

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 2 MARK SCHEME Maximum Mark: 80

0606/21 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of **10** printed pages.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1	$x^2 + 3x - 10 - 3x - 6 * 0$ oe	M1	Condone one sign or arithmetic error
			* can be = or any inequality sign
	Critical Values: 4 and –4	A1	
	x > 4 or x < -4	A1	Mark final answer
2	Eliminate one unknown $x(11-3x)+x^2=15$	M1	
	$2x^2 - 11x + 15[=0]$	A1	
	Factorises or solves their 3-term quadratic	M1	
	$x = \frac{5}{2}, y = \frac{7}{2}$	A2	A1 for $x = \frac{5}{2}, x = 3$ nfww
	x = 3, y = 2		or $y = \frac{7}{2}, y = 2$ nfww
3(a)	$\frac{\mathrm{d}}{\mathrm{d}x}(\sin 3x) = 3\cos 3x \mathrm{soi}$	B1	
	Applies the correct form of the quotient rule	M1	
	$\frac{dy}{dx} = \frac{(x+1)(3\cos 3x) - (2+\sin 3x)[1]}{(x+1)^2}$	A1	FT their $\frac{d}{dx}(\sin 3x)$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\left(\frac{\pi}{6}+1\right)\left(3\cos\frac{3\pi}{6}\right) - \left(2+\sin\frac{3\pi}{6}\right)[1]}{\left(\frac{\pi}{6}+1\right)^2}$	M1	
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{-3}{\left(\frac{\pi}{6}+1\right)^2}$	A1	not from wrong working

Question	Answer	Marks	Partial Marks
3(b)	[When $x = 0$] $y = 2$	B1	
	[When $x = 0$] $\frac{dy}{dx} = 1$	B1	FT their $\frac{dy}{dx}$
	$\left[m_{\perp}=\right]=-1$	M1	FT $\frac{-1}{their1}$
	y-2=-x oe	A1	FT their m_{\perp}
4	$(\sqrt{5}-2)a + (\sqrt{5}+2)b = 1$ oe, soi	M1	
	2b-2a=1	A1	
	$a + b = 0$ or $a\sqrt{5} + b\sqrt{5} = 0$	A1	
	Solves <i>their</i> linear simultaneous equations in a and b as far as $a = \dots$ or $b = \dots$	M1	dep on previous M1
	$a = -\frac{1}{4}, b = \frac{1}{4}$	A1	
5(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\tan x \sec^2 x$	B2	B1 for $\frac{d}{dx}(\tan^2 x) = 2(\tan x)^1 \sec^2 x$
5(b)	$6 \tan x \sec^2 x - 3 \sec x \operatorname{cosec} x = 0$ $3 \sec x (2 \tan x \sec x - \operatorname{cosec} x) = 0 \text{ oe}$	B1	NB division by secx is B0
	$2\tan^2 x = 1$ oe	B1	
	$\tan x = [\pm] \sqrt{\frac{1}{2}} \text{ or } [\pm] 0.707[1]$	M1	FT $\tan^2 x = k$ where $k > 0$
	35.3 or 35.2643 rot to 2 or more dp 215.3 or 215.2643 rot to 2 or more dp 144.7 or 144.7356 rot to 2 or more dp 324.7 or 324.7356 rot to 2 or more dp	A2	no extras in range A1 for any two correct answers

Question	Answer	Marks	Partial Marks
6	$(m+1)x^2 + (8-m)x + 3 = 0_{\text{oe, soi}}$	B1	
	$(8-m)^2-4(m+1)(3)$	M1	
	$m^2 - 28m + 52$ [*0] oe	M1	dep on previous M1 ; condone one sign error
			where * is = or any inequality sign
	Factorises or solves <i>their</i> 3-term quadratic expression or equation for CVs	M1	dep on use of $b^2 - 4ac$
	Finds correct CVs: 2, 26	A1	
	2 <i><m< i=""><i><</i>26</m<></i>	A1	Mark final answer
7(a)	$\log 5^{x-2} = \log 3 + \log 2^{2x+3}$ soi	M1	
	$(x-2)\log 5 = \log 3 + (2x+3)\log 2$ oe	M1	dep on previous M1 ; Condone one sign or bracketing error
	$x = \frac{\log 3 + 3\log 2 + 2\log 5}{\log 5 - 2\log 2}$ soi	A1	
	<i>x</i> = 28.7	A1	
7(b)	$\log_3\left(\frac{y^2+11}{9}\right) = \log_3\left(y-1\right)$	B1	
	or $\log_3\left(\frac{y^2+11}{y-1}\right) = 2$ oe		
	$\frac{y^2 + 11}{9} = y - 1 \text{or } \frac{y^2 + 11}{y - 1} = 9 \text{ oe}$	M1	
	$y^2 - 9y + 20 = 0$	A1	
	Solves <i>their</i> 3-term quadratic	M1	dep on previous M1
	y = 4, y = 5	A1	
8(a)	252	B1	

Question	Answer	Marks	Partial Marks
8(b)	[2 men and 3 others =] 120 [3 men and 2 others =] 60 [4 men and 1 other =] 6	M2	M1 for any two correct
	186	A1	
	Alternative method		
	[0 men =] 6 [1 man and 4 others =] 60	(M1)	
	(their 252) - (6 + 60)	(M1)	
	186	(A1)	
8(c)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M2	for at least four out of five correct values soi or M1 for any two or three correct values soi
	184	A1	
	Alternative method		
	[0 men =] 6 [0 women] 6 [0 children] 56	(M1)	
	(their 252) - (6 + 6 + 56)	(M1)	
	184	(A1)	
9(a)	$[fg(x) =] \frac{x^2 + 4}{x^2}$ oe, final answer	2	B1 for an attempt at the correct order of composition with at most one error
9(b)	Complete, correct method to find the inverse	M1	
	$\left[g^{-1}(x)=\right]\sqrt{x-1}$ final answer	A1	

Question	Answer	Marks	Partial Marks
9(c)	$x^3 - x^2 - 4 = 0$	M1	condone one sign or arithmetic error
	Shows $x - 2$ is a factor or shows that $x = 2$ is a solution	M1	
	Uses $x - 2$ is a factor to find $x^2 + x + 2$	B2	B1 for a quadratic factor with 2 terms correct
	Indicates that $x^2 + x + 2$ has no real roots and states $x = 2$ as the only solution	A1	dep on all previous marks awarded
10(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -5x^{-2} + 2x - 1 \text{ oe}$	M2	M1 for any two correct terms
	[When $x = 1$] $\frac{dy}{dx} = -4$ and $y = 5$	A1	
	y-5 = -4(x-1) oe	M1	FT their $\frac{dy}{dx}\Big _{x=1}$ and y; dep on at least M1
	y = -4x + 9	A1	FT
10(b)	F(x) = $5 \ln x + \frac{x^3}{3} - \frac{x^2}{2} (+c)$	B2	B1 for 5lnx and one other term correct
	F(3) - F(1)	M1	dep on at least B1 for integration
	$5\ln 3 + \frac{14}{3}$	A1	

Question	Answer	Marks	Partial Marks
11(a)	$l = \frac{4}{r}$	B1	
	$h^2 = l^2 - r^2$ or $l^2 = r^2 + h^2$	M1	
	$h^{2} = \left(\frac{4}{r}\right)^{2} - r^{2} \operatorname{or} \left(\frac{4}{r}\right)^{2} = r^{2} + h^{2}$	M1	FT <i>their l</i> ; dep on previous M1
	or $l^2 = \frac{16}{r^2}$ and $h^2 = l^2 - r^2$		
	Correct, convincing completion to $h^2 = \frac{16}{r^2} - r^2$	A1	
	Alternative method		
	$l = \sqrt{r^2 + h^2}$	(B1)	
	$\pi r \sqrt{r^2 + h^2} = 4\pi$	(M1)	
	$\left(\sqrt{r^2 + h^2}\right)^2 = \left(\frac{4}{r}\right)^2$	(M1)	
	Correct, convincing completion to $h^2 = \frac{16}{r^2} - r^2$	(A1)	
11(b)	$\frac{\pi}{3}r^2\sqrt{\frac{16}{r^2}-r^2}$	M1	
	$\frac{\pi}{3}\sqrt{r^4\left(\frac{16}{r^2}-r^2\right)}$	A1	
	and correct completion to $\frac{\pi}{3}\sqrt{16r^2 - r^6}$		

Question	Answer	Marks	Partial Marks
11(c)	$\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{\pi}{3} \left(\frac{1}{2} \left(16r^2 - r^6 \right)^{-\frac{1}{2}} \right) \left(32r - 6r^5 \right) \mathrm{oe}$	B3	B2 for $k(16r^2 - r^6)^{-\frac{1}{2}}(32r - 6r^5)$ where k is a constant and $k \neq 0$ or B1 for $k(16r^2 - r^6)^{-\frac{1}{2}} \times (f(r))$ where $f(r) \neq 32r - 6r^5$
	Equates <i>their</i> $\frac{dV}{dr}$ to 0 and solves as far as $r^4 = \dots$	M1	FT their $f(r) = ar + br^5$ for $a, b \neq 0$
	r = 1.52 or 1.519[67] rot to 4 or more sf or $\frac{2}{\sqrt[4]{3}} \text{ oe}$	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	aths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)		4	M1 for \lor shape of y = 5 + 3x - 2 with vertex at $\left(\frac{2}{3}, 5\right)$ A1 for correct graph with y-intercept (0,7) M1 for correct straight line for y = 11 - x A1 for correct straight line with y-intercept (0,11)
1(b)	x > 2 or $x < -2$	B2	Mark final answer for B2 B1 FT for exactly two correct critical values or correct FT critical values soi, FT dependent on at least M1 in (a)
2(a)	$16 - 96x + 216x^2 - 216x^3 + 81x^4$	B4	Mark final answer for B4 B3 for any 4 correct simplified terms in a sum or for all 5 simplified terms listed but not summed or for a correct simplified expansion that is not their final answer or B2 for any 3 correct simplified terms in a sum or for 4 correct simplified terms listed but not summed or B1 for any 2 correct simplified terms in a sum or for 3 correct simplified terms listed but not summed or M1 for correct unsimplified expansion $2^4 + 4 \times 2^3 (-3x) + 6 \times 2^2 (-3x)^2$ $+4 \times 2(-3x)^3 + (-3x)^4$

Question	Answer	Marks	Partial Marks
2(b)	their $(16-96x+216x^2) \times (1+\frac{a}{x})$	B1	
	$= 16 - 96x + 16\frac{a}{x} - 96a + 216ax \text{ soi}$		FT Expansion using <i>their</i> (a)
	<i>a</i> = 2	B1	FT their $16\frac{a}{x}$
	b = -176	B1	
	<i>c</i> = 336	B1	
3(a)	$\frac{\cos x}{1 - \cos x} + \frac{\cos x}{1 + \cos x} \qquad \text{or } \frac{\sec x + 1 + \sec x - 1}{\sec^2 x - 1}$	M1	
	$\frac{\cos x + \cos^2 x + \cos x - \cos^2 x}{1 - \cos^2 x} \text{or } \frac{2 \sec x}{\tan^2 x}$	A1	
	$\frac{2\cos x}{\sin^2 x} \qquad \qquad \text{or } \frac{2\cos^2 x}{\cos x \sin^2 x} \text{ oe}$	A1	
	Fully correct justification of given answer: 2cotxcosecx	A1	
3(b)	$3\tan^2 x = 2$ oe or better, soi or $5\cos^2 x = 3$ oe or better, soi or $5\sin^2 x = 2$ oe or better, soi	B1	
	$\tan x = [\pm] \sqrt{\frac{2}{3}}$ oe or $[\pm] 0.816[4]$ or $\cos x = [\pm] \sqrt{\frac{3}{5}}$ oe or $[\pm] 0.774[5]$	M1	FT an equation of the form $a \tan^2 x = b$, $a > 0$, $b > 0$ or $p \sin^2 x = q$ or $p \cos^2 x = q$
	or $\cos x = [\pm] \sqrt{\frac{5}{5}}$ oe or $[\pm] 0.7/4[5]$ or $\sin x = [\pm] \sqrt{\frac{2}{5}}$ oe or $[\pm] 0.632[4]$		where $p > 0$, $q > 0$ and $p > q$
	39.2° or 39.2315 rot to 2 or more dp 140.8° or 140.7684 rot to 2 or more dp 219.2° or 219.2315 rot to 2 or more dp 320.8° or 320.7684 rot to 2 or more dp	A2	no extras in range
			A1 for any two correct answers

Question	Answer	Marks	Partial Marks
4(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{x} + 2x - 7$	B2	B1 for the first term correct and one other term correct or for all terms correct with extra terms seen
	Equates <i>their</i> $\frac{dy}{dx}$ to zero and rearranges to 3-term quadratic in x	M1	
	Solves their 3-term quadratic	M1	Dep on previous M1
	x = 0.5, 3 nfww isw	A1	no extra solutions
4(b)	$\frac{d^2 y}{dx^2} = -\frac{3}{x^2} + 2$	M1	FT <i>their</i> $\frac{dy}{dx}$ providing B1 earned in (a)
	$x = 0.5$, $\frac{d^2 y}{dx^2} < 0 \rightarrow \max$ or $\frac{d^2 y}{dx^2} = -10 \rightarrow \max$	A1	
	$x=3$, $\frac{d^2y}{dx^2} > 0 \rightarrow \min$ or $\frac{d^2y}{dx^2} = \frac{5}{3} \rightarrow \min$	A1	
	Alternative method		
	Considers gradient at $x - h$ and $x + h$ for $x = 0.5$ or $x = 3$ [where <i>h</i> is small] or	(M1)	FT <i>their</i> $\frac{dy}{dx}$ providing B1 earned in (a)
	Considers <i>y</i> -values at $x - h$ and $x + h$ for $x = 0.5$ or $x = 3$ [where <i>h</i> is small]		
	Correct conclusion for one turning point max at $x = 0.5$ or min at $x = 3$	(A1)	
	Correct method and conclusion for second turning point	(A1)	

Question	Answer	Marks	Partial Marks
5(a)	Solves $3e^x + 3e^y = 15$ and $2e^x - 3e^y = 8$ oe by elimination as far as $3e^x + 2e^x = 23$ or substitutes $e^y = 5 - e^x$ into $2e^x - 3e^y = 8$ oe OR Solves $2e^x + 2e^y = 10$ and $2e^x - 3e^y = 8$ oe by elimination as far as $2e^y + 3e^y = 2$ or substitutes $e^x = 5 - e^y$ into $2e^x - 3e^y = 8$ oe	M1	
	$e^x = \frac{23}{5}$ or $e^y = \frac{2}{5}$ oe	A1	
	$x = \ln 4.6 [= 1.53]$ oe or $y = \ln 0.4 [= -0.916]$ oe	A1	If M0 scored SC1 for using <i>their</i> expression of the form $ce^x = d$ to give $x = ln \frac{d}{c}$ provided $\frac{d}{c} > 0$
	Finds the other value, e^{y} or e^{x} , by substituting <i>their</i> e^{x} or e^{y}	M1	FT <i>their</i> e^x or e^y
	$y = \ln 0.4 [= -0.916]$ oe or	A1	
	$x = \ln 4.6 [= 1.53]$ oe		

Question	Answer	Marks	Partial Marks
5(b)	$e^{2t-1-(5t-3)} = 5$ or $e^{5t-3-(2t-1)} = \frac{1}{5}$ oe	M1	
	$e^{2-3t} = 5$ or $e^{3t-2} = \frac{1}{5}$	A1	
	$2-3t = \ln 5$ or $3t-2 = \ln \frac{1}{5}$	M1	FT their $e^{a-bt} = 5$ or their $e^{ct-d} = \frac{1}{5}$ where <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> are positive integers
	$t = \frac{2 - \ln 5}{3}$ or $t = \frac{2 + \ln 0.2}{3}$ or 0.13[0] oe	A1	
	Alternative method		
	$\ln e^{2t-1} = \ln 5 + \ln e^{5t-3} \text{ oe}$	(M1)	
	$(2t-1)[\ln e] = \ln 5 + (5t-3)[\ln e]$ oe	(A1)	
	$5t - 2t = 3 - 1 - \ln 5$ oe	(M1)	Dep on one correct log law applied with at most one sign error
	$t = \frac{2 - \ln 5}{3}$ or $t = \frac{2 + \ln 0.2}{3}$ or 0.13[0] oe	(A1)	
6(a)	$\left(\sqrt{6} - \sqrt{2}\right)^{2} + \left(\sqrt{6} + \sqrt{2}\right)^{2} - 2\left(\sqrt{6} - \sqrt{2}\right)\left(\sqrt{6} + \sqrt{2}\right)\cos 60$	M1	
	$6 + 2 - 2\sqrt{12} + 6 + 2 + 2\sqrt{12} - 2 \times (6 - 2) \times \frac{1}{2}$	M1	Condone one error in expansion of brackets
	$[BC=]2\sqrt{3}$ isw	A1	
6(b)	$\frac{their 2\sqrt{3}}{\sin 60} = \frac{\sqrt{6} + \sqrt{2}}{\sin ACB} \text{ or } \frac{their 2\sqrt{3}}{\frac{\sqrt{3}}{2}} = \frac{\sqrt{6} + \sqrt{2}}{\sin ACB}$	M1	Condone other letters for <i>ACB</i>
	$\sin ACB = \left(\sqrt{6} + \sqrt{2}\right) \times \frac{\sqrt{3}}{2} \times \frac{1}{2\sqrt{3}} = \frac{\sqrt{6} + \sqrt{2}}{4}$	A1	A0 if necessary brackets missing unless clearly recovered

Question	Answer	Marks	Partial Marks
6(c)	$\frac{\sqrt{6} + \sqrt{2}}{4} = \frac{x}{\sqrt{6} - \sqrt{2}}$ or $1 = -\frac{1}{\sqrt{6} - \sqrt{2}}$	M1	Complete method
	$\frac{1}{2} \times their 2\sqrt{3} \times x =$ $\frac{1}{2} \times (\sqrt{6} - \sqrt{2}) \times (\sqrt{6} + \sqrt{2}) \times \sin 60$		
	[where x is the perpendicular from A to BC]		
	$x = \frac{\left(\sqrt{6} - \sqrt{2}\right)\left(\sqrt{6} + \sqrt{2}\right)}{4} = \frac{6 - 2}{4} = 1$ or $x = \frac{(6 - 2)}{2\sqrt{3}} \times \frac{\sqrt{3}}{2} = \frac{4}{4} = 1$	A1	
7(a)	$\left[\frac{dy}{dx}\right] = \frac{1}{2}e^{2x} - (x+1)^{-1} + \frac{5}{2} \text{ oe}$	B3	M2 for $\frac{1}{2}e^{2x} - (x+1)^{-1} + c$ oe or M1 for any two terms correct from $\frac{1}{2}e^{2x}$, $-(x+1)^{-1}$, $+c$
7(b)	$[y=]\frac{1}{4}e^{2x} - \ln(x+1)$	M1	
	+their $\frac{5}{2} \times x + d$	M1	FT <i>their c</i> from (a), providing $c \neq 0$
	$[y=]\frac{1}{4}e^{2x} - \ln(x+1) + \frac{5}{2}x + \frac{15}{4} \text{oe}$	A1	

Question	Answer	Marks	Partial Marks
8(a)	[Gradient =] $\frac{15.4 - 10.4}{4 - 2}$ oe soi	M1	
	$10.4 = their 2.5 \times 2 + c \text{ or } 15.4 = their 2.5 \times 4 + c$ or	M1	FT their gradient
	$\frac{y-10.4}{x-2} = their 2.5$ or $\frac{y-15.4}{x-4} = their 2.5$		
	[Gradient =] 2.5 soi and [intercept =] 5.4 soi	A1	
	$\sqrt{y} = 2.5\log_2(x+1) + 5.4$ oe isw	A1	
	Alternative method		
	10.4 = 2m + c and $15.4 = 4m + cand solving to find m or c$	(M1)	
	Use <i>their m</i> or <i>c</i> to find <i>their c</i> or <i>m</i>	(M1)	
	m = 2.5 and $c = 5.4$	(A1)	
	$\sqrt{y} = 2.5\log_2(x+1) + 5.4$ oe isw	(A1)	
8(b)	$\frac{5929}{25}$ or 237.16	B1	
8(c)	$5 = their 2.5 \log_2(x+1) + their 5.4$ and rearrange to make $\log_2(x+1)$ the subject	M1	FT <i>their</i> equation from (a) of correct form with $m \neq 1$ or 0, and $c \neq 0$
			Condone any base
	$-\frac{4}{25} = \log_2(x+1) $ oe	A1	Condone any base
	x = -0.105 or $-0.1049[74]$ rot to 4 or more sf	A1	
9(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x - 4$	M2	M1 for any two terms correct
	$x = 1 \longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 1$	A1	
	$[m_{\perp} =] -1$	M1	FT $\frac{-1}{their1}$
	y - 4 = -1(x - 1) oe isw	A1	FT their m_{\perp}

Question	Answer	Marks	Partial Marks
9(b)	$x^{3} + x^{2} - 4x + 6 = their(-x + 5)$ $\rightarrow \qquad x^{3} + x^{2} - 3x + 1 [= 0]$	M1	FT <i>their</i> linear equation of the form $y = mx + c$ where $m \neq 0$ and $c \neq 0$ from (a)
	Correct quadratic factor: $x^2 + 2x - 1$	B2	B1 for any two out of three terms correct Must be from the correct cubic
	Solves <i>their</i> $(x^2 + 2x - 1) = 0$ using the formula or by completing the square	M1	dep on M1 and valid attempt at finding quadratic factorM0 if <i>their</i> quadratic factor does not have real roots
	$\frac{-2\pm\sqrt{8}}{2} \text{ isw or } \frac{-2\pm2\sqrt{2}}{2} \text{ isw}$	A1	
10(a)	Eliminate one unknown using two correct equations e.g. d = 4x - 4 oe d = 3x + 6 oe and solve as far as $x =$ or $d =$	M2	B1 for one correct equation seen, e.g. d = 4x - 4 oe or $d = 3x + 6$ oe or $2d = 7x + 2$ oe May come from the sum of terms, e.g. $11x - 3d = 2$
	<i>x</i> = 10	A1	
	<i>d</i> = 36	A1	

