

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/11 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Guidance
1(a)	1080°	B1	
1(b)	<i>a</i> = 4	B1	
	<i>b</i> = 3	B1	
	<i>c</i> = -2	B1	
2(a)	(0, 14)	2	B1 for <i>x</i> -coordinate B1 for <i>y</i> -coordinate
2(b)	$y - 14 = -\frac{1}{2}x$	2	M1 for finding the gradient of a perpendicular line and attempt at the straight line equation using <i>their B</i> A1 Allow unsimplified
2(c)	Area = $\frac{1}{2} \times 14 \times 28$	M1	Must be a complete method making use of <i>their</i> answer to (b)
	196	A1	
3(a)	13 soi	B1	For finding the magnitude of $\begin{pmatrix} 12 \\ -5 \end{pmatrix}$
	$\begin{pmatrix} 36 \\ -15 \end{pmatrix}$	B1	
3(b)	$10 + 4\lambda = -4\mu$ or $-5 + 6\lambda = 5\mu$	2	M1 for equating like vectors Dep M1 for attempt to solve <i>their</i> simultaneous equations to obtain 2 solutions
	$\mu = -\frac{20}{11}$	Al	CO
	$\lambda = -\frac{15}{22}$	A1	
4(a)	$a = \frac{7}{2}$	B1	
	<i>b</i> = 1	B1	
	$c = \frac{1}{6}$	B1	

Question	Answer	Marks	Guidance
4(b)	$\left(3x^{\frac{2}{5}} - 5\right)\left(x^{\frac{2}{5}} - 1\right) = 0$	2	M1 for recognition of a quadratic in $x^{\frac{2}{5}}$ Dep M1 for solution and a correct attempt to get at least one solution for x
	3.59	A1	
	1	A1	
5(a)	0 = 8a + 4b + 12 + 4	B1	For p(2)
	$p'(x) = 3ax^2 + 2bx + 6$	M1	For an attempt to obtain $p'(x)$
	3a - 2b + 6 = -7	M1	Dep for $p'(-1)$
	0 = 2a + b + 4 -13 = 3a - 2b	M1	Dep on both previous M marks for solution of equations to obtain both a and b
	a = -3 $b = 2$	A1	
5(b)	$\mathbf{p''}(x) = -18x + 4$	M1	For differentiation of <i>their</i> $p'(x)$ to obtain $p''(x)$
	4	A1	FT on twice <i>their b</i> .
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = m\mathrm{e}^{3x} + 2x^2 \left(+c\right)$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{3x} + 2x^2(+c)$	A1	.5
	5=2+c c=3	M1	Dep on previous M mark
	$f(x) = pe^{3x} + qx^3 \dots$	M1	
	$y = \frac{2}{3}e^{3x} + \frac{2}{3}x^3$	A1	
	$\frac{5}{3} = \frac{2}{3} + d$ $d = 1$	M1	Dep on previous M mark
	$(f(x) =) \frac{2}{3}e^{3x} + \frac{2}{3}x^3 + 3x + 1$	A1	
7(a)	6	B1	

Question	Answer	Marks	Guidance
7(b)	<i>b</i> =192 <i>a</i>	B1	May be implied by the term in x
	$c = 240a^2$	B1	May be implied by the term in x^2
	$\frac{c}{240} = \frac{b^2}{192^2}$	M1	For elimination of <i>a</i>
	$5b^2 = 768c$	A1	For correct manipulation to verify the given answer
7(c)	$a = \frac{1}{16}$	B1	
	$c = \frac{15}{16}$	B1	
8(a)	$\sin \frac{AOC}{2} = \frac{3}{5}$ or $6^2 = 5^2 + 5^2 - (2 \times 5 \times 5) \cos AOC$	M1	For a complete method to find <i>AOC</i>
	<i>AOC</i> = 1.2870 <i>AOC</i> = 1.287	A1	AG Must see $AOC = 1.2870$ or better before rounding for A1
8(b)	Arc length = 1.287×5	B1	
	Perimeter = 32.4	B1	
8(c)	Sector area = $\frac{1}{2} \times 5^2 \times 1.287$	B1	.5
	Area of triangle = $\frac{1}{2} \times 5^2 \times \sin 1.287$	BI	
	Total area = 28.1	B1	
9(a)	$\frac{dy}{dx} = 2(2x+1)(x-3) + 2(x-3)^2$ or $\frac{dy}{dx} = 6x^2 - 22x + 12$	M1	For differentiation of a quotient, or expansion and subsequent differentiation
	0 = 2(x-3)(3x-2)	M1	Dep for simplification, equating to zero and attempt to solve
	(3, 0)	A1	
	$\left(\frac{2}{3},\frac{343}{27}\right)$	A1	

Question	Answer	Marks	Guidance
9(b)		4	B1 for correct shape with maximum in the first quadrant B1 for $\left(-\frac{1}{2}, 0\right)$ and $(3, 0)$ with a cubic curve with one max only B1 for $(0, 9)$ with a cubic curve with one max only B1 All correct with a cusp at $x = -\frac{1}{2}$ and a minimum at $x = 3$
9(c)	$\frac{343}{27}$	B1	FT on <i>their</i> answer from (a)
10(a)(i)	2 + (n-1)0.5 = 16 oe	M1	For use of $a + (n-1)d$
	n = 29	A1	
10(a)(ii)	$\frac{8}{2}(2(2)+7(0.5))$	M1	For use of sum formula, may be implied if distances have been multiplied by 5 first.
	$\frac{8}{2}(2(2)+7(0.5))\times 5$	M1	For multiplication by 5
	150 (km)	A1	
10(b)(i)	r = 1.25 oe	B1	
10(b)(ii)	$2(1.25)^{n-1} > 16 \text{ or } 2(1.25)^{n-1} = 16$	M1	For use of ar^{n-1}
	$n-1 > \frac{\ln 8}{\ln 1.25}$ or $n-1 = \frac{\ln 8}{\ln 1.25}$	M1	Dep for correct method of solution to obtain $n-1$
	11	A1	
10(b)(iii)	$\frac{2(1.25^8 - 1)}{1.25 - 1}$	M1	For use of sum formula may be implied by multiplication by 5
	$\frac{2(1.25^8 - 1)}{1.25 - 1} \times 5$	M1	For multiplication by 5
	198 (km)	A1	Allow greater accuracy

Question	Answer	Marks	Guidance
11(a)	$3\cot^2\theta - 5\cot\theta - 2 = 0$	M1	For use of correct identity and simplification to a 3 term quadratic equated to zero.
	$\tan\theta = -3, \ \tan\theta = \frac{1}{2}$	M1	Dep for solution of quadratic and dealing with cot
	108.4°	A1	
	26.6°	A1	
11(b)	$\phi + \frac{\pi}{3} = -\frac{\pi}{6}$	M1	For a correct order of operations
	$\phi = -\frac{\pi}{2}$	A1	
	$\phi + \frac{\pi}{3} = \frac{7\pi}{6}$	M1	For a correct order of operations
	$\phi = \frac{5\pi}{6}$	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/12 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Guidance
1(a)	$-3 < x < 1 \qquad x > 5$	B1	
1(b)	$-\frac{1}{3}(x+3)(x-1)(x-5)$	3	B1 for a negative cubic function B1 for a cubic function multiplied by $\frac{1}{3}$
			B1 for $(x+3)(x-1)(x-5)$
2(a)	$a = \frac{10}{3}$ or $3\frac{1}{3}$	B1	
	$b = \frac{7}{3}$ or $2\frac{1}{3}$	B1	
	$c = \frac{9}{2}$ or $4\frac{1}{2}$ or 4.5	B1	
2(b)	$10(2^{p})^{2} - 17(2^{p}) + 3 = 0$ (5(2 ^p)-1)(2(2 ^p)-3)=0 2 ^p = $\frac{1}{5}$, 2 ^p = $\frac{3}{2}$	M1	For recognition of a quadratic in 2^p , attempt to factorise and solve for 2^p
	$\frac{2}{5}, \frac{-1}{2}$		
	$p = \frac{\ln \frac{1}{5}}{\ln 2}$ or $p = \frac{\ln 1.5}{\ln 2}$ oe	M1	For correct attempt to deal with $2^p = k$
	-2.32	A1	
	0.585	A1	
3(a)	$lg \frac{1000a^2}{b^4}$	4	B1 for 3 = lg1000
	b^4		B1 for use of power rule once
			B1 for use of addition or subtraction rule once
			B1 All correct

Question	Answer	Marks	Guidance
3(b)	Either $3\log_a 4 = \frac{3}{\log_4 a}$	B1	
	$2(\log_4 a)^2 - 7\log_4 a + 3 = 0$ (2log ₄ a - 1)(log ₄ a - 3) = 0 log ₄ a = $\frac{1}{2}$ or log ₄ a = 3	M1	For obtaining a quadratic equation and solution
	$a = 4^{\frac{1}{2}}$ or $a = 4^{3}$	M1	Dep For dealing with the logarithm correctly once, may be implied by a correct solution
	64	A1	
	2	A1	
	$\mathbf{Or} \ 2\log_4 a = \frac{2}{\log_a 4}$	(B1)	
	$3(\log_{a} 4)^{2} - 7\log_{a} 4 + 2 = 0$ (3log _a 4 - 1)(log _a 4 - 2) = 0 log _a 4 = $\frac{1}{3}$ or log _a 4 = 2	(M1)	For obtaining a quadratic equation and solution
	$a^{\frac{1}{3}} = 4$ or $a^2 = 4$	(M1)	Dep For dealing with the logarithm correctly once, may be implied by a correct solution
	64	(A1)	
	2 Satorep	(A1)	
4	$\tan\left(2x+\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}}$	B1	
	$x = -\frac{7\pi}{12}, -\frac{\pi}{12}, \frac{5\pi}{12}, \frac{11\pi}{12}$	3	M1 for using correct order of operations A1 for two correct solutions A1 for two further correct solutions and no other solutions in range

Question	Answer	Marks	Guidance
5	Either Maximum when $\sin \frac{x}{3} = 1$ or minimum when $\sin \frac{x}{3} = -1$	M1	For recognition that value of maximum or minimum is necessary
	<i>c</i> = 9	A1	
	c = -1	Al	
	$\frac{\mathbf{or}}{\frac{\mathrm{dy}}{\mathrm{dx}}} = \frac{5}{3}\cos\frac{x}{3}$	(M1)	For differentiation, equating to zero to obtain values for $sin \frac{x}{3}$
	When $\frac{dy}{dx} = 0$, $\sin \frac{x}{3} = +1$ or -1		
	c = 9 $c = -1$	(A1) (A1)	
6(a)	$0 = -\frac{5}{4} + \frac{a}{4} + 5 + b$	M1	For use of the factor theorem
	-24 = -10 + a + 10 + b	M1	For use of the remainder theorem
	a + 4b = -15 a + b = -24 leading to	M1	Dep on both previous M marks for solution of <i>their</i> equations without using a calculator
	a = -27, b = 3	A1	
6(b)	$(2x+1)(5x^2+their b)$	M1	Allow for observation or algebraic long division. <i>Their a</i> and <i>b</i> must be integers.
	$(2x+1)(5x^2-16x+3)$	A1	
	(2x+1)(5x-1)(x-3)	2	M1 for attempt to factorise <i>their</i> 3-term quadratic A1 all correct from fully correct working
6(c)	3	B1	FT on <i>their</i> (integer) b
7(a)(i)	b – a	B1	
7(a)(ii)	c – b	B 1	

Question	Answer	Marks	Guidance
7(a)(iii)	$n\overrightarrow{AB} = m\overrightarrow{BC}$	M1	For substitution of <i>their</i> (i) and (ii) into $n\overrightarrow{AB} = m\overrightarrow{BC}$
	$n\mathbf{a} + m\mathbf{c} = (m+n)\mathbf{b}$	A1	For correct manipulation to obtain the given answer
7(b)	$2\lambda - 4\mu + 4 = 4\lambda + 4$ or $\lambda + 7\mu - 7 = -2\lambda - 2$	M1	For equating like components at least once, allow unsimplified
		M1	Dep for solving <i>their</i> equations to obtain both λ and μ
	$\mu = 5$	A1	
	$\lambda = -10$	A1	
8(a)	Either Starting with a 6: 120 ways	B1	May be implied by final answer
	Starting with 5, 7 or 9: 540 ways	B1	May be implied by final answer
	Total 660	B1	
	Or Alternative 1 Ending with a 6: 180 ways	(B1)	May be implied by final answer
	Ending with 0 or 4: 480ways	(B1)	May be implied by final answer
	Total 660	(B1)	
	Or Alternative 2 11 ways of obtaining even 5-digit numbers which start with 5, 6, 7, 9	(B1)	For $11 \times k$ May be implied by final answer
	⁵ P ₃ ways of arranging remaining 3 digits: 60	(B1)	For $m \times 60$ where <i>m</i> is from an attempt to list all cases for first and last digits May be implied by final answer
	$11 \times 60 = 660$	(B1)	
	Or Alternative 3 Total arrangements ${}^{7}P_{5}$ minus (all odds + evens starting with 1 + evens starting with 0 or 4) = 2520 - (1440 + 180 + 240)	(B2)	For 2520 – (1440 + 180 + 240)
	660	(B1)	

Question	Answer	Marks	Guidance
8(b)	$\frac{n!}{(n-4)!4!} = \frac{6n!}{(n-2)!2!}$	B1	
	(n-2)(n-3) = 72	2	B1 for $(n-2)(n-3)$
			B1 for 72
	n = 11 only	2	M1 for correct attempt to form and solve a quadratic equation A1 for $n = 11$ only
9(a)	$AOD = 2 \times \tan^{-1}\left(\frac{2}{3}\right)$	M1	For correct method to find AOD
	AOD = 1.1760 AOD = 1.176 [to 3dp]	A1	Need to see 4 dp or more to justify 3 dp answer
9(b)	Major arc $MN = (2\pi - 1.176)12$	B1	
	$ND \text{ or } MA = 12 - \sqrt{13}$	B1	
	Perimeter = major arc $MN + MA + ND + 16$ oe	B1	For <i>their</i> values in a correct plan, may be implied by a correct answer
	Perimeter = 94.1	B1	
9(c)	Minor sector area = $\frac{1}{2} \times 1.176 \times 12^2$ or	B1	
	Major sector area = $\frac{1}{2} \times (2\pi - 1.176) \times 12^2$	9	
	Area = major sector area – remainder of rectangle or Area = area of circle – minor sector area – remainder of rectangle or Area = circle – rectangle – minor sector + triangle <i>AOD</i>	B1	For <i>their</i> values in a correct plan, may be implied by a correct answer
	Area = 350	B1	Allow greater accuracy
10(a)	At $A = 4$	B1	
	At <i>B</i> $y = \frac{13}{16}$ or 0.8125	B1	

Question	Answer	Marks	Guidance
10(b)	Either Area of trapezium = $\frac{231}{32}$	B1	Allow unsimplified
	$\int_{-1}^{2} \frac{1}{\left(x+2\right)^{2}} + \frac{3}{x+2} dx$	2	B1 for $-\frac{1}{x+2}$ B1 for $3\ln(x+2)$
	$= \left[-\frac{1}{x+2} + 3\ln(x+2) \right]_{-1}^{2}$		BI for $\operatorname{Sin}(x+2)$
	$\left[\left(-\frac{1}{4}+3\ln 4\right)-(-1)\right]$	M1	For correct use of limits in <i>their</i> integral, but must have at least one of the two preceding B marks
	Area = $\frac{207}{32} - \ln 64$	2	A1 for $\frac{207}{32}$ A1 for $-\ln 64$
	Or $\int_{-1}^{2} -\frac{17}{16}x + \frac{47}{16} - \frac{1}{(x+2)^{2}} - \frac{3}{x+2}dx$	(3)	B1 for $-\frac{17}{32}x^2 + \frac{47}{16}x$
	$\left[\left(-\frac{17}{32}x^2 + \frac{47}{16}x + \frac{1}{x+2} - 3\ln(x+2) \right) \right]_{-1}^2$	F	B1 for $\int \frac{1}{(x+2)^2} dx = -\frac{1}{(x+2)}$ B1 for $\int \frac{3}{x+2} dx = 3\ln(x+2)$
	$\left(-\frac{17}{8} + \frac{47}{8} + \frac{1}{4} - 3\ln 4\right) - \left(-\frac{17}{32} - \frac{47}{16} + 1\right)$	(M1)	For correct use of limits in <i>their</i> integral, but must have at least one of the two preceding B marks
	$Area = \frac{207}{32} - \ln 64$	(2)	A1 for $\frac{207}{32}$ A1 for $-\ln 64$
11(a)(i)	0	B1	
11(a)(ii)	-3	B1	
11(a)(iii)	$\left(\frac{1}{2}(25+15)\times 30\right) + \left(\frac{1}{2}(30+60)\times 10\right) + \left(\frac{1}{2}\times 20\times 60\right)$	M1	For an unsimplified expression for the required area allowing at most one incorrect length
	Total distance = 1650	A1	
11(b)(i)	$v = 4\cos\frac{5\pi}{3} - 4$	M1	
	=-2		
	Speed = 2	A1	

Question	Answer	Marks	Guidance
11(b)(ii)	$a = -12\sin 3t$	B1	
	sin 3t = 0 $3t = \pi$ Leading to	M1	For equating to zero and attempt to solve to obtain <i>t</i> , allow if in degrees
	$t = \frac{\pi}{3}$	A1	
11(b)(iii)	$s = k\sin 3t - 4t(+c)$	M1	
	$s = \frac{4}{3}\sin 3t - 4t$	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/13 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Guidance
1		3	B1 for a cubic shape with a maximum in the first quadrant, a minimum in the third quadrant, extending into the second and 4 th quadrants. The extensions must not curve incorrectly and not lead to a complete stationary point. B1 for <i>x</i> -intercepts $-4, -\frac{1}{2}, 3$ either on diagram or stated but must be with a cubic graph. B1 for <i>y</i> -intercept 3 either on diagram or stated but must be with a cubic graph.
2	v=-4.91 soi	B1	
	Speed = 4.91	B1	
3	$\tan\left(2x - \frac{\pi}{3}\right) = \pm\sqrt{3} \text{soi}$ or $\sin\left(2x - \frac{\pi}{3}\right) = \pm\frac{\sqrt{3}}{2} \text{soi}$ $2x - \frac{\pi}{3} = -\frac{\pi}{3}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}$	B1	B0 if negative root is rejected Allow truncated decimals May be implied by subsequent work From use of $\csc^2\left(2x - \frac{\pi}{3}\right) - 1 = \cot^2\left(2x - \frac{\pi}{3}\right)$ M1 for correct order of operations to obtain one solution in the range using
	$2x = 0, \frac{2\pi}{3}, \pi, \frac{5\pi}{3}$ $x = 0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{5\pi}{6}$ or 0, 1.05, 1.57, 2.62 or greater accuracy	eP	$\tan\left(2x - \frac{\pi}{3}\right) = k$ or $\sin\left(2x - \frac{\pi}{3}\right) = m$, $ m < 1$ Dep M1 for correct order of operations to obtain a second solution in the range using $\left(2x - \frac{\pi}{3}\right) = \tan^{-1}(k) \pm \pi$ or $\left(2x - \frac{\pi}{3}\right) = \pi - \sin^{-1}(m)$, $ m < 1$ oe $\left(2x - \frac{\pi}{3}\right) = -\sin^{-1}(m)$, $ m < 1$ oe A1 for any pair of correct solutions A1 for remaining pair of solutions, with no extra solutions within the range
4(a)	$\frac{1}{256} - \frac{x^2}{24} + \frac{7x^4}{36}$	3	B1 for $\frac{1}{256}$ B1 for $-\frac{x^2}{24}$ B1 for $\frac{7x^4}{36}$

Question	Answer	Marks	Guidance
4(b)	$4x^2 + 4 + \frac{1}{x^2}$ soi	B1	
	Coefficient of x^2 $\left(their4 \times their\frac{1}{256}\right)$ $+\left(their4 \times their-\frac{1}{24}\right)$ $+\left(their\frac{7}{36}\right)$	M1	Allow one sign error, but must have 3 terms in x^2 only, with an attempt at addition.
	$\frac{25}{576}$	A1	
5(a)	$\frac{a(r^4-1)}{r-1} = 17\frac{a(r^2-1)}{r-1}$	M1	Allow equivalents Allow if ' a ' terms missing (assume to have been cancelled)
	$(r^{2}-1)(r^{2}+1) = 17(r^{2}-1)$ or better $r^{4}-17r^{2}+16 = 0$ oe $r^{3}+r^{2}-16r-16 = 0$ oe	M1	Dep M1 for a correct simplified equation in <i>r</i> only
	r = 4 only, from correct working	A1	
5(b)	$ar^5 = 64$	M1	For use of ar^5 with <i>their</i> positive <i>r</i>
	$a = 0.0625$ or $\frac{1}{16}$	A1	Must be exact A0 if $r=4$ not from correct working in (a)
5(c)	Because $r > 1$ oe	B1	FT on <i>their</i> $r > 1$ Must have a value for r

Question	Answer	Marks	Guidance
6(a)	Either Starts with 8: 1680	B1	1680 must not be part of a product. May be implied by final answer
	Starts with 7 or 9: 2688	B1	May be implied by final answer
	Total: 4368	B1	
	Or Alternative 1 Starts with 7, 8 or 9 and ends in 1, 3 or 5: 3024	(B1)	Allow for 1008 three times May be implied by final answer
	Starts with 8 or 9 and ends in 7: 672 Starts with 7 or 8 and ends in 9: 672	(B1)	For both May be implied by final answer
	Total: 4368	(B1)	
	Or Alternative 2 13 ways of obtaining odd 5-digit numbers which start with 7, 8 or 9	(B1)	Needs to be part of a product. May be implied by final answer
	⁸ P ₃ ways of arranging the remaining 3 digits: 336	(B1)	Needs to be part of a product. May be implied by final answer
	$Total = 13 \times 336 = 4368$	(B1)	
	Or Alternative 3 Last digit is 7 or 9: 1344	B1	May be implied by final answer
	Last digit is 1, 3 or 5: 3024	B1	May be implied by final answer
	Total: 4368	B1	5
	Or Alternative 4 ${}^{10}P_5 - ({}^9P_4 \times 7) - ({}^8P_3 \times 5) - ({}^8P_3 \times 4)$ $- ({}^8P_3 \times 5)$	B2	Must be complete
	Total: 4368	B1	
6(b)	$\frac{n!}{(n-3)!3!} = \frac{2n!}{(n-2)!2!}$ soi	B1	
	(n-2)=6 soi	B2	Dep B1 on first B for $(n-2)$ soi Dep B1 on first B for 6 soi
	<i>n</i> =8	B1	Dep on previous B marks

Question	Answer	Marks	Guidance
7(a)	$\sin AOQ = \frac{7}{10}$ $POA = \pi - AOQ$ or $14^2 = 10^2 + 10^2 - 200 \cos AOB \text{oe}$ $POA = \frac{2\pi - AOB}{2}$	M1	Allow alternatives, but must be a complete method to find <i>POA</i>
	POA = 2.366195157 = 2.366 to 3 dp	A1	Must see an angle correct to more than 3dp used in order to justify 3 dp
7(b)	Area of sector = $\frac{1}{2}10^2 (2.366)$ (118.3)	B1	Allow unsimplified. Also allow use of 2.37
	Area of triangle = $\frac{1}{2}10^2 \sin 2.366$ (35)	B1	Allow unsimplified. Also allow use of 2.37
	Total area = awrt 153	B1	Allow greater accuracy
7(c)	Major arc $PB = 10 \times 2.366$	B1	Allow unsimplified. Also allow use of 2.37
	$\sin \frac{POA}{2} = \frac{AP/2}{10}$ or $AP^2 = 10^2 + 10^2 - 200 \cos POA$	M1	For a valid attempt to find AP – may be seen in (a) or (b) but AP must be stated in this part.
	AP=18.5	A1	Allow awrt 18.5
	Perimeter: major arc $PB + 20 + their AP$	B1	For plan, may be implied, but must have an attempt to calculate <i>AP</i>
	Total perimeter = 62.2	A1	Allow awrt 62.2
8(a)	$2x^2 + 2x - 2 = x^2 + 6x - 2$	M1	For obtaining an equation in one variable
	$x^{2} - 4x = 0$ x(x-4) = 0 x = 0, x = 4	M1	Dep for a correct attempt to obtain at least one solution
	(0, -1)	A1	nfww
	(4, 19)	A1	nfww
	Mid-point $(2, 9)$ with sufficient detail	B1	AG

Question	Answer	Marks	Guidance
8(b)	Either Gradient of perpendicular $= -\frac{1}{5}$	M1	
	$y-9 = -\frac{1}{5}(x-2)$	M1	Dep on previous M mark for perpendicular bisector using <i>their</i> mid- point and <i>their</i> perpendicular gradient
	$7-9 = -\frac{1}{5}(12-2)$ oe	A1	For checking by substitution, must see evidence.
	Or Alternative 1 Gradient of perpendicular $= -\frac{1}{5}$	(M1)	
	$y-7 = -\frac{1}{5}(x-12)$	(M1)	Dep on previous M mark for perpendicular bisector using (12, 7) and <i>their</i> perpendicular gradient
	$9 - 7 = -\frac{1}{5}(2 - 12)$ oe	(A1)	For checking by substitution, must see evidence
	Or Alternative 2 Gradient of perpendicular $= -\frac{1}{5}$	(M1)	
	Gradient of line joining <i>their</i> (2, 9) to (12, 7) = $-\frac{1}{5}$	(M1)	.5
	(2, 9) is a common point and gradients of perpendicular bisector and <i>l</i> are the same so <i>C</i> lies on <i>l</i> .	(A1)	.c ⁰
8(c)	(22, 5)	2	B1 for 22 B1 for 5
	(-18, 13)	2	B1 for -18 B1 for 13

Question	Answer	Marks	Guidance
9(a)	$e^{2y} = mx^2 + c$	B1	May be implied by later work
	Either 7.96 = 4m + c 3.76 = 2m + c	M1	
	m = 2.1 oe	A1	
	<i>c</i> =-0.44 oe	A1	
	$y = \frac{1}{2} \ln (2.1x^2 - 0.44)$ oe	A1	Do not isw
	Or gradient = 2.1 oe	(B1)	
	Use of either $7.96 = 4m + c$ or $3.76 = 2m + c$	(M1)	For use with <i>their m</i>
	<i>c</i> =-0.44 oe	(A1)	
	$y = \frac{1}{2} \ln (2.1x^2 - 0.44)$ oe	(A1)	Must be bracketed correctly
9(b)	$y = \frac{1}{2} \ln \left(their 2.1x^2 - their 0.44 \right) $ oe	M1	Must use the form $y = k \ln (px^2 \pm q)$ $p \neq 1$ and $q \neq 0$ or $e^{2y} = mx^2 + c$
	0.253	A1	.5
9(c)	<i>their</i> $2.1x^2 - their 0.44 > 0$ or $= 0$ or ≥ 0 soi	B1	0 [°]
	Correct attempt to obtain the critical value using <i>their</i> $2.1x^2 - 0.44 = 0$	M1	Must be from the form $y = k \ln (px^2 - q)$, $p \neq 1$ and $q > 0$
	$x > 0.458$ or $x > \sqrt{\frac{22}{105}}$ oe	A1	

Question	Answer	Marks	Guidance
10(a)	$\frac{dy}{dx} = (2x+3)^{\frac{1}{2}} + 5x(+c)$	B1	For $(2x+3)^{\frac{1}{2}}$, allow unsimplified
		M1	For $k(2x+3)^{\frac{1}{2}}+5x$
	10 = 3 + 15 + c	M1	Dep for use of 10 and $x=3$ in <i>their</i> $\frac{dy}{dx}$ to obtain <i>c</i>
	$\frac{dy}{dx} = (2x+3)^{\frac{1}{2}} + 5x - 8$ soi	A1	
	When $x = 11$, $\frac{dy}{dx} = 5 + 55 - 8$ oe = 52	A1	AG – need to see sufficient detail
10(b)	$f(x) = \frac{1}{3}(2x+3)^{\frac{3}{2}} + \frac{5x^2}{2}(-8x+d)$	B1	For $\frac{1}{3}(2x+3)^{\frac{3}{2}}$, must be $\int (2x+3)^{\frac{1}{2}} dx$
		M1	For $k(2x+3)^{\frac{3}{2}} + \frac{5x^2}{2}$
	$\frac{19}{2} = \frac{27}{3} + \frac{45}{2} - 24 + d$ d = 2	M1	For use of $y = \frac{19}{2}$ and $x = 3$ in <i>their</i> y
	$(f(x)=) \frac{1}{3}(2x+3)^{\frac{3}{2}} + \frac{5x^2}{2} - 8x + 2$	A1	Allow -8 if obtained from using $\frac{dy}{dx} = 52$
	5		in (a) rather than $\frac{dy}{dx} = 10$
11(a)	$\frac{dy}{dx} =$	rev ³	B1 for $\frac{1}{3} \times 2x \times (x^2 - 5)^{-\frac{2}{3}}$
	$\frac{(x+1)\left(\frac{1}{3} \times 2x \times (x^2-5)^{-\frac{2}{3}}\right) - (x^2-5)^{\frac{1}{3}}}{(x+1)^2}$		M1 for an attempt at a quotient or a correct productA1 for all other terms correct
	or $(x+1)^{-1}\left(\frac{1}{3} \times 2x \times (x^2 - 5)^{-\frac{2}{3}}\right)$		
	$+(x^2-5)^{\frac{1}{3}}(-(x+1)^{-2})$		
	$\frac{-x^2 + 2x + 15}{3(x+1)^2 (x^2 - 5)^{\frac{2}{3}}}$	3	Dep on first 3 marks A1 for $-x^2$ in a quadratic numerator A1 for $2x$ in a quadratic numerator A1 for 15 in a quadratic numerator

Question	Answer	Marks	Guidance
11(b)	$-x^2 + 2x + 15 = 0$	M1	For attempt to solve <i>their</i> $-x^2 + 2x + 15 = 0$ to obtain $x =$ Must be a quadratic equation.
	x = 5 only	A1	
11(c)	Either Find the gradient either side of the stationary point	B1	
	If gradient changes from +ve to -ve: max If gradient changes from -ve to +ve: min	B1	Dep on previous B1
	Or Alternative 1 Take the second derivative and substitute in the value of <i>x</i> obtained in (b)	(B1)	Allow alternative valid methods Allow a general method as this is not dependent on (a) or (b)
	If second derivative is $+$ ve, then a min If second derivative is $-$ ve, then a max	(B1)	Dep on previous B1
	Or Alternative 2 Consider a <i>y</i> -value to one side of the stationary point	(B1)	Allow alternative valid methods Allow a general method as this is not dependent on (a) or (b)
	If y value of stationary point is greater, then a max. If y value of stationary point is less, then a min.	(B1)	Dep on previous B1

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/11 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions). GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors. GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Guidance
1(a)		3	B1 for a well-drawn cubic graph in the correct orientation with both arms extending beyond <i>x</i> -axis B1 for $x = -1$, $x = 2$ and $x = \frac{2}{3}$ either on the graph or stated with a cubic graph B1 for $x = -20$ either on the graph or $x = -1$.
			B1 for $y = 20$ either on the graph or stated with a cubic graph
1(b)	$-1 < x < \frac{2}{3}$	B1	Must be found from a cubic graph
	x>2	B1	
2	$\left[\ln\left(x-1\right)+\frac{1}{x-1}\right]_{3}^{5}$	2	B1 for $\ln(x-1)$
			B1 for $+\frac{1}{x-1}$
	$\left(\ln 4 + \frac{1}{4}\right) - \left(\ln 2 + \frac{1}{2}\right)$	M1	Dep on at least one B mark, for correct use of limits
	$\ln 2 - \frac{1}{4}$	2	A1 for ln 2 A1 for $-\frac{1}{4}$ oe
3(a)	p(2): 8a-36+2b-6=0	B1	2
	p(3): 27a - 81 + 3b - 6 = 66	B1	0.
	Palph	M1	Dep on at least one of the previous B marks, for attempt to solve <i>their</i> equations and obtain a solution for both <i>a</i> and <i>b</i>
	$a = 6, \ b = -3$	A1	For both
3(b)	$(x-2)\big(6x^2+3x+3\big)$	2	M1 for attempt at quadratic factor either by observation to obtain $6x^2 + px + 3$ or by algebraic long division to obtain at least $6x^2 + 3x$ A1 all correct

Question	Answer	Marks	Guidance
3(c)	Discriminant of $q(x) = 3^2 - 4 \times 6 \times 3$ = -63 which is < 0	M1	For calculation of discriminant and confirmation that it is < 0
	q(x)=0 has no real solutions hence p(x)=0 has only one real solution	A1	For a correct conclusion from correct work.
4	$(a+x)^{3} = a^{3} + 3a^{2}x + 3ax^{2}[+x^{3}]$	B1	
	$\left(1-\frac{x}{3}\right)^5 = 1-\frac{5}{3}x + \frac{10}{9}x^2\dots$	2	M1 allow one sign error or one arithmetic slip
	$a^3 = 27, a = 3$	B1	
	Term in x: $3a^2 - \frac{5}{3}a^3 = b$	M1	For multiplying <i>their</i> terms, must have sum of 2 relevant products = b
	b=-18	A1	
	Term in x^2 : $3a - \frac{5}{3}(3a^2) + \frac{10}{9}a^3 = c$	M1	For multiplying <i>their</i> terms, must have sum of 3 relevant products = c
	<i>c</i> = -6	A1	
5(a)	f ≥ -4	2	M1 for a valid method to find the least value of $x^2 + 4x$ A1 for $f \ge -4$, $y \ge -4$ or $f(x) \ge -4$
5(b)	g>1	B1	Allow $y > 1$ or $g(x) > 1$
5(c)	$(1+e^{2x})^2 + 4(1+e^{2x})[=21]$	M1	
	$e^{4x} + 6e^{2x} - 16 = 0$ (e ^{2x} + 8)(e ^{2x} - 2) = 0	M1	Dep for quadratic in terms of e^{2x} and attempt to solve to obtain $e^{2x} = k$
	$e^{2x} = 2$ $x = \frac{1}{2} \ln k$	M1	Dep on both previous M marks, for attempt to solve $e^{2x} = k$
	$x = \ln \sqrt{2} \text{or} \ \ln 2^{\frac{1}{2}}$	A1	
6(a)(i)	720	B1	
6(a)(ii)	480	B1	

Question	Answer	Marks	Guidance
6(a)(iii)	[Starts with 6 or 8]: 192	B1	
	[Starts with 9]: 72	B1	
	Total = 264	B1	
	Alternative [Ends with 9]:48	(B1)	
	[Ends with 1,3 or 5]:216	(B1)	
	Total = 264	(B1)	
6(b)	$\frac{45n!}{(n-4)!4!} = \frac{(n+1)(n+1)!}{((n+1)-5)!5!}$	B1	
	$45 = \frac{(n+1)^2}{5}$ leading to $15 = n+1$ or $n^2 + 2n - 224 = 0$	M2	M1 for 15 M1 for $n + 1$ OR M1 for $n^2 + 2n - 224 = 0$ oe M1 for $(n-14)(n+16) = 0$
	n = 14 only	A1	
7(a)(i)	110 (m)	B1	
7(a)(ii)	veri s s s s s s s s t p r	B2	B1 for a line joining (0,5) and (10,5) B1 for a line joining (10,-2) and (40,-2)
7(b)(i)	$v = (2t+4)^{\frac{1}{2}}(+c)$	M1	For $k(2t+4)^{\frac{1}{2}}$
	9 = 4 + c	M1	Dep for attempt to find <i>c</i> using $v = 9$ and $t = 6$ in <i>their v</i>
	$(2t+4)^{\frac{1}{2}}+5$	A1	

Question	Answer	Marks	Guidance
7(b)(ii)	$s = \frac{1}{3}(2t+4)^{\frac{3}{2}}$ (+5t+d)	M1	For $k(2t+4)^{\frac{3}{2}}$
	$\frac{1}{3} = \frac{64}{3} + 30 + d$	M1	Dep for attempt to find <i>d</i> using $s = \frac{1}{3}$ and $t = 6$ in <i>their s</i>
	$\frac{1}{3}(2t+4)^{\frac{3}{2}}+5t-51$	A1	
8(a)	$x = \frac{\sqrt{3} + 1}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}}$ leading to $x = \frac{5 + 3\sqrt{3}}{1}$	M1	For attempt to rationalise and simplify showing all working
	$x = 5 + 3\sqrt{3}$	A1	
	Either: Using $x = 5 + 3\sqrt{3}$ $y = (2 - \sqrt{3})(52 + 30\sqrt{3}) + 5 + 3\sqrt{3} - 1$ $= 14 + 8\sqrt{3} + 4 + 3\sqrt{3}$ Or: Using $x = \frac{\sqrt{3} + 1}{2 - \sqrt{3}}$ $y = (2 - \sqrt{3})\frac{(\sqrt{3} + 1)^2}{(2 - \sqrt{3})^2} + \frac{\sqrt{3} + 1}{2 - \sqrt{3}} - 1$ $= \frac{4 + 2\sqrt{3} + \sqrt{3} + 1 - 2 + \sqrt{3}}{2 - \sqrt{3}}$ $= \frac{(4\sqrt{3} + 3)}{2 - \sqrt{3}} \times \frac{(2 + \sqrt{3})}{(2 + \sqrt{3})}$ $= \frac{8\sqrt{3} + 6 + 12 + 3\sqrt{3}}{1}$	MI	For complete method, showing all steps. Allow one slip in arithmetic
	$11\sqrt{3} + 18$	2	A1 for 18 A1 for $11\sqrt{3}$

Question	Answer	Marks	Guidance
8(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\left(2 - \sqrt{3}\right) + 1$	M1	For attempt at differentiation to obtain form of $\frac{dy}{dx} = kx + 1$
	$0 = 2x(2 - \sqrt{3}) + 1$ $x = -\frac{1}{2(2 - \sqrt{3})} \times \frac{(2 + \sqrt{3})}{(2 + \sqrt{3})}$ leading to $x = -\frac{1}{2} \frac{(2 + \sqrt{3})}{1}$	M1	Dep on previous M for equating to zero, rationalisation and attempt to simplify
	$x = -1 - \frac{\sqrt{3}}{2}$	A1	
9(a)(i)	(3y+2)(2x+1)	B1	
9(a)(ii)	$(3\cos\theta + 2)(2\sin\theta + 1) = 0$ $\cos\theta = -\frac{2}{3}, \sin\theta = -\frac{1}{2}$	M1	For relating to part (i) and a correct attempt to obtain $\cos \theta =$ or $\sin \theta =$
	$\theta = 131.8^{\circ}, 228.2^{\circ}$ $\theta = 210^{\circ}, 330^{\circ}$	3	M1 for solving one of the equations to obtain one correct solution A1 for any two correct solutions A1 for a further two correct solutions with no extra solutions within the range
9(b)	$\cos\left(2\phi + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$ oe	B1	0.7
	$\phi = -\frac{5\pi}{24}, -\frac{\pi}{24}, \frac{19\pi}{24}, \frac{23\pi}{24}$	4	 M1 for solving to obtain one correct positive solution M1 for solving to obtain one correct negative solution A1 for any two correct solutions A1 for a further two correct solutions with no extra solutions within the range
10(a)	$\sin\frac{AOB}{2} = \frac{7.5}{10}$	M1	For a valid method
	<i>AOB</i> = 1.696 = 1.70 to 2 dp	A1	Must see greater accuracy to justify given answer

Question	Answer	Marks	Guidance
10(b)	$AC^{2} = 10^{2} + 25^{2} - \left(2 \times 10 \times 25 \cos\left(\frac{AOB}{2}\right)\right)$	M1	For a complete and valid method to find <i>AC</i>
	<i>AC</i> = awrt 19.9	A1	
	Major arc AB = awrt 45.9 or awrt 45.8	B1	
	Perimeter = awrt 85.5 or awrt 85.6	A1	
10(c)	Area of major sector $AOB = \frac{1}{2} \times 10^2 (2\pi - AOB)$	M1	
	awrt 229	A1	
	Area of kite $OACB = \frac{1}{2} \times 15 \times 25$	B1	Allow working with 2 separate triangles
	Area of <i>their</i> major sector plus area of <i>their</i> kite	M1	
	Total area = awrt 417	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/12 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Guidance
1	$p^{0}q^{-5}r^{-\frac{2}{3}}$	3	B1 for $a = 0$ B1 for $b = -5$ B1 for $c = -\frac{2}{3}$
2(a)		2	B1 for symmetrical V shape in the correct quadrant, touching the <i>x</i> -axis. Must have straight lines. B1 for $x = \frac{4}{3}$ and $y = 4$ only, either seen or stated on a modulus graph.
2(b)	$x \le -1, \ x \ge \frac{11}{3} \text{ or } 3.67 \text{ or better}$	3 R	B1 for -1 from a correct method. B1 for $\frac{11}{3}$ or 3.67 or better, from a correct method.
3(a)	$\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$	B1	May be implied
	$\overrightarrow{OP} = \mathbf{a} + \frac{3}{5}\overrightarrow{AC}$ or $\mathbf{c} - \frac{2}{5}\overrightarrow{AC}$	M1	Maybe implied, for correct use of ratio $\overrightarrow{OP} = \mathbf{a} + \frac{3}{5} (their \overrightarrow{AC})$ or $\mathbf{c} - \frac{2}{5} (their \overrightarrow{AC})$
	$\overrightarrow{OP} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{c}$	A1	Allow unsimplified
3(b)	$\overrightarrow{OP} = \frac{2}{5}\mathbf{b}$ oe	B1	0
	$\frac{2}{5}\mathbf{b} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{c}$ $2\mathbf{b} = 2\mathbf{a} + 3\mathbf{c}$	B1	Dep on previous B mark for equating vectors and rearrangement to obtain AG
	Alternative $\mathbf{b} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{c} + \frac{3}{5}\mathbf{b}$	(B1)	Need a clear indication of the method used, in the form of a correct unsimplified statement.
	$2\mathbf{b} = 2\mathbf{a} + 3\mathbf{c}$	(B1)	Dep for simplification to obtain AG

Question	Answer	Marks	Guidance
4	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{1}{2}(3x+2)^{\frac{2}{3}} (+c)$	M1	For $k_1(3x+2)^{\frac{2}{3}}$ where k_1 a constant.
	4 = 2 + c	M1	Dep for use of 4 and $x = 2$ in <i>their</i> $\frac{dy}{dx}$ to obtain <i>c</i>
	$\left(\frac{dy}{dx}\right) = \frac{1}{2}(3x+2)^{\frac{2}{3}}+2$	A1	May be implied by subsequent integration or by $c = 2$
	$y = \frac{1}{10} (3x+2)^{\frac{5}{3}} (+2x+d)$	M1	For $k_2(3x+2)^{\frac{5}{3}}$ where k_2 is a constant.
	$6.2 = \frac{1}{10}(32) + 4 + d$	M1	Dep on previous M1 for use of $x = 2$ and $y = 6.2$ in <i>their</i> y
	$y = \frac{1}{10} (3x+2)^{\frac{5}{3}} + 2x - 1$	A1	Must be an equation
5(a)	<i>p</i> = 16	2	B1 for $\log_a \frac{5p}{4} = \log_a 20$ oe B1 for 16, nfww
5(b)	$(3(3^{x})-1)(3^{x}+3)=0$	M1	For recognition of a correct quadratic in 3^x and attempt to factorise or use quadratic formula
	$3^{x} = \frac{1}{3}$ $x = -1$	2	M1 dep for a correct attempt to solve $3^x = k, k > 0$ A1 for one solution only, must be from a correct solution.

Question	Answer	Marks	Guidance
5(c)	$\log_{y} 2 = \frac{1}{\log_{2} y}$ or $\log_{2} y = \frac{1}{\log_{y} 2}$ or $\log_{y} 2 = \frac{\log_{a} 2}{\log_{a} y}$ and $\log_{2} y = \frac{\log_{a} y}{\log_{a} 2}$	B1	May be implied
	$4(\log_{y} 2)^{2} - 4(\log_{y} 2) + 1 = 0$ $(2\log_{y} 2 - 1)^{2} = 0, \log_{y} 2 = \frac{1}{2}$ or $(\log_{2} y)^{2} - 4(\log_{2} y) + 4 = 0$ $(\log_{2} y - 2)^{2} = 0, \log_{2} y = 2$ or $(\log_{a} y)^{2} - 4(\log_{a} 2)(\log_{a} 4)\log_{a} y$ $+4(\log_{a} 2)^{2} = 0$ $(\log_{a} y - 2\log_{a} 2)^{2} = 0$ $\log_{a} y = 2\log_{a} 2$	M	For obtaining a 3 term quadratic equation in either $\log_y 2$ or $\log_2 y$ and solving to obtain $\log_y 2 = k$ or $\log_2 y = k$, may be implied or equivalent using an alternative base.
	<i>y</i> = 4	A1	nfww
6(a)	$\frac{dy}{dx} = 2(3+\sqrt{5})x - 8\sqrt{5}$ or $x = \frac{8\sqrt{5}}{2(3+\sqrt{5})}$	M1	Either For differentiation must have one correct term. or for use of $b^2 - 4ac = 0'$, so $x = -\frac{b}{2a}$ at the stationary point.
	$x = \frac{4\sqrt{5}}{3+\sqrt{5}} \times \frac{\left(3-\sqrt{5}\right)}{\left(3-\sqrt{5}\right)}$ oe leading to $\frac{12\sqrt{5}-20}{4}$ oe, this is the minimum acceptable working for this method.	M1	Dep for equating <i>their</i> $\frac{dy}{dx}$ to zero with attempt to solve and rationalisation using a two term factor, or rationalisation of $x = -\frac{b}{2a}$, using a two term factor with sufficient detail to imply no use of a calculator. Allow multiple equivalents. Allow one numerical slip or sign error.
	$x = -5 + 3\sqrt{5}$	2	A1 for -5 A1 for $3\sqrt{5}$

0606/12

Question	Answer	Marks	Guidance
6(b)	$y = (3 + \sqrt{5})(3\sqrt{5} - 5)^{2}$ -8\sqrt{5}(3\sqrt{5} - 5) + 60 = (3 + \sqrt{5})(45 + 25 - 30\sqrt{5}) -120 + 40\sqrt{5} + 60 = 210 + 70\sqrt{5} - 90\sqrt{5} - 150 -120 + 40\sqrt{5} + 60	M1	For substitution of <i>their x</i> and simplification with sufficient detail to imply no use of a calculator. Allow one numerical slip or sign error in the expansion of $(3+\sqrt{5})(3\sqrt{5}-5)^2$ or one sign error in the other terms.
	$=20\sqrt{5}$	2	A1 for all non surd terms = 0 A1 for $20\sqrt{5}$
7(a)(i)	20160	B1	
7(a)(ii)	7200	2	B1 for ${}^{6}P_{4}$ or $6 \times 5 \times 4 \times 3 (= 360)$ for 'inner' characters or ${}^{5}P_{2}$ or $4 \times 5 (= 20)$ for 'outer' characters Must be part of a product
7(a)(iii)	360	2	B1 for ³ P ₃ or 3! or 6 for arrangements of symbols or ⁵ P ₃ or $5 \times 4 \times 3$ (= 60) for the digits Must be part of a product
7(b)	$\frac{n!}{(n-5)!5!} = \frac{6(n-1)!}{((n-1)-4)!4!}$	B1	May be implied by simplification e.g. $\frac{n!}{5!} = 6 \frac{(n-1)!}{4!}$ or $\frac{n(n-1)(n-2)(n-3)(n-4)}{5!}$ $= \frac{6(n-1)(n-2)(n-3)(n-4)}{4!}$
	Simplification of either the numerical factorials or the algebraic factorials	M1	
	<i>n</i> = 30	A1	

Question	Answer	Marks	Guidance
8(a)	$\lg y = b \lg x + \lg A$	B1	May be implied by subsequent work
	$4.37 = 5.36b + \lg A$ 0.57 = 0.61b + lg A	M1	For at least one correct equation
	<i>b</i> = 0.8	A1	
	$lg A = k \qquad (0.082)$ $A = 10^{k}$	M1	Dep for substitution to obtain $\lg A = k$ and hence <i>A</i>
	A=1.21	A1	
	Alternative 1	(B1)	
	$\lg y = b \lg x + \lg A$		May be implied by subsequent work
	Gradient = $\frac{4.37 - 0.57}{5.36 - 0.61}$	(M1)	
	<i>b</i> = 0.8	(A1)	
	$lg A = k \qquad (0.082)$ $A = 10^k$	(M1)	Dep for substitution into a correct equation to obtain $\lg A = k$ and hence A
	A=1.21	(A1)	
	Alternative 2 $10^{4.37} = A \times 10^{5.36b}$ or $10^{0.57} = A \times 10^{0.61b}$	(B1)	
	3.8=4.75b	(M1)	For eliminating A correctly Must have B1.
	<i>b</i> = 0.8	(A1)	
	$A = 10^{4.37 - (5.36 \times (theirb))}$ oe	(M1)	For a correct attempt to find <i>A</i> . Must have B1
	<i>A</i> = 1.21	(A1)	
8(b)	$y = 1.21(3)^{0.8}$ or $\lg y = 0.8 \lg 3 + 0.082$	B1	FT for substitution into <i>their</i> equation
	y = awrt 2.9	B1	
8(c)	$3 = 1.21x^{0.8}$ or $\lg 3 = 0.8 \lg x + 0.082$	B1	FT for substitution into <i>their</i> equation
	x = awrt 3.1	B1	

Question	Answer	Marks	Guidance
9(a)	<i>d</i> =12	B1	
	$\frac{n}{2}(-8+(n-1)12) > 2000$ $3n^2 - 5n - 1000 > 0$	M1	For use of sum formula to obtain a three term quadratic inequality or equation
	$n = \frac{5 \pm \sqrt{25 + 12000}}{6}$ n = 19.1	M1	Dep for attempt at critical value(s) using <i>their</i> quadratic, may be using a calculator, so may be implied by a correct answer of 20.
	n = 20	A1	
9(b)(i)	r=3	2	M1 For $ar^6 = 27$ and $ar^8 = 243$ with an attempt to eliminate <i>a</i> to obtain r^2 . Allow other valid methods.
9(b)(ii)	3 ²⁶	2	B1 for $a = \frac{1}{27}$ or 3^{-3} nfww
9(c)	Common ratio or $r = \sin \theta$	B1	May be implied by e.g. $\frac{1}{1-\sin\theta}$ or $\frac{1-\sin^{n}\theta}{1-\sin\theta}$
	$-1 < \sin \theta < 1$ or $ \sin \theta < 1$ or -1 < r < 1 or $ r < 1with no incorrect statements seen.$	B1	Dep on previous B1
10(a)	$\frac{1}{\sin\alpha} + \frac{1}{\cos\alpha} (=0)$	Bl	For dealing correctly with $\csc^2 \alpha$ and $\sec^2 \alpha$ to obtain an expression in $\sin \alpha$ and $\cos \alpha$ only
	$\tan \alpha = -1$ or $\sin \alpha = -\cos \alpha$	B1	For an equation in $\tan \alpha$, may be implied by a correct solution.
	$\alpha = -\frac{\pi}{4} \text{ or } -0.785$ $\alpha = \frac{3\pi}{4} \text{ or } 2.36$	2	B1 for one correct solution B1 for a second correct solution and no extra solutions in the range.

Question	Answer	Marks	Guidance
10(b)(i)	$\frac{\cos^2\theta + 1 - 2\sin\theta + \sin^2\theta}{\cos\theta(1 - \sin\theta)}$	M1	For dealing with the fractions correctly and expansion of $(1 - \sin \theta)^2$
	$\frac{1+1-2\sin\theta}{\cos\theta(1-\sin\theta)} \text{ or better}$	M1	Dep for use of identity, may be implied by $\frac{2(1-\sin\theta)}{\cos\theta(1-\sin\theta)}$
	$\frac{2(1-\sin\theta)}{\cos\theta(1-\sin\theta)}$	M1	Dep on previous M mark for simplification
	$\frac{2}{\cos\theta} = 2\sec\theta$	A1	Need to see this detail for A1 Need to have had θ in every trigonometric ratio.
	Alternative 1	(M1)	
	$\left(\frac{\cos\theta}{1-\sin\theta}\times\frac{1+\sin\theta}{1+\sin\theta}\right)+\frac{1-\sin\theta}{\cos\theta}$		
	$\frac{\cos\theta(1+\sin\theta)}{\cos^2\theta} + \frac{1-\sin\theta}{\cos\theta}$	(M1)	Dep for use of identity
	$\frac{1+\sin\theta}{\cos\theta} + \frac{1-\sin\theta}{\cos\theta}$	(M1)	Dep on previous M mark for simplification
	$\frac{2}{\cos\theta} = 2\sec\theta$	(A1)	Need to see this detail for A1 Need to have had θ in every trigonometric ratio.
	Alternative 2	(M1)	0'
	Alternative 2 $\frac{(1-\sin^2\theta) + (1-\sin\theta)^2}{\cos\theta(1-\sin\theta)}$	ep.	For dealing with the fractions and using $\cos^2 \theta = 1 - \sin^2 \theta$.
	$\frac{(1-\sin\theta)(1+\sin\theta)+(1-\sin\theta)^2}{\cos\theta(1-\sin\theta)}$	(M1)	Dep for factorising $1 - \sin^2 \theta$
	$\frac{1+\sin\theta+1-\sin\theta}{\cos\theta}$	(M1)	Dep for simplification
	$\frac{2}{\cos\theta} = 2\sec\theta$	(A1)	Need to see this detail for A1 Need to have had θ in every trigonometric ratio.

0606/12

10(b)(ii) $\cos 3\phi = \frac{1}{2}$ B1 $\phi = 20^{\circ}, 100^{\circ}, 140^{\circ}$ 3M1 for one correct solution of their $\cos 3\phi = k$ using a correct order of operations A1 for 2 correct solutions with no extra solutions in the range11 $\frac{dy}{dx} = \frac{(2x-3)\frac{2x}{x^2+2} - 2\ln(x^2+2)}{(2x-3)^2}$ 3B1 for $\frac{2x}{x^2+2}$ M1 for differentiation of a quotient11 $\frac{dy}{dx} = \frac{(2x-3)\frac{2x}{x^2+2} - 2\ln(x^2+2)}{(2x-3)^2}$ M1For $-\frac{1}{their}\frac{dy}{dx}$ 11 $\frac{dy}{dx} = \frac{(2x-3)\frac{2x}{x^2+2} - 2\ln(x^2+2)}{(2x-3)^2}$ M1For $-\frac{1}{their}\frac{dy}{dx}$ 12 $\frac{dy}{dx} = \frac{(2x-3)\frac{2x}{x^2+2} - 2\ln(x^2+2)}{(2x-3)^2}$ M1For $-\frac{1}{their}\frac{dy}{dx}$ 13 $\frac{B1}{y} - \ln 6 - \frac{1}{their}\frac{dy}{dx}$ M1Dep for equation of normal using $-\frac{1}{their}\frac{dy}{dx}$ 14 $\frac{Wen x = 0, y = awrt 1.11}$ A1Must be evaluated.	Question	Answer	Marks	Guidance
$\frac{dy}{dx} = \frac{(2x-3)\frac{2x}{x^2+2} - 2\ln(x^2+2)}{(2x-3)^2}$ $\frac{dy}{dx} = \frac{(2x-3)\frac{2x}{x^2+2} - 2\ln(x^2+2)}{(2x-3)^2}$ $\frac{dy}{dx} = \frac{(2x-3)\frac{2x}{x^2+2} - 2\ln(x^2+2)}{(2x-3)^2}$ $\frac{dy}{dx} = \frac{4}{6} - 2\ln 6, -2.92$	10(b)(ii)	$\cos 3\phi = \frac{1}{2}$	B1	
$\frac{dy}{dx} = \frac{(2x-3)\frac{x^2+2}{x^2+2} - 2\ln(x^2+2)}{(2x-3)^2}$ B1 for $\frac{dx}{x^2+2}$ M1 for differentiation of a quotient When $x = 2$, $\frac{dy}{dx} = \frac{4}{6} - 2\ln 6$, -2.92 Gradient of normal = 0.3428 When $x = 2$, $y = \ln 6$ or $1.79(176)$ B1 Equation of normal: $y - \ln 6 = -\frac{1}{their} \frac{dy}{dx}(x-2)$ or $\ln 6 = -\frac{1}{their} \frac{dy}{dx} \times (2) + c$ M1 Dep for equation of normal using $-\frac{1}{their} \frac{dy}{dx}$ M1 Dep for equation of normal using $-\frac{1}{their} \frac{dy}{dx}$ or $\ln 6 = -\frac{1}{their} \frac{dy}{dx} \times (2) + c$ M1 M2 Dep for equation of normal using $-\frac{1}{their} \frac{dy}{dx}$ M2 Dep for equation of normal using $-\frac{1}{their} \frac{dy}{dx}$ M2 Dep for equation of normal using $-\frac{1}{their} \frac{dy}{dx}$ Dep for equation of normal using $-\frac{1}{their} \frac{dy}{dx}$ $-\frac{1}{their} \frac{dy}{dx}$		$\phi = 20^{\circ}, 100^{\circ}, 140^{\circ}$	3	$\cos 3\phi = k$ using a correct order of operations A1 for 2 correct solutions A1 for a third correct solution with no
When $x = 2$, $\frac{y}{dx} = \frac{1}{6} - 2 \ln 6$, -2.92 Gradient of normal = 0.3428 When $x = 2$, $y = \ln 6$ or $1.79(176)$ Equation of normal: $y - \ln 6 = -\frac{1}{their} \frac{dy}{dx}(x-2)$ or $\ln 6 = -\frac{1}{their} \frac{dy}{dx} \times (2) + c$ For $-\frac{1}{their} \frac{dy}{dx}$ B1 Dep for equation of normal using $-\frac{1}{their} \frac{dy}{dx}$ and their y with $x = 2$.	11	$\frac{dy}{dx} = \frac{(2x-3)\frac{2x}{x^2+2} - 2\ln(x^2+2)}{(2x-3)^2}$	3	$\lambda + \Sigma$
Equation of normal: $y - \ln 6 = -\frac{1}{their} \frac{dy}{dx} (x-2)$ or $\ln 6 = -\frac{1}{their} \frac{dy}{dx} \times (2) + c$ $M1$ Dep for equation of normal using $-\frac{1}{their} \frac{dy}{dx}$ and their y with $x = 2$.			M1	For $-\frac{1}{their} \frac{dy}{dx}$
$y - \ln 6 = -\frac{1}{their} \frac{dy}{dx} (x - 2)$ or $\ln 6 = -\frac{1}{their} \frac{dy}{dx} \times (2) + c$ $-\frac{1}{their} \frac{dy}{dx}$ and their y with $x = 2$.		When $x = 2$, $y = \ln 6$ or $1.79(176)$	B1	
or $\ln 6 = -\frac{1}{their} \frac{dy}{dx} \times (2) + c$			M1	Dep for equation of normal using
		$y - \ln 6 = -\frac{1}{their} \frac{dy}{dx} (x - 2)$		$-\frac{1}{their} \frac{dy}{dx}$ and their y with $x = 2$.
When $x = 0$, $y = awrt 1.11$ A1Must be evaluated.		or $\ln 6 = -\frac{1}{their} \frac{dy}{dx} \times (2) + c$		
		When $x = 0$, $y = awrt 1.11$	A1	Must be evaluated.

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/13 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

 method. However, if a calculation is required then no marks will be awarded for a scale drawing. 2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Igno superfluous zeros, provided that the degree of accuracy is not affected. 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points. 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw). 5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of 	Ma	ths-Specific Marking Principles
 superfluous zeros, provided that the degree of accuracy is not affected. Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw). Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. Recovery within working is allowed, e.g. a notation error in the working where the following line of 	1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
 used as decimal points. 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw). 5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of 	2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
 following a correct form of answer is ignored (isw). 5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of 	3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.6Recovery within working is allowed, e.g. a notation error in the working where the following line of	4	
	5	provided that number does not alter the difficulty or the method required, award all marks earned and
working makes the candidate's intent clear.	6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot SC Special Case seen or implied soi

Question	Answer	Marks	Guidance
1	$\left(4k\right)^2 - 4k\left(3k+1\right)$	M1	For use of the discriminant to obtain a two term quadratic expression.
	$4k^2 - 4k = 0$	M1	Dep to find critical values, allow if only one is found
	$k = 0, \ k = 1$	A1	For both critical values
	k < 0 k > 1	A1	
2(a)	$x^2 \left(3 \mathrm{e}^{3x}\right) + 2x \mathrm{e}^{3x}$	3	M1 for differentiation of a product A1 for $x^2(3e^{3x})$
			A1 for $+2xe^{3x}$
2(b)(i)	$2x(3x^2+4)^{-\frac{2}{3}}$	2	M1 for $kx(3x^2+4)^{-\frac{2}{3}}$
2(b)(ii)	$\left[\frac{1}{2}(3x^2+4)^{\frac{1}{3}}\right]_{0}^{2}$	M1	For $k(3x^2+4)^{\frac{1}{3}}$
	$\left[\frac{1}{2}\left(16^{\frac{1}{3}}\right) - \frac{1}{2}\left(4^{\frac{1}{3}}\right)\right]$	M1	Dep for correct substitution of limits into <i>their</i> integral
	0.466	A1	
3	$(\cot^2 \theta + 1) + 2\cot^2 \theta = 2\cot\theta + 9$	B1	For use of correct identity
	$(3\cot\theta + 4)(\cot\theta - 2) = 0$ $\cot\theta = -\frac{4}{3}, \cot\theta = 2$	M1	For attempt to solve <i>their</i> quadratic in $\cot \theta$ to obtain $\cot \theta = k$
	$\tan\theta = -\frac{3}{4}, \tan\theta = \frac{1}{2}$	M1	For dealing with $\cot \theta = k$ correctly to get $\tan \theta = \frac{1}{k}$
	$\theta = -0.644$	A1	
	$\theta = 0.464$	A1	
4(a)	$64 - 48x^2 + 15x^4$	3	B1 for 64 B1 for $-48x^2$ B1 for $15x^4$

0606/13

Question	Answer	Marks	Guidance
4(b)	$9 - \frac{6}{x^2} + \frac{1}{x^4}$	B 1	
	$(their 64 \times 9) + (their - 48 \times -6) + (their 15)$	M1	For considering terms independent of x , must have 3 terms
	879	A1	
5	$e^y = mx^2 + c$	B1	May be implied by later work
	10 = 4.74m + c 5 = 2.24m + c	M1	For at least one correct equation
	5 = 2.5m	M1	Dep for attempt to solve for <i>m</i>
	m = 2, c = 0.52	A1	For both
	$y = \ln\left(2x^2 + 0.52\right)$	A1	
	Alternative	(B1)	
	$e^y = mx^2 + c$		May be implied by later work
	Gradient = $m = \frac{10-5}{4.74-2.24}$	(M1)	
	10 = 4.74(their m) + c or 5 = 2.24(their m) + c	(M1)	
	m=2, c=0.52	(A1)	For both
	$y = \ln\left(2x^2 + 0.52\right)$	(A1)	CO
6(a)	$\frac{\pi}{3}$	B1	
6(b)	$\frac{\pi a}{3} + 4a$	2	B2 FT for $\left(their\frac{\pi}{3} \times a\right) + 4a$
			or B1 FT for <i>their</i> $\frac{\pi}{3} \times a$

Question	Answer	Marks	Guidance
6(c)	$\frac{1}{2}(2a)^2\sin\frac{\pi}{3}$	B1	FT their $\frac{\pi}{3}$
	$\frac{1}{2}a^2\frac{\pi}{3}$	B1	FT their $\frac{\pi}{3}$
	$\sqrt{3}a^2 - \frac{\pi a^2}{6}$	B1	FT their $\frac{\pi}{3}$
7(a)(i)	⁸ C ₄	M1	For realisation that there are 4 places left and 8 people available to fill them
	70	A1	
7(a)(ii)	1 teacher on committee: 5 ways	B1	
	¹² C ₈ -5	-M1	
	490	A1	
	Alternative	(2)	
	2 teachers: 70 3 teachers: 210 4 teachers: 175 5 teachers: 35		B1 for 2 correct cases
	490	(B1)	
7(b)	$\frac{n!}{(n-5)!} = 6\frac{(n-1)!}{(n-1-4)!}$	B1	5
	$\frac{n}{(n-5)!} = \frac{6}{(n-5)!}$	M1	For simplification of either $n!$ and $(n-1)!$ or 'cancelling out' of the terms of $(n-5)!$
	<i>n</i> = 6	A1	nfww
8(a)	<i>b</i> = 2	B1	
	At $(0, 3)$: $3 = a + c$	B1	
	At $\left(\frac{5\pi}{6}, 0\right)$: $0 = a\cos\frac{5\pi}{3} + c$ $0 = \frac{a}{2} + c$	M1	For use of <i>their b</i> and $\left(\frac{5\pi}{6}, 0\right)$
	$0 = \frac{a}{2} + c$		
	a = 6 $c = -3$	A1	For both

Question	Answer	Marks	Guidance
8(b)	$\left(rac{\pi}{6},0 ight)$	B1	Allow for $x = \frac{\pi}{6}$
8(c)	$\left(\frac{\pi}{2},-9\right)$	2	B1 for $\frac{\pi}{2}$ B1 for -9
9(a)	$y = x^3 - 2x^2 - 4x + 8$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x - 4$	M1	For attempt to differentiate, allow one slip and for equating <i>their</i> $\frac{dy}{dx}$ to zero and
	(3x+2)(x-2)=0		attempt to solve to obtain $x = k$
	$\left(-\frac{2}{3},\frac{256}{27}\right)$	Al	
	(2,0)	A1	
9(b)		4	B1 for curve with maximum in the second quadrant B1 for $y = 8$ either on the curve or stated B1 for $x = \pm 2$ either on the curve or stated B1 for a cusp at $x = -2$ and a min at $x = 2$
9(c)	$0 < k < \frac{256}{27}$	2	FT on their $\frac{256}{27}$ B1 for either $0 < k$ or $k < \frac{256}{27}$
10(a)	$\overrightarrow{CD} = \frac{3}{4}\mathbf{a}$	B1	
	$\overrightarrow{OD} = \mathbf{c} + \frac{3}{4}\mathbf{a}$	B1	
	$\overrightarrow{OE} = h\left(\mathbf{c} + \frac{3}{4}\mathbf{a}\right)$	B1	
	$\overrightarrow{DE} = h\left(\mathbf{c} + \frac{3}{4}\mathbf{a}\right) - \left(\mathbf{c} + \frac{3}{4}\mathbf{a}\right)$ oe cao	B1	
10(b)	$\overrightarrow{DE} = \frac{1}{4}\mathbf{a} + k\mathbf{c}$	B1	

0606/13

Question	Answer	Marks	Guidance
10(c)	$\mathbf{c}(h-1) + \mathbf{a}\left(\frac{3h}{4} + \frac{3}{4}\right) = \frac{1}{4}\mathbf{a} + k\mathbf{c}$	M1	For equating <i>their</i> answer to (a) to <i>their</i> answer to (b)
	$\mathbf{c}(h-1) + \mathbf{a}\left(\frac{3h}{4} + \frac{3}{4}\right) = \frac{1}{4}\mathbf{a} + k\mathbf{c}$ $h-1 = k$	M1	For attempt to equate like vectors once.
	$h = \frac{4}{3}$	A1	
	$k = \frac{1}{3}$	A1	
11(a)	x + 2y = 10 $x + y = 2$	M1	For attempt to solve simultaneously
	(-6, 8)	A1	
	x + 2y = 10 $x + y = -2$	M1	For attempt to solve simultaneously
	(-14, 12)	A1	
	Alternative	(M1)	
	$x^{2} + x(10 - x) + \frac{(10 - x)^{2}}{4} = 4$ or $(10 - 2y)^{2} + 2y(10 - 2y) + y^{2} = 4$		For attempt to eliminate one of the variables using $(x + y)^2 = 4$
	$x^{2} + 20x + 84 = 0$ or $y^{2} - 20y + 96 = 0$	(M1)	Dep for attempt to obtain a 3 term quadratic equation = 0 and solve to obtain at least one solution, allow 1 arithmetic error
	(-14, 12)	(A1)	
	(-6, 8)	(A1)	
	Mid-point of <i>AB</i> : (-10, 10)	M1	For attempt to obtain the mid-point using <i>their</i> coordinates for <i>A</i> and <i>B</i> .
	Gradient of line perpendicular to $AB = 2$	M1	For attempt to obtain the perpendicular gradient using <i>their</i> coordinates for <i>A</i> and <i>B</i> .
	$y-their \ 10=their \ 2(x-their(-10))$	M1	
	20-10 = 2(-5+10) oe	A1	For verification

Question	Answer	Marks	Guidance
11(b)		FT on t <i>heir</i> midpoint B1 for each coordinate	
	(-20, -10)	2	FT on t <i>heir</i> midpoint B1 for each coordinate

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/12 March 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

0606/12

Question	Answer	Marks	Guidance
1	$(3\ln 5x - 1)(\ln 5x + 1) = 0$ $\ln 5x = \frac{1}{3}, \ \ln 5x = -1$	M1	For recognition of a quadratic in $\ln 5x$ and attempt to solve to obtain $\ln 5x = k$
	$x = \frac{1}{5}e^{\frac{1}{3}}, \frac{\sqrt[3]{e}}{5}, e^{\frac{1}{3}-\ln 5} \text{ oe}$ $x = \frac{1}{5e}, \frac{e^{-1}}{5}, e^{-1-\ln 5} \text{ oe}$	3	Dep M1 for dealing with <i>their</i> ln 5x = k correctly once A1 for $x = \frac{1}{5}e^{\frac{1}{3}}$ oe isw A1 for $x = \frac{1}{5e}$ oe isw
2	<i>a</i> = 3	B1	
	$b = \frac{1}{2}$	B1	
	<i>c</i> = 4	B1	
3(a)	Gradient of line perp to $AB = -\frac{3}{4}$	B1	
	Mid-point of AB $(-1, 10)$ soi	B1	
	$y - 10 = -\frac{3}{4}(x+1)$ soi	M1	For attempt at straight line using <i>their</i> perp gradient and <i>their</i> mid-point
	$a-10 = -\frac{3}{4}(7+1)$ a = 4	A1	Allow $y = 4$
3(b)	<i>a</i> =4 (-9, 16)	30.2	B1 for $x = -9$ B1 FT on <i>their a</i> , dep on M1 from (a) for $y = 16$ or $20 - their a$ B1 for $-9, 16$
4(a)	$2\left(x+\frac{5}{4}\right)^2 - \frac{49}{8}$	3	B1 for $b = \left(x + \frac{5}{4}\right)^2$ or $(x + 1.25)^2$ B1 for $c = -\frac{49}{8}$ or -6.125

Question	Answer	Marks	Guidance
4(b)	$\left(-\frac{5}{4}, -\frac{49}{8}\right)$ oe	2	B1 for $-\frac{5}{4}$ as part of a set of coordinates or $x = -\frac{5}{4}$, FT on $-$ their b B1 for $-\frac{49}{8}$ as part of a set of coordinates or $y = -\frac{49}{8}$ FT on their c Need to be using their answer to (a) and not using differentiation as 'Hence'. B1 for $-\frac{5}{4}, -\frac{49}{8}$
4(c)	P C C C C C C C C C C C C C C C C C C C	3	B1 for correct shape, with maximum in the second quadrant and cusps on the x-axes and reasonable curvature for x < -3 and $x > 0.5$. B1 for $(-3, 0)$ and $(0.5, 0)$ either seen on the graph or stated, must have attempted a correct shape B1 for $(0, 3)$ either seen on the graph or stated, must have attempted a correct shape
4(d)	$\frac{49}{8}$ oe	B1	FT on <i>their</i> $ c $ from (a) Allow $\frac{49}{8}$ from other methods
5(a)	$\begin{pmatrix} -4\\ 3 \end{pmatrix} t$ or $\begin{pmatrix} 0\\ 0 \end{pmatrix} + \begin{pmatrix} -4\\ 3 \end{pmatrix} t$ oe	B1	
5(b)	$ \binom{12}{6} + \binom{-5}{8}t \text{ or } \binom{12-5t}{6+8t} $	B1	

Question	Answer	Marks	Guidance
5(c)	$\overrightarrow{PQ} = \begin{pmatrix} 12\\6 \end{pmatrix} + \begin{pmatrix} -5\\8 \end{pmatrix} t - \begin{pmatrix} -4\\3 \end{pmatrix} t$	M1	For $their(b) - their(a)$, or their(a) - their(b) Allow unsimplified. Both vectors must be in terms of t
	$\begin{pmatrix} 12-t\\ 6+5t \end{pmatrix}$ soi	B1	
	$\left \left(\overrightarrow{PQ} \right)^2 \right = (12 - t)^2 + (6 + 5t)^2$ $\left \left(\overrightarrow{PQ} \right)^2 \right = 26t^2 + 36t + 180$	A1	Allow FT for use of modulus with $\begin{pmatrix} t-12 \\ -6-5t \end{pmatrix}$ and simplification to obtain the given result.
5(d)	Attempt to solve or consider the discriminant of $26t^2 + 36t + 180 = 0$	M1	Must be using the equation from part (c) as 'Hence'.
	Conclusion from either $36^2 - 4(26)(180) < 0$ or $t > 0$	A1	Must have stated somewhere that $\left \left(\overrightarrow{PQ}\right)^2\right = 0$ oe has been considered not just $\left \left(\overrightarrow{PQ}\right)^2\right $.
6(a)(i)	$a = 10, \ 6 = \frac{a}{1 - r}$ 10 = 6 - 6r	M1	For use of first term and sum to infinity to obtain an equation in r only
	$r = -\frac{2}{3}$	A1	2
6(a)(ii)	$S_7 = 10 \frac{\left(1 - \left(their \ r\right)^7\right)}{1 - their \ r}$	M1	For sum formula with $ their r < 1$.
	$S_7 = 6.35$	A1	
6(b)(i)	$\log_x 3$	B1	
6(b)(ii)	$S_n = \frac{n}{2} (2\log_x 3 + (n-1)\log_x 3)$	M1	For use of sum formula with <i>their</i> (i)
	$\frac{n}{2}(n+1)\log_x 3, \ \frac{n}{2}\log_x 3^{n+1}, \ \frac{n+1}{2}\log_x 3^n$	A1	Allow other similar equivalents
6(b)(iii)	$\frac{n}{2}(n+1) = 3081$	M1	For a correct attempt to solve their (ii) = $3081\log_x 3$ to obtain an answer for <i>n</i> . Must be a 3 term quadratic in <i>n</i> only.
	<i>n</i> = 78	A1	

0606/12

Question	Answer	Marks	Guidance
6(b)(iv)	$1027 = \frac{78}{2}(79)\log_x 3$ or $3081\log_x 3$	M1	For using <i>their</i> 78 in a sum equation or using 3081 to obtain <i>x</i>
	<i>x</i> = 27	A1	
7(a)	$AE^{2} = (\sqrt{17} - 1)^{2} + (\sqrt{17} + 1)^{2}$ $= 18 + 2\sqrt{17} + 18 - 2\sqrt{17}$	M1	For attempt to find <i>AE</i> . Must see at least 3 terms in an expansion that is not the difference of two squares to be convinced a calculator is not being used.
	AE = 6	A1	
	Perimeter = $4\sqrt{17} + 8 + their AE$ = $4\sqrt{17} + 14$	B1	FT on their AE
7(b)	Area = $\frac{1}{2} (3\sqrt{17} + 7) (\sqrt{17} + 1)$ oe = $\frac{1}{2} (51 + 3\sqrt{17} + 7\sqrt{17} + 7)$ oe	MI	For attempt at a trapezium or triangle and rectangle. Must see at least 3 terms in an expansion that is not the difference of two squares to be convinced a calculator is not being used. Allow one arithmetic slip.
	Area = $29 + 5\sqrt{17}$	A1	
7(c)	$\tan AED = \frac{\sqrt{17} + 1}{\sqrt{17} - 1} \times \frac{\sqrt{17} + 1}{\sqrt{17} + 1}$	M1	For attempt at rationalisation.
	$\frac{9+\sqrt{17}}{8}$	A1	Must come from $\frac{18 + 2\sqrt{17}}{16}$ to be convinced a calculator is not being used.
7(d)	$\sec^{2} AED = \tan^{2} AED + 1$ $= \frac{\left(9 + \sqrt{17}\right)^{2}}{64} + 1$ $\frac{81 + 17 + 18\sqrt{17} + 64}{64}$ oe if $\frac{\left(9 + \sqrt{17}\right)^{2}}{64}$ and 1 are considered separately.	M1	For use of <i>their</i> (c) in the correct identity and attempt to simplify to obtain a single fraction. Must see at least 3 terms in an expansion that is not the difference of two squares to be convinced a calculator is not being used. Allow one arithmetic slip
	$\frac{81+9\sqrt{17}}{32}$ oe	A1	сао

Question	Answer	Marks	Guidance
8(a)(i)	$\sin x \frac{\sin x}{\cos x} + \cos x$	B1	
	$\frac{\sin^2 x + \cos^2 x}{\cos x} $ oe	B1	
	$\frac{1}{\cos x} = \sec x$	B1	Poor notation is B0
8(a)(ii)	$\sec\frac{\theta}{2} = 4$ $\cos\frac{\theta}{2} = \frac{1}{4}$	M1	For use of (i) and dealing with sec to obtain $\cos \frac{\theta}{2} = \frac{1}{4}$
	$\frac{\theta}{2} = 1.3181, \ 4.9651$ $\theta = 2.64 \text{ or } 0.839\pi$ $\theta = 9.93 \text{ or } 3.16\pi$	3	Dep M1 for a correct attempt to solve to obtain at least one solution for θ A1 for one correct solution A1 for a second correct solution and no extra solutions
8(b)	$\tan\left(y+38^{\circ}\right) = \frac{1}{\sqrt{3}}$ $y = 172^{\circ}$ $y = 352^{\circ}$	3	M1 for dealing with cot and a correct attempt to obtain at least one correct solution, allow for -8° A1 for one correct solution A1 for a second correct solution and no extra solutions
9(a)	$(2x-1)(x^2-x-1)$	M1	For attempt at factorisation by observation or by algebraic long division
	$(2x-1)(x^2-x-1)$	A1	cao
9(b)	At $A = \frac{1}{2}$	B1	
	$x^2 - x - 1 = 0$	M1	For a valid attempt to solve <i>their</i> quadratic equation, allow for decimal solutions
	$x = \frac{1 \pm \sqrt{5}}{2} \text{ soi}$	A1	
	At $B x = \frac{1 + \sqrt{5}}{2}$	A1	

0606/12

Question	Answer	Marks	Guidance
9(c)	$\int \frac{1}{x} \mathrm{d}x = \ln x$	B1	
	$\left[\ln x\right]_{\frac{1}{2}}^{\frac{1+\sqrt{5}}{2}} = \ln\left(1+\sqrt{5}\right)$	B1	Allow $\ln\left(\frac{1+\sqrt{5}}{2}\right) - \ln\frac{1}{2}$
	$\left(\int -2x^2 + 3x + 1\right) dx = -\frac{2}{3}x^3 + \frac{3x^2}{2} + x$	M1	M1 for attempt at $-\frac{2}{3}x^3 + \frac{3x^2}{2} + x$, must have 2 correct terms.
	$\left[-\frac{2}{3}x^3 + \frac{3x^2}{2} + x\right]_0^{\frac{1}{2}}$	M1	Dep for correct application of the limits 0 and $\frac{1}{2}$ and attempt to evaluate
	$= \left(-\frac{2}{3} \times \frac{1}{8}\right) + \left(\frac{3}{2} \times \frac{1}{4}\right) + \frac{1}{2} \text{ oe}$		- may be implied by 0.792 or $\frac{19}{24}$.
	$\frac{19}{24}$	A1	
	$\ln\left(1+\sqrt{5}\right)+\frac{19}{24}$	A1	isw
10(a)	$\frac{(x-1)(6x)(2x^2+10)^{\frac{1}{2}}-(2x^2+10)^{\frac{3}{2}}}{(x-1)^2}$	3	B1 for $\frac{3}{2} \times 4x \times (2x^2 + 10)^{\frac{1}{2}}$ oe M1 for correct attempt at differentiation of a quotient A1 for all the other terms correct
	$\left(\frac{\left(2x^{2}+10\right)^{\frac{1}{2}}}{\left(x-1\right)^{2}}\right) \left(4x^{2}-6x-10\right)$	39-2	 A2 for all 3 terms correct in the quadratic A1 for 2 terms correct and 1 incorrect term in the quadratic A0 for 1 term correct or no terms correct in the quadratic

Question	Answer	Marks	Guidance
10(b)	$4x^{2}-6x-10=0$ (2x-5)(x+1)=0	M1	For attempt to solve <i>their</i> quadratic = 0 and obtain at least one solution or state that <i>their</i> quadratic equation has no real roots.
$x = \frac{5}{2}$ Rejecting $x = -1$ correctly Discounting $(2x^2 + 10)^{\frac{1}{2}} = 0$	$x = \frac{5}{2}$	A1	
	Rejecting $x = -1$ correctly	A1	May be implied by the statement $x > 1$.
	Discounting $(2x^2 + 10)^{\frac{1}{2}} = 0$	B1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/11 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Guidance
1	$y = \pm 3(x+2)(x+1)(x-4)$	3	B1 for 3 B1 for $(x+2)(x+1)(x-4)$ B1 for \pm
2(a)	4	B1	
2(b)	1080° or 6π	B1	
2(c)		3	B1 for shape, it must be symmetrical about the <i>y</i> -axis. B1 for <i>y</i> -intercept of 5 B1 for $(\pm 180^\circ, 3)$
	-ie -is -ie - ie - ie - ie - ie - ie - i	PR	
3(a)	$a = \frac{3}{2} \text{ or } p^{\frac{3}{2}}$	B1	
	$b = \frac{10}{3}$ or $q^{\frac{10}{3}}$	B1	
	$c = -\frac{7}{3}$ or $r^{-\frac{7}{3}}$	B1	
3(b)	$\left(3x^{\frac{1}{3}}-1\right)\left(2x^{\frac{1}{3}}-1\right)=0$	M1	For recognising as a quadratic in $x^{\frac{1}{3}}$ and attempt to solve to obtain $x^{\frac{1}{3}} = k$
	$x^{\frac{1}{3}} = \frac{1}{3}, x^{\frac{1}{3}} = \frac{1}{2}$ leading to $x = \frac{1}{27}$ or 0.0370 $x = \frac{1}{8}$ or 0.125	ore2	Dep M1 for a valid method of solving $x^{\frac{1}{3}} = k$ where $k > 0$ A1 for both
4(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin x \times 3\sec^2 3x - \tan 3x \cos x}{\sin^2 x}$	3	B1 for $3\sec^2 3x$ M1 for differentiation of a quotient or equivalent product A1 for all other terms apart from $3\sec^2 3x$ correct
	When $x = \frac{\pi}{3} \frac{\mathrm{d}y}{\mathrm{d}x} = 2\sqrt{3}$	A1	
4(b)	$2\sqrt{3}h$	B 1	FT on <i>their</i> answer to (a)

Question	Answer	Marks	Guidance
4(c)	$\frac{dy}{dx} \times \frac{dx}{dt} = \frac{dy}{dt}$ $2\sqrt{3} \times 3 = \frac{dy}{dt}$	M1	For correct use of rates of change using <i>their</i> answer to (a)
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 6\sqrt{3}$	A1	
5(a)(i)	360	B1	
5(a)(ii)	Starts with 6: $1 \times 4 \times 3 \times 1 = 12$	B1	
	Starts with 7 or 9 : $= 2 \times 4 \times 3 \times 2$ = 48	B1	
	Total = 60	B1	
	Alternative		
	Ending in 4: $\frac{1}{6} \times 360 \times \frac{3}{5} = 36$	(B1)	Allow unsimplified
	Ending in 6: $\frac{1}{6} \times 360 \times \frac{2}{5} = 24$	(B1)	Allow unsimplified
	Total = 60	(B1)	
5(b)(i)	1287	B 1	
5(b)(ii)	$1287 - {}^{7}C_{5}$ or 1 doctor: 210 2 doctors: 525 3 doctors: 420 4 doctors: 105 5 doctors: 1		For <i>their</i> (b)(i) $-{}^{7}C_{5}$ or listing all the other separate cases which must be evaluated, allow 1 error
	1266	A1	
5(b)(iii)	45	B1	
6(a)	Velocity vector = $\begin{pmatrix} -8\\6 \end{pmatrix}$	2	M1 for obtaining 5
	$\binom{30}{10} + \binom{-8}{6}t$	B1	FT for $\begin{pmatrix} 30\\10 \end{pmatrix}$ + (<i>their</i> velocity vector) <i>t</i>
6(b)	13	B1	

Question	Answer	Marks	Guidance
6(c)	$P:\begin{pmatrix} -50\\70 \end{pmatrix}$ $Q:\begin{pmatrix} -30\\210 \end{pmatrix}$	M1	Using $t = 10$ to find position vector of each particle
	$\sqrt{20^2 + 140^2}$	M1	Dep on previous M mark, for use of Pythagoras on difference of the 2 position vectors
	$100\sqrt{2}$	A1	
7(a)	$f \in \mathbb{R}$	B1	Allow <i>y</i> but not <i>x</i>
7(b)	$x = 5\ln(2y+3)$	M1	For a complete attempt to obtain inverse
	$e^{\frac{x}{5}} = 2y + 3$	PR	
	$f^{-1}(x) = \frac{e^{\frac{x}{5}} - 3}{2}$	A1	Must be using correct notation
	Domain $x \in \mathbb{R}$	B1	FT on <i>their</i> (a). Must be using correct notation
7(c)		ores	B1 for shape of $y = f(x)$ B1 for shape of $y = f^{-1}(x)$ B1 for 5ln3 or 5.5 and -1 on both axes for $y = f(x)$ B1 for 5ln3 or 5.5 and -1 on both axes for $y = f^{-1}(x)$ B1 All correct, with apparent symmetry which may be implied be previous 2 B marks or by inclusion of $y = x$, and implied asymptotes, may have one or two points of intersection
8(a)(i)	$\frac{1}{\left(1+\frac{1}{\sin\theta}\right)\left(\sin\theta-\sin^2\theta\right)}$	B1	For use of $\csc \theta = \frac{1}{\sin \theta}$, may be implied
	$\frac{1}{\sin\theta + 1 - \sin\theta - \sin^2\theta}$	M1	For expansion of brackets
	$\frac{1}{\cos^2\theta}$	M1	For simplification and use of identity
	$\sec^2 \theta$	A1	For final result, must see $\frac{1}{\cos^2 \theta}$

Question	Answer	Marks	Guidance
8(a)(ii)	$\cos^2\theta = \frac{3}{4}$	B1	For relating to and making use of (a)
	$\cos\theta = \pm \frac{\sqrt{3}}{2}$	M1	For attempt to solve, may be implied by one correct solution
	$\theta = -150^{\circ}, -30^{\circ}, 30^{\circ}, 150^{\circ}$	2	A1 for any correct pair A1 for a second correct pair and no extra solutions within the range
8(b)	$\tan\left(3\phi + \frac{2\pi}{3}\right) = 1$	B1	
	$3\phi + \frac{2\pi}{3} = \frac{\pi}{4}, \ \frac{5\pi}{4}, \ \frac{9\pi}{4}$	M1	For correct order of operations
	$3\phi = \frac{7\pi}{12}, \ \frac{19\pi}{12}$	PR	
	$\phi = \frac{7\pi}{36}$	A1	
	$\phi = \frac{19\pi}{36}$	A1	
9(a)	$\left[\ln x - \frac{1}{2}\ln(2x+3)\right]_{1}^{a}$	2	B1 for $\ln x$ B1 for $\frac{1}{2}\ln(2x+3)$
	$\ln a - \frac{1}{2}\ln(2a+3) + \frac{1}{2}\ln 5$	M1	For correct application of limits, must have at least one B1
	$\ln a \sqrt{\frac{5}{2a+3}}$	ON	Dep on previous M mark, for application of log laws
	$5a^2 - 18a - 27 = 0$	M1	Dep on previous M mark for equating to $\ln 3$ and simplification to a 3 term quadratic = 0
	$a = \frac{9 + 6\sqrt{6}}{5}$	A1	Must have one solution only

Question	Answer	Marks	Guidance
9(b)	$-\frac{1}{2}\cos\left(2x+\frac{\pi}{3}\right)+\frac{1}{2}\sin 2x-x$	3	B1 for $-\frac{1}{2}\cos\left(2x+\frac{\pi}{3}\right)$
			B1 for $+\frac{1}{2}\sin 2x$
			B1 for <i>-x</i>
	$\left(-\frac{1}{2}\cos\pi + \frac{1}{2}\sin\frac{2\pi}{3} - \frac{\pi}{3}\right)$	M1	For correct use of limits in <i>their</i> integral, must have at least one B1 term
	$-\left(-\frac{1}{2}\cos\frac{\pi}{3}\right)$		
	$\frac{3}{4} + \frac{\sqrt{3}}{4} - \frac{\pi}{3}$	A1	
10(a)	a+d=8 $a+3d=18$	2	B1 for both equations M1 for attempt to solve <i>their</i> equations
	a = 3, d = 5	A1	For both
	$\frac{n}{2}(6+(n-1)5)>1560$	M1	For correct use of sum formula with <i>their a</i> and d , allow equality
	$5n^2 + n - 3120 > 0$	M1	For attempt to solve, allow equality, to obtain at least one critical value
	Positive critical value 24.9 25terms	A1	
10(b)(i)	$\frac{a}{1-r} = 72$ and either	B1	For both
	1-r $a + ar + ar^2 = \frac{333}{8}$	pref	
	or $\frac{a(1-r^3)}{1-r} = \frac{333}{8}$		
	a = 72(1-r)	M1	For attempt to obtain an equation in terms of <i>r</i> only
	and $a(1+r+r^2) = \frac{333}{8}$ oe		7 only
	$72(1-r)(1+r+r^2) = \frac{333}{8}$		
	or $72(1-r^3) = \frac{333}{8}$		
	$1 - r^3 = \frac{333}{576}$	A1	
	<i>r</i> = 0.75	2	M1 for attempt to solve <i>their</i> equation in <i>r</i>

