5 \sqrt{2})^{2} \\ & =148+104 \sqrt{2} \\ \sec ^{2} \theta & =\frac{148+104 \sqrt{2}}{(4+3 \sqrt{2})^{2}} \\ & =\frac{148+104 \sqrt{2}}{(4+3 \sqrt{2})^{2}} \times \frac{34-24 \sqrt{2}}{34-24 \sqrt{2}} \\ & =10-4 \sqrt{2} \end{aligned}$	M1 DM1 A1 M1 DM1 A1	attempt to use $\sec ^{2} \theta=1+\tan ^{2} \theta$, with their answer to (i) attempt to simplify, must be convinced no calculators are being used. Need to expand $(-1+2 \sqrt{2})^{2}$ as 3 terms
$3 \text { (i) }$ (ii)	$\begin{aligned} & 64+192 x^{2}+240 x^{4}+160 x^{6} \\ & \left(64+192 x^{2}+240 x^{4}\right)\left(1-\frac{6}{x^{2}}+\frac{9}{x^{4}}\right) \end{aligned}$ Terms needed $64-(192 \times 6)+(240 \times 9)$ $=1072$	B3,2,1,0 B1 M1 A1	-1 each error expansion of $\left(1-\frac{3}{x^{2}}\right)^{2}$ attempt to obtain 2 or 3 terms using their (i)

4 (a) (b)	$\mathbf{X}^{2}=\left(\begin{array}{cc} 4-4 k & -8 \\ 2 k & -4 k \end{array}\right)$ Use of $\mathbf{A A}^{-1}=\mathbf{I}$ $\left(\begin{array}{ll} a & 1 \\ b & 5 \end{array}\right)\left(\begin{array}{cc} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{array}\right)=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)$ Any 2 equations will give $a=2, b=4$ Alternative method 1: $\frac{1}{5 a-b}\left(\begin{array}{cc} 5 & -1 \\ b & a \end{array}\right)=\left(\begin{array}{cc} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{array}\right)$ Compare any 2 terms to give $a=2, b=4$ Alternative method 2: Inverse of $\frac{1}{6}\left(\begin{array}{cc}5 & -1 \\ -4 & 2\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 4 & 5\end{array}\right)$	B2,1,0 M1 A1,A1 M1 A1,A1 M1 A1,A1	-1 each incorrect element use of $\mathbf{A A}^{-1}=\mathbf{I}$ and an attempt to obtain at least one equation. correct attempt to obtain \mathbf{A}^{-1} and comparison of at least one term. reasoning and attempt at inverse
5	$\begin{aligned} & 3 x-1=x(3 x-1)+x^{2}-4 \text { or } \\ & y=\left(\frac{y+1}{3}\right) y+\left(\frac{y+1}{3}\right)^{2}-4 \\ & 4 x^{2}-4 x-3=0 \text { or } 4 y^{2}-4 y-35=0 \\ & (2 x-3)(2 x+1)=0 \text { or }(2 y-7)(2 y+5)=0 \end{aligned}$ leading to $x=\frac{3}{2}, x=-\frac{1}{2}$ and $y=\frac{7}{2}, y=-\frac{5}{2}$ Midpoint $\left(\frac{1}{2}, \frac{1}{2}\right)$ Perpendicular gradient $=-\frac{1}{3}$ Perp bisector: $y-\frac{1}{2}=-\frac{1}{3}\left(x-\frac{1}{2}\right)$ $(3 y+x-2=0)$	M1 DM1 A1 A1 B1 M1 M1 A1	equate and attempt to obtain an equation in 1 variable forming a 3 term quadratic equation and attempt to solve x values y values for midpoint, allow anywhere correct attempt to obtain the gradient of the perpendicular, using $A B$ straight line equation through the midpoint; must be convinced it is a perpendicular gradient. allow unsimplified

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	11

$6 \quad$ (i) (ii) (iii)	$\mathrm{f}\left(\frac{1}{2}\right)=\frac{a}{8}-\frac{15}{4}+\frac{b}{2}-2=0$ leading to $a+4 b=46$ $\mathrm{f}(1)=a-15+b-2=5$ leading to $a+b=22$ giving $b=8$ (AG), $a=14$ $(2 x-1)\left(7 x^{2}-4 x+2\right)$ $7 x^{2}-4 x+2=0$ has no real solutions as $\begin{aligned} & b^{2}<4 a c \\ & 16<56 \end{aligned}$	M1 A1 M1,A1 M1,A1 M1 A1	correct use of either $\mathrm{f}\left(\frac{1}{2}\right)$ or $\mathrm{f}(1)$ paired correctly both equations correct (allow unsimplified) M1 for solution of equations A1 for both a and b. AG for b. M1 for valid attempt to obtain $g(x)$, by either observation or by algebraic long division. use of $b^{2}-4 a c$ correct conclusion; must be from a correct $\mathrm{g}(x)$ or $2 \mathrm{~g}(x) \quad$ www
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x-1) \frac{8 x}{\left(4 x^{2}+2\right)^{-\ln \left(4 x^{2}+3\right)}}}{(x-1)^{2}}$ When $x=0, y=-\ln 3$ oe $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\ln 3$ so gradient of normal is $\frac{1}{\ln 3}$ (allow numerical equivalent) normal equation $y+\ln 3=\frac{1}{\ln 3} x$ or $y=0.910 x-1.10$, or $y=\frac{10}{11} x-\frac{11}{10}$ cao (Allow $y=0.91 x-1.1$) when $x=0, \quad y=-\ln 3$ when $y=0, x=(\ln 3)^{2}$ Area $= \pm 0.66$ or ± 0.67 or awrt these $\text { or } \frac{1}{2}(\ln 3)^{3}$	M1 B1 A1 B1 M1 M1 A1 M1 A1	differentiation of a quotient (or product) correct differentiation of $\ln \left(4 x^{2}+3\right)$ all else correct for y value valid attempt to obtain gradient of the normal attempt at normal equation must be using a perpendicular valid attempt at area

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	11

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	11

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	11

(b)	$\left(\sec ^{2} 3 y-1\right)-2 \sec 3 y-2=0$	M1	use of the correct identity
	$\begin{aligned} & \sec ^{2} 3 y-2 \sec 3 y-3=0 \\ & (\sec 3 y+1)(\sec 3 y-3)=0 \end{aligned}$	M1	attempt to obtain a 3 term quadratic equation in sec $3 y$ and attempt to solve
	leading to $\cos 3 y=-1, \cos 3 y=\frac{1}{3}$	M1	dealing with sec and $3 y$ correctly
	$\begin{aligned} & 3 y=180^{\circ}, 540^{\circ} \quad 3 y=70.5^{\circ}, 289.5^{\circ}, 430.5^{\circ} \\ & y=60^{\circ}, 180^{\circ}, 23.5^{\circ}, 96.5^{\circ}, 143.5^{\circ} \end{aligned}$	$\begin{gathered} \mathbf{A 1}, \mathbf{A 1} \\ \mathbf{A 1} \end{gathered}$	A1 for a correct pair, A1 for a second correct pair, A1 for correct $5^{\text {th }}$ solution and no other within the range
	Alternative 1: $\sec ^{2} 3 y-2 \sec 3 y-3=0$ leading to $3 \cos ^{2} 3 y+2 \cos 3 y-1$ $(3 \cos y-1)(\cos y+1)=0$	M1 M1 M1	use of the correct identity attempt to obtain a quadratic equation in $\cos 3 y$ and attempt to solve dealing with $3 y$ correctly A marks as above
	Alternative 2: $\begin{aligned} & \frac{\sin ^{2} y}{\cos ^{2} y}-\frac{2}{\cos y}-2=0 \\ & \left(1-\cos ^{2} x\right)-2 \cos x-2 \cos ^{2} x=0 \end{aligned}$	M1	use of the correct identity, $\tan y=\frac{\sin y}{\cos y}$ and $\sec y=\frac{1}{\cos y}$, then as before
(c)	$z-\frac{\pi}{3}=\frac{\pi}{3}, \frac{4 \pi}{3}$	M1	correct order of operations
	$z=\frac{2 \pi}{3}, \frac{5 \pi}{3} \text { or } 2.09 \text { or } 2.1,5.24$	A1,A1	A1 for a correct solution A1 for a second correct solution and no other within the range

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	12

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
\[
\begin{aligned}
\& k^{2}-4(2 k+5) \quad(<0) \\
\& k^{2}-8 k-20 \quad(<0)
\end{aligned}
\]
\[
(k-10)(k+2) \quad(<0)
\] \\
critical values of 10 and -2
\[
-2<k<10
\]
\end{tabular} \& M1 \& \begin{tabular}{l}
use of \(b^{2}-4 a c\), (not as part of quadratic formula unless isolated at a later stage) with correct values for \(a, b\) and \(c\) \\
Do not need to see \(<\) at this point attempt to obtain critical values correct critical values correct range
\end{tabular} \\
\hline \& Alternative 1:
\[
\frac{\mathrm{d} y}{\mathrm{~d} x}=2(2 k+5) x+k
\] \& M1 \& attempt to differentiate, equate to zero and substitute \(x\) value back in to obtain a \(y\) value \\
\hline \& \begin{tabular}{l}
When \(\frac{\mathrm{d} y}{\mathrm{~d} x}=0, x=\frac{-k}{2(2 k+5)}, y=\frac{8 k+20-k^{2}}{4(2 k+5)}\) \\
When \(y=0\), obtain critical values of 10 and -2
\[
-2<k<10
\]
\end{tabular} \& M1

A1
A1 \& consider $y=0$ in order to obtain critical values correct critical values correct range

\hline \& Alternative 2:

$$
y=(2 k+5)\left(\left(x+\frac{k}{2(2 k+5)}\right)^{2}-\frac{k^{2}}{4(2 k+5)}\right)+1
$$ \& M1 \& attempt to complete the square and consider $' 1-{\frac{k^{2}}{4(2 k+5)}}^{\prime}{ }^{\prime}$

\hline \& Looking at $1-\frac{k^{2}}{4(2 k+5)}=0$ leads to \& M1 \& attempt to solve above $=$ to 0 , to obtain critical values

\hline \& critical values of 10 and -2

$$
-2<k<10
$$ \& \[

$$
\begin{aligned}
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& correct critical values correct range

\hline
\end{tabular}

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	12

2	$\begin{aligned} \frac{\tan \theta+\cot \theta}{\operatorname{cosec} \theta} & =\frac{\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta}} \\ & =\frac{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}}{\frac{1}{\sin \theta}} \\ & =\frac{1}{\cos \theta} \\ & =\sec \theta \end{aligned}$ Alternative: $\frac{\tan \theta+\cot \theta}{\operatorname{cosec} \theta}=\frac{\frac{\tan ^{2} \theta+1}{\tan \theta}}{\operatorname{cosec} \theta}$ $\begin{aligned} & =\frac{\sec ^{2} \theta}{\tan \theta \frac{1}{\sin \theta}} \\ & =\frac{\sec ^{2} \theta}{\sec \theta} \\ & =\sec \theta \end{aligned}$	M1 M1 A1 M1 M1 M1 A1	for $\tan \theta=\frac{\sin \theta}{\cos \theta}, \cot \theta=\frac{\cos \theta}{\sin \theta}$ and $\operatorname{cosec} \theta=\frac{1}{\sin \theta} ;$ allow when used dealing correctly with fractions in the numerator; allow when seen use of the appropriate identity; allow when seen must be convinced it is from completely correct work (beware missing brackets) for either $\tan \theta=\frac{1}{\cot \theta}$ or $\cot \theta=\frac{1}{\tan \theta}$ and $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$; allow when used dealing correctly with fractions in numerator; allow when seen use of the appropriate identity; allow when seen must be convinced it is from completely correct work
3	$\begin{aligned} & \mathbf{A}^{-1}=\frac{1}{2}\left(\begin{array}{cc} 3 & -2 \\ -5 & 4 \end{array}\right) \\ & \binom{x}{y}=\frac{1}{2}\left(\begin{array}{cc} 3 & -2 \\ -5 & 4 \end{array}\right)\binom{8}{9} \\ & \binom{x}{y}=\frac{1}{2}\binom{6}{-4} \\ & x=3, y=-2 \end{aligned}$	B1 B1 M1 A1, A1	$\frac{1}{2}$ multiplied by a matrix for matrix attempt to use the inverse matrix, must be pre-multiplication

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	12

$4 \quad$ (i) (ii)	Area $=$ $\left(\frac{1}{2} \times 12^{2} \times 1.7\right)+\left(\frac{1}{2} \times 12^{2} \sin (2 \pi-1.7-2.4)\right)$ $=$ awrt 181 $B C^{2}=12^{2}+12^{2}-(2 \times 12 \times 12 \cos 2.1832)$ or $B C=2 \times 12 \times \sin \left(\frac{2 \pi-4.1}{2}\right)$ $\begin{aligned} & B C=21.296 \\ & \text { Perimeter }=(12 \times 1.7)+12+12+21.296 \\ &=65.7 \end{aligned}$	B1,B1 M1 A1 M1 A1 B1 M1 A1	B1 for sector area, allow unsimplified B1 for correct angle $B O C$, allow unsimplified correct attempt at area of triangle, allow unsimplified using their angle $B O C$ (Their angle $B O C$ must not be 1.7 or 2.4) correct attempt at $B C$, may be seen in (i), allow if used in (ii). Allow use of their angle BOC. for arc length, allow unsimplified for a correct 'plan' (an arc +2 radii and $B C$)
5 (a) (i) (ii) (iii)	$\begin{aligned} & 20160 \\ & 3 \times{ }^{6} P_{4} \times 2 \\ & =2160 \\ & 5 \times 2 \times{ }^{6} P_{4} \\ & =3600 \end{aligned}$ Alternative 1: $\begin{aligned} & { }^{6} C_{4} \times 5!\times 2 \\ & =3600 \end{aligned}$ Alternative 2: $\begin{aligned} & \left({ }^{7} P_{5}-{ }^{6} P_{5}\right) \times 2 \\ & =3600 \end{aligned}$ Alternative 3: $\begin{aligned} & 2!\left({ }^{6} P_{4}+\left({ }^{6} P_{1} \times{ }^{5} P_{3}\right)+\left({ }^{6} P_{2} \times{ }^{4} P_{2}\right)+\left({ }^{6} P_{3} \times{ }^{3} P_{1}\right)+{ }^{6} P_{4}\right) \\ & =3600 \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{~B} 1, \mathrm{~B} 1 \\ \mathrm{~B} 1, \mathrm{~B} 1 \\ \mathrm{~B} 1 \\ \text { B2 } \\ \mathrm{B} 1 \\ \text { B2 } \\ \text { B1 } \\ \text { B2 } \\ \text { B1 } \end{gathered}$	B1 for ${ }^{6} P_{4}$ (must be seen in a product) B1 for all correct, with no further working B1 for ${ }^{6} P_{4}$ (must be seen in a product) B1 for 5 (must be in a product) B1 for all correct, with no further working for ${ }^{6} C_{4} \times 5$! for ${ }^{6} C_{4} \times 5!\times 2$ for $\left({ }^{7} P_{5}-{ }^{6} P_{5}\right)$ for $\left({ }^{7} P_{5}-{ }^{6} P_{5}\right) \times 2$ 4 terms correct or omission of 2 ! in each term all correct

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	12

(b) (i) (ii)	${ }^{14} C_{4} \times{ }^{10} C_{4} \quad \text { or } \quad{ }^{14} C_{8} \times{ }^{8} C_{4}$ (or numerical or factorial equivalent) $=210210$ $\begin{array}{r} { }^{8} C_{4} \times{ }^{6} C_{4} \\ =1050 \end{array}$	$\begin{aligned} & \text { B1,B1 } \\ & \text { B1,B1 } \end{aligned}$	B1 for either ${ }^{14} C_{4}$ or ${ }^{14} C_{8}$ as part of a product B1 for correct answer, with no further working B1 for either ${ }^{8} C_{4}$ or ${ }^{6} C_{4}$ as part of a product B1 for correct answer with no further working
(i) (ii)	$10 \ln 4$ or 13.9 or better $\left(\frac{\mathrm{d} x}{\mathrm{~d} t}=\right) \frac{20 t}{t^{2}+4}-4$ When $\frac{\mathrm{d} x}{\mathrm{~d} t}=0, \frac{20 t}{t^{2}+4}=4$ leading to $t^{2}-5 t+4=0$ $t=1, t=4$	B1 M1 B1 DM1 A1	attempt to differentiate and equate to zero $\frac{20 t}{t^{2}+4}$ or equivalent seen attempt to solve their $\frac{\mathrm{d} x}{\mathrm{~d} t}=0$, must be a 2 or 3 term quadratic equation with real roots for both

(iii)	$\begin{aligned} & \text { If }(v=) \frac{20 t}{t^{2}+4}-4 \\ & (a=) \frac{20\left(t^{2}+4\right)-20 t(2 t)}{\left(t^{2}+4\right)^{2}} \end{aligned}$ $20\left(4-t^{2}\right)$ or $80-20 t^{2}$ or $4-t^{2}$ or equivalent expression involving $-t^{2}$ When acceleration is $0, t=2$ only Alternative 1 for first 3 marks: $\begin{align*} & \operatorname{If}(v=) \frac{20 t-4 t^{2}-16}{t^{2}+4} \\ & \quad(a=) \frac{\left(t^{2}+4\right)(20-8 t)-\left(20 t-4 t^{2}-16\right)}{\left(t^{2}+4\right)^{2}} \tag{2t} \end{align*}$ Alternative $\mathbf{2}$ for M1 mark: $\begin{aligned} & \text { If }(v=) 20 t\left(t^{2}+4\right)^{-1}-4 \\ & (a=) 20 t\left(-2 t\left(t^{2}+4\right)^{-2}\right)+20\left(t^{2}+4\right)^{-1} \end{aligned}$ Alternative 3 for the first $\mathbf{3}$ marks $\begin{aligned} & \text { If }(v=)\left(20 t-4 t^{2}-16\right)\left(t^{2}+4\right)^{-1} \\ & (a=)\left(20 t-4 t^{2}-16\right)\left(-2 t\left(t^{2}+4\right)^{-2}\right)+(20-8 t)\left(t^{2}+4\right)^{-1} \\ & \text { Numerator }=-2 t\left(20 t-4 t^{2}-16\right)+(20-8 t)\left(t^{2}+4\right) \end{aligned}$	A1 A1 A1 B1 M1 A1 A1 M1 M1 A1 A1	attempt to differentiate their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ $20\left(t^{2}+4\right)$ $20 t(2 t)$ $20\left(4-t^{2}\right)$ or $80-20 t^{2}$ or $4-t^{2}$ $t=2$, dependent on obtaining first and second A marks attempt to differentiate their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ for $\left(t^{2}+4\right)(20-8 t)$ for $\left(20 t-4 t^{2}-16\right)(2 t)$ attempt to differentiate their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ attempt to differentiate their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ for $2 t\left(20 t-4 t^{2}-15\right)$ for $(20-8 t)\left(t^{2}+4\right)$
$7 \quad$ (i)	$\overrightarrow{D A}=3 \mathbf{a}-\mathbf{b}$	B1	mark final answer, allow unsimplified
(ii)	$\overrightarrow{D B}=7 \mathbf{a}-\mathbf{b}$	B1	mark final answer, allow unsimplified
(iii)	$\overrightarrow{A X}=\lambda(4 \mathbf{a}+\mathbf{b})$	B1	mark final answer, allow unsimplified
(iv)	$\overrightarrow{D X}=3 \mathbf{a}-\mathbf{b}+\lambda(4 \mathbf{a}+\mathbf{b})$	M1 A1	their (i) + their (iii) or equivalent valid method or $3 \mathbf{a}-\mathbf{b}+$ their (iii) Allow unsimplified