Question	Answer	Marks	Partial Marks
10(b)(i)	$\frac{5y-4}{y} = \frac{8y+2}{5y-4} \text{ oe}$	M1	
	$25y^2 - 40y + 16 = 8y^2 + 2y$	M1	
	$\rightarrow 17y^2 - 42y + 16[=0]$		
	(17y-8)(y-2)[=0]	M1	Solves their 3-term quadratic
	$\frac{8}{17}$, 2	A1	Both values
	Alternative method		
	Eliminates y from $yr = 5y - 4$ and $yr^2 = 8y + 2$ and simplifies to 3-term quadratic in r $\rightarrow 2r^2 + r - 21[=0]$	(M1)	
	Solves their 3-term quadratic	(M1)	
	Substitutes <i>their</i> two <i>r</i> values to find two <i>y</i> values	(M1)	
	$\frac{8}{17}$, 2	(A1)	
10(b)(ii)	$-\frac{7}{2}$, 3	B2	B1 for one correct

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/23 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)		4	M1 for $y = x-5 $: \lor shape with vertex at (5, 0) A1 Correct graph with y-intercept at (0, 5) M1 for $y = 6 - 2x - 7 $: \land shape with vertex at (3.5, 6) A1 Correct graph with y-intercept at (0, -1)
1(b)	x < 2 or $x > 6$ final answer	B2	 B1 for exactly two correct critical values or B1 FT for exactly two correct FT critical values soi, FT dependent on at least M1 in (a) If the CVs are decimal allow BOD for reasonable values
2	Solves $2x + 2y = 6$ and $2x - \sqrt{3}y = 5$ oe by elimination as far as $2y + \sqrt{3}y = 1$ or substitutes $x = 3 - y$ into $2x - \sqrt{3}y = 5$ oe OR solves $\sqrt{3}x + \sqrt{3}y = 3\sqrt{3}$ and $2x - \sqrt{3}y = 5$ oe by elimination as far as $2x + \sqrt{3}x = 3\sqrt{3} + 5$ or substitutes $y = 3 - x$ into $2x - \sqrt{3}y = 5$ oe	M1	
	$y = \frac{1}{2 + \sqrt{3}}$ or $x = \frac{3\sqrt{3} + 5}{2 + \sqrt{3}}$	A1	
	$y = \frac{1}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}} \text{ oe or } x = \frac{3\sqrt{3} + 5}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}} \text{ oe}$	M1	FT <i>their</i> value of <i>x</i> or <i>y</i> providing of equivalent difficulty
	$y = 2 - \sqrt{3}$ and $x = 1 + \sqrt{3}$	A2	A1 for either and no extra values
3(a)	<i>a</i> = 3	B1	
	<i>b</i> = 2	B1	
	c = -1	B1	
3(b)(i)	2	B 1	

Question	Answer	Marks	Partial Marks
3(b)(ii)	$\frac{2\pi}{3}$ oe or 2.09 or 2.094[395] rot to 4 or more sf	B1	
4(a)	$2x-3=6^{\frac{1}{2}}$ oe, soi	M1	
	$x = \frac{6^{\frac{1}{2}} + 3}{2}$ or $x = \frac{\sqrt{6} + 3}{2}$	A1	
4(b)	$\ln \frac{2u}{u-4} = \ln e \text{ soi or } \ln \frac{2u}{u-4} = 1 \text{ soi}$ or $\ln 2u = \ln e(u-4) \text{ soi}$	M1	Condone one sign or bracketing error
	$\frac{2u}{u-4} = e \text{ or } 2u = e(u-4) \text{ oe}$	M1	FT their logarithmic equation
	$u = \frac{4e}{e-2}$ or $u = \frac{-4e}{2-e}$ or equivalent exact form	A1	
4(c)	$\frac{3^{\nu}}{(3^{3})^{2\nu-5}} = 3^{2} \text{ oe soi or } \frac{9^{\frac{\nu}{2}}}{(9^{\frac{3}{2}})^{2\nu-5}} = 9 \text{ oe soi}$ or $\log 3^{\nu} - \log 27^{2\nu-5} = \log 9 \text{ oe soi}$	B1	
	$15 - 5v = 2$ oe or $v \log 3 - (2v - 5) \log 27 = \log 9$	M1	FT <i>their</i> exponential equation in the same base or <i>their</i> logarithmic equation with any consistent base, providing <i>their</i> exponential or logarithmic equation has at most one sign or arithmetic error
	$v = \frac{13}{5} \text{ oe}$	A1	

Question	Answer	Marks	Partial Marks
5(a)	$\frac{\sin x}{1-\sin x} + \frac{\sin x}{1+\sin x} \text{or } \frac{\csc x + 1 + \csc x - 1}{\csc^2 x - 1} \text{ oe}$	M1	
	$\frac{\sin x + \sin^2 x + \sin x - \sin^2 x}{1 - \sin^2 x} \text{ or } \frac{2 \operatorname{cosec} x}{\cot^2 x} \text{ oe}$	A1	
	$\frac{2\sin x}{\cos^2 x} \text{ or } \frac{2\sin^2 x}{\sin x \cos^2 x} \text{ oe}$	A1	
	Fully correct justification of given answer: $\frac{2\sin x}{\cos x} \times \frac{1}{\cos x} = 2\tan x \sec x$ or $2\tan x \times \frac{1}{\cos x} = 2\tan x \sec x$ or $\frac{2\sin x}{\cos x} \times \sec x = 2\tan x \sec x$	A1	
5(b)	or equivalent $2 \tan^2 x = 5$ or better, soi or $7 \cos^2 x = 2$ or better, soi or $7 \sin^2 x = 5$ or better, soi	B1	
	$\tan x = [\pm] \sqrt{\frac{5}{2}} \text{ oe } \text{ or } [\pm] 1.58[1]$ or $\cos x = [\pm] \sqrt{\frac{2}{7}} \text{ oe } \text{ or } [\pm] 0.534[5]$ or $\sin x = [\pm] \sqrt{\frac{5}{7}} \text{ oe } \text{ or } [\pm] 0.845[1]$	M1	FT an equation of the form $a \tan^2 x = b \ a > 0, b > 0$ or $p \sin^2 x = q$ or $p \cos^2 x = q$ where $p > 0, q > 0$ and $p > q$
	57.7 or 57.6884 rot to 2 or more dp 237.7 or 237.6884 rot to 2 or more dp 122.3 or 122.3115 rot to 2 or more dp 302.3 or 302.3115 rot to 2 or more dp	A2	no extras in range A1 for any two correct answers
6(a)	$y = (x-2)^2 + 4$ oe, isw	B2	B1 for a correct expression in <i>x</i> and <i>y</i> only, that is not of the form $y = f(x)$
6(b)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = 2(x-2) \mathrm{oe}$	B1	dep on B2 in (a)

Question	Answer	Marks	Partial Marks
6(c)	[When $\theta = \frac{\pi}{3}$] $x = 4$ soi	B1	
	[When $\theta = \frac{\pi}{3}$] $y = 8$ soi	B1	
	[When $x = 4$ or $\theta = \frac{\pi}{3}$] $\frac{dy}{dx} = 4$	M1	FT <i>their</i> $\frac{dy}{dx}\Big _{x=4}$ providing non-zero
	y - 8 = 4(x - 4) oe isw	A1	FT their $\frac{dy}{dx}\Big _{x=4}$ providing non-zero
7(a)	[p =] -15i + 36j isw	B2	B1 for multiplier $\frac{39}{\sqrt{5^2 + 12^2}}$ soi
			or unit vector $\frac{-5\mathbf{i}+12\mathbf{j}}{\sqrt{5^2+12^2}}$
	[q =] 30i - 16j isw	B2	B1 for multiplier $\frac{34}{\sqrt{15^2 + 8^2}}$ soi
			or unit vector $\frac{15\mathbf{i} - 8\mathbf{j}}{\sqrt{15^2 + 8^2}}$ soi
7(b)	$[\mathbf{p} + \mathbf{q} =] 15\mathbf{i} + 20\mathbf{j} \text{ or } \begin{pmatrix} 15\\20 \end{pmatrix} \text{ soi}$	B1	
	$\left[\left \mathbf{p}+\mathbf{q}\right =\sqrt{15^2+20^2}=\right]25$	B1	FT <i>their</i> (p + q) of the form $\begin{pmatrix} x \\ y \end{pmatrix}$ or
			$x\mathbf{i} + y\mathbf{j}$ where $x \neq 0, y \neq 0$
	53.1[°] or 53.13[01] rot to 2 or more dp OR 0.927 [rads] or 0.9272[95] rot to 4 or more sf	B2	M1 FT their($\mathbf{p} + \mathbf{q}$) of the form $\begin{pmatrix} x \\ y \end{pmatrix}$ or $x\mathbf{i} + y\mathbf{j}$ where $x \neq 0, y \neq 0$ and $x \neq y$ for $\tan() = \frac{their20}{their15}$ oe or $\cos() = \frac{their15}{0}$ oe
			or $sin() = \frac{their25}{their25}$ oe

Question	Answer	Marks	Partial Marks
8(a)	$\frac{dy}{dx} = -5(x-1)^{-2} + 2$ oe	B2	B1 for $\frac{d}{dx}(-5(x-1)^{-1}) = k(x-1)^{-2}$ soi
	$(x-1)^2 = \frac{5}{2}$ or $2x^2 - 4x - 3 = 0$	M1	dep on at least B1
	$x = 1 + \frac{\sqrt{10}}{2}$ oe, isw or 2.58[11]	A1	implies M1
	$y = 2 + 2\sqrt{10}$ oe, isw or 8.32 to 8.325	A1	
8(b)	[Area of triangle =] 9 soi	B1	
	[Area under curve = F(x) =] $\left[5\ln(x-1) + \frac{2x^2}{2} \right]_2^4$ oe	M2	M1 for $\int \frac{5}{x-1} dx = k \ln(x-1)$ $k \neq 0$ soi or for $5 \ln x - 1$
	<i>their</i> $9 + F(4) - F(2)$	M1	dep on at least M1
	21 + 5ln3 isw or 26.49 to 26.5	A1	
9(a)	Attempts to solve $a + 2d = 13$ and $a + 9d = 41$ oe	M2	M1 for $a + 2d = 13$ and $a + 9d = 41$ soi
	d = 4 and $a = 5$	A2	A1 for $d = 4$ or $a = 5$
9(b)	$\frac{n}{2}$ {2(5)+(n-1)4}soi	M1	FT their a and their d
	$2n^2 + 3n - 2555$ [*0]	A1	where * could be = or any inequality sign
	Solves <i>their</i> 3-term quadratic of the form $ax^2 + bx + c$ [*0] by factorising or formula or <i>their</i> 3-term quadratic of the form $ax^2 + bx * c$ or better if completing the square	M1	
	35	A1	

Question	Answer	Marks	Partial Marks		
9(c)	May work <i>consistently</i> in <i>n</i> throughout but must conclude in <i>k</i> to earn the final mark				
	$S_{2k} = \frac{2k}{2} \{ 10 + (2k-1)4 \} \text{ soi}$	B1	FT their a and their d		
	$\frac{2k}{2} \{10 + (2k-1)4\} - \frac{k}{2} \{10 + (k-1)4\} \text{ soi}$	M1	FT <i>their a</i> and <i>their d</i> ; condone at most one error		
	Simplifies as far as e.g. $8k^2 + 6k - (3k + 2k^2)$ or $8k^2 + 6k - 3k - 2k^2$	A1			
	Correct completion to given answer: $6k^2 + 3k = 3k(1 + 2k)$	A1			
	Alternative method				
	$\frac{2k}{2} \{ 2a + (2k-1)d \}$ and $a = their 5$ and $d = their 4$	(B1)			
	substituted at some point				
	$ak - \frac{d}{2}k + \frac{3}{2}dk^2$ oe	(M1)	condone at most one error		
	$5k - \frac{4}{2}k + \frac{3}{2} \times 4 \times k^2$	(A1)			
	Correct completion to given answer: $6k^2 + 3k = 3k(1 + 2k)$	(A1)			
10(a)	$[f'(x) =]12x^2 - 8x - 15$	M2	M1 for any two terms correct or $12x^2 - 8x - 15 + c$		
	y = 3 and $f'(1) = -11$	A1			
	$[m_{\perp} =] \frac{1}{11}$ soi	M1	FT $\frac{-1}{their f'(1)}$		
	$y-3 = \frac{1}{11}(x-1)$ oe, isw	A1	FT <i>their</i> m_{\perp} and <i>their</i> 3, provided <i>their</i> $3 \neq 1$ or 0 or -11		

Question	Answer	Marks	Partial Marks
10(b)	[f(-2) =] -32 - 16 + 30 + 18 = 0 or $[f(-a) =] -4a^3 - 4a^2 + 15a + 18$ and shows this to be 0 when $a = 2$ or uses algebraic long division or synthetic division to show that $x + 2$ is a factor of $f(x)$ or that $a - 2$ is a factor of $f(-a)$	M1	Method must be seen and be fully correct with no clear evidence of calculator use
	<i>a</i> = 2	A1	as the only value of <i>a</i>
	Uses $(x + 2)$ is a factor to find the correct quadratic factor $4x^2 - 12x + 9$	B2	B1 for any two out of three terms correct
	Correctly solves <i>their</i> ($4x^2 - 12x + 9$) $(x + 2) = 0$ or correctly factorises <i>their</i> ($4x^2 - 12x + 9$) $(x + 2)$	M1	 dep on using a quadratic factor that has earned at least B1; method must be seen; M0 if <i>their</i> quadratic factor does not have real roots
	x = -2 or 1.5	A1	dep on M1 B2 M1

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/21 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)	$(x-3)^2-8$	B2	B1 for $(x - 3)^2 + k$ where $k \neq -8$ or $a = -3$ or $(x + m)^2 - 8$ where $m \neq -3$ or $b = -8$
1(b)	(3, -8)	B1	strict FT <i>their a</i> and <i>b</i>
2	$m = \frac{9-5}{8-6}$ oe	M1	
	9 = their 2(8) + c oe or $5 = their 2(6) + c$	M1	
	$\ln y = 2\ln x - 7$	A1	
	Correct completion to answer: $y = e^{\ln x^2 - 7} = e^{-7}x^2$ nfww	A1	
	Alternative		
	$\ln y = p + q \ln x$ soi	(B1)	
	$m = \frac{9-5}{8-6}$ oe	(M1)	
	9 = their 2(8) + c oe or $5 = their 2(6) + c$	(M1)	
	$y = e^{-7}x^2$	(A1)	
3(a)	4x - 1 *9 oe and 4x - 1*-9 oe	M1	where * could be = or any inequality sign
	OR		
	$16x^2 - 8x - 80*0$ oe soi		
	$x > \frac{5}{2}, x < -2$ only;	A2	not from wrong working
	2 mark final answer		A1 for CV $\frac{5}{2}$, -2 oe
			If M0 then SC1 for any correct inequality with at most one extra inequality

Question	Answer	Marks	Partial Marks
3(b)	$(2\sqrt{x}-3)(\sqrt{x}-4)$ or $x = u^2$ and $(2u-3)(u-4)$ oe soi	M1	
	$\sqrt{x} = \frac{3}{2}, \ \sqrt{x} = 4$ oe	A1	
	$x = \frac{9}{4}, x = 16$	B1	FT their \sqrt{x}
	Alternative	(M1)	
	$(2x+12)^2 = (11x^{\frac{1}{2}})^2$ simplified to $4x^2 - 73x + 144 = 0$		
	solves 3 term quadratic in x	(M1)	
	$x = \frac{9}{4}, x = 16$	(A1)	
4(a)	<i>a</i> = -4	B1	
	$480 = \frac{180}{b}$ oe	M1	
	$b = \frac{3}{8}$	A1	
4(b)	Correct sketch	B2	correct tan shape, two branches starting and finishing on same negative y value asymptote implied at $x = 240$ root between 120 and 240 B1 for correct tan shape with exactly two branches plus one other correct property Maximum B1 if not fully correct

Question	Answer	Marks	Partial Marks
5	$27x = (x^2)^2$ or $y = \left(\frac{y^2}{27}\right)^2$ oe	M1	if M0 then, for first 4 marks, SC4 if (3, 9) only stated and verified in both equations, ignore (0, 0) or SC2 for (3, 9) only stated with no working, ignore (0, 0) If first M1 then (3, 9) with no additional working award M1SC1
	$x^4 - 27x = 0$ or $y^4 - 729y = 0$ or nfww	A1	
	$x(x^3 - 27) = 0$ or $y(y^3 - 729) = 0$ oe	M1	
	A(3, 9) oe only nfww	A1	
	Mid-point = (1.5, 4.5)	B1	
	$m_{OA} = \frac{9}{3} \text{ oe}$	B1	
	$m_{\perp} = -\frac{3}{9}$ oe	M1	
	$y - 4.5 = -\frac{3}{9}(x - 1.5)$ oe isw	A1	FT <i>their</i> mid-point and <i>their</i> $-\frac{1}{\frac{9}{3}}$
6	$\frac{\mathrm{d}(\mathrm{e}^{\frac{x}{2}})}{\mathrm{d}x} = \frac{1}{2}\mathrm{e}^{\frac{x}{2}}$	B1	
	$\frac{\mathrm{d}(\cos 2x)}{\mathrm{d}x} = -2\sin 2x \mathrm{soi}$	B1	
	$x \times their(-2\sin 2x) + \cos 2x$	M1	
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{1}{2} \mathrm{e}^{\frac{x}{2}} - 2x\mathrm{sin}2x + \mathrm{cos}2x$	A1	FT their $\frac{d\left(e^{\frac{x}{2}}\right)}{dx} = ke^{\frac{x}{2}}$
	$\frac{\delta y}{h} = their \frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=1}$	M1	
	-1.41[03] <i>h</i> nfww	A1	

Question	Answer	Marks	Partial Marks
7	$4x^2 + kx + k - 2 = 2x + 1$	M1	
	$4x^2 + (k-2)x + k - 3[*0]$ soi	A1	* can be <, >, =, \leq , \geq
	$(k-2)^2 - 4(4)(k-3)$	M1	
	$k^2 - 20k + 52 * 0$	A1	
	$k = \frac{-(-20) \pm \sqrt{(-20)^2 - 4(1)(52)}}{2}$	M1	
	$k = 10 \pm \sqrt{48}$ oe isw	A1	
	Alternative (using calculus)	(M1)	
	2 = 8x + k oe		
	$y = 4x^{2} + (2 - 8x)x + 2 - 8x - 2$ or $y = -4x^{2} - 6x$	(M1)	
	$0 = 4x^2 + 8x + 1$	(A1)	
	$x = \frac{-8 \pm \sqrt{8^2 - 4(4)(1)}}{8}$	(M1)	
	$x = -1 \pm \frac{\sqrt{48}}{8}$ oe	(A1)	
	for $k = 10 \pm \sqrt{48}$ oe	(A1)	
8(a)(i)	Valid explanation e.g. This ensures the argument of both logarithms is greater than 0	B1	
8(a)(ii)	$\log_a 6 = \log_a (y+3)^2 \text{ oe}$	B1	
	$(y+3)^2 = 6$	M1	
	$y = -3 + \sqrt{6}$ oe only final answer	A1	

Question	Answer	Marks	Partial Marks
8(b)	Within a complete expression: Correct change of base to <i>a</i> : $\log_{\sqrt{b}} 9a = \frac{\log_a 9a}{\log_a \sqrt{b}}$ Correct use of power law: $\log_a \sqrt{b} = \frac{1}{2}\log_a b$ Correct use of addition/multiplication law: $\log_a 9a = \log_a 9 + \log_a a$ Correct use of $\log_a a = 1$	М3	M2 for 2 or 3 correct steps within complete expression or M1 for 1 correct step within complete expression
	leading to $2 + 3\log_a 9$. nfww	A1	
9	$\int \sin\left(6x - \frac{\pi}{2}\right) dx = -\frac{\cos\left(6x - \frac{\pi}{2}\right)}{6} + c$	B2	B1 for $\int \sin\left(6x - \frac{\pi}{2}\right) dx = k \cos\left(6x - \frac{\pi}{2}\right) + c$ where $k < 0$ or $k = \frac{1}{6}$ or $-\frac{1}{6} \cos\left(6x - \frac{\pi}{2}\right)$
	$\frac{1}{2} = -\frac{1}{6}\cos\left(\frac{6\pi}{4} - \frac{\pi}{2}\right) + c$	M1	FT their k provided B1 awarded
	$\int \left(-\frac{\cos\left(6x - \frac{\pi}{2}\right)}{6} + \frac{1}{3}\right) dx$ $= -\frac{\sin\left(6x - \frac{\pi}{2}\right)}{36} + \frac{1}{3}x + A$	М2	FT their $k \cos\left(6x - \frac{\pi}{2}\right) + their c$ provided at least B1 awarded M1 for $m \sin\left(6x - \frac{\pi}{2}\right) + \left(their \frac{1}{3}\right)x + A$ where $m < 0$ or $m = \frac{1}{36}$
	$\frac{13\pi}{12} = -\frac{1}{36}\sin\left(\frac{6\pi}{4} - \frac{\pi}{2}\right) + \frac{1}{3}\left(\frac{\pi}{4}\right) + A$	M1	FT <i>their m</i> and <i>their c</i> provided at least M1 awarded
	$y = -\frac{\sin\left(6x - \frac{\pi}{2}\right)}{36} + \frac{1}{3}x + \pi \text{oe cao}$	A1	