Question	Answer	Marks	Guidance
10(b)(ii)	<i>a</i> = 18	B1	FT on their <i>r</i> provided $ r < 1$

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/12 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Guidance
1	$2x^{2} - (k+4)x + (k+4) (=0)$ $2x^{2} + (-k-4)x + (k+4) (=0)$	B1	
	Discriminant: $(k+4)^2 - (4 \times 2 \times (k+4))$	M1	Use of discriminant to obtain 2 critical values using <i>their</i> 3 term quadratic
	±4	A1	For critical values
	k < -4 $k > 4$	A1	
2(a)	$y = -\frac{1}{2}(x+5)(x+1)(x-2)$	3	B1 for negative soi B1 for $\frac{1}{2}$ soi
	AT PR		B1 for $(x+5)(x+1)(x-2)$ or $x^3 + 4x^2 - 7x - 10$
2(b)	-5 < x < -1	B1	
	<i>x</i> > 2	B1	
3(a)	2	B 1	
3(b)	6π or 1080°	B1	
3(c)		3	B1 for passing through $(-\pi, 0)$ and $(3\pi, -3)$ – must be a curve B1 for correct shape with max on <i>y</i> -axis and a min at $x = 3\pi$ B1 for passing through $(0, 1)$ and $(\pi, 0)$ only on the positive <i>x</i> -axis
4(a)	a + 6d = 158 a + 9d = 149	B1	For both equations, may be implied by a correct a and d
	d = -3,	B1	
	<i>a</i> = 176	B1	

Question	Answer	Marks	Guidance
4(b)	$\frac{n}{2}(352 + (n-1)(-3)) \qquad (<0)$	M1	For correct attempt at sum formula with <i>their a</i> and <i>their d</i> ,
	$\frac{355}{3}$ or 118.3 oe	A1	
	119	A1	
5	$x^5 + 10x^3 + 40x + \dots$	3	M1 for attempt to expand $\left(x + \frac{2}{x}\right)^5$, with at least 2 correct terms A1 for $10x^3$ A1 for $40x$
	Term in x^2 : (1×40)-(3×10)	M1	For $(1 \times their \ 40) \pm (3 \times their \ 10)$
	10	A1	
6(a)	It is a one-one function because of the given restricted domain or because $x \ge -1$	B1	
6(b)	d t satpre		B1 for $y = f(x)$ for $x > -1$ only B1 for 1 on <i>x</i> -axis and -3 on <i>y</i> -axis for $y = f(x)$ B1 for $y = f^{-1}(x)$ as a reflection of y = f(x) in the line $y = x$, maybe implied by intercepts with axes B1 for 1 on <i>y</i> -axis and -3 on <i>x</i> -axis for $y = f^{-1}(x)$

Question	Answer	Marks	Guidance
7(a)	$\frac{dy}{dx} = \frac{(2x+1)\frac{6x}{3x^2-5} - 2\ln(3x^2-5)}{(2x+1)^2} \text{ or}$ $\frac{dy}{dx} = (2x+1)^{-1}\frac{6x}{3x^2-5} - 2(2x+1)^{-2}\ln(3x^2-5)$	3	B1 for $\frac{6x}{3x^2-5}$ M1 for attempt at a quotient or equivalent product A1 for all terms other than $\frac{6x}{3x^2-5}$ correct
	When $x = \sqrt{2}$, $y = 0$	B1	May be implied
	When $x = \sqrt{2}$, $\frac{dy}{dx} = \frac{6\sqrt{2}}{2\sqrt{2}+1}$ or $\frac{24-6\sqrt{2}}{7}$ or 2.22 oe Normal: $y = -\frac{(2\sqrt{2}+1)}{6\sqrt{2}}(x-\sqrt{2})$ oe	2	M1 for attempt at normal using <i>their</i> y and <i>their</i> perp gradientA1 Allow equivalent surd forms
	or $y = -\frac{7}{24 - 6\sqrt{2}} (x - \sqrt{2})$ oe		
	or $y = -\frac{1}{2.22}(x - \sqrt{2})$ oe or $y = -\frac{4 + \sqrt{2}}{12}(x - \sqrt{2})$ oe		
	or $y = -\frac{9+4\sqrt{2}}{24+6\sqrt{2}}(x-\sqrt{2})$ oe		
	y = -0.451x + 0.638		
7(b)	$\left(\frac{6\sqrt{2}}{2\sqrt{2}+1}\right)h$ or $\frac{24-6\sqrt{2}}{7}h$ or other equivalent surd forms, or 2.22 <i>h</i>	B1	FT on <i>their</i> $\frac{dy}{dx}$ from (a)
8(a)	${}^{12}C_3 \times {}^9C_4 = 220 \times 126$ or ${}^{12}C_5 \times {}^7C_4 = 792 \times 35$ or ${}^{12}C_4 \times {}^8C_5 = 495 \times 56$ or other equivalents 27720	3	 B1 for one correct combination in a product of 2 or 3 combinations Must be numeric B1 for a second appropriate combination in the same product Must be numeric
8(b)(i)	120	B1	
8(b)(ii)	48	B1	

Question	Answer	Marks	Guidance
8(b)(iii)	Starts with 7 or 9 24	B1	May be implied by 12 and 12
	Starts with 8 18	B1	
	42	B1	
	AlternativeEnds with 318	(B1)	
	Ends with 7 or 9 24	(B1)	May be implied by 12 and 12
	42	(B1)	
9(a)	$\frac{dy}{dx} = (2x-1) \times \frac{1}{2} \times 4(4x+3)^{-\frac{1}{2}} + 2(4x+3)^{\frac{1}{2}}$	3	B1 for $\frac{1}{2} \times 4(4x+3)^{-\frac{1}{2}}$ oe M1 for a correct attempt at a product A1 for all other terms correct
	$\frac{dy}{dx} = 2(4x+3)^{-\frac{1}{2}}(2x-1+4x+3) \text{ or equivalent}$	M1	For attempt to simplify to the given form
	$\frac{dy}{dx} = \frac{4(3x+1)}{(4x+3)^{\frac{1}{2}}}$	A1	_
9(b)	$-\frac{1}{3}$	B 1	FT on <i>their</i> $3x + 1 = 0$
9(c)	For a complete method using 2 nd derivative, or gradient or y values either side or one side of <i>their</i> stationary point e.g. $x < -\frac{1}{3} -\frac{1}{3} > -\frac{1}{3}$ $\frac{dy}{dx} - 0 + \frac{1}{3}$ $x < -\frac{1}{3} -\frac{1}{3} > -\frac{1}{3}$ $\frac{-1}{3} > -\frac{1}{3}$ $\frac{-1}{3} > -\frac{1}{3}$ $\frac{-1}{3} > -\frac{1}{3}$	M1	Must be using values of $x > -\frac{3}{4}$
	Minimum	A1	Must be from correct work

Question	Answer	Marks	Guidance
10(a)	p(2): 48+4a+2b+2=02a+b+25=0	B1	For $2a + b + 25 = 0$ or multiple
	p(1) = -2p(0) a + b + 12 = 0	B1	For $a + b + 12 = 0$
	a = -13, b = 1	2	M1 for attempt to solve <i>their</i> equations in <i>a</i> and <i>b</i> leading to 2 values A1 for both
10(b)(i)	$p\left(\frac{1}{2}\right) = \frac{6}{8} - \frac{13}{4} + \frac{1}{2} + 2$	M1	For attempt to find $p\left(\frac{1}{2}\right)$ using <i>their a</i> and <i>b</i>
	0	A1	
10(b)(ii)	(x-2)(2x-1)(3x+1)	2	M1 for realising that 2 factors are known and 3^{rd} factor can be got by observation or algebraic long division, or for making use of $x - 2$ or $2x - 1$ in order to obtain a quadratic factor A1 Must see all factors together
11(a)	$\angle BOC = 1.5 \text{ rad}$	B1	
	$\sin 0.75 = \frac{BC/2}{r}$	M1	For a complete attempt to find <i>BC</i> – must be using a right-angled triangle to get required result – Given answer
	$BC = 2r\sin 0.75$	A1	
	Perimeter = $2r + 2r \sin 0.75 + 4r + 1.5r$	M1	Dep on first M mark for attempt at perimeter
	$r(7.5+2\sin 0.75)$	A1	Given answer
11(b)	Area = $(2r + 2r\sin 0.75)r - \frac{1}{2}r^2(1.5 - \sin 1.5)$ Area = $3.36r^2 - 0.75r^2 + 0.4987r^2$	3	M1 for a correct plan M1 for $(2r + 2r \sin 0.75)r$, using their $2r \sin 0.75$ B1 for segment $\frac{1}{2}r^2(1.5 - \sin 1.5) = 0.251r^2$
	$Area = 3.11r^2$	A1	

Question	Answer	Marks	Guidance
12(a)(i)	Area under graph: $\frac{1}{2}(60+40) \times 30 + \frac{1}{2}(30+V) \times 30 (=2775)$ or $\frac{1}{2}(20 \times 30) + (40+30) + \frac{1}{2}(30+V) \times 30$	2	M1 for attempt to find the area under the graph Dep M1 on previous M mark for attempt to equate to 2775 and simplify in order to find V or $V - 30$
	55	A1	
12(a)(ii)	0	B1	
12(b)(i)	$v = 3\sin 2t (+c)$	M1	Must have $\pm 3\sin 2t$
	10 = c	M1	Dep for attempt to find $+c$,
	$v = 3\sin 2t + 10$	A1	
12(b)(ii)	$s = -\frac{3}{2}\cos 2t + 10t + d$	M1	For attempt to integrate <i>their v</i> , must have $\pm \frac{3}{2}\cos 2t$
	$d = \frac{3}{2}$	M1	Dep on previous M mark for attempt to find <i>d</i> .
	$s = -\frac{3}{2}\cos 2t + 10t + \frac{3}{2}$	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/13 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Guidance
1(a)	-1 0 2 3 x	3	 B1 for a well-drawn cubic graph in correct orientation Both arms extending beyond <i>x</i>-axis Maximum above <i>x</i>-axis B1 for <i>x</i>-intercepts B1 for <i>y</i>-intercept
1(b)	<i>x</i> < -1	B1	Dep on a cubic curve in the correct orientation and -1 correct on <i>x</i> -axis
	2 < x < 3 or $3 > x > 2$	B1	Dep on a cubic curve in the correct orientation and 2 and 3 correct on <i>x</i> -axis
2(a)	$\frac{dy}{dx} = \frac{(x^2 + 1)2e^{2x-3} - 2xe^{2x-3}}{(x^2 + 1)^2} \text{oe}$ or $\frac{dy}{dx} = \frac{2e^{2x-3}}{(x^2 + 1)} - \frac{2xe^{2x-3}}{(x^2 + 1)^2} \text{oe}$	3	B1 for $\frac{d}{dx}(e^{2x-3}) = 2e^{2x-3}$ seen in a quotient rule or product rule expression M1 for correct method for differentiating a quotient or equivalent product A1 FT from <i>their</i> $2e^{2x-3}$
2(b)	When $x = 2$, $\frac{dy}{dx} = \frac{6e}{25}$	M1	For evaluation of <i>their</i> $\frac{dy}{dx}$ when $x = 2$
	$\frac{6e}{25} \times \frac{dx}{dt} = 2 oe$	M1	For correct substitution of <i>their</i> evaluated $\frac{dy}{dx}$ and $\frac{dy}{dt} = 2$ in a correct rates of change equation
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{25}{3\mathrm{e}}, \frac{50}{6\mathrm{e}}$	A1	
3(a)(i)	$x > \frac{1}{2}$	B 1	Must be using <i>x</i>

Question	Answer	Marks	Guidance
3(a)(ii)	$x = 4\ln(2y-1)$ $e^{\frac{x}{4}} = 2y-1$ $y = \frac{1}{2}\left(1 + e^{\frac{x}{4}}\right)$	M1	For full method for inverse using correct order of operations
	$f^{-1}(x) = \frac{1}{2} \left(1 + e^{\frac{x}{4}} \right) \text{ or } f^{-1}(x) = \frac{1}{2} \left(1 + \sqrt[4]{e^x} \right)$	A1	Must be using correct notation
	$x \in \mathbb{R}$	B1	
3(b)	$\sqrt{2x-3} + 5 = 7$	M1	For correct order
	$x = \frac{2^2 + 3}{2}$	M1	Dep on previous M mark, for obtaining x by simplifying and solving using correct order of operations, including squaring
	$x = \frac{7}{2}$ or 3.5	A1	
4(a)(i)		3	B1 For $v = 2$ for $0 \le t \le 50$ B1 For $v = 2.5$ for $65 \le t \le 85$ B1 For $v = 3.75$ for $85 \le t \le 125$ and $v = 0$ for $50 \le t \le 65$
4(a)(ii)	300	B1	
4(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = -18\sin\left(3t + \frac{\pi}{3}\right)$	M1	$\pm 18\sin\left(3t + \frac{\pi}{3}\right)$
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -54 \cos\left(3t + \frac{\pi}{3}\right)$	M1	$\pm 54\cos\left(3t+\frac{\pi}{3}\right)$
	–27 nfww	A1	

Question	Answer	Marks	Guidance
5	$(1+x)\left(1+n\left(-\frac{x}{2}\right)+\frac{n(n-1)}{2}\left(\frac{x^2}{4}\right)\dots\right)$	2	B1 For $\binom{n}{1} \left(-\frac{x}{2}\right)$ B1 For $\binom{n}{2} \left(\frac{x^2}{4}\right)$
	$\frac{1}{4}\binom{n}{2}x^2 - \frac{1}{2}\binom{n}{1}x^2 = \frac{25}{4}x^2$	M1	Correctly using two terms in <i>n</i> to obtain an x^2 term and equating to $\frac{25}{4}x^2$ Dep on one B1
	$\frac{n(n-1)}{8} - \frac{n}{2} = \frac{25}{4}$ oe	A1	
	n=10 only	A1	
6(a)	$\lg y = \lg A + bx^2$	B1	Stated or may be implied by later work
	If using $\lg y = \lg A + bx^2$ as a starting point 5.25 = $\lg A + 3.63b$ and 6.88 = $\lg A + 4.83b$ or 5.25 = $\lg A + 1.358(3.63)$ or 6.88 = $\lg A + 1.358(4.83)$	M1	For correctly finding required equation(s)
	OR If finding the equation of the straight line and then finding lg <i>A</i> and <i>b</i> by inspection $\lg y - 6.88 = 1.358(x^2 - 4.83)$ or $\lg y - 5.25 = 1.358(x^2 - 3.63)$ or $\lg y = 1.358x^2 + 0.31$ (or 0.32)		5
	$b = 1.36, \ \frac{163}{120} \text{ or } 1\frac{43}{120}$	B1	Must be $b =$ and from correct working
	<i>A</i> in range 2.05 to 2.09	A1	
6(b)	$lg y = 0.3132 + (4 \times 1.36)$ y = 2.09 × 10 ^{4×1.36}	M1	For $\lg y = (their \lg A) + 4(their b)$ or $y = (their A)(10^{4(their b)})$
	Allow 553 000 to 576 000	A1	
6 (c)	$4 = 2.09 \left(10^{1.36x^2} \right) \text{ or } \lg 4 = 0.3132 + 1.36x^2$	M1	$4 = (their A)(10^{their bx^{2}}) \text{ or}$ $\lg 4 = (their \lg A) + (their b)x^{2}$
	awrt 0.46	A1	

Question	Answer	Marks	Guidance
7(a)	-4a+b+5=0 oe	B1	Allow multiples of equation
	a+b-25=0 oe	B1	Allow multiples of equation
	a = 6, b = 19	2	M1 for solving <i>their</i> 2 equations and obtaining two solutions A1 for both $a = 6$, $b = 19$
	$(x+4)(6x^2-5x+1)$ A=6, B=-5, C=1	2	M1 for attempt to obtain quadratic factor by inspection or by algebraic long division A1 $(6x^2 - 5x + 1)$ or A = 6, B = -5, C = 1
	Alternative $a+b-25=0$ oe	(B1)	Allow multiples of equation
	Comparing coefficients C = 1 and $A = a$	(B1)	
	4A + B = b	(B1)	
	Leading to $5A + B = 25$	(M1)	For use of <i>their</i> $a + b - 25 = 0$ to obtain an equation in A and B
	4B + 1 = -19	(B1)	
	$(x+4)(6x^2-5x+1)$ A=6, B=-5, C=1	(A1)	4
7(b)	(x+4)(3x-1)(2x-1)	B1	Must follow from a correct solution to (a)
7(c)	-19	B1	
8(a)	$\angle AOB = 1.45$ (radians)	B1	
8(b)	Sector area $=\frac{1}{2}(r^2)(1.45)$	B1	For correct sector area. Allow unsimplified
	Area of triangle = $\frac{1}{2} \times 0.5r \times r \times \sin(\pi - their \ 1.45)$	B1	For correct area of triangle Allow unsimplified
	Total area = $0.973r^2$	B1	

Question	Answer	Marks	Guidance
8(c)	$(AC^{2}) = r^{2} + 0.25r^{2} - (2 \times r \times 0.5r \cos(\pi - 1.45))$	M1	For correct substitution in cosine rule using $(\pi - their \ 1.45)$
	AC = 1.17r	A1	
	Perimeter = 2.95r + 1.17r	B1	FT on <i>their AC</i>
	<i>r</i> = 2.91	A1	
9(a)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ or $\overrightarrow{BA} = \mathbf{a} - \mathbf{b}$	B1	
	$\overrightarrow{OX} = \mathbf{a} + \frac{3}{4}\overrightarrow{AB}$ or $\overrightarrow{OX} = \mathbf{b} + \frac{1}{4}\overrightarrow{BA}$	M1	For correct use of ratio, using <i>their</i> \overrightarrow{AB} or \overrightarrow{BA}
	$\overrightarrow{OX} = \mathbf{a} + \frac{3}{4}(\mathbf{b} - \mathbf{a}) \text{ or } \overrightarrow{OX} = \mathbf{b} + \frac{1}{4}(\mathbf{a} - \mathbf{b})$		
	$\overrightarrow{OX} = \frac{\mathbf{a}}{4} + \frac{3}{4}\mathbf{b}$	A1	
9(b)	$\overrightarrow{AC} = 2\mathbf{b} - \mathbf{a}$	B1	
9(c)	$\overrightarrow{AY} = -\mathbf{a} + h\left(\frac{\mathbf{a}}{4} + \frac{3}{4}\mathbf{b}\right)$	B1	FT on <i>their</i> \overrightarrow{OX}
9(d)	$-\mathbf{a} + h\left(\frac{\mathbf{a}}{4} + \frac{3}{4}\mathbf{b}\right) = m(2\mathbf{b} - \mathbf{a})$	M1	For equating appropriate vectors and attempt to equate like vectors
	$-1 + \frac{h}{4} = -m$	A1	FT from <i>their</i> \overrightarrow{AY} and \overrightarrow{AC}
	$\frac{3h}{4} = 2m$	Al	FT from <i>their</i> \overrightarrow{AY} and \overrightarrow{AC}
	$h = \frac{8}{5}, m = \frac{3}{5}$	A1	For both
10(a)	$\frac{3x+10+2(x+1)}{(x+1)(3x+10)} = \frac{3x+10+2x+2}{(x+1)(3x+10)}$ $= \frac{5x+12}{3x^2+13x+10}$	B1	For expansion and simplification to obtain given answer

Question	Answer	Marks	Guidance
10(b)	$P\left(0, \frac{6}{5}\right)$ and $Q\left(-\frac{6}{5}, 0\right)$ oe	B1	
	Area of triangle = $\frac{18}{25}$ or 0.72	B1	
	Area under curve = $\int_{0}^{2} \frac{1}{x+1} + \frac{2}{3x+10} dx$	M1	For use of part (a) and attempt to integrate to obtain at least one ln term.
	$= \left[\ln(x+1) + \frac{2}{3}\ln(3x+10) \right]_{0}^{2}$	2	B1 For $\ln(x+1)$ B1 For $\frac{2}{3}\ln(3x+10)$
	$=\ln 3 + \frac{2}{3}\ln 16 - \frac{2}{3}\ln 10$	M1	For correct use of limits. Dep on previous M mark.
	$=\frac{2}{3}\ln 3\sqrt{3} + \frac{2}{3}\ln 16 - \frac{2}{3}\ln 10$	M1	For use of $\ln 3 = \frac{2}{3} \ln 3\sqrt{3}$
	$=\frac{2}{3}\ln 3\sqrt{3} + \frac{2}{3}\ln\left(\frac{16}{10}\right) = \frac{2}{3}\ln\left(\frac{48\sqrt{3}}{10}\right)$	M1	For use of multiplication and division rule
	Total area = $\frac{18}{25} + \frac{2}{3} \ln\left(\frac{24\sqrt{3}}{5}\right)$ oe	A1	For correct answer in the required form dep on the three preceding M marks Must not be obtained using a calculator
11(a)	$2\cos x = 3\frac{\sin x}{\cos x} \implies 2\cos^2 x = 3\sin x$	M1	For use of $\tan x = \frac{\sin x}{\cos x}$ and multiplying by $\cos x$
	$2(1-\sin^2 x) = 3\sin x$	M1	For use of correct identity
	$2\sin^2 x + 3\sin x - 2 = 0$	A1	For correct rearrangement to obtain the given answer
	Alternative $2\sin^{2} x + 3\sin x - 2$ $= 2(1 - \cos^{2} x) + 3\sin x - 2$	(M1)	For use of correct identity
	$= -2\cos x \cos x + 3\sin x$ $= -3\tan x \cos x + 3\sin x$	(M1)	For use of $2\cos x = 3\tan x$
	$-3\sin x + 3\sin x = 0$	(A1)	For use of $\tan x \cos x = \sin x$ and answer 0

Question	Answer	Marks	Guidance
11(b)	$\sin\left(2\alpha + \frac{\pi}{4}\right) = \frac{1}{2}$ only	B1	For solution of quadratic from (a) to obtain $\sin\left(2\alpha + \frac{\pi}{4}\right) = \frac{1}{2}$ only
	$2\alpha + \frac{\pi}{4} = \frac{\pi}{6}, \ \frac{5\pi}{6}, \ \frac{13\pi}{6}$ $2\alpha = \frac{7\pi}{12}, \ \frac{23\pi}{12}$	M1	For correct order of operations in attempt to solve $sin\left(2\alpha + \frac{\pi}{4}\right) = \frac{1}{2}$, may be implied by one correct solution
	$\alpha = \frac{7\pi}{24}$	A1	
	$\alpha = \frac{23\pi}{24}$	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/11 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)	$y = -\frac{1}{2}(x+2)(x+1)(x-5)$	B1	For $-\frac{1}{2}$
		B1	For $(x+2)(x+1)(x-5)$
1(b)	$-2 \leq x \leq -1$	B1	
	$x \ge 5$	B1	
2(a)	1080°	B1	
2(b)	7	B1	For correct shape and symmetry about the <i>y</i> -axis
		B1	For correct x-intercepts
	30 10 1 10 W	B1	For correct <i>y</i> -intercept
3	$\frac{\mathrm{d}r}{\mathrm{d}t} = 5$	B1	
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r$	B 1	
	$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt} \text{leading to}$ $\frac{dA}{dt} = 10\pi r$ $\frac{dA}{dt} = 30\pi$	M1	Use of the chain rule, may be implied by $5 \times 6\pi$
	$\frac{\mathrm{d}A}{\mathrm{d}t} = 30\pi$	A1	

Question	Answer	Marks	Partial Marks
4	$x = \frac{-(4 - 2\sqrt{7}) + \sqrt{(4 - 2\sqrt{7})^2 - 4(5 + 4\sqrt{7})(-1)}}{2(5 + 4\sqrt{7})}$	M1	For correct use of quadratic formula, allow inclusion of \pm until final answer
	$x = \frac{-(4 - 2\sqrt{7}) + \sqrt{16 + 28 - 16\sqrt{7} + 20 + 16\sqrt{7}}}{2(5 + 4\sqrt{7})}$ $x = \frac{-(4 - 2\sqrt{7}) + 8}{2(5 + 4\sqrt{7})}$	M1	For attempt to simplify discriminant, must see attempt at expansion and subsequent simplification
	$x = \frac{4 + 2\sqrt{7}}{2(5 + 4\sqrt{7})}$ or $x = \frac{2 + \sqrt{7}}{(5 + 4\sqrt{7})}$	A1	For either
	$x = \frac{2 + \sqrt{7}}{\left(5 + 4\sqrt{7}\right)} \times \frac{5 - 4\sqrt{7}}{5 - 4\sqrt{7}}$ $x = \frac{10 + 5\sqrt{7} - 8\sqrt{7} - 28}{25 - 112}$	M1	For attempt to rationalise, must see attempt at expansion and subsequent simplification
	$x = \frac{6}{29} + \frac{\sqrt{7}}{29}$	A1	
5	$\frac{dy}{dx} = \frac{(x+2)\frac{6x}{3x^2-1} - \ln(3x^2-1)}{(x+2)^2}$	B 1	B1 for $\frac{6x}{3x^2 - 1}$
	ux (x+2)	M1	For attempt to differentiate a quotient or an equivalent product, must have correct order of terms and correct sign
	24	A1	0
	When $x = 1$, $y = \frac{\ln 2}{3}$ or $0.231(0)$	B1	
	When $x = 1$, $\frac{dy}{dx} = 0.92298$, allow 0.923	B1	
	y = 0.923x - 0.692	B1	
6(a)	x(5x+6) = 8 $5x^2 + 6x - 8 = 0$	M1	For attempt to equate and obtain a 3- term quadratic in either x or y
	$\left(\frac{4}{5}, 10\right)$	A1	Allow A1 if only <i>x</i> -coordinates or only <i>y</i> -coordinates are given
	(-2, -4)	A1	

Question	Answer	Marks	Partial Marks
6(b)	Midpoint $\left(-\frac{3}{5}, 3\right)$	B1	
	Gradient 5	B1	
	$y-3 = -\frac{1}{5}\left(x+\frac{3}{5}\right)$	M1	Attempt at perp bisector using <i>their</i> midpoint and perp gradient
	$x-3 = -\frac{1}{5}\left(x+\frac{3}{5}\right)$	M1	For use of $y = x$ and attempt to solve
	$\left(\frac{12}{5}, \frac{12}{5}\right)$	A1	
7(a)	0.8	B1	
7(b)	Sector area = $\frac{1}{2}12^2(0.8)$ 57.6	B1	Allow unsimplified
	$\tan 0.4 = \frac{AM}{12}$ $AM = 12 \tan 0.4$ 5.074	M1	Attempt at AM using their $\frac{\theta}{2}$ Allow unsimplified
	Area of triangle = $\frac{1}{2}(5.074 \times 2) \times 2 \times 12$ 60.88	M1	Area of triangle using <i>their AM</i> , allow unsimplified
	Shaded area 3.28	A1	0'
7(c)	Shaded area 3.28 $\sin 0.4 = \frac{AM}{OA}$ $OA = \frac{5.074}{\sin 0.4}$ 13.03	M1	Attempt to find <i>OA</i> using <i>their</i> $\frac{\theta}{2}$ and <i>their AM</i>
	Perimeter = $2(1.03) + 9.6 + 2(5.074)$	M1	Allow if using <i>their</i> $\frac{\theta}{2}$ and <i>their CM</i>
	Perimeter = 21.8	A1	
8(a)	$\frac{3(2x+3)+3(2x-3)}{4x^2-9}$	M1	Must see for M1
	$\frac{12x}{4x^2-9}$	A1	

Question	Answer	Marks	Partial Marks
8(b)	$\int \frac{3}{2x-3} + \frac{3}{2x+3} \mathrm{d}x$	B2	
	$=\frac{3}{2}\ln(2x-3) + \frac{3}{2}\ln(2x+3)$		B1 for each correct term, having made use of (a)
	$\frac{\frac{3}{2}\ln(4x^2-9)+c \text{ or}}{\frac{3}{2}\ln((2x-3)(2x+3))+c \text{ or}}$	B1	
	_		
	$\ln\left(4x^2-9\right)^{\frac{3}{2}}+c$		
8(c)	$\ln(4a^2 - 9)^{\frac{3}{2}} - \ln 7^{\frac{3}{2}} = \ln 5^{\frac{3}{2}}$	M1	For correct application of limits, allow equivalent forms
	$4a^2 - 9 = 35$	A1	For a correct method of dealing with logarithms and eliminating them
	$a = \sqrt{11}$	M1	For solving a quadratic equation, dep on first M mark
		A1	
9(a)	Second term: $a + d = -14$	B 1	
	Sum: $4 = a + 10d$	B1	
	<i>d</i> = 2	B1	
	a = -16	B1	1.5
	Last term = 24	B1	Ft on <i>their d</i> and <i>their a</i>
9(b)(i)	$ar = 27 p^2$ $ar^4 = p^5$	B1	For both equations
	$r = \frac{p}{3}$	B1	
9(b)(ii)	<i>a</i> = 81 <i>p</i>	M1	M1 for attempt to find a in terms of p
		A1	
	$S_{\infty} = \frac{81p}{1 - \frac{p}{3}}$ or $\frac{243p}{3 - p}$	B1	Follow through on <i>their a</i> and <i>their r</i>

Question	Answer	Marks	Partial Marks
9(b)(iii)	$81 = \frac{81p}{1 - \frac{p}{3}}$ or $81 = \frac{243p}{3 - p}$	M1	For attempt to solve using <i>their</i> answer to (ii) as far as $p =$
	$p = \frac{3}{4}$	A1	
10(a)(i)	$\frac{(\sec\theta+1) - (\sec\theta-1)}{\sec^2\theta - 1}$	M1	For dealing with the fractions
	$\frac{2}{\tan^2\theta}$	M1	For use of the correct identity
	$2\cot^2\theta$	A1	A1 for given answer, must see $\frac{8}{\tan^2 \theta}$ first
10(a)(ii)	$2\cot^2 2x = 6$ $\tan 2x = \pm \frac{1}{\sqrt{3}}$	M1	M1 for use of (i) and attempt to simplify
		A1	
		M1	M1 for attempt to solve, may be implied by one correct solution
	$2x = -150^{\circ}, -30^{\circ}, 30^{\circ}, 150^{\circ}$ $x = -75^{\circ}, -15^{\circ}, 15^{\circ}, 75^{\circ}$	A2	A1 for each pair of correct solutions
10(b)	$\sin\left(y+\frac{\pi}{3}\right) = \frac{1}{2}$	M1	For dealing with cosec and an attempt to solve
	$y + \frac{\pi}{3} = \frac{5\pi}{6}, \ \frac{13\pi}{6}$	MI	M1 for a complete method of solution, may be implied by a correct solution
	$y = \frac{\pi}{2}$	A1	
	$y = \frac{11\pi}{6}$	A1	

Question	Answer	Marks	Partial Marks
11	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5}{2}\sin 2x(+c)$	M1	M1 for $k \sin 2x$
		A1	Condone omission of <i>c</i>
	$\frac{3}{4} = \frac{5}{2}\sin\left(-\frac{\pi}{6}\right) + c$	M1	Dep on first M1 for attempt to find c
	<i>c</i> = 2	A1	
	$y = -\frac{5}{4}\cos 2x + 2x(+d)$	M1	M1 for attempt to integrate <i>their</i> $\frac{dy}{dx}$
		A1	Condone omission of <i>d</i>
	$\frac{5\pi}{4} = -\frac{5}{4}\cos\left(-\frac{\pi}{6}\right) - \frac{\pi}{6} + d$	M1	Dep on previous M1 for attempt to find d
	$d = \frac{17\pi}{12} + \frac{5\sqrt{3}}{8}$	A1	Must have the equation for A1
	$y = -\frac{5}{4}\cos 2x + 2x + \frac{17\pi}{12} + \frac{5\sqrt{3}}{8} \text{or}$		
	$y = -\frac{5}{4}\cos 2x + 2x + 5.53$		

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/12 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1		B1	Shape
		B1	Correct <i>x</i> -coordinates
		B1	Correct <i>y</i> -coordinate and max in first quadrant
2	$\frac{\mathrm{d}r}{\mathrm{d}t} = 0.5$	B1	
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	B1	
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$ $\frac{\mathrm{d}V}{\mathrm{d}t} = \pi r^2$	M1	For attempt to use a correct form of the chain rule
	When $r = \frac{1}{4}$, $\frac{dV}{dt} = 0.125\pi$	A1	
3(a)	$4096 - 384x + 15x^2$	B 1	For 4096
		B1	For –384 <i>x</i>
	5	B1	For $15x^2$
3(b)	$(4096 - 384x + 15x^2)\left(x^2 - 2 + \frac{1}{x^2}\right)$	BI	For $\left(x^2 - 2 + \frac{1}{x^2}\right)$
	Term independent of x : -2(4096)+15	M1	For use of 2 appropriate terms
	-8177	A1	
4(a)(i)	720	B1	
4(a)(ii)	600	B1	FT on <i>their</i> (i) $\times \frac{5}{6}$

Question	Answer	Marks	Partial Marks
4(a)(iii)	Starting with 8: $1 \times 4 \times 3 \times 2 \times 1 = 24$	B1	
	Starting with 3, 5 or 7: $3 \times 4 \times 3 \times 2 \times 2 = 144$	M1	May be considering each case separately, need all three cases for M1
		A1	
	Total = 168	A1	
4(a)(iii)	Alternative		
	Plan for adding numbers ending in 2 and numbers ending in 8	M1	
	Ending in 2: $\left(\frac{1}{6} \times 720\right) \times \frac{4}{5} = 96$	B1	Allow unsimplified
	Ending in 8: $\left(\frac{1}{6} \times 720\right) \times \frac{3}{5} = 72$	B1	Allow unsimplified
	Total = 168	A1	
4(b)	${}^{n}C_{3} = 6 {}^{n}C_{2}$	B1	$\frac{n(n-1)(n-2)}{3!}$
	$\frac{n(n-1)(n-2)}{3!} = \frac{6n(n-1)}{2!}$	B1	$\frac{6n(n-1)}{2!}$
	n(n-1)[(n-2)-18] = 0	M1	Valid attempt to solve, must have at least one previous B mark
	n = 20	A1	
4(b)	n = 20 Alternative	rep	
	${}^{n}C_{3} = 6{}^{n}C_{2}$ (n-2)!2!=(n-3)!3!	B1	For dealing with $(n-2)!$ and $(n-3)!$ to obtain $(n-2)$
	$(n-2) = 6 \times 3$	B1	For dealing with 2! and 3! To obtain 6
	<i>n</i> = 20	M1	Valid attempt to solve, must have at least one previous B mark
		A1	
5(a)	f>9	B1	Allow <i>y</i> but not <i>x</i>
5(b)	It is a one-one function because of the restricted domain	B1	

Question	Answer	Marks	Partial Marks
5(c)	$x = (2y+3)^2$ or equivalent	M1	For a correct attempt to find the inverse
	$y = \frac{\sqrt{x} - 3}{2}$	M1	For correct rearrangement
	$f^{-1} = \frac{\sqrt{x} - 3}{2}$	A1	Must have correct notation
5(d)	x > 9	B1	FT on <i>their</i> (a)
5(e)	$f\left(\ln\left(x+4\right)\right) = 49$	M1	For correct order
	$(2\ln(x+4)+3)^2 = 49$ $\ln(x+4) = 2$	M1	For correct attempt to solve, dep on previous M mark, as far as $x =$
	$x = e^2 - 4$	A1	
6(a)	$A\left(-\frac{5}{2}, 0\right)$	B1	
	x(-5-2x)+3=0 $2x^{2}+5x-3=0$ (2x-1)(x+3)=0	M1	For attempt to eliminate one variable, obtain a 3-term quadratic equation = 0 and attempt to solve
	$B\left(\frac{1}{2}, -6\right)$	A1	Allow A1 if just the <i>x</i> -coordinates or just the <i>y</i> -coordinates are given
6(b)	Area of triangle $=\frac{1}{2}\left(\frac{5}{2}+\frac{1}{2}\right)\times 6$, =9	M1 reP	For attempt at triangle using <i>their</i> values
	$\int_{\frac{1}{2}}^{1} -\frac{3}{x} dx = \left[-3\ln x\right]_{\frac{1}{2}}^{1}$	M1	For attempt to integrate, must have ln
	$=3\ln\frac{1}{2}$	M1	correct application of limits, dep on previous M mark
	$= -3\ln 2$	M1	realisation that value of integral is negative and making the adjustment
		M1	application of log law, dep on previous M mark
	$Area = 9 + \ln 8$	A1	

Question	Answer	Marks	Partial Marks
7(a)	$\frac{dy}{dx} = (x^2 - 1)\frac{5}{2}(5x + 2)^{-\frac{1}{2}} + 2x(5x + 2)^{\frac{1}{2}}$	B1	For $\frac{5}{2}(5x+2)^{-\frac{1}{2}}$
		M1	For differentiation of a product
		A1	
	$\frac{dy}{dx} = \frac{(5x+2)^{-\frac{1}{2}}}{2} (5(x^2-1)+4x(5x+2))$ or equivalent	M1	Dep on previous M mark for attempt to simplify
	$\frac{dy}{dx} = \frac{25x^2 + 8x - 5}{2\sqrt{5x + 2}}$	A1	
7(b)	$25x^2 + 8x - 5 = 0$	M1	Equating their numerator in (a) to zero and attempt to solve
	x = 0.315	A1	
	<i>y</i> = -1.70	A1	
7(c)	Consideration of gradient or y values either side of stationary point, remembering that $x > 0$.	M1	Must be a complete method making use of <i>their</i> (a). Allow consideration of $25x^2 + 8x - 5$ as a 'minimum curve'. Accept 2nd derivative method.
	Minimum	A1	
8(a)	b-a	B 1	
8(b)	$\frac{1}{4}\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) \text{ or } -\frac{3}{4}\mathbf{a} + \frac{1}{2}(\mathbf{a} + \mathbf{b})$	B1	For $\frac{1}{4}$ a or $-\frac{3}{4}$ a
	- 2 2. satp	B1	For $\frac{1}{2}(\mathbf{b}-\mathbf{a})$ or $\frac{1}{2}(\mathbf{a}+\mathbf{b})$
	$\frac{1}{2}\mathbf{b} - \frac{1}{4}\mathbf{a}$	B1	Correct and simplified
8(c)	$n\left(\frac{1}{2}\mathbf{b}-\frac{1}{4}\mathbf{a}\right)$	B1	FT on <i>their</i> answer to (b)
8(d)	$\frac{1}{2}(\mathbf{b}-\mathbf{a})+k\mathbf{b}$	M1	For use of <i>their</i> (a) and <i>k</i> b
	2	A1	

Question	Answer	Marks	Partial Marks
8(e)	$\frac{1}{2}(\mathbf{b} - \mathbf{a}) + k\mathbf{b} = n\left(\frac{1}{2}\mathbf{b} - \frac{1}{4}\mathbf{a}\right)$ $-\frac{1}{2} = -\frac{n}{4}$ $\frac{1}{2} + k = \frac{n}{2}$	M1	For equating <i>their</i> (c) and (d) and then equating like vectors to obtain 2 equations
	<i>n</i> = 2	A1	
	$k = \frac{1}{2}$	A1	
9(a)(i)	$v = 20\cos 2t$ when $t = \pi$, $v = 20$	B1	
9(a)(ii)	$20\cos 2t = 0$	M1	Equating <i>their</i> (i) to zero, must be a cosine and attempt to solve
	$t = \frac{\pi}{4}$	A1	
9(a)(iii)	$a = -40\sin 2t$	M1	Attempt to differentiate <i>their v</i> , dep on previous M mark, and use <i>their</i> value for (ii)
	-40	A1	
9(b)(i)	35	B 1	
9(b)(ii)	$112.5 = \frac{1}{2}(35 + x) \times 5$	M1	Use of area under appropriate part of the graph
	32	A1	-0
	x=10 Satp	re A1	
9(b)(iii)	$\frac{25}{5} = \frac{10}{t'}$	M1	Using a ratio method or otherwise, find extra time to stop = $2s$ or equivalent
	<i>t</i> '=2	A1	
	27	A1	

Question	Answer	Marks	Partial Marks
10(a)	$3x = -\frac{5\pi}{4} - \frac{\pi}{4}, \frac{3\pi}{4}$	M1	For a correct attempt to solve, may be implied by one correct solution
	$x = -\frac{\pi}{12}$	A1	
	$x = \frac{\pi}{4}$	A1	
	$x = -\frac{5\pi}{12}$	A1	
10(b)		B1	Shape – must have three 'parts' with asymptotes
		B1	For correct <i>x</i> -coordinates
		B1	For correct <i>y</i> -coordinate

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 80 0606/13 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)	f > 3	B1	Allow <i>y</i> but not <i>x</i>
	$g \in \mathbb{R}$	B1	Allow <i>y</i> but not <i>x</i>
1(b)	$\ln(x-3)$	B1	
	$\ln(x-3) = 9$ $x-3 = e^9$	M1	For attempt to equate to 9 and solve, must get rid of ln
	$x = e^9 + 3$	A1	
1(c)	9(9x-5)-5=112	M1	For correct order of operation
	<i>x</i> = 2	A1	
2(a)	Either $2\log_4 y = \log_2 y$ Or $\log_2 x = 2\log_4 x$	B1	
	Either $\log_2 x + \log_2 y = 8$ leading to $\log_2 xy = 8$ Or $2\log_4 x + 2\log_4 y = 8$ leading to $\log_4 xy = 4$	M1	For use of log law
	<i>xy</i> = 256	A1	
2(b)	$2y^2 - 3y + 1 = 0$	B1	
	$y = \frac{1}{2}, 1$	M1	For attempt to solve for <i>y</i>
	x = -1	A1	
	<i>x</i> = 0	A1	
3(a)	$v = \left(2t+1\right)^{\frac{1}{2}} \left(+c\right)$	B1	For $v = (2t+1)^{\frac{1}{2}}$ condone absence of <i>c</i>
	8 = 1 + c, c = 7	M1	For attempt to find <i>c</i> must have $k(2t+1)^{\frac{1}{2}}$
	$v = (2t+1)^{\frac{1}{2}} + 7$	A1	

Question	Answer	Marks	Partial Marks
3(b)	$s = \frac{1}{3} (2t+1)^{\frac{3}{2}} + 7t(+d)$	B1	For $\frac{1}{3}(2t+1)^{\frac{3}{2}}$
		M1	For attempt to integrate <i>their</i> answer to (a), must have $k(2t+1)^{\frac{1}{2}}$ in (a)
	$4 = \frac{1}{3} + d , d = \frac{11}{3}$	M1	Attempt to find <i>d</i>
	$s = \frac{1}{3} \left(2t + 1 \right)^{\frac{3}{2}} + 7t + \frac{11}{3}$	A1	
4(a)	$2\left(x+\frac{3}{4}\right)^2-\frac{41}{8}$	B3	B1 for 2 B1 for $\frac{3}{4}$
	G	×/	B1 for $-\frac{41}{8}$
4(b)	$\left(-\frac{3}{4}, -\frac{41}{8}\right)$	B2	B1 for $-\frac{3}{4}$ or FT on <i>their</i> $-b$ B1 for $-\frac{41}{8}$ or FT on <i>their</i> c
4(c)		B 1	For shape with max in 2 nd quadrant
	Higher of Higher	B1	For x-intercepts $\frac{-3 \pm \sqrt{41}}{4}$
	92.satp	B1	For <i>y</i> -intercept of 4 and cusps
4(d)	$\frac{41}{8}$	B1	FT on <i>their c</i>

Question	Answer	Marks	Partial Marks
5(a)	p(3): $162+9a+36+b=11$ p(-1): $-6+a-12+b=-21$	M1	For attempt at $p(3)$ and $p(-1)$
	9a + b + 187 = 0a + b + 3 = 0	A1	for both, may be implied by correct work later
	$a = -23, \qquad b = 20$	M1	attempt to solve simultaneous equations
		A1	For both
	$p(x) = (x-2)(6x^2 - 11x - 10)$	M1	For attempt to factorise or use algebraic long division
		A1	For $(6x^2 - 11x - 10)$
5(b)	p(x) = (x-2)(3x+2)(2x-5)	M1	For attempt to factorise or use quadratic formula – must be seen
	$2, -\frac{2}{3}, \frac{5}{2}$	A1	For all three solutions
6(a)	$\frac{1}{13} \begin{pmatrix} 5\\ -12 \end{pmatrix}$	B1	
6(b)	4 - 2k = -10r $1 + 3k = 5r$	M1	equating like vectors to obtain 2 equations
	$r = -\frac{7}{10}, \ k = -\frac{3}{2}$	M1	Dep on previous M mark, for attempt to solve simultaneously
	3q-2p	A1	0
6(c)(i)	3q-2p	B1	
6(c)(ii)	9 q – 6 p	B1	
6(c)(iii)	A common point of <i>A</i> and the same direction vector	B1	
6(c)(iv)	1:2	B1	
7(a)	$\frac{1}{2} \times 10^2 \times \theta = 35 \text{ so } \theta = 0.7$	B1	

Question	Answer	Marks	Partial Marks
7(b)	Arc length CD: 7	B1	
	$\sin(0.35) = \frac{AB/2}{12}$	M1	For a complete method to find <i>AB</i> , could be using cosine rule
	AB = 8.23(0)	A1	
	Perimeter = $7 + 4 + 8.23 = 19.2$	A1	
7(c)	Area of triangle $=\frac{1}{2}12^2 \sin 0.7$	M1	For complete attempt at triangle area, may use equivalent method
	Area of triangle $= 46.4$	A1	
	Shaded area =11.4	A1	Follow through on <i>their</i> area of the triangle
8(a)	$\frac{n}{2}(14+(n-1)0.4)$	B1	
	$\frac{n}{2}(14 + (n-1)0.4) > 300$	M1	Attempt to form a 3 term inequality and find the positive critical value
	$0.4n^2 + 13.6n - 600 > 0$		
	Positive critical value 25.29	A1	
	26 terms	A1	
8(b)	a + ar = 9	B1	
	$\frac{a}{1-r} = 36$	B1	0.
	36(1+r)(1-r)=9	M1	attempt at solution of simultaneous equations
	$r = \frac{\sqrt{3}}{2}$	A1	

Question	Answer	Marks	Partial Marks
9	x(5x-3) = 2 $5x^2 - 3x - 2 = 0$	M1	attempt at a 3-term quadratic equation in one variable with solution
	$x = 1, \ x = -\frac{2}{5}$	A1	Allow if $x = -\frac{2}{5}$ not seen
	A (1, 2)	A1	
	$B\left(\frac{3}{5}, 0\right)$	B1	
	Area of triangle $=\frac{2}{5}$	M1	Using <i>their A</i> and <i>B</i>
	Area under curve: $\int_{1}^{3} \frac{2}{x} dx = \left[2 \ln x\right]_{1}^{3}$	B1	For $\left[2\ln x\right]_{l}^{3}$
	$= 2 \ln 3$	M1	For use of limits
	Total area $=\frac{2}{5} + \ln 9$	A1	
10(a)	$\frac{dy}{dx} = \frac{1}{2}x(x+2)^{-\frac{1}{2}} + (x+2)^{\frac{1}{2}}$	B1	For $\frac{1}{2}(x+2)^{-\frac{1}{2}}$
		M1	For differentiation of a product
		A1	
	$\frac{dy}{dx} = \frac{1}{2}(x+2)^{-\frac{1}{2}}[x+2(x+2)]$	M1	For attempt to simplify
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x+4}{2\sqrt{x+2}}$	A1	
10(b)	3x + 4 = 0	M1	For setting <i>their</i> numerator in (a) to zero and attempt to solve
	$x = -\frac{4}{3}$	A1	
	$y = -\frac{4\sqrt{6}}{9} \text{ oe}$	A1	
10(c)	Using the gradient method or inspection of <i>y</i> -coordinates either side of stationary point. Allow use of second derivative	M1	complete method
	Minimum	A1	Must be from correct work

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 12 MARK SCHEME Maximum Mark: 80 0606/12 March 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FŤ	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(a)	Satpre	P-3	 B1 For correct shape with minimum point in the fourth quadrant and the maximum point in the first quadrant. Ends of the curve must be in the 2nd and 4th quadrants B1 for correct <i>x</i>- intercepts (-1,0), (2,0), (4,0) B1 for correct <i>y</i>-intercept (0,-24)
1(b)	<i>x</i> < -1	B1	
	2 < <i>x</i> < 4	B1	

Question	Answer	Marks	Guidance
2	$2x^{2} + 4x + k - 1 = kx + 3$ $2x^{2} + (4 - k)x + (k - 4) = 0$	2	M1 for attempt to equate the line and curve and simplify to a 3 term quadratic equation = 0 A1 for a correct equation, allow equivalent form
	$\left(4-k\right)^2 = 4 \times 2 \times \left(k-4\right)$	M1	Use of discriminant in any form
	$k^{2} - 16k + 48 = 0$ k = 12, k = 4 Do not isw	2	Dep M1 on previous M mark, for attempt to solve a quadratic equation in k A1 for both
	Alternative 1		
	$2x^2 + 4x + k - 1 = kx + 3$	(2	M1 for attempt to equate the line and curve and simplify A1 for a correct equation, allow
	$2x^{2} + (4-k)x + (k-4) = 0$		equivalent form
	k = 4x + 4 2 $\left(\frac{k-4}{4}\right)^{2} + (4-k)\left(\frac{k-4}{4}\right) + (k-4) = 0$	M1	Equating gradients and substitution to obtain a quadratic equation in terms of k
	$k^{2} - 16k + 48 = 0$ k = 12 and $k = 4Do not isw$	2)	Dep M1 on previous M mark, for attempt to solve a quadratic equation in k A1 for both
	Alternative 2		5
	$2x^{2} + 4x + k - 1 = kx + 3$ $2x^{2} + (4 - k)x + (k - 4) = 0$	(2	M1 for attempt to equate the line and curve and simplify A1 for a correct equation, allow equivalent form
	k = 4x + 4 $2x^2 - 4x = 0$ x = 0, 2	M1	Equating gradients and substitution to obtain a quadratic equation in terms of x and solution of this equation to obtain 2 x values
	k = 4x + 4 k = 12 and k = 4 Do not isw	2)	Dep M1 on previous M mark, for substitution of their x values to obtain k values A1 for both

Question	Answer	Marks	Guidance
3	<i>b</i> = 243	B1	Must be evaluated
	${}^{5}C_{1} \times 3^{4} \times (-a) = -81$	M1	Allow equivalent with no negative signs, allow sign error
	$a = \frac{1}{5}$ oe	A1	
	${}^{5}C_{2} \times 3^{3} \times (-a)^{2}$	M1	Allow with <i>their</i> a^2
	$c = \frac{54}{5}$ or 10.8 oe	A1	Must be from correct working
4	$\frac{dy}{dx} = \frac{6x}{3x^2 - 4} - \frac{x^2}{2}$	2	M1 for attempt to differentiate, must have at least one term correct A1 All correct
	When $x = 2$, $\frac{dy}{dx} = -\frac{1}{2}$	B1	5
	When $x = 2$, $y = \ln 8 - \frac{4}{3}$, or exact equivalent	B1	Allow $\ln 8 - \frac{8}{6}$
	Equation of tangent $y - \left(\ln 8 - \frac{4}{3}\right) = -\frac{1}{2}(x-2)$ oe	M1	Dep on first M mark, allow unsimplified, allow use of decimals
	$\left(0, \ln 8 - \frac{1}{3}\right)$, or exact equivalent	A1	Allow $x = 0, y = \ln 8 - \frac{1}{3}$
5(a)	$\frac{1}{2}(5-\sqrt{3})(2+4\sqrt{3})$	M1	Need to see $\frac{1}{2}(10 - 18\sqrt{3} - 12)$ or
	$\frac{1}{2}(5-\sqrt{3})(2+4\sqrt{3})$ $\frac{1}{2}(10-2\sqrt{3}+20\sqrt{3}-12)$		$(5-9\sqrt{3}-6)$ minimum for M1
	$9\sqrt{3}-1$	A1	
5(b)	$\tan ABC = \frac{5 - \sqrt{3}}{1 + 2\sqrt{3}} \times \frac{1 - 2\sqrt{3}}{1 - 2\sqrt{3}}$ $= \frac{5 - \sqrt{3} - 10\sqrt{3} + 6}{1 - 12}$	M1	Attempt at trig ratio and attempt to rationalise. Need to see $5-11\sqrt{3}+6$ in the numerator as a minimum for M1 Allow one error only
	$=\sqrt{3}-1$	2	A1 for $\sqrt{3}$, A1 for -1

Question	Answer	Marks	Guidance
5(c)	$\sec^{2} ABC = \tan^{2} ABC + 1$ $= (\sqrt{3} - 1)^{2} + 1 \text{ oe}$	M1	Allow use of correct identity with <i>their</i> (b)
	$=5-2\sqrt{3}$	A1	
	Alternative		
	$\sec^{2} ABC = \left(\frac{\sqrt{\left(5 - \sqrt{3}\right)^{2} + \left(1 + 2\sqrt{3}\right)^{2}}}{1 + 2\sqrt{3}}\right)^{2}$	(M1	For a complete method using triangle <i>ABD</i> , with sufficient detail in the expansions and rationalisation
	leads to $\frac{41-6\sqrt{3}}{13+4\sqrt{3}}$ leads to		
	$\frac{533 + 72 - 242\sqrt{3}}{121}$	RÆ	
	$=5-2\sqrt{3}$	A1)	
6(a)	Midpoint = (2,7)	B1	
	Gradient of $AB = \frac{6}{8}$ oe	B1	-
	Perp bisector: $y-7 = -\frac{4}{3}(x-2)$	M1	Must be using a perp gradient and a mid-point
	4x + 3y - 29 = 0	A1	Allow in any order but must be equated to zero.
6(b)	3 Satore	B1	FT on their (a)
6(c)	Displacement vector $\overrightarrow{CM} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$	M1	Allow equivalent vectors or other methods. May be implied by one correct coordinate.
	(-1,11)	A1	Allow $x = -1$, $y = 11$

Question	Answer	Marks	Guidance
7(a)	$p\left(-\frac{1}{2}\right): -\frac{a}{8} + \frac{3}{4} - \frac{b}{2} - 12 = 0$ p(3): 27a + 27 + 3b - 12 = 105	M1	For attempt at an equation using either $p\left(-\frac{1}{2}\right)$ or $p(3)$
	a + 4b = -90	A1	Allow equivalent with constants collected
	9a + b = 30	A1	Allow equivalent with constants collected
	a = 6, b = -24	2	M1 for attempt to solve <i>their</i> equations, dep on first M mark A1 for both
7(b)	$(2x+1)(3x^2-12)$	2	B1 for $3x^2$ B1 for -12 and no extra term in x
7(c)	$x = -\frac{1}{2}$	B1	
	$x = \pm 2$	B1	Dep on both B marks in part (b)
8(a)	$\begin{pmatrix} -20\\ 48 \end{pmatrix}$	B1	
8(b)	$\begin{pmatrix} -20\\ 48 \end{pmatrix} t$	B1	Follow through on <i>their</i> (a)
8(c)	$\binom{12}{8} + \binom{-25}{45}t \text{ oe}$	B1	5
8(d)	$\binom{12}{8} + \binom{-5}{-3}t$ oe	B1	
8(e)	$\left \overrightarrow{PQ}\right ^{2} = (12 - 5t)^{2} + (8 - 3t)^{2}$	M1	Attempt to find modulus of <i>their</i> (d) which must contain terms in <i>t</i>
	$\left \overrightarrow{PQ} \right = \sqrt{144 - 120t + 25t^2 + 64 - 48t + 9t^2}$ $PQ = \sqrt{34t^2 - 168t + 208}$	A1	Must see correct expansion leading to given answer.

Question	Answer	Marks	Guidance
8(f)	$34t^2 - 168t + 204 = 0$	M1	For dealing with square root correctly and attempt to solve a 3 term quadratic equation
	2.15 only	A1	
9(a)(i)	360	B1	
9(a)(ii)	60	B1	FT on <i>their</i> (b)(i) divided by 6
9(a)(iii)	A complete plan for dealing with odd numbers and numbers greater than 7000, see below	M1	Must be considering each case
	Starts with 8 and ends with $odd = 48$	B1	
	Starts with 7 or 9 and ends with $odd = 72$	B1	
	120	A1	
	Alternative		
	Their answer to (a)(i) –odd numbers starting with 2–odd number starting with 3 or 5–all even numbers	(M1	Must be considering each case
	All even numbers $=120$ Odd and starting with 2 $=48$ Odd and starting with 3 or 5 $=72$	2	B1 for 1 correct
	120	A1)	
9(b)	$\frac{n!}{(n-3)!3!} = 92n$	B1	
	n(n-1)(n-2) = 552n	M1	Attempt to simplify factorials
	$n(n^2 - 3n - 550) = 0$	M1	Dep on previous M mark for expansion and simplification to a
	n(n-25)(n+22) = 0		cubic or quadratic in <i>n</i> and attempt to solve
	<i>n</i> = 25	A1	For $n = 25$ only
10(a)	$\alpha + 45^{\circ} = 144.7^{\circ}, 324.7^{\circ}$	3	M1 for attempt to solve using a correct order of operations, may be implied by one correct solution A1 for 1 correct solution A1 for a second correct solution and
	$\alpha = 99.7^{\circ}, 279.7^{\circ}$		no extras

Question	Answer	Marks	Guidance
10(b)(i)	$\frac{(\sin\theta+1)-(\sin\theta-1)}{\sin^2\theta-1}$	M1	For dealing with fractions
	$\frac{2}{-\cos^2\theta}$	M1	For simplification of numerator and use of the correct identity
	$-2\sec^2\theta$ $a=-2$	A1	Must see previous line for A1
10(b)(ii)	$-2\sec^2 3\phi = -8 \text{ oe}$ $\sec 3\phi = \pm 2$	M1	For making use of (i) and attempt to simplify in terms of 3ϕ
	$\cos 3\phi = \pm \frac{1}{2}$	A1	
	$3\phi = -\frac{2\pi}{3}, \ -\frac{\pi}{3}, \ \frac{\pi}{3}, \ \frac{2\pi}{3}$ $\phi = -\frac{2\pi}{9}, \ -\frac{\pi}{9}, \ \frac{\pi}{9}, \ \frac{2\pi}{9}$ or $\pm 0.349, \ \pm 0.698,$	3	Dep M1 for attempt to solve, may be implied by one correct solution A1 for each pair of correct solutions
11	$\left[\ln(2x+3) + \ln(3x-1) - \ln x\right]_{1}^{a}$	2	B1 for 1 term correct B1 all correct
	$(\ln(2a+3) + \ln(3a-1) - \ln a) - (\ln 5 + \ln 2)$	M1	Correct substitution of limits, dep on first B1, ignore equality Must have 3 terms involving <i>x</i>
	$\ln\frac{(2a+3)(3a-1)}{10a} = \ln 2.4$	M1	For use of both addition and subtraction rules, ignore equality Or for use of addition rule on each side of an equation.
	$6a^2 - 17a - 3 = 0$	A1	
	<i>a</i> = 3	2	M1 for solution of their quadratic A1 for $a = 3$ only

ADDITIONAL MATHEMATICS

0606/11 October/November 2019

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1	$A' \cap B$ oe	B1	
	$(X \cap Y) \cup (X \cap Z)$ or $X \cap (Y \cup Z)$	B1	
2	$2x^2 + 3x + k = kx - 3$	M1	For an attempt to equate and simplify to a 3 term quadratic equation, allow an error in one term
	$2x^{2} + (3-k)x + (k+3) = 0$	A1	
	$(3-k)^2 - 4 \times 2 \times (k+3)$	M1	For attempt to use the discriminant, allow previous error, leading to a quadratic equation in terms of k
	$k^2 - 14k - 15 = 0$ giving critical values of -1 and 15	A1	For critical values
	-1 < <i>k</i> < 15	A1	
3	Either $7^{x} \times 7^{2y}$ or $49^{\frac{x}{2}} \times 49^{y}$ or $5^{5x} \times 5^{2y}$ or $25^{\frac{5x}{2}} \times 25^{y}$	M1	For expressing the terms on the left hand side of either one of the 2 equations in terms of powers of 7, 49, 5 or 25
	$7^x \times 7^{2y} = 7^0$ or $49^{\frac{x}{2}} \times 49^y = 49^0$	A1	
	$5^{5x} \times 5^{2y} = 5^{-2}$ or $25^{\frac{5x}{2}} \times 25^{y} = 25^{-1}$	A1	
	leading to $x + 2y = 0$ and $5x + 2y = -2$	M1	For attempt to solve two linear equations, with integer coefficients and constants, in terms of x and y
	$x = -\frac{1}{2}, y = \frac{1}{4}$	A1	
4(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\ln\left(4x^2+1\right)\right) = \frac{8x}{4x^2+1}$	B1	
	$(2x-3)\frac{8x}{(-2x-3)} - 2\ln(4x^2+1)$	M1	For attempt to differentiate a quotient
	$\frac{dy}{dx} = \frac{(2x-3)\frac{8x}{(4x^2+1)} - 2\ln(4x^2+1)}{(2x-3)^2}$	A1	For all other terms, not including $\frac{8x}{4x^2+1}$, correct
4(ii)	When $x = 2$, $\frac{dy}{dx} = \frac{16}{17} - 2\ln 17$ = -4.73	M1	For attempt to find value of $\frac{dy}{dx}$ when $x = 2$ and multiply by <i>h</i>
	Change in $y = -4.73h$	A1	

Question	Answer	Marks	Guidance
5(i)	f > 1	B1	Must be using correct notation
	$g \in \mathbb{R}$	B1	Must be using correct notation
5(ii)	g(0) = 1, g(1) = 2 and attempt at f(2)	M1	For attempt at g ² and correct order
	f(2) = 164.8 awrt 165	A1	
5(iii)		B3	B1 for correct f and $(0,4)$, must be in first and second quadrant B1 for correct f ¹ and $(4,0)$, must be in first and fourth quadrant B1 for $y = x$ and/or symmetry implied, by 'matching intercepts'. No intersection.
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = k(8x+5)^{-\frac{1}{2}}$	M1	For attempt to differentiate, must be in the form $k(8x + 5)^{-\frac{1}{2}}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4(8x+5)^{-\frac{1}{2}}$	A1	
	When $x = \frac{1}{2}, y = 3$	B1	
	Normal: $y - 3 = -\frac{3}{4}\left(x - \frac{1}{2}\right)$	M1	For attempt at the normal when $x = \frac{1}{2}$, using correct process for <i>their</i> $\frac{dy}{dx}$ and <i>their y</i> .
	6x + 8y - 27 = 0	A1	

Question	Answer	Marks	Guidance
7(i)	$\lg y = \lg A + x \lg b$	B1	For statement, may be implied by subsequent work
	Either $6 = \lg A + 3.4 \lg b$ or $3.6 = \lg A + 2.2 \lg b$	M1	For one correct equation
		M1	For another correct equation and attempt to solve simultaneously
	$\lg b = 2, b = 100$	A1	
	$\lg A = -0.8, A = 10^{-0.8} \text{ or } 0.158$	A1	
	Or Gradient = $\lg b = 2$	M1	equating gradient to lg b and attempt to evaluate
	<i>b</i> = 100	A1	Must be identified as <i>b</i>
	$6 = \lg A + 3.4 \lg b$ or $3.6 = \lg A + 2.2 \lg b$	M1	For a correct equation and attempt to find $\lg A$
	$\lg A = -0.8, A = 10^{-0.8} \text{ or } 0.158$	A1	Must be identified as A
7(ii)	$\lg 900 = -0.8 + 2x$ oe	M1	For correct use of $y = 900$
	x = 1.88	A1	
8(i)	$BC^{2} = (7 + \sqrt{5})^{2} + (7 - \sqrt{5})^{2}$	M1	For use of Pythagoras' theorem and attempt to expand and simplify
	$= 49 + 14\sqrt{5} + 5 + 49 - 14\sqrt{5} + 5$ $= 108$		
	$BC = 6\sqrt{3}$	A1	.5
	$Perimeter = 22 + 6\sqrt{5} + 6\sqrt{3}$	A1	0

Question	Answer	Marks	Guidance
8(ii)	Either $\frac{1}{2} \left(4 + 3\sqrt{5} + 11 + 2\sqrt{5} \right) \left(7 + \sqrt{5} \right)$ $= \frac{1}{2} \left(15 + 5\sqrt{5} \right) \left(7 + \sqrt{5} \right)$ $= \frac{1}{2} \left(105 + 35\sqrt{5} + 15\sqrt{5} + 25 \right)$	M1	Either For a valid method and attempt to expand out and simplify
	Or $(4+3\sqrt{5})(7+\sqrt{5})+\frac{1}{2}(7+\sqrt{5})(7-\sqrt{5})$ $= 28+21\sqrt{5}+4\sqrt{5}+15+\frac{1}{2}(49-5)$	M1	Or For a valid method and attempt to expand out and simplify
	Area = $65 + 25\sqrt{5}$	A2	A1 for each term
9(i)	Either $15^2 = 10^2 + 10^2 - 200 \cos AOB$ $\cos AOB = -0.125$	M1	For use of cosine rule
	<i>AOB</i> = 1.696 so 1.70 to 2 dp	A1	Must have justification to 2 dp
	Or $ sin\left(\frac{AOB}{2}\right) = \frac{7.5}{10} $ $ \frac{AOB}{2} = 0.8481 $	M1	For use of basic trig
	<i>AOB</i> = 1.696 so 1.70 to 2 dp	A1	.5

Question	Answer	Marks	Guidance
9(ii)	Angle $DOC = \frac{\pi}{3}$	B1	
	Either $AOD = BOC = 0.5\left(2\pi - \frac{\pi}{3} - 1.696\right)$ AOD = BOC = 1.77	M1	For attempt to get <i>AOD</i> or <i>BOC</i>
	Arc lengths = 17.7	M1	For attempt at arc length using their previous answer
	Perimeter = $15 + 10 + (2 \times 17.7) = 60.4$	A1	
	Or Arc $AB = 17$ or Arc $CD = \frac{10\pi}{3}$	M1	For either arc length
	$(20\pi - \operatorname{arc} AB - \operatorname{arc} CD)$	M1	0
	Perimeter = 60.4	A1	
9(iii)	Either Area of each sector = $\frac{1}{2}10^2 (1.770)$	M1	For area of sector using their <i>BOC</i>
	Area of triangles = $\left(\frac{1}{2} \times 100 \times \sin\frac{\pi}{3}\right) + \left(\frac{1}{2} \times 100 \sin 1.70\right)$	M1	For area of one triangle using the sine rule oe
	Total area = $177 + 43.3 + 49.6$	M1	For plan
	Area = awrt 270	A1	0
	Or Area of upper segment = $\frac{1}{2}10^2(1.696 - \sin 1.696)$	M1	For area of a sector or area of a triangle using the sine rule oe
	Area of lower segment = $\frac{1}{2}10^2 \left(\frac{\pi}{3} - \sin\frac{\pi}{3}\right)$	M1	For whichever has not been obtained in previous part
	Shaded area = 100π – are of the 2 segments Area = $314.2 - 35.2 - 9.06$	M1	For plan
	Area = awrt 270	A1	

Question	Answer	Marks	Guidance
10	$1.5 = 2 + \cos 3x$ $\cos 3x = -0.5$	M1	For correct attempt to find points of intersection
	$3x = \frac{2\pi}{3}, \ \frac{4\pi}{3}$	M1	For dealing with $3x$ correctly
	$x = \frac{2\pi}{9} \text{ or } 40^{\circ}$	A1	
	$x = \frac{4\pi}{9} \text{ or } 80^{\circ}$	A1	
	Either $\int \frac{\frac{4\pi}{9}}{\frac{2\pi}{9}} 1.5 - (2 + \cos 3x) dx$	M1	For subtraction method – condone omission of or incorrect limits
	$\left[-0.5x - k\sin 3x\right]_{\frac{2\pi}{9}}^{\frac{4\pi}{9}}$	MI	For attempt to integrate – condone omission of or incorrect limits
	$\left[-0.5x - \frac{1}{3}\sin 3x\right]_{\frac{2\pi}{9}}^{\frac{4\pi}{9}}$	A1	All correct – condone omission of or incorrect limits
	$\left(-\frac{2\pi}{9}+\frac{\sqrt{3}}{6}\right)-\left(-\frac{\pi}{9}-\frac{\sqrt{3}}{6}\right)$	M1	Dep for application of limits, must be in radians
	Area = $\frac{\sqrt{3}}{3} - \frac{\pi}{9}$	A1	. <u></u>
	Or $\left(1.5 \times \frac{2\pi}{9}\right)$	M1	For attempt at rectangle (must include subtraction subsequently)
	$\left[2x+k\sin 3x\right]_{\frac{2\pi}{9}}^{\frac{4\pi}{9}}$	M1	For attempt to integrate – condone omission of or incorrect limits
	$\left[2x + \frac{1}{3}\sin 3x\right]_{\underline{2\pi}}^{\underline{4\pi}}$	A1	All correct – condone omission of or incorrect limits
	$\left(\left(\frac{8\pi}{9} - \frac{\sqrt{3}}{6}\right) - \left(\frac{4\pi}{9} + \frac{\sqrt{3}}{6}\right)\right)$	M1	Dep for application of limits, must be in radians
	Area = $\frac{\sqrt{3}}{3} - \frac{\pi}{9}$	A1	

Question	Answer	Marks	Guidance
11(a)(i)	362 880	B1	
11(a)(ii)	7! ×2	B1	For 7!
	10 080	B1	For 7! ×2 leading to 10080
11(a)(iii)	$Total = 4! \times 4! \times 3! = 3456$	B3	B1 for treating as 4 separate units 4! B1 for either number of ways of arranging the maths books amongst themselves 4! or the number of ways of arranging the physics books amongst themselves 3!
11(b)(i)	18 564	B1	
11(b)(ii)	Total 3738	B4	B1 4 boys 3150 B1 5 boys 560 B1 6 boys 28
12	$\frac{\mathrm{d}y}{\mathrm{d}x} = k\cos\left(x + \frac{\pi}{3}\right) + c$	M1	For attempt to integrate
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\cos\left(x + \frac{\pi}{3}\right) + c$	A1	All correct, condone omission of $+c$
	$5 = -2\cos\frac{2\pi}{3} + c$	M1	Dep for attempt to find <i>c</i>
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\cos\left(x + \frac{\pi}{3}\right) + 4$	A1	5
	$y = p \sin\left(x + \frac{\pi}{3}\right) (+qx+d)$	M1	attempt to integrate a second time to obtain $y = p \sin\left(x + \frac{\pi}{3}\right)$
	$y = -2\sin\left(x + \frac{\pi}{3}\right) + 4x + d$	A1	All correct, condone omission of $+d$
	$\frac{5\pi}{3} = -2\sin\frac{2\pi}{3} + \frac{4\pi}{3} + d$	M1	Dep for attempt to find a second arbitrary constant
	$y = -2\sin\left(x + \frac{\pi}{3}\right) + 4x + \frac{\pi}{3} + \sqrt{3}$ or $y = -2\sin\left(x + \frac{\pi}{3}\right) + 4x + 2.78$	A1	
	$\int_{0}^{0} y = -2 \sin \left(\frac{x+3}{3} \right)^{+4x+2.78}$		

ADDITIONAL MATHEMATICS

0606/12 October/November 2019

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Guidance
1(i)		B3	B1 for <i>y</i> intercept (0,1), must have a graph B1 for starting and finishing at $(\pm 90, -1)$ B1 for all correct, must be attempt at a curve passing through $(\pm 30, -1)$ and $(\pm 60, -3)$
1(ii)	2	B 1	
1(iii)	$120^{\circ} \text{ or } \frac{2\pi}{3}$	B1	
2	$\lg y^2 = mx + c$	B 1	May be implied by subsequent work
	Gradient = -4 (= m)	B1	
	<i>c</i> = 32	B1	0
	$y = 10^{\text{their } \frac{c}{2} + \text{their } \frac{mx}{2}}$	M1	Dep on first B1 Use of $\lg y^2 = 2\lg y$ and $10^{their \frac{c}{2} + their \frac{mx}{2}}$ Or use of $y^2 = 10^{(their c+their mx)}$ and $10^{their \frac{c}{2} + their \frac{mx}{2}}$
	$y = 10^{16-2x}$	A1	
3	$\left(1 - \frac{x}{7}\right)^{14} = 1 - 2x + \frac{13}{7}x^2$	B2	All terms correct or B1 for 2 correct terms
	$(1-2x)^4 = 1-8x+24x^2$	B2	First three terms correct or B1 for one incorrect term
	Product = $1 - 10x + \frac{293}{7}x^2$	M1	For attempt to multiply out to obtain $(1) - 10x + mx^2$, $m \neq 16$
	$a = -10, \ b = \frac{293}{7}$	A1	For both, need to identify <i>a</i> and <i>b</i>
4(i)		B4	B1 for shape, with max in first quadrant B1 for $(-0.5,0)$ and $(5,0)$ B1 for $(0,5)$ B1 all correct, with cusps and correct curvature for $x < 0.5$ and $x > 5$

Question	Answer	Marks	Guidance
4(ii)	k = 0	B1	Not from incorrect work
	Stationary point when $y = \pm \frac{121}{8}$ or ± 15.125	M1	For attempt to find <i>y</i> -coordinate of stationary point, must be a complete method i.e. Use of calculus Use of discriminant, Use of completing the square Use of symmetry Allow if seen in part (i), but must be used in (ii)
	$k > \frac{121}{8}$	A1	cao
5a(i)	fg	B1	
5a(ii)	g ⁻¹	B1	
5a(iii)	\mathbf{f}^{-1}	B1	
5a(iv)	g ²	B1	
5(b)(i)	Undefined at $x = 0$ oe	B1	
5(b)(ii)	4 = a + b h'(x) = $\frac{p}{x^3}$ and attempt at h'(1)	M1	For attempt at h(1) and differentiation to obtain h'(1), must have the form h'(x) = $\frac{p}{x^3}$ oe
	b = -8 $a = 12$	A1	For both
6(a)	$p^{\frac{7}{2}}q^{\frac{5}{3}}r^{-\frac{7}{3}}$	B3	B1 for each term or for each of $a = \frac{7}{2}$, $b = \frac{5}{3}$, $c = -\frac{7}{3}$

Question	Answer	Marks	Guidance
6(b)	Either $\log_7 x + \frac{2}{\log_7 x} = 3$	M1	For change of base.
	$(\log_7 x)^2 - 3\log_7 x + 2 = 0$ $\log_7 x = 1, \log_7 x = 2$	M1	Dep for forming a 3 term quadratic equation in $\log_7 x$ and a correct attempt to solve
	x = 7, x = 49	M1	Dep on both previous M marks for dealing with a base 7 logarithm correctly
		A1	For both
	$\mathbf{Or} \ \frac{1}{\log_x 7} + 2\log_x 7 = 3$	M1	For change of base
	$2(\log_x 7)^2 - 3\log_x 7 + 1 = 0$ $\log_x 7 = 1, \log_x 7 = 0.5$	MI	Dep for forming a 3 term quadratic equation in $\log_x 7$ and a correct attempt to solve
	x = 7, x = 49	M1	Dep on both previous M marks for dealing with a base <i>x</i> logarithm correctly
		A1	For both
	Or $\frac{\lg x}{\lg 7} + 2\frac{\lg 7}{\lg x} = 3 \text{ or } \lg 1000$	M1	For change of base
	$(\lg x)^{2} - 3\lg 7(\lg x) + 2(\lg 7)^{2} = 0$ lg x = 2lg 7 lg x = lg 7	M1	Dep for forming a 3 term quadratic equation in lg <i>x</i> and a correct attempt to solve
	$\frac{\lg x = 2 \lg 7}{x = 7, x = 49}$	M1	Dep on both previous M marks for dealing with a base 10 logarithm correctly
		A1	For both, must be exact
7(i)	$\frac{dy}{dx} = (e^{x^2} + 1) + 2xe^{x^2}(x+5)$	B1	For $2xe^{x^2}$
		M1	For attempt at differentiating a product or expanding brackets and differentiating a product
		A1	For all other terms, apart from $2xe^{x^2}$, correct

October/November 2019

Question	Answer	Marks	Guidance
7(ii)	When $x = 0.5$, $\frac{dy}{dx} = 9.35$	M1	For attempt to find <i>their</i> $\frac{dy}{dx}$ when $x = 0.5$ and multiplication by p
	Approximate change = 9.35 <i>p</i>	A1	
7(iii)	$\frac{dy}{dx} \times \frac{dx}{dt} = \frac{dy}{dt}$ $9.346 \times \frac{dx}{dt} = 2$	M1	For use of correct rates of change equation using <i>their</i> $\frac{dy}{dx}$ when $x = 0.5$ and $\frac{dy}{dt} = 2$
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.214$	A1	FT on $\frac{2}{their \ 9.346}$ Must be correct to at least 3 sf
8(a)(i)	Either $ \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & 3 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} \text{ or } \begin{pmatrix} 2 & 1 \\ 1 & 3 \\ 1 & 1 \\ 0 & 1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} $	B2	For correct matrices in correct order or B1 if one correct matrix and a slip in one element of the other matrix
	Or $(4 \ 2 \ 0) \begin{pmatrix} 2 \ 1 \ 1 \ 0 \ 3 \\ 1 \ 3 \ 1 \ 1 \ 0 \\ 1 \ 0 \ 2 \ 3 \ 1 \end{pmatrix}$ or $(4 \ 2) \begin{pmatrix} 2 \ 1 \ 1 \ 0 \ 3 \\ 1 \ 3 \ 1 \ 1 \ 0 \end{pmatrix}$	B2	For correct matrices in correct order or B1 if one correct matrix and a slip in one element of the other matrix
8(a)(ii)	$ \begin{pmatrix} 10\\10\\6 & \text{or} (10 \ 10 \ 6 \ 2 \ 12) \end{pmatrix} $	M1	For matrix multiplication of <i>their</i> (i), with at least 2 elements correct, must be in correct form , may be unsimplified
	$\begin{bmatrix} 0 & 01 & (10 & 10 & 0 & 2 & 12) \\ 2 \\ 12 \end{bmatrix}$ Team E	A1	All correct and identifying team E
8(b)(i)	$\frac{1}{6} \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix}$	B2	B1 for $\frac{1}{6}$ and B1 for $\begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix}$

Question	Answer	Marks	Guidance
8(b)(ii)	$\mathbf{C} = \mathbf{A}^{-1}\mathbf{B}$	M1	For pre-multiplication by <i>their</i> inverse from (i)
	$\mathbf{C} = \frac{1}{6} \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 1 & -2 \end{pmatrix}$	M1	Dep for matrix multiplication, using <i>their</i> inverse from (i), at least 2 elements correct
	$=\frac{1}{6} \begin{pmatrix} 21 & -2 \\ -9 & -2 \end{pmatrix} \text{ oe}$	A1	
9(i)	$\pi r^2 h = 1200\pi$	B1	
	$h = \frac{1200}{r^2}$ or $\pi rh = \frac{1200\pi}{r}$ and substitution into their S	B1	Must have attempt to use in an equation for <i>S</i>
	$S = 2\pi r^{2} + \left(2\pi r \times \frac{1200}{r^{2}}\right)$ leading to given answer	B1	
9(ii)	$\frac{\mathrm{d}S}{\mathrm{d}r} = 4\pi r - \frac{2400\pi}{r^2}$	M1	Must obtain the form $Ar + \frac{B}{r^2}$
	When $\frac{dS}{dr} = 0$, $r = \sqrt[3]{600}$, 8.43	M1	Dep for equating to zero and attempt to solve to obtain $r =$
		A1	For correct <i>r</i>
	$S_{\min} = 1340 \text{ or } 1341$	A1	1.5
	Either $\frac{d^2S}{dr^2} = 4\pi + \frac{4800\pi}{r^3}$ $\frac{d^2S}{dr^2} > 0$ so minimum	B1	For a correct method to reach a correct conclusion If r is not calculated, then must state that r > 0
	Or Consideration of gradient e.g. r < 8.43 8.43 > 8.43 dS $ 0$ $+$ Minimum point	B1	Must be making a correct and convincing argument with sufficient detail

Question	Answer	Marks	Guidance
10(i)	Either $18^2 = 10^2 + 10^2 - 200 \cos AOB$	M1	Attempt to use cosine rule
	$\cos AOB = -0.62$	A1	Allow unsimplified
	AOB = 2.2395 or greater accuracy, so 2.24 (to 2 dp) or $AOB = 2.239$ so 2.24 (to 2 dp) AOB = 2.240 so 2.24 (to 2 dp)	A1	Must justify 2 dp
10(i)	Or $\sin \frac{AOB}{2} = \frac{9}{10}$ or $\tan \frac{AOB}{2} = \frac{9}{\sqrt{19}}$ or $\cos \frac{AOB}{2} = \frac{\sqrt{19}}{10}$	M1	Attempt at trig using a right angled triangle
	$\frac{AOB}{2} = \text{awrt } 1.12$	A1	
	AOB = 2.2395 or greater accuracy, so 2.24 (to 2 dp) or $AOB = 2.239$ so 2.24 (to 2 dp) AOB = 2.240 so 2.24 (to 2 dp)	A1	Must justify 2 dp
10(ii)	$AOC = 2\pi - 2(2.2395)$ or $\frac{AOC}{2}$ or $ABC = \pi - (2.2395)$ oe	M1	For attempt to find angle <i>AOC</i> or <i>ABC</i> $AOC = 2\pi - 2(their AOB)$ $ABC = \pi - (their AOB)$ oe
	<i>AOC</i> = 1.804 or 1.803	A1	Condone 1.8 or 1.80
	Arc length = 18.04 or 18.03	M1	For attempt at arc length using $10 \times their AOC$
	$AC = 20\sin\frac{AOC}{2} \text{ or } 36\sin\frac{ABC}{2}$ or $\sqrt{10^2 + 10^2 - 200\cos AOC}$ or $\sqrt{18^2 + 18^2 - 648\cos ABC}$ = 15.69 or 15.7	M1	For attempt at <i>AC</i> using <i>their AOC</i> , or <i>ABC</i> but $AOC \neq 2.24$ or $\frac{2\pi}{3}$
	Perimeter = 33.7	A1	Allow awrt 33.7

Question	Answer	Marks	Guidance
10(iii)	Area of sector = 50×1.804 = 90.2 or 90.15	M1	For attempt at sector area $\frac{1}{2} \times 10^2 \times their \ AOC$ <i>AOC</i> must be in radians
	Area of triangle = 50 sin 1.804 = 48.6 or 48.66	M1	For attempt at area of triangle $\frac{1}{2} \times 10^2 \times \sin \text{ their AOC}$ AOC must be in radians
	Shaded area = 41.6 or 41.5	A1	Lack of accuracy is penalised here
11	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(3x-1)^{\frac{1}{3}} + c$	M1	For $\left(\frac{dy}{dx}\right) = a(3x-1)^{\frac{1}{3}}$, condone omission of + c
	AT PI	A1	All correct, condone omission of <i>c</i>
	6 = 4 + <i>c</i>	M1	Dep for attempt to find <i>c</i>
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2\left(3x-1\right)^{\frac{1}{3}} + 2$	A1	All correct, may be implied by $c = 2$
	$y = \frac{1}{2} (3x - 1)^{\frac{4}{3}} + 2x + d$	M1	For attempt to integrate <i>their</i> $\frac{dy}{dx}$ to obtain the form $y = b(3x-1)^{\frac{4}{3}} (+mx+d)$
		A1	All correct, condone omission of d
	11=14+d	M1	Dep for attempt to find <i>d</i> , a second arbitrary constant, having used an arbitrary constant for $\frac{dy}{dx}$
	$y = \frac{1}{2} (3x - 1)^{\frac{4}{3}} + 2x - 3$	A1	

ADDITIONAL MATHEMATICS

0606/13 October/November 2019

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Guidance
1(i)	28+x 24+x	M1	for a Venn diagram showing at least 4 correct 'parts' in terms of x
	24-x 23-x 3+x	A1	for all 7 'parts' correct in terms of <i>x</i> on a Venn diagram or in working. May be implied by a correct equation.
	80+24+x+23-x+3+x=145 50+28+x+28-x+24+x=145 75+28+x+24-x+3+x=145 50+80+75-(23+28+24)+x=145 or equivalents	M1	for forming an equation in x using sum of 'parts' = 145 or 50+80+75-(23+28+24)+x=145 Equations must be seen
	<i>x</i> =15	A1	from correct working only
1(ii)	43	B1ft	for <i>their x</i> plus 28
2(i)	45 0 15 90 r ¹	B4	B1 for a maximum at $(0, 2)$ B1 for minimums at $y = -8$ and no other minimums B1 for starting at $(-90^{\circ}, 2)$ and finishing at $(90^{\circ}, 2)$ B1 for a fully correct curve with correct shape, particularly at end points, that has earned all three previous B marks.
2(ii)	5	B1	5
2(iii)	90°	B1	
3(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = kx \left(3x^2 - 1\right)^{-\frac{4}{3}}$	M1	
	$\frac{dy}{dx} = -\frac{1}{3} \times 6x \left(3x^2 - 1\right)^{-\frac{4}{3}}$	A1	
3(ii)	When $x = \sqrt{3}$, $\frac{dy}{dx} = -\frac{\sqrt{3}}{8}$ $-\frac{\sqrt{3}}{8}p$ or $-0.217p$	B1	FT on <i>their</i> $\frac{dy}{dx}$ of the form $kx(3x^2-1)^{-\frac{4}{3}}$
	8		

Question	Answer	Marks	Guidance
3(iii)	When $x = \sqrt{3}$, $y = \frac{1}{2}$	B1	for $y = \frac{1}{2}$
	Normal: $y - \frac{1}{2} = \frac{8}{\sqrt{3}} (x - \sqrt{3})$	M1	Dep on M1in part(i). An equation of the normal using <i>their</i> normal gradient, $\sqrt{3}$ and <i>their</i> y
		A1	allow unsimplified
4(i)	$-\frac{1}{13}\begin{pmatrix} -1 & -2\\ -4 & 5 \end{pmatrix}$ oe	B2	B1 for $-\frac{1}{13}$ B1 for $\begin{pmatrix} -1 & -2 \\ -4 & 5 \end{pmatrix}$
4(ii)	$\frac{1}{13} \begin{pmatrix} 1 & 2 \\ 4 & -5 \end{pmatrix} \begin{pmatrix} 12 \\ 7 \end{pmatrix}$	M1	for pre-multiplication by <i>their</i> inverse from (i)
	$=\frac{1}{13}\binom{26}{13}$	M1	for correct method for matrix multiplication
	$=\begin{pmatrix} 2\\1 \end{pmatrix}$	A1	
	x=1.11	B 1	
	$y = \frac{\pi}{4}$ or 0.785	B1	
5(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\ln\left(x^2+3\right)\right) = \frac{2x}{\left(x^2+3\right)}$	B1	5.5
	$\frac{dy}{dx} = (x^2 + 3)\frac{2x}{(x^2 + 3)} + 2x\ln(x^2 + 3)$	M1	for product rule
		A1	FT their $\frac{2x}{(x^2+3)}$
5(ii)	$(x^{2}+3)\ln(x^{2}+3) = \int 2x + 2x\ln(x^{2}+3) dx$	M1	for using <i>their</i> result from (i) for $2x + kx \ln(x^2 + 3)$
	$\int x \ln \left(x^2 + 3 \right) \mathrm{d}x$	A1	
	$\int x \ln(x^2 + 3) dx$ = $\frac{1}{2}(x^2 + 3) \ln(x^2 + 3) - \frac{x^2}{2}(+c)$		

Question	Answer	Marks	Guidance
6(i)	$\ln y = \ln A + x^{2} \ln b \text{ or}$ $\lg y = \lg A + x^{2} \lg b$	B1	May be implied by a table of values for x^2 and $\ln y$ or $\lg y$ or axes labelled $\ln y$ or $\lg y$ and x^2
	h	M1	for attempt to plot either $\ln y$ or $\lg y$ against x^2 using an evenly spaced scale on each axis.
		A2	A2 All points on a correct line (for $1 \le x^2 \le 9$) with axes correctly labelled A1 One point not on the correct line or a correct line with axes not correctly labelled. A0 Two or more points not on the correct line or one point not on the line and axes incorrect
6(ii)	Gradient = $\ln b$ or $\lg b$ $\ln b \approx 0.7$ or $\lg b \approx 0.3$ leading to	M1	for a complete method using the gradient of <i>their</i> straight-line graph of lgy or lny against x^2 to obtain b
	b=2 (allow 1.6 – 2.4)	A1	from correct working
	Intercept = $\ln A$ or $\lg A$ $\ln A \approx 1.1$ $\lg A \approx 0.5$ leading to	M1	for a complete method using intercept of <i>their</i> straight-line graph of lgy or lny against x^2 to find A
	A = 3 (allow 2.5 – 3.6)	A1	from correct working
6(iii)	$100 = 3(2^{x^{2}})$ or $\ln 100 = their 1.1 + their 0.7x^{2}$ or $\lg 100 = their 0.5 + their 0.3x^{2}$	M1	for a valid method to find x^2 Substitution methods should be using values of A and b in range
	or reading from $lgy = 2$ to obtain x^2 or from $lny = 4.6$ to obtain x^2		
	leading to $x = 2.25$ (allow $2.0 - 2.7$)	A1	for an answer in range from correct working
7(a)(i)	15120	B1	
7(a)(ii)	1680	B1	
7(a)(iii) Method 1	Total = 2310	B3	B1 1st digit is 7 or 91680 or 210×8B1 1st digit is 8630 or 210×3
7(a)(iii) Method 2	Total = 2310	B3	B1 for 5th digit is 2,4 or 6 1890 or 210×9 B1 for 5 th digit is 8 420 or 210×2