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	12

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	12

9	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4-6 \sin 2 x$ When $x=\frac{\pi}{4}, y=\pi$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \text { so gradient of normal }=\frac{1}{2}$ Normal equation $y-\pi=\frac{1}{2}\left(x-\frac{\pi}{4}\right)$ When $x=0, y=\frac{7 \pi}{8}$ When $y=0, x=-\frac{7 \pi}{4}$ Area $=\frac{1}{2} \times \frac{7 \pi}{4} \times \frac{7 \pi}{8}=\frac{49 \pi^{2}}{64}$	M1,A1 B1 DM1 DM1 A1 A1 B1ft	M1 for attempt to differentiate A1 for all correct for y for substitution of $x=\frac{\pi}{4}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and use of ' $m_{1} m_{2}=-1$ ', dependent on first M1 correct attempt to obtain the equation of the normal, dependent on previous DM mark must be terms of π must be terms of π Follow through on their x and y intercepts; must be exact values
10 (a) (b) (c)	$\begin{aligned} & \cos ^{2} 3 x=\frac{1}{2}, \quad \cos 3 x=(\pm) \frac{1}{\sqrt{2}} \\ & 3 x=45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ} \\ & x=15^{\circ}, 45^{\circ}, 75^{\circ}, 105^{\circ} \\ & 3\left(\cot ^{2} y+1\right)+5 \cot y-5=0 \end{aligned}$ Leading to $\begin{aligned} & 3 \cot ^{2} y+5 \cot y-2=0 \text { or } \\ & 2 \tan ^{2} y-5 \tan y-3=0 \\ & (3 \cot y-1)(\cot y+2)=0 \text { or } \\ & (\tan y-3)(2 \tan y+1)=0 \end{aligned}$ $\tan y=3, \quad \tan y=\frac{1}{2}$ $y=71.6^{\circ}, 251.6^{\circ} \quad 153.4^{\circ}, 333.4^{\circ}$ $\begin{aligned} & \sin \left(z+\frac{\pi}{3}\right)=\frac{1}{2} \\ & z+\frac{\pi}{3}=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6} \\ & z=\frac{\pi}{2}, \frac{11 \pi}{6} \end{aligned}$ (allow 1.57, 5.76)	M1 A1,A1 M1 M1 M1 A1,A1 M1 A1 M1 A1	complete correct method, dealing with sec and 3, correctly A1 for each correct pair use of a correct identity to get an equation in terms of one trig ratio only for $\cot y=\frac{1}{\tan y}$ to obtain either a quadratic equation in $\tan y$ or solutions in terms of $\tan y$; allow where appropriate for solution of a quadratic equation in terms of either $\tan y$ or $\cot y$ A1 for each correct 'pair' completely correct method of solution one correct solution in range correct attempt to obtain a second solution within the range second correct solution (and no other)

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	13

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

(ii) (iii) (a) (b) (iv)	180° or π radians or 3.14 radians (or better) 2 3	B1 B1 B1 B1 B1 B1	$y=\sin 2 x$ all correct for either $\uparrow \downarrow \uparrow$ starting at their highest value and ending at their lowest value Or a curve with highest value at $y=3$ and lowest value at $y=-1$ completely correct graph
2 (i)	$\begin{aligned} \tan \theta & =\frac{(8+5 \sqrt{2})(4-3 \sqrt{2})}{(4+3 \sqrt{2})(4-3 \sqrt{2})} \\ & =\frac{32-24 \sqrt{2}+20 \sqrt{2}-30}{16-18} \\ & =1+2 \sqrt{2} \text { cao } \end{aligned}$	M1 A1	attempt to obtain $\tan \theta$ and rationalise. Must be convinced that no calculators are being used

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	13

(ii)	$\begin{aligned} \sec ^{2} \theta & =1+\tan ^{2} \theta \\ = & 1+(-1+2 \sqrt{2})^{2} \\ = & 1+1-4 \sqrt{2}+8 \\ = & 10-4 \sqrt{2} \end{aligned}$ Alternative solution: $\begin{aligned} A C^{2} & =(4+3 \sqrt{2})^{2}+(8+5 \sqrt{2})^{2} \\ & =148+104 \sqrt{2} \\ \sec ^{2} \theta & =\frac{148+104 \sqrt{2}}{(4+3 \sqrt{2})^{2}} \\ & =\frac{148+104 \sqrt{2}}{(4+3 \sqrt{2})^{2}} \times \frac{34-24 \sqrt{2}}{34-24 \sqrt{2}} \\ & =10-4 \sqrt{2} \end{aligned}$	M1 DM1 A1 M1 DM1 A1	attempt to use $\sec ^{2} \theta=1+\tan ^{2} \theta$, with their answer to (i) attempt to simplify, must be convinced no calculators are being used. Need to expand $(-1+2 \sqrt{2})^{2}$ as 3 terms
3 (i) (ii)	$\begin{aligned} & 64+192 x^{2}+240 x^{4}+160 x^{6} \\ & \left(64+192 x^{2}+240 x^{4}\right)\left(1-\frac{6}{x^{2}}+\frac{9}{x^{4}}\right) \end{aligned}$ Terms needed $64-(192 \times 6)+(240 \times 9)$ $=1072$	B3,2,1,0 B1 M1 A1	-1 each error expansion of $\left(1-\frac{3}{x^{2}}\right)^{2}$ attempt to obtain 2 or 3 terms using their (i)

4 (a) (b)	$\mathbf{X}^{2}=\left(\begin{array}{cc} 4-4 k & -8 \\ 2 k & -4 k \end{array}\right)$ Use of $\mathbf{A A}^{-1}=\mathbf{I}$ $\left(\begin{array}{ll} a & 1 \\ b & 5 \end{array}\right)\left(\begin{array}{cc} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{array}\right)=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)$ Any 2 equations will give $a=2, b=4$ Alternative method 1: $\frac{1}{5 a-b}\left(\begin{array}{cc} 5 & -1 \\ b & a \end{array}\right)=\left(\begin{array}{cc} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{array}\right)$ Compare any 2 terms to give $a=2, b=4$ Alternative method 2: Inverse of $\frac{1}{6}\left(\begin{array}{cc}5 & -1 \\ -4 & 2\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 4 & 5\end{array}\right)$	B2,1,0 M1 A1,A1 M1 A1,A1 M1 A1,A1	-1 each incorrect element use of $\mathbf{A A}^{-1}=\mathbf{I}$ and an attempt to obtain at least one equation. correct attempt to obtain \mathbf{A}^{-1} and comparison of at least one term. reasoning and attempt at inverse
5	$\begin{aligned} & 3 x-1=x(3 x-1)+x^{2}-4 \text { or } \\ & y=\left(\frac{y+1}{3}\right) y+\left(\frac{y+1}{3}\right)^{2}-4 \\ & 4 x^{2}-4 x-3=0 \text { or } 4 y^{2}-4 y-35=0 \\ & (2 x-3)(2 x+1)=0 \text { or }(2 y-7)(2 y+5)=0 \end{aligned}$ leading to $x=\frac{3}{2}, x=-\frac{1}{2}$ and $y=\frac{7}{2}, y=-\frac{5}{2}$ Midpoint $\left(\frac{1}{2}, \frac{1}{2}\right)$ Perpendicular gradient $=-\frac{1}{3}$ Perp bisector: $y-\frac{1}{2}=-\frac{1}{3}\left(x-\frac{1}{2}\right)$ $(3 y+x-2=0)$	M1 DM1 A1 A1 B1 M1 M1 A1	equate and attempt to obtain an equation in 1 variable forming a 3 term quadratic equation and attempt to solve x values y values for midpoint, allow anywhere correct attempt to obtain the gradient of the perpendicular, using $A B$ straight line equation through the midpoint; must be convinced it is a perpendicular gradient. allow unsimplified

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	13

6 (i) (ii) (iii)	$\mathrm{f}\left(\frac{1}{2}\right)=\frac{a}{8}-\frac{15}{4}+\frac{b}{2}-2=0$ leading to $a+4 b=46$ $\mathrm{f}(1)=a-15+b-2=5$ leading to $a+b=22$ giving $b=8$ (AG), $a=14$ $(2 x-1)\left(7 x^{2}-4 x+2\right)$ $7 x^{2}-4 x+2=0$ has no real solutions as $\begin{aligned} & b^{2}<4 a c \\ & 16<56 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1,A1 } \\ \text { M1,A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	correct use of either $\mathrm{f}\left(\frac{1}{2}\right)$ or $\mathrm{f}(1)$ paired correctly both equations correct (allow unsimplified) M1 for solution of equations A1 for both a and b. AG for b. M1 for valid attempt to obtain $\mathrm{g}(x)$, by either observation or by algebraic long division. use of $b^{2}-4 a c$ correct conclusion; must be from a correct $\mathrm{g}(x)$ or $2 \mathrm{~g}(x)$ www
$\begin{array}{rr}7 & \text { (i) } \\ & \\ \\ \\ \\ \\ \\ \\ \\ & \\ & \\ \text { (ii) }\end{array}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x-1) \frac{8 x}{\left(4 x^{2}+2\right)^{-}-\ln \left(4 x^{2}+3\right)}}{(x-1)^{2}}$ When $x=0, y=-\ln 3$ oe $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\ln 3$ so gradient of normal is $\frac{1}{\ln 3}$ (allow numerical equivalent) normal equation $y+\ln 3=\frac{1}{\ln 3} x$ or $y=0.910 x-1.10$, or $y=\frac{10}{11} x-\frac{11}{10}$ cao (Allow $y=0.91 x-1.1$) when $x=0, \quad y=-\ln 3$ when $y=0, x=(\ln 3)^{2}$ Area $= \pm 0.66$ or ± 0.67 or awrt these or $\frac{1}{2}(\ln 3)^{3}$	M1 B1 A1 B1 M1 M1 A1 M1 A1	differentiation of a quotient (or product) correct differentiation of $\ln \left(4 x^{2}+3\right)$ all else correct for y value valid attempt to obtain gradient of the normal attempt at normal equation must be using a perpendicular valid attempt at area

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	13

$8 \quad$ (i)	Range for f: $y \geq 3$ Range for $\mathrm{g}: ~ y \geq 9$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
(ii)	$\begin{aligned} & x=-2+\sqrt{y-5} \\ & \quad \mathrm{~g}^{-1}(x)=-2+\sqrt{x-5} \\ & \quad \text { Domain of } \mathrm{g}^{-1}: x \geq 9 \end{aligned}$	M1 A1 B1	attempt to obtain the inverse function Must be correct form for domain
	Alternative method: $\begin{aligned} & y^{2}+4 y+9-x=0 \\ & y=\frac{-4+\sqrt{16-4(9-x)}}{2} \end{aligned}$	M1 A1	attempt to use quadratic formula and find inverse must have + not \pm
(iii)	$\begin{aligned} & \text { Need } \mathrm{g}\left(3 \mathrm{e}^{2 x}\right) \\ & \left(3 \mathrm{e}^{2 x}+2\right)^{2}+5=41 \\ & \text { or } 9 \mathrm{e}^{4 x}+12 \mathrm{e}^{2 x}-32=0 \\ & \left(3 \mathrm{e}^{2 x}-4\right)\left(3 \mathrm{e}^{2 x}+8\right)=0 \end{aligned}$	M1 DM1	correct order correct attempt to solve the equation
	leading to $3 \mathrm{e}^{2 x}+2= \pm 6$ so $x=\frac{1}{2} \ln \frac{4}{3}$ or $\mathrm{e}^{2 x}=\frac{4}{3}$ so $x=\frac{1}{2} \ln \frac{4}{3}$	M1 A1	dealing with the exponential correctly in order to reach a solution for x Allow equivalent logarithmic forms
	Alternative method: Using $\mathrm{f}(x)=\mathrm{g}^{-1}(41), \mathrm{g}^{-1}(41)=4$ leading to $3 \mathrm{e}^{2 x}=4$, so $x=\frac{1}{2} \ln \frac{4}{3}$	$\begin{gathered} \text { M1 } \\ \text { DM1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	correct use of g^{-1} dealing with $\mathrm{g}^{-1}(41)$ to obtain an equation in terms of $\mathrm{e}^{2 x}$ dealing with the exponential correctly in order to reach a solution for x Allow equivalent logarithmic forms
(iv)	$\begin{aligned} & \mathrm{g}^{\prime}(x)=6 \mathrm{e}^{2 x} \\ & \mathrm{~g}^{\prime}(\ln 4)=96 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	B1 for each

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	13

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0606	13

(b)	$\left(\sec ^{2} 3 y-1\right)-2 \sec 3 y-2=0$	M1	use of the correct identity
	$\begin{aligned} & \sec ^{2} 3 y-2 \sec 3 y-3=0 \\ & (\sec 3 y+1)(\sec 3 y-3)=0 \end{aligned}$	M1	attempt to obtain a 3 term quadratic equation in sec $3 y$ and attempt to solve
	leading to $\cos 3 y=-1, \cos 3 y=\frac{1}{3}$	M1	dealing with sec and $3 y$ correctly
	$\begin{aligned} & 3 y=180^{\circ}, 540^{\circ} \quad 3 y=70.5^{\circ}, 289.5^{\circ}, 430.5^{\circ} \\ & y=60^{\circ}, 180^{\circ}, 23.5^{\circ}, 96.5^{\circ}, 143.5^{\circ} \end{aligned}$	$\begin{gathered} \mathbf{A 1}, \mathbf{A 1} \\ \mathbf{A 1} \end{gathered}$	A1 for a correct pair, A1 for a second correct pair, A1 for correct $5^{\text {th }}$ solution and no other within the range
	Alternative 1: $\sec ^{2} 3 y-2 \sec 3 y-3=0$ leading to $3 \cos ^{2} 3 y+2 \cos 3 y-1$ $(3 \cos y-1)(\cos y+1)=0$	M1 M1 M1	use of the correct identity attempt to obtain a quadratic equation in $\cos 3 y$ and attempt to solve dealing with $3 y$ correctly A marks as above
	Alternative 2: $\begin{aligned} & \frac{\sin ^{2} y}{\cos ^{2} y}-\frac{2}{\cos y}-2=0 \\ & \left(1-\cos ^{2} x\right)-2 \cos x-2 \cos ^{2} x=0 \end{aligned}$	M1	use of the correct identity, $\tan y=\frac{\sin y}{\cos y}$ and $\sec y=\frac{1}{\cos y}$, then as before
(c)	$z-\frac{\pi}{3}=\frac{\pi}{3}, \frac{4 \pi}{3}$	M1	correct order of operations
	$z=\frac{2 \pi}{3}, \frac{5 \pi}{3} \text { or } 2.09 \text { or } 2.1,5.24$	A1,A1	A1 for a correct solution A1 for a second correct solution and no other within the range

MARK SCHEME for the March 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE ${ }^{\circledR}$ components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0606	12

1 (i) (ii) (iii) (iv)	Members who play football or cricket, or both Members who do not play tennis There are no members who play both football and tennis There are 10 members who play both cricket and tennis.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
2	$\begin{aligned} & k x-3=2 x^{2}-3 x+k \\ & 2 x^{2}-x(k+3)+(k+3)=0 \end{aligned}$ Using $b^{2}-4 a c$, $\begin{aligned} & (k+3)^{2}-(4 \times 2 \times(k+3))(<0) \\ & (k+3)(k-5)(<0) \end{aligned}$ Critical values $k=-3,5$ $\text { so }-3<k<5$	DM1 DM1 A1 A1	for attempt to obtain a 3 term quadratic equation in terms of x for use of $b^{2}-4 a c$ for attempt to solve quadratic equation, dependent on both previous M marks for both critical values for correct range
3 (i) (ii)	$4-5 x= \pm 9 \text { or }(4-5 x)^{2}=81$ leading to $x=-1, x=\frac{13}{5}$	B1 B1 B1 M1 A1, A1	for shape, must touch the x-axis in the correct quadrant for y intercept for x intercept for attempt to obtain 2 solutions, must be a complete method A1 for each
4 (i) (ii)	$729+2916 x+4860 x^{2}$ $2 \times \text { their } 4860-\text { their } 2916=6804$	$\begin{gathered} \mathbf{B 1 , B 1} \\ \mathbf{B 1} \\ \text { M1 } \\ \text { A1 } \end{gathered}$	B1 for each correct term for attempt at 2 terms, must be as shown

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0606	12

5 (i) (ii) (iii)	gradient $=4$ Using either (2,1) or $(3,5), c=-7$ $\mathrm{e}^{y}=4 x+c$ so $y=\ln (4 x-7)$ Alternative method: $\frac{y-1}{5-1}=\frac{x-2}{3-2}$ or equivalent $\begin{aligned} & \mathrm{e}^{y}=4 x-7 \\ & \text { so } y=\ln (4 x-7) \end{aligned}$ $x>\frac{7}{4}$ $\ln 6=\ln (4 x-7)$ so $x=\frac{13}{4}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { M1,A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1ft } \\ \hline \text { B1ft } \end{gathered}$	for gradient, seen or implied for attempt at straight line equation to obtain a value for c for correct method to deal with e^{y} for attempt at straight line equation using both points allow correct unsimplified for correct method to deal with e^{y} ft on their $4 x-7$ ft on their $4 x-7$
6 (i) (ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x\left(2 \sec ^{2} 2 x\right)-\tan 2 x}{x^{2}} \\ & \text { Or } \frac{\mathrm{d} y}{\mathrm{~d} x}=x^{-1}\left(2 \sec ^{2} 2 x\right)+\left(-x^{-2}\right) \tan 2 x \end{aligned}$ When $x=\frac{\pi}{8}, y=\frac{8}{\pi}(2.546)$ When $x=\frac{\pi}{8}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\frac{\pi}{2}-1}{\frac{\pi^{2}}{64}}$ $\begin{equation*} =\frac{32}{\pi}-\frac{64}{\pi^{2}} \tag{3.701} \end{equation*}$ Equation of the normal: $\begin{aligned} & y-\frac{8}{\pi}=-\frac{\pi^{2}}{32(\pi-2)}\left(x-\frac{\pi}{8}\right) \\ & y=-0.27 x+2.65(\text { allow } 2.66) \end{aligned}$	B1 M1 A1	for attempt to differentiate a quotient (or product) -1 each error for y-coordinate (allow 2.55) for an attempt at the normal, must be working with a perpendicular gradient allow in unsimplified form in terms of π or simplified decimal form

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0606	12

$7 \quad$ (i) (ii) (iii)	$\mathrm{p}\left(\frac{1}{2}\right): \frac{a}{8}+\frac{b}{4}-\frac{3}{2}-4=0$ Simplifies to $a+2 b=44$ $\mathrm{p}(-2):-8 a+4 b+6-4=-10$ Simplifies to $2 a-b=3$ oe Leads to $a=10, b=17$ $\left.\begin{array}{l} \begin{array}{rl} \mathrm{p}(x) & =10 x^{3}+17 x^{2}-3 x-4 \\ & =(2 x-1)\left(5 x^{2}+11 x+4\right) \end{array} \\ x=\frac{1}{2} \end{array}\right\}=\frac{-11 \pm \sqrt{41}}{10} .$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { B2,1,0 } \\ \text { B1 } \\ \text { B1, B1 } \end{gathered}$	for correct use of $x=\frac{1}{2}$ for correct use of $x=-2$ for solution of equations for both, be careful as AG for a, allow verification -1 each error
8 (a) (i) (ii) (b) (i) (ii) (iii)	Range $0 \leqslant y \leqslant 1$ Any suitable domain to give a one-one function $y=2+4 \ln x$ oe $\ln x=\frac{y-2}{4}$ $\mathrm{g}^{-1}(x)=\mathrm{e}^{\frac{x-2}{4}}$ Domain $x \in \square$ Range $y>0$ $\begin{aligned} & \mathrm{g}\left(x^{2}+4\right)=10 \\ & 2+4 \ln \left(x^{2}+4\right)=10 \end{aligned}$ leading to $x=1.84$ only Alternative method: $\begin{aligned} & \mathrm{h}(x)=x^{2}+4=\mathrm{g}^{-1}(10) \\ & \mathrm{g}^{-1}(10)=\mathrm{e}^{2}, \text { so } x^{2}+4=\mathrm{e}^{2} \end{aligned}$ leading to $x=1.84$ only $\begin{aligned} & \frac{4}{x}=2 x \\ & x^{2}=2 \\ & x=\sqrt{2} \end{aligned}$	B1 B1 M1 A1 B1 B1 M1 DM1 A1 M1 DM1 A1 B1 M1 A1	e.g. $0 \leqslant x \leqslant \frac{\pi}{4}$ for a complete method to find the inverse must be in the correct form for correct order for attempt to solve for one solution only for correct order for attempt to solve for one solution only for given equation, allow in this form for attempt to solve, must be using derivatives for one solution only, allow 1.41 or better.