Question	Answer	Marks	Partial Marks
9	Alternative	B2	
	$\int -\cos 6x dx = -\frac{\sin 6x}{6} + c$		B1 for $\int -\cos 6x dx = k \sin 6x + c$
	• 0		where $k < 0$ or $k = \frac{1}{6}$ or $-\frac{\sin 6x}{6}$
	$\frac{1}{2} = -\frac{1}{6}\sin\frac{3\pi}{2} + c \text{oe}$	M1	FT their k provided B1 awarded
	$\int \left(-\frac{\sin 6x}{6} + \frac{1}{3} \right) dx =$	M2	FT their $k \sin 6x + their c$ provided at least B1 awarded
	$\frac{\cos 6x}{36} + \frac{1}{3}x + A$		M1 for $m\cos 6x + \left(their\frac{1}{3}\right)x + A$
			where $m > 0$ or $m = -\frac{1}{36}$
	$\frac{13\pi}{12} = \frac{\cos\frac{3\pi}{2}}{36} + \frac{1}{3}\left(\frac{\pi}{4}\right) + A$	M1	FT <i>their m</i> and <i>their c</i>
	$y = \frac{\cos 6x}{36} + \frac{1}{3}x + \pi \text{oe cao}$	A1	
10(a)	$\overrightarrow{AB} = \begin{pmatrix} 4\\ 8 \end{pmatrix}$	B1	
	$\sqrt{4^2 + 8^2}$	M1	FT their $\begin{pmatrix} 4\\ 8 \end{pmatrix}$
	$\frac{1}{\sqrt{80}} \begin{pmatrix} 4\\8 \end{pmatrix}$ oe isw	A1	FT provided working shown
10(b)	$\binom{6}{-5} = \frac{1}{2} \binom{10+x}{3+y} \text{ oe}$	M1	
	x = 2, y = -13	A1	

Question	Answer	Marks	Partial Marks
10(c)	$\overrightarrow{OE} = \frac{1}{1+\lambda} \begin{pmatrix} 12\\7 \end{pmatrix}$ oe seen	B1	
	Solves their $\frac{7}{1+\lambda} = 3$	M1	
	$\lambda = \frac{4}{3}$ oe	A1	
	Alternative	(B1)	
	$\overline{OE} = \begin{pmatrix} x \\ 3 \end{pmatrix}$		
	$\frac{12}{7} = \frac{x}{3}$ $x = \frac{36}{7}$		
	$\frac{1+\lambda}{1} = \frac{12}{36/7}$	(M1)	FT <i>their x</i>
	$\lambda = \frac{4}{3}$	(A1)	
11(a)(i)	1 + d, $1 + 7d$, $1 + 43d$ soi	B1	
	$[r =] their \frac{1+7d}{1+d} = their \frac{1+43d}{1+7d}$	M2	FT <i>their</i> ratios of terms provided in terms of a and d
			M1 FT for either $[r =] \frac{1+7d}{1+d}$
			or $[r] = \frac{1+43d}{1+7d}$
	Simplifies to $6d^2 - 30d = 0$ oe nfww	A1	
	Verifies that $d = 5$ by substitution or factorises and solves to obtain $d = 5$ only	A1	

Question	Answer	Marks	Partial Marks
11(a)(i)	Alternative	B1	
	1 + d, $1 + 7d$, $1 + 43d$ soi		
	$\left(\frac{7a-6}{a}\right)^2 = \frac{43a-42}{a}$ oe	M2	M1 for $\frac{7a-6}{a}$ or for $\frac{43a-42}{a}$ oe
	$6a^2 - 42a + 36 = 0$ oe	A1	
	Finds $a = 6$ and uses it to show that $d = 5$ only	A1	
11(a)(ii)	$S_{20} = \frac{20}{2} \{ 2[1] + (20 - 1)(5) \}$	M1	
	970	A1	
11(b)(i)	7776 nfww	B2	B1 for $6 \times 6^{5-1}$
11(b)(ii)	Valid explanation e.g. The sum to infinity does not exist for this GP as the common ratio is greater than 1.	B1	
12	x-coordinate of $A = 6$ soi	B1	
	x-coordinate of $B = 9$ soi	B1	
	k-3 = (9-k)(k-3)	M1	
	k = 8 [therefore $C(8, 5)$]	A1	
	(8-6)×5 or 10 oe soi	B1	
	$\int_{their8}^{their9} (12x - 27 - x^2) dx$	M2	M1 for 2 correct terms
	$=\frac{12}{2}x^2 - 27x - \frac{x^3}{3}$		
	their10 + F(their 9) – F(their 8)	M1	DEP on at least M1 for integration
	$\frac{38}{3} \text{ or } 12\frac{2}{3} \text{ or } 12.7 \text{ or } 12.66[66] \text{ rot to}$ 4 or more figs nfww	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC soi seen or implied

Question	Answer	Marks	Partial Marks
1	$1 + 4e^{2x} + 6e^{4x} + 4e^{6x} + e^{8x}$	B2	mark final answer for B2 B1 for any 3 correct simplified terms in a sum or all 5 simplified terms listed but not summed or for a correct, simplified expansion that is not their final answer or M1 for a correct unsimplified expansion e.g. $1+4e^{2x} + \frac{4\times 3}{2}(e^{2x})^2 + \frac{4\times 3\times 2}{6}(e^{2x})^3 + (e^{2x})^4$ If 0 scored, SC1 for a complete, correct, simplified expansion as final answer found by multiplying out the brackets
2	Correct graph and intercepts -2 O 1 3 x	B3	 B1 for correct shape; the ends must extend above and below the <i>x</i>-axis B1 for correct roots indicated; must have attempted a cubic shape B1 for correct <i>y</i>-intercept indicated; must have attempted a cubic shape
3	Uses $b^2 - 4ac$: $6^2 - 4(2k - 1)(k + 1)$	M1	
	$-8k^2 - 4k + 40 * 0$ oe	M1	<pre>dep on first M1 where * is = or any inequality sign condone one sign or arithmetic slip in simplification</pre>
	Factorises or solves <i>their</i> 3-term quadratic expression or equation for CVs e.g. $(5+2k)(8-4k)$ oe	M1	
	Finds correct CVs: -2.5 oe, 2	A1	
	$-2.5 \leqslant k \leqslant 2$	A1	mark final answer

Question	Answer	Marks	Partial Marks
4	$\frac{m}{27} - \frac{29}{9} + \frac{39}{3} + n = 0 \text{oe}$	B 1	
	m - 29 + 39 + n = 6 oe	B1	
	Eliminates one unknown correctly for a pair of linear equations in <i>m</i> and <i>n</i> and solves for one unknown	M1	
	m = 6, n = -10	A2	A1 for either
	[p(2) =]48 - 116 + 78 - 10 = 0 oe, nfww	A1	
5(a)	1	B1	
5(b)	$360 \div \frac{2}{3}$ oe	M1	
	540	A1	If 0 scored, SC1 for 3π
5(c)	Correct sketch for domain $0^{\circ} \le x \le 810^{\circ}$	B2	B1 for correct cosine shape from $(0, -1)$ with amplitude 1 for $0^{\circ} \le x \le 810^{\circ}$ B1 for attempt at correct cosine shape with period 540° for $0^{\circ} \le x \le 810^{\circ}$ If 0 scored, SC1 for a fully correct graph for $0^{\circ} \le x \le 540^{\circ}$ Maximum of 1 mark if not fully correct.
6(a)	$\sqrt{(11-5)^2+(64)^2}$ oe	M1	
	11.7 or 11.66[19] rot to 4 or more figs	A1	
6(b)(i)	[<i>y</i> =] 1	B1	

Question	Answer	Marks	Partial Marks
6(b)(ii)	$m_{AC} = \frac{64}{11 - 5}$ or $\frac{10}{6}$ nfww oe	B1	
	$m_{BD} = \frac{-1}{their \frac{10}{6}}$ oe	M1	
	$y - their \ 1 = -\frac{3}{5}(x-8)$ oe isw	A1	FT <i>their</i> 1 from (b)(i) and <i>their</i> perpendicular gradient
6(b)(iii)	$\begin{pmatrix} -5\\ 3 \end{pmatrix}$ and $\begin{pmatrix} 5\\ -3 \end{pmatrix}$	B2	B1 for either
	(3) and (-3)		If 0 scored, SC1 for $-5i + 3j$ and $5i - 3j$
7(a)	[Arc length $+ 2 \times \text{tangent length}$]	M2	M1 for
	$18 \times \frac{7\pi}{9} + 2 \times 18 \times \tan \frac{7\pi}{18}$ oe		[Arc length] $18 \times \frac{7\pi}{9}$ oe
			or [Tangent length] $18 \times \tan \frac{7\pi}{18}$ oe
			or [Tangent length] $\frac{18}{\tan\frac{\pi}{9}}$ oe
			or [Tangent length] $\frac{18}{\sin\frac{\pi}{9}} \times \sin\frac{7\pi}{18}$ oe
	143 or 142.9 or awrt 142.9 (cm)	A1	
7(b)	[Area of kite – area of sector]	M2	FT <i>their BC</i> or <i>CD</i> from (a) providing it is not
	$18 \times their\left(18 \times \tan\frac{7\pi}{18}\right) - \frac{1}{2} \times 18^2 \times \frac{7\pi}{9}$		18
	oe		M1 for [area of sector] $\frac{1}{2} \times 18^2 \times \frac{7\pi}{9}$ oe
			or [area of kite] $18 \times their\left(18 \times \tan\frac{7\pi}{18}\right)$ oe
			or [area of kite] $18 \times their(18 \times tan70)$ oe
	494 or 494.3 or awrt 494.3 (cm ²)	A1	

Question	Answer	Marks	Partial Marks
8(a)	Factorises or solves $3t^2 - 30t + 72 = 0$ or $t^2 - 10t + 24 = 0$	M1	
	t = 4, t = 6	A1	
	Integrates v to find F(t): $\frac{3t^3}{3} - \frac{30t^2}{2} + 72t$	M2	M1 for any two terms correct
	Correct substitution for $F(6) - F(4)$ or $F(4) - F(6)$	M1	dep on at least M1 for integrationFT <i>their</i> 4 and <i>their</i> 6 provided they are bothpositive
	4 (m)	A1	dep on all previous marks being awarded
8(b)	[a =]6t - 30	B1	
	[When $t = 2$: $a = 6(2) - 30 =$] -18 (ms ⁻²) cao	B1	
9	Correctly eliminates x or y e.g. $4x^{2} + 3x\left(-\frac{4}{x}\right) + \left(-\frac{4}{x}\right)^{2} = 8 \text{ oe}$ or $4\left(-\frac{4}{y}\right)^{2} + 3\left(-\frac{4}{y}\right)y + y^{2} = 8 \text{ oe}$	M1	
	Rearranges to a 3-term quadratic in x^2 or y^2 soi e.g. $4x^4 - 20x^2 + 16 = 0$ or $y^4 - 20y^2 + 64 = 0$	A1	
	Factorises or solves <i>their</i> 3-term quadratic in x^2 or y^2 soi : $(x^2 - 1)(x^2 - 4)$ or $(y^2 - 16)(y^2 - 4)$	M1	
	$x^{2} = 1$, $x^{2} = 4$ oe, nfww or $y^{2} = 16$, $y^{2} = 4$ oe, nfww	A1	
	$x = \pm 1 \qquad x = \pm 2$ $y = \mp 4 \qquad y = \mp 2 \text{oe, nfww}$	A2	A1 for all 4 <i>x</i> values or all 4 <i>y</i> values
10(a)	$\frac{1}{3}e^{3x+3} + c \text{ or } \frac{1}{3}e^3 \times e^{3x} + c \text{ nfww}$	B2	B1 for ke^{3x+3} or $ke^3 \times e^{3x}$ where $k \neq \frac{1}{3}$ or 0

Question	Answer	Marks	Partial Marks
10(b)(i)	$\frac{\mathrm{d}(\sin 4x)}{\mathrm{d}x} = 4\cos 4x \mathrm{soi}$	B1	
	Applies correct form of product rule: $4x \cos 4x + [1] \sin 4x$ isw	B1	FT <i>their</i> $4 \cos 4x$ if possible
10(b)(ii)	$\left[\int (4x\cos 4x)\mathrm{d}x = \right]x\sin 4x - \int \sin 4x\mathrm{d}x$	M1	FT use of <i>their mx</i> $\cos 4x + n \sin 4x$ where <i>m</i> and <i>n</i> are constants
	$x\sin 4x + \frac{1}{4}\cos 4x[+c]$ soi	A1	
	$\frac{\pi}{3}\sin\left(4\times\frac{\pi}{3}\right) + \frac{1}{4}\cos\left(4\times\frac{\pi}{3}\right) -$	A1	
	$\left[\frac{\pi}{4}\sin\left(4\times\frac{\pi}{4}\right) + \frac{1}{4}\cos\left(4\times\frac{\pi}{4}\right)\right]$		
	Correct completion to given answer $\frac{1}{8} - \frac{\pi\sqrt{3}}{6}$	A1	
11(a)	$500 = \frac{4}{6}\pi x^3 + \pi x^2 y$ oe	M1	
	$y = \frac{1}{\pi x^2} \left(500 - \frac{4}{6} \pi x^3 \right)$ oe, isw	A1	if first M0 , SC1 for $y = \frac{1}{\pi x^2} \left(500 - \frac{4}{3} \pi x^3 \right) \text{ oe seen}$
	$S = 2\pi x^{2} + \pi x^{2} + 2\pi x \left(\frac{500}{\pi x^{2}} - \frac{2}{3}x\right)$	M1	dep on first M1
	Correct completion to given answer: $S = \frac{5}{3}\pi x^{2} + \frac{1000}{x}$	A1	
11(b)	Differentiates S: $\frac{10}{3}\pi x - \frac{1000}{x^2}$ oe	B2	B1 for each term
	$\frac{10}{3}\pi x - \frac{1000}{x^2} = 0$ and attempt to solve	M1	FT their $\frac{dS}{dx}$ providing at least B1 awarded
	$x = \sqrt[3]{\frac{300}{\pi}}$ isw or 4.57[07] nfww	A1	
12(a)(i)	A(0,1) and $B(1,0)$	B1	

Question	Answer	Marks	Partial Marks
12(a)(ii)	$[y=]\frac{1}{2(2)+1}$ and $[y=]\frac{2-1}{5}$ and evaluates both expressions as $\frac{1}{5}$	B2	B1 for $[y=]\frac{1}{2(2)+1}$ and $5y=2-1$ oe
	Alternative 1	(B2)	
	$[y =]\frac{1}{2(2)+1} = \frac{1}{5} \text{ or } [y =]\frac{2-1}{5} = \frac{1}{5}$ and solves $5 \times \frac{1}{5} = x-1$ or to get $x = 2$ or $\frac{1}{5} = \frac{1}{2x+1}$ or to get $x = 2$		B1 for $\frac{1}{2(2)+1} = \frac{1}{5}$ and $5 \times \frac{1}{5} = x-1$ oe or $\frac{2-1}{5} = \frac{1}{5}$ and $\frac{1}{5} = \frac{1}{2x+1}$ oe
	Alternative 2	(B2)	
	$2x^{2}-x-6=0$ and solves or factorises to get (2x+3)(x-2) and states x=2 OR shows $2(2^{2})-2-6=0$ oe		B1 for $(2x + 1)(x - 1) = 5$ or $2x^2 - x - 6 = 0$
	Alternative 3	(B2)	
	(2x + 1)(x - 1) = 5 oe and shows $(2 \times 2 + 1)(2 - 1) = 5$		B1 for $(2x + 1)(x - 1) = 5$
12(b)	$\frac{1}{2} \times 1 \times 0.2 \text{ oe}$ or $\frac{2^2}{5 \times 2} - \frac{2}{5} - \left(\frac{1^2}{5 \times 2} - \frac{1}{5}\right) \text{ oe}$	B1	
	$[F(x) =] \frac{1}{2} \ln(2x+1) [+c] \text{ oe}$ or $\frac{1}{2} \ln(x+0.5) [+c]$ oe	B2	B1 for $\frac{1}{2} \ln 2x + 1$ or $\frac{1}{2} \ln x + 0.5$ or $k \ln(2x+1)$ or $k \ln(x+0.5)$, $k \neq 0.5$ or 0
	F(2) - F(0) - their 0.1	M1	FT <i>their</i> $F(x)$ providing at least B1 for integration of curve awarded
	$0.5 \ln 5 - 0.1$ or exact equivalent	A1	

Question	Answer	Marks	Partial Marks
13(a)	$[fg(x) =] \frac{2\left(\frac{1}{x}\right)^2 - 1}{3\left(\frac{1}{x}\right)} \text{oe}$	M1	
	$[fg(x) =]\frac{2 - x^2}{3x}$ or $\frac{2}{3x} - \frac{x}{3}$	A1	mark final answer
13(b)(i)	$f^{-1} > 0$	B1	
13(b)(ii)	$2x^{2} - 3xy - 1 = 0$ or $2y^{2} - 3xy - 1 = 0$	B1	
	Correctly applies quadratic formula: $[x =] \frac{-(-3y) \pm \sqrt{(-3y)^2 - 4(2)(-1)}}{2(2)} \text{ or }$ or $[y =] \frac{-(-3x) \pm \sqrt{(-3x)^2 - 4(2)(-1)}}{2(2)} \text{ or }$	M1	FT their $2x^2 - 3xy - 1 = 0$ or $2y^2 - 3xy - 1 = 0$ with at most one sign error in the equation
	Justifies the positive square root at some point	B1	
	$f^{-1}(x) = \frac{3x + \sqrt{9x^2 + 8}}{4} cao$	A1	must be a function of <i>x</i>

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/23 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt cao correct answer only dependent dep FT follow through after error ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC soi seen or implied

Question	Answer	Marks	Partial Marks
1	$\frac{4-\sqrt{5}}{7-3\sqrt{5}} \times \frac{7+3\sqrt{5}}{7+3\sqrt{5}}$ attempted	M1	
	Correct expansion $\frac{28 + 12\sqrt{5} - 7\sqrt{5} - 15}{49 - 45}$	M1	DEP condone one arithmetic or sign slip
	$\frac{13+5\sqrt{5}}{4}$ or simplified equivalent	A1	
2	Attempts to solve $2(7^{2x}) - 21(7^x) - 11 = 0$ or uses $u = 7^x$ and attempts to solve $2u^2 - 21u - 11 = 0$	B1	
	$(2(7^{x}) + 1)(7^{x} - 11)$ or $(2u + 1)(u - 11)$	M1	FT their $2(7^{2x}) + b(7^x) + c = 0$ or $2u^2 + bu + c = 0$ with b and c both non-zero
	$[7^x = -\frac{1}{2} \text{ or}] 7^x = 11$	A1	
	$x = \log_7 11$ or $\frac{\ln 11}{\ln 7}$ or $\frac{\lg 11}{\lg 7}$ isw or 1.23[227] only	A1	
3(a)	$3^4 \times x^{\frac{8}{3}} \times y^{\frac{15}{4}}$	B3	B1 for each correct power or M1 for $\frac{x\left(243x^{\frac{5}{3}}y^{5}\right)}{3y^{\frac{5}{4}}}$ or better
3(b)(i)	$a^{\frac{3}{2}} = 64$ or $a^{\frac{3}{4}} = 8$ oe	M1	
	<i>a</i> = 16	A1	If 0 scored, SC1 for correctly finding <i>a</i> from $\log_a 8 = k$, where $k \neq 0.75$
3(b)(ii)	Correct change of base to <i>a</i> : $\frac{\log_a 3a}{\log_a a^2}$ oe	M1	
	Simplifies denominator: $\log_a(3a)^{\frac{1}{2}}$ oe	A1	

Question	Answer	Marks	Partial Marks
4	$y = \tan x$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x$	B1	Alternative method for first 2 marks: B1 for $\frac{du}{dx} = \cos x$ and $\frac{dv}{dx} = -\sin x$ B1 for $\frac{\cos^2 x - (-\sin^2 x)}{\cos^2 x}$; allow
	$\frac{\delta y}{h} = their \frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=-\frac{\pi}{4}}$	M1	unsimplified
	2 <i>h</i>	A1	
5(a)	(2x-3)(x-7)	M1	
	CV 1.5, 7	A1	
	$1.5 \leq x \leq 7$ nfww	A1	FT their CVs
5(b)	$\int_{their1.5}^{their7} (2x^2 - 17x + 21) dx$ $= \left[\frac{2x^3}{3} - \frac{17x^2}{2} + 21x \right]_{their1.5}^{their7}$	B1	
	F(their 7) - F(their 1.5)	M1	FT <i>their</i> 7 and <i>their</i> 1.5 from (a); must have at least two terms correct
	$\left[-\frac{1331}{24}, \text{ therefore area} =\right] \frac{1331}{24} \text{ isw}$ or 55.5 or 55.4583333 rot to 4 or more sig figs; nfww	A1	
6(a)	$p(-0.25) = 36(-0.25)^3 - 15(-0.25)^2 - 2(-0.25) + 1$ = 0 oe	B1	