Question	Answer	Marks	Guidance
7(b)(i)	3003	B1	
7(b)(ii)	28	B1	
7(b)(iii)	Total 1419	B3	B1 Including husband and wife495B1 Excluding husband and wife924
8(a)(i)	$\log_a a + 2\log_a y + \log_a x$	M1	for $\log_a a + \log_a x + \log_a y^2$ and $\log_a y^2 = 2\log_a y$
	1+2q+p	A1	
8(a)(ii)	$3\log_a x - \log_a y - \log_a a$	M1	for $\log_a x^3 - (\log_a a + \log_a y)$ and $\log_a x^3 = 3\log_a x$
	3p-q-1 or $3p-(q+1)$	A1	
8(a)(iii)	$\frac{1}{p} + \frac{1}{q}$	B1	
8(b)	$m - 3m^2 + 4 = 0$	M1	for obtaining a quadratic in m or 3^x
	$m = \frac{4}{3}, (-1)$ $x = \frac{\lg \frac{4}{3}}{\lg 3}, x = \frac{\ln \frac{4}{3}}{\ln 3} \text{ or } \lg_3 \frac{4}{3}$	M1	Dep for attempt to solve quadratic and deal with 3^x correctly
	x = 0.262 only	A1	
9(i)	$100 = 2r + 2r\theta + 3r\theta$	M1	for addition of $2r$ and two arc lengths with at least one correct arc length
	$\theta = \frac{100 - 2r}{5r} \text{ or } \frac{20}{r} - \frac{2}{5} \text{ oe}$	A1	
9(ii)	$\frac{1}{2}9r^2\theta - \frac{1}{2}4r^2\theta$	M1	for subtraction of two sector areas with at least one sector area correct.
	$\frac{5r^2}{2} \left(\frac{100-2r}{5r}\right)$	A1	Must expand and simplify to obtain given answer $50r - r^2$
9(iii)	$\frac{dA}{dr} = 50 - 2r$ 0 = 50 - 2r leading to r = 25	M1	for differentiation and equating to zero and obtaining r or for using completing the square $-(25-r)^2 + 25^2$
	Max when $A = 625$	A1	

Question	Answer	Marks	Guidance
9(iv)	When $r = 10$, $\frac{\mathrm{d}A}{\mathrm{d}r} = 30$	B1	
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{3}{30}$	M1	for $\frac{dr}{dt} = \frac{3}{their30}$ where <i>their</i> 30 has been
			obtained from an evaluation of $\frac{dA}{dr}$ at $r = 10$
	$\frac{\mathrm{d}r}{\mathrm{d}t} = 0.1 \mathrm{or} \frac{1}{10}$	A1	
9(v)	$\frac{\mathrm{d}\theta}{\mathrm{d}r} = -\frac{20}{r^2} \text{ oe}$	B1	
	$\frac{\mathrm{d}\theta}{\mathrm{d}r} = -\frac{1}{5}\mathrm{oe}$	M1	for their $\frac{dr}{dt} \times their \frac{d\theta}{dr}$ with both
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{1}{10} \times -\frac{1}{5} \text{ oe}$		evaluated at $r = 10$
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{1}{50} \text{ or } -0.02$	A1	
10(a)(i)	$\pm \frac{2020}{5}$	M1	for finding the gradient of the relevant part
	8	A1	
10(a)(ii)	7.5	B1	
10(a)(iii)	$\frac{1}{2}(5+7.5)20 + \left(\frac{1}{2} \times 2.5 \times 20\right)$ or	M1	for a correct expression for total area using <i>their</i> 7.5
	or $20 \times 5 + \left(\frac{1}{2} \times 2.5 \times 20\right) + \left(\frac{1}{2} \times 2.5 \times 20\right)$		
	oe		
	150	A1	
10(b)(i)	$x = 3e^{2t} + t + c$	M1	for $ke^{2t} + t$ Condone omission of c
	$0 = 3e^{0} + 0 + c$ When $t = 0$, $x = 0$ so $c = -3$	M1	Dep for substitution to find <i>c</i>
	$x = 3e^{2t} + t - 3$	A1	

Question	Answer	Marks	Guidance
10(b)(ii)	$\frac{dv}{dt} = 12e^{2t}$ so $12e^{2t} = 24$	M1	for ke^{2t} equated to 24
	$2t = \ln 2$	M1	Dep for correct order of operations to obtain $2t$
	$t = \frac{1}{2} \ln 2$, $\ln \sqrt{2}$ or 0.347	A1	

ADDITIONAL MATHEMATICS

0606/11 May/June 2019

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(a)	E	B1	
	\mathcal{E}	B1	
1(b)	E C C C C C C C C C C C C C C C C C C C	B2	B1 for $P \subset R$ and $Q \subset R$ B1 for $P \cap Q = \emptyset$
2(i)	4	B 1	
2(ii)	$120^{\circ} \text{ or } \frac{2\pi}{3}$	B1	
2(iii)		B3	B1 for a complete curve starting at $(-90^{\circ}, 3)$ and finishing at $(90^{\circ}, -5)$ B1 for $-5 \le y \le 3$ for a complete curve Minimum point(s) at $y = -5$ Maximum point(s) at $y = 3$ DepB1 for a fully correct sine curve satisfying both the above and passing through $(-60^{\circ}, -1), (0^{\circ}, -1)$ and $(60^{\circ}, -1)$
3(i)	-12	B1	
3(ii)	$(2 \times -3 - 1)(k - 3) - 12 = 23$ oe or $2(-3)^2 + (2k - 1)(-3) - k - 12 = 23$	M1	
	<i>k</i> = -2	A1	

Question	Answer	Marks	Guidance
3(iii)	(2x-1)(x-2)-12 = -25 2x ² - 5x + 15 = 0	M1	expansion and simplification to a 3 term quadratic equation equated to zero, using <i>their k</i> .
	Discriminant: $25 - (4 \times 2 \times 15)$ = -95	M1	using discriminant for their three term quadratic equation
	which is < 0 so no real solutions	A1	cao for correct discriminant and correct conclusion
4(i)	<i>a</i> = 256	B1	
	$8 \times 2^{7} \times bx [= 256x] \text{ oe}$ or $\frac{8 \times 7 \times 2^{6} \times (bx)^{2}}{2} [= cx^{2}] \text{ oe}$	M1	
	$b = \frac{1}{4}$ oe, $c = 112$	A2	A1 for each
4(ii)	$(256+256x+112x^2)(4x^2-12+\frac{9}{x^2})$	B1	for $\left(4x^2-12+\frac{9}{x^2}\right)$
	Terms independent of x are $(256 \times (-12)) + (112 \times 9)$ = -3072 + 1008	M1	adding and selecting $(their 256 \times their (-12)) + (their 112 \times their 9)$
	=-2064	A1	
5(i)	$v = 20 \times \frac{1}{\sqrt{3^2 + 4^2}} \begin{pmatrix} 3\\4 \end{pmatrix}$ oe	M1	finding and using the magnitude of $\begin{pmatrix} 3\\4 \end{pmatrix}$
	$v = \begin{pmatrix} 12\\ 16 \end{pmatrix}$	AI	
5(ii)	$\boldsymbol{r}_{p} = \begin{pmatrix} 1\\ 2 \end{pmatrix} + \begin{pmatrix} 12\\ 16 \end{pmatrix} t$	M1	correct use of position vector and <i>their</i> velocity vector
		A1	

Question	Answer	Marks	Guidance
5(iii)	$\binom{17}{18} + \binom{8}{12}t = \binom{1}{2} + \binom{12}{16}t$ Leading to 17 + 8t = 1 + 12t or $18 + 12t = 2 + 16t$	M1	equating position vectors of both particles at time <i>t</i> and solve either equation for <i>t</i>
	<i>t</i> = 4	A1	
	Position vector of collision $\begin{pmatrix} 49\\ 66 \end{pmatrix}$	A1	
6	Method 1		
	$3x^2 - 2x + 1 = 2x + 5$	M1	equating the equations of the line and the curve and rearranging to obtain a three
	leading to	RA	term quadratic equated to zero
	$3x^2 - 4x - 4 = 0$	A1	
	$x = -\frac{2}{3}$ and $x = 2$	A1	
	$\int_{-\frac{2}{3}}^{2} \left(2x+5-\left(3x^2-2x+1\right)\right) dx$	M1	subtraction (either way round)
	$\int_{-\frac{2}{3}}^{2} \left(4 + 4x - 3x^{2}\right) dx$	M1	integration to $Ax + Bx^2 + Cx^3$
	$\left[4x + 2x^2 - x^3\right]_{\frac{2}{3}}^2$	A1	for $4x + 2x^2 - x^3$ oe
	$ (8+8-8) - \left(-\frac{8}{3} + \frac{8}{9} + \frac{8}{27}\right) $ = 8 $\frac{40}{27}$	M1	Dep on preceding M1 correct use of limits
	27		
	$=\frac{256}{27}$ or 9.48 or $9\frac{13}{27}$	A1	

Question	Answer	Marks	Guidance
6	$\frac{\text{Method } 2}{3x^2 - 2x + 1} = 2x + 5$ leading to	M1	equating the line and the curve and rearranging to obtain a three term quadratic equated to zero
	$3x^2 - 4x - 4 = 0$	A1	
	$x = -\frac{2}{3}$ and $x = 2$	A1	
	Area of trapezium = $\frac{1}{2}\left(\frac{11}{3}+9\right) \times \frac{8}{3}$	B1	area of the trapezium, allow unsimplified
	Area under curve = $\int_{-\frac{2}{3}}^{2} 3x^2 - 2x + 1 dx$	M1	integration to $Ax + Bx^2 + Cx^3$
	$=\left[x^{3}-x^{2}+x\right]_{-\frac{2}{3}}^{2}$	A1	for $x^3 - x^2 + x$
	$= \left(\left(8 - 4 + 2\right) - \left(-\frac{8}{27} - \frac{4}{9} - \frac{2}{3}\right) \right)$ $6\frac{38}{27}$	M1	DepM1 for correct use of limits.
	Shaded Area = $\frac{152}{9} - \frac{200}{27}$ = $\frac{256}{27}$ or 9.48 or $9\frac{13}{27}$	A1	5
7(a)	Method 1 Satp	rep.	0
	$\log_3 x + \frac{\log_3 x}{\log_3 9} = 12$	B1	change to base 3 logarithm
	$\frac{3\log_3 x}{2} = 12$ x = 3 ⁸ or $\sqrt[3]{3^{24}}$	M1	simplification and dealing with base 3 logarithms to obtain a power of 3
	<i>x</i> = 6561	A1	

Question	Answer	Marks	Guidance
7(a)	$\frac{\text{Method } 2}{\log_9 x} + \log_9 x = 12$	B1	change to base 9
	$3\log_9 x = 12$ x = 9 ⁴ or $\sqrt[3]{9^{12}}$	M1	simplification and dealing with base 9 logarithms to obtain a power of 9
	x = 6561	A1	
7(b)	Method 1		
	$\log_4(3y^2 - 10) = \log_4(y - 1)^2 + \frac{1}{2}$	B1	use of power rule
	$\log_4 \frac{3y^2 - 10}{(y - 1)^2} = \frac{1}{2}$	B1	DepB1 for use of division rule
	$\frac{3y^2 - 10}{(y - 1)^2} = 2$	B1	for $\frac{1}{2} = \log_4 2$
	$y^2 + 4y - 12 = 0$	M1	Dep on first two B marks simplification to a three term quadratic.
	y = 2 only	A1	
7(b)	Method 2		
	$\log_4(3y^2 - 10) = \log_4(y - 1)^2 + \frac{1}{2}$	B1	use of power rule
	$\log_4 (3y^2 - 10) = \log_4 (y - 1)^2 + \log_4 2$	B1	for log ₄ 2
	$3y^2 - 10 = 2(y - 1)^2$	B1	Dep on first B1 use of the multiplication rule
	$y^2 + 4y - 12 = 0$	M1	Dep on first and third B marks. simplification to a 3 term quadratic
	y = 2 only	A1	

Question	Answer	Marks	Guidance
8(i)	f > -1	B1	or $f(x) > -1$, $y > -1$, $(-1,\infty)$, $\{y: y > -1\}$
8(ii)	$e^{y} = \frac{x+1}{5} \text{ oe}$	M1	a complete valid method to obtain the inverse function
	$y = \ln\left(\frac{x+1}{5}\right)$ or $f^{-1}(x) = \ln\left(\frac{x+1}{5}\right)$ oe	A1	
	Domain $x > -1$ or $(-1, \infty)$	B1	FT their (i) or correct
8(iii)	g(1) = 5 so $fg(1) = f(5)$	M1	evaluation using correct order of operations
	$5e^5 - 1 = 741$	A1	awrt 741 or 5e ⁵ –1
8(iv)	$g^{2}(x) = (x^{2} + 4)^{2} + 4$	M1	correct use of g ²
	$x^{4} + 8x^{2} + 16 + 4 = 40$ $(x^{2} + 4)^{2} = 36$	M1	DepM1 for forming and solving a quadratic in x^2
	or $x^{4} + 8x^{2} - 20 = 0$ $(x^{2} + 10)(x^{2} - 2) = 0$		
	$x = \pm \sqrt{2}$ only	A1	
9(i)	Method 1		i'i
	$600\pi = 2\pi r^2 + 2\pi rh$	B 1	-0'
	$h = \frac{600\pi - 2\pi r^2}{2\pi r}$	MI	making <i>h</i> subject from a two term expression for SA.
	$V = \pi r^{2} h$ $V = \pi r^{2} \left(\frac{600\pi \cdot 2\pi r^{2}}{2\pi r} \right)$ $V = \pi r^{2} \left(\frac{300}{r} - r \right)$	A1	correct substitution and manipulation to obtain given answer
	$V = 300\pi r - \pi r^3$		

Question	Answer	Marks	Guidance
9(i)	Method 2		
	$600\pi = 2\pi r^2 + 2\pi rh$	B1	
	$600\pi r = 2\pi r^3 + 2\pi r^2 h$	M1	multiplying both sides by r
	$\frac{600\pi r \cdot 2\pi r^3}{2} = \pi r^2 h$	A1	correct manipulation to obtain $\pi r^2 h$
	$V = \pi r^2 h$ $V = 300\pi r - \pi r^3$		
9(ii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 300\pi - 3\pi r^2$	M1	differentiation of given formula to $A+Br^2$
	When $\frac{\mathrm{d}V}{\mathrm{d}r} = 300\pi - 3\pi r^2 = 0$	M1	equating to zero and attempt to solve
	r = 10	A1	
	$V = 2000\pi$ or 6280 or 6283	A1	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = -6\pi r , \frac{\mathrm{d}^2 V}{\mathrm{d}r^2} < 0$ so maximum	B1	cao for $\frac{d^2 V}{dr^2} = -6\pi r$, $\frac{d^2 V}{dr^2} = -60\pi$ or other correct method leading to maximum
10(i)	Method 1		
	$\lg y = A + Bx^2$	B 1	statement soi
	16 = A + 6B $4 = A + 2B$	M1	one correct equation
	leading to $A = -2$ and $B = 3$	A2	A1 for each
10(i)	Method 2		
	$\lg y = A + Bx^2$	B1	statement soi
	Gradient = B B = 3	B1	
	16 = A + 6B or $4 = A + 2B$	M1	a correct equation
	A = -2	A1	

Question	Answer	Marks	Guidance
10(i)	Method 3		
	$\lg y - 4 = 3(x^2 - 2)$	M1	correct equation or for correct method for
	or $\lg y - 16 = 3(x^2 - 6)$		finding constant.
	OR		
	4 = 3(2) + c		
	or $16 = 3(6) + c$		
	$\lg y = A + Bx^2$	B1	statement soi by <i>their A</i> and <i>B</i>
	Hence $y = 10^{3x^2 - 2}$	B1	
	<i>B</i> = 3		
	A = -2	A1	
10(ii)	$y = 10^{-2+3\left(\frac{1}{\sqrt{3}}\right)^2}$	M1	correct use of <i>their A</i> and <i>B</i>
	y = 0.1 oe	A1	
10(iii)	$2 = 10^{3x^2 - 2}$	M1	correct use of <i>their A</i> and <i>B</i>
	$\lg 2 = 3x^2 - 2$	M1	complete correct method to solve for x
	$lg 2 = 3x^2 - 2$ $x = \sqrt{\frac{lg 2 + 2}{3}}$.5
	x = 0.876	A1	o.

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = (x^2 + 1)(2x - 3)^{-\frac{1}{2}} + 2x(2x - 3)^{\frac{1}{2}}$	M1	differentiation of a product
		B1	for $\frac{d}{dx}(2x-3)^{\frac{1}{2}} = \frac{1}{2} \times 2(2x-3)^{\frac{1}{2}}$ oe
		A1	all else correct i.e.
			$\frac{dy}{dx} = (x^2 + 1)f(x) + 2x(2x - 3)^{\frac{1}{2}}$
	$= (2x-3)^{-\frac{1}{2}} (x^{2}+1+2x(2x-3))$	M1	correctly taking out a factor of $(2x-3)^{-\frac{1}{2}}$
			or correctly using $(2x-3)^{\frac{1}{2}}$ as
			denominator
	$=\frac{5x^2-6x+1}{(2x-3)^{\frac{1}{2}}}$	A1	
	$(2x-3)^{\frac{1}{2}}$		
11(ii)	When $x = 2$, $y = 5$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 9$, so gradient of normal $= -\frac{1}{9}$	M1	substitution to obtain gradient and correct method for gradient of normal
	Equation of normal $y-5 = -\frac{1}{9}(x-2)$	M1	DepM1 for equation of normal
	x+9y-47=0 or $-x-9y+47=0$	A1	Must be in this form
	" ^{v.} satp	rep.	

ADDITIONAL MATHEMATICS

0606/12 May/June 2019

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(a)	e Satpre	B1	
		B1	

Question	Answer	Marks	Guidance
1(b)	$P = \{30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}\}$	B1	May be seen or implied in a Venn diagram Allow without set notation
	$Q = \{30^\circ, 150^\circ\}$	B1	May be seen or implied in a Venn diagram Allow without set notation
	$P \cap Q = \{30^\circ, 150^\circ\}$	B1	Dep on both previous B marks Must be in set notation
2	Either: $(2x+3)^2(x-1) = 3(2x+3)$ $(2x+3)(2x^2+x-6)(=0)$	M1	For attempt to equate line and curve and attempt to simplify to $2x+3 \times a$ quadratic factor or cancelling $2x+3$ and obtaining a quadratic factor
	$(2x+3)(2x^{2}+x-6) = 0$ (2x+3)(2x-3)(x+2) = 0	M1	Dep for attempt at 3 linear factors from a linear term and a quadratic term
	$\left(-\frac{3}{2},0\right)$	B1	
	$\left(\frac{3}{2}, 18\right)$	A1	Dep on first M mark only
	(-2, -3)	A1	Dep on first M mark only
	Or: $(2x+3)^2(x-1) = 3(2x+3)$ $4x^3 + 8x^2 - 9x - 18(=0)$	M1	For attempt to equate line and curve and attempt to simplify to a cubic equation, by collecting like terms
	$(x+2)(4x^{2}-9)$ $(2x-3)(2x^{2}+7x+6)$ $(2x+3)(2x^{2}+x-6)$ $(2x+3)(2x-3)(x+2)(=0)$	M1	Dep For attempt to find a factor from a 4 term cubic equation (usually $x + 2$), do long division oe to obtain a quadratic factor and factorise this quadratic factor
	$\left(-\frac{3}{2},0\right)$	A1	
	$\left(\frac{3}{2}, 18\right)$	A1	
	(-2, -3)	A1	
3(i)	1000	B1	

Question	Answer	Marks	Guidance
3(ii)	$\frac{\mathrm{d}B}{\mathrm{d}t} = 400\mathrm{e}^{2t} - 1600\mathrm{e}^{-2t}$	B 1	
	$3 = e^{2t} - 4e^{-2t}$ oe	M1	For equating an equation of the form $ae^{2t} + be^{-2t}$ to 1200 and dividing by 400
	$e^{4t} - 3e^{2t} - 4 = 0$	A1	
3(iii)	$(e^{2t}+1)(e^{2t}-4)=0$	M1	For attempt to factorise and solve, dealing with exponential correctly, to obtain $e^{2t} =$
	$t = \ln 2$, $\frac{1}{2} \ln 4$ or awrt 0.693 only isw if appropriate	A1	
4(a)	$a = \frac{5}{2}$	B1	
	$b = -\frac{3}{2}$	B1	
	$c = \frac{11}{2}$	B1	-
4(b)	$9x^{\frac{1}{2}} - 3y^{-\frac{1}{2}} = 12$ $4x^{\frac{1}{2}} + 3y^{-\frac{1}{2}} = 14$	M1	For attempt to solve simultaneous equations. Must reach $kx^{\frac{1}{2}} = \dots$ or $ky^{-\frac{1}{2}} = \dots$ oe
	x=4 Satpre	A1	
	$y = \frac{1}{4}$	A1	
5(i)	9.6 = 12 <i>θ</i>	M1	For use of arc length
	$\theta = 0.8$	A1	

Question	Answer	Marks	Guidance
5(ii)	Either $\tan \theta = \frac{AB}{12}$, ($AB = 12.36$) Or $OB = \frac{12}{\cos \theta}$ ($OB = 17.22$)	M1	For attempt to find AB or OB using <i>their</i> θ May be implied by a correct triangle area Allow if using degrees consistently
	Either Area $\triangle OAB = \frac{1}{2} \times 12 \times$ their 12.36 Or Area $\triangle OAB = \frac{1}{2} \times 12 \times$ their 17.22 $\times \sin\theta$ (= 74.1 or 74.2)	M1	Allow if using degrees consistently For attempt to find area of triangle using <i>their</i> θ
	Area of sector $OAC = \frac{1}{2} \times 12^2 \times 0.8$ = 57.6	B1	Allow unsimplified
	Area of shaded region = 16.5 or 16.6	A1	
6(a)(i)	40320	B1	
6(a)(ii)	No. of ways with maths books as 1 unit = 5! or $5 \times 4!$ or ${}^{5}P_{5}$ or 120	B1	
	No. of ways maths books can be arranged amongst themselves = 4! or ${}^{4}P_{4}$ or 24	B1	
	$Total = (5! \times 4! oe) = 2880$	B1	
6(a)(iii)	No. of ways with maths books as 1 unit and geography books as 1 unit = $3!$ or ${}^{3}P_{3}$ or $3 \times 2!$ or 6	B1	
	No. of ways maths books can be arranged amongst themselves and geography books can be arranged amongst themselves = $4! \times 3!$ or ${}^{4}P_{4} \times {}^{3}P_{3}$ or 144	B1	
	$Total = (3! \times 4! \times 3! \text{ oe})$ = 864	B1	
6(b)(i)	$^{12}C_6 = 924$	B1	

Question	Answer	Marks	Guidance
6(b)(ii)	Either: 924 – ⁸ C ₆	M1	For <i>their</i> (i) – the number of teams of just men
	Total = 896	A1	
	Or: $5M 1W : {}^{8}C_{5} \times {}^{4}C_{1}$ (= 224) $4M 2W : {}^{8}C_{4} \times {}^{4}C_{2}$ (= 420) $3M 3W : {}^{8}C_{3} \times {}^{4}C_{3}$ (= 224) $2M 4W : {}^{8}C_{2} \times {}^{4}C_{4}$ (= 28)	M1	For a complete method
	Total = 896	A1	
7(i)	$\begin{array}{c} 120 \\ \hline \beta & 35 \\ 650 \end{array}$	B1	For correct triangle, may be implied by a correct sine rule or cosine rule.
	$\frac{120}{\sin \alpha}$ or $\frac{120}{\sin(55-\theta)} = \frac{650}{\sin 35}$ or $\frac{650}{\sin 145}$	M1	For use of a correct sine rule to obtain $\alpha =$ or $\theta =$ Or for a correct cosine rule leading to a value for v, followed by a correct sine rule leading to one of the other angles
	$\alpha = 6.08^{\circ} \text{ or } \beta = 138.9$	A1	May be implied by a correct $\theta = awrt 49^{\circ}$
	Bearing is 048.9° or 049°	A1	
7(ii)	Either $\frac{v_r}{\sin(145 - their\alpha)} = \frac{650}{\sin 35} \text{ or } \frac{120}{\sin(their\alpha)}$ Or $v_r^2 = 650^2 + 120^2 - (2 \times 650 \times 120)\cos(145 - their\alpha)$	M1	For use of sine rule or cosine rule to find resultant velocity Do not allow for a right-angled triangle May be seen in (i)
	v _r = 745	A1	For correct resultant velocity, allow awrt 745
	Time taken = $\frac{1250}{their 744.7}$	M1	For correct attempt at finding time using <i>their</i> v , $\neq 650$, 120, 770 or 530
	=1.68 hours or I hour 41 mins or 101 mins	A1	

Question	Answer	Marks	Guidance
8(i)	$e^{y} = \frac{m}{x} + c$	B1	May be implied by subsequent work
	Either $20 = 2m + c$ 8 = 4m + c	M1	For at least 1 correct equation
		M1	Dep For attempt to solve <i>their</i> 2 equations simultaneously to obtain at least one unknown
	leading to $m = -6$, $c = 32$	A1	For both
	$y = \ln\left(32 - \frac{6}{x}\right)$	A1	Must have correct brackets Mark the final answer given
	Or: Gradient = $m = (-6)$	M1	For attempt to find gradient and equate it to <i>m</i>
	20 = 2m + c or 8 = 4m + c or $e^{y} - 8 = m\left(\frac{1}{x} - 4\right)$ or $e^{y} - 20 = m\left(\frac{1}{x} - 2\right)$	M1	For at least 1 correct equation, may be using <i>their m</i>
	leading to $c = 32$ and $m = -6$	A1	For both $m = -6$, $c = 32$
	$y = \ln\left(32 - \frac{6}{x}\right)$	A1	ç.
8(ii)	$x > \frac{3}{16}$ oe	B1	
8(iii)	$y = \ln 30$ isw	B1	
8(iv)	$2 = \ln\left(32 - \frac{6}{x}\right)$	M1	For a correct substitution and attempt to re-arrange using 2, <i>their</i> 32 and <i>their</i> – 6, keeping exactness to obtain $x =$
	$x = \frac{6}{32 - e^2} \text{oe}$	A1	Must be exact

Question	Answer	Marks	Guidance
9(i)	$5 = 4 + 2\cos 3x$	M1	For attempt to solve trig equation to obtain one correct solution
	$\frac{\pi}{9}$	A1	
	$-\frac{\pi}{9}$	A1	
9(ii)	Either: $\int_{-\frac{\pi}{9}}^{\frac{\pi}{9}} 4 + 2\cos 3x - 5 dx$	M1	For use of subtraction method
	$\left[\frac{2}{3}\sin 3x - x\right]_{-\frac{\pi}{9}}^{\frac{\pi}{9}}$	M1	For attempt to integrate to obtain the form $a \sin 3x + bx$
	6	B1	For $\frac{2}{3}\sin 3x$
		B1	For $-x$, may be implied by $4x-5x$
	$\left(\frac{\sqrt{3}}{3} - \frac{\pi}{9}\right) - \left(-\frac{\sqrt{3}}{3} + \frac{\pi}{9}\right)$	M1	Dep on previous M mark for correct application of <i>their</i> limits in radians from (i) retaining exactness
	Shaded area = $\frac{2\sqrt{3}}{3} - \frac{2\pi}{9}$ oe isw	A1	
	Z. satpre	.p.c0	

Question	Answer	Marks	Guidance
9(ii)	Or: Area of rectangle = $5 \times \frac{2\pi}{9}$	M1	$5 \times$ the difference of <i>their</i> limits in exact radians
	Area under curve = $\left[4x + \frac{2}{3}\sin 3x\right]_{-\frac{\pi}{9}}^{\frac{\pi}{9}}$	M1	For attempt to integrate to obtain the form $a \sin 3x + bx$
		B1	For $\frac{2}{3}\sin 3x$
		B1	For 4x
	$\left(\frac{\sqrt{3}}{3} + \frac{4\pi}{9}\right) - \left(-\frac{\sqrt{3}}{3} - \frac{4\pi}{9}\right)$ $\left(=\frac{2\sqrt{3}}{3} + \frac{8\pi}{9}\right)$	M1	Dep on previous M mark for correct application of <i>their</i> limits in exact radians from (i) retaining exactness
	Shaded area = $\frac{2\sqrt{3}}{3} - \frac{2\pi}{9}$ oe isw	A1	
10(i)	$800 = 4x^2h$	B1	-
	$h = \frac{800}{4x^2}$ oe or $xh = \frac{800}{4x}$ oe	B1	
	$(S=)2hx+8xh+4x^2 \text{oe}$	M1	Allow if <i>h</i> is substituted at this point
	$S = 4x^2 + \left(\frac{2000}{x}\right)$	Al	Leading to AG, must have <i>S</i> = or surface area = at some point and no errors

Question	Answer	Marks	Guidance
10(ii)	$\left(\frac{\mathrm{d}S}{\mathrm{d}x}\right) = 8x - \frac{2000}{x^2}$	B1	For correct differentiation
	When $\frac{dS}{dx} = 0$, $x = \sqrt[3]{250}$ oe (6.30)	M1	For equating to zero and attempt to solve, must get as far as $x =,$ must be using the form $ax + \frac{b}{x^2}$
		A1	For correct positive <i>x</i>
	S = 476 only	A1	
	$\frac{d^2S}{dx^2} = 8 + \frac{4000}{x^3}$ $\frac{d^2S}{dx^2} > 0 \text{ or } 24 \text{ so minimum}$	B1	For a correct convincing method, with enough detail to reach a correct conclusion of a minimum. Must be using $x = \sqrt[3]{250}$ oe
11	9	M1	For attempt at differentiating a product
		B1	For $\frac{2}{3} \times 3(3x+1)^{-\frac{1}{3}}$
	$\left(\frac{dy}{dx}\right)(x-2) \times \frac{2}{3} \times 3(3x+1)^{\frac{1}{3}} + (3x+1)^{\frac{2}{3}}$	A1	For all other terms correct
	$y = \frac{4}{3}$	B1	
	When $x = \frac{7}{3}, \frac{dy}{dx} = \frac{13}{3}$	MI	For attempt at normal equation using $-\frac{1}{their m}$ and <i>their y</i> when $x = \frac{7}{3}$
	Equation of normal: $y - \frac{4}{3} = -\frac{3}{13}\left(x - \frac{7}{3}\right)$	A1	For correct normal equation, may be implied by a correct final answer
	At y-axis, $y = \frac{73}{39}$ $\left(0, \frac{73}{39}\right)$ isw	A1	

ADDITIONAL MATHEMATICS

0606/13 May/June 2019

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to	
cao	correct answer only	
dep	dependent	
FT	follow through after error	
isw	ignore subsequent working	
nfww	not from wrong working	
oe	or equivalent	
rot	rounded or truncated	
SC	Special Case	
soi	seen or implied	

Question	Answer	Marks	Guidance
1	$A \cap B = \emptyset$	B 1	
	$Z \subset (X \cap Y)$	B2	B1 for identifying $X \cap Y$
2	$a = \frac{3}{2}$	B1	
	$b = \frac{7}{3}$	B1	
	<i>c</i> = 3	B 1	
3	$x^2 + (3 - m)x + m - 4 = 0$	M1	For equating line and curve and attempting to obtain a quadratic equation equated to zero
	Discriminant: $(3-m)^2 - 4(m-4)$	MI	Dep For use of $b^2 - 4ac$, could be implied by use of quadratic formula
	$(m-5)^2$	A1	
	Always positive or zero for any <i>m</i> , so line and curve will always touch or intersect	A1	For a suitable comment/conclusion
4(i)		B 1	For $\frac{6x^3}{(2x^3+5)}$
	ź	M1	For attempt to differentiate a quotient
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x-1)\frac{6x^2}{(2x^3+5)} - \ln(2x^3+5)}{(x-1)^2}$	Al prep	For all other terms correct
	When $x = 2$, $\frac{dy}{dx} = \frac{24}{21} - \ln 21$ or $\frac{8}{7} - \ln 21$, or -1.90	A1	
4(ii)	-1.90 <i>p</i> oe	B1	

Question	Answer	Marks	Guidance
5(i)		B1	For shape with maximum in 1 st quadrant
		B1	For $\left(-\frac{1}{3},0\right)$ and $(5,0)$
		B1	For (0, 5)
	-14	B1	All correct with cusps and correct shape for $x < -\frac{1}{3}$ and $x > 5$
5(ii)		M1	For attempt to find maximum point
	Maximum point when $x = \frac{7}{3}$	A1	For $x = \frac{7}{3}$
	$y = \frac{64}{3}$ so $k = \frac{64}{3}$	A1	
6(i)	$\frac{1}{\cos\theta} - \frac{\sin\theta}{\cos\theta} \times \sin\theta \text{oe}$	M1	For dealing with sec, tan and cosec in terms of sin and cos
	$\frac{1-\sin^2\theta}{\cos\theta}$	M1	For simplification and use of identity
	$\frac{\cos^2\theta}{\cos\theta}$	A1	For simplification to AG
6(ii)	$\cos 2\theta = \frac{\sqrt{3}}{2}$	M1	For use of part (i) and attempt to solve to get as far as $2\theta =$
	$2\theta = 30^{\circ}, 330^{\circ}$	DICWI	For dealing with double angle correctly, may be implied by one correct solution
	$\theta = 15^{\circ}, 165^{\circ}$	A1	For both
6(iii)	$\sin\left(\phi + \frac{\pi}{3}\right) = \pm \frac{1}{\sqrt{2}}$ $\phi + \frac{\pi}{3} = \frac{\pi}{4}, \ \frac{3\pi}{4}, \ \frac{5\pi}{4}, \ \frac{7\pi}{4}, \ \frac{9\pi}{4}$	M1	For correct attempt to solve, may be implied by $\phi + \frac{\pi}{3} = \frac{\pi}{4}$
		M1	Dep For dealing with compound angle correctly
	$\phi = \frac{5\pi}{12}, \ \frac{11\pi}{12}, \ \frac{17\pi}{12}, \ \frac{23\pi}{12}$	A2	A1 for one correct pair, A1 for a second correct pair with no extra solutions in the range.

Question	Answer	Marks	Guidance
7(i)	$AC^{2} = \left(2\sqrt{5} - 1\right)^{2} + \left(2 + \sqrt{5}\right)^{2}$	M1	For use of Pythagoras' theorem and attempt to expand brackets
	$= 20 - 4\sqrt{5} + 1 + 4 + 4\sqrt{5} + 5$	A1	For correct unsimplified, must be convinced of non-calculator use
	$AC = \sqrt{30}$	A1	
7(ii)	$\tan ACB = \frac{2\sqrt{5} - 1}{2 + \sqrt{5}} \times \frac{2 - \sqrt{5}}{2 - \sqrt{5}}$	M1	For attempt at tan <i>ACB</i> and rationalisation
	$=\frac{4\sqrt{5}-2-10+\sqrt{5}}{4-5}$ oe	M1	Dep For seeing at least 3 terms in the numerator
	$=12-5\sqrt{5}$	A1	
7(iii)	$\sec^{2} ACB = \tan^{2} ACB + 1$ = 144 - 120\sqrt{5} + 125 + 1	M1	For use of identity using <i>their</i> (ii)
	$=270-120\sqrt{5}$	A1	
8(i)	g ≥ 1	B1	Must be using correct notation
8(ii)	$g\left(\sqrt{62}\right) = 125$	B1	
	$f^{-1}(x) = \frac{1}{3} \ln x$	B1	
	$\frac{1}{3}\ln 125 = \ln 5$	B1	For correct order and manipulation to obtain
	$\frac{1}{3}\ln 125 = \ln 5$	prep	the given answer, need to see $\frac{1}{3}\ln 125$
8(iii)	$3e^{3x} = 24$	M1	For dealing with derivatives correctly
	$x = \frac{1}{3}\ln 8$	A1	
	$x = \ln 2$	A1	
8(iv)		B3	B1 for correct g with intercept B1 for $y = x$ and/or implication of symmetry B1 for correct g^{-1} with intercept
9(a)(i)	7!=5040	B1	

Question	Answer	Marks	Guidance
9(a)(ii)	Treating the 4 trophies as 1 unit so there are 4! ways	B1	Maybe implied by a correct answer
	There are also 4! ways of arranging the football trophies amongst themselves	B1	
	$Total = 4! \times 4! = 576$	B1	
9(a)(iii)	Treating the 4 football trophies as 1 unit and the 2 cricket trophies as 1 unit so there are 3! ways	B1	Maybe implied by a correct answer
	There are also 4! ways of arranging the football trophies amongst themselves and 2 ways of arranging the cricket trophies	B1	Maybe implied by a correct answer
	$Total = 3! \times 4! \times 2 = 288$	B1	
9(b)(i)	3003	B1	
9(b)(ii)	28	B1	
9(b)(iii)	3003 - 1	M1	For <i>their</i> (i) – 1
	3002	A1	FT
10(i)		M1	Attempt to integrate to obtain $k(2x+3)^{\frac{1}{2}}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x+3)^{\frac{1}{2}} (+c)$	A1	All correct, condone omission of $+c$
	5 = 3 + <i>c</i>	M1	Dep For attempt at <i>c</i>
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x+3)^{\frac{1}{2}} + 2$	M1	For a further attempt to integrate
	$y = \frac{1}{3}(2x+3)^{\frac{3}{2}} + 2x(+d)$	A1	All correct, condone omission of $+d$
	$-\frac{1}{3} = \frac{8}{3} + 1 + d$	M1	For attempt at <i>d</i>
	$y = \frac{1}{3}(2x+3)^{\frac{3}{2}} + 2x - 4$	A1	Must have <i>y</i> =

Question	Answer	Marks	Guidance
10(ii)	When $x = 3, y = 11$	M1	For attempt to find <i>y</i> using <i>their</i> (i)
		M1	Dep For attempt at normal
	Normal: $y - 11 = -\frac{1}{5}(x - 3)$	A1	All correct unsimplified
	x + 5y - 58 = 0	A1	For correct form
11(i)	120	B1	For correct triangle, may be implied by subsequent work
	600 130 α	PR	
	$\frac{120}{\sin\alpha} = \frac{600}{\sin 130}$	M1	For use of the correct sine rule
	$\alpha = 8.81^{\circ}$	A1	Allow greater accuracy
	Bearing 041.2° or 041°	A1	Allow greater accuracy
11(ii)	$\frac{v_r}{\sin 41.19} = \frac{600}{\sin 130} = \frac{120}{\sin \alpha}$	M1	For use of sine rule using <i>their</i> α or cosine rule
	$v_r = 515.8$ awrt 516	DICAL	
	Time taken = $\frac{2500}{515.8}$	M1	For attempt to find time using <i>their</i> v_r , not 600, 720 or 480
	= 4.85 or 4.84	A1	

ADDITIONAL MATHEMATICS

0606/12 March 2019

Paper 12 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to	
cao	correct answer only	
dep	dependent	
FT	follow through after error	
isw	ignore subsequent working	
nfww	not from wrong working	
oe	or equivalent	
rot	rounded or truncated	
SC	Special Case	
soi	seen or implied	

Question	Answer	Marks	Partial Marks
1(a)(i)	6	B1	
1(a)(ii)	1	B1	
1(b)		2	B1 for <i>P</i> contained within <i>Q</i> B1 for <i>Q</i> and <i>R</i> separate
1(c)	$S' \cap T'$ or $(S \cup T)'$ oe	B1	
	$(X \cap Y) \cup (X \cap Z)$ or $X \cap (Y \cup Z)$ oe	B1	
2		4	B1 for general shape with maximum point in 1st quadrant B1 for $\left(-\frac{1}{2}, 0\right)$ and $(3, 0)$ soi B1 for $(0, 3)$ soi B1 dep on first B1, with cusps and correct shape for $x < -\frac{1}{2}$ and $x > 3$
3(i)	729–162 <i>x</i> +15 <i>x</i> ²	3 brep	B1 for 729 B1 for $-162x$ B1 for $15x^2$ Mark final answer
3(ii)	$(729-162x+15x^2)\left(x^2-4+\frac{4}{x^2}\right)$	B1	for expansion of $\left(x - \frac{2}{x}\right)^2$
	Term independent of $x = -2916 + 60$	M1	for attempt to find independent term, must be considering 2 products using <i>their</i> answer to part (i)
	=-2856	A1	
4(i)	$p'(x) = 6x^2 + 2ax + b$	B1	for $p'(x) = 6x^2 + 2ax + b$
	p'(-3) = 54 - 6a + b, = -24 leading to $6a - b = 78$	B1	must be convinced of correct substitution and simplification AG

Question	Answer	Marks	Partial Marks
4(ii)	$p\left(\frac{1}{2}\right):\frac{2}{8}+\frac{a}{4}+\frac{b}{2}-49=0$	M1	for attempt at $p\left(\frac{1}{2}\right)$ equated to 0
	6a - b = 78 a + 2b = 195 oe	M1	M Dep on previous M for attempt to solve both equations
	leading to $a = 27$	A1	
	<i>b</i> = 84	A1	
4(iii)	$(2x-1)(x^2+14x+49)$	2	M1 for factorisation by observation or by long division
4(iv)	$(2x-1)(x+7)^2$	B1	
5(i)	$\log_4 16 + \log_4 p$	M1	for dealing with product correctly
	2+ <i>p</i>	A1	
5(ii)	$7\log_4 x - \log_4 256$	M1	for dealing with power and division correctly
	7 <i>p</i> -4	A1	
5(iii)	2 + p - (7p - 4) = 5 leading to $p = \frac{1}{6}$	M1	for use of parts (i) and (ii) to obtain a value for <i>p</i>
	so $x = 4^{\frac{1}{6}}$	M1	for correct attempt to deal with \log_4 in order to obtain x
	x = 1.26	A1	c ⁰
6(a)	BA and CB		B1 for one correct product of 2 matrices B1 for a second correct product of 2 matrices, with no other incorrect products
6(b)(i)	$\frac{1}{16} \begin{pmatrix} 3 & 2 \\ -5 & 2 \end{pmatrix} \text{ oe}$	2	B1 for $\frac{1}{16}$ soi B1 for $\begin{pmatrix} 3 & 2 \\ -5 & 2 \end{pmatrix}$

Question	Answer	Marks	Partial Marks
6(b)(ii)	$\mathbf{X}^{-1}\mathbf{X}\mathbf{Z} = \mathbf{X}^{-1}\mathbf{Y}$ $\mathbf{Z} = \frac{1}{16} \begin{pmatrix} 3 & 2 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 2 & 0 \end{pmatrix}$	M1	for pre-multiplication by <i>their</i> inverse matrix
	attempt at matrix multiplication	M1	M1 Dep on previous M mark, must have at least 2 correct elements
	$\mathbf{Z} = \frac{1}{16} \begin{pmatrix} 16 & 3\\ -16 & -5 \end{pmatrix} \text{ oe}$	A1	
7(i)	Area = $\frac{1}{2} (8 + 6\sqrt{5}) (10 - 2\sqrt{5})$	M1	for a correct method of finding the area of the trapezium
	$=10+22\sqrt{5}$	A2	A1 for 10 with sufficient working seen A1 for $22\sqrt{5}$ with sufficient working seen
7(ii)	$\cot\theta = \frac{4}{10 - 2\sqrt{5}}$	B1	
	$=\frac{4(10+2\sqrt{5})}{(10-2\sqrt{5})(10+2\sqrt{5})}$	M1	for attempt to rationalise an expression for $\cot \theta$, some evidence of expansion must be seen
	$=\frac{1}{2}+\frac{\sqrt{5}}{10}$	A1	
8(a)(i)	0	B1	
8(a)(ii)	Area under curve = $\frac{1}{2}(2 \times 10) + (4 \times 10) + \frac{1}{2}(10 + 20) \times 4$	M1	for attempt to find the total area under the graph
	= 110	A1	
8(b)(i)	When $t = \frac{7\pi}{12}, v = -2.5$	M1	for substitution of $t = \frac{7\pi}{12}$ and correct attempt to evaluate
	Speed = 2.5	A1	must be positive
8(b)(ii)	$a = 6\cos 2t$	M1	for differentiation to get acceleration, must be of the form $m \cos 2t$
	When acceleration = 0, $\cos 2t = 0$	M1	M Dep on previous M mark for equating to zero and correct attempt to solve to get a solution in radians.
	$t = \frac{\pi}{4} \text{ or } 0.785$	A1	

Question	Answer	Marks	Partial Marks
9(i)	$\frac{1}{2}r^2\theta = 36$ $\theta = \frac{72}{r^2}$	M1	for use of the area of the sector
	$P = 2r + r\theta$	M1	for attempt to find <i>P</i> making use of the area
	$P = 2r + \frac{72}{r}$	A1	for attempt to simplify to obtain AG
9(ii)	$\frac{\mathrm{d}P}{\mathrm{d}r} = 2 - \frac{72}{r^2}$	M1	for attempt to differentiate to obtain the form $a + \frac{b}{r^2}$ and equate to zero
	When $\frac{\mathrm{d}P}{\mathrm{d}r} = 0$, $r = 6$	A1	
	<i>P</i> = 24	A1	
	$\frac{d^2 P}{dr^2} = \frac{144}{r^3}$ positive so minimum	B1	FT on <i>their</i> positive <i>r</i> , for a correct method to determine the nature of the stationary point leading to a correct conclusion. If the second derivative is evaluated, it must be correct for <i>their r</i> .
10(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x} + 3x \ (+c)$	2	M1 for attempt to integrate to obtain the form $me^{2x} + nx$ A1 all correct
	<i>c</i> = 8	M1	M1 Dep on previous M mark for attempt to get <i>c</i>
	$y = e^{2x} + \frac{3x^2}{2} + 8x (+d)$	bret ²	M1 for attempt to integrate again to obtain the form $pe^{2x} + qx^2(+rx)$ A1 all correct, FT on <i>their</i> ke^{2x} and <i>their</i> c
	<i>d</i> = -6	M1	M1 Dep on previous M mark for attempt to get d
	$y = e^{2x} + \frac{3x^2}{2} + 8x - 6$	A1	

Question	Answer	Marks	Partial Marks
10(ii)	When $x = \frac{1}{4}$, $y = -2.26$ $\frac{dy}{dx} = 12.0$	M1	for attempt to obtain both <i>y</i> and $\frac{dy}{dx}$ using <i>their</i> work from (i)
	$y + 2.26 = -\frac{1}{12} \left(x - \frac{1}{4} \right)$	2	M1 Dep on previous M mark for attempt to obtain the equation of the normal A1 allow unsimplified, must be using correct accuracy or exact equivalents.
11(a)	$2\sin x \left(\cos^2 x - 1\right) = 0$	M1	for obtaining in terms of sin and cos to obtain one solution correctly
	$\sin x = 0, \ x = 0^{\circ}, \ 180^{\circ}$	B1	for $x = 0^{\circ}$, 180° and no other in the given range for the solution of this equation
	$\cos x = \pm \frac{1}{\sqrt{2}}, x = 45^{\circ}, 135^{\circ}$	A1	for $x = 45^{\circ}$, 135° and no other in the given range for the solution of this equation
11(b)(i)	$\frac{1}{\cos\theta} - \frac{\sin^2\theta}{\cos\theta}$	M1	for dealing with cot and sec
	$\frac{\cos^2\theta}{\cos\theta}$	M1	for correct use of identity
	$\cos heta$	A1	for all correct working to gain AG
11(b)(ii)	$\cos 3\theta = \frac{1}{2}$ $\theta = \frac{5\pi}{9} \text{ or } \frac{\pi}{9}$	M1	for use of part (i) and attempt to solve correctly to obtain a positive angle, may be implied by one correct solution
	$\theta = -\frac{5\pi}{9}$ or $-\frac{\pi}{9}$	M1	for use of part (i) and attempt to solve correctly to obtain a negative angle, may be implied by one correct solution
	$\theta = \pm \frac{\pi}{9}, \ \pm \frac{5\pi}{9}$	A2	A1 for one correct pair of solutions A1 for a second pair of solutions with no extra solutions within the range

ADDITIONAL MATHEMATICS

0606/11 October/November 2018

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(a)		B3	 B1 for 2 cycles, one max and 2 min points in the correct places and up to a max at each end B1 for going between 2 and -4 B1 for starting at (0,2) and finishing at (360,2)
1(b)(i)	4	B1	
1(b)(ii)	$60^{\circ} \text{ or } \frac{\pi}{3}$	B1	
2(i)	$\left(p\left(-\frac{1}{2}\right)=\right) -\frac{1}{4}+\frac{5}{4}-2+a=2$	M1	For either $p\left(-\frac{1}{2}\right) = 2$ or $q(-2) = 0$
	(q(-2)=) 16-6a+b=0	P	
	<i>a</i> = 3	A1	
	<i>b</i> = 2	A1	
2(ii)	$r(x) = 2x^3 + x^2 - 5x + 1$	M1	For $r(x)$ using <i>their</i> $p(x)$ and $q(x)$
	$r\left(\frac{2}{3}\right) = \frac{16}{27} + \frac{4}{9} - \frac{10}{3} + 1$	M1	For $r\left(\frac{2}{3}\right)$
	$=-\frac{35}{27}$	A1	Must be exact
	ZZZZ Sa	tpre	

Question	Answer	Marks	Guidance
3	$(3+kx)^6 = 729+1458kx+1215k^2x^2$	B2	B1 for $1458kx$ or $1215k^2x^2$
	Terms in x^2 for $(2-x)(3+kx)^6$ = $-1458k + 2430k^2$ $2430k^2 - 1458k = 972$	M1	For attempt at further expansion to obtain 2 terms in x^2 and equating to 972
	$5k^{2} - 3k - 2 = 0$ (5k + 2)(k - 1) = 0	M1	Dep for solution of resulting 3 term quadratic
	$k = -\frac{2}{5}$	A1	
	<i>k</i> = 1	A1	
4(i)	$\left(x-\frac{9}{2}\right)^2-\frac{49}{4}$	B2	B1 for $\frac{9}{2}$ or $\frac{49}{4}$
4(ii)	$\left(\frac{9}{2}, -\frac{49}{4}\right)$	B1	FT <i>their</i> p and q
4(iii)		В3	 B1 for shape B1 for cusps at (1, 0) and (8, 0) B1 for all correct, passing through (0, 8) with maximum in correct position
4(iv)	$\frac{49}{4}$	B1 tpre	FT their q
5(i)	$\frac{1}{2}r^2\theta = 48$	B1	
	$\theta = \frac{96}{r^2}$	B1	Dep Must have previous B1
5(ii)	$r\theta = 12$	B1	For statement of arc length
	$r \times \frac{96}{r^2} = 12$	M1	For attempt to use part (i) to find either r or θ
	$r = 8$ and $\theta = 1.5$	A1	For both

Question	Answer	Marks	Guidance
5(iii)	Area = $48 - \left(\frac{1}{2}r^2\sin\theta\right)$	M1	For a complete method including a correct attempt for the area of the triangle using their r and θ
	=16.1	A1	
6(i)	For $\frac{4x}{2x^2+3}$	B1	
		M1	For attempt to differentiate a quotient or appropriate product
	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	A1	All other terms correct
	$\frac{\frac{(5x+2)\frac{4x}{2x^2+3}-5\ln(2x^2+3)}{(5x+2)^2}}{(5x+2)^2}$	PI	
	When $x = 0$ $\frac{dy}{dx} = \frac{-5\ln 3}{4}$	A1	For given answer
6(ii)	$y = \frac{1}{2} \ln 3$ or 0.549	B1	May be implied by tangent equation, allow 0.55
	Equation of tangent $y = \left(-\frac{5}{4}\ln 3\right)x + \frac{1}{2}\ln 3$	B1	
	or $y = -1.37x + 0.549$		
7(a)	lg100 = 2	B1	-0.
	$3\lg x = \lg x^3$	tpB1	BP.
	$lg \frac{100x^3}{y}$	B1	
7(b)(i)	$6x^{2} + 7x - 3 = 0$ (2x+3)(3x-1) = 0	M1	For obtaining in suitable quadratic form and attempt to solve
	$x = -\frac{3}{2} x = \frac{1}{3}$	A1	For both

Question	Answer	Marks	Guidance
7(b)(ii)	$x = \log_a 3$ $\frac{1}{3} = \log_a 3$	M1	For realising connection with part (i) and attempt to solve $\frac{1}{3} = \log_a 3$ or $-\frac{3}{2} = \log_a 3$
	<i>a</i> = 27	A1	
	$-\frac{3}{2} = \log_a 3$	M1	For realising connection with part (i) and attempt to solve $-\frac{3}{2} = \log_a 3$ or $\frac{1}{3} = \log_a 3$
	$a = \left(\frac{1}{3}\right)^{\frac{2}{3}}$ or 0.481 or $\left(\frac{1}{9}\right)^{\frac{1}{3}}$ oe	A1	
8(i)		M1	For attempt to use chain rule to obtain
	AT	PI	$kx(5x^2+4)^{\frac{1}{2}}$ where k is a constant
	$\frac{3}{2}(10x)(5x^2+4)^{\frac{1}{2}}$	A1	Allow unsimplified
8(ii)		M1	For attempt to use part (i) if in correct form of $m(5x^2+4)^{\frac{3}{2}}$
	$\frac{1}{15} \left(5x^2 + 4 \right)^{\frac{3}{2}} (+c)$	A1	FT on <i>their</i> $\frac{1}{k}(5x^2+4)^{\frac{3}{2}}$
8(iii)	5322	M1	For use of limits if <i>their</i> (ii) Must be in the form $m(5x^2 + 4)^{\frac{3}{2}}$
	$\frac{1}{15} \left(\left(5a^2 + 4 \right)^{\frac{3}{2}} - 4^{\frac{3}{2}} \right) \left[= \frac{19}{15} \right]$	Al	30.
	$(5a^2 + 4)^{\frac{3}{2}} = 27$	M1	Dep For complete and correct method to deal with the power of $\frac{3}{2}$
	leading to $a = 1$	A1	
9(i)	3	B1	

Question	Answer	Marks	Guidance
9(ii)		M1	For attempt to differentiate to obtain $a + be^{-t}$
	$\frac{\mathrm{d}s}{\mathrm{d}t} = 4 - 3\mathrm{e}^{-t}$	A1	All correct
	$2 = 4 - 3e^{-t}$	M1	Dep for correct attempt to solve equation involving exponential where $e^{-t} > 0$
	leading to $t = \ln \frac{3}{2}$ or $-\ln \frac{2}{3}$	A1	Must be an exact form
9(iii)	When $t = \ln 5$, $\frac{\mathrm{d}s}{\mathrm{d}t} = \frac{17}{5}$	M1	For attempt to find value of $\frac{ds}{dt}$ when $t = \ln 2$
		M1	Dep for attempt to use method of small changes
	$\partial s = \frac{17h}{5}$	A1	RES
10(i)	Velocity of $A\begin{pmatrix} 6\\ 8 \end{pmatrix}$	B1	For velocity, may be implied by later work
	When $t = 6$, $\mathbf{r}_A = \begin{pmatrix} 2 \\ -5 \end{pmatrix} + 6 \begin{pmatrix} 6 \\ 8 \end{pmatrix}$	M1	For a complete and correct method
	$= \begin{pmatrix} 38\\43 \end{pmatrix}$	A1	For 43
10(ii)	$\mathbf{r}_B = \begin{pmatrix} 16\\37 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} t$	B1	0
10(iii)	$ \begin{pmatrix} 16\\37 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} t = \begin{pmatrix} 2\\-5 \end{pmatrix} + \begin{pmatrix} 6\\8 \end{pmatrix} t $	M1	For equating position vectors at a time <i>t</i>
	$ \begin{array}{r} 16 + 4t = 2 + 6t \text{ or} \\ 37 + 2t = -5 + 8t \end{array} $	M1	Dep for equating like vectors at least once
	<i>t</i> = 7	A1	Allow from one correct equation
	Both equations lead to $t = 7$	B1	For showing that $t = 7$ satisfies both equations thus verifying collision, or equivalent
10(iv)	$\begin{pmatrix} 44\\51 \end{pmatrix}$	B1	

Question	Answer	Marks	Guidance
11(a)(i)		B1	For critical values
	$2 \leqslant f \leqslant 4$	B 1	Dep For correct inequality and notation
11(a)(ii)	$x = 3\cos y$ $\cos 2y = 0.5$	M1	For attempt to find f^{-1} and equate to 0.5
	$2y = \frac{\pi}{3}$	M1	Dep For correct attempt to solve, dealing with the double angle
	$y = \frac{\pi}{6}$	A1	
11(b)	$g^{2}(x) = g(3 - x^{2})$ = 3 - (3 - x^{2})^{2}	M1	For correct attempt at g ² , allow unsimplified
	$-6+6x^2 - x^4 = -6$ $6x^2 - x^4 = 0$	M1	Dep for equating to –6 and attempt to solve to obtain a non-zero root
	<i>x</i> = 0	B1	
	$x = \pm \sqrt{6}$	A1	

ADDITIONAL MATHEMATICS Paper 1 MARK SCHEME Maximum Mark: 80 0606/12 October/November 2018

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1	$\sin(x+50^{\circ}) = -\frac{1}{\sqrt{2}}$ (x+50^{\circ} = -45^{\circ}, 225^{\circ})	M1	For order of operations – subtraction of 1, division by $\pm\sqrt{2}$ and attempt at \sin^{-1}
		M1	Dep For obtaining a solution by subtracting 50°
	$x = -95^{\circ}, 175^{\circ}$	A2	A1 for one correct solution A1 for a second correct solution and no others within the range
2	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5x + \frac{1}{2}\mathrm{e}^{2x} (+c)$	M1	For attempt to integrate to get $\frac{dy}{dx}$ in
	ATPA	RE	the form $5x + pe^{2x}$. Condone omission of $+ c$
	When $x = 0$, $\frac{dy}{dx} = 4$ so $c = \frac{7}{2}$	M1	Dep For attempt to get value of <i>c</i>
	$y = \frac{5x^2}{2} + \frac{1}{4}e^{2x} + \frac{7}{2}x (+d)$	M1	Dep on first M1 only For attempt to get y in the form including $\frac{5x^2}{2} + pe^{2x}$. Condone omission of + d.
	When $x = 0$, $y = -3$ so $d = -\frac{13}{4}$	M1	Dep on previous DepM1 For attempt to obtain <i>d</i> , allow if <i>c</i> not found
	$y = \frac{5x^2}{2} + \frac{1}{4}e^{2x} + \frac{7}{2}x - \frac{13}{4}$	A1	Must have an equation
3(i)		B2	B1 for correct shape with vertex at (2,0) Dep B1 for passing through or starting at (0,6)

Question	Answer	Marks	Guidance
3(ii)	Either $6 - 3x = 2$ $x = \frac{4}{3}$	B1	For $x = \frac{4}{3}$
	6 - 3x = -2	M1	For considering – 2
	$x = \frac{8}{3}$	A1	
	Or $9x^2 - 36x + 32 = 0$	M1	For squaring each side and attempt to solve a 3 term quadratic $= 0$
	$x = \frac{4}{3}$	A1	
	$x = \frac{8}{3}$	A1	
3(iii)	$x < \frac{4}{3}, x > \frac{8}{3}$	B1	FT on <i>their</i> solutions in part (ii), must both be positive and written as 2 separate statements
4(i)		B1	For $\frac{2}{2x+1}$
		M1	For attempt to differentiate a product
	$\frac{dy}{dx} = x^3 \frac{2}{2x+1} + 3x^2 \ln(2x+1)$	A1	For all other terms correct
	When $x = 0.3$, $\frac{dy}{dx} = 0.161$	A1	For awrt 0.161
4(ii)	0.161h	B1	FT on <i>their</i> numerical answer to part (i)
5(i)	7th term: $924a^{6}b^{6}x^{6} = 924x^{6}$ $924a^{6}b^{6} = 924$ $924a^{6}(bx)^{6} = 924x^{6}$	B1	For any correct statement
	$(ab)^6 = 1$ or $ab = 1$ so $b = \frac{1}{a}$	B1	Dep on first B1 Must be convinced, nfww

Question	Answer	Marks	Guidance
5(ii)	6th term: $792a^7b^5x^5 = 198x^5$ $792a^7b^5 = 198$ $792a^7(bx)^5 = 198x^5$	B1	For any correct statement
	use of $ab=1$ to obtain $a^2 = \dots$ or $b^2 = \dots$	M1	For attempt to solve <i>their</i> equations simultaneously to obtain an equation in a^2 or b^5
	$a = \frac{1}{2}$	A1	
	<i>b</i> = 2	A1	
6(i)		M1	For $kx(5x-125)^{-\frac{1}{3}}$
	$\frac{2}{3} \times 10x (5x^2 - 125)^{-\frac{1}{3}}$	A1	Allow unsimplified
	$\frac{\frac{2}{3} \times 10x (5x^2 - 125)^{-\frac{1}{3}}}{\left(\frac{20}{3}x (5x^2 - 125)^{-\frac{1}{3}}\right)}$		
6(ii)		M1	For $m(5x^2 - 125)^{\frac{2}{3}}$ (+c)
	$\frac{3}{20} \left(5x^2 - 125\right)^{\frac{2}{3}} (+c)$	A1	FT on <i>their k</i> from part (i)
6(iii)	$\frac{3}{20} \left((375)^{\frac{2}{3}} - (55)^{\frac{2}{3}} \right)$	M1	Dep on previous M1 For use of limits in <i>their</i> answer to part (ii), must be in the form $m(5x^2 - 125)^{\frac{2}{3}}$ (+c),
	= 5.63	A1	Allow greater accuracy

Question	Answer	Marks	Guidance
7(a)	$ \begin{vmatrix} -12 \\ 5 \end{vmatrix} = 13 $	B1	For magnitude, may be implied by a correct v
	$\mathbf{v} = \begin{pmatrix} -36\\15 \end{pmatrix} \text{ or } 3 \begin{pmatrix} -12\\5 \end{pmatrix}$	B1	Must be a vector
7(a) Alternative	If $t \begin{vmatrix} -12 \\ 5 \end{vmatrix} = 39, t = 3$	B1	For value of t , may be implied by a correct v
	$\mathbf{v} = \begin{pmatrix} -36\\15 \end{pmatrix} \text{ or } 3 \begin{pmatrix} -12\\5 \end{pmatrix}$	B1	
7(b)		M1	For equating like vectors at least once
	17r + 2s + 3 = 0 2r + 6s + 9 = 0	M1	Dep For solution of resulting equations to obtain 2 solutions
	<i>r</i> = 0	A1	
	$s = -\frac{3}{2}$ oe	A1	
8(i)	a(a+4)-12=0	M1	For correct use of $det = 0$
	$a^2 + 4a - 12 = 0$	M1	Dep For solution of resulting quadratic equation
	leading to $a = -6$, $a = 2$	A1	For both
8(ii)	$A^{-1} = \frac{1}{20} \begin{pmatrix} 8 & -3 \\ -4 & 4 \end{pmatrix}$ oe	B2	B1 for $\frac{1}{20}$ B1 for $\begin{pmatrix} 8 & -3 \\ -4 & 4 \end{pmatrix}$
8(iii)	$\mathbf{B} = \mathbf{A}^{-1} \begin{pmatrix} 2 & 3 \\ 4 & -5 \end{pmatrix}$	M1	For pre-multiplication by their A ⁻¹
		M1	Dep For multiplication of 2 matrices – need to see at least 2 correct elements – may be unsimplified
	$=\frac{1}{20}\begin{pmatrix}4 & 39\\8 & -32\end{pmatrix}$	A1	For final matrix oe

Question	Answer	Marks	Guidance
9(i)	p(-3) = 0 leading to -27a+9b-3c-9=0	M1	For substitution of $x = -3$ and equating to zero
	$p'(x) = 3ax^{2} + 2bx + c$ p'(0) = 36	M1	For differentiation in the form $rx^2 + sx + t$ and substitution of $x = 0$
	<i>c</i> = 36	A1	nfww
	p''(x) = 6ax + 2b $p''(0) = 2b$	M1	For further differentiation in the form $vx + w$ of <i>their</i> $p'(x)$ and substitution of $x = 0$
	<i>b</i> = 43	A1	nfww
	<i>a</i> = 10	A1	nfww
9(ii)	$p\left(\frac{1}{2}\right)$	M1	For use of $x = \frac{1}{2}$ in <i>their</i> $p(x)$ from part (i)
	21	A1	
10(i)	<i>a</i> = 2	B1	_
	$\cos bx = -\frac{1}{2}$	M1	For a correct attempt to solve $\cos b \frac{\pi}{6} = \pm \frac{a}{4}$ provided $0 < a \le 4$ to get $b = \dots$
	leading to $b = 4$	A1	5
10(ii)	$\cos 4x = -\frac{1}{2}$	M1	Dep For attempt to solve <i>their</i> $\cos bx = \pm \frac{a}{4}$ provided $0 < a \le 4$ or use of symmetry to get $x =$
	$x = \frac{\pi}{3}$ so $\left(\frac{\pi}{3}, 0\right)$	A1	
10(iii)	At M , $y = -2$	B1	
	$x = \frac{\pi}{4}$	B1	

Question	Answer	Marks	Guidance
11(i)	$2r + r\theta = 10$	M1	For use of arc length and attempt to get perimeter, must have 2 terms involving <i>r</i>
		M1	Dep For attempt to get r in terms of θ
	$r = \frac{10}{2 + \theta}$	A1	
	$A = \frac{1}{2} \left(\frac{10}{2+\theta} \right)^2 \theta$	M1	For attempt to obtain the area of the sector in terms of θ only, using <i>their r</i>
	$A = \frac{50\theta}{\left(2+\theta\right)^2}$	A1	For manipulation to get the required answer nfww AG
11(ii)	6	M1	For attempt to differentiate a quotient or an equivalent product
	$\frac{\mathrm{d}A}{\mathrm{d}\theta} = \frac{50(2+\theta)^2 - 100\theta(2+\theta)}{(2+\theta)^4}$ or	A1	All correct, allow unsimplified
	$\frac{\mathrm{d}A}{\mathrm{d}\theta} = 50(2+\theta)^{-2} - 100\theta(2+\theta)^{-3}$		
	When $\frac{\mathrm{d}A}{\mathrm{d}\theta} = 0$	M1	For equating <i>their</i> $\frac{dA}{d\theta}$ to 0 and
	22		attempt to solve – need to see at least one line of working
	$\theta = 2$	A1	Condone inclusion of -2
	$A = \frac{25}{4}$	A1	

Question	Answer	Marks	Guidance
11(ii) Alternative	Starting again using $\theta = \frac{10 - 2r}{2}$ so $A = 5r - r^2$	M1	A complete method to obtain $\frac{dA}{dr}$
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 5 - 2r$	A1	
	When $\frac{\mathrm{d}A}{\mathrm{d}r} = 0$	M1	For equating to zero and attempt to solve
	<i>r</i> = 2.5	A1	
	$A = \frac{25}{4}$	A1	
12	$2x^2 + 7x = 0$ or $y^2 - 3y - 10 = 0$	M1	For attempt to obtain a simplified quadratic equation in one variable equated to 0
		M1	Dep For solution of quadratic
	(0,5)	A1	
	$\left(-\frac{7}{2},-2\right)$	A1	
	Midpoint $\left(-\frac{7}{4},\frac{3}{2}\right)$	B1	5
	Gradient of $AB = 2$ $\therefore \perp \text{ gradient} = -\frac{1}{2}$	M1	For attempt to obtain gradient of line perpendicular to <i>AB</i> using <i>their</i> coordinates
	\perp bisector: $y - \frac{3}{2} = -\frac{1}{2} \left(x + \frac{7}{4} \right)$	M1	For a correct attempt to obtain equation of perpendicular bisector using their midpoint and <i>their</i> perpendicular gradient
	Consideration of when $y = x$	M1	Dep on previous M1 For attempt to find intersection with the line $y = x$
	$x = y = \frac{5}{12}$	A1	For both

ADDITIONAL MATHEMATICS

0606/13 October/November 2018

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(a)	${}^{5}C_{3} \times 2^{2} \times (px)^{3}$	B1	
	$40 p^{3} = -\frac{8}{25}$ $p^{3} = -\frac{8}{1000}$	M1	equating <i>their</i> coefficient of x^3 to $-\frac{8}{25}$ and finding p^3
	$p = -\frac{1}{5}$ or $p = -0.2$	A1	
1(b)	${}^{8}C_{4} \times \left(2x^{2}\right)^{4} \times \left(\frac{1}{4x^{2}}\right)^{4}$	B1	
	$70 \times 16 \times \frac{1}{256}$	M1	at least two of 70, 16, $\frac{1}{256}$ correct in an evaluation of a three-term product
	$\frac{35}{8}$, 4.375, $4\frac{3}{8}$	A1	cao
2(i)	$\theta = \frac{20 - 2r}{r}$	B1	
	$Area = \frac{1}{2}r^2\left(\frac{20-2r}{r}\right)$	M1	use of <i>their</i> θ in terms of <i>r</i> in formula for sector area
	$A = 10r - r^2$	A1	simplification to get given answer
	Alternative		S.
	s = 20 - 2r	B1	
	$=\frac{1}{2}r(20-2r)$	M1	use of formula for sector area using <i>their</i> expression for <i>s</i> in terms of <i>r</i>
	$A = 10r - r^2$	A1	simplification to get given answer
2(ii)	$\frac{dA}{dr} = 10 - 2r$ When $\frac{dA}{dr} = 0$, $r = 5$	M1	for $\frac{dA}{dr} = 10 - kr$, equating to zero and solving for r
	$\theta = \frac{\left(20 - 2 \times 5\right)}{5}$	M1	Dep substitution of <i>their</i> value of <i>r</i> to get θ
	$\theta = 2$	A1	

Question	Answer	Marks	Guidance
3(i)	$AC^{2} = \left(5\sqrt{3} + 5\right)^{2} + \left(5\sqrt{3} - 5\right)^{2}$	M1	correct use of Pythagoras or correct use of cosine rule with cos90
	$= 75 + 25 + 50\sqrt{3} + 75 + 25 - 50\sqrt{3}$ $= 200$	M1	correct expansion to 6 or 8 terms
	$AC = 10\sqrt{2}$	A1	from $AC^2 = 200$
3(ii)	$\tan BCA = \frac{5\sqrt{3}+5}{5\sqrt{3}-5}$ oe	B1	
	$=\frac{(5\sqrt{3}+5)(5\sqrt{3}+5)}{(5\sqrt{3}-5)(5\sqrt{3}+5)}$ oe	M1	for rationalisation
	$=\frac{100+50\sqrt{3}}{50}$ oe		
	$=2+\sqrt{3}$	A1	
4(i)		M1	for $10(1+\cos 3x)^9 f(x)$
		M1	for $k\sin 3x(1+\cos 3x)^9$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -30\sin 3x \left(1 + \cos 3x\right)^9$	A1	
	When $x = \frac{\pi}{2}$, $\frac{dy}{dx} = 30$	A1	5
4(ii)	Use of $\frac{dy}{dx} \times \frac{dx}{dt} = \frac{dy}{dt}$ with $\frac{dy}{dt} = 6$	M1	$their\frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 6$
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{5} \text{ or } 0.2$	A1	FT from <i>their</i> answer from part (i)

Question	Answer	Marks	Guidance
5(i)	$\log_9 4 = \frac{\log_3 4}{\log_3 9}$	B1	change of base
	$= \frac{1}{2}\log_3 4$ = $\frac{1}{2}\log_3 2^2$ or $\log_3 \sqrt{4}$ = $\log_3 2$	B1	Dep must have B1 for change of base and full working
	Alternative A		
	$\log_9 4 = 2\log_9 2$	B1	use of power rule
	$=\frac{2\log_3 2}{\log_3 9}$	B1	Dep change of base and full working
	$=\frac{2\log_3 2}{2\log_3 3}$		
	$=\log_3 2$		
	Alternative B		
	$x = \log_9 4 \implies 9^x = 4$ $9^x = 4 \implies 3^{2x} = 4$	B1	correct use of indices to reach $3^{2x} = 4$
	$\Rightarrow 3^{x} = 2 \Rightarrow x = \log_{3} 2$ $\therefore \log_{9} 4 = \log_{3} 2$	B1	Dep full working
	Alternative C		
	$\log_9 4 = \frac{\log_{10} 4}{\log_{10} 9}$	B1	change of base and use of power rule
	$=\frac{2\log_{10} 2}{2\log_{10} 3}$		
	$=\log_3 2$	B1	Dep change of base and full working

Question	Answer	Marks	Guidance
5(ii)	$\log_3 2 + \log_3 x = 3$ $\log_3 2x = 3$	B1	for $\log_3 2x = 3$
	$3^3 = 2x$	B1	
	$x = 13.5, \ x = \frac{27}{2}$	B1	
	Alternative		
	$\log_3 x = \log_3 27 - \log_3 2$	B 1	
	$=\log_3\frac{27}{2}$	B1	
	$x = 13.5, x = \frac{27}{2}$	B1	
6(i)	$\frac{\mathrm{d}s}{\mathrm{d}t} = -6\mathrm{e}^{-0.5t} + 4$	M1	for $ke^{-0.5t} + 4$
	When $\frac{ds}{dt} = 0$, $e^{-0.5t} = \frac{2}{3}$ $-0.5t = \ln \frac{2}{3}$ $t = -2 \ln \frac{2}{3}$	M1	Dep equating to zero and correct order of operations to solve for <i>t</i>
	t = 0.811	A1	5
6(ii)	24. Satore	M1	for $ke^{-0.5t}$
	$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = 3\mathrm{e}^{-0.5t}$	A1	
6(iii)	$3e^{-0.5t} = 0.3$ $e^{-0.5t} = 0.1$ $t = \frac{\ln 0.1}{-0.5}$	M1	correct order of operations and correct use of ln to solve $ke^{-0.5t} = 0.3$ for t
	$s = 12e^{-0.5 \times 4.605} + 4 \times 4.605 - 12$	M1	Dep use of <i>t</i> to obtain <i>s</i>
	<i>s</i> = 7.62	A1	
6(iv)	$e^{-0.5t}$ is always positive or $e^{-0.5t}$ can never be zero or negative	B1	correct comment about $e^{-0.5t}$

Question	Answer	Marks	Guidance
7(i)	$\overrightarrow{AD} = m(\mathbf{c} - \mathbf{a})$	B 1	
7(ii)	$\overrightarrow{AD} = \overrightarrow{OD} - \mathbf{a}$	B1	for $\overrightarrow{OD} = \frac{2}{3}\mathbf{b}$
	$=\frac{2}{3}\mathbf{b}-\mathbf{a}$	B1	FT their \overrightarrow{OD} if $\overrightarrow{OD} = k\mathbf{b}$
7(iii)	$m(\mathbf{c}-\mathbf{a})=\frac{2}{3}\mathbf{b}-\mathbf{a}$	M1	equating parts (i) and (ii)
	$24\mathbf{a}(1-m) + 24m\mathbf{c} = 16\mathbf{b}$ Comparing with $15\mathbf{a} + 9\mathbf{c} = 16\mathbf{b}$	M1	attempt to eliminate or compare like vectors using given condition
	$m = \frac{3}{8}$	A1	
8(i)	$5 \leq f(x) \leq 6$ or [5,6] oe	B2	B1 for $5 \leq f(x) \leq p$ ($p > 5$) or for $q \leq f(x) \leq 6$ ($q < 6$)
8(ii)	$x = \sin\frac{y}{4} + 5$	M1	complete valid attempt to obtain the inverse with operations in correct order.
	$y = 4\sin^{-1}(x-5)$	A1	
	Range $0 \leq y \leq 2\pi$	B 1	
8(iii)	$2\left(\sin\frac{\left(x-\frac{\pi}{3}\right)}{4}+5\right) (=11)$	B1	for $\sin \frac{\left(x - \frac{\pi}{3}\right)}{4} + 5$
	$\sin\frac{\left(x-\frac{\pi}{3}\right)}{4} = \frac{1}{2}$	M1	for $\sin \frac{\left(x - \frac{\pi}{3}\right)}{4} = k$
	$x = 4\sin^{-1}\left(\frac{1}{2}\right) + \frac{\pi}{3}$ oe	M1	Dep for use of \sin^{-1} and correct order of operations to obtain <i>x</i> . Allow one +/- or ×/ ÷ sign error
	$x = \pi$ or 3.14	A1	$x = \pi$ and no other solutions in range

Question	Answer	Marks	Guidance
9	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\ln\left(3x^2+1\right)\right) = \frac{6x}{3x^2+1}$	B1	for $\frac{6x}{3x^2+1}$
	$\frac{dy}{dx} = \frac{x^2 \frac{6x}{3x^2 + 1} - 2x \ln(3x^2 + 1)}{x^4}$	M1	differentiation of a quotient or product
	or $\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{-2}{x^3}\right) \ln\left(3x^2 + 1\right) + \left(\frac{1}{x^2}\right) \frac{6x}{\left(3x^2 + 1\right)}$		
	$\frac{x^2 f(x) - 2x \ln (3x^2 + 1)}{x^4}$	A1	
	or for $\left(-\frac{2}{x^3}\right)\ln\left(3x^2+1\right)+\left(\frac{1}{x^2}\right)f(x)$	RA	
	When $x = 2$, $\frac{dy}{dx} = -0.410$	A1	
	Gradient of perp = 2.436	M1	use of $-\frac{1}{m}$ with a gradient obtained by differentiation
	When $x = 2$, $y = 0.641$ or $\frac{1}{4} \ln 13$	B1	
	Normal: $y - 0.641 = 2.436(x - 2)$	M1	Dep
	y = 2.44x - 4.23	A1	5
10(i)	$x+8=12+x-x^{2}$ $x^{2}=4$, $x=\pm 2$ or $y^{2}-16y+60=0$ y=6 or $y=10$	M1	correct method of solution to obtain <i>x</i> or <i>y</i>
	x = 2, y = 10 x = -2, y = 6	A2	A1 for $x = -2$ and $x = 2$ or for $y = 6$ and $y = 10$ or for either point from a correctly solved equation.
10(ii)		M1	for $12x + px^2 + qx^3$ (+c)
	$12x + \frac{x^2}{2} - \frac{x^3}{3}$ (+c)	A1	

Question	Answer	Marks	Guidance
10(iii)	$\left[12x + \frac{x^2}{2} - \frac{x^3}{3}\right]_{-2}^2 - \left(\frac{1}{2}(6+10) \times 4\right)$	B1	FT area of the trapezium unsimplified $\left(\frac{1}{2}(6+10)\times 4\right)$ or $\left[\frac{2^2}{2}+8\times 2\right]-\left[\frac{(-2)^2}{2}+8\times (-2)\right]$ (= 32)
	$\left[12 \times 2 + \frac{2^2}{2} - \frac{2^3}{3}\right] - \left[12 \times -2 + \frac{(-2)^2}{2} - \frac{(-2)^3}{3}\right]$	M1	correct use of correct limits for area under the curve using <i>their</i> integral of the form $12x + px^2 + qx^3$
	$=\frac{128}{3}$ oe	A1	
	$=\frac{32}{3}$ oe	A1	
	Alternative		
	$\int_{-2}^{2} 12 + x - x^{2} - x - 8 dx$ $= \int_{-2}^{2} 4 - x^{2} dx$	M1	subtraction of the two equations with intent to integrate the result
	$= \left[4x - \frac{x^3}{3}\right]_{-2}^2$	A1	
	$\left[4 \times 2 - \frac{8}{3}\right] - \left[4 \times -2 + \frac{8}{3}\right]$	M1	Dep for correct application of limits
	$=\frac{32}{3}$ oe	A1	
11(i)	$p\left(\frac{1}{2}\right) = a\left(\frac{1}{2}\right)^3 + 17\left(\frac{1}{2}\right)^2 + b\left(\frac{1}{2}\right) - 8$	M1	expression for $p\left(\frac{1}{2}\right)$
	$p(-3) = a(-3)^3 + 17(-3)^2 + b(-3) - 8$	M1	expression for $p(-3)$
	$\frac{a}{8} + \frac{17}{4} + \frac{b}{2} - 8 = 0$ -27a + 153 - 3b - 8 = -35	A1	both equations correct (allow equivalents and terms not collected but powers should be evaluated)
	Leading to $a=b=6$	A1	from correct equations with evidence that both have been found correctly in order to verify that $a = b$

Question	Answer	Marks	Guidance
11(ii)	$(2x-1)(3x^2+10x+8)$	B2	B1 for $3x^2$ and +8 from factorisation or for $3x^2 + 10x$ from long division
11(iii)	(2x-1)(x+2)(3x+4)	B1	cao
11(iv)	$\sin\theta = \frac{1}{2}$	B1	
	$\theta = 30^{\circ}, 150^{\circ}$	B2	B1 for a first correct solution B1 for a second correct solution with no extras in range $0 \le \theta \le 180$ and no solution arising from other factors.

ADDITIONAL MATHEMATICS

0606/11 May/June 2018

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to	
cao	correct answer only	
dep	dependent	
FT	follow through after error	
isw	ignore subsequent working	
nfww	not from wrong working	
oe	or equivalent	
rot	rounded or truncated	
SC	Special Case	
soi	seen or implied	

Question	Answer	Marks	Partial Marks
1	Substitution and simplification to obtain a 3 term quadratic in one variable	M1	substitution of $y = x + 4$ or $x = y - 4$ and simplification to 3 terms.
	$x^{2}-2x-8=0 \text{ or } 2x^{2}-4x-16=0$ or $y^{2}-10y+16=0 \text{ or } y^{2}-10y+16=0$	A1	correct equation of the form $ax^2 + bx + c = 0$ or $ay^2 + by + c = 0$
	Solution of quadratic equation	M 1	M1 dep
	x = 4, y = 8x = -2, y = 2	A2	A1 for each pair
2	Midpoint $\left(\frac{5}{2}, -1\right)$	B1	
	Gradient of line $=-\frac{8}{3}$	B1	
	Gradient of perp $=\frac{3}{8}$	M1	
	Equation of perp bisector: $y+1=\frac{3}{8}\left(x-\frac{5}{2}\right)$	M1	M1 dep Using <i>their</i> perpendicular gradient and <i>their</i> midpoint
	6x - 16y - 31 = 0 or -6x + 16y + 31 = 0	A1	
3	A B C D ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	4 9 P . C	B1 for either each row correct or each column correct – mark to candidate's advantage.
4(i)	<i>b</i> = 4	B1	
	<i>c</i> = 6	B 1	
	$2 = a + 4\sin\frac{\pi}{2}$	M1	Evaluation of <i>a</i> using <i>their b</i> and <i>their c</i> and the given point.
	<i>a</i> = -2	A1	

Question	Answer	Marks	Partial Marks
4(ii)		3	B1 for $-6 \le y \le 2$ B1 for 3 complete cycles
			B1 for all correct
5(i)	The number of bacteria at the start of the experiment	B1	
5(ii)	$20\ 000 = 800e^{kt} \text{ so } \frac{20\ 000}{800} = e^{2k}$ or $\ln 20\ 000 = \ln 800 + \ln(e^{2k})$	M1	use of given equation and attempt to solve for e ^{2k} or use logs correctly
	$2k = \ln 25$	M 1	correct method to obtain 2k
	1.61	A1	
5(iii)	$P = 800 \mathrm{e}^{3 \mathrm{ln} 5}$	M1	Substitution of $t = 3$ in formula using <i>their k</i>
	=100 000	A1	answer in range 99800 to 100200
6(a)	$\left(\frac{\log_3 p}{\log_3 2} \times \log_3 2\right) + \log_3 q$ or $\log_3 2^{\log_2 p} + \log_3 q$	B1	
	$\log_3 p + \log_3 q$ or $\log_3(2^{\log_2 p} \times q)$	B1	B1 dep
	$\log_3 pq$	B1	B1 dep
6(b)	$(\log_a 5 - 1)(\log_a 5 - 3) = 0$	M1	solution of quadratic equation
	$\log_a 5 = 1, \ a = 5$ $\log_a 5 = 3, \ a = \sqrt[3]{5} \text{ or } 1.71 \text{ or } 5^{\frac{1}{3}}$	A2	A1 for $a = 5$ A1 for $a = \sqrt[3]{5}$ or 1.71 or $5^{\frac{1}{3}}$
7(i)	$\frac{1}{2} \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix}$	2	B1 for $\frac{1}{2}$ B1 for $\begin{pmatrix} 3 & 2\\ 5 & 4 \end{pmatrix}$

Question	Answer	Marks	Partial Marks
7(ii)	$4x - 2y = \frac{5}{2}$ $-5x + 3y = \frac{7}{2}$	B1	Relating solution of these equations to matrix in (i) B1 for adapted equation or $\begin{pmatrix} 2.5\\ 3.5 \end{pmatrix}$ or
			$2\binom{x}{y}$
	$\binom{x}{y} = \frac{1}{2} \binom{3}{5} \frac{2}{4} \binom{2.5}{3.5}$ or	M1	Correct method for pre-multiplication by <i>their</i> inverse matrix.
	$2\binom{x}{y} = \frac{1}{2}\binom{3}{5} \frac{2}{4}\binom{5}{7}$		
	$\binom{x}{y} = \binom{7.25}{13.25} \text{ or } \binom{\frac{29}{4}}{\frac{53}{4}}$	A2	A1 for each. Condone in matrix form.
	x = 7.25, y = 13.25		
8(a)	3(2i-5j) - 4(i-3j)	M1	For expansion and collection of terms
	$3\mathbf{p} - 4\mathbf{q} = 2\mathbf{i} - 3\mathbf{j}$	A1	
	Magnitude of their $2i - 3j$ $\sqrt{2^2 + (-3)^2}$	M1	For method to find magnitude
	Unit vector = $\frac{2\mathbf{i} - 3\mathbf{j}}{\sqrt{13}}$	A1	
8(b)(i)	$v^2 = 2.73^2 + 1.25^2$	B 1	Correct use of Pythagoras
	v = 3.00	B1	
8(b)(ii)	$\tan\theta = \frac{1.25}{2.73} \text{ oe}$	M1	Use of a trig funtion to obtain a relevant angle
	Angle to $AB=24.6^{\circ}$ or 0.429 radians	A1	
9(i)	$256x^8 - 64x^6 + 7x^4$	3	B1 for each term

Question	Answer	Marks	Partial Marks
9(ii)	$\frac{1}{x^4} + \frac{2}{x^2} + 1$	B1	
	$ (256x^8 - 64x^6 + 7x^4) \left(\frac{1}{x^4} + \frac{2}{x^2} + 1\right) $ $ (256 \times 1 - 64 \times 2 + 7 \times 1)x^4 $	M1	M1 for three correctly obtained products leading to terms in x^4 using <i>their</i> $256x^8 - 64x^6 + 7x^4$ and <i>their</i> $\frac{1}{x^4} + \frac{2}{x^2} + 1$
	Coefficient of x^4 is $256 - 128 + 7$ = 135	A1	
10(a)	$\frac{5+6\sqrt{5}}{6+\sqrt{5}} \times \frac{6-\sqrt{5}}{6-\sqrt{5}}$	M1	for rationalisation
	$=\frac{30-5\sqrt{5}+36\sqrt{5}-30}{31}$	M1	M1dep for expanding the numerator to obtain four terms.
	$=\frac{31\sqrt{5}}{31}=\sqrt{5}$	A1	A1 for $\sqrt{5}$ from correct working
10(b)	$\sqrt{3} \times \left(\sqrt{2}\right)^6 \times \sqrt{2} = \sqrt{6} \times 2^3$		
	8√6	B2	B1 for $\sqrt{6}$ from $\sqrt{3} \times \sqrt{2}$ B1 for 8 from $(\sqrt{2})^6$ or 2^3
32. satprep.co.			

Question	Answer	Marks	Partial Marks
10(c)	EITHER: $x^2 + \sqrt{2}x - 4 = 0$	B1	3 term quadratic equation equated to zero
	$x = \frac{-\sqrt{2} \pm \sqrt{18}}{2}$	M1	use of the quadratic formula
	for use of $\sqrt{18} = 3\sqrt{2}$	M1	M1 dep
	$\sqrt{2}, -2\sqrt{2}$	A1	For both from full working
	$OR: x2 + \sqrt{2}x - 4 = 0$	B1	
	$\left(x + \frac{\sqrt{2}}{2}\right)^2 = 4 + \frac{1}{2}$ $x = \pm \frac{3}{\sqrt{2}} - \frac{\sqrt{2}}{2}$	M1	Correct use of completing the square method
	$x = -\frac{4}{\sqrt{2}}, \ \frac{2}{\sqrt{2}}$	M1	M1dep for dealing with $\sqrt{2}$ in denominator
	$x = \sqrt{2}, -2\sqrt{2}$	A1	
11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 16 - \frac{54}{x^3}$	M1	for $\frac{dy}{dx} = 16 \pm \frac{p}{x^3}$
	Equating to zero and obtaining x^3	M1	M1dep
	$x = \frac{3}{2}, y = 36$	A 2	A1 for each

Question	Answer	Marks	Partial Marks
11(ii)	EITHER:	B1	B1 for both
	When $x = 1$, $y = 43$ When $x = 3$, $y = 51$		
	$\left(\frac{1}{2}(43+51)\times 2\right) - \int_{1}^{3} 16x + \frac{27}{x^{2}} dx$		
	Area of trapezium = $\left(\frac{1}{2}(43+51)\times 2\right)$ oe	B1	FT from <i>their P</i> and <i>their Q</i>
	Integration to find area under curve	M1	for $\left[px^2 + \frac{q}{x} \right]$
	$= \left[8x^2 - \frac{27}{x}\right]$	A1	Integration correct
	$= \left[8 \times 3^2 - \frac{27}{3} \right] - \left[8 \times 1^2 - \frac{27}{1} \right]$	M1	M1dep for application of limits
	Required area = $94 - 82$ =12	A1	
	OR : When $x = 1$, $y = 43$ When $x = 3$, $y = 51$	B1	B1 for both
	Equation of <i>PQ</i> : $y = 4x + 39$	B1	Equation of line FT from <i>their</i> P and <i>their</i> Q
	Integration of their $4x + 39 - 16x - \frac{27}{x^2}$	M1	for $\left[px + qx^2 + \frac{r}{x} \right]$
	$=\left[39x-6x^2+\frac{27}{x}\right]$	A1	All correct
	$= \left[39 \times 3 - 6 \times 3^{2} + \frac{27}{3} \right] \\ - \left[39 \times 1 - 6 \times 1^{2} + \frac{27}{1} \right]$	M1	M1dep for application of limits
	$\begin{bmatrix} 1 \end{bmatrix}$ Required area = 72 - 60 = 12	A1	

Question	Answer	Marks	Partial Marks
12	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(2x - 5\right)^{\frac{1}{2}} (+c)$	M1	for $k(2x-5)^{\frac{1}{2}}$,
	for $(2x-5)^{\frac{1}{2}}$	A1	
	Substitution to obtain arbitrary constant	M1	M1 dep Using $\frac{dy}{dx} = 6$ when $x = \frac{9}{2}$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \left(2x - 5\right)^{\frac{1}{2}} + 4$	A1	for correct $\frac{dy}{dx}$
	Integration of <i>their</i> $k(2x-5)^{\frac{1}{2}} + c$	M1	M1 dep on first M1 for integration of $k(2x-5)^{\frac{1}{2}}$ to obtain $m(2x-5)^{\frac{3}{2}}$
	$y = \frac{1}{3}(2x-5)^{\frac{3}{2}} + 4x (+d)$	A1	for $\frac{1}{3}(2x-5)^{\frac{3}{2}}+4x$ FT <i>their</i> (non -zero) constant
	Finding constant	M1	M1 dep for obtaining arbitrary constant for $m(2x-5)^{\frac{3}{2}} + nx + d$ using $x = \frac{9}{2}, y = \frac{2}{3}$
	$y = \frac{1}{3} (2x - 5)^{\frac{3}{2}} + 4x - 20$	A1	for correct equation
Zu.satprep.co.			