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0606	12

9 (i)	Area of triangular face $=\frac{1}{2} x^{2} \frac{\sqrt{3}}{2}=\frac{\sqrt{3} x^{2}}{4}$ Volume of prism $=\frac{\sqrt{3} x^{2}}{4} \times y$ $\frac{\sqrt{3} x^{2}}{4} \times y=200 \sqrt{3}$ so $x^{2} y=800$ $A=2 \times \frac{\sqrt{3} x^{2}}{4}+2 x y$ leading to $A=\frac{\sqrt{3} x^{2}}{2}+\frac{1600}{x}$ $\frac{\mathrm{d} A}{\mathrm{~d} x}=\sqrt{3} x-\frac{1600}{x^{2}}$ When $\frac{\mathrm{d} A}{\mathrm{~d} x}=0, x^{3}=\frac{1600}{\sqrt{3}}$ $x=9.74$ so $A=246$ $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x}=\sqrt{3}+\frac{3200}{x^{3}}$ which is positive for $x=9.74$ so the value is a minimum	B1 M1 A1 M1 A1 M1 M1 A1 A1 M1 A1ft	for area of triangular face for attempt at volume their area $\times y$ for correct relationship between x and y for a correct attempt to obtain surface area using their area of triangular face for eliminating y correctly to obtain given answer for attempt to differentiate for equating $\frac{\mathrm{d} A}{\mathrm{~d} x}$ to 0 and attempt to solve for correct x for correct A for attempt at second derivative and conclusion, or alternate methods ft for a correct conclusion from completely correct work, follow through on their positive x value.
(i) (ii)	$\begin{aligned} & \tan \theta=\frac{1+2 \sqrt{5}}{6+3 \sqrt{5}} \times \frac{6-3 \sqrt{5}}{6-3 \sqrt{5}} \\ &=\frac{6-3 \sqrt{5}+12 \sqrt{5}-30}{36-45} \\ &=\frac{8}{3}-\sqrt{5} \\ & \tan ^{2} \theta+1=\sec ^{2} \theta \\ & \frac{64}{9}-\frac{16 \sqrt{5}}{3}+5+1=\operatorname{cosec}^{2} \theta \end{aligned}$ so $\operatorname{cosec}^{2} \theta=\frac{118}{9}-\frac{16 \sqrt{5}}{3}$ Alternate solutions are acceptable	A1, A1 M1 A1, A1	for attempt at $\cot \theta$ together with rationalisation Must be convinced that a calculator is not being used. A1 for each term for attempt to use the correct identity or correct use of Pythagoras' theorem together with their answer to (i) Must be convinced that a calculator is not being used. A1 for each term

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0606	12

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	11

1	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-\frac{16}{x^{2}} \\ & \text { When } \frac{\mathrm{d} y}{\mathrm{~d} x}=0, \\ & x=2, y=12 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { DM1 } \\ \text { A1 } \end{gathered}$	for attempt to differentiate all correct for equating $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to zero and an attempt to solve for x. A1 for both, but no extra solutions
2 (a) (b) (i) (ii)		B1 B1 B1 B1 B1	for correct shape for max value of 2 , starting at $(0,2)$ and finishing at $\left(180^{\circ}, 2\right)$ for min value of -4 must be positive
3 (i) (ii)	$\begin{aligned} & y=4(x+3)^{\frac{1}{2}}(+c) \\ & 10=4\left(9^{\frac{1}{2}}\right)+c \\ & c=-2 \\ & y=4(x+3)^{\frac{1}{2}}-2 \\ & 6=4(x+3)^{\frac{1}{2}}-2 \\ & x=1 \end{aligned}$	M1, A1 M1 A1 A1 ft	M1 for $(x+3)^{\frac{1}{2}}, \mathbf{A 1}$ for $4(x+3)^{\frac{1}{2}}$ for a correct attempt to find c, but must be from an attempt to integrate Allow A1 for $c=-2$ ft for substitution into their equation to obtain x; must have the first M1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	11

$4 \quad$ (i) (ii)	$\begin{aligned} & 5 y^{2}-7 y+2=0 \\ & (5 y-2)(y-1)=0 \\ & y=\frac{2}{5}, x=\frac{\ln 0.4}{\ln 5} \\ & x=-0.569 \\ & y=1, x=0 \end{aligned}$	$\begin{gathered} \text { B1, B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{gathered}$	B1 for 5, B1 for -7 for solution of quadratic equation from (i) for use of logarithms to solve equation of the type $5^{x}=k$ must be evaluated to 3 sf or better
5 (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-\frac{1}{x}$ When $x=1, y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=2$ Tangent: $y-1=2(x-1)$ $(y=2 x-1)$ Mid-point $(5,9)$ $9=2(5)-1$ Alternative Method: Tangent equation $y=2 x-1$ Equation of line joining $(-2,16)$ and $(12,2)$ $y=-x+14$ Solve simultaneously $x=5, y=9$ Mid-point $(5,9)$	M1 B1 DM1 A1 B1 B1 B1 B1	for attempt to differentiate for $y=1$ for attempt to find equation of tangent allow equation unsimplified for midpoint from given coordinates for checking the mid-point lies on tangent for a complete method to find the coordinates of the point of intersection for midpoint from given coordinates
(i) (ii)	$\begin{aligned} & (2+p x)^{6}=64+192 p x+240 p^{2} x^{2} \ldots \\ & 240 p^{2}=60 \\ & p=\frac{1}{2} \\ & (3-x)\left(64+192 p x+240 p^{2} x^{2} \ldots\right) \\ & \text { Coefficient of } x^{2} \text { is } 180-192 p \\ & =84 \end{aligned}$	B1 M1 A1 B1 ft M1 A1	for $240 p^{2}$ or $240 p^{2} x^{2}$ or ${ }^{6} C_{2} \times 2^{4} \times(p x)^{2}$ or ${ }^{6} C_{2} \times 2^{4} \times p^{2}$ or ${ }^{6} C_{2} \times 2^{4} \times p^{2} x^{2}$ for equating their term in x^{2} to 60 and attempt to solve ft for $192 p, 96$ or $192 \times$ their p for $180-192 p$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	11

$7 \quad \text { (i) }$ (ii)	$\begin{aligned} & \mathbf{A}^{-1}=\frac{1}{5 a b}\left(\begin{array}{cc} b & -2 b \\ a & 3 a \end{array}\right) \\ & \mathbf{X}=\mathbf{B A}^{-1} \\ & =\left(\begin{array}{cc} -a & b \\ 2 a & 2 b \end{array}\right)\left(\begin{array}{cc} \frac{1}{5 a} & -\frac{2}{5 a} \\ \frac{1}{5 b} & \frac{3}{5 b} \end{array}\right) \\ & =\left(\begin{array}{cc} 0 & 1 \\ \frac{4}{5} & \frac{2}{5} \end{array}\right) \end{aligned}$	B1, B1 M1 DM1 A1 A1	$\mathbf{B 1}$ for $\frac{1}{5 a b}, \mathbf{B 1}$ for $\left(\begin{array}{cc}b & -2 b \\ a & 3 a\end{array}\right)$ for post-multiplication by inverse matrix for correct attempt at matrix multiplication, needs at least one term correct for their BA^{-1} (allow unsimplified) for each correct pair of elements, must be simplified
8 (i) (ii) (iii)	$\begin{aligned} & \overrightarrow{A B}=\binom{12}{16}, \text { at } P, x=-2+\frac{1}{4}(12) \\ & \text { so at } P, x=1 \\ & y=3+\frac{1}{4}(16), y=7 \end{aligned}$ Gradient of $A B=\frac{16}{12}$, so perp gradient $=-\frac{3}{4}$ Perp line: $\begin{aligned} & y-7=-\frac{3}{4}(x-1) \\ & (3 x+4 y=31) \end{aligned}$ $Q\left(0, \frac{31}{4}\right)$ Area $A Q B=12.5$	B1 B1 M1 M1 A1 B1 ft M1 A1	for convincing argument for $x=1$ for $y=7$ for finding gradient of perpendicular for equation of perpendicular through their P Allow unsimplified ft on their perpendicular line, may be implied for any valid method of finding the area of the correct triangle, allow use of their Q; must be in the form $(0, q)$.

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	11

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	11

(a) (i) (ii) (iii) (b) (i) (ii)	360 60 36 ${ }^{8} C_{5} \times{ }^{12} C_{5}$ $56 \times 792=44352$ 4 places are accounted for Gender no longer 'important' Need ${ }^{16} C_{6}=8008$ Alternative Method $\begin{aligned} & \left({ }^{6} C_{6} \times{ }^{10} C_{0}\right)+\left({ }^{6} C_{5} \times{ }^{10} C_{1}\right) \ldots\left({ }^{6} C_{0} \times{ }^{10} C_{6}\right) \\ & 1+60+675+2400+3150+1512+210=8008 \end{aligned}$		B1 for each, allow unevaluated with no extra terms Final answer must be evaluated and from multiplication for realising that 4 places are accounted or that gender is no longer important for 8008 for at least 5 of the 7 cases, allow unsimplified
11 (a)	$\begin{aligned} & 2 \cos 3 x-\frac{\cos 3 x}{\sin 3 x}=0 \\ & \cos 3 x\left(2-\frac{1}{\sin 3 x}\right)=0 \end{aligned}$ Leading to $\cos 3 x=0,3 x=90^{\circ}, 270^{\circ}$ $x=30^{\circ}, 90^{\circ}$ and $\quad \sin 3 x=\frac{1}{2}, 3 x=30^{\circ}, 150^{\circ}$ $x=10^{\circ}, 50^{\circ}$ $\begin{aligned} & \cos \left(y+\frac{\pi}{2}\right)=-\frac{1}{2} \\ & y+\frac{\pi}{2}=\frac{2 \pi}{3}, \frac{4 \pi}{3} \end{aligned}$ so $y=\frac{\pi}{6}, \frac{5 \pi}{6}(0.524,2.62)$	$\begin{gathered} \text { M1 } \\ \text { DM1 } \\ \hline \text { A1 } \\ \text { DM1 } \\ \hline \text { A1 } \\ \hline \text { M1 } \\ \text { DM1 } \\ \text { A1, A1 } \end{gathered}$	for use of $\cot 3 x=\frac{\cos 3 x}{\sin 3 x}$, may be implied for attempt to solve $\cos 3 x=0$ correctly from correct factorisation to obtain x A1 for both, no excess solutions in the range for attempt to solve $\sin 3 x=\frac{1}{2}$ correctly to obtain x A1 for both, condone excess solutions for dealing with $\sec \left(y+\frac{\pi}{2}\right)$ correctly for correct order of operations, must not mix degrees and radians

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	11

12 (i)	$\overrightarrow{A Q}=\lambda \mathbf{b}-\mathbf{a}$	B1	
(ii)	$\overrightarrow{B P}=\mu \mathbf{a}-\mathbf{b}$	B1	
(iii)	$\overrightarrow{O R}=\mathbf{a}+\frac{1}{3}(\lambda \mathbf{b}-\mathbf{a}) \text { or } \lambda \mathbf{b}-\frac{2}{3}(\lambda \mathbf{b}-\mathbf{a})$	M1	$\text { for } \mathbf{a}+\frac{1}{3} \text { their } \mathbf{(i)}$
	$=\frac{2}{3} \mathbf{a}+\frac{1}{3} \lambda \mathbf{b}$	A1	Allow unsimplified
(iv)	$\overrightarrow{O R}=\mathbf{b}+\frac{7}{8}(\mu \mathbf{a}-\mathbf{b}) \text { or } \mu \mathbf{a}-\frac{1}{8}(\mu \mathbf{a}-\mathbf{b})$	M1	for $\mathbf{b}+\frac{7}{8}$ their (ii)
	$=\frac{1}{8} \mathbf{b}+\frac{7}{8} \mu \mathbf{a}$	A1	Allow unsimplified
(v)	$\frac{2}{3} \mathbf{a}+\frac{1}{3} \lambda \mathbf{b}=\frac{1}{8} \mathbf{b}+\frac{7}{8} \mu \mathbf{a}$	M1	for equating (iii) and (iv) and then equating like vectors
	$\frac{2}{3}=\frac{7}{8} \mu, \mu=\frac{16}{21} \quad \text { Allow } 0.762$	A1	
	$\frac{1}{3} \lambda=\frac{1}{8}, \lambda=\frac{3}{8} \quad$ Allow 0.375	A1	

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	12

1	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-\frac{16}{x^{2}} \\ & \text { When } \frac{\mathrm{d} y}{\mathrm{~d} x}=0, \\ & x=2, y=12 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { DM1 } \\ \text { A1 } \end{gathered}$	for attempt to differentiate all correct for equating $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to zero and an attempt to solve for x. A1 for both, but no extra solutions
2 (a) (b) (i) (ii)		B1 B1 B1 B1 B1	for correct shape for max value of 2 , starting at $(0,2)$ and finishing at $\left(180^{\circ}, 2\right)$ for min value of -4 must be positive
3 (i) (ii)	$\begin{aligned} & y=4(x+3)^{\frac{1}{2}}(+c) \\ & 10=4\left(9^{\frac{1}{2}}\right)+c \\ & c=-2 \\ & y=4(x+3)^{\frac{1}{2}}-2 \\ & 6=4(x+3)^{\frac{1}{2}}-2 \\ & x=1 \end{aligned}$	M1, A1 M1 A1 A1 ft	M1 for $(x+3)^{\frac{1}{2}}, \mathbf{A 1}$ for $4(x+3)^{\frac{1}{2}}$ for a correct attempt to find c, but must be from an attempt to integrate Allow A1 for $c=-2$ ft for substitution into their equation to obtain x; must have the first M1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	12

$4 \quad$ (i) (ii)	$\begin{aligned} & 5 y^{2}-7 y+2=0 \\ & (5 y-2)(y-1)=0 \\ & y=\frac{2}{5}, x=\frac{\ln 0.4}{\ln 5} \\ & x=-0.569 \\ & y=1, x=0 \end{aligned}$	$\begin{gathered} \text { B1, B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{gathered}$	B1 for 5, B1 for -7 for solution of quadratic equation from (i) for use of logarithms to solve equation of the type $5^{x}=k$ must be evaluated to 3 sf or better
5 (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-\frac{1}{x}$ When $x=1, y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=2$ Tangent: $y-1=2(x-1)$ $(y=2 x-1)$ Mid-point $(5,9)$ $9=2(5)-1$ Alternative Method: Tangent equation $y=2 x-1$ Equation of line joining $(-2,16)$ and $(12,2)$ $y=-x+14$ Solve simultaneously $x=5, y=9$ Mid-point $(5,9)$	M1 B1 DM1 A1 B1 B1 B1 B1	for attempt to differentiate for $y=1$ for attempt to find equation of tangent allow equation unsimplified for midpoint from given coordinates for checking the mid-point lies on tangent for a complete method to find the coordinates of the point of intersection for midpoint from given coordinates
(i) (ii)	$\begin{aligned} & (2+p x)^{6}=64+192 p x+240 p^{2} x^{2} \ldots \\ & 240 p^{2}=60 \\ & p=\frac{1}{2} \\ & (3-x)\left(64+192 p x+240 p^{2} x^{2} \ldots\right) \\ & \text { Coefficient of } x^{2} \text { is } 180-192 p \\ & =84 \end{aligned}$	B1 M1 A1 B1 ft M1 A1	for $240 p^{2}$ or $240 p^{2} x^{2}$ or ${ }^{6} C_{2} \times 2^{4} \times(p x)^{2}$ or ${ }^{6} C_{2} \times 2^{4} \times p^{2}$ or ${ }^{6} C_{2} \times 2^{4} \times p^{2} x^{2}$ for equating their term in x^{2} to 60 and attempt to solve ft for $192 p, 96$ or $192 \times$ their p for $180-192 p$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	12

$7 \quad \text { (i) }$ (ii)	$\begin{aligned} & \mathbf{A}^{-1}=\frac{1}{5 a b}\left(\begin{array}{cc} b & -2 b \\ a & 3 a \end{array}\right) \\ & \mathbf{X}=\mathbf{B A}^{-1} \\ & =\left(\begin{array}{cc} -a & b \\ 2 a & 2 b \end{array}\right)\left(\begin{array}{cc} \frac{1}{5 a} & -\frac{2}{5 a} \\ \frac{1}{5 b} & \frac{3}{5 b} \end{array}\right) \\ & =\left(\begin{array}{cc} 0 & 1 \\ \frac{4}{5} & \frac{2}{5} \end{array}\right) \end{aligned}$	B1, B1 M1 DM1 A1 A1	$\mathbf{B 1}$ for $\frac{1}{5 a b}, \mathbf{B 1}$ for $\left(\begin{array}{cc}b & -2 b \\ a & 3 a\end{array}\right)$ for post-multiplication by inverse matrix for correct attempt at matrix multiplication, needs at least one term correct for their BA^{-1} (allow unsimplified) for each correct pair of elements, must be simplified
8 (i) (ii) (iii)	$\begin{aligned} & \overrightarrow{A B}=\binom{12}{16}, \text { at } P, x=-2+\frac{1}{4}(12) \\ & \text { so at } P, x=1 \\ & y=3+\frac{1}{4}(16), y=7 \end{aligned}$ Gradient of $A B=\frac{16}{12}$, so perp gradient $=-\frac{3}{4}$ Perp line: $\begin{aligned} & y-7=-\frac{3}{4}(x-1) \\ & (3 x+4 y=31) \end{aligned}$ $Q\left(0, \frac{31}{4}\right)$ Area $A Q B=12.5$	B1 B1 M1 M1 A1 B1 ft M1 A1	for convincing argument for $x=1$ for $y=7$ for finding gradient of perpendicular for equation of perpendicular through their P Allow unsimplified ft on their perpendicular line, may be implied for any valid method of finding the area of the correct triangle, allow use of their Q; must be in the form $(0, q)$.