Question	Answer	Marks	Partial Marks
6(b)	$(4x+1)(9x^2-6x+1)$ oe	B2	B1 for any two correct terms in the quadratic factor
	(4x+1)(3x-1)(3x-1) nfww	B1	dep on B2
	States e.g. Repeated factor, so repeated root or finds the remaining roots as $x = \frac{1}{3}, x = \frac{1}{3}$ or finds $x = \frac{1}{3}$ and indicates e.g. twice	B1	dependent on all previous marks
	Alternative method		
	$p'(x) = 108x^2 - 30x - 2$	(B1)	
	solving <i>their</i> $p'(x) = 0$ or factorising <i>their</i> $p'(x)$	(B1)	
	$x = \frac{1}{3}, x = -\frac{1}{18}$	(B1)	
	$p\left(\frac{1}{3}\right) = 36\left(\frac{1}{3}\right)^3 - 15\left(\frac{1}{3}\right)^2 - 2\left(\frac{1}{3}\right) + 1 = 0$ [<i>x</i> -axis tangential to turning point, therefore root is repeated oe]	(B1)	
7(a)	Correct sketch y $x = 0.75O$ 1 x	B2	B1 for correct shape passing through (1, 0) B1 for attempt at correct shape with asymptote at $x = 0.75$ soi
7(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{4x - 3}$	B2	B1 for $\frac{dy}{dx} = \frac{k}{4x-3}$ where $k \neq 4$ or 0
	$\left. \frac{dy}{dx} \right _{x=2} = \frac{4}{4(2)-3} \text{ or } \frac{4}{5}$	M1	FT <i>their k</i> ; dep on at least B1 awarded for differentiation
	When $x = 2$, $y = \ln 5$	B1	
	$y - \ln 5 = \frac{4}{5}(x-2)$ oe, isw	A1	FT <i>their</i> ln5 and <i>their</i> 0.8

Question	Answer	Marks	Partial Marks
8(a)(i)	$-3\cos\left(\frac{\phi+\pi}{3}\right)(+c)$ oe	B2	B1 for $k \cos\left(\frac{\phi + \pi}{3}\right)(+c)$ where $k < 0$ or $k = 3$
8(a)(ii)	$\left[\int 5\mathrm{d}\theta = \right]5\theta + c$	B2	B1 for $5\sin^2 \theta + 5\cos^2 \theta = 5$ soi prior to integrating
8(b)	$\int \left(\frac{2}{x} + \frac{1}{x^2}\right) dx \text{soi}$	B1	
	$\left[2\ln x + \frac{x^{-1}}{-1}\right]_{1}^{e}$	M1	$\mathbf{FT} \int \left(\frac{k}{x} + \frac{1}{x^2}\right) \mathrm{d}x$
	$\left[2\ln e - \frac{1}{e}\right] - \left[2\ln 1 - 1\right]$	DM1	
	$2 - \frac{1}{e} + 1 = \frac{3e - 1}{e}$	A1	
9(a)(i)	$15 - 2(x+1)^2$ isw	B3	B1 for $(x+1)^2$ B1 for $a = 15$
9(a)(ii)	f ≤ 15	B1	STRICT FT their a
9(b)(i)	Domain: $x \ge \sqrt{2}$	B1	
	Range: $g^{-1} \ge 1$	B1	
9(b)(ii)	$x^{2} + 2x + (-1 - y^{2}) = 0$ or $y^{2} + 2y + (-1 - x^{2}) = 0$	B1	
	Correctly applies quadratic formula: $[x =] \frac{-2 \pm \sqrt{2^2 - 4(1)(-1 - y^2)}}{2}$ or $[y =] \frac{-2 \pm \sqrt{2^2 - 4(1)(-1 - x^2)}}{2}$	M1	FT their $x^2 + 2x + (-1 - y^2) = 0$ or $y^2 + 2y + (-1 - x^2) = 0$ with at most one sign error in the equation
	Justifies the positive square root at some point	B1	
	Correct completion to $g^{-1}(x) = -1 + \sqrt{x^2 + 2}$	A1	

Question	Answer	Marks	Partial Marks
10(a)	$y = \frac{30}{x^2} \text{oe}$	B1	
	$S = \pi x \sqrt{x^2 + \left(their\frac{30}{x^2}\right)^2}$	M1	FT <i>their</i> $y = \frac{30}{x^2}$ providing $10\pi = \frac{1}{3}\pi x^2 y$ was attempted
	Correct completion to given answer $S = \frac{\pi\sqrt{x^6 + 900}}{x}$	A1	
10(b)	$\frac{d([\pi]\sqrt{x^6+900})}{dx} = [\pi \times]\frac{1}{2}(x^6+900)^{-\frac{1}{2}} \times 6x^5$	B2	B1 for $[\pi \times] kx^5 (x^6 + 900)^{-\frac{1}{2}}, k \neq 3 \text{ or } 0$
	Applies correct form of quotient or product rule e.g.: $\frac{\pi x \left(3 x^5 (x^6 + 900)^{-\frac{1}{2}}\right) - \pi (x^6 + 900)^{\frac{1}{2}}}{x^2}$ or $-\pi x^{-2} (x^6 + 900)^{\frac{1}{2}} + \frac{\pi}{x} \left(3 x^5 (x^6 + 900)^{-\frac{1}{2}}\right)$	M1	FT their $\frac{d([\pi]\sqrt{x^6 + 900})}{dx}$
	<i>their</i> $\frac{dS}{dx} = 0$ and attempt to solve	M1	DEP
	$x = \sqrt[6]{450}$ isw	A1	

Question	Answer	Marks	Partial Marks
11(a)(i)	$\frac{1}{q} - \frac{1}{p} = -\frac{1}{q} - \frac{1}{q} \text{ oe}$ or $-\frac{1}{p} - (3-1)d = \frac{1}{p} + (2-1)d$ or $\frac{1}{p} = \frac{3}{2} \left\{ \frac{2}{p} + (3-1)d \right\}$	M2	M1 for $[d =]\frac{1}{q} - \frac{1}{p}$ or $[d =]-\frac{1}{q} - \frac{1}{q}$ or $[2d =]-\frac{1}{q} - \frac{1}{p}$ or $-\frac{1}{q} = \frac{1}{p} + (3-1)d$ or $\frac{1}{q} = \frac{1}{p} + (2-1)d$ or $\frac{1}{p} + \frac{1}{q} - \frac{1}{q} = \frac{3}{2} \left\{ \frac{2}{p} + (3-1)d \right\}$
	correct completion to given answer $-\frac{2}{3p}$ e.g. $-\frac{1}{3p} - \frac{1}{3p} = -\frac{2}{3p}$ or $\frac{1}{3p} - \frac{1}{p} = \frac{1}{3p} - \frac{3}{3p} = -\frac{2}{3p}$ or makes <i>d</i> the subject of $-\frac{1}{p} - (3-1)d = \frac{1}{p} + (2-1)d$ or $\frac{1}{p} = \frac{3}{2} \left\{ \frac{2}{p} + (3-1)d \right\}$	A1	
11(a)(ii)	$\left[u_{10} \text{ oe or } \frac{k}{p} = \right] \frac{1}{p} + 9\left(\frac{-2}{3p}\right)$	M1	
	<i>k</i> = -5	A1	

Question	Answer	Marks	Partial Marks
11(b)	$ar = 1.5$ and $\frac{a}{1-r} = 8$ oe, soi	B 1	
	Correctly eliminates <i>a</i> : $\frac{3}{2r} = 8(1-r)$ oe	M1	
	$16r^2 - 16r + 3 = 0$ oe	A1	
	Attempts to solve <i>their</i> 3-term quadratic in r	M1	
	Correct solutions $r = \frac{3}{4}$ $r = \frac{1}{4}$	A1	
	Alternative method		
	$ar = 1.5$ and $\frac{a}{1-r} = 8$ oe, soi	(B1)	
	Correctly eliminating r: $a\left(1-\frac{a}{8}\right) = \frac{3}{2}$ oe	(M1)	
	$a^2 - 8a + 12 = 0$	(A1)	
	Attempting to solve <i>their</i> 3-term quadratic in a and use the values of a to find r	(M1)	
	Correct solutions $r = \frac{3}{4}$ $r = \frac{1}{4}$	(A1)	
12(a)	$\left[v = \frac{\mathrm{d}s}{\mathrm{d}t} = \right] 1 + 2\sin t \mathrm{soi}$	B1	
	Puts <i>their</i> $1 + 2\sin t = 0$ and solves for <i>t</i>	M1	FT $a + b \sin t$ where a and b are non-zero
	$t = \frac{7\pi}{6}$	A1	
	$s = \frac{7\pi}{6} + 2 - 2\cos\frac{7\pi}{6}$	M1	FT <i>their</i> $t \neq 0$; dep on previous M1
	7.4[0] or 7.397[24] (metres) rot to 4 or more sig figs	A1	
12(b)	$t = \frac{11\pi}{6}$	B1	
12(c)	7.3972 + (7.3972 – 6.7123)	M1	
	8.08[20] (metres)	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 March 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1	4x + 9 = 6 - 5x oe or $4x + 9 = 5x - 6$ oe	M1	
	$x = -\frac{1}{3}, x = 15$	A2	not from wrong working; no extras
	mark final answer		A1 for $x = 15$ ignoring extras implies M1 if no extras seen
			If M0 then SC1 for any correct value with at most one extra value
	Alternative method:		
	M1 for $(4x + 9)^2 = (6 - 5x)^2$ oe soi		
	A1 for $9x^2 - 132x - 45 = 0$ oe		
	A1 for $x = -\frac{1}{3}$, $x = 15$ only; mark final answer		
2	Uses $b^2 - 4ac$ with at most one error in substitution: $(-3(k+1))^2 - 4(k)(25) * 0$	M1	
	$9k^2 - 82k + 9*0$	A1	
	Factorises or solves <i>their</i> 3-term quadratic	M1	
	$k = \frac{1}{9}$ or 9; mark final answer	A1	
3(a)	a = 2, b = 1, c = -1	B2	B1 for any two correct
3(b)	Finds three correct critical values: -1.5 to -1.4 inclusive -0.4 0.8 to 0.9 inclusive	B1	
	A correct pair of inequalities	B2	B1 for either inequality correct

Question	Answer	Marks	Partial Marks
4	Correctly eliminates one unknown: $\frac{4}{(-2y)^2} + \frac{5}{4y^2} = 1$ or $\frac{4}{x^2} + \frac{5}{4\left(-\frac{x}{2}\right)^2} = 1$	M1	
	Simplifies and rearranges e.g. : $\frac{4}{4y^2} + \frac{5}{4y^2} = 1 \rightarrow 4 + 5 = 4y^2$ or $\frac{4}{x^2} + \frac{5}{x^2} = 1 \rightarrow 4 + 5 = x^2$	M1	FT omitted brackets; condone one slip
	$y = \pm \frac{3}{2}$ and $x = \pm 3$ oe	A2	A1 for $y = \pm \frac{3}{2}$ or $x = \pm 3$
	$\sqrt{(33)^2+(1.51.5)^2}$	M1	FT <i>their</i> $y = \pm \frac{3}{2}$ and $x = \pm 3$ provided that no FT coordinate is 0
	$\sqrt{45}$ or $3\sqrt{5}$ indicated as final answer	A1	
5(a)	$\begin{bmatrix} \frac{d(x^3)}{dx} = \\ \end{bmatrix} 3x^2 \text{ and } x = \sqrt[3]{512} \text{ soi}$ OR $\begin{bmatrix} \frac{d(\sqrt[3]{V})}{dV} = \\ \end{bmatrix} \frac{1}{3}V^{-\frac{2}{3}}$	B1	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}x}{\mathrm{d}V} \text{ oe, soi}$	B1	
	$\frac{480}{3(8)^2}$ oe	M1	FT their $\frac{dV}{dx} = k(8)^2$ or $\frac{dx}{dV} = k(512)^{-\frac{2}{3}}k \neq 0$
	2.5 oe	A1	
5(b)	12(8)× <i>their</i> 2.5 soi	M1	FT <i>their</i> 8 provided it is not 512
	240	A1	FT provided at least M1 earned in (a)

Question	Answer	Marks	Partial Marks
6(a)	$\sqrt{16^2 + 7.5^2 - 2(16)(7.5)\cos\frac{2\pi}{7}} + (16 - 7.5) + 16 \times \frac{2\pi}{7}$ oe, soi	M2	M1 for $\sqrt{16^2 + 7.5^2 - 2(16)(7.5)\cos\frac{2\pi}{7}} + (16 - 7.5)$ or for $16 \times \frac{2\pi}{7}$ seen
	35.6 or 35.6 to 35.614	A1	
6(b)	$\frac{\frac{1}{2} \times 16^2 \times \frac{2\pi}{7}}{\frac{1}{2} \times 16 \times 7.5 \times \sin\left(\frac{2\pi}{7}\right)} \text{ oe}$	M2	M1 for either $\frac{1}{2} \times 16^2 \times \frac{2\pi}{7}$ or $\frac{1}{2} \times 16 \times 7.5 \times \sin\left(\frac{2\pi}{7}\right)$
	68[.0] or 67.98 to 68.0	A1	
7(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 8x + 6$	B1	
	Finds their $\frac{dy}{dx}\Big _{x=3}$	M1	condone one slip
	$m_{T_1} = 9$	A1	
	y-8 = their 9(x-3) or $y = 9x + c$ and $8 = 9(3) + c$	M1	
	y = 9x - 19 cao	A1	
7(b)(i)	$m_{T_2} = \frac{1}{their 9}$	B1	FT their 9
7(b)(ii)	[Uses $y = x$ in their ($y = 9x - 19$) to form] their ($x = 9x - 19$) or their ($y = 9y - 19$) oe and solves for x or y or solves e.g. their ($9x - 19$) = their $\frac{x + 19}{9}$	M1	
	$\left(\frac{19}{8},\frac{19}{8}\right)$ oe	A1	FT equal <i>x</i> and <i>y</i> coordinates providing at least 3 marks earned in (a)
8(a)(i)	479 001 600 oe	B1	
8(a)(ii)	$3 \times 10! \times 4$ oe	M1	
	43 545 600 oe	A1	

Question	Answer	Marks	Partial Marks
8(a)(iii)	$5! \times 8 \times 7!$ oe	M1	
	4838400 oe	A1	
8(b)(i)	⁹ C ₃	M1	
	84	A1	
8(b)(ii)	${}^{3}C_{1} \times {}^{4}C_{1} \times {}^{5}C_{1}$ oe	M1	
	60	A1	
9(a)	Identifies the correct term: ${}^{5}C_{2} \times (2k)^{3} \times \left(-\frac{1}{k}\right)^{2} [\times x^{2}] \text{ oe, soi}$	B1	
	$10 \times \frac{8k^3}{k^2} = 160 \text{ soi}$	M1	FT only for correct term with bracketing errors; condone one slip in simplification
	k = 2 nfww	A1	
9(b)(i)	$1 + 18x + 135x^2$	B2	B1 for any 2 terms correct or for all 3 correct terms listed but not summed or M1 for a correct unsimplified expansion e.g. : $1 + 6(3x) + 15(3x)^2$
9(b)(ii)	Uses constant/coefficient of x to find $a = -2$ only	B2	B1 for both $a = 2$ and -2 or for both $a = \frac{17}{9}$ and -2
	b = 469 only	B1	FT <i>their</i> calculated value of <i>a</i>
10(a)(i)	Range $f^{-1}: 0.5 \le f^{-1} \le 1.5$	B1	
	Domain f ⁻¹ : $0 \le x \le \frac{2\sqrt{2}}{3}$ oe	B2	B1 for 0 and $\frac{2\sqrt{2}}{3}$ in an incorrect inequality
			or for $x \ge 0$ or $x \le \frac{2\sqrt{2}}{3}$

Question	Answer	Marks	Partial Marks
10(a)(ii)	Correctly collects terms ready to factorise e.g. $4x^2 - 4x^2y^2 = 1$ or $4y^2x^2 - 4y^2 = -1$ or simplifies to subject in one term only e.g. $\frac{1}{4y^2} = 1 - x^2$ or $-\frac{1}{4x^2} = y^2 - 1$ oe	M1	
	Correctly factorises and/or rearranges at least as far as: $x^{2} = \frac{1}{4-4y^{2}}$ or $y^{2} = \frac{-1}{4x^{2}-4}$ oe	M1	FT only if of equivalent difficulty
	$\begin{bmatrix} f^{-1}(x) = \end{bmatrix} \sqrt{\frac{1}{4 - 4x^2}} \text{ or}$ $[y =] \sqrt{\frac{-1}{4x^2 - 4}} \text{ oe, isw}$	A1	
10(b)	Correct order of composition: $gf(x) = e^{\left(\frac{\sqrt{4x^2-1}}{2x}\right)^2}$	M1	
	$gf(x) = e^{\left(1 - \frac{1}{4x^2}\right)}$ is w	A1	
11(a)(i)	$\frac{(10x-1)^{-5}}{-5\times10}(+c) \text{ isw}$	B2	B1 for $k \frac{(10x-1)^{-5}}{-5} (+c)$, where $k \neq \frac{1}{10}$
11(a)(ii)	$\int \left(4x^5 + 20x^2 + \frac{25}{x}\right) \mathrm{d}x$	B1	
	$\frac{4}{6}x^6 + \frac{20}{3}x^3 + 25\ln x + c$	B2	B1 for any 3 terms correct
11(b)(i)	$3\sec^2(3x+1)$	B2	B1 for $k \sec^2(3x+1)$ where $k \neq 3$

Question	Answer	Marks	Partial Marks
11(b)(ii)	$\int \frac{\sec^2(3x+1)}{2} dx = \frac{\tan(3x+1)}{6}$ oe, soi	B1	
	$-\int \sin x \mathrm{d}x = \cos x \; \mathrm{oe}$	B1	
	$F\left(\frac{\pi}{10}\right) - F\left(\frac{\pi}{12}\right) \text{ where}$ $F(x) = k_1 \tan(3x+1) + k_2 \cos x \text{ oe}$	M1	
	0.322 or 0.3222[32] rot to 4 figs	A1	
12	For $0 \le t \le 2$: $\int \frac{t}{2e} dt = \frac{t^2}{4e}$	B1	
	For $t > 2$: $\int e^{-\frac{t}{2}} dt = -2e^{-\frac{t}{2}} + \frac{3}{e}$ oe	B2	B1 for $\int e^{-\frac{t}{2}} dt = -2e^{-\frac{t}{2}}(+c)$ oe
	$-2e^{-\frac{3}{2}} + \frac{3}{e} - \frac{1}{4e}$	M2	M1 for $[s(1) =] \frac{1}{4e}$ and $[s(3) =] - 2e^{-\frac{3}{2}} + their\frac{3}{e}$
	OR $\left(-2e^{-\frac{3}{2}} + \frac{3}{e} - \frac{1}{e}\right) + \left(\frac{1}{e} - \frac{1}{4e}\right)$		or at least one term correct in the difference: $\left(-2e^{-\frac{3}{2}} + their\frac{3}{e}\right) - \frac{1}{4e}$
			or for one bracket correct in: $\left(-2e^{-\frac{3}{2}} + their\frac{3}{e} - \frac{1}{e}\right) + \left(\frac{1}{e} - \frac{1}{4e}\right)$
	0.565 or 0.5654 to 0.56541 nfww	A1	

Question	Answer	Marks	Partial Marks
12	Alternative method (using def int):		
	M1* for $= \left[\frac{t^2}{4e}\right]_1^2$		
	M1 for $\left(\frac{4}{4e} - \frac{1}{4e}\right)$ oe (dep*)		
	M1 ** for $\left[-2e^{-\frac{t}{2}}\right]_2^3$		
	M1 for $\left(-2e^{-\frac{3}{2}}+\frac{2}{e}\right)$ oe (dep**)		
	M1 for $\left(-2e^{-\frac{3}{2}}+\frac{2}{e}\right)+\left(\frac{4}{4e}-\frac{1}{4e}\right)$ oe		
	A1 for 0.565 or 0.5654 to 0.56541 nfww		

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/21 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt cao correct answer only dependent dep FΤ follow through after error ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Partial Marks
1	$3x + 2 > 8 + x \rightarrow x > 3$	B1	
	-3x - 2 > 8 + x	M1	Correct inequality oe
	x < -2.5	A1	
2	$x^2 + x\left(\frac{2}{3}x - 2\right) = 9$	M1	Eliminate y
	$5x^2 - 6x - 27 = 0$	A1	
	(x-3)(5x+9)=0	M1	Factorise or formula
	(3, 0)	A1	Or both <i>x</i> values
	$\left(-\frac{9}{5}, -\frac{16}{5}\right)$	A1	
3	Uses $lg100 = 2$ or $3lgx = lgx^{3}$.	B1	
	Uses $\lg a + \lg b = \lg ab$ or $\lg a - \lg b = \lg \left(\frac{a}{b}\right)$	B1	
	$lg\left(\frac{100x^3}{y}\right)$	B1	Correct final answer
4(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos x - 3\sin x}{\sin x + 3\cos x}$	3	M1 for attempt at chain rule must have function in numerator and denominator A1 for denominator A1 for numerator
(b)	$-2\cos x - 3\cos x = \sin x - 6\sin x$	M1	Expand and collect terms in $\sin x$ and $\cos x$
	$1 = \tan x$	M1	Use $\frac{\sin x}{\cos x} = \tan x$
	$x = \frac{\pi}{4}$	A1	Must be radians
5	$a^5 + 5a^4bx + 10a^3b^2x^2$	2	B1 for powers or for coefficients
	$a^{5} + (a^{5} + 5a^{4}b)x + (10a^{3}b^{2} + 5a^{4}b)x^{2}$	2	M1 for multiplying to obtain 5 terms A1 for all correct
	$a^5 = 32 \rightarrow a = 2$	A1	
	$32 + 80b = -208 \rightarrow b = -3$	A1	
	$10 \times 8 \times 9 + 5 \times 16 \times -3 = c \rightarrow c = 480$	A1	