ADDITIONAL MATHEMATICS

0606/12 May/June 2018

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to	
cao	correct answer only	
dep	dependent	
FT	follow through after error	
isw	ignore subsequent working	
nfww	not from wrong working	
oe	or equivalent	
rot	rounded or truncated	
SC	Special Case	
soi	seen or implied	

Question	Answer	Marks	Partial Marks
1(i)	$\frac{\pi}{3}$ or 60°	B1	
1(ii)		3	B1 for 3 asymptotes at $x = 30^{\circ}$, 90° and 150°; the curve must approach but not cross all 3 of the asymptotes and be in the 1st and 4th quadrants B1 for starting at (0,1) and finishing at (180,1) B1 for all correct
2	For an attempt to obtain an equation in <i>x</i> only	M1	
	$9x^2 - (k+1)x + 4 = 0$	A1	correct 3 term equation
	$(k+1)^2 - (4 \times 9 \times 4)$	M1	M1dep for correct use of $b^2 - 4ac$ oe
	Critical values $k = 11, k = -13$	A1	
	-13 < <i>k</i> < 11	A1	For the correct range
3	$e^{y} = ax^{2} + b$	B1	may be implied, $b \neq 0$
	either $3 = 5a + b$ 1 = 3a + b or Gradient = 1, so $a = 1$	M1	correct attempt to find a or b by use of simultaneous equations or finding the gradient and equating it to a
	Coefficient of x^2 is 1	A1	
	Intercept is -2	A1	
	$y = \ln\left(x^2 - 2\right)$	A1	For correct form
4(i)	$3 = \ln(5t+3)$ e ³ = 5t + 3 or better	B1	
	<i>t</i> = 3.42	B1	
4(ii)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{5}{5t+3}$	M1	for $\frac{k_1}{5t+3}$
	When $t = 0$, $\frac{dx}{dt} = \frac{5}{3}$, 1.67 or better	A1	all correct

Cambridge IGCSE – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Partial Marks
4(iii)	If $t > 0$ each term in $\frac{k_1}{5t+3} > 0$ so never negative oe	B1	dep on M1 in (ii) FT on <i>their</i> $\frac{k_1}{5t+3}$, provided $k_1 > 0$
4(iv)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \frac{k_2}{\left(5t+3\right)^2}$	M1	
	$\frac{d^2 x}{dt^2} = -\frac{25}{(5t+3)^2}$ When $t = 0$, $\frac{d^2 x}{dt^2} = -\frac{25}{9}$ or -2.78	A1	all correct
5(i)	$a = 243, b = -45, c = \frac{10}{3}$	3	B1 for each coefficient, must be simplified
5(ii)	$\left(243 - \frac{45}{x} + \frac{10}{3x^2}\right)\left(4 + 36x + 81x^2\right)$	B1	For $(4+36x+81x^2)$
	for having 3 terms independent of x	M1	
	Independent term is 972 - 1620 + 270 = -378	A1	
6	attempt to differentiate quotient or equivalent product	M1	
	$\frac{d}{dx}(2x-1)^{\frac{1}{2}} = (2x-1)^{-\frac{1}{2}} \text{ for a quotient}$ $\frac{d}{dx}(2x-1)^{-\frac{1}{2}} = -(2x-1)^{-\frac{3}{2}} \text{ for a product}$	B1	5.5
	either $\frac{dy}{dx} = \frac{\sqrt{2x-1} - (x+2)\left[(2x-1)^{-\frac{1}{2}}\right]}{(\sqrt{2x-1})^2}$	A1	All other terms correct
	or $\frac{dy}{dx} = (2x-1)^{-\frac{1}{2}} - (x+2)\left[(2x-1)^{-\frac{3}{2}}\right]$		
	When $\frac{dy}{dx} = 0$, $2x - 1 = x + 2$	M1	equate to zero and attempt to solve
	<i>x</i> = 3	A1	
	$y = \sqrt{5}$, $\frac{5}{\sqrt{5}}$, 2.24	A1	

Question	Answer	Marks	Partial Marks
7(i)	1000	B1	
7(ii)	$2000 = 1000e^{\frac{t}{4}}$	B1	
	$t = 4\ln 2, \ln 16$	M1	For $4\ln k$ or $\ln k^4$, $k > 0$
	2.77	A1	
7(iii)	$B = 1000e^2$ = 7389, 7390	B1	
8(a)	$3(1-\sin^2\theta)+4\sin\theta=4$	M1	use of correct identity
	$(3\sin\theta - 1)(\sin\theta - 1) = 0$	M1	For attempt to solve a 3 term quadratic
	$\sin\theta = \frac{1}{3}, \sin\theta = 1$	PRE	equation in $\sin \theta$ to obtain $\sin \theta =$
	$\theta = 19.5^{\circ}, \ 160.5^{\circ}$	A1	
	90°	A1	
8(b)	$\tan 2\phi = \sqrt{3}$ $2\phi = \frac{\pi}{3}, -\frac{2\pi}{3}$	M1	obtaining an equation in $\tan 2\phi$ and correct attempt to solve for one solution to reach $2\phi = k$
	for one correct solution $\phi = \frac{\pi}{6}$, or 0.524	A1	5
	for attempt at a second solution	M1	
	$\phi = -\frac{\pi}{3}$, or -1.05	A1	for a correct second solution and no other solutions within the range
9(a)(i)	1000	B1	
9(a)(ii)	for use of power rule	M1	
	for addition or subtraction rule	M1	dep on previous M1
	$lg\frac{1000a}{b^2}$	A1	Allow $\lg \frac{10^3 a}{b^2}$
9(b)(i)	$x^2 - 5x + 6 = 0$	M1	For attempt to obtain a quadratic equation and solve
	x = 3, x = 2	A1	for both

Question	Answer	Marks	Partial Marks
9b(ii)	$(\log_4 a)^2 - 5\log_4 a + 6 = 0$	M1	For the connection with (i) and attempt to deal with at least one logarithm correctly, either 4^{their3} or 4^{their2}
	<i>a</i> = 64	A1	
	<i>a</i> = 16	A1	
10(i)	$AC^{2} = \left(4\sqrt{3} - 5\right)^{2} + \left(4\sqrt{3} + 5\right)^{2}$	M1	For attempt to use the cosine rule
	$-2\left(4\sqrt{3}-5\right)\left(4\sqrt{3}+5\right)\cos 60^{\circ}$	A1	For all correct unsimplified
	$AC^2 = 123$	M1	M1 dep for attempt to evaluate without use of calculator
	$AC = \sqrt{123}$	A1	
	ALTERNATIVE METHOD		0
	Taking <i>D</i> as the foot of the perpendicular from <i>A</i> : Find <i>AD</i> , <i>BD</i> , <i>DC</i>	M1	For a complete method to get AC^2
	$AC^2 = AD^2 + DC^2$		
	$AC^{2} = \left(\frac{12 - 5\sqrt{3}}{2}\right)^{2} + \left(\frac{15 + 4\sqrt{3}}{2}\right)^{2}$	-A1	For all correct unsimplified
	$AC^{2} = 123$	M1	M1dep for attempt to evaluate without use of calculator
	$AC = \sqrt{123}$	A1	

Question	Answer	Marks	Partial Marks
10(ii)	$\frac{AC}{\sin 60^{\circ}} = \frac{4\sqrt{3} - 5}{\sin ACB} \text{ or } \sin ACB = \frac{AD}{AC}$	M1	For attempt at the sine rule or trigonometry involving right-angled triangles
	For attempt at cosec	M1	dep on first M mark $\operatorname{cosec} ACB = \frac{2\sqrt{123}}{\sqrt{3}(4\sqrt{3}-5)} \text{ or } \frac{2\sqrt{41}}{(4\sqrt{3}-5)}$ oe
	cosec $ACB = \frac{2}{\sqrt{3}} \frac{\sqrt{123}}{(4\sqrt{3}-5)} \times \frac{4\sqrt{3}+5}{4\sqrt{3}+5}$	M1	dep on previous M mark for a statement involving rationalisation using $a\sqrt{3} + b$
	$=\frac{2\sqrt{41}}{23}\left(4\sqrt{3}+5\right)$	A1	For rationalisation using $\frac{4\sqrt{3}+5}{4\sqrt{3}+5}$ oe and simplification
	ALTERNATIVE METHOD		0
	$\frac{1}{2}(4\sqrt{3}-5)(4\sqrt{3}+5)\sin 60 = \frac{23\sqrt{3}}{4}$	M1	Area of ABC
	$\frac{1}{2}\sqrt{123}(4\sqrt{3}+5)\sin ACB = \frac{23\sqrt{3}}{4}$	M1	For attempt at a second area of <i>ABC</i> and equating to first area
	For attempt at cosec	M1	dep on first 2 M marks
	$=\frac{2\sqrt{41}}{23}(4\sqrt{3}+5)$	A1	Need to be convinced no calculator is being used in simplification

Question	Answer	Marks	Partial Marks
11	When $x = 0, y = \frac{1}{2}$	B1	For $y = \frac{1}{2}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \mathrm{e}^{4x}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$, Gradient of normal = -2	B1	FT on <i>their</i> $\frac{dy}{dx}$, must be numeric
	either: Normal $y - \frac{1}{2} = -2x$ or: Gradient of normal $= -\frac{OA}{OB}$	M1	For an attempt at a normal equation passing through <i>their</i> $\left(0, \frac{1}{2}\right)$ and a substitution of $y = 0$
	When $y = 0$, $x = \frac{1}{4}$	A1	
	EITHER: $\int_{0}^{\frac{1}{4}} \frac{1}{8} e^{4x} + \frac{3}{8} dx$	M1	For attempt to integrate to obtain $k_1 e^{4x} + \frac{3}{8}x$, $k_1 \neq \frac{1}{8}$, $k_1 \neq \frac{1}{2}$
	$\left[\frac{1}{32}e^{4x} + \frac{3x}{8}\right]_{0}^{\frac{1}{4}}$	A1	For correct integration
	Use of limits	M1	M1dep
	For area of triangle $=\frac{1}{16}$	B1	FT on <i>their</i> $x = \frac{1}{4}$
	$=\frac{e}{32}$	Al	final answer in correct form
	OR: $\int_{0}^{\frac{1}{4}} \frac{1}{8} e^{4x} + \frac{3}{8} - \frac{1}{2} + 2x dx$	M1	For attempt at subtraction and attempt to integrate to obtain $k_1e^{4x} + \frac{3}{8}x + k_2x + k_3x^2$, $k_1 \neq \frac{1}{8}$
	$\left[\frac{1}{32}e^{4x} - \frac{1}{8}x + x^2\right]_0^{\frac{1}{4}}$	A2	-1 for each error for integration
	for use of limits	M1	M1dep
	$=\frac{e}{32}$	A1	final answer in correct form

Question	Answer	Marks	Partial Marks
12(a)	$p = \frac{1}{4}$	B1	
	p+q-4q+6=4	B1	FT on <i>their p</i>
	$q = \frac{3}{4}$	B1	
12(b)	$\left(x^{\frac{1}{3}}+3\right)\left(x^{\frac{1}{3}}+1\right)=0$	M1	For attempt to factorise and solve, or solve using the quadratic formula oe, a quadratic in $x^{\frac{1}{3}}$ or u
	$x^{\frac{1}{3}} = -1$ or $u = -1$ $x^{\frac{1}{3}} = -3$ or $u = -3$	A1	For both
	x = -1	A1	
	x = -27	A1	

ADDITIONAL MATHEMATICS

0606/13 May/June 2018

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to	
cao	correct answer only	
dep	dependent	
FT	follow through after error	
isw	ignore subsequent working	
nfww	not from wrong working	
oe	or equivalent	
rot	rounded or truncated	
SC	Special Case	
soi	seen or implied	

Question	Answer	Marks	Partial Marks
1	Substitution and simplification to obtain a 3 term quadratic in one variable	M1	substitution of $y = x + 4$ or $x = y - 4$ and simplification to 3 terms.
	$x^{2}-2x-8=0 \text{ or } 2x^{2}-4x-16=0$ or $y^{2}-10y+16=0 \text{ or } y^{2}-10y+16=0$	A1	correct equation of the form $ax^2 + bx + c = 0$ or $ay^2 + by + c = 0$
	Solution of quadratic equation	M 1	M1 dep
	x = 4, y = 8x = -2, y = 2	A2	A1 for each pair
2	Midpoint $\left(\frac{5}{2}, -1\right)$	B1	
	Gradient of line $=-\frac{8}{3}$	B1	
	Gradient of perp $=\frac{3}{8}$	M1	
	Equation of perp bisector: $y+1=\frac{3}{8}\left(x-\frac{5}{2}\right)$	M1	M1 dep Using <i>their</i> perpendicular gradient and <i>their</i> midpoint
	6x - 16y - 31 = 0 or -6x + 16y + 31 = 0	A1	
3	A B C D ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	4 9 P . C	B1 for either each row correct or each column correct – mark to candidate's advantage.
4(i)	<i>b</i> = 4	B1	
	<i>c</i> = 6	B 1	
	$2 = a + 4\sin\frac{\pi}{2}$	M1	Evaluation of <i>a</i> using <i>their b</i> and <i>their c</i> and the given point.
	<i>a</i> = -2	A1	

Question	Answer	Marks	Partial Marks
4(ii)		3	B1 for $-6 \leq y \leq 2$
			B1 for 3 complete cycles
			B1 for all correct
5(i)	The number of bacteria at the start of the experiment	B1	
5(ii)	20 000 = 800e ^{kt} so $\frac{20\ 000}{800} = e^{2k}$ or $\ln 20\ 000 = \ln 800 + \ln(e^{2k})$	M1	use of given equation and attempt to solve for e ^{2k} or use logs correctly
	$2k = \ln 25$	M1	correct method to obtain 2k
	1.61	A1	
5(iii)	$P = 800 \mathrm{e}^{3 \mathrm{ln} 5}$	M1	Substitution of $t = 3$ in formula using <i>their k</i>
	=100 000	A1	answer in range 99800 to 100200
6(a)	$\left(\frac{\log_3 p}{\log_3 2} \times \log_3 2\right) + \log_3 q$ or $\log_3 2^{\log_2 p} + \log_3 q$	B1	
	$\log_3 p + \log_3 q$	B1	B1 dep
	$\log_3 p + \log_3 q$ or $\log_3(2^{\log_2 p} \times q)$	0.0	
	log ₃ pq	B1	B1 dep
6(b)	$(\log_a 5 - 1)(\log_a 5 - 3) = 0$	M1	solution of quadratic equation
	$\log_a 5 = 1, \ a = 5$ $\log_a 5 = 3, \ a = \sqrt[3]{5} \text{ or } 1.71 \text{ or } 5^{\frac{1}{3}}$	A2	A1 for $a = 5$ A1 for $a = \sqrt[3]{5}$ or 1.71 or $5^{\frac{1}{3}}$
7(i)	$\frac{1}{2} \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix}$	2	B1 for $\frac{1}{2}$ B1 for $\begin{pmatrix} 3 & 2\\ 5 & 4 \end{pmatrix}$

Question	Answer	Marks	Partial Marks
7(ii)	$4x - 2y = \frac{5}{2}$ $-5x + 3y = \frac{7}{2}$	B1	Relating solution of these equations to matrix in (i) B1 for adapted equation or $\begin{pmatrix} 2.5\\ 3.5 \end{pmatrix}$ or
	2		$2\binom{x}{y}$
	$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} 2.5 \\ 3.5 \end{pmatrix} $ or	M1	Correct method for pre-multiplication by <i>their</i> inverse matrix.
	$2\binom{x}{y} = \frac{1}{2}\binom{3}{5} \frac{2}{4}\binom{5}{7}$		
	$\binom{x}{y} = \binom{7.25}{13.25} \text{ or } \binom{\frac{29}{4}}{\frac{53}{4}}$	A2	A1 for each. Condone in matrix form.
	x = 7.25, y = 13.25		
8(a)	3(2i-5j) - 4(i-3j)	M1	For expansion and collection of terms
	$3\mathbf{p} - 4\mathbf{q} = 2\mathbf{i} - 3\mathbf{j}$	A1	
	Magnitude of their $2i - 3j$ $\sqrt{2^2 + (-3)^2}$	M1	For method to find magnitude
	Unit vector = $\frac{2\mathbf{i} - 3\mathbf{j}}{\sqrt{13}}$	A1	0
8(b)(i)	$v^2 = 2.73^2 + 1.25^2$	B 1	Correct use of Pythagoras
	<i>v</i> = 3.00	B1	
8(b)(ii)	$\tan\theta = \frac{1.25}{2.73} \text{ oe}$	M1	Use of a trig funtion to obtain a relevant angle
	Angle to $AB=24.6^{\circ}$ or 0.429 radians	A1	
9(i)	$256x^8 - 64x^6 + 7x^4$	3	B1 for each term

Question	Answer	Marks	Partial Marks
9(ii)	$\frac{1}{x^4} + \frac{2}{x^2} + 1$	B1	
	$ (256x^8 - 64x^6 + 7x^4) \left(\frac{1}{x^4} + \frac{2}{x^2} + 1\right) $ $ (256 \times 1 - 64 \times 2 + 7 \times 1)x^4 $	M1	M1 for three correctly obtained products leading to terms in x^4 using <i>their</i> $256x^8 - 64x^6 + 7x^4$ and <i>their</i> $\frac{1}{x^4} + \frac{2}{x^2} + 1$
	Coefficient of x^4 is $256-128+7$ = 135	A1	
10(a)	$\frac{5+6\sqrt{5}}{6+\sqrt{5}} \times \frac{6-\sqrt{5}}{6-\sqrt{5}}$	M1	for rationalisation
	$=\frac{30-5\sqrt{5}+36\sqrt{5}-30}{31}$	M1	M1dep for expanding the numerator to obtain four terms.
	$=\frac{31\sqrt{5}}{31}=\sqrt{5}$	A1	A1 for $\sqrt{5}$ from correct working
10(b)	$\sqrt{3} \times \left(\sqrt{2}\right)^6 \times \sqrt{2} = \sqrt{6} \times 2^3$		
	8√6	B2	B1 for $\sqrt{6}$ from $\sqrt{3} \times \sqrt{2}$ B1 for 8 from $(\sqrt{2})^6$ or 2^3
	Zzy.satpr	ep.c	0

Question	Answer	Marks	Partial Marks
10(c)	EITHER: $x^2 + \sqrt{2}x - 4 = 0$	B1	3 term quadratic equation equated to zero
	$x = \frac{-\sqrt{2} \pm \sqrt{18}}{2}$	M1	use of the quadratic formula
	for use of $\sqrt{18} = 3\sqrt{2}$	M1	M1 dep
	$\sqrt{2}, -2\sqrt{2}$	A1	For both from full working
	OR: $x^2 + \sqrt{2}x - 4 = 0$	B1	
	$\left(x + \frac{\sqrt{2}}{2}\right)^2 = 4 + \frac{1}{2}$ $x = \pm \frac{3}{\sqrt{2}} - \frac{\sqrt{2}}{2}$	MI	Correct use of completing the square method
	$x = -\frac{4}{\sqrt{2}}, \ \frac{2}{\sqrt{2}}$	M1	M1dep for dealing with $\sqrt{2}$ in denominator
	$x = \sqrt{2}, -2\sqrt{2}$	A1	
11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 16 - \frac{54}{x^3}$	M1	for $\frac{dy}{dx} = 16 \pm \frac{p}{x^3}$
	Equating to zero and obtaining x^3	M1	M1dep
	$x = \frac{3}{2}, y = 36$	A2	A1 for each

Question	Answer	Marks	Partial Marks
11(ii)	EITHER:	B1	B1 for both
	When $x = 1$, $y = 43$ When $x = 3$, $y = 51$		
	$\left(\frac{1}{2}(43+51)\times 2\right) - \int_{1}^{3} 16x + \frac{27}{x^{2}} dx$		
	Area of trapezium = $\left(\frac{1}{2}(43+51)\times 2\right)$ oe	B1	FT from <i>their P</i> and <i>their Q</i>
	Integration to find area under curve	M1	for $\left[px^2 + \frac{q}{x} \right]$
	$= \left[8x^2 - \frac{27}{x}\right]$	A1	Integration correct
	$= \left[8 \times 3^2 - \frac{27}{3} \right] - \left[8 \times 1^2 - \frac{27}{1} \right]$	M1	M1dep for application of limits
	Required area = $94 - 82$ =12	A1	
	OR : When $x = 1$, $y = 43$ When $x = 3$, $y = 51$	B 1	B1 for both
	Equation of <i>PQ</i> : $y = 4x + 39$	B1	Equation of line FT from <i>their</i> P and <i>their</i> Q
	Integration of their $4x + 39 - 16x - \frac{27}{x^2}$	M1	for $\left[px + qx^2 + \frac{r}{x} \right]$
	$=\left[39x-6x^2+\frac{27}{x}\right]$	A1	All correct
	$= \left[39 \times 3 - 6 \times 3^2 + \frac{27}{3} \right]$	M1	M1dep for application of limits
	$-\left[39\times1-6\times1^2+\frac{27}{1}\right]$		
	Required area $= 72 - 60$ = 12	A1	

Question	Answer	Marks	Partial Marks
12	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(2x - 5\right)^{\frac{1}{2}} (+c)$	M1	for $k(2x-5)^{\frac{1}{2}}$,
	for $(2x-5)^{\frac{1}{2}}$	A1	
	Substitution to obtain arbitrary constant	M1	M1 dep Using $\frac{dy}{dx} = 6$ when $x = \frac{9}{2}$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \left(2x - 5\right)^{\frac{1}{2}} + 4$	A1	for correct $\frac{dy}{dx}$
	Integration of <i>their</i> $k(2x-5)^{\frac{1}{2}} + c$	M1	M1 dep on first M1 for integration of $k(2x-5)^{\frac{1}{2}}$ to obtain $m(2x-5)^{\frac{3}{2}}$
	$y = \frac{1}{3} (2x - 5)^{\frac{3}{2}} + 4x (+d)$	A1	for $\frac{1}{3}(2x-5)^{\frac{3}{2}}+4x$ FT <i>their</i> (non -zero) constant
	Finding constant	M1	M1 dep for obtaining arbitrary constant for $m(2x-5)^{\frac{3}{2}} + nx + d$ using $x = \frac{9}{2}, y = \frac{2}{3}$
	$y = \frac{1}{3} (2x - 5)^{\frac{3}{2}} + 4x - 20$	A1	for correct equation
	24. satpr	ep.c	0

ADDITIONAL MATHEMATICS

0606/12 March 2018

Paper 12 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to	
cao	correct answer only	
dep	dependent	
FT	follow through after error	
isw	ignore subsequent working	
nfww	not from wrong working	
oe	or equivalent	
rot	rounded or truncated	
SC	Special Case	
soi	seen or implied	

Question	Answer	Marks	Guidance
1	attempt at $p(2)$ or $p(-3)$	M1	
	2p(2) = p(-3)	M1	attempt at correct relationship
	22 = a - b	A1	may be implied, allow unsimplified
	p(-1) = 0 a + b = -2	B1	B1 for $a + b = -2$, allow unsimplified
	$a = 10 \ b = -12$	A1	A1 for both
2(i)	$k\cos 3x$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 15\cos 3x$	A1	A1 all correct
2(ii)	When $x = \frac{\pi}{3}$, $y = 4$	B1	for $y = 4$
	attempt to find the equation of the tangent	M1	
	$\frac{dy}{dx} = -15$ $y - 4 = -15\left(x - \frac{\pi}{3}\right)$ Equation of tangent $\begin{pmatrix} y = -15x + 5\pi + 4 \text{ or} \\ y = -15x + 19.7 \end{pmatrix}$	A1	A1FT for correct equation, using their $\frac{dy}{dx}$, allow unsimplified
3(a)	$\frac{18 + 12\sqrt{5} - 6\sqrt{5} - 20}{4 - \sqrt{5}}$	M1	attempt to deal with the numerator
	$\frac{6\sqrt{5}-2}{4-\sqrt{5}} \times \frac{4+\sqrt{5}}{4+\sqrt{5}}$ $\frac{22\sqrt{5}+22}{11}$	M1	attempt to rationalise
	$2\sqrt{5} + 2$	A1	must be convinced a calculator has not been used
3(b)	$AC^{2} = (6 - 2\sqrt{3})^{2} + (6 + 2\sqrt{3})^{2}$ $-2(6 - 2\sqrt{3})(6 + 2\sqrt{3})(-\frac{1}{2})$	M1	application of the cosine rule
	simplification of surds	M1	М1Dep
	$AC = 2\sqrt{30}$	A1	

Question	Answer	Marks	Guidance
4(i)	-2	B1	
	$-\frac{1}{2} \leqslant x \leqslant \frac{1}{2}$	B1	
4(ii)	attempt to differentiate a quotient	M1	
	for $\frac{8x}{4x^2-1}$	B1	
	$\frac{dy}{dx} = \frac{(x+2)\frac{8x}{(4x^2-1)} - \ln(4x^2-1)}{(x+2)^2}$	A1	everything else correct
4(iii)	When $x = 2$ $\frac{dy}{dx} = \frac{4}{15} - \frac{\ln 15}{16}$ or 0.0974	M1	attempt to evaluate $\frac{dy}{dx}$ when $x = 2$ and attempt to use method of small changes
	$\partial y = 0.0974h$	A1	cao
5(i)	<i>n</i> = 10	B1	
	$10 \times 2^9 \times a = -1280$	M1	attempt to equate second terms
	$a = -\frac{1}{4}$	A1	
	$^{10}C_2 \times 2^8 \times \left(-\frac{1}{4}\right)^2 = 720$	M1	attempt to equate third terms
	b=720 Satpre	A1	
5(ii)	$\left[\left(1024 - 1280x + 720x^2 \right) \right] \left(\frac{1}{x^2} - 2 + x^2 \right)$	B1	expansion of $\left(x - \frac{1}{x}\right)^2$
	Independent term = $720 - 2048$	M1	attempt to find independent term, must be considering 2 terms
	= -1328	A1	Must be identified

Question	Answer	Marks	Guidance
6(i)	c – a	B1	
6(ii)	attempt to use the ratio	M1	
	$\overrightarrow{OM} = \mathbf{a} + \frac{2}{3}(\mathbf{c} - \mathbf{a})$	A1	allow unsimplified
	or $\mathbf{c} - \frac{1}{3}(\mathbf{c} - \mathbf{a})$		
	$\left(=\frac{2}{3}\mathbf{c}+\frac{1}{3}\mathbf{a}\right)$		
6(iii)	$\overrightarrow{OM} = \frac{3}{5}\mathbf{b}$	B1	
6(iv)	$\frac{3}{5}\mathbf{b} = \frac{2}{3}\mathbf{c} + \frac{1}{3}\mathbf{a}$	M1	attempt to equate <i>their</i> (ii) and (iii)
	$5\mathbf{a} + 10\mathbf{c} = 9\mathbf{b}$	A1	Must be convinced from simplification
6(v)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ $= \frac{5}{9}\mathbf{a} + \frac{10}{9}\mathbf{c} - \mathbf{a}$	M1	use of (iv) with $\mathbf{b} - \mathbf{a}$ or $\mathbf{a} - \mathbf{b}$
	$= -\frac{4}{9}\mathbf{a} + \frac{10}{9}\mathbf{c}$	A1	
7(a)	$2a^{2} - 4a = 6 - 3a$ $2a^{2} - a - 6 = 0$	M1	attempt to use determinant correctly, obtain a 3 term quadratic equation and attempt to solve correctly
	a=2 Satpres	A1	
	$a = -\frac{3}{2}$	A1	
7(b)(i)	$\frac{1}{5} \begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix}$	B2	B1 for $\frac{1}{5}$
			B1 for $\begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix}$
7(b)(ii)	$\mathbf{A}^{-1}\mathbf{A}\mathbf{C} = \mathbf{A}^{-1}\mathbf{B}$	M1	for pre-multiplying
	$\mathbf{C} = \frac{1}{5} \begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -3 & 5 \end{pmatrix}$	M1	M1Dep for attempt at matrix multiplication, at least 2 terms correct, allow with <i>their</i> inverse
	$=\frac{1}{5} \begin{pmatrix} 11 & -5\\ -12 & 10 \end{pmatrix} $ oe	A1	

Question	Answer	Marks	Guidance
7(c)	$ \begin{pmatrix} -\frac{3}{4} & 0\\ 0 & -\frac{3}{4} \end{pmatrix} $	B1	
8(i)	for attempt to integrate to obtain $k_1 e^{2t} + k_2 t^2$	M1	
	$x = 6e^{2t} - 24t^2 (+c)$	A1	all correct, condone omission of $+ c$
	When $t = 0$, $x = 0$ $\therefore c = -6$	M1	M1Dep for attempt to find <i>c</i>
	$x = 6e^{2t} - 24t^2 - 6$	A1	
8(ii)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 24\mathrm{e}^{2t} - 48$	M1	attempt to differentiate to obtain $k_1 e^{2t} + k_2$
	When acceleration = 0, $e^{2t} = 2$ oe	M1	equating to zero and attempt to solve
	$t = \frac{1}{2} \ln 2$ or $t = \ln \sqrt{2}$ or 0.347	A1	
8(iii)	substitution of <i>their</i> (ii) into given equation for v	M1	
	$v = 24 - 24 \ln 2$ or $24 - 48 \ln \sqrt{2}$ or 7.36	A1	
9(i)	$\ln y = \ln A + bx$	B 1	S
9(ii)		MI	attempt to plot $\ln y$ against x Allow $\lg y$ against x Allow $\lg y$ against $\lg e^x$
	straight line with all points joined	A1	

Question	Answer	Marks	Guidance
9(iii)	Gradient = <i>b</i>	M1	M1Dep on (ii) for attempt to find gradient and equate to b or b lg e if lg y plotted against x
	b = -0.5, allow -0.45 to -0.55	A1	value within the given range
	Intercept = $\ln A$ (= 7.6)	M1	M1Dep on (ii) for attempt to use intercept or coordinates of a point on the curve with <i>their</i> gradient to obtain <i>A</i>
	A = 2000 allow $1900 - 2100$	A1	
9(iv)	use of graph or appropriate substitution	M1	
	When $y = 500$, $x = 2.77$ allow $2.2 - 3.0$	A1	
9(v)	use of graph or appropriate substitution	M1	
	When $x = 5$, $\ln y = 5.1$ y = 164 allow $155 - 175$	A1	

Question	Answer	Marks	Guidance
10(i)	$y = -3x^3 - 11x^2 - 8x + 4$	M1	attempt to differentiate
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -9x^2 - 22x - 8$	A1	all correct
	When $\frac{dy}{dx} = 0$, $9x^2 + 22x + 8 = 0$	M1	M1Dep for equating to zero and correct attempt to solve
	x = -2	A1	SC Allow B1 for $x = -2$ if A1 not obtained from differentiation
	$x = -\frac{4}{9}$	A1	
	10(i) Alternate scheme	5.	
	$\frac{dy}{dx} = (x+2)^2 (-3) + (1-3x)2(x+2)$	M1	attempt to differentiate
	all correct	A1	
	When $\frac{dy}{dx} = 0$, $(x+2)(-4-9x) = 0$ oe	M1	M1Dep for equating to zero and correct attempt to solve
	x = -2	A1	SC Allow B1 for $x = -2$ if A1 not obtained from differentiation
	$x = -\frac{4}{9}$	A1	5
10(ii)	$D\left(\frac{1}{3},0\right)$ Sators	BI	Allow mismatch of letters
	<i>C</i> (0, 4)	B1	Allow mismatch of letters
10(iii)	Area = $\int_{0}^{\frac{1}{3}} -3x^{3} - 11x^{2} - 8x + 4 dx$	M1	correct attempt to integrate a cubic equation
	$= \left[-\frac{3}{4}x^4 - \frac{11}{3}x^3 - 4x^2 + 4x \right]_0^{\frac{1}{3}}$	A2	A1 for 3 terms correct A1 for all correct
	$-\frac{3}{4}\left(\frac{1}{81}\right) - \frac{11}{3}\left(\frac{1}{27}\right) - \frac{4}{9} + \frac{4}{3}$	M1	M1Dep for application of limits
	$=\frac{241}{324}$ or 0.744	A1	

ADDITIONAL MATHEMATICS

0606/11 October/November 2017

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(i)	$A' \cap B$	B1	
1(ii)	$A \cap B \cap C$	B1	
1(iii)	$A \cup B$	B 1	
2(i)	$p\left(\frac{1}{2}\right) = \frac{a}{8} + \frac{b}{4} - \frac{13}{2} + 4$	M1	attempt at $p\left(\frac{1}{2}\right)$
	$p'(x) = 3ax^{2} + 2bx - 13$ $p'\left(\frac{1}{2}\right) = \frac{3a}{4} + b - 13$	M1	attempt at $p'\left(\frac{1}{2}\right)$
	leading to $a + 2b = 20$ and 3a + 4b - 52 = 0	A1	at least one correct equation
	solution of simultaneous equations	DM1	
	a = 12, b = 4	A1	for both
2(ii)	p(-1) = -12 + 4 + 13 + 4	M1	
	9	A1	FT on <i>their</i> integer values of <i>a</i> and <i>b</i>
3(a)	$Tg^{\frac{1}{2}} = 2\pi l^{\frac{1}{2}}$ $T^{2}g = 4\pi^{2}l$	B1	multiplication/dealing with power of $\frac{1}{2}$ or squaring
	$l = \frac{T^2 g}{4\pi^2} \text{ or } \left(\frac{Tg^{\frac{1}{2}}}{2\pi}\right)^2$	B1	for either
3(b)	$y^{2} - 4y + 3 = 0$ leading to $y = 1, y = 3$	M1	reduction to quadratic equation and attempt to solve
	$x^{\frac{1}{3}} = 1, \ x^{\frac{1}{3}} = 3$	DM1	attempt to solve $x^{\frac{1}{3}} = k$ (positive k)
	x = 1, x = 27	A2	A1 for each

0606/11

Question	Answer	Marks	Guidance
4(i)	$\frac{1}{2}$	B1	
4(ii)	$lg y = mx^{2} + c$ $lg y = \frac{1}{2}x^{2} + 1$	B2	-1 for each error
4(iii)	$y = 10^{\left(\frac{x^2}{2}+1\right)}$	B1	dealing with lg on <i>their</i> (ii)
	$y = 10\left(10^{\frac{x^2}{2}}\right)$	B2	B1 for each, dependent on first B1
5(i)	(0, 20)	B1	
5(ii)	31.7	B1	
5(iii)	$2e^{2x} - 8e^{-2x}$ (+c)	B2	B1 for each correct term
5(iv)	Area of trapezium = $\frac{1}{2}(20+31.7)$ = 25.86 or 25.85	B1	
	$\left[2e^{2x} - 8e^{-2x}\right]_0^1 = \left(2e^2 - 8e^{-2}\right) - (-6)$	M1	substitution of both limits, must have come from integration of the form $ae^{2x} + be^{-2x}$.
	19.7	A1	S
	Required area = 6.15, 6.16, 6.17	A1	· · · · · · · · · · · · · · · · · · ·
6(a)(i)	f≥3	B1	must be using a correct notation
6(a)(ii)	$(4x-1)^2 + 3 = 4$	M1	correct order
	solution of resulting quadratic equation	DM1	
	$x = 0, \ x = \frac{1}{2}$	A1	both required

Question	Answer	Marks	Guidance
6(b)(i)	xy - 4y = 2x + 1	M1	'multiplying out'
	x(y-2) = 4y + 1	M1	collecting together like terms
	$x = \frac{4y+1}{y-2}$		
	$h^{-1}(x) = \frac{4x+1}{x-2}$	A1	correct answer with correct notation
	Range $h^{-1} \neq 4$	B 1	must be using a correct notation
6(b)(ii)	$h^{2}(x) = h\left(\frac{2x+1}{x-4}\right)$	M1	dealing with h ² correctly
	$=\frac{2\left(\frac{2x+1}{x-4}\right)+1}{\left(\frac{2x+1}{x-4}\right)-4}$	RA	
	$\left(\overline{x-4}\right)^{-4}$		
	dealing with fractions within fractions	M1	
	$=\frac{5x-2}{17-2x}$ oe	A1	
7(i)	$\ln(2x+1) - \ln(2x-1)$	B1	
7(ii)	attempt to differentiate	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{2x+1} - \frac{2}{2x-1} + 4$	A1	all correct
	attempt to obtain in required form	DM1	
	$=\frac{16x^2 - 8}{4x^2 - 1}$	A1	A1 all correct
7(iii)	When $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$, $16x^2 - 8 = 0$	M1	setting $\frac{dy}{dx} = 0$ and attempt to solve
	$x = \frac{1}{\sqrt{2}}$ only	A1	

Question	Answer	Marks	Guidance
7(iv)	$\frac{d^2 y}{dx^2} = \frac{32x(4x^2 - 1) - 8x(16x^2 - 8)}{(4x^2 - 1)^2}$	M1	attempt at second derivative and conclusion or equivalent method
	When $x = \frac{1}{\sqrt{2}} \frac{d^2 y}{dx^2}$ is + ve, so minimum	A1	
8(a)(i)	${}^{8}C_{6} \times {}^{6}C_{4}$	B1	either ${}^{8}C_{6}$ or ${}^{6}C_{4}$
	420	B1	
8(a)(ii)	$^{12}C_8 + {}^{12}C_{10}$	B2	B1 for each
	= 561	B1	
	Alternate scheme: $1001 - (2 \times {}^{12}C_9)$	B1 B1	
	= 561	B1	
8(b)(i)	136080	B1	
8(b)(ii)	No of ways ending with 0 - 15 120	B1	-
	No of ways ending with 5 - 13 440	B 1	
	Total 28 560	B1	
8(b)(iii)	Starting with 6 or 8 - 13 440	B1	5
	Starting with 7 or 9 - 16800	B1	-
	Total = 30 240	B1	
9(i)	$\tan\left(\frac{PAQ}{2}\right) = 2.4$	M1	valid method
	PAQ = 2.352(01) PAQ = 2.35 correct to 3 sf	A1	must see greater than 3 sf then rounding
9(ii)	PBQ = 0.790 or 0.792	B1	
9(iii)	$(2.352 \times 10) + (0.790 \times 24)$	M1,A1	M1 for correct attempt at an arc length A1 for one correct arc length
	= awrt 42.5	A1	

Cambridge IGCSE – Mark Scheme PUBLISHED

October/November 2017

Question	Answer	Marks	Guidance
9(iv)	$\left(\left(\frac{1}{2} \times 24^2 \times 0.790\right) - \left(\frac{1}{2} \times 24^2 \times \sin 0.790\right)\right)$	B1,B1	B1 for a correct sector area allow, unsimplified B1 for a correct area of a triangle, allow unsimplified
	$+\left(\left(\frac{1}{2}\times10^2\times2.352\right)-\left(\frac{1}{2}\times10^2\times\sin2.352\right)\right)$	B1	correct plan, dependent on both previous B marks
	= 22.94 + 82.1	B1	
	= 105		
10(a)	$\frac{3}{4} = \sin^2 2x$	B1	dealing correctly with cosec
	$\sin 2x = \pm \frac{\sqrt{3}}{2}$ 2x = 60, 120, 240, 300	M1	correct method of solution including dealing with $2x$ correctly, may be implied by one correct solution.
	x = 30, 60, 120, 150	A2	A1 for each correct pair
10(b)	$\tan\left(y-\frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$	M1	dealing with order of operations to obtain a first solution
	$y - \frac{\pi}{4} = \frac{\pi}{6}, \frac{7\pi}{6}$	M1	M1 for attempt to obtain a second solution
	$y = \frac{5\pi}{12}, \ \frac{17\pi}{12}$	A2	A1 for each
22. satprep. co.			

ADDITIONAL MATHEMATICS

0606/12 October/November 2017

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(i)	$\begin{array}{ c c c } \hline X & & & & Y \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	1	
1(ii)	Either $A B$ C Or C $A B$ C	2	 B1 for C with no intersection with either A or B (allow if C is not represented by a circle) B1 for all correct, C must be represented by a circle
2	<i>a</i> = 4	B1	
	<i>b</i> =6	B1	
	c=-2	M1, A1	M1 for use of $\left(\frac{\pi}{12}, 2\right)$ to obtain <i>c</i> , using <i>their</i> values of <i>a</i> and of <i>b</i>
3(i)	$32-20x^2+5x^4$	B3	B1 for each correct term
3(ii)	$(32-20x^2+5x^4)\left(\frac{1}{x^2}+\frac{9}{x^4}\right)$	B1	$\frac{1}{x^2}$ and $\frac{9}{x^4}$
	Independent of <i>x</i> : $-20 + 45$	M1	attempt to deal with 2 terms independent of x, must be looking at terms in x^2 and $\frac{1}{x^2}$ and terms in x^4 and $\frac{1}{x^4}$
	= 25	A1	FT <i>their</i> answers from (i) (<i>their</i> -20×1) + (<i>their</i> 5×9)

Question	Answer	Marks	Guidance
4	correct differentiation of $\ln(3x^2+2)$	B1	
	attempt to differentiate a quotient or a product	M1	
	$\frac{dy}{dx} = \frac{\left(x^2 + 1\right)\left(\frac{6x}{3x^2 + 2}\right) - 2x\ln\left(3x^2 + 2\right)}{\left(x^2 + 1\right)^2}$	A1	all other terms correct.
	When $x = 2$, $\frac{dy}{dx} = \frac{5\left(\frac{12}{14}\right) - 4\ln 14}{25}$	M1	M1dep for substitution and attempt to simplify
	$=\frac{6}{35} - \frac{4}{25}\ln 14$	A2	A1 for each correct term, must be in simplest form
5(i)	Either		
	Gradient = -0.2	B1	
	$\lg y = -0.2x + c$	B1	$\lg y = mx + c \text{ soi}$
	correct attempt to find <i>c</i>	M1	must have previous B1
	$\lg y = 0.42 - 0.2x \text{ or } \lg y = \frac{21}{50} - \frac{x}{5}$	A1	line in either form, allow equivalent fractions
	Or		
	0.3 = 0.6m + c	B1	
	0.2 = 1.1m + c	B1	
	attempt to solve for both <i>m</i> and <i>c</i>	M1	must have at least one of the previous B marks
	Leading to $\lg y = 0.42 - 0.2x$ or $\lg y = \frac{21}{50} - \frac{x}{5}$	A1	line in either form, allow equivalent fractions

Question	Answer	Marks	Guidance
5(ii)	Either		
	$y = 10^{(0.42 - 0.2x)}$	M1	dealing with the index, using their answer to (i)
	$y = 10^{0.42} \left(10^{-0.2x} \right)$	A2	A1 for each
	$y = 2.63(10^{-0.2x})$		
	Or		
	$y = A(10^{bx})$ leads to $\lg y = \lg A + bx$ Compare this form with their equation from (i)	M1	comparing their answer to (i) with $\lg y = \lg A + bx$ may be implied by one correct term from correct work
	$\lg A = 0.42$ so $A = 2.63$	A1	
	b = -0.2	A1	A1 for each
6(i)	$y \in \mathbb{R}$ oe	B1	Must have correct notation i.e. no use of x
6(ii)	<i>y</i> > 3 oe	B1	Must have correct notation i.e. no use of x
6(iii)	$f^{-1}(x) = e^x$ or $g(4) = 35$	B1	First B1 may be implied by correct answer or by use of 35
	$f^{-1}g(4) = e^{35}$	B1	
6(iv)	$\frac{y-3}{2} = x^2$ or $\frac{x-3}{2} = y^2$	M1	valid attempt to obtain the inverse
	$g^{-1}(x) = \sqrt{\frac{x-3}{2}}$	A1	correct form, must be $g^{-1}(x) = or$ y =
	Domain $x > 3$	B1	Must have correct notation
7(i)	$p\left(\frac{1}{2}\right): \frac{a}{8} + 2 + \frac{b}{2} + 5 = 0$	M1	substitution of $x = \frac{1}{2}$ and equating
			to zero (allow unsimplified)
	p(-2): -8a+32-2b+5=-25	M1	substitution of $x = -2$ and equating to -25 (allow unsimplified)
	leading to $a+4b+56=0$ 4a+b-31=0 oe	M1	M1dep for solution of simultaneous equations to obtain a and b
	a = 12, b = -17	A2	A1 for each

Question	Answer	Marks	Guidance
7(ii)	$12x^3 + 8x^2 - 17x = 0$	B1	for $x = 0$
	x = 0		
	$x = -\frac{1}{3} \pm \frac{\sqrt{55}}{6}$ oe	B1	
8	$ \begin{array}{c} $		
8(i)	$\angle ABC = 67.4^{\circ}$	B1	
	$\frac{4}{\sin BAC} = \frac{5}{\sin 67.4^{\circ}}$	M1	attempt at the sine rule, using 4 and 5 (or e.g. use of cosine rule followed by sine rule on triangle shown)
	$\angle BAC = 47.6^{\circ}$	A1	may be implied by later work
	Angle required = $180^{\circ} - 47.6^{\circ} - 67.4^{\circ} = 65^{\circ}$	A1	Answer Given
8(ii)	$V^{2} = 5^{2} + 4^{2} - \left(2 \times 5 \times 4 \times \cos 65^{\circ}\right)$	M1	attempt at the cosine rule or sine rule to obtain V – allow if seen in (i)
	V = 4.91 or $\frac{4}{\sin BAC} = \frac{V}{\sin 65}$	A1	
	Distance to travel: $\frac{120}{\sin 67.4^{\circ}}$	M1	distance to travel – allow if seen in (i)
	130 or $\sqrt{120^2 + 50^2}$	A1	
	Time taken: $\frac{130}{4.91}$	M1	M1dep for correct method to find the time, must have both of the previous M marks
	26.5	A1	

Question	Answer	Marks	Guidance
	<u>Alternative method</u> $AC = \frac{120}{\cos 25} \text{ oe}$	M1	correct attempt at AC
	=132.4	A1	Allow 132
	Speed for this distance = 5	M1A1	M1dep A1 for speed, it must be 5 exactly for A1, must have first M mark
	Time taken = $\frac{132.4}{5}$	M1	M1dep for a correct method to find the time, must have both of the previous M marks
	= 26.5	A1	
9(a)		B3	 B1 for line joining (0,5) and (10,5) B1 for a line joining (10,0.5) and (30,0.5) B1 all correct with no solid line joining (10,5) to (10,0.5)
9(b)(i)	3	B1	
9(b)(ii)	$\frac{\mathrm{d}v}{\mathrm{d}t} = -15\mathrm{e}^{-5t} + \frac{3}{2}$	M1	attempt to differentiate, must be in the form $ae^{-5t} + b$
	When $\frac{\mathrm{d}v}{\mathrm{d}t} = 0$, $\mathrm{e}^{-5t} = 0.1$	C ^O M1	M1dep for equating to zero and attempt to solve, must be of the form $ae^{-5t} = b$, $b > 0$ to obtain an equation in the form $-5t = k$ where k is a logarithm or < 0
	t = 0.461	A1	

Question	Answer	Marks	Guidance
9(b)(iii)	Either		
	attempt to integrate, must be in the form $ce^{-5t} + dt^2$	M1	
	$s = -\frac{3}{5}e^{-5t} + \frac{3}{4}t^2 (+c)$	A1	
	When $t = 0$, $s = 0$ so $c = \frac{3}{5}$	M1	M1dep for attempt to find c and substitute $t = 0.5$
	<i>s</i> = 0.738	A1	
	Or		
	attempt to integrate, must be in the form $ce^{-5t} + dt^2$	M1	
	$\left[-\frac{3}{5}e^{-5t} + \frac{3}{4}t^2\right]_0^{0.5}$	A1	
	correct use of limits	M1	M1dep
	leading to $s = 0.738$	A1	
10(i)	$5 \angle BAC = 6.2$, $\angle BAC = 1.24$	B1	
10(ii)	$\sin 0.62 = \frac{BD}{5}$, $BD = 2.905$, 2.91	B1	valid method to find <i>BD</i>
	Arc BFC: $\pi \times BD$ (=9.13)	M1	attempt to find arc length <i>BFC</i> , using <i>their BD</i>
	Perimeter: 9.13+6.2=15.3	A1	
10(iii)	Area: $\left(\frac{1}{2} \times \pi \times 2.91^2\right)$ –	B3	 B1 for area of semi circle (= 13.3) B1 for area of sector (= 15.5) B1 for area of triangle (= 11.8)
	$\left(\left(\frac{1}{2}\times5^2\times1.24\right)-\left(\frac{1}{2}\times5^2\times\sin1.24\right)\right)$		
	9.58≼ Area ≤ 9.62	B1	final answer

0606/12

Question	Answer	Marks	Guidance
11(a)	$\tan\left(\phi + 35^{\circ}\right) = \frac{2}{5}$	M1	dealing correctly with cot and an attempt at solution of $tan(\phi + 35) = c$, order must be correct, to obtain a value for $\phi + 35$
	$\phi + 35^\circ = 21.8^\circ, \ 201.8^\circ, \ 381.8^\circ$	M1	M1dep for an attempt at a second solution in the range, $(180^{\circ} + their)$ first solution in the range oe)
	$\phi = 166.8^{\circ}, 346.8^{\circ}$	A2	A1 for each
11(b)(i)	Either $\frac{\frac{1}{\cos\theta}}{\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}}$	M1	expressing all terms in terms of $\sin \theta$ and $\cos \theta$ where necessary
	$=\frac{1}{\cos\theta}\left(\frac{\sin\theta\cos\theta}{\cos^2\theta+\sin^2\theta}\right)$	M1	dealing with the fractions correctly to get $\frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$ in denominator or as in left hand column
	$=\frac{\sin\theta}{(1)}$	A1	use of identity, together with a complete and correct solution, withhold A1 for incorrect use of brackets
	Or $\frac{\sec \theta}{\frac{1}{\tan \theta} + \tan \theta}$ $= \frac{\sec \theta}{\frac{1 + \tan^2 \theta}{\tan \theta}}$	M1	dealing with fractions in the denominator correctly to get $\frac{1 + \tan^2 \theta}{\tan \theta}$ in the denominator, allow $\tan \theta$ taken to the numerator
	$=\frac{\sec\theta\tan\theta}{\sec^2\theta}$	M1	use of the identity to get $\sec^2 \theta$
	$=\frac{\tan\theta}{\sec\theta} = \frac{\sin\theta}{\cos\theta} \times \cos\theta = \sin\theta$	A1	expressing all terms in terms of $\sin \theta$ and $\cos \theta$ and simplification to the given answer, withhold A1 for incorrect use of brackets

Question	Answer	Marks	Guidance
11(b)(ii)	$\sin 3\theta = -\frac{\sqrt{3}}{2}$	M1	correct attempt to solve for θ , order must be correct, may be implied by one correct solution
	$3\theta = -\frac{2\pi}{3}, \ -\frac{\pi}{3}, \ \frac{4\pi}{3}$ $\theta = -\frac{2\pi}{9}, \ -\frac{\pi}{9}, \ \frac{4\pi}{9}$	A3	A1 for each

ADDITIONAL MATHEMATICS

0606/13 October/November 2017

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1	Using $\tan^2 \theta + 1 = \sec^2 \theta$ to obtain $y = 2(\tan^2 \theta + 1)$ or $(x+5)^2 = \sec^2 \theta - 1$ $(x+5)^2 + 1 = \frac{y}{2}$	M1	use of correct identity
	$y = 2((x+5)^2 + 1)$ oe	A1	
2	$\frac{dy}{dx} = 10e^{5x} + 3$ an attempt at integration in form $ae^{5x} + bx$	M1	
	$y = \frac{10}{5}e^{5x} + 3x \ (+c)$	A1	condone omission of <i>c</i>
	attempt to find <i>c</i> using $x = 0, y = 9$	M1	M1dep
	$y = 2e^{5x} + 3x + 7$	A1	
3	$9 < 4k(k-4)$ $4k^2 - 16k - 9$	M1	use of the discriminant with correct values
	(2k-9)(2k+1)	M1	M1dep for solution of <i>their</i> quadratic to obtain critical values
	Critical values $\frac{9}{2}$, $-\frac{1}{2}$	A1	
	$k < -\frac{1}{2}, k > \frac{9}{2}$	A1	54
4	<i>a</i> = 3	B1	
	<i>b</i> = 8	B1	
	$\frac{5}{2} = 3\cos\left(8 \times \frac{\pi}{12}\right) + c$	M1	substitution of $x = \frac{\pi}{12}$ and $y = \frac{5}{2}$ to find <i>c</i>
	<i>c</i> = 4	A1	
5(i)	$\frac{5}{14}(7x-10)^{\frac{2}{5}}$	B2	B1 for $k(7x-10)^{\frac{2}{5}}$

Question	Answer	Marks	Guidance
5(ii)	$\frac{5}{14} \left[(7x - 10)^{\frac{2}{5}} \right]_{6}^{a} = \frac{25}{14}$ $\frac{5}{14} (7a - 10)^{\frac{2}{5}} - \frac{5}{14} (7 \times 6 - 10)^{\frac{2}{5}} = \frac{25}{14}$ $(7a - 10)^{\frac{2}{5}} - 4 = 5$	M1	correct application of limits for $k(7x-10)^{\frac{2}{5}}$
	$a = \frac{9^{\frac{5}{2}} + 10}{7}$	M1	M1dep for evaluation of $(7 \times 6 - 10)^{\frac{2}{5}}$ and correct order of operations to find <i>a</i> , including dealing with power.
	$a = \frac{253}{7}$ or $36\frac{1}{7}$	A1	
6(i)	Gradient = $\frac{2.4 - 0.9}{0.2 - 0.8}$ (= -2.5)	B1	
	$\ln y = -\frac{5}{2}x^2 + c$	M1	straight line form and correct substitutions to find <i>c</i>
	$\ln y = -\frac{5}{2}x^2 + 2.9 \text{ oe}$	A1	
	Alternative method		
	2.4 = p(0.2) + q 0.9 = p(0.8) + q	B1	
	Correct method of solution to find p and q from two correct equations	M1	M1dep
	$\ln y = -\frac{5}{2}x^2 + 2.9$	A1	
6(ii)	$y = e^{\left(-\frac{5}{2}x^2 + 2.9\right)}$	M1	dealing with ln
	$y = e^{-\frac{5}{2}x^2} \times e^{2.9}$	M1	M1dep for dealing with the index
	$y = 18.2z^{-\frac{5}{2}}$	A1	

Question	Answer	Marks	Guidance
7(i)	$64 - 48x^2 + 15x^4$	B3	B1 for each correct term in final line of response
7(ii)	$(64-48x^2+15x^4)\left(\frac{1}{x^2}+2+x^2\right)$	B1	B1 for $\frac{1}{x^2} + 2 + x^2$ oe
	at least two correctly obtained products leading to terms in x^2	M1	
	Term in x^2 : 64+15-96	A1	FT for correct evaluation of their $64 + (2 \times their - 48) + their 15$
	=-17	A1	
8(i)	attempt to differentiate a product	M1	
	$\frac{dy}{dx} = \left((x-4) \times \frac{5}{3} \times 3(3x-1)^{\frac{2}{3}} \right) + (3x-1)^{\frac{5}{3}}$	A2	A1 for $(+) \left((x-4) \times \frac{1}{3} \times 3(3x-1)^3 \right)$
			A1 for $(+)(3x-1)^{\frac{5}{3}}$
	$= (3x-1)^{\frac{2}{3}}((5x-20)+(3x-1))$	M1	use of $(3x-1)^{\frac{5}{3}} = (3x-1)^{\frac{2}{3}}(3x-1)$
	$=(3x-1)^{\frac{2}{3}}(8x-21)$	A1	
8(ii)	When $x = 3$, $\frac{dy}{dx} = 8^{\frac{2}{3}} \times 3$	M1	$(3 \times 3 - 1)^{\frac{2}{3}} \times k$ or $(9 - 1)^{\frac{2}{3}} \times k$ or $4 \times k$ (where k is any number)
	$\partial y = 8^{\frac{2}{3}} \times 3 \times h$	M1	M1dep for their $\left(\left(9-1\right)^{\frac{2}{3}} \times k\right) \times h$
	$\partial y = 12h$	A1	
9(a)(i)	720	B1	
9(a)(ii)	240	B1	
9(a)(iii)	$k \times 4! \times 2$ or $240 - k \times 4! \times 2$ or correct equivalents with no extra terms added or subtracted	B1	
	$4 \times 4! \times p$ or correct equivalents with no extra terms added or subtracted	B1	
	192	B1	

Question	Answer	Marks	Guidance
9(b)(i)	6435	B1	
9(b)(ii)	With twins: ${}^{13}C_6$ or 1716 Without twins: ${}^{13}C_8$ or 1287	B2	B1 for ${}^{13}C_6$ or 1716 or ${}^{13}C_8$ or 1287 B1 for $({}^{13}C_6$ and ${}^{13}C_8)$ or (1716 and 1287) with no multiples and no extra terms
	Total: 1716 + 1287 = 3003	B1	3003 from a correct method
10(a)	matrix multiplication, must have at least 2 correct elements	M1	
	$\mathbf{AB} = \begin{pmatrix} 13 & 8\\ 2a - 5b & 3a + 4b \end{pmatrix}$	A1	
	2a - 5b = 18 $3a + 4b = 4$	M1	formation and solution of simultaneous equations
	leading to $a = 4, b = -2$	A1	
	Alternate scheme		
	$\mathbf{AB} = \begin{pmatrix} 13 & 8\\ 18 & 4 \end{pmatrix}$	M1	Correct plan
	$\mathbf{ABB^{-1}} = \begin{pmatrix} 13 & 8 \\ 18 & 4 \end{pmatrix} \mathbf{B^{-1}}$		
	Correct inverse	B1	
	$\mathbf{A} = \begin{pmatrix} 4 & -1 \\ a & b \end{pmatrix} = \frac{1}{23} \begin{pmatrix} 13 & 8 \\ 18 & 4 \end{pmatrix} \begin{pmatrix} 4 & -3 \\ 5 & 2 \end{pmatrix}$	M1	Correct order and method of multiplication with at least two correct elements
	leading to $a = 4, b = -2$	A1	
10(b)(i)	$-\frac{1}{17}\begin{pmatrix}1 & 5\\4 & 3\end{pmatrix}$ oe	B2	B1 for $-\frac{1}{17}$ B1 for $\begin{pmatrix} 1 & 5\\ 4 & 3 \end{pmatrix}$
10(b)(ii)	$\mathbf{Z} = -\frac{1}{17} \begin{pmatrix} 1 & 5 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 4 & 0 \end{pmatrix}$	M1	pre-multiplication with two elements correct
	$=-\frac{1}{17}\begin{pmatrix} 19 & 2\\ 8 & 8 \end{pmatrix}$ oe	A2	A1 for four correct of $-\frac{1}{17}$, 19, 2, 8, 8

Question	Answer	Marks	Guidance
11(i)	1.48	B1	
11(ii)	$\frac{1}{2} \times 10^2 \times \theta = 21.8$	M1	correct use of sector area
	$\theta = 0.436$	A1	
11(iii)	$\angle BOC = \frac{2\pi - 1.48 - 0.436}{2} (= 2.18(4))$	B1	2.18(4) or unsimplified
	$BC = 20\sin\left(\frac{1}{2}\angle BOC\right)$ or	M2	M1 for a complete correct method to find <i>BC</i> using <i>their</i> angle <i>BOC</i>
	$BC = \frac{10 \times \sin BOC}{\sin\left(\frac{\pi - BOC}{2}\right)} \text{ or}$ $BC = \sqrt{(200 - 200 \cos BOC)}$	RÆ	M1 for a correct plan using 14.8, <i>their BC</i> and $10 \times their$ answer to (ii)
	BC = 17.7(5)		
	Perimeter = $14.8 + (2 \times 17.7(5)) + 4.36$ = 54.7 or 54.6	A1	awrt 54.7 or awrt 54.6

Cambridge IGCSE – Mark Scheme PUBLISHED

October/November 2017

Question	Answer	Marks	Guidance
11(iv)	Area =	B2	B1 for $\left(\frac{1}{2} \times 10^2 \times 1.48\right) + 21.8$
	$\left(\frac{1}{2} \times 10^2 \times 1.48\right) + 21.8 + 2\left(\frac{1}{2} \times 10^2 \sin 2.18(4)\right)$		B1 for $2\left(\frac{1}{2} \times 10^2 \sin 2.18(4)\right)$
	= 178	B 1	awrt 178 from correct working
	Alternative method 1		
	Segment area $=\frac{1}{2}(10^2(2.18 - \sin 2.18))$	B1	B1 for $2 \times \frac{1}{2} (10^2 (2.18(4) - \sin 2.18(4)))$
	Area required =	B1	
	$100\pi - 2 \times \frac{1}{2} \left(10^2 \left(2.18(4) - \sin 2.18(4) \right) \right)$		
	= 178	B1	awrt 178 from correct working
	Alternative method 2	N	
	Area of trapezium = $\frac{1}{2}((13.5 + 4.33)(17.1))$	B1	correct area of trapezium <i>ABCD</i> (allow unsimplified)
	Area of segments = $\frac{1}{2} (10^2 (1.48 - \sin 1.48)) +$	B1	correct area of both segments (allow unsimplified)
	$\frac{1}{2} \left(10^2 \left(0.436 - \sin 0.436 \right) \right)$		
	= 178	B1	awrt 178 from correct working
	-h	C	

Question	Answer	Marks	Guidance
12(i)	$2x^2 + 5x - 12 = 0 \text{ or } y^2 + 3y - 28 = 0$	M1	attempt to get in terms of one variable
	(2x-3)(x+4) = 0 or $(y+7)(y-4) = 0$	M1	M1dep for solution of a three term quadratic
	leading to $x = -4$, $y = -7$ and $x = \frac{3}{2}$, $y = 4$	A2	A1 for each 'pair'
	Midpoint $M\left(\frac{\frac{3}{2}-4}{2}, \frac{4+(-7)}{2}\right)\left(=\left(-\frac{5}{4}, -\frac{3}{2}\right)\right)$	A1	correctly obtained midpoint
	Gradient of $PQ = 2$	B1	may be implied
	Perp gradient = $-\frac{1}{2}$	M1	$\frac{-1}{their \text{ gradient of } PQ}$
	Perp bisector: $y + \frac{3}{2} = -\frac{1}{2}\left(x + \frac{5}{4}\right)$	M1	M1dep for equation of perp bisector using <i>their</i> perp gradient and <i>their</i> midpoint. (unsimplified)
	$y = -\frac{1}{2}(-10) - \frac{17}{8} = \frac{23}{8}$	A1	all correct so far and for verification using a correct equation
	or $\frac{23}{8} = -\frac{1}{2}x - \frac{17}{8} \to x = -10$		

Question	Answer	Marks	Guidance
12(ii)	Area = $\frac{1}{2} \times \left(\frac{17}{8} + 1\right) \times \frac{5}{4}$	M1	finding <i>R</i> , <i>S</i> and <i>RS</i>
	correct method for finding area	M1	M1dep
	$=\frac{125}{64}$ or 1.95 or $1\frac{61}{64}$	A1	
	Alternative method 1		
	$Area = \frac{1}{2} \times \frac{\sqrt{125}}{4} \times \frac{\sqrt{125}}{8}$	M1	finding <i>R</i> , <i>S</i> , <i>RM</i> and <i>MS</i>
	correct method for finding area	M 1	M1dep
	$=\frac{125}{64}$ or 1.95 or $1\frac{61}{64}$	A1	
	<u>Alternative method 2</u> Area = $\frac{1}{2} \begin{vmatrix} 0 & 0 & \frac{-5}{4} & 0 \\ 1 & \frac{-17}{8} & \frac{-3}{2} & 1 \end{vmatrix}$	M1	finding <i>R</i> and <i>S</i> to obtain their $\frac{1}{2} \begin{vmatrix} 0 & 0 & \frac{-5}{4} & 0 \\ 1 & \frac{-17}{8} & \frac{-3}{2} & 1 \end{vmatrix}$
	$=\frac{1}{2}\left -\frac{5}{4}-\frac{85}{32}\right $ oe	M1	M1dep for correct method of evaluation
	$=\frac{125}{64}$ or 1.95 or $1\frac{61}{64}$	A1	
Satprep.co.			

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/11 May/June 2017

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

International Examinations

© UCLES 2017

[Turn over

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(i)	$kx - 5 = x^{2} + 4x$ $x^{2} + (4 - k)x + 5 = 0$	M1	equating line and curve equation and collecting terms to form an equation of the form $ax^2 + bx + c = 0$ x terms must be gathered together, maybe implied by later work
	For a tangent $(4-k)^2 = 20$	DM1	correct use of discriminant
	$k = 4 + 2\sqrt{5}$	A1	Accept $k = 4 + \sqrt{20}$
	Alternative		
	Gradient of line = k Gradient of curve = $\frac{dy}{dx} = 2x + 4$	M1	
	Equating: $k = 2x + 4$		
	substitution of $k = 2x + 4$ or $x = \frac{k - 4}{2}$ in	DM1	5
	$kx-5 = x^2 + 4$ and simplify to a quadratic equation in k or x		
	$k = 4 + 2\sqrt{5}$	A1	Accept $k = 4 + \sqrt{20}$
1(ii)	Normal gradient = $-\frac{1}{4+2\sqrt{5}} \times \frac{4-2\sqrt{5}}{4-2\sqrt{5}}$	M1	use of negative reciprocal and attempt to rationalise using a form of $a - b\sqrt{5}$ or $a - \sqrt{20}$ or <i>their</i> equivalent from (i)
	$= -\frac{4-2\sqrt{5}}{-4} \text{ oe}$ $= 1-\frac{\sqrt{5}}{2}$	A1	
2	p(3) = 27 + 9a + 3b - 48	M1	attempt to find $p(3)$
	3a+b=9 oe	A1	
	$p'(x) = 3x^{2} + 2ax + b$ p'(1) = 3 + 2a + b	M1	attempt to differentiate and find $p'(1)$ must have 2 terms correct
	2a + b = -3 oe	A1	
	a = 12, b = -27	A1	for both
3(a)	x^3y^7	B2	B1 for each term

Question	Answer	Marks	Guidance
3(b)(i)	for $(t-2)^{\frac{3}{2}} = (t-2)^{\frac{1}{2}}(t-2)$ soi	M1	
	$(t-2)^{\frac{1}{2}}(4+5(t-2))$	A1	
	$(t-2)^{\frac{1}{2}}(5t-6)$	A1	
3(b)(ii)	2 and $\frac{6}{5}$	B1	FT on <i>their</i> $(t-2)^{\frac{1}{2}}(5t-6)$, must have 2
4(a)(i)	f > 5, f(x) > 5	B1	
4(a)(ii)	$\frac{y-5}{3} = e^{-4x}$ or $\frac{x-5}{3} = e^{-4y}$	B1	
	$-4x = \ln\left(\frac{y-5}{3}\right) \text{ or } -4y = \ln\left(\frac{x-5}{3}\right)$	B1	
	leading to $f^{-1}(x) = -\frac{1}{4} ln\left(\frac{x-5}{3}\right)$	B1	
	or $f^{-1}(x) = \frac{1}{4} \ln\left(\frac{3}{x-5}\right)$		
	or $f^{-1}(x) = \frac{1}{4} (\ln 3 - \ln (x - 5))$		
	or $f^{-1}(x) = -\frac{1}{4}(\ln(x-5) - \ln 3)$		5
	Domain $x > 5$	B1	
4(b)	Domain $x > 5$ $\ln(x^2 + 5) = 2$	B1	
	$x^2 + 5 = e^2$	B1	
	$x = 1.55$ or better or $\sqrt{e^2 - 5}$	B1	
5(a)(i)	$\overrightarrow{OM} = \overrightarrow{OC} + \frac{1}{2} \left(\overrightarrow{OA} - \overrightarrow{OC} \right)$ oe	M1	may be implied by correct answer.
	$\frac{1}{2}(\mathbf{a}+\mathbf{c})$	A1	

Question	Answer	Marks	Guidance
5(a)(ii)	$\mathbf{b} = \frac{5}{2} \overline{OM} \text{ oe }, \frac{5}{2} (their (i))$ or $\overline{OM} = \frac{2}{3} (\mathbf{b} - \overline{OM})$	M1	dealing with ratio correctly to relate b or \overrightarrow{OB} to \overrightarrow{OM}
	$=\frac{5}{4}(\mathbf{a}+\mathbf{c})$	A1	
5(b)(i)	$ -10\mathbf{i} + 24\mathbf{j} = 26$ $\mathbf{p} = \frac{39}{26}(-10\mathbf{i} + 24\mathbf{j})$	M1	magnitude of $-10\mathbf{i} + 24\mathbf{j}$ and use with 39
	$\mathbf{p} = -15\mathbf{i} + 36\mathbf{j}$	A1	
5(b)(ii)	If parallel to the y-axis, i component is zero	M1	realising i component is zero
	so $2\mathbf{p} + \mathbf{q} = 12\mathbf{j}$	DM1	use of 12
	$\mathbf{q} = 30\mathbf{i} - 60\mathbf{j}$	A1	2
5(b)(iii)	$ \mathbf{q} = 30\sqrt{1^2 + (-2)^2} \text{ or } \sqrt{900} \times \sqrt{5}$	M1	attempt at magnitude of <i>their</i> q
	$ \mathbf{q} = 30\sqrt{5}$	A1	Answer Given: must have full and correct working
6(i)	$\frac{1}{2} \times 12^2 \times \theta = 150$	M1	use of sector area
	$\theta = 2.083$, so $\theta = 2.08$ to 2dp	A1	5
6(ii)	Area of triangle $AOB = \frac{1}{2} \times 12^2 \sin 2.08$	M1	correct method for area of triangle
	Area of segment = $150 - \frac{1}{2} \times 12^2 \times \sin 2.08$	A1	allow unsimplified, using $\theta = 2.08, \ 2.083 \text{ or } \frac{150}{72}$
	$\sin 1.04 = \frac{\frac{AB}{2}}{12}$	M1	correct trigonometric statement using $\theta = 2.08, \ 2.083 \text{ or } \frac{150}{72}$ with attempt to obtain <i>AB</i>
	AB = awrt 20.7	A1	
	Shaded area = <i>their</i> $AB \times 8 - their$ segment area	M1	execution of a correct 'plan'(rectangle – segment)
	awrt 78.4 or 78.5	A1	

Question	Answer	Marks	Guidance
6(iii)	Arc $AB = 25$ or 24.96	B1	
	Perimeter = $25 + their AB + 16$	M1	correct 'plan' (arc + <i>their</i> AB + 2×8)
	awrt 61.7	A1	
7	differentiation to obtain answer in the form $p(3x^2+8)^{\frac{2}{3}}$ or $qx(3x^2+8)^{\frac{2}{3}}$	M1	
	$6x(3x^2+8)^{\frac{2}{3}}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5}{3} \times 6x \left(3x^2 + 8\right)^{\frac{2}{3}}$	A1	all correct
	When $\frac{dy}{dx} = 0$ only solution is $x = 0$	DM1	$qx(3x^2+8)^{\frac{2}{3}} = 0$ and attempt to solve
	$x = 0$ and $3x^2 + 8 = 0$ has no solutions	A1	
	Stationary point at (0,32)	A1	
	correct gradient method with substitution of x values either side of zero or equivalent valid method	M1	
	correct conclusion from correct work using a correct $\frac{dy}{dx}$	A1	5
8(i)		B5	B1 for shape of modulus function B1 for <i>y</i> intercept = 5 (for modulus graph only) B1 for <i>x</i> intercept = 2.5 at the V of a modulus graph B1 for shape of quadratic function for $-1 \le x \le 6$ B1 for intercepts at $x = 0$ and $x = 5$ for a quadratic graph
8(ii)	$2x - 5 = \pm 4$	B1	one correct answer
	$x = \frac{9}{2}$	M1	solution of two different correct linear equations or solution of an equation obtained from squaring both sides or use of symmetry from first solution.
	$x = \frac{1}{2}$	A1	second correct solution

Question	Answer	Marks	Guidance
8(iii)	$16\left(\frac{1}{2}\right)^2 - 80\left(\frac{1}{2}\right) + 36 = 4$	B1	verification using both x values or for forming and solving $16x^2 - 80x + 36 = 0$
	and $16\left(\frac{9}{2}\right)^2 - 80\left(\frac{9}{2}\right) + 36 = 4$		
8(iv)	using <i>their</i> values from (ii) in an equality of the form $a \le x \le b$ or $a < x < b$	M1	
	$\frac{1}{2} \leqslant x \leqslant \frac{9}{2} \text{cao}$	A1	
9(i)	$5+4\left(\sec^2\left(\frac{x}{3}\right)-1\right)$ leading to given answer	B1	use of correct identity
9(ii)	$3\tan\left(\frac{x}{3}\right)$ (+c)	B1	
9(iii)	attempt to integrate using (i) and/or (ii)	M1	
	Area = $\int_{\frac{\pi}{2}}^{\pi} 4\sec^2\left(\frac{x}{3}\right) + 1 dx$	A1	all correct
	$\left[12\tan\left(\frac{x}{3}\right) + x\right]_{\frac{\pi}{2}}^{\pi}$	DM1	correct method for evaluation using limits in correct order
	$=\left(12\tan\frac{\pi}{3}+\pi\right)-\left(12\tan\frac{\pi}{6}+\frac{\pi}{2}\right)$	A1	
	$=8\sqrt{3}+\frac{\pi}{2}$	A1	
10(a)	differentiation of a quotient or equivalent product	M1	
	correct differentiation of e^{3x}	B1	
	$\frac{dy}{dx} = \frac{3e^{3x}(4x^2+1) - 8xe^{3x}}{(4x^2+1)^2}$	A1	everything else correct including brackets where needed, allow unsimplified
	or $\frac{dy}{dx} = \frac{3e^{3x}}{4x^2 + 1} - \frac{8xe^{3x}}{(4x^2 + 1)^2}$		

Question	Answer	Marks	Guidance
10(b)(i)	one term differentiated correctly	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4\sin\left(x + \frac{\pi}{3}\right) + 2\sqrt{3}\cos\left(x + \frac{\pi}{3}\right)$	A1	all correct
	When $x = \frac{\pi}{2}$, $\frac{dy}{dx} = -5$	A1	
10(b)(ii)	$\frac{dy}{dx} \times \frac{dx}{dt} = \frac{dy}{dt}$ $-5 \times \frac{dx}{dt} = 10 \text{ oe}$	M1	correct use of rates of change
	$\frac{\mathrm{d}y}{\mathrm{d}t} = -2$	A1	FT answer to (i)

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12 May/June 2017

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1	$(A \cup B) \cap C$ $(A \cap B) \cup C$ $(A \cap B) \cup C$ $(A' \cap B') \cap C$	B3	B1 for each
2	attempt at differentiating a quotient, must have minus sign and $(x+1)^2$ in the denominator	M1	
	for $(5x^2+4)^{-\frac{1}{2}}$	B1	
	for $\frac{1}{2}(10x)(5x^2+4)^{\frac{1}{2}}$	DB1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x+1)\frac{1}{2}(10x)(5x^2+4)^{-\frac{1}{2}} - (5x^2+4)^{\frac{1}{2}}}{(x+1)^2}$	A1	all else correct
	When $x = 3$, $\frac{dy}{dx} = \frac{11}{112}$	A1	must be exact
	Alternative	ρ.	
	$y = \left(5x^{2} + 4\right)^{\frac{1}{2}} \left(x + 1\right)^{-1}$	M1	attempt to differentiate a product
	for $(5x^2 + 4)^{-\frac{1}{2}}$	B1	
	for $\frac{1}{2}(10x)(5x^2+4)^{\frac{1}{2}}$	DB1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}10x(5x^2+4)^{-\frac{1}{2}}(x+1)^{-1} + (5x^2+4)^{\frac{1}{2}}(-(x+1)^{-2})$	A1	all else correct
	When $x = 3$, $\frac{dy}{dx} = \frac{11}{112}$	A1	A1 must be exact

Question	Answer	Marks	Partial Marks
3(a)	$\mathbf{v} = 3\sqrt{5} \times \frac{1}{\sqrt{5}} (\mathbf{i} - 2\mathbf{j})$	M1	attempt to find the magnitude of $(i - 2j)$ and use
	$=3\mathbf{i}-6\mathbf{j}$	A1	for $3i - 6j$ only
3(b)	$\mathbf{w} = 2\cos 30^\circ \mathbf{i} + 2\sin 30^\circ \mathbf{j}$	M1	attempt to use trigonometry correctly to obtain components
	$=\sqrt{3}\mathbf{i}+\mathbf{j}$	A1	
4	$3^{n} - n3^{n-1} \left(\frac{x}{6}\right) + n(n-1)3^{n-2} \left(\frac{x}{6}\right)^{2}$ 3 ⁿ = 81, so n = 4	B1	
	$4 \times 3^3 \times -\frac{1}{6} = a$	M1	for $-n3^{n-1}\left(\frac{x}{6}\right)$, ${}^{n}C_{1}3^{n-1}\left(-\frac{x}{6}\right)$ or
			$\binom{n}{1} 3^{n-1} \left(-\frac{x}{6}\right)$, with/without <i>their n</i>
	a = -18	A1	using <i>their n</i> and equating to <i>a</i> to obtain $a = -18$
	$\frac{4\times3}{2}\times3^2\times\frac{1}{36}=b$	M1	for $n(n-1)3^{n-2}\left(\frac{x}{6}\right)^2$, ${}^{n}C_23^{n-2}\left(\frac{x}{6}\right)^2$ or
	z -		$\binom{n}{2} 3^{n-2} \left(\frac{x}{6}\right)^2$, with/without <i>their n</i>
	$b=\frac{3}{2}$	A1	using <i>their n</i> and equating to <i>b</i> to obtain $\begin{bmatrix} 3 \end{bmatrix}$
	satpre		$b = \frac{3}{2}$
5(i)	$v = -12\sin 3t$	B1	
5(ii)	12	B1	FT on <i>their</i> (i) of the form $k \sin 3t$, must be $ k $
5(iii)	$a = -36\cos 3t$	B1	allow unsimplified
	$3t = \frac{\pi}{2}$, 1.57 or better	B1	
	$t = \frac{\pi}{6}$ or 0.524	B1	
5(iv)	4 cao	B1	may be obtained from knowledge of cosine curve

Question	Answer	Marks	Partial Marks
6(i)	$\frac{1}{\sin\theta} \times \frac{1}{\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}}$	M1	for $\cot \theta = \frac{\cos \theta}{\sin \theta}$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\csc \theta = \frac{1}{\sin \theta}$
	dealing with the fractions correctly	M 1	
	$\frac{1}{\sin\theta} \times \frac{\sin\theta\cos\theta}{\cos^2\theta + \sin^2\theta}$	M1	use of identity
	$=\cos\theta$	A1	correct simplification, with all correct
	Alternative 1 $\frac{\operatorname{cosec}\theta}{\frac{1}{\tan\theta}(1+\tan^2\theta)}$	M1	dealing with fractions
	$=\frac{\tan\theta\operatorname{cosec}\theta}{\operatorname{sec}^2\theta}$	M1	use of appropriate identity
	$=\frac{\sin\theta}{\cos\theta}\times\frac{1}{\sin\theta}\times\cos^2\theta$	M1	for $\cot \theta = \frac{1}{\tan \theta}$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\sec \theta = \frac{1}{\cos \theta}$, $\csc \theta = \frac{1}{\sin \theta}$
	$=\cos\theta$	A1	correct simplification, with all correct
	Alternative 2 $\frac{\operatorname{cosec}\theta}{\frac{1}{\operatorname{cot}\theta}\left(\operatorname{cot}^{2}\theta+1\right)}$	MI	dealing with fractions
	$=\frac{\cot\theta\csc \theta}{\csc^2\theta}$	M1	use of appropriate identity
	$=\frac{\cot\theta}{\csc\theta}$	M1	for $\cot \theta = \frac{\cos \theta}{\sin \theta}$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$,
	$=\frac{\cos\theta}{\sin\theta}\times\sin\theta$		$\csc \theta = \frac{1}{\sin \theta}$
	$=\cos\theta$	A1	correct simplification, with all correct

Question	Answer	Marks	Partial Marks
6(ii)	$\int_0^a \cos 2\theta \mathrm{d}\theta = \left[\frac{1}{2}\sin 2\theta\right]_0^a$	B1	
	$\frac{1}{2}\sin 2a = \frac{\sqrt{3}}{4}$	M1	use of $[k \sin 2\theta]_0^a = \frac{\sqrt{3}}{4}$ to obtain $k \sin 2a = \frac{\sqrt{3}}{4}$
	$2a = \frac{\pi}{3}$	DM1	attempt to solve equation of the form $k \sin 2a = \frac{\sqrt{3}}{4}$, with $-1 \le \frac{\sqrt{3}}{4k} \le 1$, must have a correct order of operations dealing with the double angle
	$a = \frac{\pi}{6}$, 0.167 π or better	A1	
7(i)	$\lg y = \lg A + bx$	B1	straight line form, may be implied by correct values of both <i>A</i> and <i>b</i> later
	Gradient = b ,	M1	equating gradient to b
	<i>b</i> = 3	A1	
	Use of substitution into one of the following $2.2 = \lg A + 0.5b$ $3.7 = \lg A + b$	M1	
	$158.489 = A \times 10^{0.5b}$ 5011.872 = $A \times 10^{b}$	-0	
	$5011.872 = A \times 10^{b}$ or equivalent valid method leads to $\lg A = 0.7$	p.0	
	$A = 5, 5.01 \text{ or } 10^{0.7}$	A1	
	Alternative 1		
	$\lg y = \lg A + bx$	B1	straight line form, may be implied by correct work later
	$2.2 = \lg A + 0.5b$	M1	one correct equation
	$3.7 = \lg A + b$	A1	both equations correct
	attempt to solve 2 correct equations	M1	
	leading to $b = 3$ and $A = 5$, 5.01 or $10^{0.7}$	A1	

Question	Answer	Marks	Partial Marks
7(i)	Alternative 2		
	$y = A(10^{bx})$	M1	one correct equation
	$158.489 = A \times 10^{0.5b}$		
	$5011.872 = A \times 10^{b}$	A1	both correct
	$\frac{5011.872}{158.489} = 10^{0.5b}$	M1	attempt to solve 2 correct equations
	leading to $b = 3$	A1	correct b
	Use of substitution leads to $A = 5$, 5.01 or $10^{0.7}$	A1	correct A
7(ii)	Substitute A and b correctly into either	M1	correct statement using <i>their</i> A and b
	$y = A(10^{0.6b})$, $\lg y = \lg A + 0.6b$ or		correctly in either equation or using $\lg y = 3x + 0.7$
	$lg y = lg A + 0.6 lg 10^{b}$ or using lg y = 1.8 + 0.7		
	$y = 316$, 315 or $10^{2.5}$	A1	
7(iii)	Substitute <i>A</i> and <i>b</i> correctly into either	M1	correct statement using <i>their A</i> and <i>b</i> correctly in either equation or using
	$600 = A(10^{bx}), \ \lg 600 = \lg A + bx \text{ or}$		lg y = 3x + 0.7
	$lg 600 = lg A + x lg 10^{b}$ or using lg 600 = 3x + 0.7		
	x = 0.693	A1	5
8(a)(i)	2520	-B1	
8(a)(ii)	360 Satpre	B1	
8(a)(iii)	1080	B1	
8(a)(iv)	6 or 8 to start with No of ways = $2 \times 5 \times 4 \times 3 \times 2$ = 240	B1	
	9 to start with No of ways = $1 \times 5 \times 4 \times 3 \times 3$ = 180	B1	
	Total number of ways = 420	DB1	Dependent on both previous B marks

Question	Answer	Marks	Partial Marks
8(a)(iv)	Alternative 1		
	All numbers > 6000 - all odd numbers > 6000	B1	plan and attempt to use, must be using 1080
	1080-180-480	B1	for 180 and 480
	Total number of ways = 420	DB1	Dependent on both previous B marks
	Alternative 2		
	Even numbers > 60000 : Odd numbers > 60000 7 : 11	B1	correct ratio
	Total number of ways = $\frac{7}{18} \times 1080$	B1	
	= 420	DB1	Dependent on both previous B marks
8(b)(i)	480700	B 1	
8(b)(ii)	26460	B1	
8(b)(iii)	With brother and sister ${}^{23}C_5 = 33649$	B1	for ${}^{23}C_5$ or ${}^{23}C_5 \times {}^kC_k$
	Without brother and sister ${}^{23}C_7 = 245157$	B1	for ${}^{23}C_7$ or ${}^{23}C_7 \times {}^kC_k$
	Total number of ways = 278806	B1	for ${}^{23}C_5 + {}^{23}C_7$ and evaluation
9(a)(i)	3×2	B1	~
9(a)(ii)	correct attempt to multiply the 2 matrices	M1	
	$\mathbf{C} = \begin{pmatrix} 6 & -6 \\ 5 & 2 \\ 19 & -8 \end{pmatrix}$	A2	-1 for each incorrect element
9(b)(i)	$\mathbf{X}^{-1} = \frac{1}{13} \begin{pmatrix} -7 & 12 \\ -4 & 5 \end{pmatrix}$	B2	B1 for correct use of determinant B1 for correct matrix
9(b)(ii)	$\binom{x}{y} = \frac{1}{13} \binom{-7 12}{-4 5} \binom{26}{52}$	B1	
	attempt to evaluate using inverse from (i) together with pre-multiplication to obtain a 2×1 matrix	M1	
	x = 34, y = 12	A2	A1 for each
10(i)	0.5	B1	for 0.5 from correct work only

Question	Answer	Marks	Partial Marks
10(ii)	$15^{2} = 8^{2} + 8^{2} - (2 \times 8 \times 8 \times \cos AOB)$ AOB = 2.43075 rads	M1	use of cosine rule (or equivalent) to obtain angle <i>AOB</i> .
	DOC = AOB - 2(their AOD)	M1	use of angle AOD and symmetry
	<i>DOC</i> = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better in previous calculations
	Alternative 1		
	$15 = 2 \times 8 \times \sin\left(\frac{1 + DOC}{2}\right)$	M1	use of basic trigonometry
	use of $\frac{1+0.5DOC}{2}$	M1	may be implied
	<i>DOC</i> = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better or 1.215 or better in previous calculations
	Alternative 2		
	$15^{2} = 8^{2} + 8^{2} - (2 \times 8 \times 8 \times \cos AOB)$ AOB = 2.43075 rads $\angle AOB \times 8 = \text{ arc } AB$	M1	use of cosine rule (or equivalent) to obtain angle AOB.
	$\frac{\operatorname{arc} AB - 8}{8} = \angle DOC$	M1	attempt at <i>DOC</i> , must be a complete method with <i>AOB</i> found
	DOC = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better or 1.215 or better in previous calculations
	Alternative 3		
	Equating 2 different forms for the area of triangle AOB $\frac{15\sqrt{31}}{4} = \frac{1}{2} \times 8^2 \sin AOB$, $AOB = 2.43075$ rads	M1	using both different forms of the area of triangle <i>AOB</i>
	DOC = AOB - 2 (their AOD)	M1	use of angle AOD and symmetry
	DOC = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better in previous calculations

Question	Answer	Marks	Partial Marks
10(iii)	$\sin\left(\frac{1.43}{2}\right) = \frac{\frac{DC}{2}}{8} \text{ or}$ $DC^{2} = 8^{2} + 8^{2} - (2 \times 8 \times 8 \times \cos 1.43)$	M1	use of cosine rule or basic trigomoetry to obtain <i>DC</i>
	<i>DC</i> = 10.49	A1	awrt 10.5, may be implied
	Perimeter = 10.49 + 4 + 4 + 15 = 33.5	A1	awrt 33.5
10(iv)	$\frac{1}{2} \times 8^2 (2.43 - \sin 2.43) - \frac{1}{2} \times 8^2 (1.431 - \sin 1.431)$	B1	area of one appropriate sector; allow unsimplified; may be implied by a correct segment
	area of one appropriate triangle, allow unsimplified	B1	
	an appropriate segment, allow unsimplified	B1	
	= 42.8 (allow awrt 42.8)	B 1	final answer
	Alternative 1		
	Area of a trapezium + 2 small segments	B1	one appropriate small sector, allow unsimpified (could be doubled)
	Each small segment = $\frac{1}{2} \times 8^2 (0.5 - \sin 0.5)$	B1	an appropriate triangle, allow unsimplfied (could be doubled)
	Area of trapezium = $\frac{1}{2}(15+10.5) \times (6.041-2.784)$	B1	attempt at trapezium, must have a correct attempt at finding the distance between the parallel sides – allow unsimplified
	Total area = 42.8 (allow awrt 42.8)	B1	final answer
	Alternative 2	P .	
	Area of 2 small sectors + area of triangle ODC – the area of triangle OAB	B1	area of small sector, allow unsimplified, (could be doubled)
	Area of a small sector = $\frac{1}{2} \times 8^2 \times \frac{1}{2}$		
	Area of triangle $ODC = \frac{1}{2} \times 8^2 \times \sin 1.43$	B1	area of triangle ODC, allow unsimplified
	Area of triangle $OAB = \frac{1}{2} \times 8^2 \times \sin 2.43$	B1	area of triangle <i>OAB</i> , allow unsimplified
	Total area = 42.8 (allow awrt 42.8)	B1	final answer

Question	Answer	Marks	Partial Marks
10(iv)	Alternative 3 Area of rectangle + 2 small triangles + 2 small segments Each small segment = $\frac{1}{2} \times 8^2 (0.5 - \sin 0.5)$	B1	area of a small segment, allow unsimplified, could be doubled
	$\frac{1}{2} \times \frac{(15 - 10.49)}{2} (6.041 - 2.784)$	B1	area of a small triangle, allow unsimplified, could be doubled
	Area of rectangle = $10.49 \times (6.041 - 2.784)$	B1	allow unsimplified, could be doubled
	Total area = 42.8 (allow awrt 42.8)	B1	final answer
	Alternative 4 Sector AOB – sector AOD – sector COB – triangle DOC	B1	area of one appropriate sector; allow unsimplified; may be implied by a correct segment
	$\left(\frac{1}{2} \times 8^2 \times 2.43\right) - 2\left(\frac{1}{2} \times 8^2 \times 0.5\right) - \left(\frac{1}{2} \times 8^2 \sin 1.43\right)$ Area = sector <i>AOB</i> - segment <i>DC</i> - triangle <i>AOB</i>	B1	area of one appropriate triangle, allow unsimplified
	$\left(\frac{1}{2} \times 8^2 \times 2.43\right) - (\text{their segment}) - \left(\frac{1}{2} \times 8^2 \sin 2.43\right)$	B1	an appropriate segment, allow unsimplified
	Total area = 42.8 (allow awrt 42.8)	B1	final answer
11(i)	me^{2x-1} where m is numeric constant	M1	S
	$f(x) = \frac{1}{2}e^{2x-1} (+c)$	Al	condone omission of $+c$
	$\frac{7}{2} = \frac{1}{2} + c$	DM1	correct attempt to find arbitrary constant
	$f(x) = \frac{1}{2}e^{2x-1} + 3$	A1	must be an equation
11(ii)	ke^{2x-1} where k is a numeric constant	M1	
	$f''(x) = 2e^{2x-1}$	A1	
	$2x - 1 = \ln\left(\frac{4}{k}\right)$	DM1	attempt to equate to 4 and use logarithms
	$x = \frac{1}{2} + \ln\sqrt{2}$	A1	

ADDITIONAL MATHEMATICS

0606/13 May/June 2017

Paper 1 MARK SCHEME Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

International Examinations

[Turn over

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to			
cao	correct answer only			
dep	dependent			
FT	follow through after error			
isw	ignore subsequent working			
nfww	not from wrong working			
oe	or equivalent			
rot	rounded or truncated			
SC	Special Case			
soi	seen or implied			

Question	Answer	Marks	Partial Marks
1(a)		1	
1(b)	Y Y	1	
2(i)	4	1	
2(ii)	$40^{\circ} \text{ or } \frac{2\pi}{9} \text{ or } 0.698 \text{ rad}$	1	
3(i)		3	B1 for a complete cycle starting and ending at -2 B1 for max at $y = 1$ and min at $y = -5$ B1 for a completely correct graph
3(ii)	5	1	FT <i>their</i> min value for <i>y</i>
4(i)	Area = $\frac{1}{2}(3+2\sqrt{5})(4+6\sqrt{5})$ = $\frac{1}{2}(12+26\sqrt{5}+60)$	M1 tpre	use of correct formula and attempt to expand out the brackets
	$=36+13\sqrt{5}$	A1	
4(ii)	$\frac{3+2\sqrt{5}}{2+3\sqrt{5}}$	B1	
	$=\frac{3+2\sqrt{5}}{2+3\sqrt{5}}\times\frac{2-3\sqrt{5}}{2-3\sqrt{5}}$	M1	
	$=\frac{6-5\sqrt{5}-30}{4-45}$ $=\frac{24+5\sqrt{5}}{41}$	A1	for answer

Question	Answer	Marks	Partial Marks
5	When $x = 4$, $y = 5$	B1	for <i>y</i>
	$\frac{dy}{dx} = \frac{1}{2} \times 4(4x+9)^{-\frac{1}{2}}$	B1	for $2(4x+9)^{-\frac{1}{2}}$, allow unsimplified
	When $x = 4$, $\frac{dy}{dx} = \frac{2}{5}$,	M1	obtaining numerical gradient for normal
	so perp grad = $-\frac{5}{2}$		
	Equation of normal $y-5 = -\frac{5}{2}(x-4)$	M1	for equation of normal
	(2y=30-5x)	P	
	A(6, 0), B(0, 15)	A2	A1 for each
	Midpoint $\left(3, \frac{15}{2}\right)$	B1	FT on <i>their x/y</i> intercepts
6(a)(i)	dealing with multiplication and addition	M1	implied by 2 correct elements
	$\mathbf{A} + 3\mathbf{C} = \begin{pmatrix} -12 & 7\\ 11 & 7 \end{pmatrix}$	A1	
6(a)(ii)	correct attempt to multiply	M1	implied by 2 correct elements
	(17 9)	A1	0.
	$\mathbf{BA} = \begin{pmatrix} 17 & 9\\ 14 & 18\\ -3 & -1 \end{pmatrix}$	tpre	BP.C
6(b)(i)	$\mathbf{X}^{-1} = \frac{1}{10} \begin{pmatrix} -2 & 3 \\ -4 & 1 \end{pmatrix}$	B2	B1 for $\frac{1}{10}$,
			B1 for $\begin{pmatrix} -2 & 3 \\ -4 & 1 \end{pmatrix}$
6(b)(ii)	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{10} \begin{pmatrix} -2 & 3 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} 5 & -10 \\ 15 & 20 \end{pmatrix} $	M1	pre-multiplication using matrix from (b)(i)
	$= \begin{pmatrix} 3.5 & 8\\ -0.5 & 6 \end{pmatrix}$	A2	-1 for each incorrect element

Question	Answer	Marks	Partial Marks
7(a)	LHS = $\frac{\frac{\sin^2 \theta}{\cos^2 \theta} + \sin^2 \theta}{\cos \theta + \frac{1}{\cos \theta}}$	M1	for obtaining all in terms of $\sin \theta$ and $\cos \theta$
	$=\frac{\frac{\sin^2\theta + \sin^2\theta\cos^2\theta}{\cos^2\theta}}{\frac{\cos^2\theta + 1}{\cos\theta}}$	M1	for simplification using addition of fractions
	$= \frac{\sin^2 \theta (1 + \cos^2 \theta)}{\cos \theta (\cos^2 \theta + 1)}$ $= \frac{\sin^2 \theta}{\cos \theta}$	M1	for factorisation and subsequent cancelling of common term
	$\tan\theta\sin\theta = \mathrm{RHS}$	A1	correct final simplification
	Alternative	M1	use of correct identities
	$\frac{\sec^2\theta - 1 - \cos^2\theta + 1}{\cos\theta + \sec\theta}$		
	$= \frac{(\sec\theta - \cos\theta)(\sec\theta + \cos\theta)}{(\sec\theta - \cos\theta)}$ $= \sec\theta - \cos\theta$	M1	attempt to factorise and simplify
	$=\frac{1-\cos^2\theta}{\cos\theta}$	M1	simplification to obtain terms in $\sin \theta$ and $\cos \theta$ only
	$=\frac{\sin^2\theta}{\cos\theta}$ $=\tan\theta\sin\theta$	Al	for final simplification
7(b)	$\sin\phi = \frac{x}{3}, \ \cos\phi = \frac{3}{y}$	M1	for obtaining $\sin \phi$ and $\cos \phi$ in terms of x and y and attempt to use correct identity
	Using $\sin^2 \phi + \cos^2 \phi = 1$ leads to $\frac{x^2}{9} + \frac{9}{y^2} = 1$ and hence $x^2y^2 + 81 = 9y^2$	M1	attempt at simplification
	81	A1	

Question	Answer	Marks	Partial Marks
	Alternative method using substitution $\left(9 \times \frac{9}{\cos^2 \phi}\right) - \left(\frac{9}{\cos^2 \phi} \times 9\sin^2 \phi\right)$	M1	attempt to substitute in for <i>x</i> and <i>y</i>
	$= \left(\frac{81}{\cos^2\phi}\right) - \left(\frac{81\sin^2\phi}{\cos^2\phi}\right)$	M1	simplification of fractions
	$= \frac{81(1 - \sin^2 \phi)}{\cos^2 \phi} \text{ or}$ 81(sec ² ϕ - tan ² ϕ) leading to 81	A1	use of correct identity to obtain 81
8(i)	$p\left(-\frac{1}{2}\right) = -\frac{2}{8} + \frac{a}{4} - 2 + b$	M1	for attempt at $p\left(-\frac{1}{2}\right)$
	leading to $a + 4b = 9$ oe	A1	
	p(1) = 2 + a + 4 + b leading to $a + b = -18$ oe	B1	
	solution of simultaneous equations	M1	
	a = -27, b = 9	A1	for both
8(ii)	attempt at factorisation using either long division or observation	M1	5
	$(2x+1)(x^2-14x+9)$	A1	co.
8(iii)	attempt to solve $q(x) = 0$	M1	3P
	$x = 7 \pm 2\sqrt{10}, -\frac{1}{2}$	A1	for all 3 solutions
9(i)	$\left[3\mathrm{e}^{5x} + \mathrm{e}^{-5x}\right]_{-k}^{k} = 6$	B2	B1 for each term integrated correctly
	$(3e^{5k} + e^{-5k}) - (3e^{-5k} + e^{5k}) = 6$	M1	for use of limits with $ae^{5x} + be^{-5x}$
	$2e^{5k} - 2e^{-5k} = 6$	A1	correct unsimplified
	$e^{5k} - e^{-5k} = 3$	A1	correct simplification to obtain given answer

Question	Answer	Marks	Partial Marks
9(ii)	$y^2 - 3y - 1 = 0$	M1	for correct attempt to obtain a quadratic equation in terms of y or e^{5x}
	$y = \frac{3 \pm \sqrt{9+4}}{2}$, $y = e^{5k} = 3.303$ only	DM1	for attempt to solve quadratic equation and solve for k
	<i>k</i> = 0.239	A1	A0 if more than one solution is given
10(i)	for attempt to differentiate a product	M1	
	$\frac{5}{5x+1}$	B2	B1 for $\frac{1}{5x+1}$
	$\frac{dy}{dx} = (10x+2) \times \frac{5}{5x+1} + 10\ln(5x+1)$	A1	all else correct
10(ii)	$(10x+2) \times \frac{5}{5x+1} = 10$	B1	simplification to obtain 10, allow if seen in (i)
	$10 \int \ln(5x+1) dx$ = (10x+2) ln (5x+1) - 10x	M1	use of result from part (i)
	$\int \ln(5x+1) dx$ = $\frac{(5x+1)}{5} \ln(5x+1) - x$	A1	
10(iii)	$\left[(x+0.2)\ln(5x+1) - x \right]_{0}^{\frac{1}{5}}$	M1	use of limits in result from (ii)
	$= -\frac{1}{5} + \frac{2}{5}\ln 2 = \frac{-1 + \ln 4}{5}$ cao	A1	
11(i)	attempt to differentiate	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6 - \frac{3}{2}x^{\frac{1}{2}}$	A1	
	When $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1	equating to zero and attempt to solve
	x = 16, y = 32	A1	both correct

Question	Answer	Marks	Partial Marks
11(ii)	$\frac{d^2 y}{dx^2} = -\frac{3}{4}x^{-\frac{1}{2}}$	B1	correct differentiation
	This is negative so a maximum point	DB1	correct conclusion
11(iii)	When $x = 4$, $\frac{dy}{dx} = 3$	B1	
	$\partial y \approx \frac{\mathrm{d}y}{\mathrm{d}x} \times h$	M1	use of small increases
	$\approx 3h$	A1	FT their (iii)
12(i)	attempt to differentiate	M1	
	$6\cos 2t + 6$	A1	
12(ii)	$\cos 2t = -1$	M1	attempt to equate (i) to zero and solve
	$t = \frac{\pi}{2}$	A1	
12(iii)	attempt to integrate	M1	
	$x = -\frac{3}{2}\cos 2t + 3t^2 + 2t (+c)$	A2	-1 for each error
	When $t = 0$, $x = 0$, so $c = \frac{3}{2}$	M1	attempt to find <i>c</i>
	$x = \frac{3}{2} - \frac{3}{2}\cos 2t + 3t^2 + 2t$	Al	BP.Co

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12 March 2017

Paper 12 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

Q	uestion	Answer	Marks	Part Marks
1	(a) (i)	0 Satpr	B1	
	(ii)	10	B 1	
	(b)	X	B1	either $X \cap Y = Y$ or $X \cap Z = Z$
			B1	$Y \cap Z = \emptyset$
			B1	completely correct Venn diagram.