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	12

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	12

(a) (i) (ii) (iii) (b) (i) (ii)	360 60 36 ${ }^{8} C_{5} \times{ }^{12} C_{5}$ $56 \times 792=44352$ 4 places are accounted for Gender no longer 'important' Need ${ }^{16} C_{6}=8008$ Alternative Method $\begin{aligned} & \left({ }^{6} C_{6} \times{ }^{10} C_{0}\right)+\left({ }^{6} C_{5} \times{ }^{10} C_{1}\right) \ldots\left({ }^{6} C_{0} \times{ }^{10} C_{6}\right) \\ & 1+60+675+2400+3150+1512+210=8008 \end{aligned}$		B1 for each, allow unevaluated with no extra terms Final answer must be evaluated and from multiplication for realising that 4 places are accounted or that gender is no longer important for 8008 for at least 5 of the 7 cases, allow unsimplified
11 (a)	$\begin{aligned} & 2 \cos 3 x-\frac{\cos 3 x}{\sin 3 x}=0 \\ & \cos 3 x\left(2-\frac{1}{\sin 3 x}\right)=0 \end{aligned}$ Leading to $\cos 3 x=0,3 x=90^{\circ}, 270^{\circ}$ $x=30^{\circ}, 90^{\circ}$ and $\quad \sin 3 x=\frac{1}{2}, 3 x=30^{\circ}, 150^{\circ}$ $x=10^{\circ}, 50^{\circ}$ $\begin{aligned} & \cos \left(y+\frac{\pi}{2}\right)=-\frac{1}{2} \\ & y+\frac{\pi}{2}=\frac{2 \pi}{3}, \frac{4 \pi}{3} \end{aligned}$ so $y=\frac{\pi}{6}, \frac{5 \pi}{6}(0.524,2.62)$	$\begin{gathered} \text { M1 } \\ \text { DM1 } \\ \hline \text { A1 } \\ \text { DM1 } \\ \hline \text { A1 } \\ \hline \text { M1 } \\ \text { DM1 } \\ \text { A1, A1 } \end{gathered}$	for use of $\cot 3 x=\frac{\cos 3 x}{\sin 3 x}$, may be implied for attempt to solve $\cos 3 x=0$ correctly from correct factorisation to obtain x A1 for both, no excess solutions in the range for attempt to solve $\sin 3 x=\frac{1}{2}$ correctly to obtain x A1 for both, condone excess solutions for dealing with $\sec \left(y+\frac{\pi}{2}\right)$ correctly for correct order of operations, must not mix degrees and radians

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	12

12 (i)	$\overrightarrow{A Q}=\lambda \mathbf{b}-\mathbf{a}$	B1	
(ii)	$\overrightarrow{B P}=\mu \mathbf{a}-\mathbf{b}$	B1	
(iii)	$\overrightarrow{O R}=\mathbf{a}+\frac{1}{3}(\lambda \mathbf{b}-\mathbf{a}) \text { or } \lambda \mathbf{b}-\frac{2}{3}(\lambda \mathbf{b}-\mathbf{a})$	M1	$\text { for } \mathbf{a}+\frac{1}{3} \text { their } \mathbf{(i)}$
	$=\frac{2}{3} \mathbf{a}+\frac{1}{3} \lambda \mathbf{b}$	A1	Allow unsimplified
(iv)	$\overrightarrow{O R}=\mathbf{b}+\frac{7}{8}(\mu \mathbf{a}-\mathbf{b}) \text { or } \mu \mathbf{a}-\frac{1}{8}(\mu \mathbf{a}-\mathbf{b})$	M1	for $\mathbf{b}+\frac{7}{8}$ their (ii)
	$=\frac{1}{8} \mathbf{b}+\frac{7}{8} \mu \mathbf{a}$	A1	Allow unsimplified
(v)	$\frac{2}{3} \mathbf{a}+\frac{1}{3} \lambda \mathbf{b}=\frac{1}{8} \mathbf{b}+\frac{7}{8} \mu \mathbf{a}$	M1	for equating (iii) and (iv) and then equating like vectors
	$\frac{2}{3}=\frac{7}{8} \mu, \mu=\frac{16}{21} \quad \text { Allow } 0.762$	A1	
	$\frac{1}{3} \lambda=\frac{1}{8}, \lambda=\frac{3}{8} \quad$ Allow 0.375	A1	

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	13

1	$\begin{aligned} & a=3 \\ & b=2 \\ & c=4 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
2	$x^{2}=16 \text { or } y^{2}-4 y+3=0$ $\begin{aligned} & x= \pm 4 \\ & y=1,3 \end{aligned}$ Points $(-4,1)$ and $(4,3)$ Line $A B=\sqrt{8^{2}+2^{2}}$ $=\sqrt{68} \text { or } 2 \sqrt{17}$	M1 A1 A1 M1 A1	for correct elimination of one variable and attempt to form a quadratic equation in x or y. for use of Pythagoras theorem allow either form
3 (i) (ii) (iii) (iv)	$\begin{aligned} & \mathrm{n}(A)=2 \\ & \mathrm{n}(B)=3 \\ & \mathrm{n}(C)=0 \\ & A \cup B=\{-1,-2,-3,3\} \\ & A \cap B=\{-2\} \end{aligned}$ ξ,'the universal set', R , 'real numbers', $\{x: x \in \square\}$	B1 B1 B1 B1 B1 B1	B0 for n(2), $\{2\},\{0\}, \varnothing,\{ \}$ etc.
4 (a) (b)	$\begin{aligned} & \tan x=-\frac{5}{3} \\ & x=121.0^{\circ}, 301.0^{\circ} \\ & \sin \left(3 y+\frac{\pi}{4}\right)=\frac{1}{2} \\ & 3 y+\frac{\pi}{4}=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}, \frac{17 \pi}{6} \\ & 3 y=-\frac{\pi}{12}, \frac{7 \pi}{12}, \frac{23 \pi}{12}, \frac{31 \pi}{12} \\ & y=\frac{7 \pi}{36}, \frac{23 \pi}{36}, \frac{31 \pi}{36}(0.611,2.01 \text { and } 2.71) \end{aligned}$		Correct statement or $\tan x=-1.67$ A1 for either correct solution ft from their first solution for dealing correctly with cosec and attempt to solve subsequent equation for $\frac{\pi}{6}, \frac{5 \pi}{6}$, or $\frac{13 \pi}{6}$, or $\frac{17 \pi}{6}$ for correct order of operations A1 for one correct solution A1 for both the other correct solutions and no others in range.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	13

5 (a) (i) $\left(\begin{array}{ccc}12 & 2 & 1 \\ 9 & 3 & 0 \\ 8 & 5 & 1 \\ 11 & 2 & 0\end{array}\right)\left(\begin{array}{c}0.5 \\ 0.4 \\ 0.45\end{array}\right)=\left(\begin{array}{c}7.25 \\ 5.70 \\ 6.45 \\ 6.30\end{array}\right)$

$$
\left.\begin{array}{l}
\text { or }\left(\begin{array}{lll}
0.5 & 0.4 & 0.45
\end{array}\right)\left(\begin{array}{cccc}
12 & 9 & 8 & 11 \\
2 & 3 & 5 & 2 \\
1 & 0 & 1 & 0
\end{array}\right) \\
=\left(\begin{array}{lll}
7.25 & 5.70 & 6.45
\end{array} 6.30\right.
\end{array}\right)
$$

(ii) 25.70
(b)
$\mathbf{Y}=\mathbf{X}^{-1}$ or $\mathbf{Y}=\mathbf{X}^{-1} \mathbf{I}$

$$
\mathbf{Y}=\frac{1}{22}\left(\begin{array}{cc}
1 & -4 \\
5 & 2
\end{array}\right) \text { or }\left(\begin{array}{cc}
\frac{1}{22} & -\frac{4}{22} \\
\frac{5}{22} & \frac{2}{22}
\end{array}\right)
$$

for a complete method using simultaneous equations
$a=\frac{1}{22}$ and $c=\frac{5}{22}$ or $b=-\frac{4}{22}$ and $d=\frac{2}{22}$

$$
\text { leading to }=\frac{1}{22}\left(\begin{array}{cc}
1 & -4 \\
5 & 2
\end{array}\right) \text { oe }
$$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	13

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	13

(i) (ii) (iii)	$\begin{aligned} \mathrm{f}^{\prime}(x)= & \left(x \times \frac{3 x^{2}}{x^{3}}\right)+\left(\ln x^{3}\right) \\ & =3+3 \ln x,=3(1+\ln x) \end{aligned}$ or $\mathrm{f}(x)=3 x \ln x$ $\begin{aligned} \mathrm{f}^{\prime}(x) & =\left(3 x \times \frac{1}{x}\right)+3 \ln x, \\ & =3(1+\ln x) \end{aligned}$ $\int 3(1+\ln x) \mathrm{d} x=x \ln x^{3}$ or $3 x \ln x$ $\int 1+\ln x \mathrm{~d} x=\frac{1}{3} x \ln x^{3}$ or $x \ln x$ $x \ln x-\int 1 \mathrm{~d} x \text { or }\left[\frac{1}{3} x \ln x^{3}\right]-\int 1 \mathrm{~d} x$ $\begin{aligned} & {[x \ln x-x]_{1}^{2} \text { or }\left[\frac{1}{3} x \ln x^{3}-x\right]_{1}^{2}} \\ & =2 \ln 2-2+1 \\ & =-1+\ln 4 \end{aligned}$	M1 B1 A1 B1 M1 A1 M1 A1 DM1 DM1 A1	for differentiation of a product for differentiation of $\ln x^{3}$ for simplification to gain given answer for use of $\ln x^{3}=3 \ln x$ for differentiation of a product for simplification to gain given answer for realising that differentiation is the reverse of integration and using (i) for using answer to (ii) and subtracting $\int 1 \mathrm{~d} x$ dependent on M mark in (ii) for correct application of limits from correct working
$9 \quad\left(\begin{array}{ll}\text { (a) }\end{array}\right.$	$\begin{aligned} & 5^{p}=625, \text { so } p=4 \\ & { }^{4} C_{1} 5^{p-1}(-q)=-1500 \\ & 4 \times 125(-q)=-1500 \\ & q=3 \\ & { }^{4} C_{2} 5^{p-2} q^{2}=r \\ & r=1350 \\ & { }^{12} C_{3}(2 x)^{9}\left(\frac{1}{4 x^{3}}\right)^{3} \end{aligned}$ Term is 1760	B1 M1 0 A1 M1 A1 M1 DM1 A1	their p substituted in ${ }^{p} C_{1} 5^{p-1}(-q)$ or in ${ }^{p} C_{1} 5^{p-1}(-q x)$ unsimplified their p and q substituted in ${ }^{p} C_{2} 5^{p-2}(-q)^{2}$ or ${ }^{p} C_{2} 5^{p-2}(-q x)^{2}$ unsimplified for identifying correct term for attempt to evaluate correct expression must be evaluated

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	13

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0606	13

11 (i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(x+5) 2(x-1)+(x-1)^{2}$	M1 A1	for differentiation of a product, allow unsimplified correct
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-1)(3 x+9)$		
	$\text { When } \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =0 \\ x & =1 \end{aligned}$	$\begin{gathered} \text { DM1 } \\ \text { A1 } \end{gathered}$	for equating to zero and solution of quadratic
	$x=-3$ Alternative method:	A1	
	$y=x^{3}+3 x^{2}-9 x+5$	M1	for expansion of brackets and differentiation of each term of a 4 term cubic
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+6 x-9$	A1	
	When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$	DM1	for equating to zero and solution of 3 term quadratic
	1	A1	from correct quadratic equation
	$x=-3$	A1	from correct quadratic equation
(ii)	$\int x^{3}+3 x^{2}-9 x+5 \mathrm{~d} x$	M1	for correct attempt to obtain and integrate a 4 term cubic
	$=\frac{x}{4}+x^{3}-\frac{9 x}{2}+5 x(+c)$	A2,1,0	A2 for 4 correct terms or A1 for 3 correct terms
(iii)	$\left[\frac{x^{4}}{4}+x^{3}-\frac{9 x^{2}}{2}+5 x\right]_{-5}^{1}$	M1	for correct substitution of limits 1 and -5 for their (ii)
	$\begin{gathered} =\left(\frac{1}{4}+1-\frac{9}{2}+5\right)-\left(\frac{625}{4}-125-\frac{225}{2}-25\right) \\ =108 \end{gathered}$	A1	
(iv)	When $x=-3, y=32$	M1	for realising that the y-coordinate of the maximum point is needed.
	$k>32$	A1	

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	11

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	11

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	11

Page 5 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2014	0606	11

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	11

10 (a) (b) (i) (ii)	```1 digit even numbers 2 2 digit even numbers \(\quad 4 \times 2=8\) 3 digit even numbers \(3 \times 3 \times 2=18\) Total \(=28\) \(3 \mathrm{M} 5 \mathrm{~W}=35\) \(4 \mathrm{M} 4 \mathrm{~W}=175\) \(5 \mathrm{M} 3 \mathrm{~W}=210\) Total \(=420\) or \({ }^{12} C_{8}-6 \mathrm{M} 2 \mathrm{~W}-7 \mathrm{M} 1 \mathrm{~W}\) \(495-70-5=420\)``` Oldest man in, oldest woman out and viceversa ${ }^{10} C_{7} \times 2=240$ Alternative: 1 man out 1 woman in 6 men 4 women 6M 1W: ${ }^{6} C_{6} \times{ }^{4} C_{1}=4$ 5M 2W : ${ }^{6} C_{5} \times{ }^{4} C_{2}=36$ 4M 3W: ${ }^{6} C_{4} \times{ }^{4} C_{3}=60$ 3M 4W : ${ }^{6} C_{3} \times{ }^{4} C_{4}=20$ Total $=120$ There are 2 identical cases to consider, so 240 ways in all.	B1 B1, B1 B1 B1	B1 for addition to obtain final answer, must be evaluated. or: as above, final B1 for subtraction to get final answer B1 for ${ }^{10} C_{7}, \mathrm{~B} 1$ for realising there are 2 identical cases All separate cases correct for B1 B1 for realising there are 2 identical cases, which have integer values

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	11

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	12

1	$\begin{aligned} & \frac{\cos ^{2} A+(1+\sin A)^{2}}{(1+\sin A) \cos A} \\ & \frac{\cos ^{2} A+1+2 \sin A+\sin ^{2} A}{(1+\sin A) \cos A} \\ & =\frac{2(1+\sin A)}{(1+\sin A) \cos A} \\ & =\frac{2}{\cos A}=2 \sec A \end{aligned}$ Alternative: $\begin{aligned} & \frac{\cos A(1-\sin A)}{(1+\sin A)(1-\sin A)}+\frac{1+\sin A}{\cos A} \\ & =\frac{\cos A(1-\sin A)}{1-\sin ^{2} A}+\frac{1+\sin A}{\cos A} \\ & =\frac{\cos A(1-\sin A)}{\cos ^{2} A}+\frac{1+\sin A}{\cos A} \\ & =\frac{1-\sin A}{\cos A}+\frac{1+\sin A}{\cos A} \\ & =\frac{2}{\cos A}=2 \sec A \end{aligned}$	$\begin{array}{\|r} \text { M1 } \\ \text { M1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	M1 for obtaining a single fraction, correctly M1 for expansion of $(1+\sin A)^{2}$ and use of identity DM1 for factorisation and cancelling of $(1+\sin A)$ factor A1 for use of $\frac{1}{\cos A}=\sec A$ and final answer M1 for multiplying first term by $\frac{1-\sin A}{1-\sin A}$ M1 for expansion of $(1-\sin A)(1+\sin A)$ and use of identity M1 for simplification of the 2 terms A1 for use of $\frac{1}{\cos A}=\sec A$ and final answer
(a) (i) (i) (b) (i) (ii) (iii)	6 5 9	B1 B1 B1 B1 B1	

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	12

3 (i)	 Maximum point occurs when $y=\frac{25}{8}$ so $k>\frac{25}{8}$	B1 B1 B1 M1 A1	B1 for shape B1 for $y=2$ (must have a graph) B1 for $x=-0.5$ and 2 (must have a graph) M1 for obtaining the value of y at the maximum point, by either completing the square, differentiation, use of discriminant or symmetry. Must have the correct sign for A1 Ignore any upper limits
4	$\begin{aligned} & \int_{0}^{a} \sin 3 x \mathrm{~d} x=\frac{1}{3} \mathrm{~d} x=\frac{1}{3} \\ & {\left[-\frac{2}{3} \cos 3 x\right]_{0}^{a}=\frac{1}{3}} \\ & \left(-\frac{2}{3} \cos 3 a\right)^{2}-\left(-\frac{2}{3}\right)=\frac{1}{3} \\ & \cos 3 a=0.5 \\ & 3 a=\frac{\pi}{3}, a=\frac{\pi}{9} \end{aligned}$	B1,B1 M1 A1 M1 A1	B1 for $k \cos 3 x$ only, B1 for $-\frac{2}{3} \cos 3 x$ only M1 for correct substitution of the correct limits into their result A1 for correct equation M1 for correct method of solution of equation of the form $\cos m a=k$ A1 allow 0.349 , must be a radian answer
5 (i) (ii)	$2^{5 x} \times 2^{2 y}=2^{-3}$ leads to $5 x+2 y=-3$ $7^{x} \times 49^{2 y}=1$ can be written as $x+4 y=0$ Solving $5 x+2 y=-3$ and $x+4 y=0$ leads to $x=-\frac{2}{3}, y=\frac{1}{6}$	B1, B1 DB1 B1 B1 M1 A1	B1 for $2^{2 y}, \mathbf{B} 1$ for $2^{-3}, \mathbf{B} 1$ for dealing with indices correctly to obtain given answer B1 for either $7^{4 y}$ or 7^{0} seen B1 for $x+4 y=0$ M1 for solution of their simultaneous equations, must both be linear A1 for both, allow equivalent fractions only