Question	Answer	Marks	Partial Marks
6(a)	$\tan 15^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$	M1	Correct use of tan
	$\tan 15^{\circ} = \frac{(\sqrt{3}-1)}{(\sqrt{3}+1)} \times \frac{(\sqrt{3}-1)}{(\sqrt{3}-1)}$	M1	Multiply by $(\sqrt{3}-1)$
	$\tan 15^\circ = 2 - \sqrt{3}$	A1	AG So all working must be seen
6(b)	$(BC)^{2} = (\sqrt{3} - 1)^{2} + (\sqrt{3} + 1)^{2}$	M1	Correct use of Pythagoras
	$BC = \sqrt{8} \text{ or } 2\sqrt{2}$	A1	
7(a)	$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{8}\right) - 3\left(\frac{1}{4}\right) - 23\left(\frac{1}{2}\right) + 12 = 0$	B1	Working must be seen
7(b)	$p(x) = (2x-1)(x^2 - x - 12)$	2	M1 for terms x^2 and -12 A1 for $-x$
	p(x) = (2x-1)(x-4)(x+3)	2	M1 for solving quadratic A1 for all three correct factors
	$f(x) = 0 \rightarrow x = \frac{1}{2}, 4, -3$	A1	
8(a)	$40 = A \times b^{10}$ and $45 = A \times b^{13}$	B1	
	$b^3 = \frac{45}{40}$	M1	Divide to find b^3 .
	<i>b</i> =1.04	A1	
	<i>A</i> = 27	A1	
8(b)	59	B1	$P = 27 \times 1.04^{20}$
8(c)	$100 = 27 \times 1.04^{t}$	M1	Insert $P = 100$ in their expression
	$t = \frac{\log\left(\frac{100}{27}\right)}{\log 1.04} \text{oe}$	M1	Rearrange to make <i>t</i> the subject
	$t = 33.4 \rightarrow \text{Year } 2034$	A1	
9(a)	$v = 2e^{2t} - 10e^{t} - 12$ $a = 4e^{2t} - 10e^{t}$	3	M1 for correctly differentiating e^{2t} . A1 for <i>v</i> correct A1 for <i>a</i> correct

Question	Answer	Marks	Partial Marks
9(b)	$v = 0 \rightarrow e^{2t} - 5e^t - 6 = 0$ $\rightarrow (e^t + 1)(e^t - 6) = 0$	M1	Factorise quadratic Solve and discard $e^t = -1$
	$e^t = 6$	A1	
	$t = \ln 6 = 1.79$	A1	
9(c)	$t = \ln 6 \rightarrow a = 4 \times 36 - 10 \times 6 = 84$	2	M1 for inserting <i>their</i> value of <i>t</i> into <i>a</i>
10(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{(1+x)}{x} = -\left(\frac{1}{x}+1\right)$	2	M1 for using $m_1 \times m_2 = -1$
	$y = -\ln x - x + C$	2	M1 for integrating $\frac{1}{r}$
			A1 for all correct including C
	$4 = -\ln 1 - 1 + C$ $C = 5 \rightarrow y = 5 - \ln x - x$	A1	Insert (1, 4) and arrive at correct answer. AG
10(b)	$x = 3 \rightarrow y = 2 - \ln 3$ and $\frac{dy}{dx} = -\frac{1}{3} - 1 = -\frac{4}{3}$	B1	
	$\frac{y - (2 - \ln 3)}{x - 3} = -\frac{4}{3}$	M1	
	$y = -\frac{4}{3}x + 6 - \ln 3$ or $y = -1.33x + 4.90$	A1	
11(a)	$\frac{dy}{dx} = x \times \frac{1}{2} \left(16 - x^2 \right)^{-\frac{1}{2}} \times \left(-2x \right) + \left(16 - x^2 \right)^{\frac{1}{2}}$	3	B1 for $\frac{d}{dx} (16 - x^2)^{\frac{1}{2}}$ = $\frac{1}{2} (16 - x^2)^{-\frac{1}{2}} \times (-2x)$ M1 for product rule A1 for all correct
	$\frac{dy}{dx} = 0 \to (16 - x^2)^{\frac{1}{2}} = \frac{x^2}{(16 - x^2)^{\frac{1}{2}}}$ $x^2 = 8$ $(2\sqrt{2}, 8)$	3	M1 for setting $\frac{dy}{dx} = 0$ and attempt to solve M1 for obtaining $x^2 = k$ A1

0606/21

Question	Answer	Marks	Partial Marks
11(b)	$\frac{3}{2}(16-x^2)^{\frac{1}{2}} \times (-2x)$	2	M1 for attempt at chain rule A1 for all correct unsimplified
	Area = $\int_{1}^{3} x (16 - x^2)^{\frac{1}{2}} dx = \left[-\frac{1}{3} (16 - x^2)^{\frac{3}{2}} \right]_{1}^{3}$	3	M1 for obtaining $k(16-x^2)^{\frac{3}{2}}$
	$= -\frac{1}{3} \left[7^{\frac{3}{2}} - 15^{\frac{3}{2}} \right] = 13.2$		A1 for obtaining $k = -\frac{1}{3}$ A1 for 13.2
12(a)	$\tan CAB = \frac{4}{3}$	M1	Correct use of tan oe
	CAB = 0.927	A1	isw
12(b)	Angle <i>CBD</i> = $2\left(\frac{\pi}{2} - 0.927\right) = 1.287$	B1	
	Perimeter = $3(2\pi - 2 \times 0.927) + 4(2\pi - 1.287)$ = $13.287 + 19.985$ = 33.3	3	M1 for correct plan of two arcs A1 for either arc A1
12(c)	Area of two right-angled triangles = $\frac{1}{2} \times 3 \times 4 \times 2 = 12$	B1	
	Area of Sectors $= \frac{3^2}{2} (2\pi - 2 \times 0.927) + \frac{4^2}{2} (2\pi - 1.287)$ $= 19.93 + 39.97$ Total = 71.9	3	M1 for correct plan of two sectors plus triangles A1 for either sector A1

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt cao correct answer only dependent dep FΤ follow through after error ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Partial Marks
1	$x^2 - 18x + 45 \ (= 0)$	B1	Expand and simplify to three terms.
	(x-15)(x-3)(=0) or $x = \frac{18 \pm \sqrt{18^2 - 4 \times 45}}{2}$ or $(x-9)^2 = -45 + 81$	M1	Factorise or use formula on <i>their</i> 3 term quadratic or complete the square
	x = 15 and x = 3	A1	
	x < 3 or x > 15 or $(-\infty, 3) \cup (15, \infty)$	A1	oe Do not accept 'and'. Do not accept $3 > x > 15$. Mark final answer.
2	$\frac{2^{(2x+2)}}{2^{(x-1)}} = 2^{\frac{5x}{3}} \times 2^{1}$	M1	Convert all to powers of 2 – allow one error.
	$2^{(x+3)} = 2^{\left(\frac{5x}{3}+1\right)}$	M1	Use $\frac{2^x}{2^y}$ and $2^{(x-y)}$ correctly on <i>their</i> expression. Allow one arithmetic slip.
	$x+3 = \frac{5x}{3} + 1$	M1	Dep on previous M1. Forms linear equation using <i>their</i> powers correctly.
	<i>x</i> = 3	A1	
3(a)	Gradient of line $\frac{3-1}{4-12} = \left(-\frac{1}{4}\right)$	B1	
	Gradient of perpendicular = 4	M1	$\frac{-1}{their \text{ grad line}}$
	Mid-point is (8, 2)	B1	
	Equation: $\frac{y-2}{x-8} = 4$	M1	Using <i>their</i> perpendicular gradient and mid-point
	y = 4x - 30	A1	
3(b)	$x = 0 \rightarrow (y) = -30$	B1	FT equation must have 3 terms
	$y = 0 \rightarrow (x) = 7.5$	B1	FT equation must have 3 terms
	$AB = \sqrt{30^2 + 7.5^2} = 30.9$ or better	B1	nfww Accept exact answer of $\frac{15\sqrt{17}}{2}$

Question	Answer	Marks	Partial Marks
4	x + y = 9	B1	
	$(x+1)^2 = y+2$	B1	
	$x + (x + 1)^{2} - 2 = 9$ or $(10 - y)^{2} = y + 2$	M1	Replace y or x . Allow unsimplified using <i>their</i> three term expressions both containing x and y terms. Condone one sign or arithmetic error. Result must be a quadratic function.
	$x^{2} + 3x - 10 (= 0)$ or $y^{2} - 21y + 98 (= 0)$	A1	Correct 3 term quadratic
	x = -5 and x = 2 or $y = 7 \text{ and } y = 14$ or $(x + 5)(x - 2)$ or $(y - 7)(y - 14)$	M1	Dep on correct method to solve their quadratic
	x = 2 and $y = 7$ only	A1	Reject $x = -5$, $y = 14$ as log -4 is not appropriate
5(a)	$x = 1 \rightarrow y = 8$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 12x + 3$	M1	Attempt to differentiate. Powers reduced by 1 in all four terms.
	$x = 1 \rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -6$	A1	
	$\frac{y-8}{x-1} = -6 \rightarrow y = -6x+14$	A1	Either form. isw
5(b)	$x^{3}-6x^{2}+9x-4=0$ (x-1)(x ² -5x+4) = 0 or (x-4)(x ² -2x+1) = 0	2	M1 for equating <i>their</i> tangent to curve and simplifying to 4 term cubic. M1Dep for finding a factor or stating that $(x - 1)$ is a factor or makes at least 3 attempts to find a factor.
	(x-1)(x-1)(x-4) = 0	2	A1 for $(x - 1)$ or $x = 1$ can be implied. nfww A1 for $(x - 4)$ or $x = 4$ not repeated. nfww
	$x = 4 \rightarrow y = -10$ only	A1	nfww

0606/22

Question	Answer	Marks	Partial Marks
6	$\frac{(x+1)^2}{x^2} = \frac{x^2 + 2x + 1}{x^2} = 1 + \frac{2}{x} + \frac{1}{x^2}$	2	B1 for expanding numerator seen anywhere. M1 for attempt to divide <i>their</i> three term numerator by x^2 .
	$\int 1 + \frac{2}{x} + \frac{1}{x^2} dx = x + 2\ln x - \frac{1}{x} + (c)$	2	A2/1/0 minus 1 each error or omission.
	$\left[4 - 2\ln 4 - \frac{1}{4}\right] - \left[2 + 2\ln 2 - \frac{1}{2}\right]$	M1	Dep insert 4 and 2 into <i>their</i> three or two term integrand and subtract correctly.
	$=\frac{9}{4}+2\ln 2$	A1	oe must be exact two terms. isw
7 (a)	$a = 3$ $r = \frac{2.4}{3} = 0.8$	B1	
	$S_8 = \frac{3(1-0.8^8)}{(1-0.8)}$	M1	Inserts <i>their</i> a and r into S_8
	= 12.48 awrt or 12.5	A1	
7(b)	$S_{\infty} = \frac{3}{(1 - 0.8)} = 15$	B1	
7(c)	$S_n = 15(1 - 0.8^n) > 0.95 \times 15$	M1	<i>their</i> correctly produced $S_n > 0.95S_{\infty}$
	$0.8^n < 0.05$	A1	oe
	$n < \frac{\log 0.05}{\log 0.8}$ or $n < \log_{0.8} 0.05$	M1	Dep takes logs correctly of <i>their</i> expression with power of <i>n</i> .
	<i>n</i> = 14	A1	nfww
8(a)	$\frac{1}{2}(2\sqrt{3} + 1)AC\sin 30^\circ = \frac{11}{2}$	M1	Correct use of area of a triangle
	$(2\sqrt{3} + 1)AC = 22$	A1	oe
	$AC = \frac{22}{(2\sqrt{3}+1)} \times \frac{(2\sqrt{3}-1)}{(2\sqrt{3}-1)}$	M1	Multiply by <i>their</i> $(2\sqrt{3} + 1)$
	$AC = 4\sqrt{3} - 2$	A1	

Question	Answer	Marks	Partial Marks
8(b)	$BC^{2} = (2\sqrt{3} + 1)^{2} + (4\sqrt{3} - 2)$ $-2(2\sqrt{3} + 1)(4\sqrt{3} - 2)\cos 30$	M1	Correct use of cosine rule with <i>their AC</i> .
	$BC^{2} = \left[13 + 4\sqrt{3}\right] + \left[52 - 16\sqrt{3}\right] + \left[-22\sqrt{3}\right]$	A2	A1 for one correct expanded bracket A1 for the other two correct expanded brackets
	$BC^2 = 65 - 34\sqrt{3}$	A1	
9(a)	$2\mathbf{b} + \mathbf{a}$	B1	
9(b)	$2\mathbf{a} - 2\mathbf{b}$	B1	
9(c)	$2\mathbf{b} + \mathbf{a} + \mu(2\mathbf{a} - 2\mathbf{b})$	B1	FT on <i>their</i> \overrightarrow{OQ} and \overrightarrow{QR} isw
9(d)	$\lambda(3\mathbf{a}+\mathbf{b})$	B1	$\lambda 3\mathbf{a} + \mathbf{b}$ is B0
9(e)	$3\lambda = 1 + 2\mu$ $\lambda = 2 - 2\mu$ $\lambda = \frac{3}{4}, \ \mu = \frac{5}{8}$	3	M1 for forming two simultaneous equations equating correct terms. Each equation must have 3 terms. M1Dep for attempting to solve by removing μ or λ to $\lambda =$ or $\mu =$ A1 for both
9(f)	$\frac{QX}{XS} = \frac{5}{3}$	B1	FT Must be positive from $\mu < 1$
9(g)	$\frac{OR}{OX} = \frac{4}{3}$	B1	FT Must be positive from $\lambda < 1$
10(a)	$P + Q = 500$ and $P + Qe^2 = 600$	B1	
	$Q = \frac{100}{(e^2 - 1)} = 15.7$ or 15.6	2	M1 for attempt to solve by removing <i>P</i> from two equations both containing 3 terms A1 awrt
	P = 484 or 485	A1	awrt
10(b)	$B = 484.3 + 15.65e^4 = 1338$	B1	Integer value rounded down from 1338 if seen.

0606/22

Question	Answer	Marks	Partial Marks
10(c)	$e^{2t} = \frac{1000000 - 484.3}{15.65}$	M1	Make e^{2t} the subject
	$2t = \ln\left(\frac{1000000 - 484.3}{15.65}\right)$	M1	Take logs correctly where $e^{2t} > 0$ or $e^n > 0$
	$[t = 5.5(3) \text{ or } t = 5.5] \rightarrow 6^{\text{th}} \text{ week.}$	A1	nfww
11(a)	$LHS = \frac{\sin x \times \frac{\sin x}{\cos x}}{1 - \cos x}$	M1	Uses $\tan x = \frac{\sin x}{\cos x}$
	$=\frac{1-\cos^2 x}{\cos x(1-\cos x)}$	M1	Dep Uses $\sin^2 x = 1 - \cos^2 x$ to eliminate $\sin x$
	$\frac{(1-\cos x)(1+\cos x)}{\cos x(1-\cos x)} = \frac{1+\cos x}{\cos x} = \sec x + 1$	2	M1Dep Factorise correctly and cancel correctly. A1 Uses $\frac{1}{\cos x} = \sec x$
11(b)	$5\frac{\sin x}{\cos x} - 3\frac{\cos x}{\sin x} = \frac{2}{\cos x}$	B1	Change $\tan x$, $\cot x$ and $\sec x$ into $\sin x$ and $\cos x$ correctly.
	$5\sin^2 x - 3(1 - \sin^2 x) = 2\sin x$	M1	Multiply correctly by $\sin x \cos x$ and use $\cos^2 x + \sin^2 x = 1$
	$8\sin^2 x - 2\sin x - 3 = 0$	A1	Three term quadratic.
	$(2\sin x + 1)(4\sin x - 3) = 0$	M1	Factorise or use formula on <i>their</i> quadratic
	$\sin x = -\frac{1}{2} \rightarrow x = 210^{\circ}, 330^{\circ}$	A1	
	$\sin x = \frac{3}{4} \to x = 48.6^{\circ}, 131.4^{\circ}$	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/23 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

0606/23

Question	Answer	Marks	Partial Marks
1	<i>x</i> = 3	B1	
	2 - 3x = 4 + x oe	M1	
	x = -0.5 oe	A1	
2	$x^2 + 3x \left(\frac{4-2x}{5}\right) = 4$	M1	eliminate <i>x</i> or <i>y</i>
	$x^2 - 12x + 20 (=0)$	A1	3 terms on one side if eliminating y $5y^2 + 16y (=0)$ if eliminating x
	(x-2)(x-10) (=0)	M1	or $y(5y+16)$ (=0)
	x=2 or x=10 nfww	A1	or correct pair
	$y=0$ or $y=-\frac{16}{5}$ nfww	A1	
3	$(k+9)^2 - 4 \times 9 \ (>0)$	M1	use $b^2 - 4ac$
	$k^2 + 18k + 45 (>0)$	A1	
	k = -15 $k = -3$	A1	
	k < -15 or $k > -3$ no isw mark final answer	A1	not 'and' A0 if combined as one statement
4(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 + \sin x}$	M1	
	$\times \cos x = \frac{\cos x}{1 + \sin x}$	A1	
4(b)	insert $\frac{\pi}{6}$ into their $\frac{dy}{dx}$	M1	
	$\frac{1}{\sqrt{3}}$	A1	not $\frac{\sqrt{3}}{3}$

Question	Answer	Marks	Partial Marks
4(c)	$their \frac{\cos x}{1+\sin x} = \frac{\sin x}{\cos x}$	M1	replace $\tan x$ with $\frac{\sin x}{\cos x}$
	use $\cos^2 x = 1 - \sin^2 x$ $(2\sin^2 x + \sin x - 1 = 0)$	M1	earned when equation reduced to a quadratic in sinx
	$(2\sin x - 1)(\sin x + 1) = 0$	M1	solve three term quadratic in sinx
	$x = \frac{\pi}{6}$	A1	or 0.524 or better radians only if M0 M0 M0 and (a) and (b) correct, allow SC2 for $\tan x = \frac{1}{\sqrt{3}}, x = \frac{\pi}{6}$
	$x = \frac{5\pi}{6}$	A1	or 2.62 or better radians only A0 if extra solution(s) in range
5	express an equation correctly in powers of 3 or powers of 2	M1	
	x + 2y - 2 = 5 oe $(x + 2y = 7)$	A1	accept unsimpified
	2x+1-2.5 = 3 + y - 0.5 oe $(2x - y = 4)$	A1	accept unsimplified
	solve correct equations for <i>x</i> or <i>y</i>	M1	
	x = 3 and $y = 2$	A1	
6(a)	3024	B1	
6(b)	24	B1	
6(c)	$^{4}P_{2} \times {}^{5}P_{2}$	M1	4×3 × 5×4
	240 no isw	A1	
6(d)	$^4P_1 \times {}^8P_3$	M1	4 × 8×7×6
	1344 no isw	A1	
7(a)	$-x\sin x + \cos x$ isw	B2	accept unsimplified if incorrect allow B1 for $\frac{d}{dx}(\cos x) = -\sin x \text{ clearly seen}$

Question	Answer	Marks	Partial Marks
7(b)	$x = \pi, \ y = -\pi$	B1	or –3.14 or better
	$x = \pi, \ \frac{\mathrm{d}y}{\mathrm{d}x} = -1$	B1	from correct $\frac{dy}{dx}$
	gradient of normal =1	M1	use $m_1m_2 = -1$ with <i>their</i> grad of tangent
	$y = x - 2\pi$ cso	A1	or $y = x - 6.28$ or better fully correct solution
7(c)	$\int their(a) = x \cos x$	M1	*
	$\int their(a) = x \cos x$ $\left(\int -\sin x + \cos x dx = x \cos x\right)$		
	$\int \cos x \mathrm{d}x = \sin x$	B1	clearly seen anywhere
	$-x\cos x + \sin x$	A1	implies previous marks if (a) is correct
	insert $\frac{\pi}{6}$ into <i>their</i> integral	M1	* dep
	$\frac{1}{2} - \frac{\pi\sqrt{3}}{12}$	A1	reject decimals
8(a)	$x^2(y+1) = 8 \text{oe}$	B1	
	x + 2 = 4y oe	B1	
	$x^2\left(\frac{x+2}{4}+1\right) = 8$	M1	eliminate y from correct equations
	$x^3 + 6x^2 - 32 = 0$	A1	answer given
8(b)	x=2 or $x=-4$ seen or $(x-2)$ or $(x+4)$ seen	B1	
	find quadratic factor	M1	x^2 and 16 or long division to $x^2 + kx$ or x^2 and -8 or long division to $x^2 + kx$ not from expanding two linear factors
	$(x^2 + 8x + 16)$ or $(x^2 + 2x - 8)$	A1	
	$(x-2)(x+4)^2$ and $x=2,-4,-4$	A1	answer only without working earns B1 above only

0606/23

Question	Answer	Marks	Partial Marks
8(c)	no real value for $\log_2(-4)$ or $\log_2(-4+2)$	B1	must identify specific term in one of original equations and use $x = -4$
	<i>y</i> =1	B1	
9(a)	$(AC =) \sqrt{300^2 + x^2}$ seen isw	B 1	
	time for $AC = \frac{\sqrt{300^2 + x^2}}{0.9}$ oe or time for $CD = \frac{400 - x}{1.5}$ oe	M1	using clearly indicated value for <i>their</i> AC or <i>their</i> CD
	$T = \frac{\sqrt{300^2 + x^2}}{0.9} + \frac{400 - x}{1.5}$ oe seen isw	A1	
9(b)	$\frac{\mathrm{d}T}{\mathrm{d}x} = \frac{1}{2} \frac{\left(300^2 + x^2\right)^{-\frac{1}{2}}}{0.9} \times 2x - \frac{2}{3} \text{oe}$	B2	accept unsimplified; if incorrect allow B1 for correct differentiation of $(300^2 + x^2)^{\pm \frac{1}{2}}$
	set their $\frac{\mathrm{d}T}{\mathrm{d}x} = 0$	M1	$\frac{\mathrm{d}T}{\mathrm{d}x}$ must be a function of x
	$25x^2 = 9(300^2 + x^2)$ oe	A1	equation in x^2 with square root removed
	x = 225 (m)	A1	
	T = 533 (s) or 1600/3 (exact value)	A1	or 8 min 53 s
10(a)	use S ₄ or S ₈	M1	
	$S_4 = \frac{4}{2} [2a+3d] = 38$ (2a+3d = 19)	A1	accept unsimplified
	$S_8 = \frac{8}{2} [2a + 7d] = 38 + 86 (2a + 7d = 31)$ or	A1	accept unsimplified
	$S_8 - S_4 = \frac{8}{2} [2a + 7d] - \frac{4}{2} [2a + 3d] = 86$ $(4a + 22d = 86)$		
	solve correct equations for <i>a</i> or <i>d</i>	M1	
	a=5 and $d=3$	A1	