Question	Answer	Marks	Part Marks
2 (i)		B1 B1 B1	2 complete cycles having a maximum at $y = 4$ and a minimum at $y = -2$ completely correct curve
(ii)	(90°, -2)	B1	
3	$a^{5} + 5a^{4}\left(\frac{x}{4}\right) + 10a^{3}\left(\frac{x}{4}\right)^{2}$ $a^{5} = 32 \text{ , so } a = 2$ $b = 5 \times \frac{1}{4} \times (\text{their } a)^{4} \text{ ,}$ leading to $b = 20$ $c = 10 \times \frac{1}{16} \times (\text{their } a)^{3}$ leading to $c = 5$	B1 M1 A1 M1 A1	correct attempt to obtain <i>b</i>
4 (a) (i) (ii)	$\frac{1}{10} \begin{pmatrix} 4 & 3 \\ -2 & 1 \end{pmatrix}$ $\mathbf{M} = \frac{1}{10} \begin{pmatrix} 4 & 3 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} -1 & -5 \\ 4 & 2 \end{pmatrix}$	B1 B1 M1	for $\frac{1}{\text{determinant}}$ for matrix pre-multiplication by the matrix from part (i)
(b)	$\mathbf{M} = \frac{1}{10} \begin{pmatrix} 4 & 3 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} -1 & -5 \\ 4 & 2 \end{pmatrix}$ $\mathbf{M} = \frac{1}{5} \begin{pmatrix} 4 & -7 \\ 3 & 6 \end{pmatrix} \text{oe}$ $-3a + 2 = 4(6a - 4)$ $a = \frac{2}{3}$	A2,1,0 M1 A1	 –1 each element error correct use of a determinant

Question	Answer	Marks	Part Marks
5 (i)	LHS = $\frac{1}{\sin \theta} - \sin \theta$ = $\frac{1 - \sin^2 \theta}{\sin \theta}$ = $\frac{\cos^2 \theta}{\sin \theta}$ = $\cot \theta \cos \theta$	M1 M1 A1	dealing with $\csc \theta$ and attempt at dealing with fractions correct use of identity completely correct proof
(ii)	$\cot \theta \cos \theta = \frac{1}{3} \cos \theta$ $3 \cot \theta \cos \theta - \cos \theta = 0$ $\cos \theta (3 \cot \theta - 1) = 0$ $\cos \theta = 0 \cot \theta = \frac{1}{3}, \text{ so } \tan \theta = 3$ $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \theta = 1.25, 4.39$	M1 M1 A1,A1	use of part (i), manipulation and factorisation dealing with $\cot \theta$ and attempt to solve A1 for each pair of solutions (allow 1.57 and 4.71)
6 (a) (i)	40 3 2 0	B1	
(ii)	720	B 1	
(iii)	5040	B1	
(b) (i)	35	B1	5
(ii)	1 Twins in team of $4^{5}C_{1} = 10$	B1	2 ·
(iii)	Twins in team of 4 ${}^{5}C_{2} = 10$ Twins in team of 3 $= 5$ Total = 15 www	B1 B1 B1	

Question	Answer	Marks	Part Marks
7 (a)	$\frac{102}{17} \binom{8}{-15}$	M1	attempt to obtain magnitude of $ \begin{pmatrix} 8 \\ -15 \end{pmatrix} $ and use it
	$\begin{pmatrix} 48 \\ -90 \end{pmatrix}$	A1	$(-15)^{and use n}$
(b)	$\binom{2p-2q+4}{10p+2q+3} = \binom{p^2}{27}$	M1	dealing with the scalar and with addition
	$2p - 2q + 4 = p^{2}$ 10p + 2q + 3 = 27	M1 A1	equating like vectors and simplifying both equations correct
	leading to $p^2 - 12p + 20 = 0$	M1	elimination of q and subsequent solution of quadratic
	p = 2, q = 2 p = 10, q = -38	A1 A1	
8 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\cos 2x \ (+c)$	M1 A1	integration to obtain the form $a \cos 2x$ correct, condone omission of c
	$5 = -2\cos\pi + c$	M1	attempt to find <i>c</i>
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 - 2\cos 2x$	A1	May be implied by a correct <i>c</i>
(ii)	$y = 3x - \sin 2x \ (+c)$	M1 A1	integration to obtain the form $a \sin 2x$ correct, condone omission of c
	$-\frac{1}{2} = \frac{\pi}{4} - \frac{1}{2} + c$	M1	attempt to find <i>c</i>
	$-\frac{1}{2} = \frac{\pi}{4} - \frac{1}{2} + c$ y = 3x - sin 2x - $\frac{\pi}{4}$ oe	A1	
(iii)	When $x = \frac{\pi}{12}$, $\frac{dy}{dx} = 3 - \sqrt{3}$		
	Normal equation:		
	$y + \frac{1}{2} = \frac{1}{\sqrt{3} - 3} \left(x - \frac{\pi}{12} \right)$	M1	attempt to obtain perpendicular gradient and normal equation
		A1FT	FT on <i>their</i> $\frac{dy}{dx}$ from (i). Allow unsimplified
	y = -0.789x - 0.294 cao	A1	

0606/12

Question	Answer	Marks	Part Marks
9 (i)	$\frac{1}{2} \times 10^2 \times \theta = 20\pi$	M1	use of sector area to obtain θ
	$\theta = \frac{2\pi}{5}$	A1	
(ii)	Arc length $AB = 4\pi$	B1FT	FT their θ
	$BC^{2} = 10^{2} + 10^{2} - (2 \times 10 \times 10 \times \cos 2\theta)$ or $\frac{BC}{\sin \frac{4\pi}{5}} = \frac{10}{\sin \frac{\pi}{10}}$	M1	valid attempt to obtain <i>BC</i>
	BC = 19.02 Perimeter = 50.6	A1 A1	
(iii)	Area = Either $\left(\frac{1}{2} \times 19.02^2 \sin \frac{\pi}{5}\right)$	M1	area of triangle ACB
	$+\left(20\pi - \left(\frac{1}{2} \times 10^2 \sin\frac{2\pi}{5}\right)\right)$	M1	area of relevant segment
	= 121.6 allow awrt 122	A1	
	Or $20\pi + 2\left(\frac{1}{2} \times 10 \times 10\sin\frac{4\pi}{5}\right)$ = 121.6 allow awrt 122	M1,M1 A1	M1 for area of triangle <i>AOB</i> or <i>AOC</i> M1 for a complete method

0606/12

Question	Answer	Marks	Part Marks
10	$(2x-5)^{\frac{3}{2}} = 3\sqrt{3}$	M1	attempt to find <i>x</i> -coordinate of <i>B</i>
	x = 4 At A x = 2.5 Either	A1 B1	<i>x</i> -coordinate of <i>B</i> <i>x</i> -coordinate of <i>A</i>
	Area $=\frac{1}{2} \times \frac{3}{2} \times 3\sqrt{3} - \int_{2.5}^{4} (2x-5)^{\frac{3}{2}} dx$	M1	plan and attempt to find the area of the triangle. Allow unsimplified
	$=\frac{9\sqrt{3}}{4} - \left[\frac{1}{5}(2x-5)^{2.5}\right]_{2.5}^{4}$	M1	attempt at integration, must be in the form $(2x-5)^{2.5}$
		A1	correct integration
	$=\frac{9\sqrt{3}}{4} - \left(\frac{1}{5}(3)^{2.5} - 0\right)$	DM1	attempt to use limits correctly
	$=\frac{9\sqrt{3}}{20}$	A1	
	Or		
	line <i>AB</i> : $y = 2\sqrt{3}x - 5\sqrt{3}$	M1	equation of <i>AB</i> and attempt to integrate
	Area = $\int_{2.5}^{4} 2\sqrt{3}x - 5\sqrt{3} - (2x-5)^{\frac{3}{2}} dx$	M1	attempt at integration, must contain the form $(2x-5)^{2.5}$
	$= \left[\sqrt{3}x^2 - 5\sqrt{3}x - \frac{(2x-5)^{\frac{5}{2}}}{5}\right]_{2.5}^4$	A1	correct integration
	$=\frac{9\sqrt{3}}{4}-\frac{9\sqrt{3}}{5}$	DM1	attempt to use correct limits correctly
	$=\frac{9\sqrt{3}}{20}$	A1	
11 (i)	$\ln y = \ln A + bx$	B1 M1	may be implied by later work use of either point correctly in above equation or equivalent
	$0.7 = \ln A + b$ $3.7 = \ln A + 2.5b$	A1	one correct equation
	leading to $b = 2$ and $\ln A = -1.3$, so $A = 0.273$ or $e^{-1.3}$	A1 M1,A1	M1 for dealing with ln correctly to
			obtain A.
(ii)	$\ln y = -1.3 + 2x$		
	$\ln y = 2.7$	M1	valid attempt to find <i>y</i> . Must include correct substitution and dealing with ln correctly.
	<i>y</i> = 14.9	A1	

ADDITIONAL MATHEMATICS

0606/11 October/November 2016

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	11

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

Q	Juestion	Answer	Marks	Part Marks
1	(a) (i)	10	B 1	
	(ii)	22	B1	
	(iii)	4	B1	
	(b) (i)	$Q \subset R$	B 1	
	(ii)	$P \cap Q = \emptyset$, or {}	B 1	
2		a = 1, b = -3, c = -1	B3	B1 for each
3		$3y^2 + 5y - 2 = 0$	B 1, B 1	B1 for $5y$ or $5\log_3 x$, B1 for -2
		$3y^{2} + 5y - 2 = 0$ y = $\frac{1}{3}$, y = -2	M1	for correct attempt at the solution of <i>their</i> quadratic equation
		$x = 3^{\frac{1}{3}}, x = 3^{-2}$ $x = 1.44, x = \frac{1}{9}$	M1	for dealing with one base 3 logarithm correctly
		$x = 1.44, \ x = \frac{1}{9}$	A1, A1	A1 for each
4	(i)	$32x^{10} - \frac{80}{3}x^7 + \frac{80}{9}x^4$	B 3	B1 for each term, powers of <i>x</i> must be simplified
	(ii)	Coefficients needed:		
		$\left(3 \times their - \frac{80}{3}\right) + \left(1 \times their 32\right)$	M1	for dealing with 2 terms
		= -48	A1	Allow A1 for $-48x^7$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0606	11

Question	Answer	Marks	Part Marks
5 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2(3x+2)}$	B1	for correct derivative of log function
	When $x = -\frac{1}{3}$, $y = 0$, $\frac{dy}{dx} = \frac{3}{2}$	B1	for $y = 0$
	Equation of normal: $y = -\frac{2}{3}\left(x + \frac{1}{3}\right)$	M1 A1	M1 for attempt at a gradient of a perpendicular from differentiation and the equation of the normal
(ii)	$Q\left(0,-\frac{2}{9}\right)$ or $\left(0,0.22\right)$ or better	B1 ft	Follow through on <i>their c</i> from part (i)
	$R\left(0,\frac{1}{2}\ln 2\right)$ or $\left(0,0.35\right)$ or better	B1	
	Area of <i>PQR</i> $= \frac{1}{2} \left(\frac{1}{2} \ln 2 + \frac{2}{9} \right) \times \frac{1}{3}$		
	= 0.0948	B1	Allow 0.095
6 (a)	YX, XZ	B2	B2 for both with no extrasB1 for 1 correct with or without extrasB1 for both correct with extrasB0 for anything else
(b) (i)	$\frac{1}{18} \begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix}$ $\mathbf{C} = \mathbf{A}^{-1} \mathbf{B}$	<mark>B1,</mark> B1	B1 for $\frac{1}{18}$, B1 for $\begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix}$
(ii)	$\mathbf{C} = \mathbf{A}^{-1}\mathbf{B}$		
	$=\frac{1}{18} \begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} -4 & 2 \\ 10 & 4 \end{pmatrix}$	M1	for pre-multiplication
	$= \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}$	A1, A1	A1 for any correct pair of elements, but must be from correct matrices

[Page 4	Mark Scheme		Syllabus Paper		
[Cambridge IGCSE – October/No		2016 0606 11		
Qu	iestion	Answer	Marks	Part Marks		
7	(i)	$(0,\sqrt{3})$ or $(0,1.73)$ or better	B1			
((ii)	$\left(\frac{\pi}{6},2\right)$ or $\left(0.524,2\right)$ or better	B1, B1	B1 for each		
(i	iii)	$\cos\!\left(x - \frac{\pi}{6}\right) = 0$	M1	for correct attempt to solve trigonometric equation		
		$x = \frac{2\pi}{3}$ oe or 2.09 or better	A1			
(1	iv)	$2\sin\left(x-\frac{\pi}{6}\right)$ (+c)	B 1			
	(v)	Area = $\left[2\sin\left(x-\frac{\pi}{6}\right)\right]_{0}^{\frac{2\pi}{3}}$	M1	for correct use of their limits, in radians,		
		= 2 + 1 = 3	A1	into $k\sin\left(x-\frac{\pi}{6}\right)$.		
8	(i)	$47 - 24 = 12\theta$				
		$\theta = \frac{23}{12}$, so $\theta = 1.917$ or better	M1	for complete correct method to get $\theta =$		
		$\theta = 1.92$ to 2dp	A1	must have evidence of working to more than 2 dp, allow if 1.916 seen (truncated)		
((ii)	$\sin\frac{\theta}{2} = \frac{CD/2}{12}$	M1	for a complete method, may use cosine rule to get <i>CD</i>		
		<i>CD</i> = awrt 19.6 or 19.7	A1			
(i	iii)	Area of sector = awrt 138 Area of triangle AOB = awrt 67 or 68 Area of segment = awrt 70 or 71	B1 M1 M1	for sector area, allow unsimplified for a correct attempt at area for segment area (<i>their</i> sector area – <i>their</i> triangle area)		
		$AD \times AB$ + segment area = 425 leading to AD = awrt 18.1 or 18.0	M1 A1	for complete method to find <i>AD</i> Allow A1 for 18		
		Alternative method: Area of sector = awrt 138 Difference in length between <i>BC</i> (or <i>AD</i>) and <i>OM</i> where <i>M</i> is the midpoint of <i>CD</i> = 6.88, allow awrt 6.9 Remaining area consists of two trapezia each of width 9.85 and each of area 143.4 $\frac{1}{2}(2BC-6.88) \times 9.85 = 143.4$ oe	B1 M1 M1	for sector area for attempt to find difference between parallel sides for area of one trapezium $\frac{1}{2}(2BC - their \ 6.88) \times their \ 9.85$ oe		
		leading to $AD = awrt 18.1 \text{ or } 18.0$	M1 A1	for attempt to find either <i>BC</i> or <i>AD</i>		

Page 5Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2016060611

Question	Answer	Marks	Part Marks
9 (i)	$p\left(\frac{3}{2}\right): \frac{27a}{8} - \left(4 \times \frac{9}{4}\right) + \frac{3b}{2} + 18 (=0)$	M1	for attempt at $p\left(\frac{3}{2}\right)$
	$\mathbf{p}'\left(\frac{3}{2}\right) = \left(3a \times \frac{9}{4}\right) - \left(8 \times \frac{3}{2}\right) + b (=0)$	M1	for differentiation and attempt at $p'\left(\frac{3}{2}\right)$
	leading to $9a + 4b + 24 = 0$ oe and $27a + 4b - 48 = 0$ oe	M1	for solution of simultaneous equations, to get either <i>a</i> or <i>b</i>
	leading to $a = 4$, $b = -15$	A1	for both
(ii)	$(x+2)(2x-3)^2$ oe	M1, A1	M1 for attempt at long division or factorisation
(iii)	$(x+2)(2x-3)^2 = x+2$		
	x + 2 = 0, x = -2	B1	Must be using $(x+2)$ correctly using part (ii) to get $x = -2$
	$\left(2x-3\right)^2=1$	M1	for solution of the quadratic equation
	leading to $x = 1, x = 2$	A1	
10 (a) (i)	$20U + \frac{1}{2}\left(U + \frac{U}{2}\right)10 = 165$	M1 DM1	for realising that area under the graph is needed and attempt to find an area for equating their area to 165 and attempt to
	leading to $U = 6$	A1	solve
(ii)	Gradient of line: -0.3	M1, A1	M1 for use of the gradient, must be negative
(b) (i)	27	B1	
(ii)	$t^{2} = 8 \ln 4$ t = 3.33 or better	M1 A1	for a correct attempt to solve $e^{\frac{t^2}{8}} = 4$
(iii)	acceleration = $3\frac{2t}{8}e^{\frac{t^2}{8}}\left(e^{\frac{t^2}{8}} - 4\right)^2$	M1, A1	M1 for a correct attempt to differentiate using the chain rule
	When $t = 1$, $a = 6.98$	M1, A1	M1 for use of $t = 1$ in their acceleration

Page 6Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2016060611

Question	Answer	Marks	Part Marks
11 (i)	$\ln y = \ln A + x \ln b$	B1	may be implied, if equation not seen
	Gradient: $\ln b = -\frac{0.12}{8}$, = -0.015	M1	specifically, by correct values for A and b for use of gradient to obtain $\ln b$
	b = 0.985	A1	Allow A1 for $e^{-0.015}$
	Intercept: $\ln A = 0.26$	DM1	for use of one of the given points correctly
	A = 1.30	A1	Allow A1 for $e^{0.26}$ or 1.3
	Alternative 1		
	$\ln y = \ln A + x \ln b$	B1	
	$0.2 = 4\ln b + \ln A$	M1	for one correct equation
	$0.08 = 12 \ln b + \ln A$	DM1	for attempt to obtain either $\ln A$ or $\ln b$ from simultaneous equations
	A = 1.30 and $b = 0.985$	A1, A1	Allow A1 for $b = e^{-0.015}$ and $a = e^{0.26}$ or 1.3
	Alternative 2	RA	
	$1.22 = Ab^4$	B1	
	$1.08 = Ab^{12}$	B1	
		M1	for correct attempt to obtain b or A , must already have B2
	A = 1.30 and $b = 0.985$	A1, A1	Allow A1 for $b = e^{-0.015}$ and $a = e^{0.26}$ or 1.3
(ii)	When $x = 6$, $\ln y = 0.17$	M1	for $\ln y = their \ln A + 6 their \ln b$ or
			$y = their A \times (their b)^6$
	<i>y</i> = 1.19	A1	allow awrt 1.18 to 1.20
(iii)	When $y = 1.1$, $\ln y = 0.095$	M1	for $\ln 1.1 = their \ln A + x their \ln b$ or
		C	$1.1 = theirA \times (theirb)^{x}$
	x=11 Satpr	Al	allow 10.5 to 11.5

ADDITIONAL MATHEMATICS

0606/12 October/November 2016

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$ IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	12

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

Question	Answer	Marks	Part Marks
1 (a) (i)	10	B 1	
(ii)	22	B1	
(iii)	4	B1	
(b) (i)	$Q \subset R$	B 1	
(ii)	$P \cap Q = \emptyset$, or {}	B1	
2	a = 1, b = -3, c = -1	B3	B1 for each
3	$3y^2 + 5y - 2 = 0$	B 1, B 1	B1 for $5y$ or $5\log_3 x$, B1 for -2
	$3y^{2} + 5y - 2 = 0$ y = $\frac{1}{3}$, y = -2	M1	for correct attempt at the solution of <i>their</i> quadratic equation
	$x = 3^{\frac{1}{3}}, x = 3^{-2}$ x = 1.44, x = $\frac{1}{9}$	M1	for dealing with one base 3 logarithm correctly
	$x = 1.44, x = \frac{1}{9}$	A1, A1	A1 for each
4 (i)	$32x^{10} - \frac{80}{3}x^7 + \frac{80}{9}x^4$	B 3	B1 for each term, powers of <i>x</i> must be simplified
(ii)	Coefficients needed:		
	$\left(3 \times their - \frac{80}{3}\right) + (1 \times their 32)$	M1	for dealing with 2 terms
	=-48	A1	Allow A1 for $-48x^7$

Page 3	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	12

Qı	uestion	Answer	Marks	Part Marks
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2(3x+2)}$	B1	for correct derivative of log function
		When $x = -\frac{1}{3}$, $y = 0$, $\frac{dy}{dx} = \frac{3}{2}$	B 1	for $y = 0$
		Equation of normal: $y = -\frac{2}{3}\left(x + \frac{1}{3}\right)$	M1 A1	M1 for attempt at a gradient of a perpendicular from differentiation and the equation of the normal
	(ii)	$Q\left(0,-\frac{2}{9}\right)$ or $\left(0,0.22\right)$ or better	B1 ft	Follow through on <i>their c</i> from part (i)
		$R\left(0,\frac{1}{2}\ln 2\right)$ or $\left(0,0.35\right)$ or better	B 1	
		Area of <i>PQR</i> $= \frac{1}{2} \left(\frac{1}{2} \ln 2 + \frac{2}{9} \right) \times \frac{1}{3}$	B1	Aller: 0.005
		= 0.0948	BI	Allow 0.095
6	(a)	YX, XZ	B2	B2 for both with no extrasB1 for 1 correct with or without extrasB1 for both correct with extrasB0 for anything else
		$\frac{1}{18} \begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix}$	<mark>B1,</mark> B1	B1 for $\frac{1}{18}$, B1 for $\begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix}$
	(ii)	$\mathbf{C} = \mathbf{A}^{-1}\mathbf{B}$		
		$=\frac{1}{18} \begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} -4 & 2 \\ 10 & 4 \end{pmatrix}$	M1	for pre-multiplication
		$= \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}$	A1, A1	A1 for any correct pair of elements, but must be from correct matrices

[Page 4	Mark Scheme		Syllabus Paper		
	Cambridge IGCSE – October/No		ovember 2			
				1		
Qu	uestion	Answer	Marks	Part Marks		
7	(i)	$(0,\sqrt{3})$ or $(0,1.73)$ or better	B 1			
((ii)	$\left(\frac{\pi}{6},2\right)$ or $\left(0.524,2\right)$ or better	B1, B1	B1 for each		
(i	iii)	$\left(\frac{\pi}{6}, 2\right)$ or $(0.524, 2)$ or better $\cos\left(x - \frac{\pi}{6}\right) = 0$	M1	for correct attempt to solve trigonometric equation		
		$x = \frac{2\pi}{3}$ oe or 2.09 or better	A1			
(1	iv)	$2\sin\left(x-\frac{\pi}{6}\right)$ (+c)	B1			
	(v)	Area = $\left[2\sin\left(x-\frac{\pi}{6}\right)\right]_{0}^{\frac{2\pi}{3}}$	M1	for correct use of their limits, in radians,		
		= 2 + 1 $= 3$	A1	into $k\sin\left(x-\frac{\pi}{6}\right)$.		
8	(i)	$47 - 24 = 12\theta$				
Ū	(-)	$\theta = \frac{23}{12}$, so $\theta = 1.917$ or better	M1	for complete correct method to get θ =		
		$\theta = 1.92$ to 2dp	A1	must have evidence of working to more than 2 dp, allow if 1.916 seen (truncated)		
((ii)	$\sin\frac{\theta}{2} = \frac{CD/2}{12}$	M1	for a complete method, may use cosine rule to get <i>CD</i>		
		<i>CD</i> = awrt 19.6 or 19.7	A1			
(i	iii)	Area of sector = awrt 138 Area of triangle AOB = awrt 67 or 68 Area of segment = awrt 70 or 71	B1 M1 M1	for sector area, allow unsimplified for a correct attempt at area for segment area (<i>their</i> sector area – <i>their</i>		
		$AD \times AB$ + segment area = 425 leading to AD = awrt 18.1 or 18.0	M1 A1	triangle area) for complete method to find <i>AD</i> Allow A1 for 18		
		Alternative method: Area of sector = awrt 138 Difference in length between <i>BC</i> (or <i>AD</i>) and <i>OM</i> where <i>M</i> is the midpoint of <i>CD</i> = 6.88, allow awrt 6.9 Remaining area consists of two trapezia each of width 9.85 and each of area 143.4 $\frac{1}{2}(2BC-6.88) \times 9.85 = 143.4$ oe	B1 M1 M1	for sector area for attempt to find difference between parallel sides for area of one trapezium $\frac{1}{2}(2BC-their\ 6.88) \times their\ 9.85$ oe		
		leading to $AD = awrt 18.1$ or 18.0	M1 A1	for attempt to find either <i>BC</i> or <i>AD</i>		

Page 5Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2016060612

Question	Answer	Marks	Part Marks
9 (i)	$p\left(\frac{3}{2}\right): \frac{27a}{8} - \left(4 \times \frac{9}{4}\right) + \frac{3b}{2} + 18 (=0)$	M1	for attempt at $p\left(\frac{3}{2}\right)$
	$\mathbf{p}'\left(\frac{3}{2}\right) = \left(3a \times \frac{9}{4}\right) - \left(8 \times \frac{3}{2}\right) + b (=0)$	M1	for differentiation and attempt at $p'\left(\frac{3}{2}\right)$
	leading to $9a + 4b + 24 = 0$ oe and $27a + 4b - 48 = 0$ oe	M1	for solution of simultaneous equations, to get either <i>a</i> or <i>b</i>
	leading to $a = 4$, $b = -15$	A1	for both
(ii)	$(x+2)(2x-3)^2$ oe	M1, A1	M1 for attempt at long division or factorisation
(iii)	$(x+2)(2x-3)^2 = x+2$ x+2=0, x=-2	$3)^{2} = x + 2$ = -2 B1 Must be using $(x + 2)$ correctly u (ii) to get $x = -2$	
	$(2x-3)^2 = 1$ leading to $x = 1, x = 2$	M1 A1	for solution of the quadratic equation
10 (a) (i)	$20U + \frac{1}{2}\left(U + \frac{U}{2}\right)10 = 165$	M1 DM1	for realising that area under the graph is needed and attempt to find an area for equating their area to 165 and attempt to
	leading to $U = 6$	A1	solve
(ii)	Gradient of line: -0.3	M1, A1	M1 for use of the gradient, must be negative
(b) (i)	27	B1	
(ii)	$t^{2} = 8 \ln 4$ t = 3.33 or better	M1 A1	for a correct attempt to solve $e^{\frac{t^2}{8}} = 4$
(iii)	acceleration = $3\frac{2t}{8}e^{\frac{t^2}{8}}\left(e^{\frac{t^2}{8}}-4\right)^2$	M1, A1	M1 for a correct attempt to differentiate using the chain rule
	When $t = 1$, $a = 6.98$	M1, A1	M1 for use of $t = 1$ in their acceleration

Page 6Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2016060612

Question	Answer	Marks	Part Marks
11 (i)	$\ln y = \ln A + x \ln b$	B1	may be implied, if equation not seen
	Gradient: $\ln b = -\frac{0.12}{8}$, = -0.015	M1	specifically, by correct values for A and b for use of gradient to obtain $\ln b$
	b = 0.985	A1	Allow A1 for $e^{-0.015}$
	Intercept: $\ln A = 0.26$	DM1	for use of one of the given points correctly
	<i>A</i> = 1.30	A1	Allow A1 for $e^{0.26}$ or 1.3
	Alternative 1		
	$\ln y = \ln A + x \ln b$	B1	
	$0.2 = 4 \ln b + \ln A$	M1	for one correct equation
	$0.08 = 12\ln b + \ln A$	DM1	for attempt to obtain either $\ln A$ or $\ln b$ from simultaneous equations
	A = 1.30 and $b = 0.985$	A1, A1	Allow A1 for $b = e^{-0.015}$ and $a = e^{0.26}$ or 1.3
	Alternative 2	RA	
	$1.22 = Ab^4$	B1	
	$1.08 = Ab^{12}$	B1	
		M1	for correct attempt to obtain b or A , must already have B2
	A = 1.30 and $b = 0.985$	A1, A1	Allow A1 for $b = e^{-0.015}$ and $a = e^{0.26}$ or 1.3
(ii)	When $x = 6$, $\ln y = 0.17$	M1	for $\ln y = their \ln A + 6 their \ln b$ or
			$y = their A \times (their b)^6$
	<i>y</i> =1.19	A1	allow awrt 1.18 to 1.20
(iii)	When $y = 1.1$, $\ln y = 0.095$	M1	for $\ln 1.1 = their \ln A + x$ their $\ln b$ or
	2	G	$1.1 = theirA \times (theirb)^{x}$
	x=11 %.satp	A1	allow 10.5 to 11.5

ADDITIONAL MATHEMATICS

0606/13 October/November 2016

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$ IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2016	0606	13

Abbreviations

awrt answers which round to

cao correct answer only

dep dependent

- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

www without wrong working

Question	Answer	Marks	Part Marks
1		B1	for symmetrical shape as in the diagram with curved maxima of equal height and cusps on the <i>x</i> -axis
		B1 B1	for a complete 'curve' with all low points on the <i>x</i> -axis and all high points on $y = 2$ for a complete 'curve' meeting the <i>x</i> -axis at $x = 30^{\circ}$, 90° , 150° only.
2	$=\frac{4m^2-9}{2m+3}$	M1	for multiplying each term by \sqrt{m} , using a common denominator of \sqrt{m} or for multiplying numerator and denominator by $2\sqrt{m} - \frac{3}{\sqrt{m}}$
	$=\frac{(2m-3)(2m+3)}{2m+3}$	Al	for a correct expression that will cancel $\frac{(2m-3)(2m+3)}{2m+3}, \frac{(4m^2-9)(2m-3)}{(4m^2-9)}$ $\frac{(2m-3)(2m+3)(2m-3)}{(2m+3)(2m-3)}, \text{ or equivalents}$
	= 2m - 3	A1	for $2m-3$ or $A=2, B=-3$
	Alternative Method $(4m\sqrt{m} - \frac{9}{\sqrt{m}})$ $= (2\sqrt{m} + \frac{3}{\sqrt{m}})(Am + B)$	M1	for correct expansion
	Comparing coefficients 2A = 4, 3A + 2B = 0, 3B = -9	A1 A1	for correct comparisons to obtain A and B for $2m-3$ or $A=2$, $B=-3$

Mark Scheme Cambridge IGCSE – October/November 2016

SyllabusPaper060613

Q	uestion	Answer	Marks	s Part Marks	
3	(i)	$3x^{2} - 2xp + (p+3) = 0$ (-2p) ² - 4×3×(p+3) ≥ 0 oe	M1	for obtaining a 3-term quadratic in the form $ax^2 + bx + c(=0)$	
			DM1	for correct substitution of <i>their a</i> , <i>b</i> and <i>c</i> into ' $b^2 - 4ac$ 'and use of discriminant.	
		$p^2 \ge 3(p+3) \text{ or } 4p^2 - 12p - 36 \ge 0$ $p^2 - 3p - 9 \ge 0$	A1	for full correct working, \geq the only sign used, \geq used before division by 4 and \geq used in answer line and penultimate line.	
	(ii)	Correct method of solution $p^2 - 3p - 9 = 0$ leading to critical values	M1 for correct substitution in the quadratic formula for correct attempt to complete the square. (allow 1 sign error in either method)		
		$p = \frac{3 \pm 3\sqrt{5}}{2}$	A1	for both correct critical values	
		$p \leqslant \frac{3 - 3\sqrt{5}}{2}, \ p \geqslant \frac{3 + 3\sqrt{5}}{2}$	A1	for correct range	
4	(i)	$64 - 48x + 15x^2$	B3	for each correct term	
	(ii)	$(4 \times '64') + (2 \times '-48') + (3 \times '15')$	M1	for correctly obtaining three products using <i>their</i> coefficients in (i)	
			A1	for two correct out of three products (unsimplified) cao	
		= 205 cao	A1 for 205 selected as final answer		
5	(i)	$\log_9 xy = \log_9 x + \log_9 y$	M1	for use of $\log AB = \log A + \log B$	
		$=\frac{\log_3 x}{\log_3 9} + \frac{\log_3 y}{\log_3 9}$	M1 for correct method for change of base. Division log ₃ 9 should be seen and not implied.		
		$=\frac{\log_3 x}{2} + \frac{\log_3 y}{2} = \frac{5}{2}$			
		$\log_3 x + \log_3 y = 5$	A1	for dealing with 2 correctly and 'finishing off'	
		Alternative method			
		$\log_9 xy = \frac{5}{2}$	M1	for obtaining <i>xy</i> as a power of 3	
		$xy = 9^{\frac{5}{2}} = 3^5$	M1	for correct use of log ₃	
		$\log_3 xy = 5$ $\log_3 x + \log_3 y = 5$	A1	for using law for logs and arriving at correct answer	

Syllabus	Paper
0606	13

Question	Answer	Marks	Part Marks
(ii)	$\log_3 x (5 - \log_3 x) = -6$		
	$-(\log_3 x)^2 + 5\log_3 x = -6$	M1	for substitution, correct expansion of brackets and manipulation to get a 3 term quadratic
	$(\log_3 x)^2 - 5\log_3 x - 6 = 0$	A1	for a correct quadratic equation in the form $ax^2 + bx + c = 0$
	leading to $\log_3 x = 6$, $\log_3 x = -1$	A1	for both solutions
		DM1	for method of solution of $\log_3 x = k$ or $\log_3 y = k$
	$x = 729, \ x = \frac{1}{3}$		
	$y = \frac{1}{3}, y = 729$	A1	for all x and y correct
6 (i)	$\frac{6x}{3x^2 - 11}$	M1 A1	M1 for $\frac{mx}{3x^2 - 11}$
(ii)	$p = \frac{1}{6}$	B1	FT for $p = \frac{1}{m}$
(iii)	$\frac{1}{6}\ln(3a^2 - 11) - \frac{1}{6}\ln 1 = \ln 2$	M1	for correct use of limits in $p \ln (3x^2 - 11)$ May be implied by following equation
	$\ln\left(3a^2-11\right) = \ln 2^6$	DM1	for dealing with logs correctly
	$3a^2 - 11 = 64$	DM1	for solution of $3a^2 - 11 = k$
	a = 5 only	A1	for 5 obtained from an exact method
	2.Sat	ret	

Mark Scheme Cambridge IGCSE – October/November 2016

SyllabusPaper060613

Question	Answer	Marks	Part Marks
7 (i)	$\ln y = \ln A + \frac{b}{x}$ Gradient: $b = -0.8$	B1 B1	for equation, may be implied, must be using ln unless recovered for $b = -0.8$ oe
	Intercept or use of equation: $\ln A = 4.7$ A = 110	B1 B1	for $\ln A = 4.7$ oe, allow 4.65 to 4.75 for $A = 110$, allow 105 to 116 Allow A in terms of e
	Alternative Method $3.5 = \ln A + 1.5b$ and	B 1	for one equation
	$1.5 = \ln A + 4b$ leading to $b = -0.8$ ln $A = 4.7$ and $A = 110$	B1 B1 B1	for $b = -0.8$ for $\ln A = 4.7$ for $A = 110$ or $e^{4.7}$
	Alternative Method $e^{1.5} = Ae^{4b}$ $e^{3.5} = Ae^{1.5b}$ leading to $b = -0.8$ and $A = 110$	B1 B1 B1 B1	for $e^{1.5} = Ae^{4b}$ or $4.48 = Ae^{4b}$ for $e^{3.5} = Ae^{1.5b}$ or $33.1 = Ae^{1.5b}$ for $b = -0.8$ for $A = 110$ or $e^{4.7}$
(ii)	When $x = 0.32$, $\frac{1}{x} = 3.125$, $\ln y = 2.2$	M1	for a complete method to obtain <i>y</i> , using either the graph, using <i>their</i> values in the equation for lny or
	$y = 9$ (allow 8.5 to 9.5) or $e^{2.2}$	A1	
(iii)	When $y = 20$, $\ln y = 3$, $\frac{1}{x} = 2.125$	M1	for a complete method to obtain <i>x</i> , using either the graph, using <i>their</i> values in the equation for lny or
	so $x = 0.47$ (allow 0.45 to 0.49)	A1	using <i>their</i> values in the equation for <i>y</i> .

Syllabus	Paper
0606	13

Question	Answer	Marks	Part Marks
8 (a) (i)	$\frac{\csc\theta}{\csc\theta - \sin\theta} = \frac{\frac{1}{\sin\theta}}{\frac{1}{\sin\theta} - \sin\theta}$	M1	for using $\csc \theta = \frac{1}{\sin \theta}$ and either attempt to multiply top and bottom by $\sin \theta$ or an attempt to combine terms in denominator.
	$=\frac{1}{1-\sin^2\theta} \text{ or } =\frac{\frac{1}{\sin\theta}}{\frac{(1-\sin^2\theta)}{\sin\theta}}$	DM1	for correct use of $1 - \sin^2 \theta = \cos^2 \theta$
	$=\frac{1}{\cos^2\theta}$ $=\sec^2\theta$	A1	for completing the proof
	Alternative Method using cosec $\frac{\csc \theta}{\csc \theta - \sin \theta} = \frac{\csc \theta}{\csc \theta - \frac{1}{\csc \theta}}$	PR	
	$=\frac{\operatorname{cosec}^{2}\theta}{\operatorname{cosec}^{2}\theta-1}$ $1+\cot^{2}\theta$	M1	for using $\sin \theta = \frac{1}{\csc \theta}$ and an attempt to combine terms in denominator.
	$= \frac{1 + \cot^2 \theta}{\cot^2 \theta}$ $= \tan^2 \theta + 1 = \sec^2 \theta$	DM1 A1	for use of $1 + \cot^2 \theta = \csc^2 \theta$ for completing the proof
(ii)	$= \tan^{-}\theta + 1 = \sec^{-}\theta$ $\cos^{2}\theta = \frac{1}{4}, \cos\theta = \pm \frac{1}{2}$ or $\tan^{2}\theta = 3, \tan\theta = \pm \sqrt{3}$ or $\sin^{2}\theta = \frac{3}{4}, \sin\theta = \pm \frac{\sqrt{3}}{2}$ $\theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$	AI M1 A1 A1	for using (i) to obtain a value for $\cos^2\theta$, $\tan^2\theta$ or $\sin^2\theta$ and then taking the square root. for two correct values for two further correct values and no extras in range.
(b)	$\tan\left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$ $x = \frac{\pi}{6} - \frac{\pi}{4}, \ \frac{7\pi}{6} - \frac{\pi}{4}, \ \frac{13\pi}{6} - \frac{\pi}{4}$	M1	for correct order of operations, can be implied by $x = -\frac{\pi}{12}$
	$x = \left(-\frac{\pi}{12}\right), \frac{11\pi}{12}, \frac{23\pi}{12}$	A1,A1	A1 for $x = \frac{11\pi}{12}$ A1 for $x = \frac{23\pi}{12}$
			If there are extra solutions in range in addition to the two correct ones then A1A0

Syllabus	Paper
0606	13

Q	uestion	Answer	Marks	Part Marks
9	(a) (i)	$^{18}C_5 = 8568 \mathrm{mmm}$	B 1	
	(ii)	Either ${}^{10}C_4 \times {}^8C_1 = 1680$ ${}^{10}C_3 \times {}^8C_2 = 3360$ ${}^{10}C_2 \times {}^8C_3 = 2520$	B1 B2,1,0	for a correct plan B2 4 correct numbers with no extras B1 3 correct numbers (out of 3 or 4)
		$^{10}C_1 \times {}^8C_4 = 700$ Total = 8260	B1	for correct total
		Or their ${}^{18}C_5 - ({}^{10}C_5 + {}^{8}C_5)$ 8568 - (252 + 56) Total =8260	B1 B1 B1 B1	for correct plan for 252 subtracted for 56 subtracted for correct total
	(b) (i)	$^{10}P_6 = 151200$	B 1	
	(ii)	$4 \times {}^{8}P_{4} \times 3$ = 20160	M1 A1	for correct unsimplified for correct numerical answer
	(iii)	Answer to (i) - ${}^{7}P_{6}$ =146160	M1 A1 A1	for correct plan for correct unsimplified for correct numerical answer
		Alternative: 1 symbol: 45360 2 symbols: 75600 3 symbols: 25200 Total: 146160	B2,1,0 B1	B2 for all 3 correct B1 for 2 correct (out of 2 or 3) for correct sum

Syllabus	Paper
0606	13

Question	Answer	Marks	Part Marks	
10 (i)	$f(x) = 3x^{2} - 4e^{2x} (+c)$ passing through (0,-3)	M1 A1 A1 DM1	for one correct term for one correct term $3x^2$ or $-4e^{2x}$ for a second correct term with no extras for correct method to find <i>c</i> .	
	$-3 = 3 \times 0 - 4e^{0} + c$ f(x) = 3x ² - 4e ^{2x} + 1	A1	for correct equation	
(ii)	f'(0) = -8	B1 for $m = \frac{1}{8}$		
	Normal: $y + 3 = \frac{1}{8}x$	M1	for equation of normal using $m = \frac{1}{8}$	
	8y + 24 = x y = 2 - 3x	DM1	for solving normal equation simultaneously with $y = 2 - 3x$ to get a value of x	
	leads to $x = \frac{8}{5}$ oe	A1	for $x = \frac{8}{5}$, 1.6 oe	
	Area = $=\frac{1}{2} \times 3 \times \frac{8}{5} = 2.4$ oe	B1	FT for a numerical answer equal to $\left \frac{1}{2} \times 3 \times \text{their } x\right $	
11 (i)	a = 8t - 8 When $t = 3$, $a = 16$			
(ii)	0.5, 1.5	B1,B <mark>1</mark>	B1 for each	
(iii)	$s = \frac{4}{3}t^3 - 4t^2 + 3t$	M1 A1	for at least two terms correct all correct	
	when $t = \frac{1}{2}, s = \frac{2}{3}$	DM1	for calculating displacement when either $t = \frac{1}{2}$	
	2 3 V.sat	bret	or $t = \frac{3}{2}$	
	when $t = \frac{3}{2}, s = 0$	DM1	for calculating displacement at $t = \frac{1}{2}$ and doubling.	
	total distance travelled = $\frac{4}{3}$	A1	for $\frac{4}{3}$ oe allow 1.33	
	Alternative method	M1A1 DM1	As before DM1 for calculating displacement when $t = 0.5$ or for calculating distance travellad between $t = 0.5$	
		DM1	for calculating distance travelled between $t = 0.5$ and $t = 1.5$ DM1 for doubling distance travelled between t = 0.5 and $t = 1.5$ or for adding that distance to displacement at $t = 0.5$	
		A1	A1 for $\frac{4}{3}$ oe allow 1.33	

ADDITIONAL MATHEMATICS

0606/11 May/June 2016

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

© UCLES 2016

[Turn over

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2016	0606	11

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

Qu	estion	Answer	Marks	Guidance
1 ((i)	-27	B 1	
	(ii)	$9 - 8k = 0$ $k = \frac{9}{8}$	M1 A1	for use of discriminant with a complete method to get to $k =$
		Or $\frac{dy}{dx} = 4x - 3$	M1	for a complete method to get to $k =$
		when $\frac{dy}{dx} = 0$, $x = \frac{3}{4}$ so $k = \frac{9}{8}$	A1	
		Or completing the square $y = 2\left(x - \frac{3}{4}\right)^2 + k - \frac{9}{8}$ $k = \frac{9}{8}$	M1	for a complete method to get to $k =$
		$k = \frac{9}{8}$	A1	
2	(a)	$2^{4(3x-1)} = 2^{3(x+2)}$ or $4^{2(3x-1)} = 4^{\frac{3}{2}(x+2)}$ or $8^{\frac{4}{3}(3x-1)} = 8^{x+2}$ or $16^{3x-1} = 16^{\frac{3}{4}(x+2)}$	B1	B1 for a correct statement
		leading to $x = \frac{10}{9}$ cao	M1 A1	for equating indices
	(b)	$p = \frac{5}{3}$ $q = -2$	B1 B1	

Page 3	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2016	0606	11

Question	Answer	Marks	Guidance
3	On <i>x</i> -axis, $2x^2 - 7 = 1$ x = 2	M1 A1	for equating to 1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x}{2x^2 - 7}$	B1	
	When $x = 2$, $\frac{dy}{dx} = 8$		
	Gradient of normal = $-\frac{1}{8}$		
	Equation of normal $y = -\frac{1}{8}(x-2)$	M1	for attempt at perpendicular through <i>their</i> $(2, 0)$, must be using $y = 0$
	Required form $x + 8y - 2 = 0$	A1	must be equated to zero with integer coefficients
4 (a)	$\mathbf{A}^2 = \begin{pmatrix} 7 & -2 \\ -3 & 6 \end{pmatrix}$	B1	
	$\mathbf{A}^2 - 2\mathbf{B} = \begin{pmatrix} 1 & -2 \\ -5 & 2 \end{pmatrix}$	M1 A1	for their $\mathbf{A}^2 - 2\mathbf{B}$
(b)	$ \begin{pmatrix} 4 & 1 \\ 10 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} $		
	$so\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & -1 \\ -10 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ leading to $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$	M1 DM1	for pre-multiplication by <i>their</i> inverse matrix DM1 for attempt at matrix multiplication
	x = 1 y = -3 (-3)	A1 A1	Allow in matrix form
5 (i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{e}^{4x}}{4} - x\mathrm{e}^{4x}\right) = \mathrm{e}^{4x} - \left(\left(x \times 4\mathrm{e}^{4x}\right) + \mathrm{e}^{4x}\right)$	B1	for $\frac{d}{dx}\left(\frac{e^{4x}}{4}\right) = e^{4x}$
	$=-4xe^{4x}$	M1 A1 A1	for attempt to differentiate a product for a correct product for correct final answer
(ii)	$\int_{0}^{\ln 2} x e^{4x} dx = -\frac{1}{4} \left[\frac{e^{4x}}{4} - x e^{4x} \right]_{0}^{\ln 2}$	B1FT	FT for use of <i>their</i> $\frac{1}{p} \times \left(\frac{e^{4x}}{4} - xe^{4x}\right)$, must
	$=-\frac{1}{4}\left(\left(\frac{16}{4}-16\ln 2\right)-\frac{1}{4}\right)$	B1 M1	be numerical p, but $\neq 0$ for $e^{4\ln 2} = 16$ for correct use of limits, must be an integral
	$=4\ln 2 - \frac{15}{16}$	A1	of the correct form

Mark Scheme Cambridge IGCSE – May/June 2016

SyllabusPaper060611

C	uestion	Answer	Marks	Guidance
6	(i)	$2-\sqrt{5} < f(x) \leq 2$	B2	B1 for ≤ 2 B1 for $2 - \sqrt{5} <$ or awrt -0.24 Must be using f, f(x) or y, $2 - \sqrt{5} <$, if not then B1 max
	(ii)	$f^{-1}(x) = (2-x)^2 - 5$ Domain $2 - \sqrt{5} < x \le 2$ Range y or $-5 \le f^{-1}(x) < 0$	M1 A1 B1 B1	for a correct method to find the inverse Must be using the correct variables for the B marks
	(iii)	$fg(x) = f\left(\frac{4}{x}\right)$ $= 2 - \sqrt{\frac{4}{x} + 5}$ leading to $x = -4$	M1 DM1 A1	for correct order of functions for solution of equation
7	(i)	Finding an angle of 68.2° or 21.8° $\frac{4.5}{\sin 68.2} = \frac{2.4}{\sin \alpha}$ leading to $\alpha = 29.7^{\circ}$ (allow ±0.1) Direction is 82.1° to the bank, upstream(allow ±0.1°)	B1 B1 B1 B1	for the sine rule
	(ii)	$\frac{4.5}{\sin 68.2} = \frac{2.4}{\sin 29.7} = \frac{v_r}{\sin 82.1}$ leading to $v_r = 4.8$ time taken = $\frac{80.78}{4.8} = 16.8$	B1 B1 M1 A1	for the sine rule for resultant velocity for attempt to find <i>AB</i> and hence the time taken
		Alternative method: Finding an angle of 68.2° or 21.8° $4.5^2 = 2.4^2 + v_r^2 - (2 \times 2.4 \times v_r \cos 68.2)$ leading to $v_r = 4.8$ Use of sine rule to obtain angle and direction to obtain direction is 82.1° to the bank, upstream	B1 B1 B1 B1 B1 B1	for correct use of the cosine rule for resultant velocity for use of the sine rule for $\alpha = 29.7^{\circ}$ for 82.1°
		Use of time taken = $\frac{80.78}{4.8} = 16.8$	M1 A1	for attempt to find <i>AB</i> and hence the time taken

Page 5Mark SchemeSyllabusPaperCambridge IGCSE – May/June 2016060611

Question	Answer	Marks	Guidance		
8 (i)	$y-6 = -\frac{4}{12}(x+8)$ (3y+x=10)	M1 A1	for a correct method allow unsimplified		
(ii)	y-7=3(x+1) (y=3x+10)	DM1 A1	for attempt at a perpendicular line using $(-1, 7)$ allow unsimplified		
(iii)	point of intersection $(-2, 4)$ which is the midpoint of <i>AB</i>	M1 M1 A1	for attempt to find the point of intersection using simultaneous equations for attempt to find midpoint for all correct		
(iv)	Alternative method: Midpoint (-2, 4) Verification that this point lies on <i>CP</i> . $CP = \sqrt{10}$ or 3.16	M1 M1 A1 B1	for attempt to find midpoint for full verification for all correct		
(v) (v)	$Area = \frac{1}{2} \times \sqrt{10} \times 4\sqrt{10}$ $= 20$	M1 A1	for correct method using <i>CP</i> for 19.9 – 20.1		
Zzu.satprep.co.					

Mark Scheme Cambridge IGCSE – May/June 2016

SyllabusPaper060611

Qı	uestion	Answer	Marks	Guidance
9	(i)	$2\cos x \cot x = \cot x + 2\cos x$ $2\cos x \frac{\cos x}{\sin x} + 1 = \frac{\cos x}{\sin x} + 2\cos x$	M1	for use of $\cot x = \frac{\cos x}{\sin x}$ for both terms
		$2\cos^2 x + \sin x = \cos x + 2\cos x \sin x$	DM1	for multiplication throughout by $\sin x$
		$2\cos^{2} x - 2\cos x \sin x = \cos x - \sin x$ $2\cos x (\cos x - \sin x) = \cos x - \sin x$	DM1	for attempt to factorise
		$(2\cos x - 1)(\cos x - \sin x) = 0$	A1	for completely correct solution www
		Alternative method:		
		$a\cos^2 x - a\cos x\sin x - b\cos x + b\sin x = 0$	M1 DM1	for expansion of RHS
		$a\cos x\cot x - a\cos x - b\cot x + b = 0$	DM1 DM1	for division by $\sin x$ for comparing like terms to obtain both <i>a</i> and <i>b</i>
		a = 2, b = 1	A1	for both correct www
	(ii)	$(2\cos x - 1)(\cos x - \sin x) = 0$		
		$\cos x = \frac{1}{2} , \tan x = 1$	M1	for either
		$x = \frac{\pi}{3}, x = \frac{\pi}{4}$	A1,A1	A1 for each, penalise extra solutions within the range by withholding the last A mark
		Alternative method: $(2\cos x - 1)(\cot x - 1) = 0$.5
		Leading to $\cos x = \frac{1}{2}$, $\tan x = 1$	M1 .	for attempt to factorise the original equation and attempt to solve
		$x = \frac{\pi}{3} , x = \frac{\pi}{4}$	A1,A1	A1 for each, penalise extra solutions within the range by withholding the last A mark
10	(i)	f(-2) = -32 - 2k + p = 0	M1	for attempt at $f(-2)$
		$f'\left(\frac{1}{2}\right) = \frac{12}{4} + k = 0$	M1	for attempt at $f'\left(\frac{1}{2}\right)$
		leading to $k = -3$ and $p = 26$	A1,A1	A1 for each
	(ii)		B1FT	FT for <i>their</i> $\frac{p}{2}$
		$(x+2)(4x^2-8x+13)$	B1	all correct
	(iii)	Showing that $4x^2 - 8x + 13 = 0$ has no real roots	M1,	M1 for a valid attempt at solution of equation leading to no solution or
		so $x = -2$ only www	A1	consideration of the discriminant

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	11

Question	Answer	Marks	Guidance	
11 (i)	$AB = 2r\sin\theta$ or $\sqrt{r^2 + r^2 - 2r^2\cos 2\theta}$	B1		
	or $\frac{r\sin 2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)}$			
	or $\frac{r\sin 2\theta}{\cos \theta}$			
(ii)	$2r\sin\theta + 2r\theta = 20$	M1	for use of (i) + arc length = 20 , oe	
	$r = \frac{10}{\theta + \sin \theta}$	A1	must be convinced	
(iii)	$\frac{\mathrm{d}r}{\mathrm{d}\theta} = -\frac{10(1+\cos\theta)}{\left(\theta+\sin\theta\right)^2}$	M1 A2,1,0	for a correct attempt to differentiate -1 each error	
	When $\theta = \frac{\pi}{6}$, $\frac{\mathrm{d}r}{\mathrm{d}\theta} = -17.8$	A1	allow awrt -17.8	
(iv)	$\frac{\mathrm{d}r}{\mathrm{d}t} = 15$	B1	may be implied	
	$\frac{\mathrm{d}t}{\mathrm{d}\theta} = \frac{\mathrm{d}r}{\mathrm{d}t} \div \frac{\mathrm{d}r}{\mathrm{d}\theta}$	M1	for use of $\frac{15}{their}$ (iii)	
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -0.842$	A1	allow -0.84 or -0.843	
Zu.satprep.co.				

ADDITIONAL MATHEMATICS

0606/12 May/June 2016

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

This document consists of **7** printed pages.

[Turn over

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0606	12

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

(Question	Answer	Marks	Guidance
1	(a)	$Y \subset X \text{or} Y \subseteq X \text{only} \\ Y \cap Z = \emptyset \text{or} \{ \} \text{ only} $	B1 B1	
	(b)	(i) (ii)	B1 B1	
2	(i)	$32 - \frac{20}{x} + \frac{5}{x^2}$	B3	B1 for each correct term – must be integers
	(ii)	$(3 \times 32) + \left(-\frac{20}{x} \times 4x\right) = 16$ Accept $16x^{\circ}$	M1 A1	for $(3 \times their 32) + \left(\frac{their(-20)}{x} \times 4x\right)$
3	(i)	$\mathbf{b} - \mathbf{c} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$ $4 + y^2 = 36 + 4$ $y = \pm 6$	B1 M1 A1	may be implied by further correct working for one correct attempt at using the modulus
	(ii)	$\mu + 4 = 2\lambda$ or $-4\mu + 24 = 7\lambda$ $\mu - 4 = -\lambda$ or $8\mu - 8 = \lambda$ leading to $\mu = \frac{4}{3}$, $\lambda = \frac{8}{3}$ oe allow 1.33 and 2.67 or better	B1 B1 DB1	for one correct equation in μ and λ for a second correct equation in μ and λ for both, must have both previous B marks

```
Page 3
```

Mark Scheme Cambridge IGCSE – May/June 2016

Syllabus	Paper
0606	12

Question	Answer	Marks	Guidance
4	$(4+\sqrt{5})x^{2}+(2-\sqrt{5})x-1=0$		You must be convinced that a calculator is not being used.
	$x = \frac{-(2-\sqrt{5})\pm\sqrt{(2-\sqrt{5})^2-4(4+\sqrt{5})(-1)}}{2(4+\sqrt{5})}$	M1 A1	for use of quadratic formula (allow one sign error), allow $b^2 = 9 - 4\sqrt{5}$ all correct
	$x = \frac{-(2-\sqrt{5})\pm\sqrt{9-4\sqrt{5}+16+4\sqrt{5}}}{2(4+\sqrt{5})}$	DM1	for attempt to simplify the discriminant (minimum of 4 terms must be seen in discriminant, 2 terms involving $\sqrt{5}$ and 2 constant terms)
	$= \frac{-(2-\sqrt{5})+5}{2(4+\sqrt{5})}$ $= \frac{3+\sqrt{5}}{2(4+\sqrt{5})}$	A1	for $\frac{3+\sqrt{5}}{2(4+\sqrt{5})}$ or $\frac{3+\sqrt{5}}{8+2\sqrt{5}}$, ignore negative solution if included
	$=\frac{(3+\sqrt{5})(4-\sqrt{5})}{2(4+\sqrt{5})(4-\sqrt{5})}$	M1	for attempt to rationalise an expression of the form $\frac{a \pm b\sqrt{5}}{c \pm d\sqrt{5}}$ as part of their solution of the
	$=\frac{7+\sqrt{5}}{22}$	A1	quadratic Must obtain an integer denominator Final A1 can only be awarded if all previous marks have been obtained
5 (i)	$(1-\cos\theta)(1+\sec\theta)$		0
	$=1-\cos\theta+\frac{1}{\cos\theta}-\frac{\cos\theta}{\cos\theta}$	MI	M1 for expansion and use of $\sec \theta = \frac{1}{\cos \theta}$
	$= \sec \theta - \cos \theta$ $= \frac{1}{\cos \theta} - \cos \theta$		consistently, allow one sign error
	$=\frac{\cos\theta}{\cos\theta}$	DM1	for attempt at a single fraction, dependent on first M1
	$=\frac{\sin^2\theta}{\cos\theta}$	A1	
	$=\sin\theta\tan\theta$ www	A1	

Page 4	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016		12

Question	Answer	Marks	Guidance
	Alternative method: $(1 - \cos \theta) \left(\frac{\cos \theta + 1}{\cos \theta} \right)$ $= \frac{1 - \cos^2 \theta}{\cos \theta}$	M1 DM1	for attempt at a single fraction for second factor and use of $\sec \theta = \frac{1}{\cos \theta}$ for expansion
	$=\frac{\sin^2\theta}{\cos\theta}$ $=\sin\theta\tan\theta \text{www}$	A1 A1	
(ii)	$\sin \theta \tan \theta = \sin \theta$ $\sin \theta (\tan \theta - 1) = 0$		
	$\tan \theta = 1, \ \theta = \frac{\pi}{4}, \ \text{allow 0.785 or better}$	B1	for $\theta = \frac{\pi}{4}$ from $\tan \theta = 1$
	$\sin \theta = 0, \ \theta = 0, \pi \text{ or } 3.14 \text{ or better}$	B1 B1	for $\theta = 0$ from $\sin \theta = 0$ for $\theta = \pi$ from $\sin \theta = 0$
6	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{3x}\left(4x+1\right)^{\frac{1}{2}}\right)$		
	$= e^{3x} \frac{1}{2} \times 4(4x+1)^{-\frac{1}{2}} + 3e^{3x}(4x+1)^{\frac{1}{2}}$	B1	for $re^{3x} (4x+1)^{-\frac{1}{2}}$ must be part of a sum, $r = \frac{1}{2}$ or 2 or $\frac{1}{2} \times 4$
		B1	for $se^{3x}(4x+1)^{\frac{1}{2}}$ must be part of a sum, s is 1 or 3
	$=\frac{2e^{3x}}{(4x+1)^{\frac{1}{2}}}+3e^{3x}(4x+1)^{\frac{1}{2}}$	B1	for all correct, allow unsimplified
	$=\frac{e^{3x}}{(4x+1)^{\frac{1}{2}}}(2+12x+3)$	DM1	for $\frac{e^{3x}}{(4x+1)^{\frac{1}{2}}}(a+bx)$, dependent on first 2 B marks , must be using a correct method,
	$=\frac{e^{3x}}{(4x+1)^{\frac{1}{2}}}(12x+5)$	A1	collecting terms in the numerator correctly
7 (i)	$\cos 3x = \frac{1}{2}, x = \frac{\pi}{9} \text{ or } 0.349, \ 20^{\circ},$ allow 0.35	M1 A1	for correct attempt to solve the trigonometric equation
(ii)	$B\left(\frac{\pi}{3}, 3\right)$ or (1.05, 3), (60°, 3)	B1B1	B1 for each, must be in correct position or in terms of $x =$ and $y =$

Page 5

Mark Scheme Cambridge IGCSE – May/June 2016

Q	Juestion	Answer	Marks	Guidance
	(iii)	$\int_{\frac{\pi}{9}}^{\frac{\pi}{3}} 1 - 2\cos 3x dx = \left[x - \frac{2}{3}\sin 3x\right]_{\frac{\pi}{9}}^{\frac{\pi}{3}}$ $= \frac{\pi}{3} - \left(\frac{\pi}{9} - \left(\frac{2}{3} \times \frac{\sqrt{3}}{2}\right)\right)$ $= \frac{2\pi}{9} + \frac{\sqrt{3}}{3} \text{ oe or } 1.28$	M1 A1 DM1 A1	for $x \pm a \sin 3x$ attempt to integrate at least one term for correct integration for correct use of limits from (i) and (ii), must be in radians
8	(i)	$lg y = x^{2} lg b + lg A$ $lg b = \pm 0.21$ $b = 0.617 \text{ allow } 0.62, 10^{-0.21}$ lg A = 0.94 allow 0.93 to 0.95 A = 8.71 allow awrt 8.5 to 8.9	B1 B1 B1 B1	for $\lg b = \pm 0.21$ may be implied
		Alternative method 5.37 or $10^{0.73} = Ab$ 1.259 or $10^{0.1} = Ab^4$ $b^3 = 10^{-0.63}$ $b = 0.617$ allow 0.62, $10^{-0.21}$ A = 8.71 allow awrt 8.5 to 8.9	B1 B1 B1 B1	for both equations, allow correct to 2 sf
	(ii)	$x = 1.5, x^2 = 2.25$ y = 2.93, allow awrt 2.9 or 3.0	M1 A1	for correct use of graph $y = theirA \times theirb^{1.5^2}$ or $\lg y = \lg theirA + (1.5^2 \lg theirb)$
	(iii)	lg y = 0.301, or 2 = '8.71(0.617) ^{x²} ' x = 1.74 , allow $\sqrt{3}$ or awrt 1.7, 1.8	M1 A1	for correct use of graph to read off x^2 $2 = theirA(theirb)^{x^2}$ or $\lg 2 = (\lg theirb)x^2 + \lg(theirA)$
9	(i)	$y = \frac{2}{3}(3x+10)^{\frac{1}{2}} (+c)$ passes through $\left(2, -\frac{4}{3}\right)$, so $c = -4$ $y = \frac{2}{3}(3x+10)^{\frac{1}{2}} - 4$ oe	B1 B1 M1 A1	for $p(3x+10)^{\frac{1}{2}}$ where <i>p</i> is a constant for $\frac{2}{3}(3x+10)^{\frac{1}{2}}$ oe unsimplified for attempt to find <i>c</i> , must have attempt to integrate, must have the first B1

Page 6Mark SchemeSyllabusPaperCambridge IGCSE – May/June 2016060612

Question	Answer	Marks	Guidance
(ii)	When $x = 5$,		
	$y = -\frac{2}{3}$	B 1	
	perpendicular gradient $=-5$	B 1	
		M1	for attempt at the normal using <i>their</i> perpendicular gradient and <i>their y</i> value (but not
	Equation of normal: $y + \frac{2}{3} = -5(x-5)$	A1	$y = -\frac{4}{3}$ or $-\frac{5}{3}$).
	When $y = -\frac{5}{3}$,	DM1	for use of $y = -\frac{5}{3}$ in their normal equation to
	<i>x</i> = 5.2 oe	A1	get as far as $x = \dots$
10 (i)	Area: $20 = \pi x^2 + xy$	B 1	
	$y = \frac{20 - \pi x^2}{x}$	B 1	
	$P = 2\pi x + 2x + 2y$ $= 2\pi x + 2x + 2\left(\frac{20}{x} - \pi x\right)$	M1	for attempt to use perimeter and obtain in terms of x only
	$=2x+\frac{40}{x}$	A1	all steps seen, www AG
	Alternative method: $20 = \pi x^2 + xy$ $P = 2\pi x + 2y + 2x$	B1	.5.
	$P = 2\pi x + 2y + 2x$ $= \frac{2}{x}(\pi x^2 + xy) + 2x$	M1	for attempt to use perimeter and write in $\frac{\pi x^2 + xy}{x}$
	$=\frac{2}{x}(20) +2x$ $=2x + \frac{40}{x}$	B1	x for replacing $\pi x^2 + xy$ with 20
	$=2x+\frac{40}{x}$	A1	all steps seen, www AG

Page 7

Mark Scheme Cambridge IGCSE – May/June 2016

Question	Answer	Marks	Guidance
(ii)	$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{40}{x^2}$	M1	for attempt to differentiate
	When $\frac{\mathrm{d}P}{\mathrm{d}x} = 0$,	DM1	for equating to zero and attempt to solve at least as far as $x^2 =$
	$x = 2\sqrt{5}$ allow 4.47, $\sqrt{20}$	A1	
	leading to $P = 8\sqrt{5}$, allow 17.9	A1	
	$\frac{d^2 P}{dx^2} = \frac{80}{x^3}$, always positive so a minimum	A1	for this statement or use of gradient inspection either side of correct x
11 (a) (i)	Distance = area under graph	M1	for attempt to find the area, one correct area seen (triangle, rectangle or trapezium) as part of
	= 1275	A1	a sum.
(ii)	deceleration is 1.5 oe	B 1	
(b)		B1	for a straight line between $(0,0)$ and $(10,60)$
		B1FT	FT a straight line between $(10, 60)$ and
			$(20, 90)$, a displacement vector $\begin{pmatrix} 10\\30 \end{pmatrix}$ from <i>their</i>
			(10, their 60)
(c) (i)	e^{2t} is always positive or oe	B 1	.5
	3		0
(ii)	$a = 8e^{2t}$	M1	for attempt to differentiate, must be of the form
	$e^{2t} = \frac{3}{2}$		pe^{2t} , equate to 12 and solve.
	$t = \frac{1}{2} \ln \frac{3}{2}$, $\ln \sqrt{\frac{3}{2}}$ or $\frac{1}{2} \ln 1.5$	A1	Allow fractions equivalent to $\frac{3}{2}$
(iii)	$s = \left[2e^{2t} + 6t\right]_{0.4}^{0.5}$	M1	for attempt to integrate to get $qe^{2t} + 6t$
		A1	all correct
	$= (2e+3) - (2e^{0.8} + 2.4)$ (= 8.436 - 6.851)	DM1	for correct use of limits or considering distances separately, ignore attempts at c
	(= 8.436 - 6.851) = 1.59, allow 1.58	A1	separatory, ignore attempts at c

ADDITIONAL MATHEMATICS

0606/13 May/June 2016

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

© UCLES 2016

[Turn over

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0606	13

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1 (i) -27 (ii) $9-8k=0$ $k=\frac{9}{8}$	GATP	B1 M1	for use of discriminant with a complete
(ii) $9 - 8k = 0$		M1	for use of discriminant with a complete
$\kappa = \frac{1}{8}$		A1	method to get to $k =$
Or $\frac{dy}{dx} =$	4x-3	M1	for a complete method to get to $k =$
when $\frac{dy}{dx} = 0$ so $k = \frac{9}{8}$	$, x = \frac{5}{4}$	A1	
Or comp $y = 2\left(x - \frac{3}{4}\right)$	leting the square $k^{2} + k - \frac{9}{8}$	M1	for a complete method to get to $k =$
$k = \frac{9}{8}$		Al	
2 (a) $2^{4(3x-1)} = 2^{3(x-1)}$ or $4^{2(3x-1)} = 2^{4(3x-1)}$ or $8^{\frac{4}{3}(3x-1)} = 8$ or $16^{3x-1} = 16$	$\frac{3}{2}(x+2)$	B1	B1 for a correct statement
leading to $x =$		M1 A1	for equating indices
(b) $p = \frac{5}{3}$ q = -2		B1 B1	

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0606	13

Question	Answer	Marks	Guidance
3	On <i>x</i> -axis, $2x^2 - 7 = 1$ x = 2	M1 A1	for equating to 1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x}{2x^2 - 7}$	B1	
	When $x = 2$, $\frac{dy}{dx} = 8$		
	Gradient of normal = $-\frac{1}{8}$		
	Equation of normal $y = -\frac{1}{8}(x-2)$	M1	for attempt at perpendicular through <i>their</i> $(2, 0)$, must be using $y = 0$
	Required form $x + 8y - 2 = 0$	A1	must be equated to zero with integer coefficients
4 (a)	$\mathbf{A}^2 = \begin{pmatrix} 7 & -2 \\ -3 & 6 \end{pmatrix}$	B1	
	$\mathbf{A}^2 - 2\mathbf{B} = \begin{pmatrix} 1 & -2 \\ -5 & 2 \end{pmatrix}$	M1 A1	for their $\mathbf{A}^2 - 2\mathbf{B}$
(b)	$ \begin{pmatrix} 4 & 1 \\ 10 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} $		
	$\operatorname{so}\begin{pmatrix} x\\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & -1\\ -10 & 4 \end{pmatrix} \begin{pmatrix} 1\\ 1 \end{pmatrix}$	M1	for pre-multiplication by <i>their</i> inverse matrix
	leading to $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$	DM1	DM1 for attempt at matrix multiplication
	$\begin{array}{c} x = 1 \\ y = -3 \end{array}$	A1 A1	Allow in matrix form
		ep.	(-4x)
5 (i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{e}^{4x}}{4} - x\mathrm{e}^{4x}\right) = \mathrm{e}^{4x} - \left(\left(x \times 4\mathrm{e}^{4x}\right) + \mathrm{e}^{4x}\right)$	B1	for $\frac{d}{dx}\left(\frac{e^{4x}}{4}\right) = e^{4x}$
	$=-4xe^{4x}$	M1 A1 A1	for attempt to differentiate a product for a correct product for correct final answer
(ii)	$\int_{0}^{\ln 2} x e^{4x} dx = -\frac{1}{4} \left[\frac{e^{4x}}{4} - x e^{4x} \right]_{0}^{\ln 2}$	B1FT	FT for use of <i>their</i> $\frac{1}{p} \times \left(\frac{e^{4x}}{4} - xe^{4x}\right)$, must
	$=-\frac{1}{4}\left(\left(\frac{16}{4}-16\ln 2\right)-\frac{1}{4}\right)$	B1 M1	be numerical p, but $\neq 0$ for $e^{4\ln 2} = 16$ for correct use of limits, must be an integral
	$= 4 \ln 2 - \frac{15}{16}$	A1	of the correct form

Page 4

Mark Scheme Cambridge IGCSE – May/June 2016

Q	uestion	Answer	Marks	Guidance
6	(i)	$2-\sqrt{5} < f(x) \leq 2$	B2	B1 for ≤ 2 B1 for $2 - \sqrt{5} <$ or awrt -0.24 Must be using f, f(x) or y, $2 - \sqrt{5} <$, if not then B1 max
	(ii)	$f^{-1}(x) = (2-x)^2 - 5$ Domain $2 - \sqrt{5} < x \le 2$ Range y or $-5 \le f^{-1}(x) < 0$	M1 A1 B1 B1	for a correct method to find the inverse Must be using the correct variables for the B marks
	(iii)	$fg(x) = f\left(\frac{4}{x}\right)$ $= 2 - \sqrt{\frac{4}{x} + 5}$ leading to $x = -4$	M1 DM1 A1	for correct order of functions for solution of equation
7	(i)	Finding an angle of 68.2° or 21.8° $\frac{4.5}{\sin 68.2} = \frac{2.4}{\sin \alpha}$ leading to $\alpha = 29.7^{\circ}$ (allow ±0.1) Direction is 82.1° to the bank, upstream(allow ±0.1°)	B1 B1 B1 B1	for the sine rule
	(ii)	$\frac{4.5}{\sin 68.2} = \frac{2.4}{\sin 29.7} = \frac{v_r}{\sin 82.1}$ leading to $v_r = 4.8$ time taken = $\frac{80.78}{4.8} = 16.8$	B1 B1 M1 A1	for the sine rule for resultant velocity for attempt to find <i>AB</i> and hence the time taken
		Alternative method: Finding an angle of 68.2° or 21.8° $4.5^2 = 2.4^2 + v_r^2 - (2 \times 2.4 \times v_r \cos 68.2)$ leading to $v_r = 4.8$ Use of sine rule to obtain angle and direction to obtain direction is 82.1° to the	B1 B1 B1 B1 B1	for correct use of the cosine rule for resultant velocity for use of the sine rule for $\alpha = 29.7^{\circ}$
		bank, upstream Use of time taken = $\frac{80.78}{4.8} = 16.8$	B1 M1 A1	for 82.1° for attempt to find <i>AB</i> and hence the time taken

Page 5Mark SchemeSyllabusPaperCambridge IGCSE – May/June 2016060613

Question	Answer	Marks	Guidance		
8 (i)	$y-6 = -\frac{4}{12}(x+8)$ (3y+x=10)	M1 A1	for a correct method allow unsimplified		
(ii)	y-7=3(x+1) (y=3x+10)	DM1 A1	for attempt at a perpendicular line using $(-1, 7)$ allow unsimplified		
(iii)	point of intersection $(-2, 4)$ which is the midpoint of <i>AB</i>	M1 M1 A1	for attempt to find the point of intersection using simultaneous equations for attempt to find midpoint for all correct		
	Alternative method: Midpoint (-2, 4) Verification that this point lies on <i>CP</i> .	M1 M1 A1	for attempt to find midpoint for full verification for all correct		
(iv)	$CP = \sqrt{10} \text{ or } 3.16$	B 1			
(v)	Area = $\frac{1}{2} \times \sqrt{10} \times 4\sqrt{10}$	M1	for correct method using <i>CP</i>		
	= 20	A1	for 19.9 – 20.1		
Zzy.satprep.co.					