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	12

6 (a)	$\mathbf{Y X}$ and $\mathbf{Z Y}$	B1,B1	B1 for each, must be in correct order,
(b)	$\mathbf{B}=\mathbf{A}^{-1}\left(\begin{array}{ll} 3 & 9 \\ -6 & -3 \end{array}\right),$	M1	M1 for pre-multiplication by \mathbf{A}^{-1}
	$=-\frac{1}{3}\left(\begin{array}{ll} 1 & 2 \\ 4 & 5 \end{array}\right)\left(\begin{array}{cc} 3 & 9 \\ -6 & -3 \end{array}\right)$	B1,B1	B1 for $-\frac{1}{3}, \mathbf{B 1}$ for $\left(\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right)$
	$=-\frac{1}{3}\left(\begin{array}{ll} -9 & 3 \\ -18 & 21 \end{array}\right) \text { or }\left(\begin{array}{ll} 3 & -1 \\ 6 & -7 \end{array}\right)$	DM1 A1	DM1 for attempt at matrix multiplication A1 allow in either form
	Alternative method:		
	$\left(\begin{array}{ll} 5 & -2 \\ -4 & 1 \end{array}\right)\left(\begin{array}{ll} a & b \\ c & d \end{array}\right)=\left(\begin{array}{cc} 3 & 9 \\ -6 & -3 \end{array}\right)$	M1	M1 for a complete method to obtain 4 equations
	Leads to $5 a-2 c=3,5 b-2 d=9$ $-4 a+c=-6,-4 b+d=-3$	A2,1,0	-1 for each incorrect equation
	Solutions give matrix	M1	M1 for solution to find 4 unknowns
	$-\frac{1}{3}\left(\begin{array}{cc} -9 & 3 \\ -18 & 21 \end{array}\right) \text { or }\left(\begin{array}{ll} 3 & -1 \\ 6 & -7 \end{array}\right)$	A1	A1 for a correct, final matrix

Page 5 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2014	0606	12

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	12

8 (a) (i)	720	B1	
(ii)	240	B1	
(iii)	Starts with either a 2 or a 4: 48 ways	B1	allow unevaluated
	Does not start with either a 2 or a 4: 96 ways (i.e. starts with 1 or 5)	B1	allow unevaluated
	Total $=144$	B1	must be evaluated
	Alternative 1:		
	Ends with a 2, starts with a 1,4 or 5:72 ways	B1	
	Ends with a 4 , starts with a 1,2 or $5: 72$ ways Total $=144$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
	Alternative 2:		
	$\begin{gathered} 240-\left(2 \times 2 \times^{4} P_{3}\right) \text { or }\left(4 \times^{4} P_{3} \times 2\right)-\left(2^{4} P_{3}\right) \\ =144 \end{gathered}$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B2 for correct expression seen, allow P notation
	Alternative 3:		
	$\begin{aligned} & { }^{3} P_{1} \times{ }^{4} P_{3} \times{ }^{2} P_{1} \text { or } 3 \times 4 \times 2 \\ & =144 \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	Allow P notation here, for $\mathbf{B} \mathbf{2}$
(b)	With twins: ${ }^{16} C_{4}(=1820)$	B1	
	Without twins: ${ }^{16} C_{6}(=8008)$	B1	
	Total: 9828	B1	
	Alternative:		
	$\begin{aligned} & { }^{18} C_{6}-\left(2 \times{ }^{16} C_{5}\right) \\ & =9828 \end{aligned}$	$\begin{gathered} \mathbf{B 1 , B 1} \\ \text { B1 } \end{gathered}$	B1 for ${ }^{18} C_{6}-\ldots . .$, , B1 for $2 \times{ }^{16} C_{5}$

Page 7 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2014	0606	12

$9 \quad$ (i) (ii)	$\begin{aligned} & h=\frac{4000}{\pi r^{2}} \text { or } \pi r^{2} h=4000 \\ & A=2 \pi r h+2 \pi r^{2} \\ & A=2 \pi r \frac{4000}{\pi r^{2}}+2 \pi r^{2} \end{aligned}$ $\frac{\mathrm{d} A}{\mathrm{~d} r}=-\frac{8000}{r^{2}}+4 \pi r$ When $\frac{\mathrm{d} A}{\mathrm{~d} r}=0, r^{3}=\frac{8000}{4 \pi}$ leading to $A=1395,1390$ $\frac{\mathrm{d}^{2} A}{\mathrm{~d} r^{2}}=\frac{16000}{r^{3}}+4 \pi$ which, is positive so a minimum.	$\begin{array}{r} \text { B1 } \\ \hline \text { M1 } \\ \hline \mathbf{A 1} \\ \hline \text { B1, B1 } \\ \hline \mathbf{M 1} \\ \hline \mathbf{M 1} \\ \hline \text { A1 } \\ \hline \text { لB1 } \end{array}$	M1 for substitution of h or $\pi r h$ into their equation for A A1 Answer given B1 for each term correct M1 for equating to zero and attempt to find r^{3} M1 for substitution of their r to obtain A. A1 for 1390 or awrt 1395 $\sqrt{ }$ B1 for a complete correct method and conclusion.

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	12

10 (i)	$\begin{aligned} \text { Velocity } & =26 \times \frac{1}{13}(5 \mathbf{i}+12 \mathbf{j}) \\ & =10 \mathbf{i}+24 \mathbf{j} \end{aligned}$	M1 A1	M1 for $\frac{1}{13}(5 \mathbf{i}+12 \mathbf{j})$
	Alternative 1: $\begin{aligned} \|10 \mathbf{i}+24 \mathbf{j}\| & =\sqrt{10^{2}+24^{2}} \\ & =26 \end{aligned}$	M1	M1 for working from given answer to obtain the given speed
	Showing that one vector is a multiple of the other, hence same direction	A1	A1 for a completely correct method
	Alternative 2: $\begin{aligned} & \sqrt{5^{2}+12^{2}}=13,13 k=26, \text { so } k=2 \\ & \text { Velocity }=2(5 \mathbf{i}+12 \mathbf{j}), \end{aligned}$	M1	M1 for attempt to obtain the 'multiple' and apply to the direction vector
	Velocity $=10 \mathbf{i}+24 \mathbf{j}$	A1	A1 for a completely correct method
	Alternative 3:		
	Use of trig: $\tan \alpha=\frac{12}{5}, \alpha=67.4^{\circ}$		
	Velocity $26 \cos 67.4{ }^{\circ} \mathbf{i}+26 \sin 67.4 \mathbf{j}$	M1	M1 for reaching this stage
	Velocity $=10 \mathbf{i}+24 \mathbf{j}$	A1	A1 for a completely correct method
(ii)	$\begin{aligned} & \text { Position vector }=4(10 \mathbf{i}+24 \mathbf{j}) \\ & \text { or } 40 \mathbf{i}+96 \mathbf{j} \end{aligned}$	B1	Allow either form for B1
(iii)	$(40 \mathbf{i}+96 \mathbf{j})+(10 \mathbf{i}+24 \mathbf{j}) t$ oe	M1	M1 for their $(\mathbf{i i})+(10 \mathbf{i}+24 \mathbf{j}) t$ or $(10 \mathbf{i}+24 \mathbf{j}) \times(t+4)$
		A1	A1 correct answer only
(iv)	$(120 \mathbf{i}+81 \mathbf{j})+(-22 \mathbf{i}+30 \mathbf{j}) t \quad$ oe	B1	
(v)	$\begin{aligned} & 40+10 t=120-22 t \text { or } \\ & 96+24 t=81+30 t \end{aligned}$	M1	M1 for equating like vectors
	$t=2.5$ or 18:30	A1	A1 Allow for $t=2.5$
	Position vector $=65 \mathbf{i}+156 \mathbf{j}$	DM1	DM1 for use of t to obtain position vector
		A1	A1 cao

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	12

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	13

1 (i) (ii)	$\begin{gathered} y=3(x-1)^{2}+2 \\ a=3, b=1, c=2 \end{gathered}$ $(1,2)$	B1, B1, B1 $\sqrt{ } \mathbf{B} 1$	B1 for each, may be given in the form $y=3(x-1)^{2}+2$ Follow through on their answers to (i) If using differentiation, follow through on their x only.
2	$2^{4 x} \times 4^{y} \times 8^{x-y}=1$ Considering powers of either 2,4 or 8 $\begin{aligned} & 7 x-y=0 \\ & 3^{x+y}=\frac{1}{3} \end{aligned}$ Considering powers of 3 $x+y=-1$ Solving both simultaneously gives $x=-\frac{1}{8}, y=-\frac{7}{8}$	M1 B1 M1 A1	M1 for considering powers of either 2,4 or 8 and forming an equation using these powers B1 for equation considering powers of 3 M1 for attempt to solve their equations A1 for both
3 (i) (ii)	$\begin{aligned} \mathrm{f}(-3) & =-27+9 p-3 p^{2}+21 \\ & =9 p-3 p^{2}-6 \end{aligned}$ $\begin{aligned} & 9 p-3 p^{2}-6<0 \\ & \quad(p-1)(p-2)>0 \end{aligned}$ Critical values 1 and 2 $p<1, p>2$	M1 A1 M1 A1 A1	M1 for substitution of $x=-3$ A1 answer must be simplified M1 for attempt to factorise A1 for critical values A1 for correct range
4 (i) (ii)	$\begin{aligned} V & =x(24-2 x)^{2} \\ & =x\left(576-96 x+4 x^{2}\right) \\ & =4 x^{3}-96 x^{2}+576 x \\ \frac{\mathrm{~d} V}{\mathrm{~d} x} & =12 x^{2}-192 x+576 \end{aligned}$ When $\frac{\mathrm{d} V}{\mathrm{~d} x}=0, \quad 12 x^{2}-192 x+576=0$ leading to $(x-4)(x-12)=0$ with $x=4$ the only possible solution $V=1024$	M1 DM1 A1 A1	M1 for attempt at a product of 3 lengths, 2 of which must be the same A1 for expansion to reach given answer M1 for attempt to differentiate DM1 for equating $\frac{\mathrm{d} V}{\mathrm{~d} x}$ to zero and attempt to solve A1 for $x=4$ A1 for $V=1024$

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	13

5 (i) (ii)	$\begin{aligned} & 64-960 x+6000 x^{2} \\ & \left(64-960 x+6000 x^{2}\right)\left(a^{3}+3 a^{2} b x\right) \\ & 64 a^{3}=512, a=2 \\ & -960 a^{3}+3 a^{2} b(64)=0 \end{aligned}$ leading to $b=10$	B1, B1, B1 B1 B1 M1 A1	B1 for each correct term B1 for first two terms of $(a+b x)^{3}$ B1 for equating constant term to 512 and obtaining $a=2$ M1 for attempt to equate coefficient of x to zero, must have two terms involved A1 for $b=10$
6	When $x=2, y=-4$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=x\left(\frac{2 x}{3}\right)\left(x^{2}-12\right)^{-\frac{2}{3}}+\left(x^{2}-12\right)^{\frac{1}{3}}$ When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{4}{3}$ Normal: $y+4=\frac{3}{4}(x-2)$ $(4 y=3 x-22)$	$\begin{gathered} \text { B1 } \\ \mathbf{M 1 , ~ B 1 ~} \\ \mathbf{A 1} \\ \\ \text { M1 } \\ \text { A1 } \end{gathered}$	B1 for $y=-4$ M1 for differentiation of a product B1 for $\frac{2 x}{3}\left(x^{2}-12\right)^{-\frac{2}{3}}$ M1 for attempt at normal equation A1 allow unsimplified
$7 \quad$ (a) (i) (ii) (b) (i) (ii) (iii)	$\begin{aligned} & 15120 \\ & (5 \times 4) \times(4 \times 3 \times 2) \\ & 480 \\ & \\ & 5456 \\ & \\ & { }^{18} C_{2} \times 15 \\ & 2295 \\ & \\ & 5456-\text { Number of ways only girls get tickets } \\ & 5456-455=5001 \\ & \\ & \text { Or 1B 2G } \quad 1890 \\ & \text { 2B 1G } \quad 2295 \\ & \text { 3B } \\ & \text { Total } 816 \\ & 5001 \end{aligned}$	B1 M1 A1 B1 M1 A1 M1 A1 M1 A1	M1 for attempt to multiply number of ways of getting 4 letters by the number of ways of getting 2 digits. M1 for attempt at an appropriate product, at least one term must be correct. M1 for a complete correct method their (i) - number of ways only girls get tickets M1 must be considering at least 2 of the cases shown

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	13

8 (i)	1	B1	
(ii)	$a=8 \mathrm{e}^{-2 t}$	M1	M1 for attempt to differentiate
(iii)	$8 e^{-2 t}=6,-2 t=\ln \frac{3}{4}$	DM1	DM1 for correct attempt to solve equation in the form $\mathrm{e}^{-2 t}=$ constant
	$t=0.144$	A1	A1 must be at least 3 sf
	$s=5 t+2 \mathrm{e}^{-2 t} \quad(+c)$	M1	M1 for attempt to integrate
	When $t=0, s=0$, so $c=-2$	DM1, A1	DM1 for attempt to find c, A1 c correct
	When $t=1.5, s=5.60$	M1, A1	M1 for substitution of $t=1.5$
	Alternative: $s=\left[5 t+2 \mathrm{e}^{-2 t}\right]_{0}^{1.5}$	M1 DM1 A1 M1	M1 for attempt to integrate DM1 for attempt to use limits A1 all correct M1 for evaluation of square bracket notation
	Leading to $s=5.60$	A1	
(iv)	Velocity is always +ve , so no change in direction	B1	Allow any valid argument.
$\begin{array}{ll}9 & \text { (i) } \\ \\ \\ \\ \\ & \\ & \text { (ii) }\end{array}$	$\cos x(3 \sin x-2)=0$		
	$\cos x=0, x=90^{\circ}$	B1	B1 for 90°
	$\sin x=\frac{2}{3},$	M1	M1 for attempt to solve $\sin x=\frac{2}{3}$
	$x=41.8^{\circ}, 138.2^{\circ}$	A1, ${ }^{\text {A }} 1$	Follow through on their first answer
	$\begin{aligned} & 10 \sin ^{2} y+\cos y=8 \\ & 10\left(1-\cos ^{2} y\right)+\cos y=8 \end{aligned}$	M1	M1 for use of correct identity
	$10 \cos ^{2} y-\cos y-2=0$	M1	M1 for attempt to reduce to a 3 term quadratic and attempt to solve quadratic
	$\begin{aligned} & (2 \cos y-1)(5 \cos y+2)=0 \\ & \cos y=\frac{1}{2}, \quad \cos y=-\frac{2}{5} \end{aligned}$	M1	M1 for attempt to solve using factors in terms of cos
	$y=60^{\circ}, 300^{\circ}$ and $y=113.6^{\circ}, 246.4^{\circ}$	A1, A1	A1 for any 'pair'

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	13

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0606	13

11 (i)	at $A \quad \sqrt{3} \sin 3 x+\cos 3 x=0$	M1	M1 for equating to zero and attempt to solve using tan
	$\tan 3 x=-\frac{1}{\sqrt{3}}, 3 x=\frac{5 \pi}{6} \quad 150^{\circ}$	DM1	DM1 for dealing with $3 x$
	$x=\frac{5 \pi}{18}(0.873)\left(\text { allow } 50^{\circ}\right)$	A1	
(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \sqrt{3} \cos 3 x-3 \sin 3 x$	B1, B1	$\text { B1 for } \frac{\mathrm{d} y}{\mathrm{~d} x}$
	When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, \tan 3 x=\sqrt{3,} 3 x=\frac{\pi}{3}$ or $3 x=60^{\circ}$,	M1	M1 for attempt to solve $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
	$x=\frac{\pi}{9}(0.349)\left(\text { allow } 20^{\circ}\right)$	A1	
(iii)	$\text { Area }=\left[-\frac{\sqrt{3}}{3} \cos 3 x+\frac{1}{3} x+\frac{1}{3} \sin 3 x\right]_{\frac{\pi}{9}}^{\frac{5 \pi}{18}}$	$\begin{gathered} \text { M1 } \\ \text { A1, A1 } \end{gathered}$	M1 for attempt to integrate A1 for each term
	$=\left(-\frac{\sqrt{3}}{3} \cos \frac{5 \pi}{6}+\frac{1}{3} \sin \frac{5 \pi}{6}\right)-\left(-\frac{\sqrt{3}}{3} \cos \frac{\pi}{3}+\frac{1}{3} \sin \frac{\pi}{3}\right)$	DM1	DM1 for correct application of their limits
	$=\frac{2}{3}$ or 0.667 or better	A1	

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	11

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Accuracy mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	11

1	$a=3, b=2, c=1$	$\begin{aligned} & \text { B1, B1, } \\ & \text { B1 } \end{aligned}$	B1 for each
2	$\begin{aligned} & \text { Using } b^{2}-4 a c, 9=4(k+1)^{2} \\ & 4 k^{2}+8 k-5=0 \end{aligned}$	M1 DM1	M1 for any use of $b^{2}-4 a c$ DM1 for solution of their quadratic in k
	$k=-\frac{5}{2},\left(\frac{1}{2}\right)$	A1	A1 for critical value(s), $\frac{1}{2}$ not necessary
	To be below the x-axis $k<-\frac{5}{2}$	A1	A1 for $k<-\frac{5}{2}$ only
	Or: $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=2(k+1) x-3$ when $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, x=\frac{3}{2(k+1)}$		
	$\therefore y=(k+1) \frac{9}{4(k+1)^{2}}-\frac{9}{2(k+1)}+(k+1)$		
	To lie under the x-axis, $y<0$ $\therefore(k+1) \frac{9}{4(k+1)^{2}}-\frac{9}{2(k+1)}+(k+1)<0$	M1	M1 for a complete method to this point.
	leading to $9=4(k+1)^{2}$ or equivalent then as for previous method		

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	11

3 $\begin{aligned} & \frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}+\frac{(1+\sin \theta)^{2}+\cos ^{2} \theta}{\cos \theta(1+\sin \theta)} \\ & \quad=\frac{1+2 \sin \theta+\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta(1+\sin \theta)} \\ & =\frac{2+2 \sin \theta}{\cos \theta(1+\sin \theta)} \\ & =\frac{2(1+\sin \theta)}{\cos \theta(1+\sin \theta)} \\ & =2 \sec \theta \end{aligned}$ Alternative solution: $\begin{aligned} & \sec \theta+\tan \theta+\frac{1}{\sec \theta+\tan \theta} \\ & =\frac{(\sec \theta+\tan \theta)^{2}+1}{\sec \theta+\tan \theta} \\ & =\frac{\sec ^{2} \theta+2 \sec \theta \tan \theta+\tan ^{2} \theta+1}{\sec \theta+\tan \theta} \\ & =\frac{2 \sec ^{2} \theta+2 \sec \theta \tan \theta}{\sec \theta+\tan \theta} \\ & =\frac{2 \sec \theta(\sec \theta+\tan \theta)}{\sec \theta+\tan \theta} \\ & =2 \sec \theta \end{aligned}$		M1 for dealing with the fractions, denominator must be correct, be generous with numerator M1 for expansion and use of $\cos ^{2} \theta+\sin ^{2} \theta=1$ M1 for attempt to factorise A1 for obtaining final answer correctly M1 for dealing with the fractions M1 for expansion and use of $\tan ^{2} \theta+1=\sec ^{2} \theta$ DM1 for attempt to factorise A1 for obtaining final answer correctly
4 (i) $\mathrm{n}(A)=3$	B1	If elements listed for (i), then they must be correct elements to get B1 leading to $\mathrm{n}(A)=3$. If they are not listed and correct answer given then B1.
(ii) $\mathrm{n}(B)=4$	B1 [1]	If elements listed for (ii), then they must be correct elements leading to $\mathrm{n}(B)=4$ to get $B 1$. If they are not listed and correct answer given then B 1 .
(iii) $A \cup B=\left\{60^{\circ}, 240^{\circ}, 300,420^{\circ}, 600^{\circ}\right\}$	$\sqrt{ } \mathrm{B} 1$	Follow through on any sets listed in (i) and (ii). Do not allow any repetitions.
(iv) $A \cap B=\left\{60^{\circ}, 420^{\circ}\right\}$	$\sqrt{ } \mathrm{B} 1$	Follow through on any sets listed in (i) and (ii).