Question	Answer	Marks	Partial Marks
10(b)	$ar^2 = 12$ soi	B1	
	$ar^5 = -96$ soi	B1	
	solve correct equations for <i>a</i> or <i>r</i>	M1	
	r = -2 and $a = 3$	A1	
	insert <i>their a</i> and <i>r</i> into S_{10} $\left(S_{10} = \frac{3(1 - (-2)^{10})}{1 - (-2)}\right)$	M1	
	-1023	A1	
11	$\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right) = 3 \text{ soi}$	B1	seen anywhere
	use quadratic formula to solve for x	M1	
	$x = \frac{4 \pm \sqrt{16 - 4(\sqrt{7} - 2)(\sqrt{7} + 2)}}{2(\sqrt{7} - 2)}$	A1	
	$x = \frac{4 \pm 2}{2\left(\sqrt{7} - 2\right)}$	A1	or $4 \pm \sqrt{4}$ in numerator
	rationalise one of <i>their</i> solutions e.g. $\frac{4+2}{2(\sqrt{7}-2)} \times \frac{(\sqrt{7}+2)}{(\sqrt{7}+2)}$	B1	full rationalisation statement must be shown
	$x = 2 + \sqrt{7}$ nfww	A1	
	$x = \frac{2}{3} + \frac{1}{3}\sqrt{7}$ nfww	A1	accept $\frac{2+\sqrt{7}}{3}$

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 2 MARK SCHEME Maximum Mark: 80 0606/21 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1	Valid method to find m $m = \frac{34-9}{3-0.5} [=10]$ oe	M1	
	Valid method to find <i>c</i> , e.g. $34 = their \ 10 \times 3 + c$	M1	
	$\sqrt[4]{y} = (their10)\frac{1}{x} + their4$	M1	
	$y = \left(\frac{10}{x} + 4\right)^4$ oe, cao	A1	
2(a)	$9\left(x-\frac{2}{3}\right)^2+1 \text{ oe}$	B3	B1 for each of <i>p</i> , <i>q</i> , <i>r</i> correct in correctly formatted expression; allow correct equivalent values If B0 then SC2 for $9\left(x-\frac{2}{3}\right)+1$ or
			SC1 for correct values but other incorrect format
2(b)	their $\left(\frac{2}{3}, 1\right)$ oe	B1	FT their (a)
3(a)	Finds p (– 1)	M1	
	24	A1	
3(b)(i)	p(-2) = 15(-8) + 22(4) - 15(-2) + 2 = 0	B1	
3(b)(ii)	Attempt to find the quadratic factor	M1	
	$15x^2 - 8x + 1$	A1	
	(x+2)(3x-1)(5x-1) oe, cao	A1	If zero scored, SC1 for an answer of $(x+2)(3x-1)(5x-1)$ without working.
4(a)	${}^{5}C_{2} \times {}^{8}C_{4}$ oe	M1	
	700	A1	
4(b)	3×6! oe	M1	
	2160	A1	
5(a)	$4\alpha - 12 = \alpha + 3$ and $4 - \beta = -2$	M1	
	$\alpha = 5$	A1	
	$\beta = 6$	A1	

Question	Answer	Marks	Partial Marks
5(b)	$\sqrt{their(\alpha+3)^2+(-2)^2}$	M1	
	$\frac{2\mathbf{j} - their8\mathbf{i}}{\sqrt{their68}}$	A1	FT their α
6	$3x^2 + 8x + 5 = kx - 7$	M1	
	$3x^2 + (8-k)x + 12 = 0$ soi	A1	
	$(8-k)^2 - 4(3)(12)$	M1	
	$k^2 - 16k - 80*0$	M1	
	Critical values: -4 and 20 soi	A1	
	-4 < <i>k</i> < 20	A1	Alternative method: M1 for $k = 6x + 8$ oe M1 for $y = (6x + 8)x - 7$ M1 for $3x^2 + 8x + 5 = (6x + 8)x - 7$ A1 for $x = \pm 2$ A1 for $k = -4$, $k = 20$ A1 for $-4 < k < 20$
7(a)	$x + 2y = \lg 5 \text{ or}$ $3x + 4y = \lg 50$	B1	
	Solves <i>their</i> linear simultaneous equations	M1	
	$x = \lg 2$ or equivalent simplified form	A1	
	$y = \frac{1}{2} \lg \frac{5}{2}$ or equivalent simplified form	A1	If A0 A0 then SC1 for a correct pair of unsimplified values or a correct pair of decimal values correct to at least 3sf
7(b)	$\left(x^{\frac{1}{3}}+2\right)\left(2x^{\frac{1}{3}}-5\right)$ oe	M1	
	$x^{\frac{1}{3}} = -2, \frac{5}{2}$	M1	
	$x = -8, \frac{125}{8}$	A1	
8(a)	$32 - 80x + 80x^2 - 40x^3 + 10x^4 - x^5$	В3	B2 for any four or five terms correct orB1 for any three terms correct or M1 for a fully correct but unsimplified expansion

Question	Answer	Marks	Partial Marks
8(b)	Combines powers sufficiently to be able to take logs or applies correct log laws	M1	
	For making use of <i>their</i> expansion from part (a)	M1	
	$40x^2(2-x) = 0$ oe	M1	FT <i>their</i> (a) if possible
	x=0, x=2 cao	A1	
9(a)	$v \text{ ms}^{-1}$	B3 s	 B1 for correct shape with three distinct linear sections B1 for 3 and 1.6 on vertical axis B1 for 60, 75, 80 on horizontal axis
9(b)	$3 \times 60 + 15 (1.6) + 0.5 (15) (1.4) + 0.5 (5) (1.6) or 3 \times 60 + 0.5 (3 + 1.6) (15) + 0.5 (5) (1.6)$	M2	M1 for attempting at least two terms of the sum:
	218.5 (metres)	A1	
9(c)	0.32 (ms ⁻²)	B1	
10(a)	a=3, b=1	B2	B1 for each
10(b)	$\int_0^{their b} 4x^{\frac{2}{3}} dx + \int_{their b}^{their a} (x-3)^2 dx$	M1	
	$\left[\frac{3}{5} \times 4x^{\frac{5}{3}}\right]_{0}^{their b} + \left[\frac{(x-3)^{3}}{3}\right]_{their b}^{their a} \text{ soi}$	M2	M1 for each, soi
	$\frac{12}{5}(their b) - \frac{12}{5}(0) +$	M1	
	$\frac{(their a-3)^3}{3} - \frac{(their b-3)^3}{3}$		
	$\frac{76}{15} \text{ or } 5\frac{1}{15} \text{ or}$ 5.07 or 5.06 rot to four or more figs; cao	A1	

Question	Answer	Marks	Partial Marks
11(a)	V v v v v v v v v v v v v v	B3	 B1 for correct shape of f or f¹ B1 for symmetry B1 for drawn over correct domain Maximum of 2 marks if not fully correct
11(b)(i)	$[\pm]\sqrt{x-1} = y-4$ soi	M1	
	$g^{-1}(x) = 4 - \sqrt{x - 1}$	A1	
	$[Range] g^{-1} \leqslant 4$	B1	
	$[Domain] x \ge 1$	B1	
11(b)(ii)	$\ln(2[(x-4)^2+1]+1)$	M1	
	$\ln(2x^2 - 16x + 35)$	A1	
11(b)(iii)	Valid explanation, e.g. some of the values in the range of f are outside the domain of g	B1	
12(a)	$\frac{d(e^{3x})}{dx} = 3e^{3x}$	B1	
	$\frac{d(2x+3)^{6}}{dx} = k(2x+3)^{5}$	M1	
	their $(3e^{3x})(2x+3)^6 + (e^{3x})$ (their $12(2x+3)^5$)	M1	
	$(3e^{3x})(2x+3)^6 + (e^{3x})(12(2x+3)^5)$	A1	
	$(3e^{3x})(2x+3)^5(2x+7) = 0$	M1	
	x = -1.5, -3.5	A1	
12(b)	$x = 0.5 f''(0.5)[=-5] < 0 \Rightarrow \max$ $x = 3 \qquad f''(3)[=5] > 0 \Rightarrow \min$	B2	B1 for either one correct

0606/21

Question	Answer	Marks	Partial Marks
12(c)	$h = \frac{10}{x^2}$	B1	
	$S = 8x^2 + 10x \left(their \frac{10}{x^2} \right)$	B1	
	$\frac{\mathrm{d}S}{\mathrm{d}x} = 16x - 100x^{-2} \text{ oe}$	M1	
	$16x - 100x^{-2} = 0, \ x = \sqrt[3]{\frac{25}{4}}$ oe	A1	FT their $\frac{dS}{dx} = 0$ if possible
	81.4 or 81.4325 rot to four or more figs	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

0606/22

Question	Answer	Marks	Partial Marks
1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x - \mathrm{e}^{-x}$	B2	B1 for $\cos x$ or $-e^{-x}$
	$\delta y = their \frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=\frac{\pi}{4}} \times h$	M1	
	0.251 <i>h</i>	A1	
2	Squares: $(1-\sqrt{5})^2 = 1-\sqrt{5}-\sqrt{5}+5$	B1	or rationalises $\frac{10 + 2\sqrt{5}}{(1 - \sqrt{5})^2} \times \frac{(1 + \sqrt{5})^2}{(1 + \sqrt{5})^2}$
	Rationalises, e.g. $\frac{10+2\sqrt{5}}{6-2\sqrt{5}} \times \frac{6+2\sqrt{5}}{6+2\sqrt{5}}$	B1	or squares $(1+\sqrt{5})^2 = 1+\sqrt{5}+\sqrt{5}+5$
	Multiplies out, e.g. $\frac{60 + 20\sqrt{5} + 12\sqrt{5} + 4(5)}{36 - 20}$	M1	Multiplies out $\begin{bmatrix} \frac{10+2\sqrt{5}}{(1-\sqrt{5})^2} \times \frac{6+2\sqrt{5}}{(1+\sqrt{5})^2} = \\ \frac{60+20\sqrt{5}+12\sqrt{5}+4(5)}{(1-5)^2} \end{bmatrix}$
	$5 + 2\sqrt{5}$	A2	A1 for $k + 2\sqrt{5}$ or $5 + k\sqrt{5}$
3	$x-3=k^2x^2+5kx+1$	M1	
	$k^2 x^2 + (5k-1)x + 4 = 0$ soi	A1	
	$(5k-1)^2 - 4(k^2)(4)$	M1	
	$9k^2 - 10k + 1 * 0$	M1	
	Critical values: $\frac{1}{9}$ and 1 soi	A1	
	$k < \frac{1}{9} \text{ or } k > 1$	A1	

Question	Answer	Marks	Partial Marks
4	Factorised form: (x+n)(x-n)(2x-1) oe	B1	
	Multiplies out correctly	M1	FT <i>their</i> factorised form provided of equivalent difficulty
	Correct expanded form in terms of <i>n</i> : $2x^3 - x^2 - 2n^2x + n^2$	A1	
	Uses (<i>their</i> n^2) = 4 in <i>their</i> expression	M1	
	$2x^3 - x^2 - 8x + 4$	A1	If A0A0 then SC1 for $(x+n)(x-n)(x-0.5)$ giving $n^2 = 8$ leading to $x^3 - \frac{1}{2}x^2 - 8x + 4$
			Alternative method: B1 for factorised form: (x+n)(x-n)(2x-1)
			M1 for <i>their</i> $n^2 = 4$
			A1 for $n = 2$
			M1 for multiplying out $(x+their 2)(x-their 2)(2x-1)$
			A1 for $2x^3 - x^2 - 8x + 4$
			If A0A0 then SC1 for $(x+n)(x-n)(x-0.5)$ giving $n^2 = 8$
			$(x+n)(x-n)(x-0.5)$ giving $n^2 = 8$ leading to $x^3 - \frac{1}{2}x^2 - 8x + 4$
5(a)	Finds coordinates of mid-point (8, -2)	B1	
	$m_{AB} = \frac{3+7}{4-12} \left[= -\frac{5}{4} \right]$ oe soi	B1	
	$m_L = \frac{-1}{-\frac{5}{4}} \text{ oe}$	M1	
	$y+2=\frac{4}{5}(x-8)$ oe isw	A1	

Question	Answer	Marks	Partial Marks
5(b)	$y - 12 = -\frac{5}{4}(x - 5)$	B1	
	Attempts to solve <i>their</i> equations	M1	
	(13, 2)	A2	A1 for $x = 13$ or $y = 2$
6(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 2x$	B1	
	their $\frac{dy}{dx}\Big _{x=\frac{\pi}{8}} = their 2$	B1	FT <i>their</i> $\frac{dy}{dx}$
	$x = \frac{\pi}{8}, y = 4$	B1	
	$y - their4 = (their2)\left(x - \frac{\pi}{8}\right)$ oe	M1	
	$2x - y = \frac{\pi}{4} - 4$	A1	
6(b)	$\sqrt{\left(\frac{\pi}{8}-2\right)^2+\left(4-\frac{\pi}{4}\right)^2} \text{ oe}$	M1	
	3.59 or 3.59[03] rot to four or more figs	A1	
7(a)	$2\ln(5x+2)$	B2	B1 for $k \ln (5x+2)$
	$2(\ln(22) - \ln(2))$ oe soi	M1	
	$2\ln 11$ or $\ln 121$ or $\ln 11^2$	A1	
7(b)	$\int e^{8x+4} dx$	M1	
	$\left[\frac{1}{8}e^{8x+4}\right]_0^{\ln 2}$	M1	
	$\frac{1}{8} \left(e^{\ln 2^8} \times e^4 - e^4 \right) oe$	M2	M1 for $\frac{1}{8} (e^{\ln 2^8 + 4} - e^4)$
	$\frac{255}{8}e^4$ or exact equivalent	A1	

Question	Answer	Marks	Partial Marks
8(a)	$3(\csc^2 x - 1) - 14 \csc x - 2[= 0]$	M1	
	$3\csc^2 x - 14\csc x - 5 = 0$	A1	
	$(\operatorname{cosecx}-5)(3\operatorname{cosecx}+1)$	M1	
	$\sin x = \frac{1}{5}$ nfww	A1	
	11.5 and 168.5 nfww	A1	
8(b)	Correct use of $\sin^2 y + \cos^2 y = 1$	B1	
	Factorises using the difference of 2 squares	B1	
	Uses $\frac{1}{\cot y} = \tan y$ or $\cot y = \frac{\cos y}{\sin y}$ correctly	B1	
	Full and correct completion to given answer: $\tan y - 2\cos y \sin y$	B1	
9(a)	$\frac{3^{10x}}{3^{3x-6}} [= 243] \text{ oe or} \\ \log 9^{5x} - \log 27^{x-2} = \log 243 \text{ oe}$	B1	
	$3^{7x+6} = 3^5$ soi oe or $5x(\log 9) - (x-2)\log 27 = \log 243$	M1	
	$x = -\frac{1}{7}$	A1	

Question	Answer	Marks	Partial Marks
9(b)	$\frac{1}{2}\log_{a} b - \frac{1}{2} = \frac{1}{\log_{a} b}$ or $\frac{1}{2}\log_{b} a - \frac{1}{2} = \log_{b} a$	B2	B1 for bringing down the power of $\frac{1}{2}$ e.g. $\frac{1}{2}\log_a b$ or for a change of base e.g. $\frac{1}{\log_a b}$
	Clears the fraction and rearranges $\frac{1}{2}(\log_a b)^2 - \frac{1}{2}\log_a b = 1 \text{ oe}$ $(\log_a b)^2 - \log_a b - 2 = 0 \text{ oe or}$ $\log_a b x^2 - x - 2 = 0 \text{ oe or}$ $\frac{1}{2} - \frac{1}{2}\log_b a = (\log_b a)^2$ $0 = 2(\log_b a)^2 + \log_b a - 1 \text{ oe or}$ $\log_a b 2y^2 + y - 1 = 0$	M1	
	$(\log_a b - 2)(\log_a b + 1)$ oe or $(2\log_b a - 1)(\log_b a + 1)$	M1	
	$[\log_a b = 2, \log_a b = -1 \text{ or} \\ \log_b a = \frac{1}{2}, \log_b a = -1 \\ \text{leading to }] \\ b = a^2, b = \text{ oe} \end{cases}$	A1	
10(a)(i)	$4 \times (-0.5)^{19}$	M1	
	$-\frac{1}{131072}$ or -7.63×10^{-6} or -7.62939×10 ⁻⁶ rot to four or more figs	Al	
10(a)(ii)	Valid explanation e.g. the common ratio is between -1 and 1	B1	
	$\frac{4}{1 - (-0.5)} = \frac{8}{3}$	B1	

Question	Answer	Marks	Partial Marks
10(b)(i)	a+9d=15(a+d)	B1	
	$\frac{6}{2}\{2a+5d\} = 87$	B1	
	Solves <i>their</i> equations for <i>d</i> e.g. $2\left(-\frac{3}{7}d\right) + 5d = 29$	M1	
	<i>d</i> = 7	A1	
10(b)(ii)	a = -3 soi	B 1	
	6990 = their(-3) + (n-1)(their7)	M1	
	<i>n</i> = 1000	A1	
11(a)	$[\text{perimeter} =]\frac{4}{3}\pi r \text{ soi}$	B2	B1 for angle $ACB = \frac{2}{3}\pi$
	$\left(their\frac{4}{3}\pi r\right) = 4\pi$ oe	M1	
	r=3	A1	
11(b)	$\frac{1}{2} \times their 3^2 \times their \frac{2\pi}{3}$ oe	M1	
	$\frac{1}{2} \times their 3^2 \times \sin their \frac{2\pi}{3}$ oe	M1	
	For subtracting and doubling: their $3^2 \times their \frac{2\pi}{3} - their 3^2 \times sin their \frac{2\pi}{3}$	M1	
	$6\pi - \frac{9}{2}\sqrt{3}$ or exact equivalent	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 2 MARK SCHEME Maximum Mark: 80 0606/23 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	aths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to
- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1	Coordinates of mid-point (-2, 1)	B1	
	$m_{AB} = \frac{97}{-8 - 4} \left[= -\frac{16}{12} \right]$	B1	
	$m_{\perp} = \frac{-1}{-16/12}$	M1	
	$y-1=\frac{3}{4}(x+2)$ oe	A1	
2	Uses $b^2 - 4ac$ $(-4k)^2 - 4(4)(2k+3)$ soi	M1	
	Correctly simplifies $16k^2 - 32k - 48$	A1	FT provided of equivalent difficulty
	16(k+1)(k-3) oe	M1	
	CV –1, 3	A1	
	-1 < k < 3	A1	FT <i>their</i> lower $CV < k < their$ upper CV
3(a)	Correct sketch (-2, 0) O $(1, 0)$ $(6, 0)$ $x(0, -12)$	B2	B1 for correct shape B1 for correct coordinates (-2, 0), (1, 0), (6, 0) and (0, -12)
3(b)	$-2 \leq x \leq 1 \text{ and } x \geq 6$	B2	B1 for $-2 \le x \le 1$ or $x \ge 6$ with no contradictions
4(a)(i)	6720	B2	B1 for $8 \times 7 \times 6 \times 5 \times 4$ or ${}^{8}P_{5}$
4(a)(ii)	2520	B2	B1 for $3 \times 7 \times 6 \times 5 \times 4$ or ${}^{3}P_{1} \times {}^{7}P_{4}$
4(b)	${}^{4}C_{1} \times {}^{5}C_{2} + {}^{5}C_{3}$	M1	
	50	A1	

Question	Answer	Marks	Partial Marks
5(a)	$\frac{\sqrt{128}}{\sqrt{72}} = \frac{\sqrt{64 \times 2}}{\sqrt{36 \times 2}}$ or simplifies $\sqrt{\frac{128}{72}}$ to $\sqrt{\frac{16}{9}}$	M1	
	correct completion to $\frac{4}{3}$	A1	
5(b)	$\frac{3 + 2\sqrt{3} - \sqrt{3}\left(1 + \sqrt{3}\right)}{\left(1 + \sqrt{3}\right)\left(3 + 2\sqrt{3}\right)}$	M1	
	$\frac{\sqrt{3}}{3+2\sqrt{3}+3\sqrt{3}+6}$	M1	
	$\frac{\sqrt{3}}{9+5\sqrt{3}} \times \frac{9-5\sqrt{3}}{9-5\sqrt{3}}$	M1	
	$\frac{9\sqrt{3}-15}{6}$ or equivalent	A1	
			Alternative method M1 for $\frac{1-\sqrt{3}}{(1+\sqrt{3})(1-\sqrt{3})} - \frac{\sqrt{3}(3-2\sqrt{3})}{(3+2\sqrt{3})(3-2\sqrt{3})}$
			M1 for $\frac{1-\sqrt{3}}{1-3} - \frac{3\sqrt{3}-6}{9-12}$
			M1 for writing with a common denominator
			A1 for $\frac{9\sqrt{3}-15}{6}$ or equivalent
6(a)	a = 20 b = 2 c = -3	B3	B1 for each
6(b)	Correct sketch:	B2	B1 for correct tan shape with one continuous section only B1 for correct <i>y</i> -intercept (0, -4)