Mark Scheme Cambridge IGCSE – May/June 2016

Question	Answer	Marks	Guidance		
9 (i)	$2\cos x \cot x = \cot x + 2\cos x$		COSX		
	$2\cos x \frac{\cos x}{\sin x} + 1 = \frac{\cos x}{\sin x} + 2\cos x$	M1	for use of $\cot x = \frac{\cos x}{\sin x}$ for both terms		
	$2\cos^2 x + \sin x = \cos x + 2\cos x \sin x$	DM1	for multiplication throughout by $\sin x$		
	$2\cos^2 x - 2\cos x \sin x = \cos x - \sin x$				
	$2\cos x(\cos x - \sin x) = \cos x - \sin x$	DM1	for attempt to factorise		
	$(2\cos x - 1)(\cos x - \sin x) = 0$	A1	for completely correct solution www		
	Alternative method:				
	$a\cos^2 x - a\cos x\sin x - b\cos x + b\sin x = 0$	M1	for expansion of RHS		
	$a\cos x\cot x - a\cos x - b\cot x + b = 0$	DM1 DM1	for division by sin <i>x</i> for comparing like terms to obtain both <i>a</i> and <i>b</i>		
	a = 2, b = 1	A1	for both correct www		
(ii)	$(2\cos x - 1)(\cos x - \sin x) = 0$				
	$\cos x = \frac{1}{2} , \tan x = 1$	M1	for either		
	$x = \frac{\pi}{3} , x = \frac{\pi}{4}$	A1,A1	A1 for each, penalise extra solutions within the range by withholding the last A mark		
	Alternative method: $(2\cos x - 1)(\cot x - 1) = 0$.5		
	Leading to $\cos x = \frac{1}{2}$, $\tan x = 1$	M1	for attempt to factorise the original equation and attempt to solve		
	$x = \frac{\pi}{3} , x = \frac{\pi}{4}$	A1,A1 A1 for each, penalise extra solutions within the range by withholding the last A mark			
10 (i)	f(-2) = -32 - 2k + p = 0	M1	for attempt at $f(-2)$		
	$f(-2) = -32 - 2k + p = 0$ $f'\left(\frac{1}{2}\right) = \frac{12}{4} + k = 0$	M1	for attempt at $f'\left(\frac{1}{2}\right)$		
	leading to $k = -3$ and $p = 26$	A1,A1	A1 for each		
(ii)		B1FT	FT for <i>their</i> $\frac{p}{2}$		
	$(x+2)(4x^2-8x+13)$	B1	all correct		
(iii)	Showing that $4x^2 - 8x + 13 = 0$ has	M1, M1 for a valid attempt at solution of			
	no real roots	equation leading to no solution or consideration of the discriminant			
	so $x = -2$ only www	A1			

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	13

Question	Answer	Marks	Guidance
11 (i)	$AB = 2r\sin\theta$ or $\sqrt{r^2 + r^2 - 2r^2\cos 2\theta}$	B1	
	or $\frac{r\sin 2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)}$		
	or $\frac{r\sin 2\theta}{\cos \theta}$		
(ii)	$2r\sin\theta + 2r\theta = 20$	M1	for use of (i) + arc length = 20, oe
	$r = \frac{10}{\theta + \sin \theta}$	A1	must be convinced
(iii)	$\frac{\mathrm{d}r}{\mathrm{d}\theta} = -\frac{10(1+\cos\theta)}{\left(\theta+\sin\theta\right)^2}$	M1 A2,1,0	for a correct attempt to differentiate -1 each error
	When $\theta = \frac{\pi}{6}$, $\frac{\mathrm{d}r}{\mathrm{d}\theta} = -17.8$	A1	allow awrt -17.8
(iv)	$\frac{\mathrm{d}r}{\mathrm{d}t} = 15$	B1	may be implied
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}t} \div \frac{\mathrm{d}r}{\mathrm{d}\theta}$	M1	for use of $\frac{15}{their}$ (iii)
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -0.842$	A1	allow -0.84 or -0.843

MARK SCHEME for the March 2016 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

Question	Answer	Marks	Guidance
1	$ax + 9 = -2x^{2} + 3x + 1$ $2x^{2} + (a - 3)x + 8 = 0$ For 2 distinct roots, $(a - 3)^{2} > 64$ Critical values -5 and 11 a > 11, a < -5	M1 M1 A1 A1	for attempt to equate the line and the curve and obtain a 3 term quadratic equation for use of the discriminant for critical values for correct range
2	$a = -\frac{13}{6}, b = 0, c = 1$	B3	B1 for each
3	$ \log_5 \sqrt{x} + \log_{25} x = 3 \frac{1}{2} \log_5 x + \frac{\log_5 x}{\log_5 25} = 3 \log_5 x = 3 $	B1,B1	B1 for $\frac{1}{2}\log_5 x$ B1 for $\frac{\log_5 x}{\log_5 25}$
	x = 125 cao Alternative scheme: $\frac{\log_{25} \sqrt{x}}{\log_{25} 5} + \log_{25} x = 3$	B1 B1	for final answer for change of base
	$\frac{\frac{1}{2}\log_{25} x}{\log_{25} 5} + \log_{25} x = 3$ $\log_{25} x = \frac{3}{2}$	B1	for $\frac{1}{2}\log_{25} x$ (must be from correct work)
	x = 125 cao	B1	for final answer

	Cambridge IGCSE – March 2016 0606 12				
Question	Answer	Marks	Guidance		
4 (i)		B1 B1 B1 B1	for a line in correct position for $(0, 2)$, $(2, 0)$ for correct shape for y = 3 + 2x , touching the <i>x</i> -axis for $(-1.5, 0)$, $(0, 3)$		
(ii)	$2 - x = 3 + 2x$ leading to $x = -\frac{1}{3}$	B1	for $x = -\frac{1}{3}$		
	2 - x = -3 - 2x leading to $x = -5$	M1 A1	for correct attempt to deal with 'negative' branch. for $x = -5$		
	Alternative: $(2-x)^2 = (3+4x)^2$ leading to $15x^2 + 28x + 5 = 0$ $x = -\frac{1}{3}, x = -5$	M1 A1,A1	for equating and squaring to obtain a 3 term quadratic equation A1 for each.		
5 (a) (i)	${}^{9}P_{6} = 60480$	B1	Must be evaluated		
(ii)	${}^{4}P_{2} \times {}^{3}P_{2} \times 2 = 144$	M1,A1	M1 for attempt a product of 3 perms		
(iii)	840×2 1680	B1,B1	B1 for either 840, or realising that there are 2 possible positions for the symbols		
(b) (i)	$^{10}C_6 \times {}^5C_3$ 2100 ${}^8C_4 \times {}^4C_2$	M1 A1	for unsimplified form		
(ii)	$^{8}C_{4} \times ^{4}C_{2}$ 420	M1 A1	for unsimplified form		
6 (i)	f(x) > 6	B1	Allow B1 for $y > 6$		
(ii)	$f^{-1}(x) = \frac{1}{4} \ln(x-6)$	M1 A1	for a complete method must be $f^{-1}(x) = \text{ or } y = \dots$		
	Domain: $x > 6$ Range: $f^{-1}(x) \in \mathbb{R}$	B1 B1	must be using the correct variable in both		
(iii)	$f'(x) = 4e^{4x}$ $6 + e^{4x} = 4e^{4x}$	B1			
(iv)	$6 + e^{4x} = 4e^{4x}$ leading to $x = \frac{1}{4} \ln 2$	M1 A1	for a complete, correct method		

Mark Scheme

Syllabus

Paper

Page 3

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

for attempt at $f\left(\frac{1}{2}\right)$
for attempt at $f(2) = 5f(-1)$
Allow if the 'wrong way' round for attempt to solve simultaneous equations
A1 for both
-1 each error
for attempt to factorise their quadratic factor must be 3 linear factors
may be implied by later work for attempt at gradient for $b = 1.2$
for attempt to find <i>y</i> -intercept for , allow awrt 28
for correct use of graph or equation
for correct use of graph or equation
f

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

Question	Answer	Marks	Guidance
9 (i)	$\frac{7}{2}r^2\theta = \frac{1}{2}r^2\left(2\pi - \theta\right)$	M1	for a valid method
	$\theta = \frac{\pi}{4}$ oe	A1	allow in degrees
(ii)	$r+r+\frac{\pi}{4}r=20$, leading to	M1	for valid method
	r = 7.180(3)	A1	Must show enough accuracy to get A1
(iii)	Perimeter $=\frac{\pi}{4}r + 2r\tan\frac{\pi}{8}$	B1,B1	B1 for arc length, B1 for twice <i>AC</i>
	= 5.6394 + 5.9484 = 11.6	B1	for 11.6
(iv)	Area = $(r \times AC) - \frac{1}{2}r^2\frac{\pi}{4}$		
	= 21.356 - 20.246 or equivalent method using triangles	B1,B1	B1 for area of quadrilateral, allow unsimplified,B1 for sector area
	$1.08 \leq \text{Area} \leq 1.11$	B1	for area in given range
10 (i)	$x \times \frac{3}{2} \times 2(2x-1)^{\frac{1}{2}} + (2x-1)^{\frac{3}{2}}$	B1	for $\frac{3}{2} \times 2(2x-1)^{\frac{1}{2}}$
		M1	for attempt at differentiation of a product
		A1	for all else correct
(ii)	$3\int x(2x-1)^{\frac{1}{2}} dx = x(2x-1)^{\frac{3}{2}} - \int (2x-1)^{\frac{3}{2}} dx$	M1	for attempt to use part (i)
	$= x(2x-1)^{\frac{3}{2}} - \frac{1}{2} \times \frac{2}{5}(2x-1)^{\frac{5}{2}}$	B1,B1	B1 for $x(2x-1)^{\frac{3}{2}}$, allow if divided by 3
			B1 for $\frac{1}{2} \times \frac{2}{5} (2x-1)^{\frac{5}{2}}$, allow if
	$\int x(2x-1)^{\frac{1}{2}} dx = \frac{1}{3}(2x-1)^{\frac{3}{2}}\left(x-\frac{1}{5}(2x-1)\right)$	M1	divided by 3 for taking out a common factor of
			$(2x-1)^{\frac{3}{2}}$
	$=\frac{(2x-1)^{\frac{3}{2}}}{15}(3x+1)$	DM1 A1	for attempt to obtain a linear factor
(iii)	$\left(\frac{1}{15}\times4\right)-0$	M1	for attempt to use limits correctly
		A1FT	FT on <i>their</i> $\frac{px+q}{15}$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

Question	Answer	Marks	Guidance
11 (i)	$\frac{1}{\csc \theta - 1} - \frac{1}{\csc \theta + 1} = \frac{\csc \theta + 1 - \csc \theta + 1}{\csc^2 \theta - 1}$	M1	for attempt to obtain a single fraction
		A1	all correct as shown
	$=\frac{2}{\cot^2\theta}$	M1	for use of correct identity
	$=2\tan^2\theta$	A1	for 'finishing off'
	Alternative scheme: $\frac{1}{\csc \theta - 1} - \frac{1}{\csc \theta + 1} = \frac{\sin \theta}{1 - \sin \theta} - \frac{\sin \theta}{1 + \cos \theta}$	M1	for attempt to obtain a single fraction in terms of $\sin \theta$ only
	$=\frac{\left(\sin\theta+\sin^2\theta\right)-\left(\sin\theta-\sin^2\theta\right)}{1-\sin^2\theta}$	A1	all correct as shown
	$=\frac{2\sin^2\theta}{\cos^2\theta}$	M1	for use of correct identity
	$=2\tan^2\theta$	A1	for 'finishing off'
(ii)	$2\tan^2\theta = 6 + \tan\theta$ (2 \tan \theta + 3)(\tan \theta - 2) = 0	M1	for attempt to use (i), to obtain a quadratic equation and valid attempt to solve
	$\tan\theta = -\frac{3}{2}, \ \tan\theta = 2$	DM1	for attempt to solve trig equation
	$\theta = 63.4^{\circ}, 123.7^{\circ}, 243.4^{\circ}, 303.7^{\circ}$	A1,A1	for each 'pair'

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	11

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1	$kx^2 + (2k - 8)x + k = 0$	M1	for attempt to obtain a 3 term quadratic in the form $ax^2 + bx + c = 0$, where b contains a term in k and a constant
	$b^2 - 4ac > 0$ so $(2k - 8)^2 - 4k^2 (> 0)$	DM1	for use of $b^2 - 4ac$
	$4k^2 - 32k + 64 - 4k^2 (>0)$	DM1	for attempt to simplify and solve for k
	leading to $k < 2$ only	A1	A1 must have correct sign
2	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -5x(+c)$	M1	for attempt to integrate, do not penalise omission of arbitrary constant.
	When $x = -1$, $\frac{dy}{dx} = 2$ leading to		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -5x - 3$	A1	Must have $\frac{dy}{dx} = \dots$
	$y = -\frac{5x^2}{2} - 3x + d$	DM1	for attempt to integrate <i>their</i> $\frac{dy}{dx}$, but
	When $x = -1$, $y = 3$ leading to		penalise omission of arbitrary constant.
	$y = \frac{5}{2} - \frac{5x^2}{2} - 3x$	A1	0.
	Alternative scheme:		
	$y = ax^2 + bx + c$ so $\frac{dy}{dx} = 2ax + b$	M1	for use of $y = ax^2 + bx + c$, differentiation and use of conditions to give an equation in <i>a</i>
	When $x = -1$, $\frac{dy}{dx} = 2$		and <i>b</i>
	so $-2a+b=2$	A1	for a correct equation
	$\frac{d^2 y}{dx^2} = 2a$	DM1	for a second differentiation to obtain <i>a</i>
	so $a = -\frac{5}{2}$, $b = -3$, $c = \frac{5}{2}$	A1	for a, b and c all correct

Mark Scheme Cambridge IGCSE – October/November 2015

3	$\sqrt{(\sec^2 \theta - 1)} + \sqrt{(\csc^2 \theta - 1)} = \sec \theta \csc \theta$		
	LHS = $\tan \theta + \cot \theta$	B1	may be implied by the next line
	$=\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta}{\sin\theta}$	B1	for dealing with $\tan \theta$ and $\cot \theta$ in terms of $\sin \theta$ and $\cos \theta$
	$=\frac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta}$	M1	for attempt to obtain as a single fraction
	$=\frac{1}{\sin\theta\cos\theta}$	M1	for the use of $\sin^2 \theta + \cos^2 \theta = 1$ in correct context
	$= \sec\theta\csc\theta$	A1	Must be convinced as AG
	Alternate scheme:		
	$LHS = \tan \theta + \cot \theta$		
	$= \tan \theta + \frac{1}{\tan \theta}$	B1	may be implied by subsequent work
	$=\frac{\tan^2\theta+1}{\tan\theta}$	M1	for attempt to obtain as a single fraction
	$=\frac{\sec^2\theta}{\tan\theta}$	B1	for use of the correct identity
	$=\frac{\sec\theta}{\tan\theta}\times\sec\theta$	M1	for 'splitting' $\sec^2 \theta$
	$\tan \theta = \csc \theta \sec \theta$	A 1	Must be convinced as AG
4 (a) (i)	28	B1	
(ii)	20160	B1	
	22		
(iii)	$6 \times (5 \times 4 \times 3)$ oe to give 360 $6 \times (5 \times 4 \times 3) \times 2$	B1	for realising that the music books can be arranged amongst themselves and consideration of the other 5 books
	= 720	B1	for the realisation that the above arrangement can be either side of the clock.
(b)	Either ${}^{10}C_6 - {}^7C_6 = 210 - 7$	B1, B1	B1 for ${}^{10}C_6$, B1 for 7C_6
	= 203	B1	
	Or $1W 5M = 63$ 2W 4M = 105	B1	for 1 case correct, must be considering more than 1 different case, allow <i>C</i> notation
	2 W 4M = 105 3 W 3M = 35 Total = 203	B1 B1	for the other 2 cases, allow C notation for final result

(ii) $dx = 2x^2 + 1$ when $x = 2$, $\frac{dy}{dx} = -\frac{8}{9} + \ln 9$ oe or 1.31 or better $\partial y \approx (\text{answer to (i)}) \times 0.03$ M1 for attempt to different of the second seco	t, terms must be bracketed
(ii) $\partial y \approx (\text{answer to (i)}) \times 0.03 = 0.0393, \text{ allow awrt } 0.039$ when $x = 2$, $\frac{dy}{dx} = -\frac{8}{9} + \ln 9$ oe or 1.31 or better (ii) $\partial y \approx (\text{answer to (i)}) \times 0.03 = 0.0393, \text{ allow awrt } 0.039$ M1 for attempt to use so A1 for attempt to use so A1FT follow through on (i) allow to 2 sf or	erentiate a product t, terms must be bracketed swer
when $x = 2$, $\frac{dy}{dx} = -\frac{8}{9} + \ln 9$ oeA1Infracting to differor 1.31 or betterA1for correct product where appropriate for correct final an(ii) $\partial y \approx$ (answer to (i)) × 0.03 = 0.0393, allow awrt 0.039M1for attempt to use s follow through on (i) allow to 2 sf or	erentiate a product t, terms must be bracketed swer
or 1.31 or betterA1where appropriate for correct final an $dy \approx$ (answer to (i)) × 0.03M1for attempt to use s follow through on (i) allow to 2 sf or	iswer
or 1.31 or betterA1where appropriate for correct final an $dy \approx$ (answer to (i)) × 0.03M1for attempt to use s follow through on (i) allow to 2 sf or	swer
$= 0.0393, \text{ allow awrt } 0.039$ $A1FT \qquad follow through on (i) allow to 2 sf or (i) allow t$	small abon and
(i) allow to 2 sf or	sman changes
6 (i) $A \cap B = \{3\}$ B1	<i>their</i> numerical answer to better
(ii) $A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$ B1	
(iii) $A' \cap C = \{1, 5, 7, 11\}$ B1	
(iv) $(D \cup B)' = \{1, 9\}$ B1	
(v) Any set containing up to 5 positive even B1 numbers ≤ 12	
7 (i) Gradient = $\frac{0.2}{0.8}$ = 0.25 M1 for attempt to find	the gradient
b = 0.25 A1	
	tution of values from the tempt to obtain c or
Or $5.8 = 0.25(1.4) + c$ leading to $A = 233$ or $e^{5.45}$ A1 dealing with $c = \ln c$	aneous equations
Alternative schemes:	
Either Or Softward O.	
Either Or $6 = b(2.2) + c$ $e^6 = A(e^{2.2})^b$ M1 for 2 simultaneous	
$6 = b(2.2) + c e^{6} = A(e^{2.2})^{6} M1 for 2 simultaneous 5.8 = b(1.4) + c e^{5.8} = A(e^{1.4})^{6} M1$	equations as shown
DM1 for attempt to solve	e to get at least one
Leading to $A = 233$ or $e^{5.45}$ and $b = 0.25$ A1, A1 solution for one un A1 for each	ıknown
(ii) Either $y = 233 \times 5^{0.25}$ M1 for correct use of e	either equation in attempt
Or $\ln y = 0.25 \ln 5 + \ln 233$ to obtain y using the found in (i)	heir value of A and of b
leading to $y = 348$ A1	

Page 5Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2015060611

8	$\frac{dy}{dx} = \frac{2(x^2+5)^{\frac{1}{2}} - \frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}(2x-1)}{x^2+5}$ or $\frac{dy}{dx} = 2(x^2+5)^{-\frac{1}{2}} - \frac{1}{2}(2x)(x^2+5)^{-\frac{3}{2}}(2x-1)$	B1 M1	for $\frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}$ for a quotient or $-\frac{1}{2}(2x)(x^2+5)^{-\frac{3}{2}}$ for a product allow if either seen in separate working for attempt to differentiate a quotient or a
		A 1	correct product
	dy A	A1	for all correct, allow unsimplified
	When $x = 2$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{9}$ (allow 0.444 or 0.44)	B1, B1	B1 for each
	Equation of tangent: $y - 1 = \frac{4}{9}(x - 2)$	N/1	
)	M1	for attempt at straight line, must be tangent using <i>their</i> gradient and y
	(9y = 4x + 1)	A1	allow unsimplified.
9 (i)	$\frac{2}{3}(4+x)^{\frac{3}{2}}(+c)$	B1,B1	B1 for $k(4+x)^{\frac{3}{2}}$ only, B1 for $\frac{2}{3}(4+x)^{\frac{3}{2}}$
			only Condone omission of <i>c</i>
(ii)	Area of trapezium = $\left(\frac{1}{2} \times 5 \times 5\right)$	M1	for attempt to find the area of the trapezium
	=12.5	A 1	
	Area = $\left[\frac{2}{3}(4+x)^{\frac{3}{2}}\right]_{0}^{5} - \left(\frac{1}{2} \times 5 \times 5\right)$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
	$=\left(\frac{2}{3}\times27\right)-\frac{16}{3}-\frac{25}{2}$	A1	for $18 - \frac{16}{3}$ or equivalent
	$=\frac{1}{6} \text{ or awrt } 0.17$	A1	
	Alternative scheme:		
	Equation of $AB \ y = \frac{1}{5}x + 2$	M1	for a correct attempt to find the equation of AB
	Area = $\int_{0}^{\delta} \sqrt{4+x} - \left(\frac{1}{5}x+2\right) dx$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
	$= \left[\frac{2}{3}\left(4+x\right)^{\frac{3}{2}} - \frac{x^2}{10} - 2x\right]_0^5$		
	$=\left(\frac{2}{3}\times27\right)-\frac{16}{3}-\frac{25}{2}$	A1	for $18 - \frac{16}{3}$ or equivalent
		A1	for 12.5 or equivalent
	$=\frac{1}{6}$ or awrt 0.17	A1	

ſ	Page 6 Mark Scheme				Syllabus	Paper
[Cambridge IGCSE – October/N	ge IGCSE – October/November 2015		0606	11
10 ((i)	All sides are equal to the radii of the circles which are also equal	B1	for a convincing	g argument	
(i	ii)	Angle $CBE = \frac{2\pi}{3}$	B1	must be in terms of π , allow 0.667 π , or better		
(ii	ii)	$DE = 10\sqrt{3}$	M1	for correct attempt to find <i>DE</i> using <i>their</i> angle <i>CBE</i>		
			A1	for correct <i>DE</i> ,	allow 17.3 or	better
		Arc $CE = 10 \times \frac{2\pi}{3}$	M1	for attempt to fi CBE (20.94)	nd arc length	with <i>their</i> angle
		Perimeter = $20 + 10\sqrt{3} + \frac{20\pi}{3}$	M1	for $10 + 10 + DE +$ an arc length		ngth
		= 58.3 or 58.2	A1	allow unsimplified		
(i		Area of sector: $\frac{1}{2} \times 10^2 \times \frac{2\pi}{3} = \frac{100\pi}{3}$	M1	for sector area using <i>their</i> angle <i>CBE</i> allow unsimplified, may be implied		
		Area of triangle: $\frac{1}{2} \times 10^2 \times \sin \frac{2\pi}{3} = 25\sqrt{3}$	M1	for triangle area must be the sam unsimplified, m	e as <i>their</i> and	•
		Area $=\frac{100\pi}{3} + 25\sqrt{3}$ or awrt 148	A1	allow in either f	orm	

Pag	e 7	Mark Scheme		5	Syllabus	Paper]
	Cambridge IGCSE – October/November 201			0606	11]	
11 (a) (i	i)	$(x+3)^2-5$	B1, B1	B1 for 3, B1 for -	- 5		
(ii	i)	$y \ge 4 \text{ or } f \ge 4$	B1	Correct notation or statement must be used			sed
(iii	i)	$y = \sqrt{x+5} - 3$	M1	for a correct attempt to find the inverse function			
		Domain $x \ge 4$	A1 B1FT	must be in the correct form and positive root only			
(b)		$h^2 g(x) = h^2(e^x)$	M1	for correct order			
		$=h(5e^x+2)$	M1	for dealing with h	n^2		
		$=25e^{x}+12$					
		$25e^x + 12 = 37$,	DM1	for solution of equation (dependent on both			oth
		leading to $x = 0$	A1	previous M marks)			
		Alternative scheme 1:					
		$hg(x) = h^{-1}(37)$	M1	for correct order			
		$h^{-1}(37) = 7$	M1	for dealing with h	$n^{-1}(37)$		
		$5e^x + 2 = 7,$	DM1	for solution of equ		endent on b	oth
		leading to $x = 0$	A1	previous M marks	5)		
		Alternative scheme 2:		2.			
		$g(x) = h^{-2}(37)$	M1	for correct order			
		$h^{-2}(37) = 1$ $e^{x} = 1,$	M1	for dealing with h	$n^{-2}(37)$		
		$e^x = 1,$	DM1	for solution of equ		endent on b	oth
		leading to $x = 0$	A1	previous M marks	5)		

	Page 8		Syllabus Paper	
		Cambridge IGCSE – October/No	ovember	2015 0606 11
12		$x^{2} + 6x - 16 = 0$ or $y^{2} + 10y - 75 = 0$ leading to (x+8)(x-2) = 0 or $(y-5)(y+15) = 0$	M1 DM1	for attempt to obtain a 3 term quadratic in terms of one variable only for attempt to solve quadratic equation
		so $x = 2, y = 5$ and $x = -8, y = -15$	A1, A1	A1 for each 'pair' of values.
		Midpoint $(-3, -5)$	B1	
		Gradient = 2, so perpendicular gradient = $-\frac{1}{2}$ Perpendicular bisector:		
		$y + 5 = -\frac{1}{2}(x + 3)$ (2y + x + 13 = 0)	M1	for attempt at straight line equation, must be using midpoint and perpendicular gradient
		Point <i>C</i> (–13, 0)	M1	for use of $y = 0$ in <i>their</i> line equation (but not $2x - y + 1 = 0$)
		Area $=\frac{1}{2}\begin{vmatrix} -13 & 2 & -8 & -13 \\ 0 & 5 & -15 & 0 \end{vmatrix}$	M1	for correct attempt to find area, may be using <i>their</i> values for <i>A</i> , <i>B</i> and <i>C</i> (<i>C</i> must lie on the
		=125	A1	<i>x</i> -axis)
		Alternative method for area: $CM^2 = 125, AB^2 = 500$ Area $= \frac{1}{2} \times \sqrt{125} \times \sqrt{500}$	M1	for correct attempt to find area may be using <i>their</i> values for A , B and C
		= 125	A1	

ZZZZ Satprep. 0.

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	12

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1	$kx^2 + (2k - 8)x + k = 0$	M1	for attempt to obtain a 3 term quadratic in the form $ax^2 + bx + c = 0$, where b contains a term in k and a constant
	$b^2 - 4ac > 0$ so $(2k - 8)^2 - 4k^2 (> 0)$	DM1	for use of $b^2 - 4ac$
	$4k^2 - 32k + 64 - 4k^2 (>0)$	DM1	for attempt to simplify and solve for k
	leading to $k < 2$ only	A1	A1 must have correct sign
2	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -5x(+c)$	M1	for attempt to integrate, do not penalise omission of arbitrary constant.
	When $x = -1$, $\frac{dy}{dx} = 2$ leading to		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -5x - 3$	A1	Must have $\frac{dy}{dx} = \dots$
	$y = -\frac{5x^2}{2} - 3x + d$	DM1	for attempt to integrate <i>their</i> $\frac{dy}{dx}$, but
	When $x = -1$, $y = 3$ leading to		penalise omission of arbitrary constant.
	$y = \frac{5}{2} - \frac{5x^2}{2} - 3x$	A1	0.
	Alternative scheme:		
	$y = ax^2 + bx + c$ so $\frac{dy}{dx} = 2ax + b$	M1	for use of $y = ax^2 + bx + c$, differentiation and use of conditions to give an equation in <i>a</i>
	When $x = -1$, $\frac{dy}{dx} = 2$		and <i>b</i>
	so $-2a+b=2$	A1	for a correct equation
	$\frac{d^2 y}{dx^2} = 2a$	DM1	for a second differentiation to obtain <i>a</i>
	so $a = -\frac{5}{2}$, $b = -3$, $c = \frac{5}{2}$	A1	for <i>a</i> , <i>b</i> and <i>c</i> all correct

Mark Scheme Cambridge IGCSE – October/November 2015

terms of
ction
correct
ς.
ction
an be
angement
ing more
ion
on

	Page 4			Syllabus Paper
		Cambridge IGCSE – October/No	ovember	2015 0606 12
5	(i)	$\frac{dy}{dx} = (x-3)\frac{4x}{2x^2+1} + \ln(2x^2+1)$	B1 M1	for correct differentiation of ln function for attempt to differentiate a product
		when $x = 2$, $\frac{dy}{dx} = -\frac{8}{9} + \ln 9$ oe	A1	for correct product, terms must be bracketed
		or 1.31 or better	A1	where appropriate for correct final answer
(ii)	$\partial y \approx$ (answer to (i)) × 0.03	M1	for attempt to use small changes
		= 0.0393, allow awrt 0.039	A1FT	follow through on <i>their</i> numerical answer to (i) allow to 2 sf or better
6	(i)	$A \cap B = \{3\}$	B1	
(ii)	$A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$	B1	
(i	ii)	$A' \cap C = \{1, 5, 7, 11\}$	B1	
(i	iv)	$(D \cup B)' = \{1, 9\}$	B1	
((v)	Any set containing up to 5 positive even numbers ≤ 12	B1	
7	(i)	Gradient = $\frac{0.2}{0.8} = 0.25$	M1	for attempt to find the gradient
		0.8 b = 0.25	Al	
		Either $6 = 0.25(2.2) + c$	M1	for a correct substitution of values from either point and attempt to obtain <i>c</i> or
		Or $5.8 = 0.25(1.4) + c$ leading to $A = 233$ or $e^{5.45}$	A1	solution by simultaneous equations dealing with $c = \ln A$
			AI	dealing with $c = \ln A$
		Alternative schemes:		0.
		Either Or Ortor	PO.	
		$6 = b(2.2) + c$ $e^{6} = A(e^{2.2})^{b}$	M1	for 2 simultaneous equations as shown
		$5.8 = b(1.4) + c$ $e^{5.8} = A(e^{1.4})^b$		for 2 sinuraneous equations as shown
			DM1	for attempt to solve to get at least one
		Leading to $A = 233$ or $e^{5.45}$ and $b = 0.25$	A1, A1	solution for one unknown A1 for each
(ii)	Either $y = 233 \times 5^{0.25}$	M1	for correct use of either equation in attempt
		Or $\ln y = 0.25 \ln 5 + \ln 233$		to obtain y using <i>their</i> value of A and of b found in (i)
		leading to $y = 348$	A1	
		leading to $y = 348$	AI	

Page 5Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2015060612

8		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2(x^2+5)^{\frac{1}{2}} - \frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}(2x-1)}{x^2+5}$	B1	for $\frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}$ for a quotient
		or ¹ 1 ³		or $-\frac{1}{2}(2x)(x^2+5)^{-\frac{3}{2}}$ for a product
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(x^2 + 5)^{-\frac{1}{2}} - \frac{1}{2}(2x)(x^2 + 5)^{-\frac{3}{2}}(2x - 1)$		allow if either seen in separate working
		ui 2	M1	for attempt to differentiate a quotient or a correct product
			A1	for all correct, allow unsimplified
		When $x = 2$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{9}$ (allow 0.444 or 0.44)	B1, B1	B1 for each
		Equation of tangent: $y - 1 = \frac{4}{9}(x - 2)$	M1	for attempt at straight line, must be tangent using <i>their</i> gradient and y
		(9y = 4x + 1)	A1	allow unsimplified.
		P	72	
9 (i))	$\frac{2}{3}(4+x)^{\frac{3}{2}}(+c)$	B1,B1	B1 for $k(4+x)^{\frac{3}{2}}$ only, B1 for $\frac{2}{3}(4+x)^{\frac{3}{2}}$
				only Condone omission of <i>c</i>
(ii))	Area of trapezium = $\left(\frac{1}{2} \times 5 \times 5\right)$	M1	for attempt to find the area of the trapezium
		=12.5	A 1	
		Area = $\left[\frac{2}{3}(4+x)^{\frac{3}{2}}\right]_{0}^{5} - \left(\frac{1}{2} \times 5 \times 5\right)$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
		$=\left(\frac{2}{3}\times27\right)-\frac{16}{3}-\frac{25}{2}$	A1	for $18 - \frac{16}{3}$ or equivalent
		$=\frac{1}{6} \text{ or awrt } 0.17$	A1	
		Alternative scheme:		
		Equation of $AB \ y = \frac{1}{5}x + 2$	M1	for a correct attempt to find the equation of
		Area = $\int_{0}^{\delta} \sqrt{4+x} - \left(\frac{1}{5}x+2\right) dx$	M1	AB for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
		$= \left[\frac{2}{3}\left(4+x\right)^{\frac{3}{2}} - \frac{x^2}{10} - 2x\right]_0^5$		
		$=\left(\frac{2}{3}\times 27\right)-\frac{16}{3}-\frac{25}{2}$	A1	for $18 - \frac{16}{3}$ or equivalent
			A1	for 12.5 or equivalent
		$=\frac{1}{6}$ or awrt 0.17	A1	

[Page 6 Mark Scheme				Syllabus	Paper
[Cambridge IGCSE – October/No	ovember	2015	0606	12
10	(i)	All sides are equal to the radii of the circles which are also equal	B1	for a convincing	g argument	
()	ii)	Angle $CBE = \frac{2\pi}{3}$	B1	must be in terms of π , allow 0.667 π , or better		
(ii	ii)	$DE = 10\sqrt{3}$	M1	for correct attempt to find <i>DE</i> using <i>their</i> angle <i>CBE</i>		
			A1	for correct DE,	allow 17.3 of	better
		Arc $CE = 10 \times \frac{2\pi}{3}$	M1	for attempt to find arc length with <i>their</i> angl CBE (20.94)		
		Perimeter = $20 + 10\sqrt{3} + \frac{20\pi}{3}$	M1	for $10 + 10 + DE +$ an arc length		ngth
		= 58.3 or 58.2	A1	allow unsimplified		-
(i		Area of sector: $\frac{1}{2} \times 10^2 \times \frac{2\pi}{3} = \frac{100\pi}{3}$	M1	for sector area using <i>their</i> angle <i>CBE</i> allow unsimplified, may be implied		-
		Area of triangle: $\frac{1}{2} \times 10^2 \times \sin \frac{2\pi}{3} = 25\sqrt{3}$	M1	for triangle area must be the sam unsimplified, m	e as <i>their</i> an	
		Area = $\frac{100\pi}{3} + 25\sqrt{3}$ or awrt 148	A1	allow in either f	òrm	

Page	Page 7 Mark Scheme			Syllabus	Paper		
		ambridge IGCSE –	October/Novembe	er 2015	0606	12	
11 (a) (i)	$(x+3)^2-5$		B1, B	1 B1 for 3, B1 fo	r – 5		
(ii)	$y \ge 4$ or $f \ge 4$		B1	Correct notation	n or statemen	t must be us	sed
(iii)	$y = \sqrt{x+5} - 3$	i	M1	for a correct attempt to find the inverse function			
	Domain $x \ge 4$		A1 B1F7	must be in the c only Follow through be using x		-	
(b)	$h^2g(x) = h^2(e$	<i>x</i>)	M1	for correct orde	r		
	=h(5e)	^x + 2)	M1	for dealing with	n h ²		
	$= 25e^{x}$	+12	DE				
	$25e^{x} + 12 = 37$	7,	DM1		solution of equation (dependent on bot		oth
	leading to $x =$	= 0	A1	previous M ma	previous M marks)		
	Alternative sc						
	$hg(x) = h^{-1}(37)$	7)	M1	for correct orde	er		
	$h^{-1}(37) = 7$		M1	for dealing with	n h ⁻¹ (37)		
	$5e^x + 2 = 7,$		DM1			endent on b	oth
	leading to $x =$	0	A1	previous M ma	rks)		
	Alternative sc			2.5			
	$g(x) = h^{-2}(37)$, 4,	M1	for correct orde	er		
	$h^{-2}(37) = 1$	777.5	M1	for dealing with	$h^{-2}(37)$		
	$e^x = 1$,		DM1		for solution of equation (dependent on bo		oth
	leading to $x =$	0	A1	previous M ma	rks)		

	Page 8	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – October/No	2015 0606 12	
12		$x^{2} + 6x - 16 = 0$ or $y^{2} + 10y - 75 = 0$ leading to	M1	for attempt to obtain a 3 term quadratic in terms of one variable only
		(x+8)(x-2) = 0 or $(y-5)(y+15) = 0$	DM1	for attempt to solve quadratic equation
		so $x = 2, y = 5$ and $x = -8, y = -15$	A1, A1	A1 for each 'pair' of values.
		Midpoint $(-3, -5)$	B1	
		Gradient = 2, so perpendicular gradient = $-\frac{1}{2}$ Perpendicular bisector:		
		$y + 5 = -\frac{1}{2}(x + 3)$	M1	for attempt at straight line equation, must be
		(2y + x + 13 = 0)	M1	using midpoint and perpendicular gradient for use of $y = 0$ in <i>their</i> line equation
		Point <i>C</i> (-13, 0)	IVII	(but not $2x - y + 1 = 0$)
			\mathbf{R}	
		Area $=\frac{1}{2}\begin{vmatrix} -13 & 2 & -8 & -13 \\ 0 & 5 & -15 & 0 \end{vmatrix}$	M1	for correct attempt to find area, may be using <i>their</i> values for <i>A</i> , <i>B</i> and <i>C</i> (<i>C</i> must lie on the
		=125	A1	<i>x</i> -axis)
		Alternative method for area:		
		$CM^2 = 125, \ AB^2 = 500$	M 1	for correct attempt to find area may be using
		Area $=\frac{1}{2} \times \sqrt{125} \times \sqrt{500}$		<i>their</i> values for <i>A</i> , <i>B</i> and <i>C</i>
		= 125	A1	

ZZZZ Satprep. 0.

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	13

Т

Abbreviations

Т

Г

Awrt	answers which round to
Cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1 (i) (ii)		B1 B1	
(iii)		B1	
2	$\cos\left(3x - \frac{\pi}{4}\right) = (\pm)\frac{1}{\sqrt{2}} \text{ oe}$	M1	division by 2 and square root
	$3x - \frac{\pi}{4} = -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}$	p.00	
	$x = \left(-\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \ \left(\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \ \left(\frac{3\pi}{4} + \frac{\pi}{4}\right) \div 3 \text{ oe}$	DM1	correct order of operations in order to obtain a solution
	$x = 0$ and $\frac{\pi}{6}$ (or 0 and 0.524)	A2/1/0	A2 for 3 solutions and no extras in the range
	$x = \frac{\pi}{3}$ (or 1.05)		A1 for 2 solutions A0 for one solution or no solutions

	Page 3	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – October/Nove	ember 20	15 0606 13
3	(a)	$\begin{pmatrix} 12 & 16 & 4 \\ 30 & 32 & 10 \end{pmatrix}$	B2,1,0	B2 for 6 elements correct, B1 for 5 elements correct
	(b)	$ \begin{pmatrix} 28 & -24 \\ -8 & 76 \end{pmatrix} = m \begin{pmatrix} 4 & 6 \\ 2 & -8 \end{pmatrix} + n \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	B2,1,0	B2 for 4 correct elements in X^2 B1 for 3 correct elements in X^2
		-24 = 6m or $-8 = 2m$ giving $m = -4$	B1	For $m = -4$ using correct I
		28 = 4m + n or $76 = -8m + nn = 44$	M1 A1	complete method to obtain <i>n</i>
	(c)	$a^2 - 6 = 0$ so $a = \pm \sqrt{6}$	B2,1,0	B2 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$, with no incorrect statements seen or
		SATPA		B1 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$ seen or B1 for $a = \sqrt{6}$ and no incorrect working
4	(i)	$\frac{1}{2}\left(4\sqrt{3}+1\right) \times BC = \frac{47}{2}$	B1	correct use of the area
		$\frac{1}{2} (4\sqrt{3} + 1) \times BC = \frac{47}{2}$ $BC = \frac{47}{(4\sqrt{3} + 1)} \times \frac{(4\sqrt{3} - 1)}{(4\sqrt{3} - 1)}$	M1	correct rationalisation
		$BC = 4\sqrt{3} - 1$	A1	Dependent on all method being seen
		Alternative method		S
		$\frac{1}{2}(4\sqrt{3}+1) \times BC = \frac{47}{2}$ $(4\sqrt{3}+1)(a\sqrt{3}+b) = 47$	B1	
		$\frac{1}{2}(4\sqrt{3}+1) \times BC = \frac{1}{2}$ $(4\sqrt{3}+1)(a\sqrt{3}+b) = 47$	P ·	
		Leading to $12a + b = 47$ and $a + 4b = 0$ Solution of simultaneous equations	M1	
		$BC = 4\sqrt{3-1}$	A1	Dependent on all method seen including solution of simultaneous equations
	(ii)	$(4\sqrt{3}+1)^{2} + (4\sqrt{3}-1)^{2}$ $= (48+8\sqrt{3}+1) + (48-8\sqrt{3}+1)$		
		$= \left(48 + 8\sqrt{3} + 1\right) + \left(48 - 8\sqrt{3} + 1\right)$	B1FT	6 correct FT terms seen
		$AC^2 = 98$ $AC = 7\sqrt{2} \text{ or } p = 7$	B1cao	98 and $7\sqrt{2}$ or 98 and $p = 7$

Page 4					Paper
	Cambridge IGCSE – October/Nov	ember 20	15	0606	13
5	When $x = \frac{\pi}{4}$, $y = 2$	B1	<i>y</i> = 2		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\mathrm{sec}^2 x$	B1	$5 \sec^2 x$		
	When $x = \frac{\pi}{4}$, $\frac{dy}{dx} = 10$	B1	10 from diffe	erentiation	
	Equation of normal $y - 2 = -\frac{1}{10} \left(x - \frac{\pi}{4} \right)$	M1	y - their 2 = 1	$-\frac{1}{their10}\left(x-\frac{1}{10}\right)$	$\left(-\frac{\pi}{4}\right)$
	$10y + x - 20 - \frac{\pi}{4} = 0$ or $10y + x - 20.8 = 0$ oe	A1	allow unsimp	olified	
5 (i)		B1 B1 B1	shape intercepts on intercept on y maximum an	v-axis for a cu	urve with a
(ii)		M1	$(2, \pm 16)$ seen	or $(2, k)$ wh	ere $k > 0$
	(2,16)	A1	(2, 16) or $x =$	= 2 and $y = 16$	only
(iii)	k = 0	B1			
	<i>k</i> >16	B1			
	222 Satpre	р. ^{с0}	4		

	Page 5	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE – October/Nove	ember 20	15	0606	13
		du				
7		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin 3x (+c)$	B1	$2\sin 3x$		
		$4\sqrt{3} = 2\frac{\sqrt{3}}{2} + c$	M1	finding const $\frac{dy}{dx} = k \sin 3x$ $\frac{dy}{dx} = 4\sqrt{3} \text{ arms}$	+c making	use of
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin 3x + 3\sqrt{3}$	A1	Allow with a	$c = 5.20 \text{ or } \sqrt{2}$	7
		$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x (+d)$	B1FT	FT integratio	on of <i>their k</i> s	in 3x
		$-\frac{1}{3} = -\frac{2}{3}\cos\frac{\pi}{3} + 3\sqrt{3}\left(\frac{\pi}{9}\right) + d$	M1	finding constant <i>d</i> for $k \cos 3x + cx + d$		
		$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x - \frac{\sqrt{3}}{3}\pi$	A1	Allow y = -0.667 co or better	$\cos 3x + 5.20x$	-0.577π
8	(a)	$(2+kx)^8 = 256 + 1024kx + 1792k^2x^2 + 1792k^3x^3$				
		$k = \frac{1}{4}$	B1	_		
		p = 112 $q = 28$	B1FT B1FT	FT 1792 mu FT 1792 mu		
	(b)	${}^{9}C_{3}x^{6}\left(-\frac{2}{x^{2}}\right)^{3}$	M1	correct term	seen	
		$84x^6\left(-\frac{8}{x^6}\right)$ leading to -672	DM1 A1	Term selected evaluated	d and 2 ³ and	${}^{9}C_{3}$ correctly

Syllabus Paper
0606 13
< 3!(× 2) oe
or $2 \times 3! (\times 4)$ oe
swer to (i)
^ J
to (i) $-6 - {}^{6}C_{4} \times 9$
ed
rect method using 4 cases, ied by working. Must have
orrect
r li

	Page 7	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – October/N	ovember 2	015 0606 13
10	(i)	$10^{2} = 6^{2} + 6^{2} - 2 \times 6 \times 6 \times \cos ABC$ or $\sin\left(\frac{ABC}{2}\right) = \frac{5}{6}$	M1	correct cosine rule statement or correct statement for $\sin \frac{ABC}{2}$ or equating area oe
		or $ABC = \pi - \sin^{-1} \frac{10\sqrt{11}}{36}$		
		<i>ABC</i> = 1.9702	A1	1.9702 or better
	(ii)	<i>XY</i> = 2	B1	for <i>XY</i> (may be implied by later work, allow on diagram)
		Arc length $6\left(\frac{\pi-1.970}{2}\right)$ oe	B1	correct arc length (unsimplified)
		Perimeter = $2 + 2\left(6\left(\frac{\pi - 1.970}{2}\right)\right)$ = 9.03	M1 A1	their $2 + 2 \times 6 \times$ their angle C
	(iii)	$\left(\frac{1}{2} \times 6^2 \left(\frac{\pi - 1.970}{2}\right) - \frac{1}{2} \times 5 \times \sqrt{11}\right) \times 2$	M1 M1	sector area using <i>their</i> C area of \triangle <i>ABM</i> where <i>M</i> is the midpoin of <i>AC</i> , or (\triangle s <i>ABY</i> and <i>BXY</i>) or \triangle <i>ABC</i>
		= 4.50 or 4.51 or better	A1	Answers to 3sf or better

	Page 8	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – October/No	vember 20	15 0606 13
1		$x^{2} - 2x - 3 = 0$ or $y^{2} - 6y + 5 = 0$	M1	substitution and simplification to obta a three term quadratic equation in one variable
		leading to (3, 5) and (-1, 1)	A1,A1	A1 for each 'pair' from a correct quadratic equation, correctly obtained
		Midpoint (1, 3)	B1cao	midpoint
		(Gradient – 1) Perpendicular bisector $y = 4 - x$	M1	perpendicular bisector, must be using <i>their</i> perpendicular gradient and <i>their</i>
		Meets the curve again if $x^{2} + 10x - 15 = 0$ or $y^{2} - 18y + 41 = 0$	M1	midpoint substitution and simplification to obta a three term quadratic equation in one variable.
		leading to $x = -5 \pm 2\sqrt{10}$, $y = 9 \mp 2\sqrt{10}$	A1,A1	A1 for each 'pair'
		$CD^{2} = (4\sqrt{10})^{2} + (4\sqrt{10})^{2}$	M1	Pythagoras using <i>their</i> coordinates from solution of second quadratic. $(x_1 - x_2)^2 + (y_1 - y_2)^2$ must be seen if not using correct coordinates.
		$CD = 8\sqrt{5}$	A1	A1 for $8\sqrt{5}$ from $\sqrt{320}$ and all corrects of far.

	Page 9	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – October/Nove	0606 13	
2	(a)	$2^{2x-1} \times 2^{2(x+y)} = 2^7$ and $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$	M1	expressing 4^{x+y} , 128 as powers of 2 an 9^{2y-x} , 27^{y-4} as powers of 3
		2x - 1 + 2(x + y) = 7 oe	A1	Correct equation from correct working
		2(2y-x)=3(y-4) oe	A1	Correct equation from correct working
		leading to $x = 4$, $y = -4$	A1	for both
		Example of Alternative method Method mark as above	M1 A1	As before One of the correct equations in x and y
		2x - 1 + 2(x + y) = 7	AI	One of the correct equations in x and
		leading to $y = \frac{(8-4x)}{2}$		
		Correctly substituted in $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$		
		Leading to $2\left(\frac{2(8-4x)}{2}-x\right) = 3\left(\frac{(8-4x)}{2}-4\right)$	A1	Correct, unsimplified, equation in x of only
		Leading to $x = 4$ and $y = -4$	A1	Both answers
	(b)	$(2(5^z)-1)(5^z+1)=0$	M1	solution of quadratic
		leading to $2.5^z = 1$ $(5^z = -1)$	A1	correct solution
		$5^{z} = 0.5$	DM1	correct attempt to solve $2.5^z = k$, where k is positive
		$z = \frac{\log 0.5}{\log 5}$ or $z = -0.431$ or better	A1	must have one solution only

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	11

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1 (i)	180° or π radians or 3.14 radians (or better)	B1	
(ii)	2	B 1	
(iii) (a)		B1	$y = \sin 2x$ all correct
(b)		B1 B1	for either $\uparrow \downarrow \uparrow$ starting at their highest value and ending at their lowest value Or a curve with highest value at $y = 3$ and lowest value at $y = -1$ completely correct graph
(iv)	3	B1	
2 (i)	$\tan \theta = \frac{(8+5\sqrt{2})(4-3\sqrt{2})}{(4+3\sqrt{2})(4-3\sqrt{2})}$ $= \frac{32-24\sqrt{2}+20\sqrt{2}-30}{16-18}$	M1	attempt to obtain $\tan \theta$ and rationalise. Must be convinced that no calculators are being used
	$=1+2\sqrt{2}$ cao	A1	

Page 3	Mark Scheme Cambridge IGCSE – May/Ju	ne 2015	SyllabusPaper060611
i			
(ii)	$\sec^2 \theta = 1 + \tan^2 \theta$		
	$=1+(-1+2\sqrt{2})^{2}$	M1	attempt to use $\sec^2 \theta = 1 + \tan^2 \theta$, with <i>their</i> answer to (i)
	$=1+1-4\sqrt{2}+8$	DM1	attempt to simplify, must be convince no calculators are being used.
	$=10-4\sqrt{2}$	A1	Need to expand $(-1+2\sqrt{2})^2$ as 3 terms
	Alternative solution:		
	$AC^{2} = (4+3\sqrt{2})^{2} + (8+5\sqrt{2})^{2}$		
	$=148+104\sqrt{2}$		
	$\sec^2 \theta = \frac{148 + 104\sqrt{2}}{\left(4 + 3\sqrt{2}\right)^2}$	M1	
	$=\frac{148+104\sqrt{2}}{\left(4+3\sqrt{2}\right)^2}\times\frac{34-24\sqrt{2}}{34-24\sqrt{2}}$	DM1	
	$=10-4\sqrt{2}$	A1	
(i)	$64 + 192x^2 + 240x^4 + 160x^6$	B3,2,1,0	-1 each error
(ii)	$\left(64+192x^2+240x^4\right)\left(1-\frac{6}{x^2}+\frac{9}{x^4}\right)$	B1	expansion of $\left(1-\frac{3}{x^2}\right)^2$
	Terms needed $64 - (192 \times 6) + (240 \times 9)$	M1	attempt to obtain 2 or 3 terms using <i>their</i> (i)
	= 1072	A1	
	332. satpre	p.00	

	Page 4	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – May/June 2	2015	0606 11
4	(a)	(a) $\mathbf{X}^2 = \begin{pmatrix} 4 - 4k & -8 \\ 2k & -4k \end{pmatrix}$		-1 each incorrect element
	(b)	Use of $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ $\begin{pmatrix} a & 1 \\ b & 5 \end{pmatrix} \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	M1	use of $AA^{-1} = I$ and an attempt to obtain at least one equation.
		Any 2 equations will give $a = 2, b = 4$	A1,A1	
		Alternative method 1:		
		$\frac{1}{5a-b} \begin{pmatrix} 5 & -1 \\ b & a \end{pmatrix} = \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$	M1	correct attempt to obtain A^{-1} and comparison of at least one term.
		Compare any 2 terms to give $a = 2, b = 4$	A1,A1	
		Alternative method 2:	\sim	
		1(5, -1)(2, 1)		
		Inverse of $\frac{1}{6} \begin{pmatrix} 5 & -1 \\ -4 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix}$	M1 A1,A1	reasoning and attempt at inverse
5		$3x - 1 = x(3x - 1) + x^2 - 4 $ or		
		$y = \left(\frac{y+1}{3}\right)y + \left(\frac{y+1}{3}\right)^2 - 4$		
		$4x^2 - 4x - 3 = 0$ or $4y^2 - 4y - 35 = 0$	M1	equate and attempt to obtain an
		(2x-3)(2x+1)=0 or $(2y-7)(2y+5)=0$	DM1	equation in 1 variable forming a 3 term quadratic equation
		leading to $x = \frac{3}{2}, x = -\frac{1}{2}$ and	A1	and attempt to solve <i>x</i> values
		$y = \frac{7}{2}, y = -\frac{5}{2}$		
			A1	<i>y</i> values
		Midpoint $\left(\frac{1}{2}, \frac{1}{2}\right)$	B 1	for midpoint, allow anywhere
		Perpendicular gradient = $-\frac{1}{3}$	M1	correct attempt to obtain the gradient of the perpendicular, using <i>AB</i>
		Perp bisector: $y - \frac{1}{2} = -\frac{1}{3} \left(x - \frac{1}{2} \right)$	M1	straight line equation through the midpoint; must be convinced it is a perpendicular gradient
		(3y+x-2=0)	A1	perpendicular gradient. allow unsimplified

	Page 5	Mark Scheme				Paper	
		Cambridge IGCSE – May/June	2015		0606	11	
		1	T				
6	(i)	$f\left(\frac{1}{2}\right) = \frac{a}{8} - \frac{15}{4} + \frac{b}{2} - 2 = 0$	M1	correct use	of either $f(\cdot)$	$\left(\frac{1}{2}\right)$ or f(1)	
		leading to $a + 4b = 46$ f(1) = $a - 15 + b - 2 = 5$		paired corr	rectly		
		leading to $a + b = 22$	A1	both equati unsimplifie	ions correct (ed)	allow	
		giving $b = 8$ (AG), $a = 14$	M1,A1		ution of equal $h a$ and b . A		
	(ii)	$(2x-1)(7x^2-4x+2)$	M1,A1		id attempt to rvation or by		
	(iii)	$7x^2 - 4x + 2 = 0$ has no real solutions as	M1	use of b^2 –	- 4 <i>ac</i>		
		$b^2 < 4ac$ $16 < 56$	A1	correct con correct $g(x)$	$\frac{1}{2} (x) = \frac{1}{2} (x) + $	st be from a vww	
		$(x-1)\frac{8x}{(x-2)} - \ln(4x^2+3)$	M1	differentiat product)	tion of a quot	tient (or	
7	(i)	$\frac{dy}{dx} = \frac{(x-1)\frac{8x}{(4x^2+2)} - \ln(4x^2+3)}{(x-1)^2}$	B1 A1		ferentiation o rect	f $\ln(4x^2+3)$	3)
		When $x = 0$, $y = -\ln 3$ oe	B1	for <i>y</i> value			
		$\frac{dy}{dx} = -\ln 3$ so gradient of normal is $\frac{1}{\ln 3}$ (allow numerical equivalent)	M1	valid attem normal	npt to obtain g	gradient of t	the
		normal equation $y + \ln 3 = \frac{1}{\ln 3}x$	M1	attempt at using a per	normal equat	ion must be	2
		or $y = 0.910x - 1.10$, or $y = \frac{10}{11}x - \frac{11}{10}$ cao (Allow $y = 0.91x - 1.1$)	A1	using a per	pendicular		
	(ii)	(Anow $y = 0.91x - 1.1$) when $x = 0$, $y = -\ln 3$ when $y = 0$, $x = (\ln 3)^2$ Area = ± 0.66 or ± 0.67 or awrt these	M1	valid attem	npt at area		
		or $\frac{1}{2}(\ln 3)^3$	A1				

Page 6	Mark Scheme		Syllabus Paper
	Cambridge IGCSE – May/June	2015	0606 11
8 (i)	Range for f: $y \ge 3$ Range for g: $y \ge 9$	B1 B1	
(ii)	$x = -2 + \sqrt{y - 5}$	M1	attempt to obtain the inverse function
	$g^{-1}(x) = -2 + \sqrt{x-5}$ Domain of $g^{-1}: x \ge 9$	A1 B1	Must be correct form for domain
	Alternative method: $y^{2} + 4y + 9 - x = 0$ $y = \frac{-4 + \sqrt{16 - 4(9 - x)}}{2}$	M1 A1	attempt to use quadratic formula and find inverse must have $+$ not \pm
(iii)	Need $g(3e^{2x})$ $(3e^{2x} + 2)^2 + 5 = 41$	M1 DM1	correct order
	or $9e^{4x} + 12e^{2x} - 32 = 0$ $(3e^{2x} - 4)(3e^{2x} + 8) = 0$	DMI	correct attempt to solve the equation
	leading to $3e^{2x} + 2 = \pm 6$ so $x = \frac{1}{2} \ln \frac{4}{3}$	M1	dealing with the exponential correctly in order to reach a solution for x
	or $e^{2x} = \frac{4}{3}$ so $x = \frac{1}{2} \ln \frac{4}{3}$	A1	Allow equivalent logarithmic forms
	Alternative method:		
	Using $f(x) = g^{-1}(41)$, $g^{-1}(41) = 4$	M1	correct use of g^{-1}
	leading to $3e^{2x} = 4$ so $r = \frac{1}{2} \ln \frac{4}{2}$	DM1	dealing with $g^{-1}(41)$ to obtain an
	$g'(x) = 6e^{2x}$	M1 A1	equation in terms of e^{2x} dealing with the exponential correctly in order to reach a solution for x Allow equivalent logarithmic forms
(iv)	$g'(x) = 6e^{2x}$ $g'(\ln 4) = 96$	B1 B1	B1 for each

Page 7	Mark Scheme		Syllabus	Paper
	Cambridge IGCSE – May/Ju	ine 2015	0606	11
			·	

9 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 10x + 3$	M1	for differentiation
	When $x = 0$, for curve $\frac{dy}{dx} = 3$,		
	gradient of line also 3 so line is a tangent.	A1	comparing both gradients
	Alternate method:		
	$3x + 10 = x^3 - 5x^2 + 3x + 10$	M1	attempt to deal with simultaneous
	leading to $x^2 = 0$, so tangent at $x = 0$	A1	equations obtaining $x = 0$
(ii)	When $\frac{dy}{dx} = 0$, $(3x-1)(x-3) = 0$	M1	equating gradient to zero and valid attempt to solve
	$x = \frac{1}{3}, x = 3$	A1,A1	A1 for each
(iii)	1 A T PD		
	Area = $\frac{1}{2}(10+19)3 - \int_0^3 x^3 - 5x^2 + 3x + 10dx$	B 1	area of the trapezium
	$=\frac{87}{2} - \left[\frac{x^4}{4} - \frac{5x^3}{3} + \frac{3x^2}{2} + 10x\right]_0^3$	M1	attempt to obtain the area enclosed by the curve and the coordinate axes, by
	$=\frac{87}{2} - \left(\frac{81}{4} - 45 + \frac{27}{2} + 30\right)$	A1 DM1	integration integration all correct correct application of limits
	= 24.7 or 24.8	A1	(must be using <i>their</i> 3 from (ii) and 0)
	Alternative method:		
	Area = $\int_{0}^{3} (3x+10) - (x^{3} - 5x^{2} + 3x + 10) dx$	B1	correct use of ' <i>Y</i> – <i>y</i> '
	$=\int_{0}^{3}-x^{3}+5x^{2}dx$	M1 A1	attempt to integrate integration all correct
	$= \left[-\frac{x^4}{4} + \frac{5x^3}{3} \right]_0^3 = \frac{99}{4}$	DM1 A1	correct application of limits
10 (a)	$\sin^2 x = \frac{1}{4}$		
	$\sin x = (\pm)\frac{1}{2}$	M1	using $\operatorname{cosec} x = \frac{1}{\sin x}$ and obtaining
	x = 30°, 150°, 210°, 330°	A1,A1	$\sin x =$ A1 for one correct pair, A1 for another correct pair with no extra solutions

Page 8	Mark Scheme		Syllabus Paper
	Cambridge IGCSE – May/June	e 2015	0606 11
(b)	$(\sec^2 3y - 1) - 2\sec 3y - 2 = 0$	M1	use of the correct identity
	$\sec^2 3y - 2\sec 3y - 3 = 0$	M1	attempt to obtain a 3 term quadratic
	$(\sec 3y + 1)(\sec 3y - 3) = 0$		equation in sec 3y and attempt to sol
	leading to $\cos 3y = -1$, $\cos 3y = \frac{1}{3}$	M1	dealing with sec and $3y$ correctly
	$3y = 180^{\circ}, 540^{\circ}$ $3y = 70.5^{\circ}, 289.5^{\circ}, 430.5^{\circ}$	A1,A1	A1 for a correct pair, A1 for a secon
	<i>y</i> = 60°,180°, 23.5°, 96.5°,143.5°	A1	correct pair, A1 for correct 5 th solution and no other within the range
	Alternative 1:		
	$\sec^2 3y - 2\sec 3y - 3 = 0$	M1	use of the correct identity
	leading to $3\cos^2 3y + 2\cos 3y - 1$	M1	attempt to obtain a quadratic equation
	$(3\cos y - 1)(\cos y + 1) = 0$	M1	in cos 3 <i>y</i> and attempt to solve dealing with 3 <i>y</i> correctly
	D		A marks as above
	Alternative 2:		
	$\frac{\sin^2 y}{\cos^2 y} - \frac{2}{\cos y} - 2 = 0$	M1	use of the correct identity,
	$ (1 - \cos^2 x) - 2\cos x - 2\cos^2 x = 0 $		$\tan y = \frac{\sin y}{\cos y}$ and $\sec y = \frac{1}{\cos y}$, the
	$(1 - \cos x) - 2\cos x - 2\cos x = 0$		as before
(c)	$z - \frac{\pi}{3} = \frac{\pi}{3}, \frac{4\pi}{3}$	M1	correct order of operations
	$z = \frac{2\pi}{3}, \frac{5\pi}{3}$ or 2.09 or 2.1, 5.24		
	$z = \frac{1}{3}, \frac{1}{3}$ of 2.09 or 2.1, 5.24	A1,A1	A1 for a correct solution A1 for a second correct solution and
			no other within the range
	232. Satpret		S

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	12

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1	$k^{2} - 4(2k + 5) (< 0)$ $k^{2} - 8k - 20 (< 0)$ $(k - 10)(k + 2) (< 0)$ critical values of 10 and -2 $-2 < k < 10$	M1 M1 A1 A1	use of $b^2 - 4ac$, (not as part of quadratic formula unless isolated at a later stage) with correct values for <i>a</i> , <i>b</i> and <i>c</i> Do not need to see < at this point attempt to obtain critical values correct critical values correct range
	Alternative 1:		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(2k+5)x+k$	M1	attempt to differentiate, equate to zero and substitute x value back in to obtain a y value
	When $\frac{dy}{dx} = 0$, $x = \frac{-k}{2(2k+5)}$, $y = \frac{8k+20-k^2}{4(2k+5)}$	M1	consider $y = 0$ in order to obtain critical values
	When $y = 0$, obtain critical values of 10 and -2 -2 < k < 10	A1 A1	correct critical values correct range
	Alternative 2:		
	$y = (2k+5)\left(\left(x+\frac{k}{2(2k+5)}\right)^2 - \frac{k^2}{4(2k+5)}\right) + 1$	M1	attempt to complete the square and consider $1 - \frac{k^2}{4(2k+5)}$ '
	Looking at $1 - \frac{k^2}{4(2k+5)} = 0$ leads to	M1	attempt to solve above = to 0, to obtain critical values $(1 + 1)^{-1}$
	critical values of 10 and -2 -2 < k < 10	A1 A1	correct critical values correct range

	Page 3	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – May/June 201	5	0606 12
2		$\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}}{\frac{1}{\sin\theta}}$ $\sin^2\theta + \cos^2\theta$	M1	for $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\cot \theta = \frac{\cos \theta}{\sin \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$; allow when used
		$= \frac{\frac{\sin\theta\cos\theta}{\sin\theta}}{\frac{1}{\sin\theta}}$	M1	dealing correctly with fractions in the numerator; allow when seen
		$=\frac{1}{\cos\theta}$	M1	use of the appropriate identity; allow when seen
		$= \sec \theta$	A1	must be convinced it is from completely correct work (beware missing brackets)
		Alternative: $\tan^2 \theta + 1$		
		$\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\tan^2\theta + 1}{\tan\theta}}{\csc\theta}$	M1	for either $\tan \theta = \frac{1}{\cot \theta}$ or
				$\cot \theta = \frac{1}{\tan \theta}$ and
		$=\frac{\sec^2\theta}{\tan\theta\frac{1}{\sin\theta}}$	M1	$\csc \theta = \frac{1}{\sin \theta}$; allow when used dealing correctly with fractions in numerator; allow when seen
		$=\frac{\sec^2\theta}{\sec\theta}$	M1	use of the appropriate identity; allow when seen
		$= \sec \theta$	A1	must be convinced it is from completely correct work
3		$A^{-1} = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix}$	B1	$\frac{1}{2}$ multiplied by a matrix
		$\binom{x}{y} = \frac{1}{2} \binom{3}{-5} - \binom{2}{4} \binom{8}{9}$	B1 M1	for matrix attempt to use the inverse matrix,
				must be pre-multiplication
		$\binom{x}{y} = \frac{1}{2} \binom{6}{-4}$		
		x = 3, y = -2	A1, A1	

	Page 4	Page 4 Mark Scheme		Syllabus Paper
		Cambridge IGCSE – May/June 201	5	0606 12
4	(i)	Area = $\left(\frac{1}{2} \times 12^2 \times 1.7\right) + \left(\frac{1}{2} \times 12^2 \sin(2\pi - 1.7 - 2.4)\right)$	B1,B1 M1	B1 for sector area, allow unsimplified B1 for correct angle <i>BOC</i> , allow unsimplified correct attempt at area of triangle,
		= awrt 181	A1	allow unsimplified using <i>their</i> angle <i>BOC</i> (Their angle <i>BOC</i> must not be 1.7 or 2.4)
	(ii)	$BC^{2} = 12^{2} + 12^{2} - (2 \times 12 \times 12 \cos 2.1832)$ or $BC = 2 \times 12 \times \sin\left(\frac{2\pi - 4.1}{2}\right)$	M1	correct attempt at <i>BC</i> , may be seen in (i), allow if used in (ii). Allow use of <i>their</i> angle <i>BOC</i> .
		<i>BC</i> = 21.296	A1	
		Perimeter = $(12 \times 1.7) + 12 + 12 + 21.296$	B1 M1	for arc length, allow unsimplified for a correct 'plan'
		= 65.7	A1	(an arc + 2 radii and <i>BC</i>)
5	(a) (i)	20160	B1	
	(ii)	$3 \times {}^{6}P_{4} \times 2$ = 2160	B1,B1	B1 for ${}^{6}P_{4}$ (must be seen in a product) B1 for all correct, with no further working
	(iii)	$5 \times 2 \times {}^{6}P_{4}$ = 3600	B1,B1 B1	B1 for ${}^{6}P_{4}$ (must be seen in a product) B1 for 5 (must be in a product) B1 for all correct, with no further working
			D2	
		${}^{6}C_{4} \times 5! \times 2$ = 3600	B2 B1	for ${}^{6}C_{4} \times 5!$ for ${}^{6}C_{4} \times 5! \times 2$
		Alternative 2:	21	4
		$\binom{7}{P_5} - \binom{6}{P_5} \times 2$	B2	for $\left({}^7P_5 - {}^6P_5\right)$
		= 3600	B1	for $\left({}^7P_5 - {}^6P_5\right) \times 2$
		Alternative 3:		
		$2! ({}^{6}P_{4} + ({}^{6}P_{1} \times {}^{5}P_{3}) + ({}^{6}P_{2} \times {}^{4}P_{2}) + ({}^{6}P_{3} \times {}^{3}P_{1}) + {}^{6}P_{4})$ = 3600	B2	4 terms correct or omission of 2! in each term
			B1	all correct

	Page 5	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – May/June 201	5	0606 12
	(b) (i)	${}^{14}C_4 \times {}^{10}C_4 \text{or} {}^{14}C_8 \times {}^8C_4$ (or numerical or factorial equivalent) = 210210	B1,B1	B1 for either ${}^{14}C_4$ or ${}^{14}C_8$ as part of a product B1 for correct answer, with no further working
	(ii)	${}^{8}C_{4} \times {}^{6}C_{4}$ $= 1050$	B1,B1	B1 for either ${}^{8}C_{4}$ or ${}^{6}C_{4}$ as part of a product B1 for correct answer with no further working
6	(i)	10ln4 or 13.9 or better	B1	
	(ii)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = \frac{20t}{t^2 + 4} - 4$	M1 B1	attempt to differentiate and equate to zero $\frac{20t}{t^2 + 4}$ or equivalent seen
		When $\frac{dx}{dt} = 0, \frac{20t}{t^2 + 4} = 4$	DM1	attempt to solve <i>their</i> $\frac{dx}{dt} = 0$, must
		leading to $t^2 - 5t + 4 = 0$ t = 1, t = 4	A1	be a 2 or 3 term quadratic equation with real roots for both

$20(4-t^{-1}) \text{ of } 80-20t^{-1} \text{ of } 4-t^{-1} \text{ of equivalent}$ expression involving $-t^{2}$ When acceleration is 0, $t = 2$ only $B1$ $t = 2$, dependent on obtaining firming and second A marks $If(v =) \frac{20t - 4t^{2} - 16}{t^{2} + 4}$ $M1$ attempt to differentiate <i>their</i> $\frac{dx}{dt}$		If $(v =) \frac{20t}{t^2 + 4} - 4$ $(a =) \frac{20(t^2 + 4) - 20t(2t)}{(t^2 + 4)^2}$ $20(4 - t^2)$ or $80 - 20t^2$ or $4 - t^2$ or equivalent expression involving $-t^2$ When acceleration is 0, $t = 2$ only	M1 A1 A1 A1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$ $20(t^2 + 4)$ 20t(2t) $20(4 - t^2)$ or $80 - 20t^2$ or $4 - t^2$ t = 2, dependent on obtaining first
$(a =) \frac{20(t^{2} + 4) - 20t(2t)}{(t^{2} + 4)^{2}}$ M1 attempt to differentiate <i>their</i> $\frac{dx}{dt}$ A1 $20(t^{2} + 4)$ A1 $20(4 - t^{2})$ or $80 - 20t^{2}$ or $4 - t^{2}$ When acceleration is 0, $t = 2$ only B1 $t = 2$, dependent on obtaining fir and second A marks If $(v =) \frac{20t - 4t^{2} - 16}{t^{2} + 4}$ M1 attempt to differentiate <i>their</i> $\frac{dx}{dt}$ Attempt to differentiate <i>their</i> $\frac{dx}{dt}$		$(a =) \frac{20(t^{2} + 4) - 20t(2t)}{(t^{2} + 4)^{2}}$ $20(4 - t^{2}) \text{ or } 80 - 20t^{2} \text{ or } 4 - t^{2} \text{ or equivalent}$ expression involving $-t^{2}$ When acceleration is 0, $t = 2$ only	A1 A1 A1	$20(t^{2} + 4)$ 20t (2t) $20(4 - t^{2}) \text{ or } 80 - 20t^{2} \text{ or } 4 - t^{2}$ t = 2, dependent on obtaining first
$\begin{array}{c} 1 & (t^{2} + 4)^{2} \\ (t^{2} + 4)^{2} \\ 20(4 - t^{2}) \text{ or } 80 - 20t^{2} \text{ or } 4 - t^{2} \text{ or equivalent} \\ \text{expression involving } - t^{2} \\ \text{When acceleration is } 0, t = 2 \text{ only} \\ \end{array}$ $\begin{array}{c} \text{Alternative 1 for first 3 marks:} \\ \text{If}(v =) \frac{20t - 4t^{2} - 16}{t^{2} + 4} \\ \text{M1} \end{array}$ $\begin{array}{c} \text{Alternative 1 of first 3 marks:} \\ \text{M1} \end{array}$ $\begin{array}{c} \text{M1} \\ \text{attempt to differentiate their } \frac{dx}{dt} \\ \text{M1} \end{array}$		$20(4-t^2)$ or $80-20t^2$ or $4-t^2$ or equivalent expression involving $-t^2$ When acceleration is 0, $t = 2$ only	A1 A1 A1	$20(t^{2} + 4)$ 20t (2t) $20(4 - t^{2}) \text{ or } 80 - 20t^{2} \text{ or } 4 - t^{2}$ t = 2, dependent on obtaining first
$\begin{array}{c} A1 \\ 20(4-t^2) \text{ or } 80 - 20t^2 \text{ or } 4-t^2 \text{ or equivalent} \\ expression involving -t^2 \\ When acceleration is 0, t = 2 \text{ only} \end{array} \begin{array}{c} A1 \\ A1 \\ 20(4-t^2) \text{ or } 80 - 20t^2 \text{ or } 4-t^2 \\ B1 \\ t = 2, \text{ dependent on obtaining fir and second A marks} \\ H1 \\ attempt to differentiate their \frac{dx}{dt} \\ t = 2, \text{ obtine the second A marks} \\ H1 \\ t = 2, \text{ obtine the second A marks} \\ H1 \\ t = 2, \text{ obtine the second A marks} \\ t$		expression involving $-t^2$ When acceleration is 0, $t = 2$ only	A1 A1	20t (2t) $20 (4-t^{2}) \text{ or } 80 - 20t^{2} \text{ or } 4-t^{2}$ t = 2, dependent on obtaining first
$20(4-t^{2}) \text{ or } 80-20t^{2} \text{ or } 4-t^{2} \text{ or equivalent}$ expression involving $-t^{2}$ When acceleration is 0, $t = 2$ only $Alternative 1 \text{ for first 3 marks:}$ If $(v =) \frac{20t-4t^{2}-16}{t^{2}+4}$ M1 $Alternative 1 \text{ for first 3 marks:}$ If $(v =) \frac{20t-4t^{2}-16}{t^{2}+4}$ A1 $Alternative 1 \text{ for first 3 marks:}$ If $(v =) \frac{20t-4t^{2}-16}{t^{2}+4}$ A1 $Alternative 1 \text{ for first 3 marks:}$ If $(v =) \frac{20t-4t^{2}-16}{t^{2}+4}$ A1 $Alternative 1 \text{ for first 3 marks:}$ If $(v =) \frac{20t-4t^{2}-16}{t^{2}+4}$ A1 $Alternative 1 \text{ for first 3 marks:}$ If $(v =) \frac{20t-4t^{2}-16}{t^{2}+4}$ A1 $Alternative 1 \text{ for first 3 marks:}$ A1 $Alternative 1 \text{ for first 3 marks:}$ $Alternative 1 for first 3 $		expression involving $-t^2$ When acceleration is 0, $t = 2$ only	A1	$20(4-t^2)$ or $80-20t^2$ or $4-t^2$ t=2, dependent on obtaining first
$20(4-t^{-1}) \text{ of } 80-20t^{-1} \text{ of } 4-t^{-1} \text{ of equivalent}$ expression involving $-t^{2}$ When acceleration is 0, $t = 2$ only $B1$ $t = 2$, dependent on obtaining firming and second A marks $If(v =) \frac{20t - 4t^{2} - 16}{t^{2} + 4}$ $M1$ attempt to differentiate <i>their</i> $\frac{dx}{dt}$		expression involving $-t^2$ When acceleration is 0, $t = 2$ only		t = 2, dependent on obtaining first
When acceleration is 0, $t = 2$ onlyB1 $t = 2$, dependent on obtaining fir and second A marksAlternative 1 for first 3 marks: If $(v =) \frac{20t - 4t^2 - 16}{t^2 + 4}$ M1attempt to differentiate <i>their</i> $\frac{dx}{dt}$		When acceleration is 0, $t = 2$ only	B1	
If $(v =) \frac{20t - 4t^2 - 16}{t^2 + 4}$ M1 attempt to differentiate <i>their</i> $\frac{dx}{dt}$		Alternative 1 for first 2 months		
$(t^{2}+4)(20-8t)-(20t-4t^{2}-16)(2t)$ A1 for $(t^{2}+4)(20-8t)$			M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
		$(t^{2}+4)(20-8t)-(20t-4t^{2}-16)(2t)$	A1	for $(t^2 + 4)(20 - 8t)$
$(a=)\frac{(t^2+1)^2(2t^2-4t^2)^2}{(t^2+4)^2}$ A1 for $(20t-4t^2-16)(2t)$		$(a=)\frac{(t^2+4)(20-8t)-(20t-4t^2-16)(2t)}{(t^2+4)^2}$		
Alternative 2 for M1 mark: If $(v =) 20t(t^2 + 4)^{-1} - 4$ $(a =) 20t(-2t(t^2 + 4)^{-2}) + 20(t^2 + 4)^{-1}$ Alternative 3 for the first 3 marks		If $(v =) 20t(t^2 + 4)^{-1} - 4$ $(a =) 20t(-2t(t^2 + 4)^{-2}) + 20(t^2 + 4)^{-1}$ Alternative 3 for the first 3 marks	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
If $(v =) (20t - 4t^2 - 16)(t^2 + 4)^{-1}$ ((1)) $(z = -1)(z =$			MI	attempt to differentiate <i>their</i> $\frac{dx}{dx}$
$ (a =)(20t - 4t^2 - 16) - 2t(t^2 + 4) + (20 - 8t)(t^2 + 4) $		$(a =)(20t - 4t^{2} - 16)(-2t(t^{2} + 4)^{-2}) + (20 - 8t)(t^{2} + 4)^{-1}$		dt
Numerator = $-2t(20t - 4t^2 - 16) + (20 - 8t)(t^2 + 4)$ A1 for $2t(20t - 4t^2 - 15)$ for $2t(20t - 4t^2 - 15)$		Numerator = $-2t(20t - 4t^2 - 16) + (20 - 8t)(t^2 + 4)$		
7 (i) $\overrightarrow{DA} = 3\mathbf{a} - \mathbf{b}$ B1 mark final answer, allow	(i)			
unsimplified	(-)		DI	
(ii) $\overrightarrow{DB} = 7\mathbf{a} - \mathbf{b}$ B1 mark final answer, allow unsimplified	(ii)	$\overrightarrow{DB} = 7\mathbf{a} - \mathbf{b}$	B1	
(iii) $\overrightarrow{AX} = \lambda (4\mathbf{a} + \mathbf{b})$ B1 mark final answer, allow unsimplified	(iii)	$\overrightarrow{AX} = \lambda \left(4\mathbf{a} + \mathbf{b} \right)$	B1	
valid method or $3\mathbf{a} - \mathbf{b} + their$ (iii	(iv)	$\overrightarrow{DX} = 3\mathbf{a} - \mathbf{b} + \lambda \left(4\mathbf{a} + \mathbf{b} \right)$		<i>their</i> (i) + <i>their</i> (iii) or equivalent valid method or $3\mathbf{a} - \mathbf{b} + their$ (iii)
A1 Allow unsimplified			A1	Allow unsimplified

Page 7	Mark Scheme		Syllabus	Paper	
	Cambridge IGCSE – May/June 20	15	0606	12	
(v)	$3\mathbf{a} - \mathbf{b} + \lambda (4\mathbf{a} + \mathbf{b}) = \mu (7\mathbf{a} - \mathbf{b})$	M1	equating <i>their</i> (iv) ar		
	Equate like vectors: $3 + 4\lambda = 7\mu$ $-1 + \lambda = -\mu$	DM1	for an attempt to equ and attempt to solve equations for λ and	2 linear	
	leads to $\lambda = \frac{4}{11}$, $\mu = \frac{7}{11}$	A1,A1	A1 for each	,	
8 (i)	$5e^{2x} - \frac{1}{2}e^{-2k}$ (+c)	B1, B1	B1 for each term, all unsimplified	ow	
(ii)	$\left(5e^{2k} - \frac{1}{2}e^{-2k}\right) - \left(5e^{-2k} - \frac{1}{2}e^{2k}\right)$	M1	use of limits provide has taken place. Sig	ns must be	
		A1	correct if brackets are not includ allow any correct form		
(iii)	$\left(5e^{2k} - \frac{1}{2}e^{-2k}\right) \left(5e^{-2k} - \frac{1}{2}e^{2k}\right) = -60$ or 11 or 11 or	B1	correct expression fr simplified or unsimp to – 60 , must be first	lified equated	
	$\frac{11}{2}e^{2k} - \frac{11}{2}e^{-2k} = -60$ or equivalent	\mathbb{N}		inic seen.	
	leading to $11e^{2k} - 11e^{-2k} + 120 = 0$	DB1	must be convinced as	s AG	
(iv)	$11y^{2} + 120y - 11 = 0$ (11y - 1)(y + 11) = 0 leading to	M1	attempt to obtain a q equation in y or e^{2k} get y or e^{2k} (only ne	and solve to	
	$k = \frac{1}{2} \ln \frac{1}{11}, \ \ln \frac{1}{\sqrt{11}}, \ -\ln \sqrt{11}, \ -\frac{1}{2} \ln 11$	DM1 A1	solution) attempt to deal with any of given answers	•	

	Page 8			Syllabus Paper		
		Cambridge IGCSE – May/June 201	5	0606 12		
9		$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - 6\sin 2x$	M1,A1	M1 for attempt to differentiate A1 for all correct		
		When $x = \frac{\pi}{4}$, $y = \pi$	B1	for y		
		$\frac{dy}{dx} = -2$ so gradient of normal $= \frac{1}{2}$	DM1	for substitution of $x = \frac{\pi}{4}$ into <i>their</i>		
				$\frac{dy}{dx}$ and use of $m_1m_2 = -1'$, dependent on first M1		
		Normal equation $y - \pi = \frac{1}{2} \left(x - \frac{\pi}{4} \right)$	DM1	correct attempt to obtain the equation of the normal, dependent on previous DM mark		
		When $x = 0$, $y = \frac{7\pi}{8}$	A1	must be terms of π		
		When $y = 0, x = -\frac{7\pi}{4}$	A1	must be terms of π		
		Area = $\frac{1}{2} \times \frac{7\pi}{4} \times \frac{7\pi}{8} = \frac{49\pi^2}{64}$	B1ft	Follow through on <i>their x</i> and <i>y</i> intercepts; must be exact values		
10	(a)	$\cos^2 3x = \frac{1}{2}$, $\cos 3x = (\pm)\frac{1}{\sqrt{2}}$	M			
		$3x = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$ $x = 15^{\circ}, 45^{\circ}, 75^{\circ}, 105^{\circ}$	M1 A1,A1	complete correct method, dealing with sec and 3, correctly A1 for each correct pair		
	(b)	$3(\cot^2 y + 1) + 5 \cot y - 5 = 0$ Leading to $3 \cot^2 y + 5 \cot y - 2 = 0$ or	M1	use of a correct identity to get an equation in terms of one trig ratio only		
		$2\tan^2 y - 5\tan y - 3 = 0$ $(3\cot y - 1)(\cot y + 2) = 0$ or	M1	for $\cot y = \frac{1}{\tan y}$ to obtain either a		
		$(\tan y - 3)(2\tan y + 1) = 0$		quadratic equation in tan y or solutions in terms of tan y; allow where appropriate		
		$\tan y = 3, \tan y = \frac{1}{2}$	M1	for solution of a quadratic equation in terms of either $\tan y$ or $\cot y$		
		$y = 71.6^{\circ}, 251.6^{\circ}$ 153.4°, 333.4°	A1,A1	A1 for each correct 'pair'		
	(c)	$\sin\left(z+\frac{\pi}{3}\right) = \frac{1}{2}$	M1	completely correct method of solution		
		$z + \frac{\pi}{3} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}$	A1	one correct solution in range		
		$z = \frac{\pi}{2}, \frac{11\pi}{6}$	M1	correct attempt to obtain a second solution within the range		
		(allow1.57, 5.76)	A1	second correct solution (and no other)		

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	13

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1 (i)	180° or π radians or 3.14 radians (or better)	B1	
(ii)	2	B1	
(iii) (a)		B 1	$y = \sin 2x$ all correct
(b)		B1 B1	for either $\uparrow \downarrow \uparrow$ starting at their highest value and ending at their lowest value Or a curve with highest value at $y = 3$ and lowest value at $y = -1$ completely correct graph
(iv)	3	B1	
2 (i)	$\tan \theta = \frac{(8+5\sqrt{2})(4-3\sqrt{2})}{(4+3\sqrt{2})(4-3\sqrt{2})}$ $= \frac{32-24\sqrt{2}+20\sqrt{2}-30}{16-18}$	M1	attempt to obtain $\tan \theta$ and rationalise. Must be convinced that no calculators are being used
	$=1+2\sqrt{2}$ cao	A1	

Page 3	Mark Scheme	2015	Syllabus Paper
	Cambridge IGCSE – May/Ju	ine 2015	0606 13
(ii)	$\sec^2 \theta = 1 + \tan^2 \theta$		
	$=1+(-1+2\sqrt{2})^{2}$	M1	attempt to use $\sec^2 \theta = 1 + \tan^2 \theta$, wi <i>their</i> answer to (i)
	$=1+1-4\sqrt{2}+8$	DM1	attempt to simplify, must be convinc no calculators are being used.
	$=10-4\sqrt{2}$	A1	Need to expand $(-1+2\sqrt{2})^2$ as 3 terms
	Alternative solution:		
	$AC^{2} = \left(4 + 3\sqrt{2}\right)^{2} + \left(8 + 5\sqrt{2}\right)^{2}$		
	$=148+104\sqrt{2}$ 148+104 $\sqrt{2}$		
	$\sec^2 \theta = \frac{148 + 104\sqrt{2}}{\left(4 + 3\sqrt{2}\right)^2}$	M1	
	$=\frac{148+104\sqrt{2}}{\left(4+3\sqrt{2}\right)^2}\times\frac{34-24\sqrt{2}}{34-24\sqrt{2}}$	DM1	
	$=10-4\sqrt{2}$	A1	
(i)	$64 + 192x^2 + 240x^4 + 160x^6$	B3,2,1,0	-1 each error
(ii)	$(64+192x^2+240x^4)\left(1-\frac{6}{x^2}+\frac{9}{x^4}\right)$	B1	expansion of $\left(1-\frac{3}{x^2}\right)^2$
	Terms needed $64 - (192 \times 6) + (240 \times 9)$	M1	attempt to obtain 2 or 3 terms using <i>their</i> (i)
	= 1072	A1	
	Satpre		

	Page 4	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – May/June 2	2015	0606 13
4	(a)	$\mathbf{X}^2 = \begin{pmatrix} 4 - 4k & -8\\ 2k & -4k \end{pmatrix}$	B2,1,0	-1 each incorrect element
	(b)	Use of $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ $\begin{pmatrix} a & 1 \\ b & 5 \end{pmatrix} \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	M1	use of $AA^{-1} = I$ and an attempt to obtain at least one equation.
		Any 2 equations will give $a = 2, b = 4$	A1,A1	
		Alternative method 1:		
		$\frac{1}{5a-b} \begin{pmatrix} 5 & -1 \\ b & a \end{pmatrix} = \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$	M1	correct attempt to obtain A^{-1} and comparison of at least one term.
		Compare any 2 terms to give $a = 2, b = 4$	A1,A1	
		Alternative method 2:		
		1(5, -1)(2, 1)		
		Inverse of $\frac{1}{6} \begin{pmatrix} 5 & -1 \\ -4 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix}$	M1 A1,A1	reasoning and attempt at inverse
5		$3x - 1 = x(3x - 1) + x^2 - 4 \text{ or}$		
		$y = \left(\frac{y+1}{3}\right)y + \left(\frac{y+1}{3}\right)^2 - 4$		
		$4x^2 - 4x - 3 = 0 \text{ or } 4y^2 - 4y - 35 = 0$	M1	equate and attempt to obtain an
		(2x-3)(2x+1)=0 or $(2y-7)(2y+5)=0$	DM1	equation in 1 variable forming a 3 term quadratic equation
		leading to $x = \frac{3}{2}, x = -\frac{1}{2}$ and	.0	and attempt to solve
			A1	<i>x</i> values
		$y = \frac{7}{2}, y = -\frac{5}{2}$	A1	<i>y</i> values
		Midpoint $\left(\frac{1}{2}, \frac{1}{2}\right)$	B 1	for midpoint, allow anywhere
		Perpendicular gradient = $-\frac{1}{3}$	M1	correct attempt to obtain the gradient of the perpendicular, using <i>AB</i>
		Perp bisector: $y - \frac{1}{2} = -\frac{1}{3} \left(x - \frac{1}{2} \right)$	M1	straight line equation through the midpoint; must be convinced it is a
		(3y+x-2=0)	A1	perpendicular gradient. allow unsimplified

[Page 5					Paper]
		Cambridge IGCSE – May/June 2015				13	
		1	T				
6	(i)	$f\left(\frac{1}{2}\right) = \frac{a}{8} - \frac{15}{4} + \frac{b}{2} - 2 = 0$	M1	correct use of either $f\left(\frac{1}{2}\right)$ or $f(1)$			
		leading to $a + 4b = 46$ f(1) = $a - 15 + b - 2 = 5$		paired correctly			
		leading to $a + b = 22$	A1	both equations correct (allow unsimplified)			
		giving $b = 8$ (AG), $a = 14$	M1,A1	M1 for solution of equations A1 for both <i>a</i> and <i>b</i> . AG for <i>b</i> .			
	(ii)	$(2x-1)(7x^2-4x+2)$	M1,A1	M1 for valid attempt to obtain $g(x)$, by either observation or by algebraic long division.			
	(iii)	$7x^2 - 4x + 2 = 0$ has no real solutions as	M1	use of b^2 -	- 4 <i>ac</i>		
		$b^2 < 4ac$ $16 < 56$	A1	correct cor correct g(x	$\frac{1}{2} (x) = \frac{1}{2} (x) + $	st be from a vww	
		$(x-1)\frac{8x}{(x-2)} - \ln(4x^2+3)$	M1	differentiat product)	tion of a quot	tient (or	
7	(i)	$\frac{dy}{dx} = \frac{(x-1)\frac{8x}{(4x^2+2)} - \ln(4x^2+3)}{(x-1)^2}$	B1 A1		ferentiation o rect	$\int \ln(4x^2 + 3)$	3)
		When $x = 0$, $y = -\ln 3$ oe	B1	for y value			
		$\frac{dy}{dx} = -\ln 3$ so gradient of normal is $\frac{1}{\ln 3}$ (allow numerical equivalent)	M1	valid attem normal	npt to obtain g	gradient of tl	he
		normal equation $y + \ln 3 = \frac{1}{\ln 3}x$	M1	attempt at normal equation must be using a perpendicular			
		or $y = 0.910x - 1.10$, or $y = \frac{10}{11}x - \frac{11}{10}$ cao	A1		Pendreunar		
		(Allow $y = 0.91x - 1.1$)					
	(ii)	when $x = 0$, $y = -\ln 3$	M1	valid attem	npt at area		
		when $y = 0$, $x = (\ln 3)^2$ Area = ±0.66 or ±0.67 or awrt these					
		or $\frac{1}{2}(\ln 3)^3$	A1				

Page 6	Mark Scheme		Syllabus Paper
	Cambridge IGCSE – May/June	0606 13	
8 (i)	Range for f: $y \ge 3$ Range for g: $y \ge 9$	B1 B1	
(ii)	$x = -2 + \sqrt{y - 5}$	M1	attempt to obtain the inverse function
	$g^{-1}(x) = -2 + \sqrt{x-5}$ Domain of $g^{-1}: x \ge 9$	A1 B1	Must be correct form for domain
	Alternative method: $y^{2} + 4y + 9 - x = 0$ $y = \frac{-4 + \sqrt{16 - 4(9 - x)}}{2}$	M1 A1	attempt to use quadratic formula and find inverse must have $+$ not \pm
(iii)	2 Need g($3e^{2x}$) $(3e^{2x} + 2)^2 + 5 = 41$	M1 DM1	correct order correct attempt to solve the equation
	or $9e^{4x} + 12e^{2x} - 32 = 0$ $(3e^{2x} - 4)(3e^{2x} + 8) = 0$ leading to $3e^{2x} + 2 = \pm 6$ so $x = \frac{1}{2}\ln\frac{4}{3}$	M1	dealing with the exponential correctly
	or $e^{2x} = \frac{4}{3}$ so $x = \frac{1}{2} \ln \frac{4}{3}$	A1	in order to reach a solution for <i>x</i> Allow equivalent logarithmic forms
	Alternative method: Using $f(x) = g^{-1}(41)$, $g^{-1}(41) = 4$	M1	correct use of g^{-1}
	1 + 1 + 2 + 2 + 1 + 4	DM1	dealing with $g^{-1}(41)$ to obtain an
	leading to $3e^{-x} = 4$, so $x = \frac{-\ln \pi}{3}$	M1 A1	equation in terms of e^{2x} dealing with the exponential correctly in order to reach a solution for x Allow equivalent logarithmic forms
(iv)	$g'(x) = 6e^{2x}$ $g'(\ln 4) = 96$	B1 B1	B1 for each

Pag	je 7	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – May/Jur	e 2015	0606 13
(i)		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 10x + 3$	M1	for differentiation
		When $x = 0$, for curve $\frac{dy}{dx} = 3$, gradient of line also 3 so line is a tangent.	A1	comparing both gradients
		Alternate method:		
			attempt to deal with simultaneous equations	
		leading to $x^2 = 0$, so tangent at $x = 0$	A1	obtaining $x = 0$

(ii)	When $\frac{dy}{dx} = 0$, $(3x-1)(x-3) = 0$ $x = \frac{1}{3}$, $x = 3$	
(:::)		

A1 obtaining x = 0M1 equating gradient to zero and valid attempt to solve A1,A1 A1 for each

Area = $\frac{1}{2}(10+19)3 - \int_0^3 x^3 - 5x^2 + 3x + 10dx$ (iii) **B1** area of the trapezium $=\frac{87}{2} - \left[\frac{x^4}{4} - \frac{5x^3}{3} + \frac{3x^2}{2} + 10x\right]_0^3$ **M1** attempt to obtain the area enclosed by the curve and the coordinate axes, by $=\frac{87}{2} - \left(\frac{81}{4} - 45 + \frac{27}{2} + 30\right)$ integration **A1** integration all correct **DM1** correct application of limits (must be using *their* 3 from (ii) and 0) = 24.7 or 24.8 A1

Page 8	Mark Scheme		Syllabus Paper
	Cambridge IGCSE – May/June	0606 13	
(b)	$(\sec^2 3y - 1) - 2\sec 3y - 2 = 0$	M1	use of the correct identity
	$\sec^2 3y - 2\sec 3y - 3 = 0$	M1	attempt to obtain a 3 term quadratic
	$(\sec 3y + 1)(\sec 3y - 3) = 0$		equation in sec $3y$ and attempt to sol
	leading to $\cos 3y = -1$, $\cos 3y = \frac{1}{3}$	M1	dealing with sec and 3 <i>y</i> correctly
	$3y = 180^{\circ}, 540^{\circ}$ $3y = 70.5^{\circ}, 289.5^{\circ}, 430.5^{\circ}$	A1,A1	A1 for a correct pair, A1 for a secon
	y = 60°, 180°, 23.5°, 96.5°, 143.5°	A1	correct pair, A1 for correct 5 th solution and no other within the range
	Alternative 1:		
	$\sec^2 3y - 2\sec 3y - 3 = 0$	M1	use of the correct identity
	leading to $3\cos^2 3y + 2\cos 3y - 1$	M1	attempt to obtain a quadratic equation
	$(3\cos y - 1)(\cos y + 1) = 0$	M1	in cos 3 <i>y</i> and attempt to solve dealing with 3 <i>y</i> correctly
			A marks as above
	Alternative 2:		
	$\frac{\sin^2 y}{\cos^2 y} - \frac{2}{\cos y} - 2 = 0$	M1	use of the correct identity,
			$\tan y = \frac{\sin y}{\cos y}$ and $\sec y = \frac{1}{\cos y}$, the
	$(1 - \cos^2 x) - 2\cos x - 2\cos^2 x = 0$		
			as before
(c)	$z - \frac{\pi}{3} = \frac{\pi}{3}, \frac{4\pi}{3}$	M1	correct order of operations
	$z = \frac{2\pi}{3}, \frac{5\pi}{3}$ or 2.09 or 2.1, 5.24	A1,A1	A1 for a correct solution
	3 3		A1 for a second correct solution and no other within the range
	332. Satpre	p.c0.	