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	11

5 (i) $\quad 9 x-\frac{1}{3} \cos 3 x(+c)$ $\text { (ii) } \begin{aligned} & {\left[9 x-\frac{1}{3} \cos 3 x\right]_{\frac{\pi}{9}}^{\pi} } \\ & =\left(9 \pi-\frac{1}{3} \cos 3 \pi\right)-\left(\pi-\frac{1}{3} \cos \frac{\pi}{3}\right) \\ & =8 \pi+\frac{1}{2} \end{aligned}$	B1, B1, B1 [3] M1 A1, A1 [3]	B1 for $9 x$, B1 for $\frac{1}{3}$ or $\cos 3 x$ B1 for $-\frac{1}{3} \cos 3 x$ Condone omission of $+c$ M1 for correct use of limits in their answer to (i) A1 for each term
$6 \quad \mathrm{f}\left(\frac{1}{2}\right)=\frac{a}{8}+1+\frac{b}{2}-2$ leading to $a+4 b-8=0$ $\mathrm{f}(2)=2 \mathrm{f}(-1)$ $8 a+16+2 b-2=2(-a+4-b-2)$ leading to $10 a+4 b+10=0$ or equivalent $\therefore a=-2, b=\frac{5}{2}$		M1 for substitution of $x=\frac{1}{2}$ into $\mathrm{f}(x)$ A1 for correct equation in any form M1 for attempt to substitute $x=2$ or $x=-1$ into $\mathrm{f}(x)$ and use $\mathrm{f}(2)= \pm 2 \mathrm{f}(-1)$ or $2 \mathrm{f}(2)= \pm \mathrm{f}(-1)$ A1 for a correct equation in any form DM1 (on both previous M marks) for attempt to solve simultaneous equations to obtain either a or b A1 for both correct

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	11

$7 \quad$ (a) (i) 360 (ii) 120 (b) (i) 924 (ii) 28 $\begin{aligned} & \text { (iii) } 924-\left({ }^{8} C_{3} \times{ }^{4} C_{3}\right)-\left({ }^{8} C_{2} \times{ }^{4} C_{4}\right) \\ & \text { (i.e. } 924-3 \mathrm{M} 3 \mathrm{~W}-2 \mathrm{M} 4 \mathrm{~W}) \\ & 924-224-28 \\ & =672 \end{aligned}$ Or: $4 \mathrm{M} 2 \mathrm{~W} \quad{ }^{8} C_{4} \times{ }^{4} C_{2}=420$ $\begin{array}{lll} 5 \mathrm{M} 1 \mathrm{~W} & { }^{8} C_{5} \times{ }^{4} C_{1} & =224 \\ 6 \mathrm{M} & { }^{8} C_{6} & =28 \\ & & \\ & \text { Total } & =672 \end{array}$	B1 [1] B1 [1] B1 [1] B1 [1] M1 A1 A1 [3] M1 A1 A1	M1 for 3 terms, at least 2 of which must be correct in terms of C notation or evaluated. A1 for any pair (must be evaluated) A1 for final answer M1 for 3 terms, at least 2 of which must be correct in terms of C notation or evaluated. A1 for any pair (must be evaluated) A1 for final answer
8 (i) (ii) $\left(-\frac{1}{2}, \frac{25}{4}\right)$ (iii) $k>\frac{25}{4}$ or $\frac{25}{4}<k(\leq 14)$	B1 B1 B1 B1 1ro [4] B1, B1 [2] B1 [1]	B1 for correct shape B1 for $(-3,0)$ or -3 seen on graph B1 for $(2,0)$ or 2 seen on graph B1 for $(0,6)$ or 6 seen on graph or in a table B1 for each

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	11

9 (a) $12 x^{2} \ln (2 x+1)+4 x^{3}\left(\frac{2}{2 x+1}\right)$
(b) (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x+2)^{\frac{1}{2}} 2-2 x(x+2)^{-\frac{1}{2}} \frac{1}{2}}{x+2}$

$$
\begin{aligned}
& =\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x) \\
= & \frac{x+4}{(x+2)^{\frac{3}{2}}}
\end{aligned}
$$

Or:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x\left(-\frac{1}{2}\right)(x+2)^{-\frac{3}{2}}+(x+2)^{-\frac{1}{2}}(2)
$$

$$
\begin{aligned}
& =(x+2)^{-\frac{3}{2}}(2(x+2)-x) \\
& =\frac{x+4}{(x+2)^{\frac{3}{2}}}
\end{aligned}
$$

(ii) $\frac{10 x}{\sqrt{x+2}}(+c)$
(iii) $\left[\frac{10 x}{\sqrt{x+2}}\right]_{2}^{7}=\frac{70}{3}-\frac{20}{2}$

$$
=\frac{40}{3}
$$

M1 for differentiation of a correct product -1 for each error

M1 for differentiation of a quotient involving $(x+2)^{\frac{1}{2}}$

A1 all correct unsimplified
DM1 for attempt to simplify

A1 for correct simplification to obtain the given answer

M1 for differentiation of a product involving $(x+2)^{-\frac{1}{2}}$

A1 all correct unsimplified DM1 for attempt to simplify A1 for correct simplification to obtain the given answer

M1 for $\frac{1}{5} \times \frac{2 x}{\sqrt{x+2}}$ or $5 \times \frac{2 x}{\sqrt{x+2}}$
A1 correct only, allow unsimplified.
Condone omission of $+c$
M1 for correct application of limits in their answer to (b)(ii)

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	11

10 (i) $\sqrt{20}$ or 4.47
(ii) $\quad \operatorname{Grad} A B=\frac{1}{2}, \perp \operatorname{grad}=-2$
\perp line $y-4=-2(x-1)$
$(y=-2 x+6)$
(iii) Coords of $C(x, y)$ and $B C^{2}=20$
$(x-1)^{2}+(y-4)^{2}=20$ or
Coords of $C(x, y)$ and $A C^{2}=40$
$(x+3)^{2}+(y-2)^{2}=40$
Need intersection with $y=-2 x+6$,
leads to $5 x^{2}-10 x-15=0$ or $5 y^{2}-40 y-=0$
giving $\quad x=3,-1$ and $\quad y=0,8$

Or, using vector approach:
$\overrightarrow{\mathrm{AB}}=\binom{4}{2}$
$\overrightarrow{\mathrm{OC}}=\binom{1}{4}+\binom{-2}{4}=\binom{-1}{8}$
$\overrightarrow{\mathrm{OC}}=\binom{1}{4}+\binom{2}{-4}=\binom{3}{0}$

M1 for attempt at a perp gradient
M1 for attempt at straight line equation, must be perpendicular and passing through B.
A1 allow unsimplified

M1 for attempt to obtain relationship using an appropriate length and the point $(1,4)$ or $(-3,2)$
A1 for a correct equation
DM1 for attempt to solve with $y=-2 x+6$ and obtain a quadratic equation in terms of one variable only

M1 for attempt to solve quadratic
A1 for each 'pair'

May be implied

M1 for correct approach
A1 for each element correct
A1 for each element correct

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	11

11 (a)
(ii) $\quad \mathbf{A}^{2}=\left(\begin{array}{cc}16 & 9 \\ 12 & 13\end{array}\right)$
(iii) \mathbf{B} is the inverse matrix of \mathbf{A}^{2}

$$
=\frac{1}{100}\left(\begin{array}{cc}
13 & -9 \\
-12 & 16
\end{array}\right)
$$

(b) $\quad \operatorname{det} \mathbf{C}=x(x-1)-(-1)\left(x^{2}-x+1\right)$

$$
=2 x^{2}-2 x+1
$$

$b^{2}-4 a c<0,4-8<0$

No real solutions (so $\operatorname{det} \mathbf{C} \neq 0$)
[4]

DM1 for use of discriminant or attempt to solve using the formula, or attempt to complete the square in order to show there are no real roots.

A1 for correct reasoning or statement that
B1 for any 2 correct elements
B1 for all correct
Follow through on their \mathbf{A}^{2}

M1 for attempt to obtain $\operatorname{det} \mathbf{C}$
A1 for this correct quadratic expression from a correct $\operatorname{det} \mathbf{C}$ there are no real roots.

Page 10	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	11

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	12

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Accuracy mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2, 1, 0 means that the candidate can earn anything from 0 to 2 .

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	12

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	12

3 $\begin{aligned} & \frac{1+\sin \theta}{\cos \theta}+\frac{\cos \theta}{1+\sin \theta}+\frac{(1+\sin \theta)^{2}+\cos ^{2} \theta}{\cos \theta(1+\sin \theta)} \\ & \quad=\frac{1+2 \sin \theta+\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta(1+\sin \theta)} \\ & =\frac{2+2 \sin \theta}{\cos \theta(1+\sin \theta)} \\ & =\frac{2(1+\sin \theta)}{\cos \theta(1+\sin \theta)} \\ & =2 \sec \theta \end{aligned}$ Alternative solution: $\begin{aligned} & \sec \theta+\tan \theta+\frac{1}{\sec \theta+\tan \theta} \\ & =\frac{(\sec \theta+\tan \theta)^{2}+1}{\sec \theta+\tan \theta} \\ & =\frac{\sec ^{2} \theta+2 \sec \theta \tan \theta+\tan ^{2} \theta+1}{\sec \theta+\tan \theta} \\ & =\frac{2 \sec ^{2} \theta+2 \sec \theta \tan \theta}{\sec \theta+\tan \theta} \\ & =\frac{2 \sec \theta(\sec \theta+\tan \theta)}{\sec \theta+\tan \theta} \\ & =2 \sec \theta \end{aligned}$		M1 for dealing with the fractions, denominator must be correct, be generous with numerator M1 for expansion and use of $\cos ^{2} \theta+\sin ^{2} \theta=1$ M1 for attempt to factorise A1 for obtaining final answer correctly M1 for dealing with the fractions M1 for expansion and use of $\tan ^{2} \theta+1=\sec ^{2} \theta$ DM1 for attempt to factorise A1 for obtaining final answer correctly
4 (i) $\mathrm{n}(A)=3$	B1	If elements listed for (i), then they must be correct elements to get B1 leading to $\mathrm{n}(A)=3$. If they are not listed and correct answer given then B1.
(ii) $\mathrm{n}(B)=4$	B1 [1]	If elements listed for (ii), then they must be correct elements leading to $\mathrm{n}(B)=4$ to get $B 1$. If they are not listed and correct answer given then B 1 .
(iii) $A \cup B=\left\{60^{\circ}, 240^{\circ}, 300,420^{\circ}, 600^{\circ}\right\}$	$\sqrt{ } \mathrm{B} 1$	Follow through on any sets listed in (i) and (ii). Do not allow any repetitions.
(iv) $A \cap B=\left\{60^{\circ}, 420^{\circ}\right\}$	$\sqrt{ } \mathrm{B} 1$	Follow through on any sets listed in (i) and (ii).

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	12

5 (i) $\quad 9 x-\frac{1}{3} \cos 3 x(+c)$ $\text { (ii) } \begin{aligned} & {\left[9 x-\frac{1}{3} \cos 3 x\right]_{\frac{\pi}{9}}^{\pi} } \\ & =\left(9 \pi-\frac{1}{3} \cos 3 \pi\right)-\left(\pi-\frac{1}{3} \cos \frac{\pi}{3}\right) \\ & =8 \pi+\frac{1}{2} \end{aligned}$	B1, B1, B1 [3] M1 A1, A1 [3]	B1 for $9 x$, B1 for $\frac{1}{3}$ or $\cos 3 x$ B1 for $-\frac{1}{3} \cos 3 x$ Condone omission of $+c$ M1 for correct use of limits in their answer to (i) A1 for each term
$6 \quad \mathrm{f}\left(\frac{1}{2}\right)=\frac{a}{8}+1+\frac{b}{2}-2$ leading to $a+4 b-8=0$ $\mathrm{f}(2)=2 \mathrm{f}(-1)$ $8 a+16+2 b-2=2(-a+4-b-2)$ leading to $10 a+4 b+10=0$ or equivalent $\therefore a=-2, b=\frac{5}{2}$		M1 for substitution of $x=\frac{1}{2}$ into $\mathrm{f}(x)$ A1 for correct equation in any form M1 for attempt to substitute $x=2$ or $x=-1$ into $\mathrm{f}(x)$ and use $\mathrm{f}(2)= \pm 2 \mathrm{f}(-1)$ or $2 \mathrm{f}(2)= \pm \mathrm{f}(-1)$ A1 for a correct equation in any form DM1 (on both previous M marks) for attempt to solve simultaneous equations to obtain either a or b A1 for both correct

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	12

$7 \quad$ (a) (i) 360 (ii) 120 (b) (i) 924 (ii) 28 $\begin{aligned} & \text { (iii) } 924-\left({ }^{8} C_{3} \times{ }^{4} C_{3}\right)-\left({ }^{8} C_{2} \times{ }^{4} C_{4}\right) \\ & \text { (i.e. } 924-3 \mathrm{M} 3 \mathrm{~W}-2 \mathrm{M} 4 \mathrm{~W}) \\ & 924-224-28 \\ & =672 \end{aligned}$ Or: $4 \mathrm{M} 2 \mathrm{~W} \quad{ }^{8} C_{4} \times{ }^{4} C_{2}=420$ $\begin{array}{lll} 5 \mathrm{M} 1 \mathrm{~W} & { }^{8} C_{5} \times{ }^{4} C_{1} & =224 \\ 6 \mathrm{M} & { }^{8} C_{6} & =28 \\ & & \\ & \text { Total } & =672 \end{array}$	B1 [1] B1 [1] B1 [1] B1 [1] M1 A1 A1 [3] M1 A1 A1	M1 for 3 terms, at least 2 of which must be correct in terms of C notation or evaluated. A1 for any pair (must be evaluated) A1 for final answer M1 for 3 terms, at least 2 of which must be correct in terms of C notation or evaluated. A1 for any pair (must be evaluated) A1 for final answer
8 (i) (ii) $\left(-\frac{1}{2}, \frac{25}{4}\right)$ (iii) $k>\frac{25}{4}$ or $\frac{25}{4}<k(\leq 14)$	B1 B1 B1 B1 1ro [4] B1, B1 [2] B1 [1]	B1 for correct shape B1 for $(-3,0)$ or -3 seen on graph B1 for $(2,0)$ or 2 seen on graph B1 for $(0,6)$ or 6 seen on graph or in a table B1 for each

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	12

9 (a) $12 x^{2} \ln (2 x+1)+4 x^{3}\left(\frac{2}{2 x+1}\right)$
(b) (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x+2)^{\frac{1}{2}} 2-2 x(x+2)^{-\frac{1}{2}} \frac{1}{2}}{x+2}$

$$
\begin{aligned}
& =\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x) \\
= & \frac{x+4}{(x+2)^{\frac{3}{2}}}
\end{aligned}
$$

Or:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x\left(-\frac{1}{2}\right)(x+2)^{-\frac{3}{2}}+(x+2)^{-\frac{1}{2}}(2)
$$

$$
\begin{aligned}
& =(x+2)^{-\frac{3}{2}}(2(x+2)-x) \\
& =\frac{x+4}{(x+2)^{\frac{3}{2}}}
\end{aligned}
$$

(ii) $\frac{10 x}{\sqrt{x+2}}(+c)$
(iii) $\left[\frac{10 x}{\sqrt{x+2}}\right]_{2}^{7}=\frac{70}{3}-\frac{20}{2}$

$$
=\frac{40}{3}
$$

M1 for differentiation of a correct product -1 for each error

M1 for differentiation of a quotient involving $(x+2)^{\frac{1}{2}}$

A1 all correct unsimplified
DM1 for attempt to simplify

A1 for correct simplification to obtain the given answer

M1 for differentiation of a product involving $(x+2)^{-\frac{1}{2}}$

A1 all correct unsimplified DM1 for attempt to simplify A1 for correct simplification to obtain the given answer

M1 for $\frac{1}{5} \times \frac{2 x}{\sqrt{x+2}}$ or $5 \times \frac{2 x}{\sqrt{x+2}}$
A1 correct only, allow unsimplified.
Condone omission of $+c$
M1 for correct application of limits in their answer to (b)(ii)

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	12

10 (i) $\sqrt{20}$ or 4.47
(ii) $\quad \operatorname{Grad} A B=\frac{1}{2}, \perp \operatorname{grad}=-2$
\perp line $y-4=-2(x-1)$
$(y=-2 x+6)$
(iii) Coords of $C(x, y)$ and $B C^{2}=20$
$(x-1)^{2}+(y-4)^{2}=20$ or
Coords of $C(x, y)$ and $A C^{2}=40$
$(x+3)^{2}+(y-2)^{2}=40$
Need intersection with $y=-2 x+6$,
leads to $5 x^{2}-10 x-15=0$ or $5 y^{2}-40 y-=0$
giving $\quad x=3,-1$ and $\quad y=0,8$

Or, using vector approach:
$\overrightarrow{\mathrm{AB}}=\binom{4}{2}$
$\overrightarrow{\mathrm{OC}}=\binom{1}{4}+\binom{-2}{4}=\binom{-1}{8}$
$\overrightarrow{\mathrm{OC}}=\binom{1}{4}+\binom{2}{-4}=\binom{3}{0}$

M1 for attempt at a perp gradient
M1 for attempt at straight line equation, must be perpendicular and passing through B.