Question	Answer	Marks	Partial Marks
7(a)	$\ln y = \ln(Ax^{n}) \text{ and so}$ $\ln y = \ln A + \ln x^{n}$	M1	
	$\ln y = \ln A + n \ln x$	A1	
7(b)	$\ln A = 0.5$	M1	
	$A = e^{0.5}$ or 1.6	A1	
	$n = \frac{1.7 - 0.5}{3.2 - 0}$	M1	
	$n=\frac{3}{8}$ oe	A1	
7(c)	$y = their e^{0.5} (11)^{their \frac{3}{8}}$ oe	M1	
	4.05 or 4.05200 rot to four or more figs	A1	
8(a)	$\sec^2(x+4) - 3\cos x$	B2	B1 for each
8(b)	$\frac{\mathrm{d}(\ln(2x+5))}{\mathrm{d}x} = \frac{2}{2x+5}$	B1	
	$\frac{\mathrm{d}(2\mathrm{e}^{3x})}{\mathrm{d}x} = 6\mathrm{e}^{3x}$	B1	
	$\frac{\frac{dy}{dx}}{\frac{2e^{3x}\left(their\frac{2}{2x+5}\right) - their6e^{3x}\ln(2x+5)}{4e^{6x}}}$	M1	FT <i>their</i> derivatives of $\ln(2x+5)$ and $2e^{3x}$
	$\frac{\frac{\mathrm{d}y}{\mathrm{d}x}}{2\mathrm{e}^{3x}\left(\frac{2}{2x+5}\right) - 6\mathrm{e}^{3x}\ln(2x+5)}}{4\mathrm{e}^{6x}}$	A1	
	$\delta y = their \left. \frac{\mathrm{d}y}{\mathrm{d}x} \right _{x=1} \times h$	M1	
	-0.138 <i>h</i>	A1	
9(a)	-540	B2	B1 for $\frac{6 \times 5 \times 4}{3!} (3x)^3 \left(-\frac{1}{x}\right)^3$ oe

Question	Answer	Marks	Partial Marks
9(b)	$\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{6!} \times \left(\frac{1}{2}\right)^{6}$	B1	
	$\frac{n(n-1)(n-2)(n-3)}{4!} \times \left(\frac{1}{2}\right)^4$	B1	
	Forms a correct equation with <i>their</i> coefficients in terms of <i>n</i>	M1	
	Simplifies their equation to $(n-4)(n-5) = 240$ or better	M1	
	Factorises or attempts to solve <i>their</i> 3-term quadratic	M1	
	<i>n</i> = 20	A1	
10(a)	$5(1 + \tan^2 A) + 14 \tan A - 8 = 0$ soi	B1	
	Solves or factorises <i>their</i> 3-term quadratic in tan <i>A</i> oe	M1	
	11.3 and 108.4 or 11.30[99] and 108.43[49] rot to four or more decimal places	A2	with no extras in range; not from clearly wrong working but allow recovery from minor slips or A1 for either, ignoring extras
10(b)	$4B - \frac{\pi}{8} = \sin^{-1}\left(-\frac{2}{5}\right)$ soi	B1	
	-0.411[516] rot to three or more figs	M1	
	-0.00470[444] rot to three or more figs	A1	
	-0.584[344] rot to three or more figs	A1	
11(a)	$R = \frac{1}{2}(w + 180)$	B1	
	$V = \frac{1}{3}\pi (their R)^2 (w+180)$ $-\frac{1}{3}\pi (90)^2 (180)$	M1	
	Correct completion to given answer: $V = \frac{\pi}{12} (w + 180)^3 - 486000\pi$	A1	

Question	Answer	Marks	Partial Marks
11(b)	$\frac{\mathrm{d}V}{\mathrm{d}w} = 3\frac{\pi}{12}(w+180)^2$ oe	B1	
	$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\mathrm{d}w}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \text{ soi}$	M1	
	$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{1}{their\left(\frac{\mathrm{d}V}{\mathrm{d}w}\right)\Big _{w=10}} \times 10000$	M1	
	0.353 [cms ⁻¹] or 0.3526[97] [cms ⁻¹] rot to four or more figs	A1	
12(a)(i)	$\frac{-(-\sin x)}{\cos^2 x}$ oe	B2	B1 for $\frac{-\sin x}{\cos^2 x}$ oe
	Correct completion to given answer: tanxsecx	B1	dep on all previous marks having been awarded
12(a)(ii)	$\sqrt[4]{e^{3x}} = e^{\frac{3x}{4}}$ oe	B1	
	$\frac{3}{\cos x} - \int e^{\frac{3x}{4}} dx = \frac{3}{\cos x} - k e^{\frac{3x}{4}} \text{ oe}$	M1	
	$\frac{3}{\cos x} - \frac{4}{3}e^{\frac{3x}{4}} + c$ oe	A1	
12(b)	$\left[\ln(px+10)\right]_{2}^{5} = \ln 2$	M1	
	$\ln(5p+10) - \ln(2p+10) = \ln 2$	M1	
	$\ln\left(\frac{5p+10}{2p+10}\right) = \ln 2$	M1	
	5p+10 = 2(2p+10)	M1	
	<i>p</i> = 10	A1	

Cambridge IGCSE™

ADDITIONAL MATHEMATICS Paper 22 MARK SCHEME

Maximum Mark: 80

0606/22 March 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Maths-Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1	Expands right hand side and attempts to collect terms	M1	
	Factorises or solves their 3-term quadratic	M1	
	correct CVs $\frac{2}{5}, \frac{3}{2}$	A1	
	$\frac{2}{5} < x < \frac{3}{2}$ mark final answer	A1	FT <i>their</i> CVs, provided both M marks awarded

Question	Answer	Marks	Partial Marks
2	Valid method to find m $m = \frac{9-7}{10-6} \left[= \frac{1}{2} \right]$	M1	
	Valid method to find <i>c</i> e.g. $7 = their \frac{1}{2} \times 6 + c$	M1	FT their m
	$\lg y = \left(their\frac{1}{2}\right)x^3 + their4$	M1	
	$y = 10^{\frac{1}{2}x^{3}+4}$ oe, isw	A1	
3	Rewrites in quadratic form soi e.g. $y = 3^x$ then $y^2 - 3y - 4 = 0$ or $(3^x)^2 - 3(3^x) - 4 = 0$	M1	
	Factorises or solves <i>their</i> 3-term quadratic e.g. $(y+1)(y-4) = 0$ or $(3^{x}+1)(3^{x}-4) = 0$	M1	
	$3^x = 4$	A1	ignore $3^x = -1$
	$x = \log_3 4$ or $\frac{\ln 4}{\ln 3}$ oe, only	A1	
4	$\overrightarrow{OC} - \overrightarrow{OA} = 4(\overrightarrow{OC} - \overrightarrow{OB})$ soi	B1	
	$\begin{bmatrix} \overrightarrow{OC} = \end{bmatrix} \begin{pmatrix} 15 \\ -3 \end{pmatrix}$	B2	B1 for $[x =]$ 15 or $[y =] -3$
	$\left \overrightarrow{OC}\right = \sqrt{their 15^2 + their (-3)^2}$	M1	
	$\frac{1}{\sqrt{234}} \begin{pmatrix} 15\\ -3 \end{pmatrix} \text{oe}$	A1	FT their $\begin{pmatrix} 15 \\ -3 \end{pmatrix}$ and their $\sqrt{234}$
5(a)	Correct V shape with vertex on positive <i>x</i> -axis	B1	
	(0, 7)	B1	
	$\left(\frac{7}{5}, 0\right)$	B1	

Question	Answer	Marks	Partial Marks
5(b)	<i>x</i> = 2	B1	
	5x-7 = their(-3) oe, soi or $25x-35 = their(-15)$ oe, soi	M1	
	$x = \frac{4}{5}$ oe	A1	
	Alternative method		
	$25x^2 - 70x + 40 = 0 \text{ oe}$	(B1	
	factorising e.g. $(5x-4)(x-2)$	M1	
	$x = 2, \frac{4}{5}$	A1)	
6(a)	$2(6) + 6\theta = 2(6 + 5\pi)$ oe	M1	
	$\theta = \frac{5}{3}\pi$ oe, soi	A1	
	$\frac{1}{2} \times 6^2 \times their\left(\frac{5\pi}{3}\right)$	M1	
	94.2 or 30π	A1	
	Alternative method		
	arc $AB = 10\pi$	(M1	
	sector is $\frac{10\pi}{12\pi} = \frac{5}{6}$ of the circle	B1	
	$\frac{5}{6} \times 36\pi$	M1	
	94.2 or 30π	A1)	
6(b)	$2\left(7\sin\frac{\pi}{8}\right) + \frac{7\pi}{4}$ oe, soi	M2	M1 for $2\left(7\sin\frac{\pi}{8}\right) + their\left(\frac{7\pi}{4}\right)$ or
			$their\left(2\left(7\sin\frac{\pi}{8}\right)\right) + \frac{7\pi}{4}$
	10.9 or 10.85 to 10.86	A1	

Question	Answer	Marks	Partial Marks
7	Eliminates one variable e.g. $x^2 = 5(x^2 - 2x + 1) - 1$ or $y = 5y - 1 - 2\sqrt{5y - 1} + 1$	M1	
	Collects terms ready to solve e.g. $4x^2 - 10x + 4 = 0$ or $4y^2 - 5y + 1 = 0$	A1	
	Factorises, applies the formula or completes the square e.g. $2(2x-1)(x-2)$ or $(4y-1)(y-1)$	M1	
	Both (0.5, 0.25) and (2, 1)	A2	A1 for either $(0.5, 0.25)$ or $(2, 1)$ provided nfww or $x = 0.5, 2$ or $y = 0.25, 1$
8(a)	Valid explanation e.g. Each value of x is mapped to a unique value of y .	B1	
8(b)	$-5 \leqslant f \leqslant 1$	B1	
8(c)	<i>a</i> = 3, <i>b</i> = 0.75 oe, <i>c</i> = −2	B4	B1 for $a = 3$ B1 for $c = -2$ M1 for $\frac{2\pi}{b} = \frac{8\pi}{3}$ oe A1 for $b = 0.75$ oe

Question	Answer	Marks	Partial Marks
9	$\frac{\mathrm{d}(\mathrm{e}^{3x})}{\mathrm{d}x} = 3\mathrm{e}^{3x} \mathrm{soi}$	B1	
	Applies product rule to e.g. numerator: $their(3e^{3x})\sin x + e^{3x}\cos x$	M1	or to $x^{-2} \sin x : x^{-2} \cos x + (-2x^{-3}) \sin x$ or to $e^{3x} \times x^{-2}$: $e^{3x} \times (-2x^{-3}) + their(3e^{3x}) \times x^{-2}$
	Correct quotient rule: $\frac{x^2 (their (3e^{3x} \sin x + e^{3x} \cos x)) - 2x(e^{3x} \sin x)}{x^4}$	M1	or applies product rule for a second time e.g.: $x^{-2}(their(3e^{3x})\sin x + e^{3x}\cos x) + (-2x^{-3})(e^{3x}\sin x)$
	Fully correct derivative; isw	A1	
	$\delta y = their\left(\frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=0.5}\right) \times h$	M1	
	7.14 <i>h</i> or 7.137[66] <i>h</i> with coefficient rot to 4 or more figs isw	A1	Answer only, without working, scores SC1
10(a)(i)	Correct method to find inverse	M1	
	$g^{-1}(x) = \frac{1}{x-3}$ oe	A1	
10(a)(ii)	$g^{-1} \ge 1 \text{ or } [1, \infty)$	B1	
10(a)(iii)	$3 < x \le 4$ or $(3, 4]$	B2	B1 for 3 and 4 in an incorrect inequality or for $x > 3$ or $x \le 4$

Question	Answer	Marks	Partial Marks
10(b)	Correct graph for h	B1	
	h^{-1} the reflection of h in $y = x$	B1	FT their h
	Both graphs drawn over the correct domain	B1	FT <i>their</i> h and h^{-1}
	$\frac{2}{3}$	B1	Correct graphs intersecting twice
11	$h = \frac{1000}{\pi r^2}$ or $r = \sqrt{\frac{1000}{\pi h}}$ soi	B1	
	$S = \pi r^{2} + 2\pi r \left(\frac{1000}{\pi r^{2}}\right) \text{ oe or}$ $S = \pi \left(\frac{1000}{\pi h}\right) + 2\pi \sqrt{\frac{1000}{\pi h}}(h) \text{ oe}$	M1	
	$S = \pi r^2 + 2\left(\frac{1000}{r}\right) \text{ or better or}$ $S = \frac{1000}{h} + 2\pi \sqrt{\frac{1000}{\pi}} \left(h^{\frac{1}{2}}\right)$	A1	
	$\frac{dS}{dr} = 2\pi r - 2000r^{-2} \text{ or}$ $\frac{dS}{dh} = -1000h^{-2} + \sqrt{1000\pi} h^{-\frac{1}{2}}$	B2	B1 FT for each term correct
	$\frac{dS}{dr} = 0, r^{3} = \frac{1000}{\pi} \text{ oe or} \\ \frac{dS}{dh} = 0, h^{\frac{3}{2}} = \sqrt{\frac{1000}{\pi}} \text{ oe}$	M1	
	$S = \pi \left(\sqrt[3]{\frac{1000}{\pi}} \right)^2 + \frac{2000}{\sqrt[3]{\frac{1000}{\pi}}} \text{ or }$	M1	
	$S = \frac{1000}{\sqrt[3]{\frac{1000}{\pi}}} + 2\sqrt{1000\pi} \left(\sqrt[3]{\frac{1000}{\pi}}\right)^{\frac{1}{2}}$		
	439 or 439.3 to 439.4	A1	

Question	Answer	Marks	Partial Marks
12(a)	v = -6t + c soi	B1	
	v = -6t + 18	M1	
	-6t + 18 = 0, t = 3	A1	
12(b)	$s = \frac{-6t^2}{2} + 18t \text{ soi}$	B1	
	$(-3(3)^2 + 18(3)) - (-3(2)^2 + 18(2))$	M1	FT <i>their s</i> provided it is from an attempt to integrate
	3 (metres)	A1	Not from wrong working
13(a)(i)	a + ar = 10 soi	B1	
	$ar^2 = 9$ soi	B1	
	Solves <i>their</i> equations	M1	
	$r = -\frac{3}{5}, \frac{3}{2}$ and $a = 25, 4$	A2	A1 for either $r = -\frac{3}{5}$, $\frac{3}{2}$ or $a = 25$, 4 or for $r = -\frac{3}{5}$ and $a = 25$ or for $r = \frac{3}{2}$ and $a = 4$
13(a)(ii)	$\frac{125}{8}$ or 15.625 or $15\frac{5}{8}$ only	B1	

Question	Answer	Marks	Partial Marks
13(b)	<i>d</i> = 8	B1	
	$\begin{bmatrix} S_{200} - S_{99} = \\ \frac{200}{2} \{2(-10) + 199(their8)\} - \\ \frac{99}{2} \{2(-10) + 98(their8)\} \text{ oe} \end{bmatrix}$	M2	M1 for either sum correct or correct FT <i>their d</i>
	119382 cao	A1	
	Alternative method 1		
	<i>d</i> = 8	(B1	
	$u_{100} = -10 + 99 \times 8[=782]$ and $u_{200} = -10 + 199 \times 8[=1582]$ and n = 101	M1	
	$\frac{1}{2}(101)(782+1582)$	M1	
	119382 cao	A1)	
	Alternative method 2		
	<i>d</i> = 8	(B1	
	$u_{100} = -10 + 99 \times 8[= 782]$ and $n = 101$	M1	
	$\frac{1}{2}(101)(2 \times 782 + (101 - 1) \times 8)$	M1	
	119382 cao	A1)	

ADDITIONAL MATHEMATICS

0606/21 October/November 2019

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(i)		B2	B1 shape B1 Correct intersection with axes.
1(ii)	$7 = 2x - 3 \rightarrow x = 5$	B1	
	Uses $7 = 3 - 2x$ oe	M1	
	x = -2	A1	
2	p = 2 $q = 4$ $r = 3$	B3	B1 for each

Question	Answer	Marks	Partial Marks
3(a)	obtain $e^{5x-3} = 3$	M1	OR Take logs $\rightarrow 2x + 1 = \ln 3 + 4 - 3x$
	take logs correctly $\rightarrow 5x - 3 = \ln 3$	M1	OR Collect like terms $\rightarrow 5x = 3 + \ln 3$
	$x = \frac{3 + \ln 3}{5} \text{ or } x = 0.820$	A1	
3(b)`	Use of laws of logs $\rightarrow lg(y-6)(y+15) = 2$	M1	
	Uses $10^2 = 100$ $\rightarrow [(y-6)(y+15)] = 100$	B1	
	Obtain correct quadratic $\rightarrow y^2 + 9y - 190 = 0$	A1	
	Solve a three term quadratic	M1	
	y = 10 only	A1	
4	Eliminate x or y	M1	
	$x = \frac{7+5\sqrt{2}}{3+2\sqrt{2}}$ or $y = \frac{1}{3+2\sqrt{2}}$	A1	
	Multiply numerator and denominator by $3-2\sqrt{2}$	M1	
	$x = 1 + \sqrt{2}$	A1	
	$y = 3 - 2\sqrt{2}$	A1	
5(i)	Differentiate	M1	Obtain $2\cos 2t$ or $-2\sin 2t$
	$v = 6\cos 2t - 8\sin 2t$	A1	
	$a = -12\sin 2t - 16\cos 2t$	A1	
5(ii)	Equate v to 0 and attempt to solve	M1	
	$\tan 2t = 0.75$	A1	or $\sin 2t = 0.6$ or $\cos 2t = 0.8$
	t = 0.32(2)	A1	Must be in radians
5(iii)	Insert value of <i>t</i> into expression for <i>a</i>	M1	Radians or degrees
	<i>a</i> = -20	A1	Must have used radians

Question	Answer	Marks	Partial Marks
6	Eliminate y	M1	
	$x^2 - x - 5 = 0$	A1	
	Use formula	M1	
	$x = \frac{1 \pm \sqrt{21}}{2}$	A1	
	$y = \frac{21 \pm \sqrt{21}}{2}$	A1	
	Find mid-point	M1	(0.5 ,10.5)
	Show that mid-point lies on $x + y = 11$	A1	
7(a)(i)	f(0.5) = 0.5 + 4.5 - 5 = 0	B1	
7(a)(ii)	Factorise to obtain $2x^2$ and 5	M1	
	$(2x-1)(2x^2+x+5)$	A1	
7(b)(i)	Replace $\tan x$ by $\frac{\sin x}{\cos x}$ and $\sec x$ by $\frac{1}{\cos x}$	M1	$13\frac{\sin x}{\cos^2 x} - 4\sin x - \frac{5}{\cos^2 x} = 0$
	Uses $\cos^2 x = 1 - \sin^2 x$	M1	$13\mathrm{sin}x - 4\mathrm{sin}x(1 - \mathrm{sin}^2x) - 5 = 0$
	$4\sin^3 x + 9\sin x - 5 = 0$	A1	Completed correctly
7(b)(ii)	$2\sin^2 x + \sin x + 5 = 0$ no real roots	B1	Suitable statement seen
	$2\sin x - 1 = 0$	M1	Attempt to solve
	$x = \frac{\pi}{6}$	A1	
	$x = \frac{5\pi}{6}$	A1	
8(i)	$-2e^{-2x}$ seen	B1	
	Product rule	M1	Clear attempt
	$e^{-2x}(1-2x)$	A1	

Question	Answer	Marks	Partial Marks
8(ii)	Set $\frac{dy}{dx} = 0$ and attempt to solve	M1	Must have two terms
	$\left(\frac{1}{2},\frac{1}{2e}\right)$	A1	
8(iii)	Attempt to find $\frac{dy}{dx}$ at $x = 1$	M1	
	$y - \frac{1}{e^2} = \frac{-1}{e^2}(x-1)$ or $y = -\frac{1}{e^2}x + \frac{2}{e^2}$	A1	
8(iv)	Integrate part(i) $xe^{-2x} = \int (-2xe^{-2x} + e^{-2x}) dx$	M1	
	Integrate e^{-2x} and make $\int xe^{-2x} dx$ the subject	M1	
	$\frac{-xe^{-2x}}{2} - \frac{e^{-2x}}{4} + c$	A1	
9(i)	$\frac{1}{3}$	B1	
	$\times \begin{pmatrix} -3 & -2 \\ 9 & 5 \end{pmatrix}$	B1	
9 (ii)	$\mathbf{B}^2 = \begin{pmatrix} 10 & 7\\ 42 & 31 \end{pmatrix}$	B2	Minus one each error
9(iii)	$\mathbf{C} = \mathbf{B}^2 - \mathbf{B}\mathbf{A}$	M1	
	$\mathbf{BA} = \begin{pmatrix} 1 & 1 \\ -15 & -3 \end{pmatrix}$	A1	
	$\mathbf{C} = \begin{pmatrix} 9 & 6\\ 57 & 34 \end{pmatrix}$	A1	
9(iv)	$\mathbf{D} = \mathbf{B}^2 \mathbf{A}^{-1}$	M1	
	$\mathbf{D} = \frac{1}{3} \begin{pmatrix} 33 & 15\\ 153 & 71 \end{pmatrix}$	A2	Minus one each error
10(i)	$81 + 108x + 54x^2 + 12x^3 + x^4$	B3	B1 for coefficientsB1 for powersB1 for all Correct

Question	Answer	Marks	Partial Marks
10(ii)	Identify and select two terms in x and equate to zero	M1	81 - 54p = 0
	<i>p</i> = 1.5	A1	
10(iii)	Constant term = $-108p = -162$	A1	FT using <i>their p</i>
10(iv)	Correctly identify two terms in x^2	M1	$x^2 \text{ term} = 108 - 12p$
	108 - 18 = 90	A1	
11(i)	Uses correct triangle with v_w opposite 10° Sides of 300 and 280 include 10°	M1	
	Use cosine rule	M1	$v_w^2 = 300^2 + 280^2 - 2 \times 300 \times 280 \cos 10$
	$v_w = 54.3$	A1	
11(ii)	Use sine rule	M1	$\frac{280}{\sin\alpha} = \frac{54.3}{\sin 10^{\circ}}$
	$\alpha = 63^{\circ} \text{ or } 64^{\circ}$	A1	
	Bearing 117° or 116°	A1	