MARK SCHEME for the March 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE[®] components.

Page 2	Mark Scheme		Syllabu	s Paper	
	Cambridge IGCSE – March 2	015	0606	12	
1 (i)	Members who play football or cricket , or both	B1			
(ii)	Members who do not play tennis	B 1			
(iii)	There are no members who play both football and tennis	B1			
(iv)	There are 10 members who play both cricket and tennis.	B1			
2	$kx - 3 = 2x^{2} - 3x + k$ $2x^{2} - x(k+3) + (k+3) = 0$ Using $b^{2} - 4ac$,	M1	for attempt to obtain a 3 term quadratic equation in terms of x for use of $b^2 - 4ac$ for attempt to solve quadratic equation, dependent on both previous M marks for both critical values for correct range		
	Using $b^{2} - 4ac$, $(k+3)^{2} - (4 \times 2 \times (k+3)) (<0)$ (k+3)(k-5) (<0)	DM1 DM1			
	Critical values $k = -3, 5$ so $-3 < k < 5$	A1 A1			
3 (i)		B1 B1 B1	for shape, must touch the correct quadrant for y intercept for x intercept	n the <i>x</i> -axis in	
(ii)	$4-5x = \pm 9$ or $(4-5x)^2 = 81$	M1	for attempt to obtain 2 solutions, must be a complete method		
	leading to $x = -1$, $x = \frac{13}{5}$	A1, A1	A1 for each		
4 (i)	$729 + 2916x + 4860x^2$	B1,B1 B1	B1 for each correct t	erm	
(ii)	$2 \times their 4860 - their 2916 = 6804$	M1 A1	for attempt at 2 term shown	s, must be as	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

5 (i)	gradient = 4 Using either (2, 1) or (3, 5), $c = -7$ $e^{y} = 4x + c$	B1 M1	for gradient, seen or implied for attempt at straight line equation to obtain a value for c
	so $y = \ln(4x - 7)$	M1,A1	for correct method to deal with e^y
	Alternative method: y=1, $r=2$		
	$\frac{y-1}{5-1} = \frac{x-2}{3-2}$ or equivalent	M1	for attempt at straight line equation using both points
		A1	allow correct unsimplified for correct method to deal with e^{y}
	$e^{y} = 4x - 7$ so $y = \ln(4x - 7)$	M1 A1	for correct method to dear with e
(ii)	$x > \frac{7}{4}$	B1ft	ft on <i>their</i> $4x - 7$
(iii)	$\ln 6 = \ln(4x - 7)$		
	so $x = \frac{13}{4}$	B1ft	ft on their $4x - 7$
6 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x(2\sec^2 2x) - \tan 2x}{x^2}$	M1	for attempt to differentiate a
	$dx \qquad x^2$	A2,1,0	quotient (or product) -1 each error
	Or $\frac{dy}{dx} = x^{-1} (2 \sec^2 2x) + (-x^{-2}) \tan 2x$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(ii)	When $x = \frac{\pi}{8}$, $y = \frac{8}{\pi}$ (2.546)	B1	for <i>y</i> -coordinate (allow 2.55)
	When $x = \frac{\pi}{8}$, $\frac{dy}{dx} = \frac{\frac{\pi}{2} - 1}{\pi^2}$		
	$\frac{8}{64}$ $\frac{\pi^2}{64}$ Satores		
	$=\frac{32}{\pi}-\frac{64}{\pi^2}$ (3.701)		
	Equation of the normal:		
	$y - \frac{8}{\pi} = -\frac{\pi^2}{32(\pi - 2)} \left(x - \frac{\pi}{8}\right)$	M1	for an attempt at the normal, must be working with a perpendicular
	y = -0.27x + 2.65 (allow 2.66)	A1	gradient allow in unsimplified form in terms of π or simplified decimal form

Page 4	Mark Scheme		Syllabus Paper	
	Cambridge IGCSE – March 2	0606 12		
7 (i)	$p\left(\frac{1}{2}\right):\frac{a}{8}+\frac{b}{4}-\frac{3}{2}-4=0$ Simplifies to $a+2b=44$	M1	for correct use of $x = \frac{1}{2}$	
	p(-2):-8a+4b+6-4 = -10	M1	for correct use of $x = -2$	
	Simplifies to $2a - b = 3$ oe	DM1	for solution of equations	
	Leads to $a=10, b=17$	A1	for both, be careful as AG for <i>a</i> , allow verification	
(ii)	$p(x) = 10x^3 + 17x^2 - 3x - 4$	B2,1,0	-1 each error	
	$= (2x-1)(5x^2+11x+4)$			
(iii)	$x = \frac{1}{2}$	B1		
	$x = \frac{-11 \pm \sqrt{41}}{10}$	B1, B1		
8 (a) (i)	Range $0 \le y \le 1$	B1		
(ii)	Any suitable domain to give a one-one function	B1	e.g. $0 \le x \le \frac{\pi}{4}$	
(b) (i)	$y = 2 + 4 \ln x \text{oe}$ $\ln x = \frac{y - 2}{4} \text{oe}$	M1	for a complete method to find the inverse	
	$g^{-1}(x) = e^{\frac{x-2}{4}}$	A1	must be in the correct form	
	Domain $x \in$	B1	must be in the contect form	
	Range $y > 0$	B1		
(ii)	$g(x^2+4)=10$	M1	for correct order	
(11)	$2 + 4 \ln \left(\frac{x^2}{x^2} + 4 \right) = 10$	0'		
	leading to $x = 1.84$ only	DM1 A1	for attempt to solve for one solution only	
		AI	for one solution only	
	Alternative method: $1(2) = \frac{1}{2} + \frac{1}{2}$	N/1		
	$h(x) = x^{2} + 4 = g^{-1}(10)$	M1	for correct order	
	$g^{-1}(10) = e^2$, so $x^2 + 4 = e^2$ leading to $x = 1.84$ only	DM1 A1	for attempt to solve for one solution only	
	$\lambda = 1.04$ only	AI		
(iii)	$\frac{4}{x} = 2x$	B 1	for given equation, allow in this form	
	$x^2 = 2$	M1	for attempt to solve, must be using derivatives	
	$x = \sqrt{2}$	A1	for one solution only, allow 1.41 or better.	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

	riangular face
Volume of prism = $\frac{\sqrt{3}x^2}{4} \times y$ M1 for attempt a	at volume <i>their</i> area $\times y$
$\frac{\sqrt{3}x^2}{4} \times y = 200\sqrt{3}$	
	elationship between x
$A = 2 \times \frac{\sqrt{3x}}{4} + 2xy$ M1 for a correct	t attempt to obtain using <i>their</i> area of
leading to $A = \frac{\sqrt{3}x^2}{2} + \frac{1600}{x}$ A1 triangular fails for eliminating given answer	ing y correctly to obtain
(ii) $\frac{dA}{dx} = \sqrt{3}x - \frac{1600}{x^2}$ M1 for attempt t	to differentiate
When $\frac{dA}{dx} = 0$, $x^3 = \frac{1600}{\sqrt{3}}$ M1 for equating to solve	$\frac{dA}{dx}$ to 0 and attempt
x = 9.74 so $A = 246$ A1 for correct x A1 for correct A	
	at second derivative and
so the value is a minimum A1ft ft for a correct completely of	or alternate methods ect conclusion from correct work, follow <i>their</i> positive <i>x</i> value.
10 (i) $\tan \theta = \frac{1+2\sqrt{5}}{6+3\sqrt{5}} \times \frac{6-3\sqrt{5}}{6-3\sqrt{5}}$ M1 for attempt a rationalisation	at $\cot \theta$ together with
$-\frac{6-3\sqrt{5}+12\sqrt{5}-30}{\text{Must be con}}$	winced that a calculator
$= \frac{36-45}{36-45}$ $= \frac{8}{3} - \sqrt{5}$ A1, A1 A1 A1 A1 A1 A1 For each	
	to use the correct
$\frac{34}{9} - \frac{1000}{3} + 5 + 1 = \csc^2 \theta$ Pythagoras' <i>their</i> answer	winced that a calculator
so $\csc^2 \theta = \frac{118}{9} - \frac{16\sqrt{5}}{3}$ A1, A1 A1 for each	term
Alternate solutions are acceptable	

Page 6	Mark Scheme	Syllabus Paper	
	Cambridge IGCSE – March 2	015	0606 12
11 (a) (i)	LHS = $\frac{\frac{1}{\sin y}}{\frac{\cos y}{\sin y} + \frac{\sin y}{\cos y}}$	M1	for dealing with cosec, cot and tar in terms of sin and cos
	$=\frac{\frac{1}{\sin y}}{\frac{\cos^2 y + \sin^2 y}{\sin y \cos y}}$	M1	for use of $\sin^2 y + \cos^2 y = 1$
	$= \frac{1}{\sin y} \times \sin y \cos y$ $= \cos y$	A1	for correct simplification to get the required result.
(ii)	$\cos 3z = 0.5$ $3z = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}$	M1	for use of (i) and correct attempt to deal with multiple angle
	$z = \frac{\pi}{9}, \ \frac{5\pi}{9}, \ \frac{7\pi}{9}$	A1, A1	A1 for each 'pair' of solutions
(b)	$2\sin x + 8(1 - \sin^2 x) = 5$ 8 sin ² x - 2 sin x - 3 = 0	M1	for use of correct identity
	$sin x - 2 sin x - 5 = 0$ $(4 sin x - 3)(2 sin x + 1) = 0$ $sin x = \frac{3}{4}, \qquad sin x = -\frac{1}{2}$ $x = 48.6^{\circ}, 131.4^{\circ} \qquad 210^{\circ}, 330^{\circ}$	M1	for attempt to solve quadratic equation
	$x = 48.6^{\circ}, 131.4^{\circ}$ 210°, 330°	A1, A1	A1 for each pair of solutions
	23 N. Satpret	.00.	

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

F	Page 2	Mark Scheme	Syllabus	Paper		
		Cambridge IGCSE – October/Noven	1ber 2014	1	0606	11
1		$\frac{dy}{dx} = 2x - \frac{16}{x^2}$ When $\frac{dy}{dx} = 0$,	M1 A1 DM1	all correct for equatin attempt to	$\frac{dy}{dx} \text{ to zero}$ solve for <i>x</i> .	and an
2	(a)	x = 2, y = 12	A1 B1	A1 for bot	h, but no extr	a solutions
			B1	and finishi	alue of 2, star ing at (180°,	
	(b) (i)	4	B1 B1	for min va must be po		
	(ii)	$60^{\circ} \text{ or } \frac{\pi}{3} \text{ or } 1.05 \text{ rad}$	B1			
3	(i)	$y = 4(x+3)^{\frac{1}{2}}(+c)$ $10 = 4\left(9^{\frac{1}{2}}\right) + c$ c = -2 $y = 4(x+3)^{\frac{1}{2}} - 2$	M1, A1 M1 A1	for a corre must be fr integrate	$(+3)^{\frac{1}{2}}$, A1 for ect attempt to om an attempt for $c = -2$	find <i>c</i> , but
	(ii)	$6 = 4(x+3)^{\frac{1}{2}} - 2$ x = 1	A1 ft		titution into <i>t</i> to obtain x; m	

F	Page 3	Mark Scheme Cambridge IGCSE – October/Noven	Syllabus Paper 0606 11	
4	(i)	$5y^2 - 7y + 2 = 0$	B1, B1	B1 for 5, B1 for –7
	(ii)	(5y-2)(y-1) = 0	M1	for solution of quadratic equation from (i)
		$y = \frac{2}{5}, x = \frac{\ln 0.4}{\ln 5}$	M1	for use of logarithms to solve equation of the type $5^x = k$
		x = -0.569	A1	must be evaluated to 3sf or better
		y = 1, x = 0	B1	
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - \frac{1}{x}$	M1	for attempt to differentiate
		When $x = 1$, $y = 1$ and $\frac{dy}{dx} = 2$	B1	for $y = 1$
		Tangent: $y - 1 = 2(x - 1)$	DM1	for attempt to find equation of tangent
		(y=2x-1)	A1	allow equation unsimplified
	(ii)	Mid-point (5, 9)	B1	for midpoint from given coordinates
		9 = 2(5) - 1	B1	for checking the mid-point lies on tangent
		Alternative Method: Tangent equation $y = 2x - 1$		
		Equation of line joining (-2, 16) and (12, 2) y = -x + 14		
		Solve simultaneously $x = 5, y = 9$	B1	for a complete method to find the coordinates of the point of
		Mid-point (5, 9)	B 1	intersection for midpoint from given coordinates
6	(i)	$(2+px)^6 = 64+192px+240p^2x^2\dots$	B1	for $240p^2$ or $240p^2x^2$ or ${}^{6}C_2 \times 2^4 \times (px)^2$ or ${}^{6}C_2 \times 2^4 \times p^2$
				or ${}^6C_2 \times 2^4 \times p^2 x^2$
		$240p^2 = 60$	M1	for equating <i>their</i> term in x^2 to 60 and attempt to solve
		$p = \frac{1}{2}$	A1	
	(ii)	$(3-x)(64+192px+240p^2x^2)$	B1 ft	ft for 192 <i>p</i> , 96 or $192 \times their p$
		Coefficient of x^2 is $180 - 192p$ = 84	M1 A1	for 180 – 192 <i>p</i>

	Page 4	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – October/Noven	nber 2014	0606 11
7	(i)	$\mathbf{A}^{-1} = \frac{1}{5ab} \begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$	B1, B1	B1 for $\frac{1}{5ab}$, B1 for $\begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$
	(ii)	$\mathbf{X} = \mathbf{B}\mathbf{A}^{-1}$	M1	for post-multiplication by inverse matrix
		$= \begin{pmatrix} -a & b \\ 2a & 2b \end{pmatrix} \begin{pmatrix} \frac{1}{5a} & -\frac{2}{5a} \\ \frac{1}{5b} & \frac{3}{5b} \end{pmatrix}$	DM1	for correct attempt at matrix multiplication, needs at least one term correct for their BA ⁻¹ (allow unsimplified)
		$= \begin{pmatrix} 0 & 1\\ \frac{4}{5} & \frac{2}{5} \end{pmatrix}$	A1 A1	for each correct pair of elements, must be simplified
8	(i)	$\overline{AB} = \begin{pmatrix} 12\\16 \end{pmatrix}, \text{ at } P, \ x = -2 + \frac{1}{4}(12)$ so at $P, x = 1$	B1	for convincing argument for $x = 1$
		$y = 3 + \frac{1}{4}(16), y = 7$	B 1	for $y = 7$
	(ii)	Gradient of $AB = \frac{16}{12}$, so perp gradient $= -\frac{3}{4}$	M1	for finding gradient of perpendicular
		Perp line: $y - 7 = -\frac{3}{4}(x - 1)$	M1	for equation of perpendicular through their <i>P</i>
		(3x+4y=31)	A1	Allow unsimplified
	(iii)	$Q\left(0,\frac{31}{4}\right)$	B1 ft M1	ft on their perpendicular line, may be implied for any valid method of finding the area of the correct triangle, allow use of <i>their Q</i> ; must be in the form
		Area $AQB = 12.5$	A1	(0,q).

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	11

9	(i)	$\log y = \log y$	ga + x lo	og <i>b</i>					B1	for the statement, may be seen or
		x	2	2.5	3	3.5	4			implied in later work,
		lg y	1.27	1.47	1.67	1.87	2.07	-		
			2	2.5	3	3.5	4	-		
		lny	2.93	3.39	3.84	4.31	4.76			
		logy							M1	
									M1	for attempt to draw graph of x against log y
		, -					r		A2,1,0	-1 each error in points plotted
	(ii)	Gradient = $\log b$ $\lg b = 0.4$ or $\ln b = 0.92$					DM1	for attempt to find gradient and equate it to log <i>b</i> , dependent on M1		
		b = 2.5 (allow 2.4 to 2.6)					A1	in (i)		
		Intercept = $\lg a = 0.4^{\circ}$		a = 1.10					DM1	for attempt to equate <i>y</i> -intercept to log <i>a</i> or use <i>their</i> equation with <i>their</i> gradient and a point on the
		a = 3 (allo	ow 2.8 to	o 3.2)					A1	line, dependent on M1 in (i)
		Alternativ Simultane points that used.	ous equ	ations the plo	tted stra	aight lir	ne are		DM1 DM1	for a pair of equations using points on the line, dependent on M1 in (i) for solution of these equations, dependent on M1 in (i)
		a = 3 (allowing b) (allowing b) (allowing b) (allowing b) (allowing b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		o 3.2) to 2.6)		sat	pre	96	A1 A1	A1 for each

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	11

10 (a) (i	360	B 1	
(ii)		B 1	
(iii)	36	B 1	
(b) (i)	${}^{8}C_{5} \times {}^{12}C_{5}$ 56 × 792 = 44352	B1, B1	B1 for each, allow unevaluated with no extra terms
	56 × 792 = 44352	B 1	Final answer must be evaluated and from multiplication
(ii)	4 places are accounted for Gender no longer 'important'	M1	for realising that 4 places are accounted or that gender is no longer important
	Need ${}^{16}C_6 = 8008$	A1	for 8008
	Alternative Method		
	$\binom{{}^{6}C_{6} \times {}^{10}C_{0}}{\binom{{}^{6}C_{5} \times {}^{10}C_{1}}{\dots} \binom{{}^{6}C_{0} \times {}^{10}C_{6}}{\binom{{}^{6}C_{0} \times {}^{10}C_{6}}{\binom{{}^{6}C_{0} \times {}^{10}C_{6}}{\binom{{}^{6}C_{0} \times {}^{10}C_{6}}}$	M1	for at least 5 of the 7 cases, allow
	$(c_6^{\circ} - c_0^{\circ})^+ (c_5^{\circ} - c_1^{\circ})^+ (c_6^{\circ} - c_6^{\circ})^+ (c_6^{\circ} - c_6^{\circ})$	A1	unsimplified
	1+00+075+2400+5150+1512+210-8008		
11 (a)	$2\cos 3x - \frac{\cos 3x}{\sin 3x} = 0$	M1	for use of $\cot 3x = \frac{\cos 3x}{\sin 3x}$, may be
	$\cos 3x \left(2 - \frac{1}{\sin 3x}\right) = 0$		implied
	Leading to $\cos 3x = 0$, $3x = 90^{\circ}$, 270°	DM1	for attempt to solve $\cos 3x = 0$ correctly from correct factorisation
	$x = 30^\circ, 90^\circ$	A1	to obtain <i>x</i> A1 for both, no excess solutions in the range
	and $\sin 3x = \frac{1}{2}, \ 3x = 30^{\circ}, \ 150^{\circ}$	DM1	for attempt to solve $\sin 3x = \frac{1}{2}$
	$x = 10^{\circ}, 50^{\circ}$	A1	correctly to obtain <i>x</i> A1 for both, condone excess solutions
(b)	$\cos\left(y + \frac{\pi}{2}\right) = -\frac{1}{2}$ $y + \frac{\pi}{2} = \frac{2\pi}{3}, \frac{4\pi}{3}$	M1	for dealing with sec $\left(y + \frac{\pi}{2}\right)$ correctly
		DM1	for correct order of operations, must not mix degrees and radians
	so $y = \frac{\pi}{6}, \frac{5\pi}{6}$ (0.524, 2.62)	A1, A1	must not mix degrees and radians
			1

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	11

12	(i)	$\overrightarrow{AQ} = \lambda \mathbf{b} - \mathbf{a}$	B1	
	(ii)	$\overrightarrow{BP} = \mu \mathbf{a} - \mathbf{b}$	B1	
	(iii)	$\overline{OR} = \mathbf{a} + \frac{1}{3} (\lambda \mathbf{b} - \mathbf{a}) \text{ or } \lambda \mathbf{b} - \frac{2}{3} (\lambda \mathbf{b} - \mathbf{a})$	M1	for $\mathbf{a} + \frac{1}{3}$ their (i)
		$=\frac{2}{3}\mathbf{a}+\frac{1}{3}\lambda\mathbf{b}$	A1	Allow unsimplified
	(iv)	$\overrightarrow{OR} = \mathbf{b} + \frac{7}{8} (\mu \mathbf{a} - \mathbf{b}) \text{ or } \mu \mathbf{a} - \frac{1}{8} (\mu \mathbf{a} - \mathbf{b})$	M1	for $\mathbf{b} + \frac{7}{8}$ their (ii)
		$=\frac{1}{8}\mathbf{b}+\frac{7}{8}\mu\mathbf{a}$	A1	Allow unsimplified
	(v)	$\frac{2}{3}\mathbf{a} + \frac{1}{3}\lambda\mathbf{b} = \frac{1}{8}\mathbf{b} + \frac{7}{8}\mu\mathbf{a}$	M1	for equating (iii) and (iv) and then equating like vectors
		$\frac{2}{3} = \frac{7}{8}\mu, \mu = \frac{16}{21}$ Allow 0.762	A1	
		$\frac{1}{3}\lambda = \frac{1}{8}, \lambda = \frac{3}{8} \text{Allow 0.375}$	A1	

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

F	Page 2	Mark Scheme	Syllabus	Paper		
		Cambridge IGCSE – October/Noven	1ber 2014		0606	12
1		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - \frac{16}{x^2}$	M1 A1	all correct		
		When $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$,	DM1		$\frac{dy}{dx} \text{ to zero}$ solve for <i>x</i> .	and an
		<i>x</i> = 2, <i>y</i> = 12	A1	A1 for bot	h, but no extr	a solutions
2	(a)	2	B1	for correct	shape	
			B1		alue of 2, star ing at (180°,	
		-4	B1	for min va	lue of –4	
	(b) (i)	4	B1	must be po	ositive	
	(ii)	$60^{\circ} \text{ or } \frac{\pi}{3} \text{ or } 1.05 \text{ rad}$	B1			
3	(i)	$y = 4(x+3)^{\frac{1}{2}}(+c)$	M1, A1	M1 for $(x$	$(+3)^{\frac{1}{2}}$, A1 for	$(x+3)^{\frac{1}{2}}$
		$10 = 4\left(9^{\frac{1}{2}}\right) + c$ c = -2 $v = 4(r+3)^{\frac{1}{2}} - 2$	M1		ect attempt to om an attemp	
		$y = 1(x + 3)^2 - 2$	A1	Allow A1	for $c = -2$	
	(ii)	$6 = 4(x+3)^{\frac{1}{2}} - 2$ x = 1	A1 ft		titution into <i>t</i> to obtain <i>x</i> ; m	

I	Page 3	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – October/Noven	1ber 2014	0606 12
4	(i)	$5y^2 - 7y + 2 = 0$	B1, B1	B1 for 5, B1 for –7
	(ii)	(5y-2)(y-1) = 0	M1	for solution of quadratic equation from (i)
		$y = \frac{2}{5}, x = \frac{\ln 0.4}{\ln 5}$	M1	for use of logarithms to solve equation of the type $5^x = k$
		x = -0.569	A1	must be evaluated to 3sf or better
		y = 1, x = 0	B1	
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - \frac{1}{x}$	M1	for attempt to differentiate
		When $x = 1$, $y = 1$ and $\frac{dy}{dx} = 2$	B1	for $y = 1$
		Tangent: $y - 1 = 2(x - 1)$	DM1	for attempt to find equation of tangent
		(y=2x-1)	A1	allow equation unsimplified
	(ii)	Mid-point (5, 9)	B1	for midpoint from given coordinates
		9 = 2(5) - 1	B1	for checking the mid-point lies on tangent
		Alternative Method: Tangent equation $y = 2x - 1$ Equation of line joining (-2, 16) and (12, 2)		
		y = -x + 14 Solve simultaneously $x = 5, y = 9$	B1	for a complete method to find the coordinates of the point of
		Mid-point (5, 9)	B1	intersection for midpoint from given coordinates
6	(i)	$(2+px)^6 = 64+192px+240p^2x^2$	B1	for $240p^2$ or $240p^2x^2$ or ${}^{6}C_2 \times 2^4 \times (px)^2$ or ${}^{6}C_2 \times 2^4 \times p^2$ or ${}^{6}C_2 \times 2^4 \times p^2x^2$
		$240p^2 = 60$	M1	for equating <i>their</i> term in x^2 to 60 and attempt to solve
		$p = \frac{1}{2}$	A1	and attempt to solve
	(ii)	$(3-x)(64+192px+240p^2x^2)$	B1 ft	ft for 192 <i>p</i> , 96 or $192 \times their p$
		Coefficient of x^2 is $180 - 192p$ = 84	M1 A1	for 180 – 192 <i>p</i>

F	Page 4	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – October/Noven	nber 2014	0606 12
7	(i)	$\mathbf{A}^{-1} = \frac{1}{5ab} \begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$	B1, B1	B1 for $\frac{1}{5ab}$, B1 for $\begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$
	(ii)	$\mathbf{X} = \mathbf{B}\mathbf{A}^{-1}$	M1	for post-multiplication by inverse matrix
		$= \begin{pmatrix} -a & b \\ 2a & 2b \end{pmatrix} \begin{pmatrix} \frac{1}{5a} & -\frac{2}{5a} \\ \frac{1}{5b} & \frac{3}{5b} \end{pmatrix}$	DM1	for correct attempt at matrix multiplication, needs at least one term correct for their BA ⁻¹ (allow unsimplified)
		$= \begin{pmatrix} 0 & 1\\ \frac{4}{5} & \frac{2}{5} \end{pmatrix}$	A1 A1	for each correct pair of elements, must be simplified
8	(i)	$\overrightarrow{AB} = \begin{pmatrix} 12\\16 \end{pmatrix}, \text{ at } P, \ x = -2 + \frac{1}{4}(12)$ so at $P, x = 1$	B1	for convincing argument for $x = 1$
		$y = 3 + \frac{1}{4}(16), y = 7$	B 1	for $y = 7$
	(ii)	Gradient of $AB = \frac{16}{12}$, so perp gradient $= -\frac{3}{4}$	M1	for finding gradient of perpendicular
		Perp line: $y - 7 = -\frac{3}{4}(x - 1)$	M1	for equation of perpendicular through their <i>P</i>
		(3x+4y=31)	A1	Allow unsimplified
	(iii)	$Q\left(0,\frac{31}{4}\right)$	B1 ft M1	ft on their perpendicular line, may be implied for any valid method of finding the
				area of the correct triangle, allow use of <i>their Q</i> ; must be in the form (0,q).
		Area $AQB = 12.5$	A1	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	12

9	(i)	$\log y = \log y$	ga + x le	ogb					B1	for the statement, may be seen or
	()		2	2.5	3	3.5	4]		implied in later work,
		lg y	1.27	1.47	1.67	1.87	2.07			
			2	2.5	3	3.5	4	-		
		lny	2.93	3.39	3.84	4.31	4.76			
		logy							M1	for attempt to draw graph of x against log y
									A2,1,0	-1 each error in points plotted
	(ii)	Gradient = $\lg b = 0.4$		= 0.92				R	DM1	for attempt to find gradient and equate it to log <i>b</i> , dependent on M1
		b = 2.5 (a)	low 2.4	to 2.6)					A1	in (i)
		Intercept = $\lg a = 0.4$		a = 1.10					DM1	for attempt to equate <i>y</i> -intercept to log <i>a</i> or use <i>their</i> equation with
		a = 3 (allo	ow 2.8 t	o 3.2)					A1	<i>their</i> gradient and a point on the line, dependent on M1 in (i)
		Alternativ Simultane points that used.	ous equ	ations the plo	tted stra	aight lir	ne are		DM1	for a pair of equations using points on the line, dependent on M1 in (i)
		useu.							DM1	for solution of these equations, dependent on M1 in (i)
		a = 3 (allo b = 2.5 (al		o 3.2) to 2.6)		sat	pre	96	A1 A1	A1 for each

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	12

10	(a) (i)	360	B1	
	(ii)	60	B1	
	(iii)	36	B 1	
	(b) (i)	${}^{8}C_{5} \times {}^{12}C_{5}$	B1, B1	B1 for each, allow unevaluated with no extra terms
		56×792 = 44352	B1	Final answer must be evaluated and from multiplication
	(ii)	4 places are accounted for Gender no longer 'important'	M1	for realising that 4 places are accounted or that gender is no longer important
		Need ${}^{16}C_6 = 8008$	A1	for 8008
		Alternative Method		
		$({}^{6}C_{6} \times {}^{10}C_{0}) + ({}^{6}C_{5} \times {}^{10}C_{1}) ({}^{6}C_{0} \times {}^{10}C_{6})$	M1	for at least 5 of the 7 cases, allow
		1 + 60 + 675 + 2400 + 3150 + 1512 + 210 = 8008	A1	unsimplified
11	(a)	$2\cos 3x - \frac{\cos 3x}{\sin 3x} = 0$	M1	for use of $\cot 3x = \frac{\cos 3x}{\sin 3x}$, may be
		$\sin 3x$ $\cos 3x \left(2 - \frac{1}{\sin 3x}\right) = 0$		sin 3x sin 3x
		Leading to $\cos 3x = 0$, $3x = 90^{\circ}$, 270°	DM1	for attempt to solve $\cos 3x = 0$ correctly from correct factorisation
		$x = 30^\circ, 90^\circ$	A1	to obtain <i>x</i> A1 for both, no excess solutions in the range
		and $\sin 3x = \frac{1}{2}, \ 3x = 30^{\circ}, \ 150^{\circ}$	DM1	for attempt to solve $\sin 3x = \frac{1}{2}$
		- 4		correctly to obtain x
	(h)	$x = 10^\circ, 50^\circ$	A1	A1 for both, condone excess solutions
	(b)	$\cos\left(y + \frac{\pi}{2}\right) = -\frac{1}{2}$ $y + \frac{\pi}{2} = \frac{2\pi}{3}, \frac{4\pi}{3}$	M1	for dealing with sec $\left(y + \frac{\pi}{2}\right)$ correctly
			DM1	for correct order of operations, must not mix degrees and radians
		so $y = \frac{\pi}{6}, \frac{5\pi}{6}$ (0.524, 2.62)	A1, A1	
L				1]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	12

12	(i)	$\overrightarrow{AQ} = \lambda \mathbf{b} - \mathbf{a}$	B1	
	(ii)	$\overrightarrow{BP} = \mu \mathbf{a} - \mathbf{b}$	B1	
	(iii)	$\overline{OR} = \mathbf{a} + \frac{1}{3} (\lambda \mathbf{b} - \mathbf{a}) \text{ or } \lambda \mathbf{b} - \frac{2}{3} (\lambda \mathbf{b} - \mathbf{a})$	M1	for $\mathbf{a} + \frac{1}{3}$ their (i)
		$=\frac{2}{3}\mathbf{a}+\frac{1}{3}\lambda\mathbf{b}$	A1	Allow unsimplified
	(iv)	$\overrightarrow{OR} = \mathbf{b} + \frac{7}{8} (\mu \mathbf{a} - \mathbf{b}) \text{ or } \mu \mathbf{a} - \frac{1}{8} (\mu \mathbf{a} - \mathbf{b})$	M1	for $\mathbf{b} + \frac{7}{8}$ their (ii)
		$=\frac{1}{8}\mathbf{b}+\frac{7}{8}\mu\mathbf{a}$	A1	Allow unsimplified
	(v)	$\frac{2}{3}\mathbf{a} + \frac{1}{3}\lambda\mathbf{b} = \frac{1}{8}\mathbf{b} + \frac{7}{8}\mu\mathbf{a}$	M1	for equating (iii) and (iv) and then equating like vectors
		$\frac{2}{3} = \frac{7}{8}\mu, \mu = \frac{16}{21}$ Allow 0.762	A1	
		$\frac{1}{3}\lambda = \frac{1}{8}, \lambda = \frac{3}{8} \text{Allow 0.375}$	A1	

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	13

1		<i>a</i> = 3	B1	
		<i>b</i> = 2	B1	
		<i>c</i> = 4	B1	
2		$x^2 = 16$ or $y^2 - 4y + 3 = 0$	M1	for correct elimination of one variable and attempt to form a quadratic equation in x or y.
		$x = \pm 4$ y = 1, 3	A1 A1	
		Points (-4, 1) and (4, 3)		
		Line $AB = \sqrt{8^2 + 2^2}$	M1	for use of Pythagoras theorem
		$=\sqrt{68} \text{ or } 2\sqrt{17}$	A1	allow either form
3	(i)	n(A) = 2	B1	
		n(B) = 3	B 1	B0 for $n(2)$, $\{2\}$, $\{0\}$, \emptyset , $\{\}$ etc.
		$\mathbf{n}(C) = 0$	B1	
	(ii)	$A \cup B = \{-1, -2, -3, 3\}$	B 1	
	(iii)	$A \cap B = \{-2\}$	B1	
	(iv)	ξ , 'the universal set', R, 'real numbers', $\{x: x \in I\}$	B 1	
4	(a)	$\tan x = -\frac{5}{3}$	M1	Correct statement or $\tan x = -1.67$
		$x = 121.0^{\circ}, \ 301.0^{\circ}$	A1 A1ft	A1 for either correct solution ft from <i>their</i> first solution
	(b)	$\sin\left(3y+\frac{\pi}{4}\right) = \frac{1}{2}$	M1	for dealing correctly with cosec and attempt to solve subsequent equation
		$3y + \frac{\pi}{4} = \frac{\pi}{6}, \ \frac{5\pi}{6}, \ \frac{13\pi}{6}, \ \frac{17\pi}{6}$	A1	for $\frac{\pi}{6}$, $\frac{5\pi}{6}$, or $\frac{13\pi}{6}$, or $\frac{17\pi}{6}$
		$3y = -\frac{\pi}{12}, \frac{7\pi}{12}, \frac{23\pi}{12}, \frac{31\pi}{12}$	DM1	for correct order of operations
		$y = \frac{7\pi}{36}, \frac{23\pi}{36}, \frac{31\pi}{36}$ (0.611, 2.01 and 2.71)	A1, A1	A1 for one correct solution A1 for both the other correct solutions and no others in range.

Pa	age 3	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – October/Novem	ber 2014	0606 13
5	(a) (i)	$ \begin{pmatrix} 12 & 2 & 1 \\ 9 & 3 & 0 \\ 8 & 5 & 1 \\ 11 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0.4 \\ 0.45 \end{pmatrix} = \begin{pmatrix} 7.25 \\ 5.70 \\ 6.45 \\ 6.30 \end{pmatrix} $	M1	for correct compatible matrices in the correct order. Allow 1 error in each matrix. Allow if done in cents
		or $(0.5 0.4 0.45) \begin{pmatrix} 12 & 9 & 8 & 11 \\ 2 & 3 & 5 & 2 \\ 1 & 0 & 1 & 0 \end{pmatrix}$	DM1	for a correct method for multiplying their matrices to obtain an appropriate 4 by 1 or 1 by 4 matrix.
		=(7.25 5.70 6.45 6.30)	A2,1,0	A2 all correct or A1 3 correct elements.
	(ii)	25.70	B 1	Allow 25.7
	(b)	$\mathbf{Y} = \mathbf{X}^{-1} \text{ or } \mathbf{Y} = \mathbf{X}^{-1}\mathbf{I}$ $\mathbf{Y} = \frac{1}{22} \begin{pmatrix} 1 & -4 \\ 5 & 2 \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1}{22} & -\frac{4}{22} \\ \frac{5}{22} & \frac{2}{22} \end{pmatrix}$ Alternative method:	M1 A1 A1	for matrix algebra for $\frac{1}{22}$ $\begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
		$\begin{pmatrix} 2 & 4 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $2a + 4c = 1, \ 2b + 4d = 0$	M1	for a complete method using simultaneous equations
		-5a + c = 0, -5b + d = 1	A1	$a = \frac{1}{22}$ and $c = \frac{5}{22}$ or $b = -\frac{4}{22}$ and $d = \frac{2}{22}$
		leading to $=\frac{1}{22}\begin{pmatrix}1&-4\\5&2\end{pmatrix}$ oe	A1	for correct matrix

Page 4	Mark Scheme		Syllabus Paper
	Cambridge IGCSE – October/Novem	ber 2014	0606 13
		[T
6 (i)	$\cos 0.9 = \frac{6}{OC}$ or $\frac{OC}{\sin 0.9} = \frac{12}{\sin(\pi - 1.8)}$ $OC = \frac{6}{\cos 0.9} = 9.652$	M1	for correct use of cosine, sine rule, cosine rule or any other valid method
	or $OC = \frac{12\sin 0.9}{\sin(\pi - 1.8)} = 9.652$	A1	for manipulating correctly to OC = 9.652(35) Must have 4 th figure (or more) for rounding
(ii)	Perimeter = $(0.9 \times 12) + 9.652 + (12 - 9.652)$	B1 M1	for arc length for attempt to add the correct lengths
	= 22.8	A1	1011guild
(iii)	Area = $\left(\frac{1}{2} \times 12^2 \times 0.9\right) - \left(\frac{1}{2} \times 9.652^2 \sin(\pi - 1.8)\right)$	B1 B1	for area of sector, allow unsimplified for area of isosceles triangle $\frac{1}{2}(9.65(2))^2 \sin(\pi - 1.8)$ or $\frac{1}{2}(12 \times 6 \tan 0.9)$ or $\frac{1}{2}(12 \times 9.65(2) \times \sin 0.9)$, allow
	64.8 - 45.36 = 19.4 to 19.5	B1	unsimplified. for answer in range 19.4 to 19.5
	Alternative Method:		
	$\frac{1}{2}(12-9.652) \times 9.652 \times \sin 1.8$	B1	for area of triangle <i>ACB</i> , unsimplified
	$\frac{1}{2}12^{2}(0.9 - \sin 0.9)$ 11.04 + 8.40	B1	for area of segment, unsimplified
	11.04 + 8.40 Area =19.4 to 19.5	B 1	answer in range 19.4 to 19.5
7	$1 + 2\log_5 x = \log_5(18x - 9)$	B1, B1	B1 for dealing with '1', B1 for dealing with '2'
	$\log_5 5 + \log_5 x^2 = \log_5 (18x - 9)$	M1	for a correct use of addition or subtraction of logarithms
	$5x^{2} = 18x - 9$ (5x-3)(x-3) = 0	DM1	for elimination of logarithms to form a 3 term quadratic and for
	$x = \frac{3}{5}, 3$	A1	solution of quadratic for both x values

Page 5	Mark Scheme	Syllabus Paper	
	Cambridge IGCSE – October/Novem	ber 2014	0606 13
8 (i)	$\mathbf{f}'(x) = \left(x \times \frac{3x^2}{x^3}\right) + \left(\ln x^3\right)$	M1	for differentiation of a product
		B1	for differentiation of $\ln x^3$
	$= 3 + 3\ln x, = 3(1 + \ln x)$	A1	for simplification to gain <u>given</u> answer
	or $f(x) = 3x \ln x$	B 1	for use of $\ln x^3 = 3 \ln x$
	$\mathbf{f}'(x) = \left(3x \times \frac{1}{x}\right) + 3\ln x \;,$	M1	for differentiation of a product
	$=3(1+\ln x)$	A1	for simplification to gain <u>given</u> answer
(ii)	$\int 3(1+\ln x) dx = x \ln x^3 \text{or} 3x \ln x$	M1	for realising that differentiation is the reverse of integration and using
	$\int 1 + \ln x dx = \frac{1}{3} x \ln x^3 \text{or} x \ln x$	A1	(i)
(iii)	$x \ln x - \int 1 dx$ or $\left[\frac{1}{3}x \ln x^3\right] - \int 1 dx$	DM1	for using answer to (ii) and
			subtracting $\int 1 dx$ dependent on M
			mark in (ii)
	$[x \ln x - x]_{1}^{2}$ or $\left[\frac{1}{3}x \ln x^{3} - x\right]_{1}^{2}$	DM1	for correct application of limits
	$= 2 \ln 2 - 2 + 1 = -1 + \ln 4$	A1	from correct working
9 (a)	$5^p = 625$, so $p = 4$	B1	
	${}^{4}C_{1}5^{p-1}(-q) = -1500$	M1	<i>their p</i> substituted in ${}^{p}C_{1}5^{p-1}(-q)$
			or in ${}^{p}C_{1}5^{p-1}(-qx)$ unsimplified
	$4 \times 125(-q) = -1500$ q = 3	A1	
	${}^{4}C_{2}5^{p-2}q^{2} = r$	M1	<i>their p</i> and <i>q</i> substituted in ${}^{p}C_{2}5^{p-2}(-q)^{2}$ or ${}^{p}C_{2}5^{p-2}(-qx)^{2}$ unsimplified
	<i>r</i> =1350	A1	
(b)	$^{12}C_3(2x)^9\left(\frac{1}{4x^3}\right)^3$	M1	for identifying correct term
		DM1	for attempt to evaluate correct expression
	Term is 1760	A1	must be evaluated

Page 6	Mark Scheme	Syllabus Paper	
	Cambridge IGCSE – October/Novem	ber 2014	0606 13
10 (a)	$\frac{5^x}{5^{2(3y-2)}} = 1$ or $\frac{3^x}{3^{3(y-1)}} = 3^4$ oe	M1	for obtaining one correct equation in powers of 5, 3, 25, 27 or 81
	x = 6y - 4	A1	for $x = 6y - 4$ oe linear equation
	x = 3y + 1	A1	for $x = 3y + 1$ oe linear equation
	Leads to $x = 6$, $y = \frac{5}{3}$	M1 A1	for attempt to solve linear simultaneous equations which have been obtained correctly for both.
(b)	Using the cosine rule: $(1+2\sqrt{3})^2 = (2+\sqrt{3})^2 + 2^2 - 4(2+\sqrt{3})\cos A$	M1	for correct substitution in cosine rule, may use in form of $\cos A = \dots$
	$\cos A = \frac{(13+4\sqrt{3})-(7+4\sqrt{3})-4}{-4(2+\sqrt{3})} \text{ oe}$		for attempt to make cosA subject and simplify
	$\cos A = \frac{-1}{2(2+\sqrt{3})} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$	DM1	for rationalisation.
	$\cos A = -1 + \frac{\sqrt{3}}{2}$	A1	

Page 7	Mark Scheme			Syllabus	Paper
	Cambridge IGCSE – October/Novem	ber 2014		13	
	*				
11 (i)	$\frac{dy}{dx} = (x+5)2(x-1) + (x-1)^2$	M1 A1	for differentiation of a product allow unsimplified correct		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (x-1)(3x+9)$				
	When $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	DM1		ng to zero an	d solution of
	x = 1	A1	quadratic		
	x = -3 Alternative method:	A1			
	$y = x^3 + 3x^2 - 9x + 5$	M1		tion of brack tion of each	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 6x - 9$	A1			
	When $\frac{dy}{dx} = 0$	DM1	for equatir 3 term qua		d solution of
	<i>x</i> =1	A1	from corre	ect quadratic	equation
	x = -3	A1	from corre	ect quadratic	equation
(ii)	$\int x^{3} + 3x^{2} - 9x + 5dx$ = $\frac{x^{4}}{4} + x^{3} - \frac{9x^{2}}{2} + 5x (+c)$	M1		t attempt to o 4 term cubi	
	$=\frac{x^{2}}{4} + x^{3} - \frac{9x^{2}}{2} + 5x \ (+c)$	A2,1,0		orrect terms 3 correct ter	
(iii)	$\left[\frac{x^4}{4} + x^3 - \frac{9x^2}{2} + 5x\right]_{-5}^{1}$	M1	for correct and -5 for	t substitutior <i>their</i> (ii)	n of limits 1
	$= \left(\frac{1}{4} + 1 - \frac{9}{2} + 5\right) - \left(\frac{625}{4} - 125 - \frac{225}{2} - 25\right)$ $= 108$	A1			
(iv)	When $x = -3$, $y = 32$	M1		ng that the <i>y</i> - num point is	-coordinate of
	<i>k</i> > 32	A1		ium point is	

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	11

1	$LHS = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta}$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$=\frac{\sin\theta(1+\sin\theta)+\cos^2\theta}{\cos\theta(1+\sin\theta)}$	M1	M1 for attempt to obtain a single fraction
	$=\frac{1+\sin\theta}{\cos\theta(1+\sin\theta)}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$
	$=\frac{1}{\cos\theta} \text{ leading to } \sec\theta$	A1	A1 for 'finishing off'
	Alternative solution: LHS = $\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta (1 - \sin \theta)}{(1 + \sin \theta)(1 - \sin \theta)}$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$=\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta(1-\sin\theta)}{\cos^2\theta}$	M1	M1 for multiplication by $(1 - \sin \theta)$
	$=\frac{\sin\theta}{\cos\theta}+\frac{(1-\sin\theta)}{\cos\theta}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$
	$=\frac{1}{\cos\theta} \text{ leading to } \sec\theta$	A1	A1 for 'finishing off'
	Alternative solution: LHS = $\frac{\tan \theta (1 + \sin \theta) + \cos \theta}{1 + \sin \theta}$ = $\frac{\sin \theta}{\cos \theta} + \frac{\sin^2}{\cos \theta} + \cos \theta$	M1	M1 for attempt to obtain a single fraction
	$=\frac{\cos\theta + \cos\theta}{1 + \sin\theta}$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$=\frac{\sin\theta+\sin^2\theta+\cos^2\theta}{\cos\theta(1+\sin\theta)}$		
	$=\frac{1+\sin\theta}{\cos\theta(1+\sin\theta)}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$
	$=\frac{1}{\cos\theta} \text{ leading to } \sec\theta$	A1	A1 for 'finishing off'

	Page 3	Mark Scheme		Syllabus Paper
		IGCSE – May/June 2014		0606 11
2	(i)	$ \mathbf{a} = \sqrt{4^2 + 3^2} = 5$ $ \mathbf{b} + \mathbf{c} = \sqrt{(-3)^2 + 4^2} = 5$	M1	M1 for finding the modulus of either a or b + c
			A1	A1 for completion
	(ii)	$\lambda \binom{4}{3} + \mu \binom{2}{2} = 7\binom{-5}{2}$		
		$4\lambda + 2\mu = -35$ and $3\lambda + 2\mu = 14$	M1	M1 for equating like vectors and obtaining 2 linear equations
			DM1	DM1 for solution of simultaneous equations
		leading to $\lambda = -49$, $\mu = 80.5$	A1	A1 for both
3	(a)		I	1
	(b) (i)			

(ii)

	Page 4		Mark Scheme		Syllabus	Paper	
		IGCS	E – May/June 2014		0606	11	
6	(i)	$\mathbf{AB} = \begin{pmatrix} 10 & 19 \\ 32 & 37 \\ 14 & 14 \end{pmatrix}$		M1M1 for at least 3 correct elem 3×2 matrixA1A1 for all correct		correct elements of a	
	(ii)	$\mathbf{B}^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$		B1 B1	B1 for $\frac{1}{7}$, B1 for $\left(-\frac{1}{7}\right)$	$\begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$	
	(iii)	$2\begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ -22 \end{pmatrix}$		M1	M1 for obtaining in matrix form		
		$\binom{x}{y} = \frac{1}{7} \binom{5 - 1}{-3 2} \binom{-1}{-1}$	$\binom{.5}{1} = \frac{1}{7} \binom{3.5}{-17.5}$	M1	M1 for pre-multiplying by B ⁻¹		
		x = 0.5, y = -2.5		A1	A1 for both		
7	(i)	$y = 2x^2 - \frac{1}{x+1}(+c)$	ATPR	B1 B1	B1 for each correct	term	
		when $x = \frac{1}{2}, y = \frac{5}{6}$ so	$5\frac{5}{6} = \frac{1}{2} - \frac{2}{3} + c$	M1	least 1 of the previo	and $+c$, must have at us B marks	
		leading to $c = 1$		A1	Allow A1 for $c = 1$		
		$\left(y = 2x^2 - \frac{1}{x+1} + 1\right)$					
	(ii)	When $x = 1, y = \frac{5}{2}$		M1 M1 for using $x = 1$ in their (i) to			
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{17}{4}$ so gradient of		B1	B1 for gradient of n	ormal	
		Equation of normal y	$-\frac{5}{2} = -\frac{4}{17}(x-1)$	DM1	DM1 for attempt at	normal equation	
		$\left(8x+34y-93=0\right)$		A1	A1 – allow unsimpl (fractions must not		

	Page 5	Mark Scheme		Syllabus Paper
		IGCSE – May/June 2014	0606 11	
8	(i)	$\log p = n \log V + \log k$	B1	B1 for statement, but may be implied by later work.
		$\ln V$ 2.30 3.91 4.61 5.30		
		lnp 4.55 2.14 1.10 0.10		
		lgV 1 1.70 2 2.30		
		lgp 1.98 0.93 0.48 0.04		
		$\log P \uparrow$		
			M1	M1 for plotting a suitable graph
			A2,1,0	-1 for each error in points plotted
	(ii)	Use of gradient = n	DM1	DM1 for equating numerical gradient to
	()	n = -1.5 (allow -1.4 to -1.6)	A1	n
	(iii)	Allow 13 to 16	DM1 A1	DM1 for use of <i>their</i> graph or substitution into <i>their</i> equation.
9	(a)	Distance travelled = area under graph	M1	M1 for realising that area represents distance travelled and attempt to find
		$= \frac{1}{2}(60+20) \times 12 = 480$	A1	area
	(b)	٧	B1	B1 for velocity of 2 ms ⁻¹ for $0 \le t \le 6$
		2	B1	B1 for velocity of zero for <i>their</i> '6' to <i>their</i> '25'
		6 25 30 7	B1	B1 for velocity of 1 ms ⁻¹ for $25 \le t \le 30$
	(c) (i)	16	M1	M1 for attempt at differentiation
	(c) (l)	$v = 4 - \frac{16}{t+1}$	DM1	DM1 for equating velocity to zero and
		When $v = 0$, $t = 3$	A1	attempt to solve
	(ii)	$a = \frac{16}{\left(t+1\right)^2}$	M1	M1 for attempt at differentiation and equating to 0.25 with attempt to solve
		$0.25(t+1)^2 = 16$		
		t = 7	A1	

Page 6		M	ark Scheme		Syllabus	Paper	1
		IGCSE – May/June 2014		0606	11	1	
							-
10	(a)	 digit even numbers digit even numbers 	2 $4 \times 2 = 8$	B1 B1			
		3 digit even numbers	$3 \times 3 \times 2 = 18$	B1			
		Total = 28		B1			
	(b) (i)	3M 5W = 35		B1			
		$4M \ 4W = 175$		B1			
		5M 3W = 210		B1			
		Total = 420		B1	B1 for addition to must be evaluated.	obtain final answ	wer,
		$ar^{12}C$ (M 2W 7M	1.W/		or: as above, final	P1 for subtraction	n to
		or ${}^{12}C_8 - 6M \ 2W - 7M$	1 w		get final answer	DI IOI SUDUACION	11 10
	(ii)	495 - 70 - 5 = 420 Oldest man in, oldest w versa	voman out and vice-				
		${}^{10}C_7 \times 2 = 240$		B1, B1	B1 for ${}^{10}C_7$, B1 fo	r realising there a	re 2
		Alternative: 1 man out 1 wor 6 men 4 wo 6M 1W : ${}^{6}C_{6} \times {}^{4}C_{1} = 4$ 5M 2W : ${}^{6}C_{5} \times {}^{4}C_{2} = 36$			identical cases		
					S		
		$4M \ 3W: \ {}^{6}C_{4} \times {}^{4}C_{3} = 60$					
		$3M 4W: {}^{6}C_{3} \times {}^{4}C_{4} = 20$					
		Total = 120	·satpre	B1	All separate cases c	orrect for B1	
		There are 2 identical of 240 ways in all.	cases to consider, so	B1	B1 for realising the cases, which have in		tical

	Page 7	Mark Scheme		Syllabus	Paper	7
		IGCSE – May/June 2014	0606	11		
11	(a)	$5\sin 2x + 3\cos 2x = 0$ $\tan 2x = -0.6$ $2x = 149^{\circ}, 329^{\circ}$ $x = 74.5^{\circ}, 164.5^{\circ}$ Alternatives:	M1 DM1 A1,A1	In each case the last A mark is f second correct solution and no e solutions within the range M1 for use of tan DM1 for dealing with 2x correctly A1 for each		
	(b)	sin(2x + 31°) = 0 or $cos(2x - 59°) = 0$ $2cot^{2} y + 3cosecy = 0$ $2(cosec^{2}y - 1) + 3cosecy = 0$ $2cosec^{2}y + 3cosecy - 2 = 0$	M1 M1	M1 for either, then m M1 for use of correct		
		$(2 \csc e - 1)(\csc e + 2) = 0$ One valid solution $\cos e - 2, \sin y = -\frac{1}{2}$ $y = 210^{\circ}, 330^{\circ}$	M1 A1,A1	M1 for attempt to a quadratic equation	factorise a 3 t	erm
		Alternative: $2\frac{\cos^2 y}{\sin^2 y} + \frac{3}{\sin y} = 0$ leads to $2\sin^2 y - 3\sin y - 2 = 0$ and $\sin y = -\frac{1}{2}$ only	M1 M1	M1 for use of $\cot y =$ $\csc y = \frac{1}{\sin y}$ M1 for attempt to a quadratic equation		term
	(c)	$y = 210^{\circ}, 330^{\circ}$ $3\cos(z + 1.2) = 2$ $\cos(z + 1.2) = \frac{2}{3}$ $(z + 1.2) = 0.8411, 5.442, 7.124$ $z = 4.24, 5.92$	A1A1 M1 A1 A1A1	M1 for correct orde end up with 0.8411 ra A1 for one of 5.441 o A1 for each valid solu	dians or better or 7.124 (or bett	

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2014	E – May/June 2014 0606		12
1		$\frac{\cos^2 A + (1 + \sin A)^2}{(1 + \sin A)\cos A}$ $\frac{\cos^2 A + 1 + 2\sin A + \sin^2 A}{(1 + \sin A)\cos A}$ $= \frac{2(1 + \sin A)}{(1 + \sin A)\cos A}$ $= \frac{2}{\cos A} = 2 \sec A$	M1 M1 DM1 A1	M1 for obtaining correctly M1 for expansio and use of identity DM1 for fac cancelling of (1 + s A1 for use of - c final answer	n of $(1 + \sin A)^2$ ctorisation and $\sin A$ factor
		Alternative:			
		$\frac{\cos A (1 - \sin A)}{(1 + \sin A)(1 - \sin A)} + \frac{1 + \sin A}{\cos A}$ $= \frac{\cos A (1 - \sin A)}{1 - \sin^2 A} + \frac{1 + \sin A}{\cos A}$	M1	$\frac{\mathbf{M1} \text{for multiplyi}}{\frac{1-\sin A}{1-\sin A}}$	ng first term by
		$=\frac{\cos A \left(1-\sin A\right)}{\cos^2 A}+\frac{1+\sin A}{\cos A}$	M1	$ \begin{array}{ccc} \mathbf{M1} & \text{for} \\ (1 - \sin A)(1 + \sin A) \\ \text{identity} \end{array} $	expansion of 4) and use of
		$=\frac{1-\sin A}{\cos A}+\frac{1+\sin A}{\cos A}$	M1	M1 for simplificat	ion of the 2 terms
		$=\frac{2}{\cos A}=2\sec A$	A1	A1 for use of - c final answer	$\frac{1}{\cos A} = \sec A$ and
2 ((a) (i)	DO Satpres	B1		
	(i)	\bigcirc	B1		
((b) (i) 6		B1		
	(ii) 5		B 1		
	(iii) 9		B 1		

	Page 3		Syllabus Paper	
		IGCSE – May/June 2014	0606 12	
3	(i)		B1 B1 B1	B1 for shape B1 for $y = 2$ (must have a graph) B1 for $x = -0.5$ and 2 (must have a graph)
	(ii)	Maximum point occurs when $y = \frac{25}{8}$	M1	M1 for obtaining the value of y at the maximum point, by either completing the square, differentiation, use of discriminant or symmetry.
		so $k > \frac{25}{8}$	A1	Must have the correct sign for A1 Ignore any upper limits
4		$\int_{0}^{a} \sin 3x dx = \frac{1}{3} dx = \frac{1}{3}$	B1,B1	B1 for $k \cos 3x$ only, B1 for $-\frac{2}{3}\cos 3x$ only
		$\begin{bmatrix} -\frac{2}{3}\cos 3x \end{bmatrix}_{0}^{a} = \frac{1}{3}$ $\left(-\frac{2}{3}\cos 3a\right) - \left(-\frac{2}{3}\right) = \frac{1}{3}$	M1	M1 for correct substitution of the correct limits into their result
		$\cos 3a = 0.5$	A1 M1	A1 for correct equation M1 for correct method of solution of equation of the form $\cos ma = k$
		$3a = \frac{\pi}{3}, a = \frac{\pi}{9}$	A1	A1 allow 0.349, must be a radian answer
5	(i)	$2^{5x} \times 2^{2y} = 2^{-3}$ leads to $5x + 2y = -3$	B1, B1 DB1	B1 for 2^{2y} , B1 for 2^{-3} , B1 for dealing with indices correctly to obtain given answer
	(ii)	$7^x \times 49^{2y} = 1$ can be written as x + 4y = 0	B1 B1	B1 for either 7^{4y} or 7^{0} seen B1 for $x + 4y = 0$
		Solving $5x + 2y = -3$ and $x + 4y = 0$ leads to	M1	M1 for solution of their simultaneous equations, must both be linear
		$x = -\frac{2}{3}, y = \frac{1}{6}$	A1	A1 for both, allow equivalent fractions only

	Page 4		Mark Scheme		Syllabus	Paper
			IGCSE – May/June 2014		0606	12
6	(a)	YXa	and ZY	B1,B1	B1 for each, mu order,	ust be in correct
	(b)	B =	$\mathbf{A}^{-1} \begin{pmatrix} 3 & 9 \\ -6 & -3 \end{pmatrix}$,	M1	M1 for pre-multip	blication by \mathbf{A}^{-1}
		$=-\frac{1}{3} \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 3 & 9 \\ -6 & -3 \end{pmatrix}$		B1,B1	B1 for $-\frac{1}{3}$, B1 f	$\operatorname{for} \left(\begin{array}{cc} 1 & 2 \\ 4 & 5 \end{array} \right)$
		=	$\frac{1}{3} \begin{pmatrix} -9 & 3 \\ -18 & 21 \end{pmatrix} \text{ or } \begin{pmatrix} 3 & -1 \\ 6 & -7 \end{pmatrix}$	DM1 A1	DM1 for attempt at matemultiplication A1 allow in either form	
		Alte	rnative method:			
		(5	$ \begin{array}{c} -2 \\ 4 \\ 1 \end{array} \begin{pmatrix} a \\ c \\ d \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ -3 \end{pmatrix} $	M1	M1 for a compobtain 4 equations	
			Is to $5a - 2c = 3$, $5b - 2d = 9$ a + c = -6, $-4b + d = -3$	A2,1,0	-1 for each incorre	ect equation
		Solu	tions give matrix	M1	M1 for solution to	find 4 unknowns
		$-\frac{1}{3}($	$\begin{pmatrix} -9 & 3 \\ -18 & 21 \end{pmatrix} \text{or} \begin{pmatrix} 3 & -1 \\ 6 & -7 \end{pmatrix}$	A1	A1 for a correct, f	inal matrix

Page 5	5	Mark Scheme		Syllabus	Paper	
		IGCSE – May/June 2014	0606	12		
		T	1			
7 (i)	4	$\frac{\theta}{2} = \frac{6}{8}, \ \frac{\theta}{2} = 0.8481 \text{ or better}$ $12^2 = 8^2 + 8^2 - 128 \cos \theta$	M1	M1 for a complete method to find either θ or $\frac{\theta}{2}$		
	$\theta = 1$.6961 or better	A1	Answer given.		
		using areas $12 \times 2\sqrt{7} = \frac{1}{2}8^2 \sin \theta$ oe				
	sin 6	$\theta = 0.9922$, $\theta = 1.4455$ or 1.6961	M1	M1 for using triangle in 2 differ		
			A1	A1 for choosing th		
(ii)	Arc	$ength = (2\pi - 1.696) \times 8$	M1	M1 for correct at or major arc lengtl		
	(36.0	597 or 36.7)	A1	A1 for correct r allow unsimplified		
	Perir	meter = $12 + (2\pi - 1.696) \times 8$ = 48.7	A1	A1 for 48.7 or bet	ter	
(iii)	Area	$=\frac{8^2}{2}(2\pi - 1.696) + \frac{8^2}{2}\sin 1.696$	M1,M1	M1 for correct attempt to find are of major sector		
		=178.5, 178.6, awrt179	A1	M1 for correct att of triangle, using a	-	
		rnative:				
	Area	$= \pi 8^2 - \left(\frac{1}{2}8^2(1.696) - \frac{8^2}{2}\sin 1.696\right)$.00.	M1 for attempt a area of minor secto M1 for area of tria	or	

	Page 6		Mark Scheme	Syllabus	Paper	
			IGCSE – May/June 2014		0606	12
8	(a) (i)	720		B1		
	(ii)	240		B 1		
	(iii)	Start	s with either a 2 or a 4: 48 ways	B1	allow unevaluated	
			s not start with either a 2 or a 4: 96 ways starts with 1 or 5)	B 1	allow unevaluated	
		Tota	1 = 144	B 1	must be evaluated	
		Alte	rnative 1:			
		Ends	with a 2, starts with a 1,4 or 5 : 72 ways with a 4, starts with a 1,2 or 5 : 72 ways l = 144	B1 B1 B1		
		Alte	rnative 2:			
		240	$-(2 \times 2 \times {}^{4}P_{3}) \text{ or } (4 \times {}^{4}P_{3} \times 2) - (2^{4}P_{3})$ = 144	B2 B1	B2 for correct of allow <i>P</i> notation	expression seen,
		Alte	rnative 3:			
		${}^{3}P_{1} \times$ =14	${}^{4}P_{3} \times {}^{2}P_{1}$ or $3 \times 4 \times 2$	B2 B1	Allow <i>P</i> notation h	ere, for B2
	(b)	With	twins : ${}^{16}C_4$ (=1820)	B 1		
		With	bout twins: ${}^{16}C_6$ (= 8008)	B1		
		Tota	1: 9828	B 1		
		Alte	rnative:			
		$^{18}C_6 = 98$	$-\left(2\times^{16}C_{5}\right)$ 28	B1,B1 B1	B1 for ${}^{18}C_6$ –, ,	B1 for $2 \times {}^{16}C_5$

Page 7		7	Mark Scheme	Syllabus	Paper		
			IGCSE – May/June 2014		0606	12	
9	(i)		$\frac{4000}{\pi r^2}$ or $\pi r^2 h = 4000$ $2\pi r h + 2\pi r^2$	B1			
		<i>A</i> =	$2\pi r^{2} \frac{4000}{\pi r^{2}} + 2\pi r^{2}$	M1 A1	M1 for substitution of h or πrh into their equation for A A1 Answer given		
	(ii)		$=-\frac{8000}{r^2}+4\pi r$	B1, B1	B1 for each term c	orrect	
		Whe	$n\frac{dA}{dr} = 0$, $r^3 = \frac{8000}{4\pi}$	M1	M1 for equating attempt to find r^3	g to zero and	
		lead	ing to $A = 1395, 1390$	M1 A1	M1 for substituti obtain <i>A</i> . A1 for 1390 or aw		
		u	$r = \frac{16000}{r^3} + 4\pi$, sh, is positive so a minimum.	A1 √B1	$\sqrt{B1}$ for a complet and conclusion.		

Page 8			Mark Scheme	Syllabus	Paper		
			IGCSE – May/June 2014	0606	12		
	()		· · · · · · · · · · · · · · · · · · ·		1 (•)	
10	10 (i) Vel		$\operatorname{city} = 26 \times \frac{1}{13} (5\mathbf{i} + 12\mathbf{j})$	M1	M1 for $\frac{1}{13}(5i + 12j)$		
		Alternative 1: $ 10\mathbf{i} + 24\mathbf{j} = \sqrt{10^2 + 24^2}$ = 26		A1			
				M1	-	11 for working from given answer o obtain the given speed	
				A1	A1 for a completely correct method		
		Alternative 2:					
			$\overline{+12^2} = 13, \ 13k = 26, \text{ so } k = 2$	M1	M1 for attempt		
	Velo		$\operatorname{city} = 2(5\mathbf{i} + 12\mathbf{j}),$		'multiple' and apply to the direc vector		
	Vel		city $=10\mathbf{i} + 24\mathbf{j}$	A1	A1 for a completely correct metho		
		Alternative 3:					
	Use		of trig: $\tan \alpha = \frac{12}{5}$, $\alpha = 67.4^{\circ}$				
		Velo	city $26\cos 67.4^{\circ}i + 26\sin 67.4j$	M1	M1 for reaching th	nis stage	
		Velo	$\operatorname{city} = 10\mathbf{i} + 24\mathbf{j}$	A1	A1 for a completel	ly correct method	
	(ii)		ion vector = 4(10i + 24j))i + 96j	B1	Allow either form	for B1	
	(iii)		+96j + $(10i + 24j)t$ oe	M1	M1 for <i>their</i> (ii) +	(10i + 24i)t or	
	. ,	× ·			$(10i + 24j) \times (t + 4)$		
			⁴ .satprep	A1	A1 correct answer	only	
	(iv)	(1201	(i + 81j) + (-22i + 30j)t oe	B1			
	(v)		10t = 120 - 22t or 24t = 81 + 30t	M1	M1 for equating li	ke vectors	
			.5 or 18:30	A1	A1 Allow for $t = 2$.5	
		Posit	-		DM1 for use of position vector	f t to obtain	
				A1	A1 cao		

Page	9	Mark Scheme		Syllabus	Paper
		IGCSE – May/June	0606	12	
11 (a)	tan :	$x(\tan x + 5) = 0$ x = 0, x = 0°, 180° x = -5, x = 101.3°	B1,B1 B1	B1 for each , muswork	st be from correct
(b)	2 sin (2 sin	$sin^{2}y) - siny - 1 = 0$ $^{2}y + siny - 1 = 0$ ny - 1)(siny + 1) = 0 1 200, 1500	M1 A1,A1	M1 for use of co attempt to solve quadratic equation	resulting 3 term
		$y = \frac{1}{2}, y = 30^{\circ}, 150^{\circ}$ = -1, y = 270°	A1,A1		
(c)		$\left[2z - \frac{\pi}{6}\right] = \frac{1}{2}$ $-\frac{\pi}{6} = \frac{\pi}{3}$	M1	M1 for dealing we and obtaining $\frac{\pi}{3}$ of	-
	Ì	$\frac{\tau}{4}$ or 0.785 or better	A1		
	(2z	$\left(-\frac{\pi}{6}\right) = \frac{5\pi}{3}$	M1	M1 for obtaining a $\left(2z - \frac{\pi}{6}\right) = 2\pi - t$	
	z = -	$\frac{11\pi}{12}$ or 2.88 or better	A1		

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme		Syllabus	Paper
	-	IGCSI	E – May/June 2014		0606	13
1	(i)	$y = 3(x-1)^{2} + 2$ a = 3, b = 1, c = 2		B1, B1, B1	B1 for each, may be form $y = 3(x-1)^2$	-
	(ii)	(1, 2)		√B1	Follow through on to (i) If using differentia through on their x	ation, follow
2		$2^{4x} \times 4^{y} \times 8^{x-y} = 1$ Considering powers of e 7x - y = 0 $3^{x+y} = \frac{1}{3}$	either 2, 4 or 8	M1	M1 for considerin either 2, 4 or 8 and equation using the	forming an
		Considering powers of 3 x + y = -1	T PF	B1	B1 for equation copowers of 3	onsidering
		Solving both simultaneou $x = -\frac{1}{8}, y = -\frac{7}{8}$	usly gives	M1 A1	M1 for attempt to equations A1 for both	solve their
3	(i)	$f(-3) = -27 + 9p - 3p^{2} - 3p^{2} - 6$ $= 9p - 3p^{2} - 6$	+ 21	M1 A1	M1 for substitutio A1 answer must be	
	(ii)	$9p - 3p^2 - 6 < 0$ (p-1)(p-2) > 0 Critical values 1 and 2		M1 A1	M1 for attempt to A1 for critical value	
		p < 1, p > 2		A1	A1 for correct range	ge
4	(i)	$V = x(24 - 2x)^{2}$ = x(576 - 96x + 4x^{2})	V.Satore	M1	M1 for attempt at lengths, 2 of which	•
		$= 4x^3 - 96x^2 + 576x$	atpre	A1	same A1 for expansion t answer	to reach given
	(ii)	$\frac{\mathrm{d}V}{\mathrm{d}x} = 12x^2 - 192x + 57$	6	M1	M1 for attempt to	o differentiate
		When $\frac{\mathrm{d}V}{\mathrm{d}x} = 0$, $12x^2 - 12x^2 - $	-192x + 576 = 0	DM1	DM1 for equating $\frac{dV}{dx}$ to zero and attempt to solve	
		leading to $(x-4)(x-12)$	(2) = 0			
		with $x = 4$ the only po V = 1024		A1 A1	A1 for $x = 4$ A1 for $V = 1024$	

	Page 3	Mark Scheme		Syllabus Paper
		IGCSE – May/June 2014		0606 13
5	(i)	$64 - 960x + 6000x^2$	B1, B1, B1	B1 for each correct term
	(ii)	$(64 - 960x + 6000x^2)(a^3 + 3a^2bx),$	B1	B1 for first two terms of $(a + bx)^3$
		$64a^3 = 512, a = 2$	B1	B1 for equating constant term to 512 and obtaining $a = 2$
		$-960a^3 + 3a^2b(64) = 0$	M1	M1 for attempt to equate coefficient of <i>x</i> to zero, must have two terms involved
		leading to $b = 10$	A1	A1 for $b = 10$
6		When $x = 2$, $y = -4$	B1	B1 for $y = -4$
		$\frac{dy}{dx} = x \left(\frac{2x}{3}\right) \left(x^2 - 12\right)^{\frac{2}{3}} + \left(x^2 - 12\right)^{\frac{1}{3}}$	M1, B1 A1	M1 for differentiation of a product B1 for $\frac{2x}{3}(x^2 - 12)^{-\frac{2}{3}}$
		When $x=2$, $\frac{dy}{dx}=-\frac{4}{3}$	M1	M1 for attempt at normal equation
		Normal: $y + 4 = \frac{3}{4}(x - 2)$	A1	A1 allow unsimplified
		(4y = 3x - 22)		
7	(a) (i)	15120	B1	
	(ii)	$(5 \times 4) \times (4 \times 3 \times 2)$	M1	M1 for attempt to multiply
		480 5456	A1	number of ways of getting 4 letters by the number of ways of getting 2 digits.
	(b) (i)	5456	B1	getting 2 digits.
	(ii)	¹⁸ C 15	M1	M1 for attempt at an appropriate
	(11)	$^{18}C_2 \times 15$ 2295	A1	product, at least one term must be correct.
	(iii)	5456 - Number of ways only girls get tickets 5456 - 455 = 5001	M1 A1	M1 for a complete correct method their (i) – number of ways only girls get tickets
		Or 1B 2G 1890	M1	M1 must be sensidering stiller to
		2B 1G 2295 3B 816	TAT T	M1 must be considering at least 2 of the cases shown
		Total 5001	A1	

Image: Interpret to the integrate of the	Page 4	Mark Scheme	Syllabus	Paper		
(i) $a = 8e^{-2t}$ (i) $a = 8e^{-2t}$ $8e^{-2t} = 6, -2t = \ln \frac{3}{4}$ (ii) $e^{-2t} = 6, -2t = \ln \frac{3}{4}$ (iii) $e^{-2t} = 6, -2t = \ln \frac{3}{4}$ (iv) When $t = 0, s = 0, so c = -2$ When $t = 1.5, s = 5.60$ Alternative: $s = [5t + 2e^{-2t}]_{0}^{1.5}$ Alternative: $s = [5t + 2e^{-2t}]_{0}^{1.5}$ Leading to $s = 5.60$ Leading to $s = 5.60$ (iv) Velocity is always +ve, so no change in direction $e^{-2t} = 0$ $\cos x = 0, x = 90^{\circ}$ $\sin x = \frac{2}{3},$ $x = 41.8^{\circ}, 138.2^{\circ}$ (i) $10 \sin^{2} y + \cos y = 8$ $10 \cos^{2} y - \cos y - 2 = 0$ (i) $\cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$ MI MI for attempt to solve us factors in terms of cos		IGCSE – May/June 2014	0606	13		
(i) $a = 8e^{-2t}$ (i) $a = 8e^{-2t}$ $8e^{-2t} = 6, -2t = \ln \frac{3}{4}$ (ii) $e^{-2t} = 6, -2t = \ln \frac{3}{4}$ (iii) $e^{-2t} = 6, -2t = \ln \frac{3}{4}$ (iv) When $t = 0, s = 0, so c = -2$ When $t = 1.5, s = 5.60$ Alternative: $s = [5t + 2e^{-2t}]_{0}^{1.5}$ Alternative: $s = [5t + 2e^{-2t}]_{0}^{1.5}$ Leading to $s = 5.60$ Leading to $s = 5.60$ (iv) Velocity is always +ve, so no change in direction $e^{-2t} = 0$ $\cos x = 0, x = 90^{\circ}$ $\sin x = \frac{2}{3},$ $x = 41.8^{\circ}, 138.2^{\circ}$ (i) $10 \sin^{2} y + \cos y = 8$ $10 \cos^{2} y - \cos y - 2 = 0$ (i) $\cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$ MI MI for attempt to solve us factors in terms of cos			R1			
$8e^{-2t} = 6, -2t = \ln \frac{3}{4}$ DMIDMI for correct attempt to sequation in the form $e^{-2t} = constant$ (iii) $s = 5t + 2e^{-2t}$ (+c)MIAI must be at least 3 sf(iii) $s = 5t + 2e^{-2t}$ (+c)MIMI for attempt to integrateWhen $t = 0, s = 0, so c = -2$ DMI, AIDMI for attempt to integrateWhen $t = 1.5, s = 5.60$ MI, AIMI for attempt to integrateAlternative: $s = [5t + 2e^{-2t}]_0^{1.5}$ MIMIfor attempt to use limit AI AI all correctMiDVVelocity is always +vc, so no change in direction9(i)cos $x (3 \sin x - 2) = 0$ $\cos x = 0, x = 90^{\circ}$ 81B1 for 90^{\circ}sin $x = \frac{2}{3},$ $x = 41.8^{\circ}, 138.2^{\circ}$ (ii) $10 \sin^2 y + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ 10 $\cos^2 y - \cos y - 2 = 0$ (ii) $10 \sin^2 y - \cos y - 2 = 0$ MIMI for attempt to reduce to transwerMIfor attempt to reduce to transwerMIfor attempt to colve us factor attempt to reduce to transwer	()				44.00	
(iii) $t = 0.144$ t = 0.144 t = 0.144 (iii) $s = 5t + 2e^{-2t}$ (+c) When $t = 0$, $s = 0$, so $c = -2$ When $t = 1.5$, $s = 5.60$ Alternative: $s = [5t + 2e^{-2t}]_0^{1.5}$ Leading to $s = 5.60$ (iv) Velocity is always +ve, so no change in direction 9 (i) $\cos x (3 \sin x - 2) = 0$ $\cos x = 0$, $x = 90^{\circ}$ $\sin x = \frac{2}{3}$, $x = 41.8^{\circ}$, 138.2° (ii) $10 \sin^2 y + \cos y = 8$ $10 (cos^2 y - cos y - 2 = 0$ $(2 \cos y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}$, $\cos y = -\frac{2}{5}$ (iii) $10 \sin^2 y + \cos y = 8$ $10 (cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$ (iv) $10 \sin t^2 y + \cos y = 8$ 10 (cos t = 1.5) (iv) $10 \sin^2 y + \cos y = 8$ $10 (cos^2 y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}$, $\cos y = -\frac{2}{5}$ (iv) $10 \sin t - 2y + \cos y = 8$ 10 (cos t - 2) (cos t - 2) (cos t - 2) $10 \sin t^2 y + \cos y = 8$ $10 (cos^2 y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}$, $\cos y = -\frac{2}{5}$ (iv) $10 \sin t - 2y + \cos y = 8$ 10 (cos t - 2) (c	(ii)	$a = 8e^{-2t}$	M1	MI for attempt to differentiate		
(iii) $t = 0.144$ t = 0.144 t = 0.144 (iii) $s = 5t + 2e^{-2t}$ (+c) When $t = 0$, $s = 0$, so $c = -2$ When $t = 1.5$, $s = 5.60$ Alternative: $s = [5t + 2e^{-2t}]_0^{1.5}$ Leading to $s = 5.60$ (iv) Velocity is always +ve, so no change in direction 9 (i) $\cos x (3 \sin x - 2) = 0$ $\cos x = 0$, $x = 90^{\circ}$ $\sin x = \frac{2}{3}$, $x = 41.8^{\circ}$, 138.2° (ii) $10 \sin^2 y + \cos y = 8$ $10 (cos^2 y - cos y - 2 = 0$ $(2 \cos y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}$, $\cos y = -\frac{2}{5}$ (iii) $10 \sin^2 y + \cos y = 8$ $10 (cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$ (iv) $10 \sin t^2 y + \cos y = 8$ 10 (cos t = 1.5) (iv) $10 \sin^2 y + \cos y = 8$ $10 (cos^2 y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}$, $\cos y = -\frac{2}{5}$ (iv) $10 \sin t - 2y + \cos y = 8$ 10 (cos t - 2) (cos t - 2) (cos t - 2) $10 \sin t^2 y + \cos y = 8$ $10 (cos^2 y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}$, $\cos y = -\frac{2}{5}$ (iv) $10 \sin t - 2y + \cos y = 8$ 10 (cos t - 2) (c		$8e^{-2t} = 6, -2t = \ln \frac{3}{2}$	DM1	DM1 for correct a	ttempt to solve	
(iii) $t = 0.144$ $s = 5t + 2e^{-2t}$ (+c) When $t = 0$, $s = 0$, so $c = -2$ When $t = 0$, $s = 0$, so $c = -2$ When $t = 1.5$, $s = 5.60$ Alternative: $s = [5t + 2e^{-2t}]_0^{1.5}$ Leading to $s = 5.60$ (iv) Velocity is always +ve, so no change in direction 9 (i) $\cos x (3 \sin x - 2) = 0$ $\cos x = 0$, $x = 90^{\circ}$ $\sin x = \frac{2}{3}$, $x = 41.8^{\circ}$, 138.2° (ii) $10 \sin^2 y + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ $10(1 - \cos^2 y) - \cos y - 2 = 0$ $\cos y = \frac{1}{2}$, $\cos y = -\frac{2}{5}$ Al Al must be at least 3 sf MI MI for attempt to integrate DMI for attempt to use limit A1 all correct MI for attempt to use limit A1 all correct MI for attempt to use limit A1 all correct MI for attempt to solve $\sin x = \frac{2}{3}$, $x = 41.8^{\circ}$, 138.2° MI MI for attempt to solve $\sin x = \frac{2}{3}$, $x = 41.8^{\circ}$, 138.2° MI MI for attempt to solve $\sin x = \frac{2}{3}$, $x = 41.8^{\circ}$, 138.2° MI MI for attempt to reduce to term quadratic and attempt $10 \cos^2 y - \cos y - 2 = 0$ MI MI for attempt to reduce to term quadratic and attempt solve quadratic MI for attempt to solve us factors in terms of cos		4		-	rm	
(iii) $s = 5t + 2e^{-2t}$ (+ c) When $t = 0$, $s = 0$, so $c = -2$ When $t = 0$, $s = 0$, so $c = -2$ When $t = 1.5$, $s = 5.60$ Alternative: $s = [5t + 2e^{-2t}]_0^{1.5}$ Leading to $s = 5.60$ (iv) Velocity is always +ve, so no change in direction 9 (i) $\cos x (3 \sin x - 2) = 0$ $\cos x = 0$, $x = 90^\circ$ $\sin x = \frac{2}{3}$, $x = 41.8^\circ$, 138.2° (ii) $10 \sin^2 y + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ $10 (2 \cos y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}$, $\cos y = -\frac{2}{5}$ M1 M1 for attempt to integrate M1 M1 for attempt to integrate M1 M1 for attempt to integrate M1 M1 for attempt to use limit A1 M1 for attempt to solve $\sin x = \frac{2}{3}$, $x = 41.8^\circ$, 138.2° M1 M1 for attempt to solve $\sin x = \frac{2}{3}$ M1 M1 for use of correct ident M1 M1 for use of correct ident M1 M1 for attempt to reduce to term quadratic and attempt solve quadratic M1 M1 for attempt to solve us factors in terms of cos				e = constant		
When $t = 0$, $s = 0$, so $c = -2$ DM1, A1DM1 for attempt to find c , A1 c correctWhen $t = 1.5$, $s = 5.60$ M1, A1M1 for substitution of $t = 1.5$ Alternative: $s = [5t + 2e^{-2t}]_0^{1.5}$ M1 DM1M1 for attempt to integrate DM1 for attempt to use limit A1 all correct(iv)Velocity is always +ve, so no change in directionB1Allow any valid argument.9(i) $\cos x (3 \sin x - 2) = 0$ $\cos x = 0$, $x = 90^\circ$ B1 M1 for attempt to solve $\sin x = \frac{2}{3}$, $x = 41.8^\circ$, 138.2° B1 M1 for attempt to solve $\sin x = \frac{2}{3}$ (ii) $10 \sin^2 y + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ $10 \cos^2 y - \cos y - 2 = 0$ M1 M1 M1 for attempt to reduce to term quadratic and attempt $solve quadraticM1M1 for attempt to solve usfactors in terms of cos(iii)10 \sin^2 y - \cos y - 2 = 0M1M1 for attempt to solve usfactors in terms of cos$		t = 0.144	A1	A1 must be at leas	st 3 sf	
Al c correctWhen $t = 1.5$, $s = 5.60$ M1, A1M1 for substitution of $t = 1.5$ Alternative: $s = [5t + 2e^{-2t}]_0^{1.5}$ M1 A1M1 for attempt to integrate DM1 for attempt to use limit A1 all correct M1 for attempt to use limit A1 all correct(iv)Velocity is always +ve, so no change in directionB19(i) $\cos x (3 \sin x - 2) = 0$ $\cos x = 0, x = 90^{\circ}$ B19(i) $\cos x (3 \sin x - 2) = 0$ $\cos x = 0, x = 90^{\circ}$ B181for attempt to solve $\sin x = \frac{2}{3}$, $x = 41.8^{\circ}, 138.2^{\circ}$ M1(ii) $10 \sin^2 y + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ M110 $\cos^2 y - \cos y - 2 = 0$ M1M1 for attempt to reduce to term quadratic and attempt solve quadratic(2 $\cos y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}$, $\cos y = -\frac{2}{5}$ M1	(iii)	$s = 5t + 2e^{-2t} (+c)$	M1	M1 for attempt to	integrate	
Alternative: $s = [5t + 2e^{-2t}]_0^{1.5}$ MI DMI A1 MIMI for attempt to integrate DMI for attempt to use limit A1 all correct MI for evaluation of square bracket notation(iv)Leading to $s = 5.60$ A1(iv)Velocity is always +ve, so no change in directionB19 (i) $\cos x (3 \sin x - 2) = 0$ $\cos x = 0, x = 90^{\circ}$ B1 $\sin x = \frac{2}{3},$ $x = 41.8^{\circ}, 138.2^{\circ}$ B1B1 for 90^{\circ}(ii) $10 \sin^2 y + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ M1MI for attempt to solve $\sin x = \frac{2}{3}$ (ii) $10 \sin^2 y + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ M1MI for use of correct ident MI for attempt to reduce to term quadratic and attempt $solve quadraticMI for attempt to solve usfactors in terms of cos$		When $t = 0$, $s = 0$, so $c = -2$	DM1,A1		to find <i>c</i> ,	
$s = \begin{bmatrix} 5t + 2e^{-2t} \end{bmatrix}_{0}^{1.5}$ $s = \begin{bmatrix} 5t + 2e^{-2t} \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $k = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_$		When $t = 1.5$, $s = 5.60$	M1, A1	M1 for substitutio	on of $t = 1.5$	
$s = \begin{bmatrix} 5t + 2e^{-2t} \end{bmatrix}_{0}^{1.5}$ $s = \begin{bmatrix} 5t + 2e^{-2t} \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ 1 \end{bmatrix}_{0}^{1.5}$ $I = \begin{bmatrix} 5t + 2e^{-2t} \\ $		Alternative:	M1	M1 for attempt to	integrate	
M1M1 for evaluation of square bracket notation(iv)Leading to $s = 5.60$ A1(iv)Velocity is always +ve, so no change in directionB19(i) $\cos x (3 \sin x - 2) = 0$ $\cos x = 0, x = 90^{\circ}$ B19(i) $\cos x (3 \sin x - 2) = 0$ $\cos x = 0, x = 90^{\circ}$ B1 $sin x = \frac{2}{3},$ $x = 41.8^{\circ}, 138.2^{\circ}$ M1M1 for attempt to solve $\sin x = \frac{2}{3}$ (ii) $10 \sin^2 y + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ M1M1 for use of correct ident maswer(ii) $10 \sin^2 y - \cos y - 2 = 0$ $(2 \cos y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$ M1M1 for attempt to solve usi factors in terms of cos		$s = \left[5t + 2e^{-2t} \right]^{1.5}$		DM1 for attempt		
Leading to $s = 5.60$ A1(iv)Velocity is always +ve, so no change in directionB19 (i) $\cos x (3 \sin x - 2) = 0$ B1 $\cos x = 0, x = 90^{\circ}$ B1 $\sin x = \frac{2}{3},$ M1 $x = 41.8^{\circ}, 138.2^{\circ}$ M1(ii) $10 \sin^2 y + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ M1 $10 \cos^2 y - \cos y - 2 = 0$ M1M1M1 for attempt to reduce to term quadratic and attempt solve quadratic $(2 \cos y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$ M1					of square	
(iv)Velocity is always +ve, so no change in directionB1Allow any valid argument.9 (i) $\cos x (3 \sin x - 2) = 0$ $\cos x = 0, x = 90^{\circ}$ B1B1 for 90^{\circ} $\sin x = \frac{2}{3},$ $x = 41.8^{\circ}, 138.2^{\circ}$ M1M1 for attempt to solve $\sin x = \frac{2}{3}$ (ii) $10 \sin^2 y + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ M1M1 for use of correct ident M1 for use of correct ident M1 $10 \cos^2 y - \cos y - 2 = 0$ M1M1 for attempt to reduce to term quadratic and attempt solve quadratic $(2 \cos y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$ M1M1 for attempt to solve us factors in terms of cos				bracket notation		
9(i) $\cos x (3 \sin x - 2) = 0$ B1B1 for 90° $\sin x = \frac{2}{3}$, $\sin x = \frac{2}{3}$,M1M1 for attempt to solve $\sin x = \frac{2}{3}$, $x = 41.8^{\circ}, 138.2^{\circ}$ A1, $\sqrt{A1}$ Follow through on their finanswer(ii) $10 \sin^2 y + \cos y = 8$ M1M1 for use of correct ident $10 \cos^2 y - \cos y - 2 = 0$ M1M1 for attempt to reduce to term quadratic and attempt to solve use factors in terms of cos		Leading to $s = 5.60$	A1			
(ii) $cos x = 0, x = 90^{\circ}$ $sin x = \frac{2}{3},$ $x = 41.8^{\circ}, 138.2^{\circ}$ (ii) $10 sin^{2} y + cos y = 8$ $10(1 - cos^{2} y) + cos y = 8$ $10 cos^{2} y - cos y - 2 = 0$ $(2 cos y - 1)(5 cos y + 2) = 0$ $cos y = \frac{1}{2}, cos y = -\frac{2}{5}$ (b) B1 for 90^{\circ} M1 M1 for attempt to solve Sin x = \frac{2}{3} Follow through on their finanswer M1 M1 for use of correct ident M1 M1 for use of correct ident M1 M1 for attempt to reduce to term quadratic and attempt Solve quadratic M1 M1 for attempt to solve usi factors in terms of cos	(iv)		B1	Allow any valid as	rgument.	
(ii) $\sin x = \frac{2}{3},$ $x = 41.8^{\circ}, 138.2^{\circ}$ (ii) $10 \sin^{2} y + \cos y = 8$ $10(1 - \cos^{2} y) + \cos y = 8$ $10 \cos^{2} y - \cos y - 2 = 0$ $(2 \cos y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$ M1 M1 M1 for attempt to reduce to the term quadratic and attempt to solve use factors in terms of cos) (i)	$\cos x \left(3\sin x - 2\right) = 0$				
(ii) $ \begin{aligned} \sin x &= \frac{2}{3}, \\ x &= 41.8^{\circ}, 138.2^{\circ} \end{aligned} $ A1, $\sqrt{A1}$ M1 for attempt to solve $\sin x &= \frac{2}{3}$ Follow through on their finanswer $ \begin{aligned} 10 \sin^2 y + \cos y &= 8 \\ 10(1 - \cos^2 y) + \cos y &= 8 \end{aligned} $ M1 M1 for use of correct ident $ 10 \cos^2 y - \cos y - 2 &= 0 \end{aligned} $ M1 M1 for attempt to reduce to term quadratic and attempt to reduce to term quadratic and attempt solve quadratic $ \begin{aligned} (2 \cos y - 1)(5 \cos y + 2) &= 0 \\ \cos y &= \frac{1}{2}, \cos y &= -\frac{2}{5} \end{aligned} $ M1 M1 for attempt to solve use factors in terms of cos		$\cos x = 0, x = 90^{\circ}$	B1	B1 for 90°		
(ii) $ \begin{aligned} & x = 41.8^{\circ}, 138.2^{\circ} \\ & x = 41.8^{\circ}, 138.2^{\circ} \end{aligned} $ (ii) $ \begin{aligned} & 10 \sin^{2} y + \cos y = 8 \\ & 10(1 - \cos^{2} y) + \cos y = 8 \\ & 10 \cos^{2} y - \cos y - 2 = 0 \\ & (2 \cos y - 1)(5 \cos y + 2) = 0 \\ & \cos y = \frac{1}{2}, \cos y = -\frac{2}{5} \end{aligned} $ M1 M1 M1 for attempt to reduce the term quadratic and attempt solve quadratic must factors in terms of cos		ź		-		
(ii) $ \begin{aligned} & x = 41.8^{\circ}, 138.2^{\circ} \\ & x = 41.8^{\circ}, 138.2^{\circ} \end{aligned} $ (ii) $ \begin{aligned} & 10 \sin^{2} y + \cos y = 8 \\ & 10(1 - \cos^{2} y) + \cos y = 8 \\ & 10 \cos^{2} y - \cos y - 2 = 0 \\ & (2 \cos y - 1)(5 \cos y + 2) = 0 \\ & \cos y = \frac{1}{2}, \cos y = -\frac{2}{5} \end{aligned} $ M1 M1 M1 for attempt to reduce the term quadratic and attempt solve quadratic must factors in terms of cos		$\sin x = \frac{2}{2}$,	M1	M1 for attempt to	o solve	
(ii) $10 \sin^2 y + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ $10 \cos^2 y - \cos y - 2 = 0$ $(2 \cos y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$ M1 For the integration of the integrate of the integration of the integration of t		Satore	p.	$\sin x = \frac{2}{3}$		
(ii) $10 \sin^2 y + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ $10 \cos^2 y - \cos y - 2 = 0$ $(2 \cos y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$ M1 M1 for use of correct ident M1 M1 for attempt to reduce to term quadratic and attempt solve quadratic M1 M1 for attempt to solve use factors in terms of cos		$x = 41.8^{\circ}, 138.2^{\circ}$	A1,√A1	Follow through o	on their first	
M1 $10(1 - \cos^2 y) + \cos y = 8$ $10(1 - \cos^2 y) + \cos y = 8$ $10\cos^2 y - \cos y - 2 = 0$ $(2\cos y - 1)(5\cos y + 2) = 0$ $\cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$ M1 M1 for use of correct ident M1 M1 for attempt to reduce to term quadratic and attempt solve quadratic M1 M1 for attempt to solve using factors in terms of cos				answer		
10 $\cos^2 y - \cos y - 2 = 0$ (2 $\cos y - 1$)(5 $\cos y + 2$) = 0 $\cos y = \frac{1}{2}$, $\cos y = -\frac{2}{5}$ M1 M1 for attempt to reduce to term quadratic and attempt solve quadratic M1 M1 for attempt to solve use factors in terms of cos	(ii)	$10\sin^2 y + \cos y = 8$				
$(2 \cos y - 1)(5 \cos y + 2) = 0$ $\cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$ M1 $\text{term quadratic and attempt solve quadratic}$ M1 $\text{for attempt to solve us} \text{factors in terms of cos}$		$10(1-\cos^2 y) + \cos y = 8$	M1	M1 for use of co	rrect identity	
$\cos y = \frac{1}{2}, \ \cos y = -\frac{2}{5}$ factors in terms of cos		$10\cos^2 y - \cos y - 2 = 0$	M1	term quadratic an		
$\cos y = \frac{1}{2}, \ \cos y = -\frac{2}{5}$		$(2\cos y - 1)(5\cos y + 2) = 0$	M1	M1 for attempt to	-	
$(0^{\circ}, 200^{\circ}, 1, 112, 0^{\circ}, 246, 4^{\circ})$		$\cos y = \frac{1}{2}, \ \cos y = -\frac{2}{5}$		factors in terms	of cos	
y = 60, 300 and $y = 113.6$, 246.4 AI, AI of any pair		$y = 60^{\circ}$, 300° and $y = 113.6^{\circ}$, 246.4°	A1, A1	A1 for any 'pair'		

Page 5	Mark Scheme IGCSE – May/June 2	Mark Scheme IGCSE – May/June 2014		Paper 13
10 (i)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1		
(ii)		M1 A1, 0	M1 for plotting l -1 each error, po plotting, poor lin	or point
(iii)	Gradient: lg $b = 0.4$, $b = 2.5$ (allow 2.45 to 2.55)	M1 A1	M1 for correct us	se of gradient
	Intercept : lg $A = -0.3$, $A = 0.5$ (allow 0.4 to 0.6)	M1 A1	M1 for correct us	se intercept
(iv)	2.1 (allow 2 to 2.2)	M1, A1		

Pa	age 6	j	Mark Scheme		Syllabus	Paper
			IGCSE – May/June 2014		0606	13
11 (i))	at A	$\sqrt{3} \sin 3x + \cos 3x = 0$	M1	M1 for equating attempt to solve	
		tan 3	$x = -\frac{1}{\sqrt{3}}, \ 3x = \frac{5\pi}{6} \ 150^{\circ}$	DM1	DM1 for dealing	g with 3x
(ii	n		$\frac{5\pi}{18}(0.873)$ (allow 50°)	A1 B1, B1	B1 for $\frac{dy}{dx}$	
	1)	uл	$3\sqrt{3}\cos 3x - 3\sin 3x$ $\ln \frac{dy}{dx} = 0, \tan 3x = \sqrt{3}, 3x = \frac{\pi}{3} \text{ or } 3x = 60^{\circ},$	M1	M1 for attempt	to solve $\frac{dy}{dx} = 0$
			$x = \frac{\pi}{9} (0.349) \text{ (allow } 20^\circ \text{)}$	A1		
(ii	ii)	Area	$= \left[-\frac{\sqrt{3}}{3}\cos 3x + \frac{1}{3}x + \frac{1}{3}\sin 3x \right]_{\frac{\pi}{9}}^{\frac{5\pi}{18}}$	M1 A1, A1	M1 for attempt t A1 for each tern	•
			$\frac{\sqrt{3}}{3}\cos\frac{5\pi}{6} + \frac{1}{3}\sin\frac{5\pi}{6} - \left(-\frac{\sqrt{3}}{3}\cos\frac{\pi}{3} + \frac{1}{3}\sin\frac{\pi}{3}\right)$	DM1	DM1 for correct their limits	application of
		$=\frac{2}{3}c$	or 0.667 or better	A1		

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3 Mark Scheme Syllabus Pa					
		IGCSE – October/Nove	ember 2013		0606	11
1	a = 3, b = 2,	B1, B1, B1 [3]	B1 for	each		
2	Using $b^2 - 4ac$ $4k^2 + 8k -$	$y_{2}, 9 = 4 (k + 1)^{2}$ - 5 = 0	M1 DM1		any use of $b^2 - 4ac$ for solution of their	
	$k=-\frac{5}{2},$	$\left(\frac{1}{2}\right)$	A1	A1 for	critical value(s), $\frac{1}{2}$	not necessary
	To be below th	the x-axis $k < -\frac{5}{2}$	A1 [4]	A1 for	$k < -\frac{5}{2}$ only	
	To lie under th $\therefore (k+1)\frac{9}{4(k+1)}$	$x = \frac{3}{2(k+1)}$ $\frac{9}{(k+1)^2} - \frac{9}{2(k+1)} + (k+1)$ the x-axis, $y < 0$ $\frac{1}{1}^2 - \frac{9}{2(k+1)} + (k+1) < 0$ $4(k+1)^2 \text{ or equivalent}$ vious method	M1		a complete method	l to this point.