A1 allow unsimplified
M1 for attempt to obtain relationship using an appropriate length and the point $(1,4)$ or $(-3,2)$
A1 for a correct equation
DM1 for attempt to solve with $y=-2 x+6$ and obtain a quadratic equation in terms of one variable only

M1 for attempt to solve quadratic
A1 for each 'pair'

May be implied

M1 for correct approach
A1 for each element correct
A1 for each element correct

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	12

11 (a)
(ii) $\quad \mathbf{A}^{2}=\left(\begin{array}{cc}16 & 9 \\ 12 & 13\end{array}\right)$
(iii) \mathbf{B} is the inverse matrix of \mathbf{A}^{2}

$$
=\frac{1}{100}\left(\begin{array}{cc}
13 & -9 \\
-12 & 16
\end{array}\right)
$$

(b) $\quad \operatorname{det} \mathbf{C}=x(x-1)-(-1)\left(x^{2}-x+1\right)$

$$
=2 x^{2}-2 x+1
$$

$b^{2}-4 a c<0,4-8<0$

No real solutions (so $\operatorname{det} \mathbf{C} \neq 0$)
[4]

DM1 for use of discriminant or attempt to solve using the formula, or attempt to complete the square in order to show there are no real roots.

A1 for correct reasoning or statement that
B1 for any 2 correct elements
B1 for all correct
Follow through on their \mathbf{A}^{2}

M1 for attempt to obtain $\operatorname{det} \mathbf{C}$
A1 for this correct quadratic expression from a correct $\operatorname{det} \mathbf{C}$ there are no real roots.

Page 10	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0606	12

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2013	0606	13

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Accuracy mark for a correct result or statement independent of method marks.
When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0.
B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2013	0606	13

(i) $\begin{aligned} & { }^{6} \mathrm{C}_{2}\left(2^{4}\right)(p x)^{2} \text { or }\binom{6}{2} 2^{4}(p x)^{2} \\ & 240 p^{2}=60 \\ & p=\frac{1}{2} \end{aligned}$ (ii) coefficients of the terms needed $\begin{aligned} & (-1)^{6} C_{1}(2)^{5} p+(3 \times 60) \\ & =84 \end{aligned}$	B1 M1 A1 [3] M1 B1 A1 [3]	Seen or implied, unsimplified M1 for their coefficient of $x^{2}=60$ and attempt to solve M1 for realising that 2 terms are involved B1 for $(-1)^{6} C_{1}(2)^{5} p$ or $-192 p$, using their p.
$2 \quad \lg \frac{y^{2}}{5 y+60}=\lg 10$ Or $\lg y^{2}=\lg 10(5 y+60)$ $y^{2}-50 y-600=0$ leading to $y=-10,60$ y must be positive so $y=60$	B1 B1 M1 DM1 A1 [5]	B1 for $2 \lg y=\lg y^{2}$ B1 for $1=\lg 10$ or equivalent, allow when seen M1 for use of $\log A-\log B=\log A / B$ or $\log A+\log B=\log A B$ DM1 for forming a 3 term quadratic equation and an attempt to solve A1 for $y=60$ only

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2013	0606	13

$3 \tan ^{2} \theta-\sin ^{2} \theta=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\sin ^{2} \theta$

$$
\begin{aligned}
& =\frac{\sin ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta} \\
& =\frac{\sin ^{2} \theta\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta} \\
& =\frac{\sin ^{4} \theta}{\cos ^{2} \theta} \\
& =\sin ^{4} \theta \sec ^{2} \theta
\end{aligned}
$$

Alt solution 1

Using $\tan ^{2} \theta=\sin ^{2} \theta \sec ^{2} \theta$

$$
\begin{aligned}
\text { LHS } & =\sin ^{2} \theta \sec ^{2} \theta-\sin ^{2} \theta \\
& =\sin ^{2} \theta\left(\sec ^{2} \theta-1\right) \\
& =\sin ^{2} \theta \tan ^{2} \theta \\
& =\sin ^{4} \theta \sec ^{2} \theta
\end{aligned}
$$

Alt solution 2

$$
\begin{aligned}
\text { RHS } & =\sin ^{4} \theta \sec ^{2} \theta \\
& =\frac{\sin ^{2} \theta \sin ^{2} \theta}{\cos ^{2} \theta} \\
& =\frac{\sin ^{2} \theta\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta} \\
& =\frac{\sin ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta} \\
& =\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\frac{\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta} \\
& =\tan ^{2} \theta-\sin ^{2} \theta
\end{aligned}
$$

Marks are awarded only if they can lead to a complete proof for the methods other than those shown below

M1 for dealing with tan and a fraction

M1 for factorising

M1 for use of identity $\cos ^{2} \theta+\sin ^{2} \theta=1$

A1 for all correct

M1 use of $\tan ^{2} x=\sin ^{2} x \sec ^{2} x$
M1 for factorising
M1 for use of identity
A1 for all correct

M1 for splitting $\sin ^{4} \theta$ and use of identity

M1 for multiplication

M1 for writing as two terms and cancelling

A1 for all correct

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2013	0606	13

$$
4 \text { (i) } \begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{(x+3)^{2} 2 \mathrm{e}^{2 x}-\mathrm{e}^{2 x} 2(x+3)}{(x+3)^{4}} \\
& =\frac{2 e^{2 x}(x+2)}{(x+3)^{3}}, A=2
\end{aligned}
$$

M1
A2, 1,0
A1

M1 for attempt at quotient rule
-1 for each error
Must be convinced of correct simplification e.g. sight of $(x+3-1)$ or $(x+2)(x+3)$

Alt solution

$$
\begin{array}{rl|l}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\mathrm{e}^{2 \mathrm{x}}\left(-2(x+3)^{-3}\right)+2 e^{2 x}(x+3)^{-2} & \mathrm{M} 1 \\
& =\frac{2 \mathrm{e}^{2 x}(x+2)}{(x+3)^{3}}, A=2 & \mathrm{~A} 2,1,0 \\
\mathrm{~A} 1
\end{array}
$$

(ii) $x=-2, y=\mathrm{e}^{-4}$

M1 for attempt at product rule
-1 for each error
Must be convinced of correct simplification e.g. sight of $(x+3-1)$ or $(x+2)(x+3)$

B1, B1
Accept $1 / \mathrm{e}^{4}$
$5 \quad$ (i) $\quad \mathrm{f}^{2}(x)=\mathrm{f}\left(2 x^{3}\right)$

$$
\begin{aligned}
& =2\left(2 x^{3}\right)^{3} \text { or } 2\left(2\left(\frac{1}{2}\right)^{3}\right)^{3} \\
& =2^{-5}
\end{aligned}
$$

M1

A1

Alt method

$\mathrm{f}\left(\frac{1}{2}\right)=\frac{1}{4} \quad \mathrm{f}\left(\frac{1}{4}\right)=2^{-5}$
(ii) $\mathrm{f}^{\prime}(x)=\mathrm{g}^{\prime}(x)$
$6 x^{2}=4-10 x$
Leading to $(3 x-1)(x+2)=0$
$x=\frac{1}{3},-2$
[2]

M1

M1 for $=2\left(2 x^{3}\right)^{3}$ or $2\left(2\left(\frac{1}{2}\right)^{3}\right)^{3}$
For 2^{-5} only

M1 for f of their $\mathrm{f}\left(\frac{1}{2}\right)$
For 2^{-5} only
B1 for $6 x^{2}$
B1 for $4-10 x$

M1 for solution of quadratic equation obtained from differentiation of both
A1 for both

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2013	0606	13

6 Area under the curve:

$$
\begin{aligned}
\int_{0}^{\sqrt{2}} 4-x^{2} \mathrm{~d} x & =\left[4 x-\frac{x^{3}}{3}\right]_{0}^{\sqrt{2}} \\
& =\left(4 \sqrt{2}-\frac{2 \sqrt{2}}{3}\right)-(0) \\
& =\frac{10 \sqrt{2}}{3}
\end{aligned}
$$

Area of trapezium $=$
$\frac{1}{2}(4+2)(\sqrt{2})=3 \sqrt{2}$
Shaded area $=\frac{10 \sqrt{2}}{3}-3 \sqrt{2}$
Shaded area $=\frac{\sqrt{2}}{3}$
Or:
Equation of chord:
$y=4-\sqrt{2 x}$
Shaded area $=\int_{0}^{\sqrt{2}} 4-x^{2}-4+\sqrt{2} x \mathrm{~d} x$
$\left[\frac{\sqrt{2}}{2} x^{2}-\frac{x^{3}}{3}\right]_{0}^{\sqrt{2}}=\frac{\sqrt{2}}{3}$

B1

M1

A1

M1 for attempt to integrate

DM1 for application of limits

B1 for area of trapezium, allow unsimplified

M1 for subtraction of the two areas

Must be in this form

B1 for the equation of the chord unsimplified

M1 for subtraction
M1 for attempt to integrate
$\sqrt{ }$ A1 for $\left[-m \frac{x^{2}}{2}-\frac{x^{3}}{3}\right]$ or equivalent, where
m is the gradient of their chord
DM1 for application of limits

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2013	0606	13

7 (i) $2 t^{2}-2\left(t^{2}-t+1\right)$ Leading to, $t=\frac{3}{2}$ $\text { (ii) } \begin{aligned} & \mathbf{A}=\left(\begin{array}{ll} 6 & 2 \\ 7 & 3 \end{array}\right), \mathbf{A}^{-1}=\frac{1}{4}\left(\begin{array}{cc} 3 & -2 \\ -7 & 6 \end{array}\right) \\ &\left(\begin{array}{ll} 6 & 2 \\ 7 & 3 \end{array}\right)\binom{x}{y}=\binom{10}{11} \\ &\binom{x}{y}=\frac{1}{4}\left(\begin{array}{cc} 3 & -2 \\ -7 & 6 \end{array}\right)\binom{10}{11} \\ &\binom{x}{y}=\binom{2}{-1}, \text { leading to } x=2, y=-1 \end{aligned}$		Correct determinant seen unsimplified M1 for simplification and solution A1 for solution of $\operatorname{det} \mathbf{A}=1$ only, not $1 / \operatorname{det} \mathbf{A}=1$ B1 for $\frac{1}{4}$, B1 for matrix B1 for dealing correctly with the factor of 2 M1 for pre-multiplying their $\binom{10}{11}$ by their \mathbf{A}^{-1} to obtain a column matrix Allow $\binom{x}{y}=\binom{2}{-1}$ for A1
8 $\text { (i) } \begin{aligned} & \frac{1}{2}\left(4^{2}\right) \sin \theta=7.5 \\ & \quad \sin \theta=\frac{15}{16}, \theta=1.215 \ldots \end{aligned}$ (ii) $\sin \frac{\theta}{2}=\frac{\frac{1}{2} C D}{4}, \quad(C D=4.567)$ Arc length $=6(1.215)$ $\begin{aligned} \text { Perimeter } & =2+2+6(1.215)+\text { their } C D \\ & =\text { awrt } 15.9 \end{aligned}$ (iii) Area $=\frac{1}{2} 6^{2}(1.215)-7.5$ $=14.4 \text { (awrt) }$		M1 for attempt to find the area of the triangle and equate to 7.5 A1 for solution to obtain the given answer Solution must include $1.2153 \ldots$. or 1.2154 M1 for attempt to find $C D$ B1 for arc length M1 for sum of 4 appropriate lengths B1 for sector area M1 for subtraction of the 2 areas

Page 8	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2013	0606	13

Page 9	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2013	0606	13

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	11

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Accuracy mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0 .

B2, 1, 0 means that the candidate can earn anything from 0 to 2 .

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	11

The following abbreviations may be used in a mark scheme or used on the scripts:
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

MR-1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.

OW -1,2 This is deducted from A or B marks when essential working is omitted.
PA -1 This is deducted from A or B marks in the case of premature approximation.
S -1 Occasionally used for persistent slackness - usually discussed at a meeting.
EX-1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	11

1 (i) (ii) (iii)	3	B1 B1 B1 B1 B1	correct shape for $y=\cos x-1$ all correct correct shape for $y=\sin 2 x$ all correct
2	Either gradient = 1 $\text { intercept }=2$ $\ln b=$ gradient or $\ln A=$ intercept $\begin{aligned} & b=\mathrm{e} \text { or } 2.72 \\ & A=\mathrm{e}^{2}, A=7.39 \end{aligned}$ Or $\quad \mathrm{e}^{4}=A b^{2}$ and $\mathrm{e}^{10}=A b^{8}$ leading to $b^{6}=\mathrm{e}^{6}$ or $\mathrm{e}^{4}=\mathrm{e}^{2} A$ or $\mathrm{e}^{10}=\mathrm{e}^{8} A$ $\begin{aligned} & b=\mathrm{e} \text { or } 2.72 \\ & A=\mathrm{e}^{2}, A=7.39 \end{aligned}$ Or $\begin{aligned} & 10=8 \ln b+\ln A \\ & 4=2 \ln b+\ln A \end{aligned}$ leading to $\ln b=1$ or $6=3 \ln A$ $\begin{aligned} & b=\mathrm{e} \text { or } 2.72 \\ & A=\mathrm{e}^{2}, A=7.39 \end{aligned}$		M1, need to equate either gradient to $\ln b$ or intercept to $\ln A$ B1 for each equation M1 for attempt to solve for either A or b M1 for attempt to solve for either A or b

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	11

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	11

6 (i) (ii)	$\mathrm{A}^{-1}=\frac{1}{13}\left(\begin{array}{cc} 5 & 1 \\ -3 & 2 \end{array}\right)$ Either $\begin{aligned} \left(\begin{array}{cc} a & b \\ c & -1 \end{array}\right) & =\frac{1}{13}\left(\begin{array}{cc} 5 & 1 \\ -3 & 2 \end{array}\right)\left(\begin{array}{cc} 7 & 5 \\ 17 & d \end{array}\right) \\ & =\frac{1}{13}\left(\begin{array}{cc} 52 & 25+d \\ 13 & -15+2 d \end{array}\right) \end{aligned}$ leading to $a=4, c=1$ and $b=2, d=1$ Or $\begin{aligned} & \left(\begin{array}{cc} 2 & -1 \\ 3 & 5 \end{array}\right)\left(\begin{array}{cc} a & b \\ c & -1 \end{array}\right)=\left(\begin{array}{cc} 7 & 5 \\ 17 & d \end{array}\right) \\ & 2 a-c=7,3 a+5 c=17, a=4, c=1 \\ & 2 b+1=5,3 b-5=d, b=2, \mathrm{~d}=1 \end{aligned}$	B1 B1 M1 DM1 A3,2,1,0 [M1 DM1 A3,2,1,0	B1 for matrix, B1 for multiplying by a correct determinant evidence of multiplication of both sides by A^{-1} DM1 for attempt to equate like elements -1 each error M1 for evidence of matrix multiplication DM1 for attempt to equate like elements -1 each error
7 $\begin{array}{rr} & \text { (i) } \\ \\ \\ & \\ & \text { (ii) }\end{array}$	$\begin{aligned} & \tan B= \frac{\sqrt{5+1}}{\sqrt{5-2}} \\ &= \frac{\sqrt{5+1}}{\sqrt{5-2}} \times \frac{\sqrt{5+2}}{\sqrt{5+2}} \\ &= 7+3 \sqrt{5} \\ &(7+3 \sqrt{5})^{2}+1=\sec ^{2} B \\ & \sec ^{2} B=95+42 \sqrt{5} \\ & \text { Or } \\ & \sec ^{2} B= \frac{1}{\cos ^{2} B}=\frac{(\sqrt{5+1})^{2}+(\sqrt{5}-2)^{2}}{(\sqrt{5}-2)^{2}} \\ & \sec ^{2} B= \frac{15-2 \sqrt{5}}{9-4 \sqrt{5}} \times \frac{9+4 \sqrt{5}}{9+4 \sqrt{5}} \\ & \sec ^{2} B= 95+42 \sqrt{5} \end{aligned}$		attempt at rationalisation (Allow if inverse is used) M1 for attempt to use the correct identity M1 for simplification to give 3 or 4 terms cao A1 for 95, A1 for $42 \sqrt{5}$ M1 for attempt to use to find $B C^{2}$ M1 for use of $\sec B=\frac{1}{\cos B}$ A1 for 95, A1 for $52 \sqrt{5}$

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	11

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	11

(ii) (iii)	$\begin{aligned} \overrightarrow{A P} & =\frac{3}{4}(\mathbf{b}-\mathbf{a}) \\ \overrightarrow{O P} & =\mathbf{a}+\frac{3}{4}(\mathbf{b}-\mathbf{a}), \text { or } \\ \overrightarrow{O P} & =\mathbf{a}-\frac{1}{4}(\mathbf{b}-\mathbf{a}), \\ & =\frac{1}{4}(\mathbf{a}+3 \mathbf{b}) \\ \overrightarrow{O Q} & =\frac{2}{5} \mathbf{c}, \text { or } \overrightarrow{Q C}=\frac{3}{5} \mathbf{c} \text { or } \overrightarrow{C Q}=-\frac{3}{5} \mathbf{c} \\ \overrightarrow{P Q} & =\overrightarrow{O Q}-\overrightarrow{O P} \\ & =\frac{2}{5} \mathbf{c}-\frac{\mathbf{a}}{4}-\frac{3 \mathbf{b}}{4} \\ 2 \mathbf{c} & -\frac{5 \mathbf{a}}{4}-\frac{15 \mathbf{b}}{4}=6(\mathbf{c}-\mathbf{b}) \\ \mathbf{c} & =\frac{9 \mathbf{b}-5 \mathbf{a}}{16} \end{aligned}$	B1 M1 A1 B1 M1 A1 M1 A1	M1 for attempt at vector addition Answer given B1 for $\overrightarrow{O Q}, \overrightarrow{Q C}$ or $\overrightarrow{C Q}$ M1 for correct vector addition/subtraction M1 for use of their vectors and attempt to get $k \mathbf{c}$
10 (i) (ii)	When $x=2, y=-5$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-8 x+1$ when $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-3$ Tangent: $y+5=-3(x-2)$ $(y=1-3 x)$ $1-3 x=x^{3}-4 x^{2}+x+1$ $x(x-2)^{2}=0$ Meets at $(0,1)$	B1 M1 DM1 A1 M1 DM1 A1 A1	B1 for $y=-5$ M1 for attempt to differentiate DM1 for attempt at tangent equation - must be tangent with use of $x=2$ allow unsimplified M1 for equating tangent and curve equations DM1 for attempt to solve resulting cubic equation A1 for each coordinate

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	11

(iii)	Grad of perp $=\frac{1}{3}$ Midpoint (1,-2) Perp bisector $y+2=\frac{1}{3}(x-1)$		$\sqrt{ }$ B1 on their gradient in (i) only M1 for attempt to find the midpoint M1 for attempt at line equation must be perp bisector A1 allow unsimplified
11 (a) (b)	$\begin{aligned} & \sin \left(x+\frac{\pi}{3}\right)=-\frac{1}{2} \\ & x+\frac{\pi}{3}=\frac{7 \pi}{6}, \frac{11 \pi}{6} \\ & x=\frac{5 \pi}{6}, \frac{3 \pi}{2} \\ & \tan y-2=\frac{1}{\tan y} \\ & \tan ^{2} y-2 \tan y-1=0 \\ & \tan y=1 \pm \sqrt{2} \\ & y=67.5^{\circ}, 157.5^{\circ} \end{aligned}$	B1 B1 B1 B1 B1 M1 A1 DM1 A1 A1	B1 for $\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$ B1 for first correct solution B1 for a second correct solution with all solutions in radians and with no excess solutions within the range B1 for a correct equation M1 for attempt to obtain a 3 term quadratic equation A1 for a correct equation equated to zero DM1 for solution of quadratic A1 for first correct solution A1 for a second correct solution with all solutions in degrees and with no excess solutions within the range.

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	12

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Accuracy mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	12

The following abbreviations may be used in a mark scheme or used on the scripts:
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.

OW -1,2 This is deducted from A or B marks when essential working is omitted.
PA -1 This is deducted from A or B marks in the case of premature approximation.

S-1 Occasionally used for persistent slackness - usually discussed at a meeting.

EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	12

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
1 (i) \\
(ii) \\
(iii)
\end{tabular} \& \multicolumn{5}{|l|}{\[
\begin{aligned}
\& \mathrm{n}(A \cap B)=5 \\
\& \mathrm{n}(A)=16 \\
\& \mathrm{n}\left(B^{\prime} \cap A\right)
\end{aligned}
\]} \& \begin{tabular}{l}
B1 \\
B1 \\
B1
\end{tabular} \& \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
2 (i) \\
(ii) \\
(iii)
\end{tabular}} \& \multicolumn{5}{|l|}{\(6 \times 5 \times 4 \times 3=360\) or \({ }^{6} P_{4}=360\)} \& \multirow[t]{4}{*}{B1

M1

A1} \& B1 unsimplified/evaluated

\hline \& Position \& 1 \& 2 \& 3 \& 4 \& \&

\hline \& Number of ways \& 5 \& 4 \& 3 \& 1 \& \&

\hline \& \multicolumn{5}{|l|}{| or $\frac{1}{6}$ (i) or ${ }^{5} P_{3}$ or ${ }^{5} C_{3} \times{ }^{6} C_{1}$ |
| :--- |
| Number of 4 digit numbers $=60$ |} \& \& M1 for a correct attempt unsimplified

\hline \& Position \& 1 \& 2 \& 3 \& 4 \& \&

\hline \& Number of ways \& 3 \& 4 \& 3 \& 1 \& \&

\hline \& \multicolumn{5}{|l|}{$$
\begin{array}{|l}
\text { or }^{3} P_{1} \times{ }^{4} P_{2} \\
\text { Number of } 4 \text { digit numbers }=36
\end{array}
$$} \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
$$
\] \& M1 for a correct attempt unsimplified

\hline \multirow[t]{6}{*}{3} \& \multicolumn{5}{|l|}{EITHER} \& \&

\hline \& \multicolumn{5}{|l|}{\multirow[t]{2}{*}{| $1-2 \sin \theta-2 \cos \theta+\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta$ |
| :--- |
| Use of $\sin ^{2} \theta+\cos ^{2} \theta=1$ in simplification $=0$ |}} \& B1 \& B1 for correct expansion of $(1-\cos \theta-\sin \theta)^{2}$

\hline \& \& \& \& \& \& M1

A1 \& | M1 for use of $\sin ^{2} \theta+\cos ^{2} \theta=1$ in this form |
| :--- |
| A1 must be convinced as AG |

\hline \& \multicolumn{5}{|l|}{$$
\begin{aligned}
& \text { OR }(1-\cos \theta-\sin \theta)^{2}= \\
& 1-2 \sin \theta-2 \cos \theta+\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta
\end{aligned}
$$} \& [B1 \& B1 for correct expansion of $(1-\cos \theta-\sin \theta)^{2}$

\hline \& \multicolumn{5}{|l|}{$=2-2 \sin \theta-2 \cos \theta+2 \sin \theta \cos \theta$} \& M1 \& M1 for use of $\sin ^{2} \theta+\cos ^{2} \theta=1$ in this form

\hline \& \multicolumn{5}{|l|}{$=2(1-\sin \theta)(1-\cos \theta)$} \& A1] \& A1 for simplification and factorising

\hline
\end{tabular}

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	12

4	EITHER $2 x^{2}+k x+2 k-6=0$ has no real roots $\begin{aligned} k^{2}-16 k+48 & <0 \\ (k-4)(k-12) & <0 \end{aligned}$ Critical values 4 and 12 $4<k<12$ or $k>4$ and $k<12$ $\mathbf{O R}\left(x+\frac{k}{4}\right)^{2}-\frac{k^{2}}{16}+k-3=0$ $-\frac{k^{2}}{16}+k-3>0 \text { so } k^{2}-16 k+48<0$ $\mathbf{O R} \frac{\mathrm{d} y}{\mathrm{~d} x}=4 x+k$ When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, k=-4 x$ By substitution $x^{2}+4 x+3<0$ leading to $x=-1, k=4$ and $x=-3, k=12$ $4<k<12$ or $k>4$ and $k<12$ $\mathbf{O R} \frac{\mathrm{d} y}{\mathrm{~d} x}=4 x+k$ When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, x=-\frac{k}{4}$ leading to $k^{2}-16 k+48<0$	M1 DM1 A1 A1 [M1] [M1 DM1 A1 A1] [M1]	M1 for attempted use of $b^{2}-4 a c$ DM1 for attempt to obtain critical values from a 3 term quadratic A1 for both critical values A1 for correct final answer M1 for attempting to complete the square and obtain a 3 term quadratic Then as EITHER M1 for differentiation, equating to zero and obtaining a quadratic equation in x DM1 for attempt to obtain critical values of k from a 3 term quadratic in x followed by substitution to obtain a value for k A1 for both critical values A1 for correct final answer M1 for differentiation, equating to zero and obtaining a quadratic equation in k Then as EITHER

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	12

5	$\begin{aligned} & 2\left(\frac{15-4 y}{3}\right) y=9 \text { or } 2 x\left(\frac{15-3 x}{4}\right)=9 \\ & 8 y^{2}-30 y+27=0 \text { or } 3 x^{2}-15 x+18=0 \\ & (4 y-9)(2 y-3)=0 \text { or }(x-3)(x-2)=0 \\ & x=2, y=\frac{9}{4} \text { and } x=3, y=\frac{3}{2} \\ & A B^{2}=1^{2}+(0.75)^{2}, A B=1.25 \end{aligned}$	M1 DM1 A1, A1 M1, A1	M1 for attempt to obtain equation in one variable DM1 for attempt to solve a 3 term quadratic in that variable A1 for each 'pair', x values must be simplified to single integer form M1 for a correct attempt to find $A B$, must have non zero differences and be using points calculated previously.
6	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \sec ^{2} x$ When $x=\frac{3 \pi}{4}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=6$ $y=5$ Perpendicular gradient $=-\frac{1}{6}$ Equation of normal $y+5=-\frac{1}{6}\left(x-\frac{3 \pi}{4}\right)$ When $x=0, y=\frac{\pi}{8}-5$ o.e. or -4.61 or -4.6 but not -4.60	B1 B1 B1 M1 M1 A1	B1 for $3 \sec ^{2} x$ B1 for $\frac{\mathrm{d} y}{\mathrm{~d} x}=6$, may be implied by later work B1 for y M1 for perpendicular gradient from $\frac{\mathrm{d} y}{\mathrm{~d} x}$ M1 for attempt at the normal using their y value correctly and $x=\frac{3 \pi}{4}$ and substitution of $x=0$ A1 for obtaining y value

Page 7 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2013	0606	12

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	12

9 (i) (ii)	$\begin{aligned} & \left(1+\frac{1}{2} x\right)^{n}=1+n\left(\frac{x}{2}\right)+\frac{n(n-1)}{2}\left(\frac{x}{2}\right)^{2} \\ & (1-x)\left(1+n\left(\frac{x}{2}\right)+\frac{n(n-1)}{2}\left(\frac{x}{2}\right)^{2}\right) \end{aligned}$ Multiply x and $\frac{n}{2} x$ to get $\frac{n}{2}\left(x^{2}\right)$ Multiply 1 and $\frac{n(n-1) x^{2}}{8}$ or $\frac{n(n-1) x^{2}}{4}$ $\begin{aligned} & \frac{n^{2}-n}{8}-\frac{n}{2}=\frac{25}{4} \\ & n^{2}-5 n-50=0 \\ & n=10 \end{aligned}$	B1, B1 M1 DM1 DM1 A1 A1	B1 for $1+$ second term, B1 for 3rd term Allow unsimplified dealing with 2 terms involving x^{2} attempt to obtain one term attempt to obtain a second term correct quadratic equation A1 for $n=10$ only
(a) (i) (ii) (b) (i) (ii)	$\begin{aligned} & \frac{1}{3}(2 x-5)^{\frac{3}{2}} \\ & \frac{125}{3}-\frac{1}{3}=\frac{124}{3} \\ & x^{3} \frac{1}{x}+3 x^{2} \ln x \\ & \int 3 x^{2} \ln x \mathrm{~d} x=x^{3} \ln x-\int x^{2} \mathrm{~d} x \text { o.e. } \\ & \int x^{2} \mathrm{~d} x=\frac{x^{3}}{3} \text { or } \\ & \int x^{2} \ln x \mathrm{~d} x=\frac{1}{3}\left(x^{3} \ln x-\int x^{2} \mathrm{~d} x\right) \text { o.e. } \\ & \int x^{2} \ln x \mathrm{~d} x=\frac{1}{3}\left(x^{3} \ln x-\frac{x^{3}}{3}\right)(+c) \end{aligned}$	B1, B1 M1, A1 B1, B1 M1 A1	B1 for $k(2 x-5)^{\frac{3}{2}}, \mathbf{B 1}$ for $\frac{1}{3}(2 x-5)^{\frac{3}{2}}$ M1 for correct use of limits B1 for each term, allow unsimplified for a use of answer to (i) A1 for intergrating x^{2} or dividing by 3

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	12

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	13

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Accuracy mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0 .

B2, 1, 0 means that the candidate can earn anything from 0 to 2 .

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	13

The following abbreviations may be used in a mark scheme or used on the scripts:
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

MR-1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.

OW -1,2 This is deducted from A or B marks when essential working is omitted.
PA -1 This is deducted from A or B marks in the case of premature approximation.
S -1 Occasionally used for persistent slackness - usually discussed at a meeting.
EX-1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	13

1 (i) (ii) (iii)	3	B1 B1 B1 B1 B1	correct shape for $y=\cos x-1$ all correct correct shape for $y=\sin 2 x$ all correct
2	Either gradient = 1 $\text { intercept }=2$ $\ln b=$ gradient or $\ln A=$ intercept $\begin{aligned} & b=\mathrm{e} \text { or } 2.72 \\ & A=\mathrm{e}^{2}, A=7.39 \end{aligned}$ Or $\quad \mathrm{e}^{4}=A b^{2}$ and $\mathrm{e}^{10}=A b^{8}$ leading to $b^{6}=\mathrm{e}^{6}$ or $\mathrm{e}^{4}=\mathrm{e}^{2} A$ or $\mathrm{e}^{10}=\mathrm{e}^{8} A$ $\begin{aligned} & b=\mathrm{e} \text { or } 2.72 \\ & A=\mathrm{e}^{2}, A=7.39 \end{aligned}$ Or $\begin{aligned} & 10=8 \ln b+\ln A \\ & 4=2 \ln b+\ln A \end{aligned}$ leading to $\ln b=1$ or $6=3 \ln A$ $\begin{aligned} & b=\mathrm{e} \text { or } 2.72 \\ & A=\mathrm{e}^{2}, A=7.39 \end{aligned}$		M1, need to equate either gradient to $\ln b$ or intercept to $\ln A$ B1 for each equation M1 for attempt to solve for either A or b M1 for attempt to solve for either A or b

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	13

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	13

6 (i) (ii)	$\mathrm{A}^{-1}=\frac{1}{13}\left(\begin{array}{cc} 5 & 1 \\ -3 & 2 \end{array}\right)$ Either $\begin{aligned} \left(\begin{array}{cc} a & b \\ c & -1 \end{array}\right) & =\frac{1}{13}\left(\begin{array}{cc} 5 & 1 \\ -3 & 2 \end{array}\right)\left(\begin{array}{cc} 7 & 5 \\ 17 & d \end{array}\right) \\ & =\frac{1}{13}\left(\begin{array}{cc} 52 & 25+d \\ 13 & -15+2 d \end{array}\right) \end{aligned}$ leading to $a=4, c=1$ and $b=2, d=1$ Or $\begin{aligned} & \left(\begin{array}{cc} 2 & -1 \\ 3 & 5 \end{array}\right)\left(\begin{array}{cc} a & b \\ c & -1 \end{array}\right)=\left(\begin{array}{cc} 7 & 5 \\ 17 & d \end{array}\right) \\ & 2 a-c=7,3 a+5 c=17, a=4, c=1 \\ & 2 b+1=5,3 b-5=d, b=2, \mathrm{~d}=1 \end{aligned}$	B1 B1 M1 DM1 A3,2,1,0 [M1 DM1 A3,2,1,0]	B1 for matrix, B1 for multiplying by a correct determinant evidence of multiplication of both sides by A^{-1} DM1 for attempt to equate like elements -1 each error M1 for evidence of matrix multiplication DM1 for attempt to equate like elements -1 each error
7 (i) (ii)	$\begin{aligned} & \tan B= \frac{\sqrt{5+1}}{\sqrt{5-2}} \\ &= \frac{\sqrt{5+1}}{\sqrt{5-2}} \times \frac{\sqrt{5+2}}{\sqrt{5+2}} \\ &= 7+3 \sqrt{5} \\ &(7+3 \sqrt{5})^{2}+1=\sec ^{2} B \\ & \sec ^{2} B=95+42 \sqrt{5} \\ & \text { Or } \\ & \sec ^{2} B= \frac{1}{\cos ^{2} B}=\frac{(\sqrt{5+1})^{2}+(\sqrt{5}-2)^{2}}{(\sqrt{5}-2)^{2}} \\ & \sec ^{2} B= \frac{15-2 \sqrt{5}}{9-4 \sqrt{5}} \times \frac{9+4 \sqrt{5}}{9+4 \sqrt{5}} \\ & \sec ^{2} B= 95+42 \sqrt{5} \end{aligned}$	M1 A1 M1 M1 $\sqrt{ } \mathrm{A} 1$ $\sqrt{ }$ A1 [M1 M1 A1 A1]	attempt at rationalisation (Allow if inverse is used) M1 for attempt to use the correct identity M1 for simplification to give 3 or 4 terms cao A1 for 95, A1 for $42 \sqrt{5}$ M1 for attempt to use to find $B C^{2}$ M1 for use of $\sec B=\frac{1}{\cos B}$ A1 for 95, A1 for $52 \sqrt{5}$

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	13

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	13

9 (i) (ii) (iii)	$\begin{aligned} & \overrightarrow{A P}=\frac{3}{4}(\mathbf{b}-\mathbf{a}) \\ & \overrightarrow{O P}=\mathbf{a}+\frac{3}{4}(\mathbf{b}-\mathbf{a}), \text { or } \\ & \overrightarrow{O P}=\mathbf{a}-\frac{1}{4}(\mathbf{b}-\mathbf{a}), \\ &=\frac{1}{4}(\mathbf{a}+3 \mathbf{b}) \\ & \overrightarrow{O Q}=\frac{2}{5} \mathbf{c}, \text { or } \overrightarrow{Q C}=\frac{3}{5} \mathbf{c} \text { or } \overrightarrow{C Q}=-\frac{3}{5} \mathbf{c} \\ & \overrightarrow{P Q}=\overrightarrow{O Q}-\overrightarrow{O P} \\ &=\frac{2}{5} \mathbf{c}-\frac{\mathbf{a}}{4}-\frac{3 \mathbf{b}}{4} \\ & 2 \mathbf{c}-\frac{5 \mathbf{a}}{4}-\frac{15 \mathbf{b}}{4}=6(\mathbf{c}-\mathbf{b}) \\ & \mathbf{c}= \frac{9 \mathbf{b}-5 \mathbf{a}}{16} \end{aligned}$	B1 M1 A1 B1 M1 A1 M1 A1	M1 for attempt at vector addition Answer given B1 for $\overrightarrow{O Q}, \overrightarrow{Q C}$ or $\overrightarrow{C Q}$ M1 for correct vector addition/subtraction M1 for use of their vectors and attempt to get $k \mathbf{c}$
$10 \quad$ (i)	When $x=2, y=-5$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-8 x+1$ when $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-3$ Tangent: $y+5=-3(x-2)$ $(y=1-3 x)$ $1-3 x=x^{3}-4 x^{2}+x+1$ $x(x-2)^{2}=0$ Meets at $(0,1)$	B1 M1 DM1 A1 M1 DM1 A1 A1	B1 for $y=-5$ M1 for attempt to differentiate DM1 for attempt at tangent equation - must be tangent with use of $x=2$ allow unsimplified M1 for equating tangent and curve equations DM1 for attempt to solve resulting cubic equation A1 for each coordinate

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0606	13

(iii)	Grad of perp $=\frac{1}{3}$ Midpoint (1,-2) Perp bisector $y+2=\frac{1}{3}(x-1)$	$\begin{array}{r} V_{\mathbf{B} 1} \\ \hline \text { M1 } \\ \text { M1 A1 } \end{array}$	$\sqrt{ } \mathbf{B} 1$ on their gradient in (i) only M1 for attempt to find the midpoint M1 for attempt at line equation must be perp bisector A1 allow unsimplified
11 (a) (b)	$\begin{aligned} & \sin \left(x+\frac{\pi}{3}\right)=-\frac{1}{2} \\ & x+\frac{\pi}{3}=\frac{7 \pi}{6}, \frac{11 \pi}{6} \\ & x=\frac{5 \pi}{6}, \frac{3 \pi}{2} \\ & \tan y-2=\frac{1}{\tan y} \\ & \tan ^{2} y-2 \tan y-1=0 \\ & \tan y=1 \pm \sqrt{2} \\ & y=67.5^{\circ}, 157.5^{\circ} \end{aligned}$	B1 B1 B1 B1 B1 M1 A1 DM1 A1 A1	B1 for $\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$ B1 for first correct solution B1 for a second correct solution with all solutions in radians and with no excess solutions within the range B1 for a correct equation M1 for attempt to obtain a 3 term quadratic equation A1 for a correct equation equated to zero DM1 for solution of quadratic A1 for first correct solution A1 for a second correct solution with all solutions in degrees and with no excess solutions within the range.