Page 4		Mark Scheme				Syllabus	Paper
	IGCSE –	October/Nover	nber 2	2013		11	
3 $\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} + \frac{(1+\sin\theta)^2 + \cos^2\theta}{\cos\theta(1+\sin\theta)}$ $= \frac{1+2\sin\theta + \sin^2\theta + \cos^2\theta}{\cos\theta(1+\sin\theta)}$			M1		denom	dealing with the f inator must be cor imerator	
	$\frac{2+2\sin\theta}{\cos\theta(1+\sin\theta)}$		DM1			expansion and us $+\sin^2\theta = 1$	e of
$=\frac{1}{cc}$	$\frac{2(1+\sin\theta)}{\cos\theta(1+\sin\theta)}$		DM1		M1 for	attempt to factori	se
= 2 s	$\sec heta$		A1	[4]	A1 for	obtaining final an	swer correctly
Alter	native solution:						
	$+\tan\theta + \frac{1}{\sec\theta + \tan\theta}$ $\pm (2\theta + \tan\theta)^2 + 1$	NTF		R	M1 6	1 - 1'	C
$=\frac{\sec}{\cos}$	$\frac{(c\theta + \tan\theta)^2 + 1}{\sec\theta + \tan\theta}$ $\frac{(c\theta + \tan\theta)^2}{(c\theta + 2\sec\theta \tan\theta + \tan^2)^2}$ $\frac{(c\theta + \tan\theta)^2}{\sec\theta + \tan\theta}$		M1		M1 for	dealing with the f	ractions
	$\frac{\sec^2 \theta + 2 \sec \theta \tan \theta}{\sec \theta + \tan \theta}$ $\frac{\sec \theta + \tan \theta}{\sec \theta + \tan \theta}$ $\frac{\sec \theta + \tan \theta}{\sec \theta + \tan \theta}$		DM1 DM1		$\tan^2 \theta$	expansion and us +1 = sec ² θ or attempt to facto	
= 2 se	$rc\theta$		A1		A1 for	obtaining final an	swer correctly
4 (i) n (A)) = 3	w.satp	B1	[1]	correct $n(A) =$	elements to get B	then they must be 1 leading to listed and correct
(ii) n (B) = 4		B1	[1]	correct B1. If t	elements leading	, then they must be to $n(B) = 4$ to get and correct answer
(iii) A∪	$B = \{60^\circ, 240^\circ, 300, 42\}$	20°, 600°}	√ B1	[1]		through on any se not allow any rep	ets listed in (i) and petitions.
(iv) A ∩	$B = \{60^\circ, 420^\circ\}$		√B1	[1]	Follow (ii) .	through on any se	ets listed in (i) and

Page 5	Mark Schem			Syllabus	Paper
	IGCSE – October/Nove	ember 2013		0606	11
5 (i) $9x - \frac{1}{3}co$	s3x(+c)	B1, B1, B1 [3]	B1 for	9x, B1 for $\frac{1}{3}$ or cos $-\frac{1}{3}\cos 3x$ ne omission of + c	s3 <i>x</i>
(ii) $\begin{bmatrix} 9x - \frac{1}{3}cc \\ = \left(9\pi - \frac{1}{2}cc \right) \end{bmatrix}$	$\left[\cos 3x\right]_{\frac{\pi}{9}}^{\pi} -\left(\pi - \frac{1}{3}\cos\frac{\pi}{3}\right)$	M1	M1 for	correct use of limit	ts in their answer
$=8\pi + \frac{1}{2}$) (3 3)	A1, A1 [3]	to (i) A1 for	each term	
$6 \qquad \mathbf{f}\left(\frac{1}{2}\right) = \frac{a}{8} + 1 + \frac{a}{8} + 1 + \frac{a}{8} + 1 + \frac{a}{8} + \frac{a}{8}$	$+\frac{b}{2}-2$	M1	M1 for	substitution of $x =$	$\frac{1}{2}$ into f (x)
leading to $a +$	4b - 8 = 0	A1	A1 for	correct equation in	any form
f(2) = 2f(-1)		M1	x = -1	attempt to substitutint $f(x)$ and use $f(x) = f(-1)$	
8a + 16 + 2b -	2 = 2(-a + 4 - b - 2)	A1		a correct equation i	n any form
leading to $10a$ $\therefore a = -2, b =$	+4b+10=0 or equivalent = $\frac{5}{2}$	DM1 A1 [6]	attemp obtain	on both previous M t to solve simultane either <i>a</i> or <i>b</i> both correct	
3. Satprep.co.					

Page	e 6	Mark Scheme				Syllabus	Paper
		IGCSE – October/Nove	mber	2013		0606	11
					[
(i	(i) 924)	B1 B1 B1 B1	 [1] [1] [1] [1] 			
(ii	(i.e. 924	$4 - {\binom{8}{3} \times {}^{4}C_{3}} - {\binom{8}{2} \times {}^{4}C_{4}}$ 4 - 3M 3W - 2M 4W 4 - 224 - 28	M1 A1 A1	[3]	correct A1 for	3 terms, at least 2 in terms of <i>C</i> nota any pair (must be a final answer	tion or evaluated.
5	M 1W	${}^{8}C_{4} \times {}^{4}C_{2} = 420$ ${}^{8}C_{5} \times {}^{4}C_{1} = 224$ ${}^{8}C_{6} = 28$	M1 A1		correct	3 terms, at least 2 in terms of <i>C</i> nota any pair (must be c	tion or evaluated.
		Total = 672	A1		A1 for	final answer	
8 (i)			B1 B1 B1 B1		B1 for B1 for	correct shape (-3, 0) or -3 seen o (2, 0) or 2 seen on (0, 6) or 6 seen on	graph
(ii) (·	$-\frac{1}{2}, \frac{25}{4}$		B1, B	[4] 1 [2]	B1 for	each	
(iii) k	$x > \frac{25}{4}$ or	$\frac{25}{4} < k \ (\leq 14)$	B1	[1]			

	Page 7	Mark Schem	е		Syllabus	Paper
		IGCSE – October/Nove	ember 2013		0606	11
9	(a) $12x^2 \ln(2$	$(x+1) + 4x^3 \left(\frac{2}{2x+1}\right)$	M1 A2, 1, 0 [3]	M1 for differentiation of a correct produc -1 for each error		
	(b) (i) $\frac{dy}{dx}$	$\frac{1}{x} = \frac{(x+2)^{\frac{1}{2}} 2 - 2x(x+2)^{-\frac{1}{2}} \frac{1}{2}}{x+2}$	M1, A1		differentiation of a ng $(x+2)^{\frac{1}{2}}$	quotient
		$=\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x)$	DM1		correct unsimplified or attempt to simpli	
	=-	$\frac{x+4}{\left(x+2\right)^{\frac{3}{2}}}$	A1 [4]	A1 for given a	correct simplificationswer	on to obtain the
	Or:		DD.			
		$\left(-\frac{1}{2}\right)(x+2)^{-\frac{3}{2}} + (x+2)^{-\frac{1}{2}}(2)$	M1, A1		differentiation of a ng $(x+2)^{-\frac{1}{2}}$	product
	$=(x - x)^{-1}$	$(+2)^{-\frac{3}{2}}(2(x+2)-x)$		A1 all	correct unsimplified	1
	$=$ $\frac{x}{x}$	$\frac{+4}{+2)^{\frac{3}{2}}}$	DM1 A1		or attempt to simpli correct simplificationswer	-
	(ii) $\frac{10x}{\sqrt{x+2}}$ ((+ c)	M1,A1 [2]	A1 cor	$\frac{1}{5} \times \frac{2x}{\sqrt{x+2}} \text{ or } 5 \times \frac{1}{\sqrt{x+2}}$ rect only, allow unside omission of $+c$	V
	(iii) $\left[\frac{10x}{\sqrt{x+2}}\right]$		M1		correct application to (b)(ii)	of limits in their
		$=\frac{40}{3}$	A1 [2]			

ge 8	Mark Scheme		Syllabus	Paper			
	IGCSE – October/Nove	mber 2013		0606	11		
$\sqrt{20}$ or 4.	47	B1 [1]					
Grad AB =	$=\frac{1}{2}, \perp \text{grad} = -2$	M1	M1 for attempt at a perp gradient				
	2	M1, A1	M1 for attempt at straight line equation, must be perpendicular and passing through				
(y = -2x +	6)	[3]		ow unsimplified			
(iii) Coords of $C(x, y)$ and $BC^2 = 20$ $(x-1)^2 + (y-4)^2 = 20$ or Coords of $C(x, y)$ and $AC^2 = 40$			M1 for attempt to obtain relationship using an appropriate length and the point $(1, 4)$ or (-3, 2)				
$(x+3)^2 +$	$(y-2)^2 = 40$	A1	A1 for a correct equation				
Need inter	resection with $y = -2x + 6$,	DM1	DM1 for attempt to solve with $y = -2x + 6$ and obtain a quadratic equation in terms of one variable only				
		R					
ving $x =$ nd $y =$	3, -1 0, 8	DM1 A1, A1 [6]			uadratic		
r , using ve	ector approach:						
$\vec{B} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$		B1	May be	e implied			
$\overrightarrow{OC} = \begin{pmatrix} 1\\4 \end{pmatrix} + \begin{pmatrix} -2\\4 \end{pmatrix} = \begin{pmatrix} -1\\8 \end{pmatrix}$ $\overrightarrow{OC} = \begin{pmatrix} 1\\4 \end{pmatrix} + \begin{pmatrix} 2\\-4 \end{pmatrix} = \begin{pmatrix} 3\\0 \end{pmatrix}$					ect		
			A1 for each element correct				
	Grad $AB =$ \perp line y (y = -2x + Coords of $(x - 1)^2 +$ Coords of $(x + 3)^2 +$ Need inter leads to $5x$ $5y^2 - 40y$ wing $x =$ nd $y =$ Or, using very $\overrightarrow{AB} = \begin{pmatrix} 4\\ 2 \end{pmatrix}$ $\overrightarrow{OC} = \begin{pmatrix} 1\\ 4 \end{pmatrix} +$	$\sqrt{20} \text{ or } 4.47$ Grad $AB = \frac{1}{2}, \perp \text{ grad} = -2$ $\perp \text{ line } y - 4 = -2(x - 1)$ $(y = -2x + 6)$ Coords of $C(x, y)$ and $BC^2 = 20$ $(x - 1)^2 + (y - 4)^2 = 20$ or Coords of $C(x, y)$ and $AC^2 = 40$ $(x + 3)^2 + (y - 2)^2 = 40$ Need intersection with $y = -2x + 6$, leads to $5x^2 - 10x - 15 = 0$ or $5y^2 - 40y - = 0$ wing $x = 3, -1$ nd $y = 0, 8$ Pr, using vector approach: $\overrightarrow{B} = \begin{pmatrix} 4\\ 2 \end{pmatrix}$ $\overrightarrow{OC} = \begin{pmatrix} 1\\ 4 \end{pmatrix} + \begin{pmatrix} -2\\ 4 \end{pmatrix} = \begin{pmatrix} -1\\ 8 \end{pmatrix}$	$\sqrt{20}$ or 4.47 B1 [1] Grad $AB = \frac{1}{2}, \perp$ grad = -2 M1 M1 \perp line $y - 4 = -2(x - 1)$ M1 M1, A1 $(y = -2x + 6)$ [3] Coords of $C(x, y)$ and $BC^2 = 20$ M1 $(x - 1)^2 + (y - 4)^2 = 20$ or Or Coords of $C(x, y)$ and $AC^2 = 40$ M1 Need intersection with $y = -2x + 6$, DM1 leads to $5x^2 - 10x - 15 = 0$ or DM1 $y = 0, 8$ DM1 Or, using vector approach: B1 $\overrightarrow{AB} = \begin{pmatrix} 4\\ 2 \end{pmatrix}$ B1 $\overrightarrow{C} = \begin{pmatrix} 1\\ 4 \end{pmatrix} + \begin{pmatrix} -2\\ 4 \end{pmatrix} = \begin{pmatrix} -1\\ 8 \end{pmatrix}$ M1	$\sqrt{20}$ or 4.47B1Grad $AB = \frac{1}{2}, \perp$ grad = -2M1 \perp line $y - 4 = -2(x - 1)$ M1, A1 $(y = -2x + 6)$ [3]Coords of $C(x, y)$ and $BC^2 = 20$ M1 $(x - 1)^2 + (y - 4)^2 = 20$ orGoods of $C(x, y)$ and $AC^2 = 40$ Coords of $C(x, y)$ and $AC^2 = 40$ M1Need intersection with $y = -2x + 6$,DM1Need intersection with $y = -2x + 6$,DM1 $y = 0, 8$ DM1 $y = 0, 8$ DM1 $DM1$ A1 for $B1$ M2 box $M1$ for an approach:B1 $\overline{M2} = \begin{pmatrix} 4\\ 2 \end{pmatrix}$ M1 $\overline{DC} = \begin{pmatrix} 1\\ 4 \end{pmatrix} + \begin{pmatrix} -2\\ 4 \end{pmatrix} = \begin{pmatrix} -1\\ 8 \end{pmatrix}$ $\overline{M1}$ M1 for $M1$ forM1 for $M1$ forA1 for $M1$ M1 for $M1$ forA1 for $\overline{M2} = \begin{pmatrix} 4\\ 2 \end{pmatrix}$ M1 $\overline{M1}$ M1 for $\overline{M2} = \begin{pmatrix} 1\\ 4 \end{pmatrix} + \begin{pmatrix} -2\\ 4 \end{pmatrix} = \begin{pmatrix} -1\\ 8 \end{pmatrix}$ $\overline{M1}$ M1 for	$\sqrt{20}$ or 4.47B1Grad $AB = \frac{1}{2}, \perp$ grad = -2M1M1 for attempt at a perp § \perp line $y - 4 = -2(x - 1)$ M1M1 for attempt at straight must be perpendicular and B. $(y = -2x + 6)$ [3]M1 for attempt to obtain n an appropriate length and $(-3, 2)$ Coords of $C(x, y)$ and $AC^2 = 40$ $(x + 3)^2 + (y - 2)^2 = 40$ M1Need intersection with $y = -2x + 6$, $1d y = 0, 8$ M1DM1DM1 for attempt to solve and obtain a quadratic equ one variable onlyVing $x = 3, -1$ $nd y = 0, 8$ DM1 $A1, A1$ M1for attempt to solve q A1 for each 'pair'M1M1 for attempt to solve q A1 for each element correctM2M1 A1M3M1 for attempt to solve q A1 for each element correct		

Page 9	Mark Scheme	e		Syllabus	Paper	
	IGCSE – October/Nove	mber 2013		0606	11	
11 (a) (i) $\begin{pmatrix} 4\\4 \end{pmatrix}$	$\begin{pmatrix} 3\\3 \end{pmatrix}$	B1 [1]				
	$\mathbf{r} = \begin{pmatrix} 16 & 9\\ 12 & 13 \end{pmatrix}$	B1, B1 [2]	B1 for any 2 correct elements B1 for all correct			
	s the inverse matrix of \mathbf{A}^2 $\frac{1}{00} \begin{pmatrix} 13 & -9 \\ -12 & 16 \end{pmatrix}$	B1, B1 [2]	Follow through on their \mathbf{A}^2		2	
(b) det $C = x_{0}$ = 2:	$(x-1) - (-1)(x^2 - x + 1)$ $x^2 - 2x + 1$	M1 A1	M1 for attempt to obtain det C A1 for this correct quadratic expression from a correct det C			
<i>b</i> ² – 4 <i>ac</i> <	< 0, 4 - 8 < 0	DM1	solve u comple	or use of discrimina sing the formula, o the the square in ord real roots.	r attempt to	
No real so	plutions (so det $\mathbf{C} \neq 0$)	A1 [4]		correct reasoning o re no real roots.	r statement that	

	Pag	age 10 Mark Scheme			Syllabus	Paper					
				IGCSE – October/Nove	mber	2013		0606	11		
12	(a)	(i)		10) = 299, f(8) = 191 n point at (0, -1) or when $y = -1$	M1 B1		x = 8, r B1 Ma	M1 for substitution of either $x = -10$ or $x = 8$, may be seen on diagram B1 May be implied from final answer, may be seen on diagram			
			∴ r	ange $-1 \le y \le 299$	A1	[3]		ave \leq for A1, do no	ot allow <i>x</i>		
		(ii)	$x \ge$	0 or equivalent	B1	[1]	Allow any domain which will make f a one-one function Assume upper and lower bound when necessary.				
	(b)	(i)		$(x) = \ln\left(\frac{x+2}{4}\right)$	M1		inverse	M1 for complete method to find the form inverse function, must involve ln or lg if appropriate. May still be in terms of <i>y</i> .			
			or	$\frac{\lg\left(\frac{x+2}{4}\right)}{\lg e}$	A1	[2]	A1 mu	st be in terms of x			
		(ii)	gh(x) = g(1n5x) = $4e^{1n5x} - 2$	M1 A1			correct order correct expression	$4e^{\ln 5x} - 2$		
			20 <i>x</i>	x - 2 = 18, x = 1	A1	[3]	A1 for workin	correct solution fro g	m correct		
				$h(x) = g^{-1}(18)$ n5x = 1n5	M1 A1			correct order correct equation			
			lead	ding to $x = 1$	A1		A1 for workin	correct solution fro	om correct		
	ZZ. satprep.co.										

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3	Mark Schem			Syllabus	Paper	
		IGCSE – October/Nove	ember 2013		0606	12	
1	a = 3, b = 2,	<i>c</i> = 1	B1, B1, B1 [3]	B1 for each			
2	Using $b^2 - 4ac$ $4k^2 + 8k -$	$9 = 4 (k+1)^{2}$ - 5 = 0	M1 DM1	M1 for any use of $b^2 - 4ac$ DM1 for solution of their quadratic in k			
	$k=-\frac{5}{2},$	$\left(\frac{1}{2}\right)$	A1	A1 for	critical value(s), $\frac{1}{2}$	not necessary	
	To be below th	the x-axis $k < -\frac{5}{2}$	A1 [4]	A1 for $k < -\frac{5}{2}$ only			
	To lie under th $\therefore (k+1)\frac{9}{4(k+1)}$	$x = \frac{3}{2(k+1)}$ $\frac{9}{(k+1)^2} - \frac{9}{2(k+1)} + (k+1)$ the x-axis, $y < 0$ $\frac{1}{1}^2 - \frac{9}{2(k+1)} + (k+1) < 0$ $4(k+1)^2 \text{ or equivalent}$ vious method	M1		• a complete method	l to this point.	

Page 4		Mark Schem				Syllabus	Paper	
		GCSE – October/Nove	mber	2013		0606	12	
	$\frac{\theta}{1+\sin\theta} + \frac{\cos\theta}{1+\sin\theta} + \frac{(1+\sin\theta)^2}{\cos\theta(1+\sin\theta)}$	$\frac{+\sin\theta}{\cos\theta(1+\sin\theta)}^{2} + \cos^{2}\theta}{\frac{\theta}{\cos\theta(1+\sin\theta)}}$	deno			M1 for dealing with the fractions, denominator must be correct, be generous with numerator		
	$\frac{2+2\sin\theta}{\cos\theta(1+\sin\theta)}$		DM1			M1 for expansion and use of $\cos^2 \theta + \sin^2 \theta = 1$		
= -	$\frac{2(1+\sin\theta)}{\cos\theta(1+\sin\theta)}$		DM1		M1 for	attempt to factori	se	
= 2	$2 \sec \theta$		A1	[4]	A1 for obtaining final answer correctly			
Alte	rnative solutio	n:						
	$\theta + \tan \theta + \frac{1}{\sec \theta}$		PF	RA				
	$\frac{\operatorname{ec} \theta + \tan \theta}{\operatorname{sec} \theta + \tan \theta}^{2} + 1$		M1		M1 for	dealing with the f	fractions	
	$\frac{c^2 \theta + 2 \sec \theta \tan \theta}{\sec \theta + 1}$	$\tan \theta$						
	$\frac{\sec^2\theta + 2\sec\theta t}{\sec\theta + \tan\theta}$		DM1			expansion and us $+1 = \sec^2 \theta$	e of	
$=\frac{2s}{s}$	$\frac{\sec\theta(\sec\theta + \tan\theta)}{\sec\theta + \tan\theta}$	$\underline{\theta})$	DM1	2		or attempt to facto	orise	
$= 2 \mathrm{s}$	$ec\theta$		A1		A1 for	obtaining final an	swer correctly	
4 (i) n (2	4) = 3	ZZV.sat	B1	[1]	correct $n(A) =$	ents listed for (i), elements to get B 3. If they are not given then B1.	e	
(ii) n (<i>i</i>	8) = 4		B1	[1]	correct B1. If t	elements leading	then they must be to n $(B) = 4$ to get and correct answer	
(iii) A ($ \cup B = \{60^\circ, 240^\circ\} $	°, 300, 420°, 600°}	√ B 1	[1]	Follow through on any sets listed in (i) and (ii). Do not allow any repetitions.			
(iv) A ($B = \{60^\circ, 420\}$	°}	√B1	[1]	Follow (ii).	through on any se	ets listed in (i) and	

Page 5	Mark Schem			Syllabus	Paper	
	IGCSE – October/Nove	ember 2013		0606	12	
5 (i) $9x - \frac{1}{3}co$	s3x(+c)	B1, B1, B1 [3]	B1 for 9x, B1 for $\frac{1}{3}$ or cos3x B1 for $-\frac{1}{3}$ cos3x Condone omission of + c			
(ii) $\left[9x - \frac{1}{3}cc\right]$	9					
	$-\cos 3\pi$ $\left(\pi - \frac{1}{3}\cos \frac{\pi}{3}\right)$	M1	M1 for to (i)	correct use of limit	ts in their answer	
$=8\pi + \frac{1}{2}$		A1, A1 [3]	A1 for	each term		
$6 \qquad \mathbf{f}\left(\frac{1}{2}\right) = \frac{a}{8} + 1 + \frac{a}{8} + 1 + \frac{a}{8} + 1 + \frac{a}{8} + \frac{a}{8}$	$-\frac{b}{2}-2$	M1	M1 for	substitution of $x =$	$\frac{1}{2}$ into f(x)	
leading to $a +$	4b - 8 = 0	A1	A1 for correct equation in any form			
f(2) = 2f(-1)		M1	M1 for attempt to substitute $x = 2$ or $x = -1$ into $f(x)$ and use $f(2) = \pm 2f(-1)$ or $2f(2) = \pm f(-1)$			
8a + 16 + 2b -	2 = 2(-a + 4 - b - 2)	A1		a correct equation i	in any form	
	+4b+10=0 or equivalent	DM1	DM1 (on both previous M	marks) for	
$\therefore a = -2, b =$	$=\frac{1}{2}$	A1 [6]	attemp obtain	t to solve simultane either <i>a</i> or <i>b</i> both correct		
3. satprep.co.						

Page 6	Mark Scheme			Syllabus	Paper		
	IGCSE – October/Nove	mber 20	013	0606	12		
7 (a) (i) 360 (ii) 120 (b) (i) 924 (ii) 28	0 4	B1 [B1 [B1	[1] [1] [1] [1]				
(i.e. 92	$4 - ({}^{8}C_{3} \times {}^{4}C_{3}) - ({}^{8}C_{2} \times {}^{4}C_{4})$ 24 - 3M 3W - 2M 4W) 24 - 224 - 28	M1 A1 A1	correct A1 for	M1 for 3 terms, at least 2 of which must be correct in terms of <i>C</i> notation or evaluated. A1 for any pair (must be evaluated) A1 for final answer			
5M 1W	${}^{8}C_{4} \times {}^{4}C_{2} = 420$ ${}^{8}C_{5} \times {}^{4}C_{1} = 224$ ${}^{8}C_{6} = 28$	M1 A1	correc	M1 for 3 terms, at least 2 of which must be correct in terms of C notation or evaluated. A1 for any pair (must be evaluated)			
	Total $= 672$	A1	A1 for	r final answer			
8 (i)		B1 B1 B1 B1	B1 for B1 for B1 for	c correct shape (-3, 0) or -3 seen of (2, 0) or 2 seen on (0, 6) or 6 seen on	graph		
(ii) $\left(-\frac{1}{2}, \frac{25}{4}\right)$	$\left(\frac{5}{2}\right)$	B1, B1	[2] B1 for	r each			
(iii) $k > \frac{25}{4}$ o	$r \frac{25}{4} < k \ (\le 14)$	B1 [[1]				

	Page 7	Mark Schem	e		Syllabus	Paper		
		IGCSE – October/Nove	ember 2013		0606	12		
9	(a) $12x^2 \ln(2$	$(x+1) + 4x^3 \left(\frac{2}{2x+1}\right)$	M1 A2, 1, 0 [3]	M1 for differentiation of a correct product -1 for each error				
	(b) (i) $\frac{dy}{dx}$	$\frac{1}{x} = \frac{(x+2)^{\frac{1}{2}} 2 - 2x(x+2)^{-\frac{1}{2}} \frac{1}{2}}{x+2}$	M1, A1	M1 for differentiation of a quotient involving $(x+2)^{\frac{1}{2}}$				
		$=\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x)$	DM1	A1 all correct unsimplified DM1 for attempt to simplify				
	=-	$\frac{x+4}{\left(x+2\right)^{\frac{3}{2}}}$	A1 [4]	A1 for given a	correct simplificationswer	on to obtain the		
	Or:		DD.					
		$\left(-\frac{1}{2}\right)(x+2)^{-\frac{3}{2}}+(x+2)^{-\frac{1}{2}}(2)$	M1, A1		differentiation of a ng $(x+2)^{-\frac{1}{2}}$	product		
	$=(x - x)^{-1}$	$(+2)^{-\frac{3}{2}}(2(x+2)-x)$		A1 all	correct unsimplified	1		
	$=$ $\frac{x}{x}$	$\frac{+4}{+2)^{\frac{3}{2}}}$	DM1 A1		or attempt to simpli correct simplificationswer	-		
	(ii) $\frac{10x}{\sqrt{x+2}}$ ((+ c)	M1,A1 [2]	M1 for $\frac{1}{5} \times \frac{2x}{\sqrt{x+2}}$ or $5 \times \frac{2x}{\sqrt{x+2}}$ A1 correct only, allow unsimplified. Condone omission of $+c$				
	(iii) $\left[\frac{10x}{\sqrt{x+2}}\right]$		M1	M1 for correct application of limits in their answer to (b)(ii)				
		$=\frac{40}{3}$	A1 [2]					

$\sqrt{20} \text{ or } 4.4$	IGCSE – October/Nove	mber 2013		0606	12		
	7	B1					
rad AB =		[1]					
(ii) Grad $AB = \frac{1}{2}, \perp \text{ grad} = -2$			M1 for attempt at a perp gradient				
	<u>L</u>	M1, A1	M1 for attempt at straight line equation, must be perpendicular and passing through				
y = -2x +	6)	[3]		ow unsimplified			
(iii) Coords of $C(x, y)$ and $BC^2 = 20$ $(x-1)^2 + (y-4)^2 = 20$ or Coords of $C(x, y)$ and $AC^2 = 40$			M1 for attempt to obtain relationship using an appropriate length and the point $(1, 4)$ or (-3, 2)				
$(x+3)^2 + ($	$(y-2)^2 = 40$	A1	A1 for a correct equation				
Veed inter	section with $y = -2x + 6$,	DM1	DM1 for attempt to solve with $y = -2x + 6$ and obtain a quadratic equation in terms of one variable only				
		R					
$\begin{array}{ll} \text{ing} & x = 1\\ 1 & y = 0 \end{array}$	3, -1 0, 8	DM1 A1, A1 [6]			uadratic		
, using ve	ctor approach:						
$\vec{B} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$		B1	May be	e implied			
$\overrightarrow{OC} = \begin{pmatrix} 1\\4 \end{pmatrix} + \begin{pmatrix} -2\\4 \end{pmatrix} = \begin{pmatrix} -1\\8 \end{pmatrix}$ $\overrightarrow{OC} = \begin{pmatrix} 1\\4 \end{pmatrix} + \begin{pmatrix} 2\\-4 \end{pmatrix} = \begin{pmatrix} 3\\0 \end{pmatrix}$					ect		
			A1 for each element correct				
	$y = -2x + Coords of (x - 1)^{2} + (Coords of (x + 3)^{2} + (Coords of$	$(x - 1)^{2} + (y - 4)^{2} = 20 \text{ or}$ Coords of $C(x, y)$ and $AC^{2} = 40$ $(x + 3)^{2} + (y - 2)^{2} = 40$ Need intersection with $y = -2x + 6$, eads to $5x^{2} - 10x - 15 = 0$ or $y^{2} - 40y - = 0$ ing $x = 3, -1$ y = 0, 8 , using vector approach: $B = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ $C = \begin{pmatrix} 1 \\ 4 \end{pmatrix} + \begin{pmatrix} -2 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}$	[3] y = -2x + 6) (3] Coords of $C(x, y)$ and $BC^2 = 20$ $(x - 1)^2 + (y - 4)^2 = 20$ or Coords of $C(x, y)$ and $AC^2 = 40$ $(x + 3)^2 + (y - 2)^2 = 40$ Need intersection with $y = -2x + 6$, (a) Example 1 (b) y = 0, 8 (b) DM1 A1 DM1 A1 DM1 A1, A1 [6] B1 A1, A1 [6]	must b y = -2x + 6) (3) y = -2x + 6) (3) x = -2x + 6, (4) y = -2x + 6, (5) x = -2x + 6, (7) x = -2x + 6, (8) x = -2x + 6, (9) x = -2x + 6, (9	y = -2x + 6) (3) y = -2x + 6) (3) y = -2x + 6) (3) M1 $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$		

Page 9	Mark Scheme	9		Syllabus	Paper	
	IGCSE – October/Nove	mber 2013		0606	12	
11 (a) (i) $\begin{pmatrix} 4\\ 4 \end{pmatrix}$	$\begin{pmatrix} 3\\3 \end{pmatrix}$	B1 [1]				
	$\mathbf{r} = \begin{pmatrix} 16 & 9\\ 12 & 13 \end{pmatrix}$	B1, B1 [2]	B1 for any 2 correct elements B1 for all correct			
	s the inverse matrix of \mathbf{A}^2 $\frac{1}{00} \begin{pmatrix} 13 & -9 \\ -12 & 16 \end{pmatrix}$	B1, B1 [2]	Follow through on their \mathbf{A}^2		2	
(b) det $C = x_{0}$ = 2:	$(x-1) - (-1)(x^2 - x + 1)$ $x^2 - 2x + 1$	M1 A1	M1 for attempt to obtain det C A1 for this correct quadratic expression from a correct det C			
$b^2 - 4ac <$	< 0, 4 - 8 < 0	DM1	solve u comple	or use of discrimina sing the formula, o te the square in ord real roots.	r attempt to	
No real so	plutions (so det $\mathbf{C} \neq 0$)	A1 [4]		correct reasoning or re no real roots.	r statement that	

	Pag	ge 10						Syllabus	Paper		
				IGCSE – October/Nove	mber	2013		0606	12		
12	(a)	(i)		10) = 299, f(8) = 191	M1			M1 for substitution of either $x = -10$ or			
			Mi	n point at $(0, -1)$ or when $y = -1$	B1			may be seen on diag			
								y be implied from f	final answer, may		
			•	1 < 1 < 2 00	A 1			n on diagram	4		
			•••	ange $-1 \le y \le 299$	A1	[3]	Must n	have \leq for A1, do not	n allow x		
						[2]					
		(ii)	$x \ge$	0 or equivalent	B1		Allow	any domain which	will make f a		
				-		[1]		e function			
								e upper and lower l	oound when		
							necess	ary.			
	(h)	(i)	σ^{-l}	$(x) = \ln\left(\frac{x+2}{4}\right)$	M1		M1 for	complete method t	o find the form		
	(0)	(1)	Б	(x) = (x) + (x)	1411			e function, must inv			
								riate. May still be			
				$lg\left(\frac{x+2}{2}\right)$							
			or	$\frac{\lg\left(\frac{x+2}{4}\right)}{\lg e}$	A1	[0]	A1 mu	st be in terms of x			
			01	lg e	D	[2]					
		(ii)	gh(f(x) = g(1n5x) = $4e^{1n5x} - 2$	M1			correct order	1 lu5r		
				$= 4e^{-2}$	A1		Al for	correct expression	$4e^{110x} - 2$		
			20x	$x - 2 = 18, \ x = 1$	A1		A1 for	correct solution fro	om correct		
						[3]	workin				
								-			
			Or	$h(x) = g^{-1}(18)$	M1			correct order			
]	n5x = 1n5	A1		Al for	correct equation			
			lea	ding to $x = 1$	A 1		A1 for	correct solution fro	om correct		
			ieu		111		worki				
	ZZZ .Satprep.co.										

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	0606	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.

When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Pag	e 3	Mark Scheme		Syllabus	Paper	
			GCE O LEVEL – Octobe	r/Novembe	r 2013	0606	13
1	,	(i) ${}^{6}C_{2} (2^{4}) (px)^{2} \text{ or } {6 \choose 2} 2^{4} (px)^{2}$ $240 p^{2} = 60$ $p = \frac{1}{2}$		B1 M1 A1 [3]	Seen or implied, unsimplified M1 for their coefficient of $x^2 = 60$ and a to solve		
	(ii) c	coefficien	ts of the terms needed	M1	M1 for re	alising that 2 terms	are involved
	($(-1)^{6}C_{1}(2)$	$(2)^5 p + (3 \times 60)$	B1	B1 for (-1	1) ${}^{6}C_{1}(2)^{5} p \text{ or } -192$	2 <i>p</i> , using their <i>p</i> .
	=	= 84		A1 [3]			
2	1	$g \frac{y^2}{5y+60}$	$\frac{1}{0} = 1$ g10	B1 B1		$g y = lg y^{2}$ = lg10 or equivalent	t, allow when seen
	Or 1	$g y^2 = lg 1$	0 (5 <i>y</i> + 60)	M1		$e \text{ of } \log A - \log B = \log B = \log AB$	logA/B
	1	•	600 = 0 y = -10, 60 e positive so $y = 60$	DM1 A1 [5]	and an att	forming a 3 term qu empt to solve = 60 only	adratic equation
			222 sat	tpref	.00		

Page 4	Mark Sche	eme		Syllabus	Paper
	GCE O LEVEL – Octobe	r 2013	0606	13	
$3 \tan^2\theta - \sin^2\theta$		Marks are awarded only if they can lead to a complete proof for the methods other than those shown below			
	$=\frac{\sin^2\theta - \sin^2\theta\cos^2\theta}{\cos^2\theta}$	M1	M1 for dealing with tan and a fraction		
	$=\frac{\sin^2\theta(1-\cos^2\theta)}{\cos^2\theta}$	M1	M1 for fa	ctorising	
	$=\frac{\sin^4\theta}{\cos^2\theta}$	M1	M1 for us	se of identity $\cos^2 \theta$	$\theta + \sin^2 \theta = 1$
$=\sin^4 heta\sec^2 heta$		A1 [4]	A1 for all correct		
Alt solution 1					
Using $\tan^2 \theta = \sin^2 \theta$	$\theta \sec^2 \theta$				
LHS = $\sin^2 \theta s$		M1	M1 use of $\tan^2 x = \sin^2 x \sec^2 x$		
$= \sin^2 \theta ($ = $\sin^2 \theta t$	$\sec^2 \theta - 1$	M1	M1 for factorising		
		M1		se of identity	
$=\sin^4 \theta$	$\sec^2 \theta$	A1	A1 for all correct		
Alt solution 2					
$RHS = sin^4 \theta s$	$ec^2 \theta$				
$=\frac{\sin^2\theta}{\cos^2\theta}$		M1	M1 for sp	plitting sin ⁴ $ heta$ and us	e of identity
$=\frac{\sin^2\theta(1-\cos^2\theta)}{\cos^2\theta}$		M1	M1 for multiplication		
$=\frac{\sin^2\theta-\sin^2\theta\cos^2\theta}{\cos^2\theta}$		M1	M1 for writing as two terms and cancelling		and cancelling
$= \frac{\sin^2 \theta}{\cos^2 \theta} - \frac{\sin^2 \theta \cos^2 \theta}{\cos^2 \theta}$ $= \tan^2 \theta - \sin^2 \theta$		AIres	A1 for all	correct	
$= \tan^2 \theta$	$-\sin^2\theta$				

Page 5		Mark Scheme		Syllabus	Paper	
	GCE O LEVEL – Octobe	r/Novembe	r 2013	0606	13	
4 (i) $\frac{dy}{dx} = \frac{(x+x)^2}{(x+x)^2}$	$\frac{(3)^2 2e^{2x} - e^{2x} 2(x+3)}{(x+3)^4}$	M1	M1 for att	tempt at quotient ru	ıle	
		A2, 1, 0	-1 for eac	h error		
$=\frac{2e^2}{(x)}$	$(x+2)^{(x+2)}, A=2$	A1 [4]		be convinced of correct simplification ght of $(x + 3 - 1)$ or $(x + 2)(x + 3)$		
Alt solution						
$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{2\mathrm{x}} \left(-2\right)$	$(x+3)^{-3} + 2e^{2x}(x+3)^{-2}$	M1	M1 for att	tempt at product ru	le	
2 (λ.	A2,1,0	-1 for eac	h error		
$=\frac{2e^{2x}(x+1)}{(x+3)}$	$(\frac{2}{3}), A = 2$	A1	Must be convinced of correct simplification e.g. sight of $(x + 3 - 1)$ or $(x + 2)(x + 3)$			
(ii) $x = -2, y$	$= e^{-4}$	B1, B1 [2]	Accept 1/	e ⁴		
5 (i) $f^{2}(x) = f$	$(2x^3)$					
= 2	$2(2x^3)^3$ or $2(2(\frac{1}{2})^3)^3$	M1	M1 for =	$2(2x^3)^3$ or $2\left(2\left(\frac{1}{2}\right)\right)$	3)3	
=	2 ⁻⁵	A1	For 2 ⁻⁵ onl	У		
		[2]				
Alt method						
$f\left(\frac{1}{2}\right) = \frac{1}{4}$	$f\left(\frac{1}{4}\right) = 2^{-5}$	M1	M1 for f c	of their f $\left(\frac{1}{2}\right)$		
	24	A1	For 2 ⁻⁵ onl			
(ii) $f'(x) = g$ $6x^2 = 4 - 4$	(4) (x) 10x	B1 B1	B1 for 6 <i>x</i> ² B1 for 4 -			
Leading $x = \frac{1}{3}, -2$	to $(3x - 1)(x + 2) = 0$	M1 A1 [4]		lution of quadratic erentiation of both th	equation obtained	

	Page 6	Mark Sche			Syllabus	Paper
		GCE O LEVEL – Octobe	r/Novembe	r 2013	0606	13
6	Area under the	e curve:				
	$\int_{0}^{\sqrt{2}} 4 - x^2 \mathrm{d}x = \bigg $	M1 A1	M1 for at	tempt to integrate		
	=	DM1	DM1 for application of limits			
	=	$=\frac{10\sqrt{2}}{3}$				
	Area of trapez	ium =				
	$\frac{1}{2}(4+2)(\sqrt{2})=$		B1	B1 for are	ea of trapezium, allo	w unsimplified
	Shaded area =	$\frac{10\sqrt{2}}{3} - 3\sqrt{2}$	M1	M1 for su	btraction of the two	areas
	Shaded area =	$\frac{\sqrt{2}}{3}$	A1 [6]	Must be in this form		
	Or : Equation of ch	lord:				
	$y = 4 - \sqrt{2x}$		B1	B1 for the	e equation of the cho	rd unsimplified
	Shaded area =		M1 M1	M1 for su M1 for at	ubtraction tempt to integrate	
	$\left[\frac{\sqrt{2}}{2}x^2 - \frac{x^3}{3}\right]$	$\int_{0}^{\sqrt{2}} = \frac{\sqrt{2}}{3}$	VA1 C	$\sqrt{A1}$ for $\left[-m\frac{x^2}{2}-\frac{x^3}{3}\right]$ or equivalent, when		
		•	DM1 A1 [6]	Ų	radient of their chore application of limits	d

	Ра	Page 7 Mark Scheme		Syllabus	Paper		
			GCE O LEVEL – Octobe	r/Novembe	r 2013	0606	13
7	(i)	$2t^2 - 2(t^2)$	-t+1)	B1	Correct de	eterminant seen unsi	mplified
		Leading t	o, $t = \frac{3}{2}$	M1 A1 [3]	M1 for simplification and solution A1 for solution of det A=1only, not 1/det A		
	(ii)	$\mathbf{A} = \begin{pmatrix} 6\\7 \end{pmatrix}$	$\binom{2}{3}, \mathbf{A}^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix}$	B1, B1	B1 for $\frac{1}{4}$,	B1 for matrix	
		$\begin{pmatrix} 6 & 2 \\ 7 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$	B1	B1 for dea	aling correctly with	the factor of 2
		$\binom{x}{y} = \frac{1}{4} \left(\frac{x}{y} \right)$	$\begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix} \begin{pmatrix} 10 \\ 11 \end{pmatrix}$	M1	M1 for pr	e-multiplying their	$\begin{pmatrix} 10\\ 11 \end{pmatrix}$ by their
					\mathbf{A}^{-1} to obt	ain a column matrix	
		$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -z \end{pmatrix}$), leading to $x = 2, y = -1$	A1 [5]	Allow $\begin{pmatrix} x \\ y \end{pmatrix}$	$\binom{2}{-1}$ for A1	
8	(i)	$\frac{1}{2}(4^2)$ sin	$\theta = 7.5$	M1	M1 for at and equat	tempt to find the are e to 7.5	a of the triangle
		$\sin\theta = \frac{15}{16}$	$\frac{1}{2}, \ \theta = 1.215 \dots$	A1 [2]		lution to obtain the g must include 1.2153.	
	(ii)	$\sin\frac{\theta}{2} = \frac{1}{2}$	$\frac{-CD}{4}$, (CD = 4.567)	M1	M1 for at	tempt to find <i>CD</i>	
		Arc lengt	h = 6(1.215)	B1	B1 for arc	c length	
		Perimeter	= 2 + 2 + 6(1.215) + their <i>CD</i>	M1	M1 for su	m of 4 appropriate 1	engths
			= awrt 15.9	A1 [4]			
	(iii)	Area = $\frac{1}{2}$	$6^{2}(1.215) - 7.5$	B1 M1	B1 for sec M1 for su	ctor area btraction of the 2 are	eas
		= 14	.4 (awrt)	A1 [3]			

Page 8	Mark Scheme			Syllabus Paper			
	GCE O LEVEL – Octobe	r/Novembe	r 2013	0606	13		
6 cos (3 co	(a) (i) $6(1-\cos^2 x) = 5 + \cos x$ $6\cos^2 x + \cos x - 1 = 0$ $(3\cos x - 1)(2\cos x + 1) = 0$ $x = 70.5^\circ x = 120^\circ$			M1 for use of $\sin^2 x = (1 - \cos^2 x) \cos^2 x$ M1 for solution of a 3 term quadratiand attempt at solution of a trig equal A1 for each correct solution			
(ii) cos <i>x</i>	$c = \sin y$	[4]					
	$y = \frac{1}{3} \text{ only so}$ $y = 19.5^{\circ}, 160.5^{\circ}$ $DM1$ $\sqrt{A1}, \sqrt{A1}$ $[3]$ $DM1 \text{ for relating cos } x \text{ correct method of solution}$				n y or other		
(b) $\cot z$ (4 co	(z - 3) = 0	M1	M1 for att	empt to use a factor			
$\cot z=0,$	$z = \frac{\pi}{2}$	B1	B1 for $\frac{\pi}{2}$	(1.57)			
$\cot z = \frac{3}{4}$, $\tan z = \frac{4}{3}$ so $z = 0.927$	M1 A1 [4]	M1 dealin	g with cot and atten	npt at solution		
10 (i) lg <i>s</i>		B1 [1]		able or on graph if 1 for graph unless lg <i>t</i> <u>lns)</u>			
(ii) $1gs$ $1gt$	0.3 0.6 0.78 0.9 1.4 0.8 0.44 0.19	M1 DM1 A1 [3]	DM1 for a A1 all poin	or more points corre line through 3 or 4 hts correct with a st at least from first po	correct points raight line		
(iii) <u>No marks</u>	s in this part unless $\lg t v \lg s$	pref					
<u>graph is u</u> Gradient	$\frac{\text{ased}}{n} = -2 \text{ (allow } -2.1 \rightarrow -1.9)$	M1A1	M1 calcula A1 for $n =$	ates gradient -2			
Intercept $k = 100$: $\log k$, or other method (allow 90 \rightarrow 120)	M1, A1 [4]		e of intercept and de correctly (can use a	•		
Alt method Using simultaneous lie on the plotted lis	M2 A1, A1	Must atten $k = 100$ an	npt to solve 2 valid d $n = -2$	equations.			
	4, $\lg t = 0.6$ so $\lg s = 0.69$ (allow $4.8 \rightarrow 5.2$)	M1 A1 [2]		id method using eit sing $lgt = nlgs + lgk$ their k			

Page 9	Page 9 Mark Scheme			Syllabus	Paper
	GCE O LEVEL –	October/Novembe	r 2013	0606	13
11 (i) $\left[e^{2x} + e^{2x}\right]$	1 (i) $\left[e^{2x} + \frac{5}{4}e^{-2x}\right]_0^k$			h term integrated c	orrectly, allow
$\left(e^{2k} + \right)$	$\frac{5}{4}e^{-2k}\right) - \left(1 + \frac{5}{4}\right) = 3$	M1	M1 for application of limits to an integral of the form $Ae^{2x} + Be^{-2x}$		
$e^{2k} + \frac{5}{4}$	$e^{-2k} - \frac{12}{4} = 0$	M1	to obtain a	uating to $\frac{3}{4}$ and att a 3 term equation. M F the form $Ae^{2x} \pm Be^{2x}$	Aust be using an
$4e^{4k} - 1$	$12e^{2k} + 5 = 0$	A1 [5]	Answer gi	iven, so must be co	nvinced
(ii) $4y^2 - 1$	2	M1	M1 for so	lution of quadratic	equation
leading	g to $e^{2k} = \frac{5}{2}$, $e^{2k} = \frac{1}{2}$	M1	M1 for so exponenti	lving equations inv als	olving
k = 0.4	58, -0.347	A1, A1 [4]	A1 for eac		

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	11

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4		Mark Scheme	Syllabus	Paper	
		IGCSE – May/June 2013		0606	11
1 (i)			B1	correct shape for y	$v = \cos x - 1$
(ii)			B 1	all correct	
			B1	correct shape for y	$y = \sin 2x$
			B1	all correct	
(iii)	3		B1		
2	Either	gradient = 1	B1		
		intercept = 2	B1		
	$\ln b = b$	gradient or $\ln A = \text{intercept}$	M1	M1, need to equat to $\ln b$ or intercep	
				to in <i>b</i> or intercep	
		b = e or 2.72	A1		
		$A = e^2, A = 7.39$	A1		
	Or	$e^4 = Ab^2$ and $e^{10} = Ab^8$	[B1 B1	B1 for each equat	ion
	leading to	$b^6 = e^6$ or $e^4 = e^2 A$ or $e^{10} = e^8 A$	M1	M1 for attempt to or <i>b</i>	solve for either A
		b = e or 2.72	A1		
		$A = e^2, A = 7.39$	A1]		
	Or	$10 = 8\ln b + \ln A$	[B1		
		$4 = 2\ln b + \ln A$	B1		
	leading to	$\ln b = 1$ or $6 = 3 \ln A$	M1	M1 for attempt to or <i>b</i>	solve for either A
		b = e or 2.72	A1		
		$A = e^2, A = 7.39$	A1]		

Page	5	Mark Scheme		Syllabus	Paper	
		IGCSE – May/June 2013	0606	11		
3 (i)	${}^{4}C_{6} = 3003$	B 1			
(i	i) ⁵	$C_3 \times {}^9C_3 = 840$	M1 A1	M1 for product of 2 cc	ombinations	
(ii	i)]	Either $3003 - {}^9C_6 = 2919$	M1 B1 A1	M1 for $3003 -$ number committees containing B1 for ${}^{9}C_{6}$		
		Dr $1M + 5W: 5 \times {}^{9}C_{5} = 630$ $2M + 4W: {}^{5}C_{2} \times {}^{9}C_{4} = 1260$ 3M + 3W: 840 (part (ii)) $4M + 2W: {}^{5}C_{4} \times {}^{9}C_{2} = 180$ $5M + 1W: 1 \times {}^{9}C_{1} = 9$	[B2 1 0	-1 each error		
		$SM + 1W: 1 \times C_1 = 9$ Total: 2919	B 1]	B1 for correct final and	swer	
4 ((i)	2	B 1			
(i		$\log_4 y^2 - \log_4 (5y - 12) (= \log_4 2)$	B1	B1 for power		
	1	$\operatorname{og}_4\left(\frac{y^2}{5y-12}\right) = (=\log_4 2)$	M1	correct division		
		$y^2 - 10y + 24 = 0$	M1	attempt at solution of a quadratic	a 3 term	
		<i>y</i> = 4, 6	A1	A1 for both		
5 (i)	$c + \frac{6}{x}(+c)$	B1 B1	B1 for each term		
(i	i)	$\binom{x}{\left(3k+\frac{6}{3k}\right) - \left(k+\frac{6}{k}\right)} (=2)$	M1	correct use of limits		
		$2k^2 - 2k - 4 = 0$	M1	attempt to obtain a 3 te from 2 brackets equate		
			DM1	DM1 or solution of qu dependent on 2 nd M1	adratic	
		leading to $k = 2$	A1	F		

	Page 6		Mark Scheme	Syllabus	Paper	
			IGCSE – May/June 2013	0606	11	
6	(i)	A ⁻¹ =	$=\frac{1}{13}\begin{pmatrix}5&1\\-3&2\end{pmatrix}$	B1 B1	B1 for matrix, B1 by a correct determined	
	(ii)	Eith	er $\begin{pmatrix} a & b \\ c & -1 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 5 & 1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 7 & 5 \\ 17 & d \end{pmatrix}$	M1	evidence of multi sides by A ⁻¹	plication of both
			$=\frac{1}{13} \begin{pmatrix} 52 & 25+d \\ 13 & -15+2d \end{pmatrix}$			
		leadi	ng to $a = 4, c = 1$	DM1	DM1 for attempt elements	to equate like
		and	b = 2, d = 1	A3,2,1,0	-1 each error	
		Or	$\begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} a & b \\ c & -1 \end{pmatrix} = \begin{pmatrix} 7 & 5 \\ 17 & d \end{pmatrix}$	[M1	M1 for evidence of multiplication	of matrix
			2a - c = 7, $3a + 5c = 17$, $a = 4$, $c = 1$	DM1	DM1 for attempt elements –1 each	
			2b + 1 = 5, 3b - 5 = d, b = 2, d = 1	A3,2,1,0]		
7	(i)	tan E	$B = \frac{\sqrt{5+1}}{\sqrt{5-2}}$	B1		
			$=\frac{\sqrt{5+1}}{\sqrt{5-2}}\times\frac{\sqrt{5+2}}{\sqrt{5+2}}$	M1	attempt at rationa inverse is used)	lisation (Allow if
			$=7+3\sqrt{5}$	A1		
	(ii)		$(7+3 \sqrt{5})^2 + 1 = \sec^2 B$	M1 M1	M1 for attempt to identity M1 for simplifica 4 terms	
			$\sec^2 B = 95 + 42\sqrt{5}$	√A1 √A1	cao A1 for 95, A1	for $42\sqrt{5}$
		Or sec ²	$B = \frac{1}{\cos^2 B} = \frac{\left(\sqrt{5+1}\right)^2 + \left(\sqrt{5}-2\right)^2}{\left(\sqrt{5}-2\right)^2}$	[M1	M1 for attempt to	use to find BC^2
		sec ²	$B = \frac{15 - 2\sqrt{5}}{9 - 4\sqrt{5}} \times \frac{9 + 4\sqrt{5}}{9 + 4\sqrt{5}}$	M1	M1 for use of sec	$B = \frac{1}{\cos B}$
		sec ²	$B = 95 + 42 \sqrt{5}$	A1 A1]	A1 for 95, A1 for	$52\sqrt{5}$

Page 7		Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2013		0606	11
	T			1	
8 (i)	Eith	$\mathbf{er} \tan \frac{\theta}{2} = \frac{8}{6}$	M1	M1 for use of trig angle	to obtain half
		$\frac{\theta}{2} = 0.927$		Can use $\sin \frac{\theta}{2} = \frac{\theta}{100}$	$\frac{\theta}{\theta}$ or $\cos\frac{\theta}{2} = \frac{6}{10}$
		$\theta = 1.855$	A1	A1 Allow if done converted	in degrees and
	Or	Area of triangle $MEF = 48$	[M1	M1 for a complete the obtuse angle	e method to find
		$\frac{1}{2} \times 10^2 \times \sin \theta = 48$			
		$\theta = 1.287, \pi - 1.287$			
		$\theta = 1.855$	A1]		
	Or	$16^2 = 10^2 + 10^2 - (2 \times 10 \times \cos \theta)$	[M1	M1 for use of the to see working as	
		$\theta = 1.855$	A1]		
(ii)	radiu	us = 10	B1	B1 for the radius,	allow anywhere
	<i>P</i> = ($(10 \times 1.855) + 10 + 10 + 16$	M1 M1	M1 for use of arc M1 for method, m sides	
		4.6 or 54.5 or 54.55	A1		
(iii)	A =2	$256 - 2\left(\frac{1}{2} \times 8 \times 6\right) - \frac{1}{2}10^2(1.855)$	M1 M1	M1 for area of sec M1 for a correct p required area	
	=	115.25 or 115.3 or 115	A1		
		awrt 115			

Page 8		Mark Scheme	Syllabus Paper	
		IGCSE – May/June 2013	0606 11	
9 (i)	\overrightarrow{AP}	$=\frac{3}{4}(\mathbf{b}-\mathbf{a})$	B1	
	\overrightarrow{OP}	$=\mathbf{a}+\frac{3}{4}(\mathbf{b}-\mathbf{a}),$ or	M1	M1 for attempt at vector addition
	\overrightarrow{OP}	$=\mathbf{a}-\frac{1}{4}(\mathbf{b}-\mathbf{a}),$		
		$=\frac{1}{4}(\mathbf{a}+3\mathbf{b})$	A1	Answer given
(ii)	\overrightarrow{OQ}	$\overrightarrow{Q} = \frac{2}{5}\mathbf{c}$, or $\overrightarrow{QC} = \frac{3}{5}\mathbf{c}$ or $\overrightarrow{CQ} = -\frac{3}{5}\mathbf{c}$	B 1	B1 for \overrightarrow{OQ} , \overrightarrow{QC} or \overrightarrow{CQ}
	\overrightarrow{PQ}	$=\overrightarrow{OQ}-\overrightarrow{OP}$	M1	M1 for correct vector addition/subtraction
		$=\frac{2}{5}\mathbf{c}-\frac{\mathbf{a}}{4}-\frac{3\mathbf{b}}{4}$	A1	
(iii)	2 c -	$-\frac{5\mathbf{a}}{4} - \frac{15\mathbf{b}}{4} = 6(\mathbf{c} - \mathbf{b})$	M1	M1 for use of <i>their</i> vectors and attempt to get $k c$
	c =	$\frac{9\mathbf{b}-5\mathbf{a}}{16}$	A1	
10 (i)	Wh	en $x = 2, y = -5$	B1	B1 for $y = -5$
	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$=3x^2-8x+1$	M1	M1 for attempt to differentiate
	whe	$en x = 2, \ \frac{dy}{dx} = -3$	DM1	DM1 for attempt at tangent equation $-$ must be tangent with use of $x = 2$
		gent: $y + 5 = -3 (x - 2)$ = 1 - 3x)	A1	allow unsimplified
(ii)	1 –	$3x = x^3 - 4x^2 + x + 1$	M1	M1 for equating tangent and curve equations
		$x\left(x-2\right)^2=0$	DM1	DM1 for attempt to solve resulting cubic equation
		Meets at (0, 1)	A1 A1	A1 for each coordinate

Page 9	Mark Scheme		Syllabus	Paper	
	IGCSE – May/June 201	3	0606	11	
(iii)	Grad of perp = $\frac{1}{3}$	√ B 1	$\sqrt{B1}$ $\sqrt{B1}$ on <i>their</i> gradient in (i) on		
	Midpoint (1, -2)	M1	M1 for attempt to f	ind the midpoint	
	Perp bisector $y+2=\frac{1}{3}(x-1)$	M1 A1	M1 for attempt at li must be perp bisect A1 allow unsimplif	or	
11 (a)	$\sin\left(x+\frac{\pi}{3}\right) = -\frac{1}{2}$	B1			
	$x + \frac{\pi}{3} = \frac{7\pi}{6}, \frac{11\pi}{6}$	B1	B1 for $\frac{7\pi}{6}$ and $\frac{11\pi}{6}$		
	$x = \frac{5\pi}{6}, \frac{3\pi}{2}$	B1 B1	B1 for first correct a B1 for a second cor all solutions in radia excess solutions with	rect solution with ans and with no	
(b)	$\tan y - 2 = \frac{1}{\tan y}$	B1	B1 for a correct equ	ation	
	$\tan^2 y - 2\tan y - 1 = 0$	M1 A1	M1 for attempt to o quadratic equation A1 for a correct equ zero		
	$\tan y = 1 \pm \sqrt{2}$	DM1	DM1 for solution o	f quadratic	
	y=67.5°, 157.5°	A1 A1	A1 for first correct A1 for a second cor all solutions in degr excess solutions with	rect solution with rees and with no	

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA-1 This is deducted from A or B marks in the case of premature approximation.
- S-1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4	4			Ма	Syllabus	Paper			
			IGCSE – May/June 2013						0606	12
1	(i)	$n(A \cap A)$	\overline{B}) = 5					B1		
	(ii)	n(A) =	·					B1		
	(iii)	n (B'c						B1		
2	(i)			2 - 260	or ${}^{6}P_{4} =$	360		B1	B1 unsimplified/e	waluated
2		0 × 5	~ 4 ^ .	5 – 300	01 14-	300		DI	DI unsimprincu/C	valuated
	(ii)									
		Posit	tion	1	2	3	4			
		Num of w		5	4	3	1			
		or $\frac{1}{\epsilon}$	i) or ⁵	P_3 or 5C	$_3 \times {}^6C_1$			M1	M1 for a correct a	attempt
		0			umbers =	= 60		A1	unsimplified	
	(iii)				9					
		Posit	tion	1	2	-3	4			
		Num of w		3	4	3	_1			
		or ${}^{3}P_{1}$ Numb			umbers =	= 36		M1 A1	M1 for a correct a unsimplified	attempt
3		EITH	ER							
		1 - 2s	$1 - 2\sin\theta - 2\cos\theta + \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta$						B1 for correct exp $(1 - \cos\theta - \sin\theta)^2$	
		Use of	$f sin^2 \ell$	$\theta + \cos^2 \theta$	$\theta = 1$ in s	implifica	tion $= 0$	M1	M1 for use of sin	$^{2}\theta + \cos^{2}\theta = 1$ in
						A1	this form A1 must be convi	nced as AG		
		OR $(1 - \cos\theta - \sin\theta)^2 =$ $1 - 2\sin\theta - 2\cos\theta + \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta$						[B 1	B1 for correct exp $(1 - \cos\theta - \sin\theta)^2$	
		$= 2 - 2\sin\theta - 2\cos\theta + 2\sin\theta\cos\theta$						M1	M1 for use of sin this form	$^{2}\theta + \cos^{2}\theta = 1$ in
		= 2 (1	- sin	θ) (1 – c	$\cos\theta$)			A1]	A1 for simplificat factorising	tion and

Page 5	Mark Scheme								
	IGCSE – May/June 2013	0606	12						
2	CITHER $x^{2} + kx + 2k - 6 = 0$ has no real roots $k^{2} - 16k + 48 < 0$ (k - 4) (k - 12) < 0	M1 DM1	M1 for attempted DM1 for attempt to values from a 3 te	to obtain critical					
	Critical values 4 and 12 $< k < 12$ or $k > 4$ and $k < 12$	A1 A1	A1 for both critica A1 for correct fina						
C	$\mathbf{OR}\left(x+\frac{k}{4}\right)^2 - \frac{k^2}{16} + k - 3 = 0$	[M1]	M1 for attempting to complete the square and obtain a 3 term quadratic						
	$-\frac{k^2}{16} + k - 3 > 0 \text{ so } k^2 - 16k + 48 < 0$		Then as EITHER						
C	DR $\frac{\mathrm{d}y}{\mathrm{d}x} = 4x + k$	[M1	M1 for differentia zero and obtaining equation in x						
В	When $\frac{dy}{dx} = 0$, $k = -4x$ By substitution $x^2 + 4x + 3 < 0$ eading to $x = -1$, $k = 4$	DM1	DM1 for attempt to values of k from a quadratic in x following substitution to obtain the product of the	. 3 term owed by					
a	nd $x = -3$, $k = 12$ 4 < k < 12 or $k > 4$ and $k < 12$	A1 A1]	A1 for both critica A1 for correct fina						
C	DR $\frac{\mathrm{d}y}{\mathrm{d}x} = 4x + k$	[M1]	M1 for differentiat zero and obtaining equation in k						
	When $\frac{dy}{dx} = 0$, $x = -\frac{k}{4}$ eading to $k^2 - 16k + 48 < 0$		Then as EITHER						

Page 6	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2013	0606	12	
	· · · · · · · · · · · · · · · · · · ·			
5	$2\left(\frac{15-4y}{3}\right)y = 9 \text{ or } 2x\left(\frac{15-3x}{4}\right) = 9$	M1	M1 for attempt to in one variable	obtain equation
	$8y^2 - 30y + 27 = 0$ or $3x^2 - 15x + 18 = 0$ (4y - 9)(2y - 3) = 0 or $(x - 3)(x - 2) = 0$	DM1	DM1 for attempt quadratic in that v	
:	$x = 2, y = \frac{9}{4}$ and $x = 3, y = \frac{3}{2}$	A1, A1	A1 for each 'pair' be simplified to si form	
	$AB^2 = 1^2 + (0.75)^2, AB = 1.25$	M1, A1	M1 for a correct a <i>AB</i> , must have not differences and be calculated previou	n zero e using points
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{sec}^2 x$	B1	B1 for $3\sec^2 x$	
	When $x = \frac{3\pi}{4}$, $\frac{dy}{dx} = 6$	B1	B1 for $\frac{dy}{dx} = 6$, m later work	ay be implied by
	<i>y</i> = 5	B1	B1 for <i>y</i>	
	Perpendicular gradient = $-\frac{1}{6}$	M1	M1 for perpendict from $\frac{dy}{dx}$	ular gradient
	Equation of normal $y + 5 = -\frac{1}{6}\left(x - \frac{3\pi}{4}\right)$	M1	M1 for attempt at using <i>their</i> y value $x = \frac{3\pi}{4}$ and substit	e correctly and
	When $x = 0, y = \frac{\pi}{8} - 5$ o.e.			
	or -4.61 or -4.6 but not -4.60	A1	A1 for obtaining y	v value

	Page 7	7	Mark Scheme		Syllabus	Paper
			IGCSE – May/June 2013		0606	12
7	(i)	f (-2)) leads to $68 = b - 2a$	M1	attempt at f (-2) = allow unsimplified	
		f(1)1	eads to $26 = a + b$	M1	attempt at $f(1) = 2$ allow unsimplified	
		a = -	14, <i>b</i> = 40	A1, B1	A1 for <i>b</i> = 40, B1	for $a = -14$
	(ii)	f(x)	$= (x+2) (6x^2 - 17x + 20)$	B2 , 1, 0	-1 each error	
	(iii)	$6x^2 -$	17x + 20 = 0 has no real roots	B1	B1 for dealing with factor either by us completing the sq $b^2 - 4ac$ to show the real solutions	e of formula, uare or use of
		$x = -\frac{1}{2}$	2	B1		
8	(a) (i)	-3	$\begin{pmatrix} -2 \\ 31 \end{pmatrix}$	B2, 1, 0	-1 each element e	rror
	(ii)	$\begin{pmatrix} 16\\ 9 \end{pmatrix}$	6 -11)	B2, 1, 0	-1 each element e	rror
	(b) (i)	$\frac{1}{18+}$	$\overline{9}\begin{pmatrix}3 & -1\\9 & 6\end{pmatrix}$	B1, B1	B1 for $\frac{1}{\text{determinan}}$ (allow unsimplified B1 for matrix	nt ed),
	(ii)	$\begin{pmatrix} x \\ y \end{pmatrix} =$	$=\frac{1}{27}\begin{pmatrix}3 & -1\\9 & 6\end{pmatrix}\begin{pmatrix}5\\1.5\end{pmatrix},$	M1	M1 for correct use matrix, including multiplication to s	correct
			$=\frac{1}{27}\binom{13.5}{54}$	p.00		
		x = 0	.5, <i>y</i> = 2	A1, A1	A1 for each	

	Page 8	Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2013	0606	12	
				1	
9	(i)	$\left(1 + \frac{1}{2}x\right)^n = 1 + n\left(\frac{x}{2}\right) + \frac{n(n-1)}{2}\left(\frac{x}{2}\right)^2$	B1, B1	B1 for 1 + second 3rd term Allow unsimplifie	
	(ii)	$\left(1-x\right)\left(1+n\left(\frac{x}{2}\right)+\frac{n(n-1)}{2}\left(\frac{x}{2}\right)^2\right)$	M1	dealing with 2 terr	ms involving x^2
		Multiply x and $\frac{n}{2}x$ to get $\frac{n}{2}(x^2)$	DM1	attempt to obtain o	one term
		Multiply 1 and $\frac{n(n-1)x^2}{8}$ or $\frac{n(n-1)x^2}{4}$	DM1	attempt to obtain a	a second term
		$\frac{n^2 - n}{8} - \frac{n}{2} = \frac{25}{4}$			
		$n^2 - 5n - 50 = 0$	A1	correct quadratic	equation
		n = 10	A1	A1 for $n = 10$ only	ý
10	(a) (i)	$\frac{1}{3}(2x-5)^{\frac{3}{2}}$	B1, B1	B1 for $k(2x-5)^{\frac{3}{2}}$ $\frac{1}{3}(2x-5)^{\frac{3}{2}}$, B1 for
		$\frac{125}{3} - \frac{1}{3} = \frac{124}{3}$ Allow awrt 41.3	M1, A1	M1 for correct use	e of limits
	(b) (i)	Allow awrt 41.3 $x^{3} \frac{1}{x} + 3x^{2} \ln x$	B1, B1	B1 for each term, unsimplified	allow
	(ii)	$\int 3x^2 \ln x dx = x^3 \ln x - \int x^2 dx \text{ o.e.}$	M1	for a use of answe	er to (i)
		$\int x^2 dx = \frac{x^3}{3} \text{ or }$	A1	A1 for intergrating by 3	g x^2 or dividing
		$\int x^{2} \ln x dx = \frac{1}{3} \left(x^{3} \ln x - \int x^{2} dx \right) \text{ o.e.}$			
		$\int x^2 \ln x dx = \frac{1}{3} \left(x^3 \ln x - \frac{x^3}{3} \right) (+c)$	A1		

Page 9		je 9	Mark Scheme	Syllabus	Paper	
			IGCSE – May/June 2013		0606	12
				1	1	
11	(a)	$\cos 2x$	$+\frac{2}{\cos 2x}+3=0$	M1	dealing with sec o	or cos
		leading	to $\cos^2 2x + 3\cos 2x + 2 = 0$ $2\sec^2 2x + 3\sec 2x + 1 = 0$	A1	simplification to c quadratic in sec 22 not have to be equ	c or $\cos 2x$ (does
			$(\cos 2x + 1) = 0$ (2x+1) (sec 2x + 1) = 0	M1	attempt to solve a quadratic, must obtem terms of $\cos 2x$	
	(b)		to $\cos 2x = -1$ or $\sec 2x = -1$ only $2x = 180^{\circ}, 540^{\circ}$ $x = 90^{\circ}, 270^{\circ}$ π) 1	A1, A1		
	(-)	$\sin^2 y$	$\left(-\frac{\pi}{6}\right) = \frac{1}{2}$ so			
		sin	$\left(y - \frac{\pi}{6}\right) = \frac{1}{\sqrt{2}}$	M1	division by 2 and	square root
			$=\frac{\pi}{4},\frac{3\pi}{4}$	DM1	correct order of op attempt to solve	peration and
		$y=\frac{5\pi}{12},$	$\frac{11\pi}{12}$ Allow awrt 1.31, 2.88	A1, A1		
12	(i)	dv				
		$\frac{\mathrm{d}y}{\mathrm{d}t} = 36$		M1	attempt to different to zero	ntiate and equate
		V	When $\frac{\mathrm{d}y}{\mathrm{d}t} = 0$, $t = 6$	A1		
	(ii)	When v	= 0, t = 12	M1, A1	M1 for equating v attempt to solve	to zero and
	(iii)	$s = 18t^2 - t^3 (+c)$		M1, A1	M1 for a correct a integrate at least o unsimplified A1 for all correct	
		When $t = 12$, $s = 864$			A1 for $s = 864$	
	(iv)	When $s = 0, t = 18$		M 1	M1 for substitution <i>their s</i> equation	on of $s = 0$ into
				√ A 1	$\sqrt{\mathbf{A1}}$ on <i>their s</i>	
		v	=-324	DM1	DM1 for substitut back into <i>v</i> equati	
		S	o speed is 324		A1 for 324 only	

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	13

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4		Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2013		13	
1 (i)			B 1	correct shape for y	$y = \cos x - 1$
(ii)			B 1	all correct	
			B1	correct shape for y	$y = \sin 2x$
			B1	all correct	
(iii)	3		B1		
2	Either	gradient = 1	B1		
		intercept = 2	B1		
	$\ln b = $	gradient or $\ln A = \text{intercept}$	M1	M1, need to equat to $\ln b$ or intercept	
				to m b or mercep	
		b = e or 2.72	A1		
		$A = e^2, A = 7.39$	A1		
	Or	$e^4 = Ab^2$ and $e^{10} = Ab^8$	[B1 B1	B1 for each equation	ion
	leading to	$b^6 = e^6$ or $e^4 = e^2 A$ or $e^{10} = e^8 A$	M1	M1 for attempt to or <i>b</i>	solve for either A
		<i>b</i> = e or 2.72	A1		
		$A = e^2, A = 7.39$	A1]		
	Or	$10 = 8\ln b + \ln A$	[B1		
		$4 = 2\ln b + \ln A$	B 1		
	leading to	$\ln b = 1$ or $6 = 3 \ln A$	M1	M1 for attempt to or <i>b</i>	solve for either A
		b = e or 2.72	A1		
		$A = e^2, A = 7.39$	A1]		

Page 5		Mark Scheme		Syllabus Paper
		IGCSE – May/June 2013		0606 13
r			1	
3	(i)	$^{14}C_6 = 3003$	B1	
	(ii)	${}^{5}C_{3} \times {}^{9}C_{3} = 840$	M1 A1	M1 for product of 2 combinations
	(iii)	Either $3003 - {}^9C_6 = 2919$	M1 B1 A1	M1 for 3003 – number of committees containing no men B1 for ${}^{9}C_{6}$
		Or $1M + 5W: 5 \times {}^{9}C_{5} = 630$ $2M + 4W: {}^{5}C_{2} \times {}^{9}C_{4} = 1260$ 3M + 3W: 840 (part (ii)) $4M + 2W: {}^{5}C_{4} \times {}^{9}C_{2} = 180$ $5M + 1W: 1 \times {}^{9}C_{1} = 9$	[B2 1 0	-1 each error
		Total: 2919	B1]	B1 for correct final answer
4	(i)	2	B1	
	(ii)	$\log_4 y^2 - \log_4 (5y - 12) (= \log_4 2)$	B1	B1 for power
		$\log_4\left(\frac{y^2}{5y-12}\right) = (=\log_4 2)$	M1	correct division
		$y^2 - 10y + 24 = 0$	M1	attempt at solution of a 3 term quadratic
		<i>y</i> = 4, 6	A1	A1 for both
5	(i)	$x + \frac{6}{x}(+c)$	B1 B1	B1 for each term
	(ii)	$\left(3k+\frac{6}{3k}\right) - \left(k+\frac{6}{k}\right) (=2)$	M1	correct use of limits
		$2k^2 - 2k - 4 = 0$	M1	attempt to obtain a 3 term quadratic from 2 brackets equated to 2
			DM1	DM1 or solution of quadratic dependent on 2 nd M1
		leading to $k = 2$	A1	*

Page 6			Mark Scheme	Syllabus	Paper	
			IGCSE – May/June 2013		0606 13	
6	(i)	A ⁻¹ =	$=\frac{1}{13}\begin{pmatrix}5&1\\-3&2\end{pmatrix}$	B1 B1	B1 for matrix, B1 by a correct determined	
	(ii)	Eith	er $\begin{pmatrix} a & b \\ c & -1 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 5 & 1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 7 & 5 \\ 17 & d \end{pmatrix}$	M1	evidence of multi sides by A ⁻¹	plication of both
			$=\frac{1}{13} \begin{pmatrix} 52 & 25+d \\ 13 & -15+2d \end{pmatrix}$			
		leadi	ng to $a = 4, c = 1$	DM1	DM1 for attempt elements	to equate like
		and	<i>b</i> = 2, <i>d</i> = 1	A3,2,1,0	-1 each error	
		Or	$\begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} a & b \\ c & -1 \end{pmatrix} = \begin{pmatrix} 7 & 5 \\ 17 & d \end{pmatrix}$	[M1	M1 for evidence of multiplication	of matrix
			2a-c=7, $3a+5c=17$, $a=4$, $c=1$	DM1	DM1 for attempt elements –1 each	
			2b + 1 = 5, 3b - 5 = d, b = 2, d = 1	A3,2,1,0]		
7	(i)	tan <i>E</i>	$B = \frac{\sqrt{5+1}}{\sqrt{5-2}}$	B1		
			$=\frac{\sqrt{5+1}}{\sqrt{5-2}}\times\frac{\sqrt{5+2}}{\sqrt{5+2}}$	M1	attempt at rationa inverse is used)	lisation (Allow if
			$=7+3\sqrt{5}$	A1		
	(ii)		$(7+3 \sqrt{5})^2 + 1 = \sec^2 B$	M1 M1	M1 for attempt to identity M1 for simplifica 4 terms	
			$\sec^2 B = 95 + 42\sqrt{5}$	√A1 √A1	cao A1 for 95, A1	for $42\sqrt{5}$
		Or sec ²	$B = \frac{1}{\cos^2 B} = \frac{\left(\sqrt{5+1}\right)^2 + \left(\sqrt{5}-2\right)^2}{\left(\sqrt{5}-2\right)^2}$	[M1	M1 for attempt to	use to find BC^2
		sec ²	$B = \frac{15 - 2\sqrt{5}}{9 - 4\sqrt{5}} \times \frac{9 + 4\sqrt{5}}{9 + 4\sqrt{5}}$	M1	M1 for use of sec	$B = \frac{1}{\cos B}$
		sec ²	$B = 95 + 42 \sqrt{5}$	A1 A1]	A1 for 95, A1 for	$52\sqrt{5}$

Page 7		Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2013	IGCSE – May/June 2013 0606		13
	T		1	1	
8 (i)	Eith	$\mathbf{er} \tan \frac{\theta}{2} = \frac{8}{6}$	M1	M1 for use of trig angle	to obtain half
		$\frac{\theta}{2} = 0.927$		Can use $\sin \frac{\theta}{2} = \frac{\theta}{100}$	$\frac{\theta}{\theta}$ or $\cos\frac{\theta}{2} = \frac{6}{10}$
		$\theta = 1.855$	A1	A1 Allow if done converted	in degrees and
	Or	Area of triangle $MEF = 48$	[M1	M1 for a complete the obtuse angle	e method to find
		$\frac{1}{2} \times 10^2 \times \sin \theta = 48$			
		$\theta = 1.287, \pi - 1.287$			
		$\theta = 1.855$	A1]		
	Or	$16^2 = 10^2 + 10^2 - (2 \times 10 \times \cos \theta)$	[M1	M1 for use of the to see working as	
		$\theta = 1.855$	A1]		
(ii)	radiu	us = 10	B1	B1 for the radius,	allow anywhere
	<i>P</i> = ($(10 \times 1.855) + 10 + 10 + 16$	M1 M1	M1 for use of arc M1 for method, m sides	
		4.6 or 54.5 or 54.55	A1		
(iii)	A =2	$256 - 2\left(\frac{1}{2} \times 8 \times 6\right) - \frac{1}{2}10^2(1.855)$	M1 M1	M1 for area of sector M1 for a correct plan to obtain the required area	
	=	115.25 or 115.3 or 115	A1		
		awrt 115			

Page 8		Mark Scheme		Syllabus Paper	
		IGCSE – May/June 2013	0606 13		
9 (i)	\overrightarrow{AP}	$=\frac{3}{4}(\mathbf{b}-\mathbf{a})$	B1		
	\overrightarrow{OP}	$=\mathbf{a}+\frac{3}{4}(\mathbf{b}-\mathbf{a}),$ or	M1	M1 for attempt at vector addition	
	\overrightarrow{OP}	$=\mathbf{a}-\frac{1}{4}(\mathbf{b}-\mathbf{a}),$			
		$=\frac{1}{4}(\mathbf{a}+3\mathbf{b})$	A1	Answer given	
(ii)	\overrightarrow{OQ}	$\overrightarrow{Q} = \frac{2}{5}\mathbf{c}$, or $\overrightarrow{QC} = \frac{3}{5}\mathbf{c}$ or $\overrightarrow{CQ} = -\frac{3}{5}\mathbf{c}$	B1	B1 for \overrightarrow{OQ} , \overrightarrow{QC} or \overrightarrow{CQ}	
	\overrightarrow{PQ}	$=\overrightarrow{OQ}-\overrightarrow{OP}$	M1	M1 for correct vector addition/subtraction	
		$=\frac{2}{5}\mathbf{c}-\frac{\mathbf{a}}{4}-\frac{3\mathbf{b}}{4}$	A1		
(iii)	2 c -	$-\frac{5\mathbf{a}}{4} - \frac{15\mathbf{b}}{4} = 6(\mathbf{c} - \mathbf{b})$	M1	M1 for use of <i>their</i> vectors and attempt to get $k \mathbf{c}$	
	c =	$\frac{9\mathbf{b}-5\mathbf{a}}{16}$	A1		
10 (i)	Wh	en $x = 2, y = -5$	B1	B1 for $y = -5$	
	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$=3x^2-8x+1$	M1	M1 for attempt to differentiate	
	whe	$en x = 2, \ \frac{dy}{dx} = -3$	DM1	DM1 for attempt at tangent equation $-$ must be tangent with use of $x = 2$	
		gent: $y + 5 = -3 (x - 2)$ = 1 - 3x)	A1	allow unsimplified	
(ii)	1 –	$3x = x^3 - 4x^2 + x + 1$	M1	M1 for equating tangent and curve equations	
		$x\left(x-2\right)^2=0$	DM1	DM1 for attempt to solve resulting cubic equation	
		Meets at (0, 1)	A1 A1	A1 for each coordinate	

Page 9	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 201	0606	13	
(iii)	Grad of perp = $\frac{1}{3}$	√ B 1	$\sqrt{B1}$ $\sqrt{B1}$ on <i>their</i> gradient in (i) or	
	Midpoint (1, -2)	M1	M1 for attempt to f	ind the midpoint
	Perp bisector $y+2=\frac{1}{3}(x-1)$	M1 A1	M1 for attempt at li must be perp bisect A1 allow unsimplif	or
11 (a)	$\sin\left(x+\frac{\pi}{3}\right) = -\frac{1}{2}$	B1		
	$x + \frac{\pi}{3} = \frac{7\pi}{6}, \frac{11\pi}{6}$	B1	B1 for $\frac{7\pi}{6}$ and $\frac{11\pi}{6}$	
	$x = \frac{5\pi}{6}, \frac{3\pi}{2}$	B1 B1	B1 for first correct s B1 for a second cor all solutions in radia excess solutions with	rect solution with ans and with no
(b)	$\tan y - 2 = \frac{1}{\tan y}$	B1	B1 for a correct equ	ation
	$\tan^2 y - 2\tan y - 1 = 0$	M1 A1	M1 for attempt to o quadratic equation A1 for a correct equ zero	
	$\tan y = 1 \pm \sqrt{2}$	DM1	DM1 for solution o	f quadratic
	y = 67.5°, 157.5°	A1 A1	A1 for first correct A1 for a second cor all solutions in degr excess solutions with	rect solution with rees and with no