ADDITIONAL MATHEMATICS

0606/22 October/November 2019

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Guidance
1		B1	
		B1	
		B 1	
2	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\cos 3x$	B1	
	$-3\sin 3x$	B1	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -18\sin 3x - 9\cos 3x$	B1	FT Correct derivative of <i>their</i> $\frac{dy}{dx}$
	Insert and collect like terms	M1	Must insert for <i>y</i> , <i>their</i> $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ correctly resulting in 6 terms.
	k = -15	A1	Allow $-15\sin 3x$ seen nfww
3(i)	$^{14}P_5$ or $14 \times 13 \times 12 \times 11 \times 10$	M1	
	240 240	A1	cao
3(ii)	${}^{3}P_{1} \times {}^{5}P_{2} \times {}^{6}P_{2} \text{ or } 3 \times (5 \times 4) \times (6 \times 5)$	M1	Two of the three elements multiplied by
	= 1800	A1	
3(iii)	${}^{6}P_{2} \times {}^{8}P_{3} \text{ or } (6 \times 5) \times (8 \times 7 \times 6)$	M1	One element multiplied by Clear intention to multiply
	= 10 080	A1	

Question	Answer	Marks	Guidance
4	$kx + 3 = x^{2} + 5x + 12$ $\rightarrow x^{2} + (5 - k)x + 9 (= 0)$	M1	Equate and attempt to simplify to all terms on one side.
	Use discriminant of <i>their</i> quadratic.	M1	dep
	$(5-k)^2 - 36$ oe	A1	Unsimplified
	k = -1 and 11	A1	Both boundary values
	-1 < k < 11	A1	Must be in terms of <i>k</i> .
	OR		
	$2x + 5 \sim k$	M1	Connect gradients of line and curve
	$y = (2x+5)x+3 \rightarrow 2x^{2}+5x+3 = x^{2}+5x+12$	M1	Eliminate k and y .
	$x^2 = 9 \rightarrow x = \pm 3$	A1	
	k = 11 or k = -1	A1	
	-1 < k < 11	A1	
5(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2k}{\left(x+1\right)^3}$	B1	oe Unsimplified
	Gradient of normal = $\frac{(x+1)^3}{2k}$ or Gradient of tangent = -3	M1	Gradient of normal = $\frac{-1}{\text{gradient of tangent}}$
	$\frac{8}{2k} = \frac{1}{3}$ or $\frac{2k}{8} = -3$	M1	Equate gradient of normal to $\frac{1}{3}$ at x = 1 or equate gradient of tangent to -3 at x = 1
	<i>k</i> = 12	A1	
5(ii)	$x = 2 \rightarrow \frac{dy}{dx} = -\frac{8}{9}$ or their $\frac{-2k}{27}$	B1	FT
	$y = \frac{4}{3}$ or their $\frac{k}{9}$	B1	FT
	$\frac{y - \frac{4}{3}}{x - 2} = -\frac{8}{9} \text{ or } y = -\frac{8}{9}x + \frac{28}{9}$	B1	isw

Question	Answer	Marks	Guidance
6(i)	$\frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x} + 1} + \frac{\frac{1}{\cos x} + 1}{\frac{\sin x}{\cos x}}$	M1	Use $\tan x = \frac{\sin x}{\cos x}$ and $\sec x = \frac{1}{\cos x}$ throughout
	$\frac{\sin x}{1+\cos x} + \frac{1+\cos x}{\sin x}$	M1	dep Multiply by cos <i>x</i>
	$\frac{\sin^2 x + 1 + 2\cos x + \cos^2 x}{(1 + \cos x)\sin x}$	M1	dep Add <i>their</i> fractions correctly and expand $(1 + \cos x)^2$ correctly
	$\frac{2(1+\cos x)}{(1+\cos x)\sin x}$	M1	dep Use $\sin^2 x + \cos^2 x = 1$ and take out a factor of 2.
	All correct AG	A1	Do not award if brackets missing at any point or x missing more than twice or x misplaced. Do not credit mixed variables.
	$\frac{\tan^2 x + (\sec x + 1)^2}{\tan x (\sec x + 1)}$	M1	Add fractions
	$=\frac{2\sec^2 x + 2\sec x}{\tan x(\sec x + 1)}$	M1	dep Expand brackets correctly and use $1 + \tan^2 x = \sec^2 x$
	$\frac{2 \sec x}{\tan x}$	M1	$\frac{dep}{Cancel \sec x + 1}$
	$\frac{2}{\cos x} \times \frac{\cos x}{\sin x}$	M1	dep Use $\tan x = \frac{\sin x}{\cos x}$ and $\sec x = \frac{1}{\cos x}$ oe
	All correct AG	A1	Do not award if brackets missing at any point or x missing more than twice or x misplaced. Do not credit mixed variables.
6(ii)	$3\sin^2 x + \sin x - 2 = 0 \text{ oe}$	B1	Obtain three term quadratic.
	$(3\sin x - 2)(\sin x + 1) = 0$	M1	Solve three term quadratic
	41.8° awrt	A1	
	138.2° awrt	A1	Mark final answers This mark is not awarded if there are more solutions in the range.

Question	Answer	Marks	Guidance
7(a)	$2 \times 4 \times p = 40 \rightarrow p = 5$	B1	May be obtained later.
	(x-2)(x-4)(x-p) = 0	M1	Factorise cubic
	a = -11	A1	Expand and identify
	<i>b</i> = 38	A1	
	OR		
	$2 \times 4 \times p = 40 \longrightarrow p = 5$	B1	May be obtained later.
	Obtain equations 4a + 2b = 32 16a + 4b = -24 and attempt to solve	M1	
	a = -11	A1	
	<i>b</i> = 38	A1	
7(b)	Find $x = -1$	M1	Trial value/s and finds a root or shows that $(x + 1)$ or $(x + 4)$ or $(x - 10)$ divides into $x^3 - 5x^2 - 46x - 40$.
	(x + 1)(x2 - 6x - 40) (= 0) or $(x + 4)(x2 - 9x - 10)(= 0)$ or $(x - 10)(x2 + 5x + 4)(= 0)$	A1	Factorise to give linear and quadratic factor
	(x+1)(x+4)(x-10) (= 0)	M1	Solve the quadratic to give 2 roots
	x = -1, -4, 10	A1	
	OR Uses factor theorem to find a root $(-1)^3 - 5(-1^2) - 46(-1) - 40$ or $-1 - 5 + 46 - 40 = 0$ $\rightarrow x = -1$	M1	This may be awarded for $x = -4$ or $x = 10$.
	Uses factor theorem to attempt to find further roots	M1	At least two more trials.
	$(-4)^3 - 5(-4)^2 - 46(-4) - 40$ or $-64 - 80 + 184 - 40 = 0$ $\rightarrow x = -4$	A1	
	$(10)^3 - 5(10)^2 - 46(10) - 40$ or 1000 - 500 - 460 - 40 = 0 $\rightarrow x = 10$	A1	

Question	Answer	Marks	Guidance
8(i)	$\sqrt{5^2 + 12^2} = 13$	M1	
	$\mathbf{v}_A = -\frac{5}{2}\mathbf{i} - 6\mathbf{j} \text{ or } \frac{1}{2}(-5\mathbf{i} - 12\mathbf{j})$	A1	
8(ii)	$ v_B = \sqrt{12^{12} + (-9)^2}$	M1	Use Pythagoras
	15	A1	Do not allow \pm 15. Mark final answer.
8(iii)	$\boldsymbol{r}_{\mathcal{A}} = \begin{pmatrix} 20\\ -7 \end{pmatrix} + t \begin{pmatrix} -2.5\\ -6 \end{pmatrix}$	B1	FT on <i>their</i> v_A only if of the form $k(-5\mathbf{i} - 12\mathbf{j})$ where $k \neq 1$ or 0.
	or $\mathbf{r}_{A} = (20 - 2.5t)\mathbf{i} + (-7 - 6t)\mathbf{j}$		
	$\boldsymbol{r}_{\boldsymbol{B}} = \begin{pmatrix} -67\\11 \end{pmatrix} + t \begin{pmatrix} 12\\-9 \end{pmatrix}$	B1	
	or $\mathbf{r}_{B} = (-67 + 12t)\mathbf{i} + (11 - 9t)\mathbf{j}$		
8(iv)	20 - 2.5t = -67 + 12t or $-7 - 6t = 11 - 9t$	M1	Equate x or y coordinates. Must have two terms in both coordinates.
	<i>t</i> = 6	A1	nfww Ignore other value of <i>t</i> .
	$r = \begin{pmatrix} 5 \\ -43 \end{pmatrix}$ only	A1	A0 if further value of <i>r</i> found.
0(:)	or $\mathbf{r} = 5\mathbf{i} - 43\mathbf{j}$	D1	
9(i)	Midpoint (1, 2)	B1	May be seen on diagram
	Gradient of $AB = -\frac{3}{4}$	B1	
	Gradient of <i>PM</i> = $\frac{-1}{their \text{ gradient of } AB} = \frac{4}{3}$	M1	Use $m_1 \times m_2 = -1$
	Equation $PM \frac{y-2}{x-1} = \frac{4}{3}$	M1	dep Attempt to find equation of line with <i>their</i> midpoint and <i>their</i> gradient of <i>PM</i> . If $y = mx + c$ used c must be found.
	$y = \frac{4}{3}x + \frac{2}{3}$	A1	
9(ii)	$s = \frac{4}{3}r + \frac{2}{3}$	B1	FT Insert (r, s) into <i>their</i> linear equation to

Question	Answer	Marks	Guidance
			obtain <i>s</i> =
9(iii)	$(r-1)^2 + (s-2)^2 = 100$ oe	B1	FT Use Pythagoras with <i>their</i> (1, 2)
	Eliminate <i>r</i> or <i>s</i>	M1	From one linear and one quadratic expression. Unsimplified
	$25r^2 - 50r - 875 = 0$ oe or $25r^2 - 100 = 1500 = 0$	A1	
	$25s^2 - 100s - 1500 = 0 \text{ oe}$		
	(5r+25)(5r-35) = 0 oe or (5s-50)(5s+30) = 0 oe	M1	Solve three term quadratic Can be implied by correct solution.
	r = 7, s = 10	A1	Do not award if negative values of r and s are also given nfww
	OR Equivalent method such as:		
	$\overrightarrow{MP} = \begin{pmatrix} a \\ b \end{pmatrix} \rightarrow a^2 + b^2 = 100 \text{ and } \frac{b}{a} = \frac{4}{3}$	B1	Using distance =10 and gradient = $\frac{4}{3}$.
	Eliminate <i>a</i> or <i>b</i>	M1	
	$a^2 + \left(\frac{4a}{3}\right)^2 = 100$	A1	
	$\operatorname{or}\left(\frac{3b}{4}\right)^2 + b^2 = 100$		
	$\rightarrow a = (\pm)6$ and $b = (\pm)8$	M1	Solve
	r = 7, s = 10	A1	
10(i)	Quotient rule or product rule	M1	
	$\frac{x-2x\ln x}{x^4}$ or $\frac{x-\ln x.2x}{x^4}$ oe isw	A2/1/0	Minus one each error. Allow unsimplified.
10(ii)	$x - 2x \ln x = 0$	M1	Set $\frac{dy}{dx} = 0$ and attempt to solve. Must have two terms and obtain $\ln x = k$ only.
	$x = 1.65$ awrt or \sqrt{e}	A1	
	$y = 0.184$ awrt or $\frac{1}{2e}$	A1	

Question	Answer	Marks	Guidance
10(iii)	$\frac{\ln x}{x^2} = \int \frac{1}{x^3} - \frac{2\ln x}{x^3} dx$	M1	Integrate <i>their</i> derivative from (i) which must have two terms. Condone omission of dx .
	$\frac{-1}{2x^2}$	A1	Find $\int \frac{1}{x^3} dx$
	$\int \frac{\ln x}{x^3} \mathrm{d}x = -\frac{1}{4x^2} - \frac{\ln x}{2x^2} + (C)$	A1	oe Rearrange and complete
10(iv)	Insert limits and subtract correctly	M1	dep Must be inserting into two terms in <i>x</i> from (iii). Values explicitly seen if expression is incorrect.
	$\frac{3}{16} - \frac{\ln 2}{8}$ or 0.101 awrt	A1	
11	$\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right) = -4$	B1	Seen anywhere
	Attempt formula	M1	
	$x = \frac{-3 \pm 5}{2\left(\sqrt{5} - 3\right)}$	A1	
	Multiply by <i>their</i> $(\sqrt{5}+3)$	M1	Attempt must be seen with a further line of working. oe
	$x = \sqrt{5} + 3$	A1	oe Mark final answer
	$x = \frac{-1\left(\sqrt{5} + 3\right)}{4}$	A1	oe Mark final answer

ADDITIONAL MATHEMATICS

0606/23 October/November 2019

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Guidance
1	<i>x</i> = 1	B1	
	-3x - 2 = x + 4 oe	M1	
	x = -1.5 oe	A1	
2(i)	$\frac{\frac{1}{\sin} - \frac{\cos x}{\sin x}}{1 - \cos x}$	M1	express in terms of sinx and cosx
	$\frac{(1-\cos x)}{\sin(1-\cos x)}$	A1	rewrite not as a fraction within a fraction
	$\frac{1}{\sin x} = \csc x$	A1	correct completion answer given
2(ii)	$\left[\sin x = \frac{1}{2}\right] x = 30^{\circ}$	B1	
	$x = 150^{\circ}$ nfww	B1	no extra answers
3	$(1 + ax)^5 = 1 + 5ax + 10a^2x^2 + 10a^3x^3$ soi	B1	4 terms not ${}^{n}C_{r}$ notation
	[2] + (10a + b)x + (5ab + 20a2)x2	M1	obtain expansion with 2 terms in x , 2 terms in x^2
	equate terms in x and x^2 to give two equations in a and b each consisting of three terms	M1	
	$ \begin{array}{r} 10a + b = 32 \\ 5ab + 20a^2 = 210 \end{array} $	A1	correct equations imply previous two M marks
	eliminate <i>b</i>	M1	
	obtain $3a^2 - 16a + 21 = 0$ correctly	A1	answer given
	a = 3 and $b = 2$	B1	
	c = 720 only	B1	no additional answers
4(i)	$y = 2(x-1)^2 - 9$	B3	a = 2, b = 1, c = -9 in correct form. B1 for each
4(ii)	minimum <i>their</i> –9	B1	FT from <i>their</i> correct form, with $a > 0$
	when $x = their 1$	B1	FT from <i>their</i> correct form, with $a > 0$

Question	Answer	Marks	Guidance
4(iii)	$x = \sqrt{p}$ or $p = x^2$ soi	B1	
	$(x-1) = \sqrt{\frac{9}{2}}$	M1	$(x-b) = \sqrt{\frac{-c}{a}}$ $(\sqrt{p}-b) = \sqrt{\frac{-c}{a}}$
	or $\left(\sqrt{p}-1\right) = \sqrt{\frac{9}{2}}$ oe		$\left(\sqrt{p} - b\right) = \sqrt{\frac{-c}{a}}$ using <i>their</i> values of <i>a</i> , <i>b</i> , <i>c</i> from (i)
	<i>p</i> = 9.74	A1	completion not involving use of quadratic formula
5(a)	$\tan\left(y-\frac{\pi}{4}\right) = (\pm)\sqrt{3}$	M1	± 1.73
	$y - \frac{\pi}{4} = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}$	A1	1.04(7) or 2.09(4)
	$y = \frac{7\pi}{12}$ or 1.83	A1	
	$y = \frac{11\pi}{12}$ or 2.88	A1	
5(b)	correctly rewrite equation in terms of sinz and cosz	M1	
	use $\sin^2 z = 1 - \cos^2 z$	M1	appropriate use of Pythagorean identity for forming an equation in one trig ratio
	$6\cos^2 z - 7\cos z + 1 = 0 \mathbf{oe}$	A1	
	$(6\cos z - 1)(\cos z - 1) = 0$	M1	solve three term quadratic in cosz
	80.4°	A1	
	279.6°	A1	
6(i)	$\left[\tan ACB = \right] \frac{3 + \sqrt{3}}{3 - \sqrt{3}}$	B1	
	rationalise with $3 + \sqrt{3}$	M1	
	simplify showing at least 3 terms in numerator to $2 + \sqrt{3}$	A1	
6(ii)	$(AC)^{2} = (3 + \sqrt{3})^{2} + (3 - \sqrt{3})^{2}$ oe	M1	Pythagoras
	at least 4 terms $12 + 6\sqrt{3} + 12 - 6\sqrt{3}$	A1	

Question	Answer	Marks	Guidance
	$AC = 2\sqrt{6}$	A1	
7(i)	evidence of differentiation $(3x + 2)^{-3}$	M1	
	$-12(3x+2)^{-3} \times 3$	A1	may use PR or QR on fraction part
	+1	B1	
	set their $\frac{dy}{dx} = 0$	M1	$1 - 36(3x + 2)^{-3} = 0$
	x = 0.43 nfww	A1	
	y = 0.98 only	A1	
7(ii)	$\frac{-2}{3x+2}$ oe	B1	
	$\frac{1}{2}x^2$	B1	
	$\left[\frac{-2}{6+2}+2\right] - \left[\frac{-2}{2}\right]$	M1	insert correct limits into <i>their</i> two term integral and subtract two non-zero terms in correct order
	2.75 nfww	A1	2.75 following B1 B1 implies M1
8(i)	<i>p</i> = -4	B1	
8(ii)	(x-2)(x-3)(x+4)	M1	FT $(x-2)(x-3)(x-p)$
	$(x^2 - 5x + 6) (x + 4)$	A1	FT $(x^2 - 5x + 6) (x - p)$ multiply out two factors
	correctly obtain $a = -1$ $x^3 - x^2 - 14x + 24$	A1	answer given
	b = -14 stated	B1	
8(iii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2x - 14$	B1	FT <i>their</i> numerical $b 3x^2 - 2x + b$
8(iv)	set <i>their</i> $\frac{dy}{dx}$ equal to 2	M1	FT <i>their</i> numerical <i>b</i>
	x = 2	A1	
	y = 40 only	A1	no additional answers
8(v)	y - 40 = 2(x + 2) (y = 2x + 44)	B1	
9(i)	$\overrightarrow{AD} = 2\mathbf{a} + \mathbf{b}$	B1	

Question	Answer	Marks	Guidance
	$\overrightarrow{OX} = \mathbf{a} + \lambda (2\mathbf{a} + \mathbf{b})$	B1	
9(ii)	$\overrightarrow{BC} = 3\mathbf{a} - 2\mathbf{b}$	B1	
	$\overrightarrow{OX} = 2\mathbf{b} + \mu \big(3\mathbf{a} - 2\mathbf{b} \big)$	B1	
9(iii)	$\overrightarrow{OX} = \overrightarrow{OX}$ and equate for a or b	M1	
	$1+2\lambda=3\mu$ and $\lambda=2-2\mu$	A1	
	solve correct equations for λ or μ	M1	
	$\lambda = \frac{4}{7}$ and $\mu = \frac{5}{7}$	A1	
9(iv)	$\frac{4}{3}$ or 4 : 3	B1	FT $\lambda/(1-\lambda)$ $0 < \lambda < 1$
10(i)	$gf(x) = e^{2(\ln(3x+2))} - 4$	B1	
	<i>their</i> $gf = 5$	M1	
	use $\ln a^p = p \ln a$ or $e^{\ln a} = a$ or $\ln e^a = a$	B1	correct use of log/exponential relationship seen anywhere
	$3x + 2 = 3$ or $(3x + 2)^2 = 9$	A1	3 may take the form of e ^{0.5ln9} 9 may take the form of e ^{ln9}
	$x = \frac{1}{3}$ only	A1	
10(ii)	$x = \frac{e^{y} - 2}{3}$	M1	find x in terms of y
	$\frac{\mathrm{e}^{x}-2}{3}\left(=\mathrm{f}^{-1}(x) \text{ or } = y\right)$	A1	interchange x and y correct completion
10(iii)	$\frac{e^x - 2}{3} = e^{2x} - 4$	M1	their $f^{-1}(x) = g(x)$
	$3e^{2x} - e^x - 10 \ (=0)$	A1	obtain quadratic in e ^x must be arranged as a three term quadratic in order shown
	$(3e^{x}+5)(e^{x}-2) (=0)$	M1	solve for e^x
	$x = \ln 2$ or 0.693 only	A1	

ADDITIONAL MATHEMATICS

0606/11 May/June 2019

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Guidance
1(a)	E	B1	
	Second se	B1	
1(b)	<i>R P O O O O O O O O O O</i>	B2	B1 for $P \subset R$ and $Q \subset R$ B1 for $P \cap Q = \emptyset$
2(i)	4	B1	
2(ii)	$120^{\circ} \text{ or } \frac{2\pi}{3}$	B1	
2(iii)		B3	B1 for a complete curve starting at $(-90^\circ, 3)$ and finishing at $(90^\circ, -5)$ B1 for $-5 \le y \le 3$ for a complete curve Minimum point(s) at $y = -5$ Maximum point(s) at $y = 3$ DepB1 for a fully correct sine curve satisfying both the above and passing through $(-60^\circ, -1), (0^\circ, -1)$ and $(60^\circ, -1)$
3(i)	-12	B1	
3(ii)	$(2 \times -3 - 1)(k - 3) - 12 = 23$ oe or $2(-3)^2 + (2k - 1)(-3) - k - 12 = 23$	M1	
	<i>k</i> = -2	A1	

Question	Answer	Marks	Guidance
3(iii)	(2x-1)(x-2)-12 = -25 2x ² - 5x + 15 = 0	M1	expansion and simplification to a 3 term quadratic equation equated to zero, using <i>their k</i> .
	Discriminant: $25 - (4 \times 2 \times 15)$ = -95	M1	using discriminant for their three term quadratic equation
	which is < 0 so no real solutions	A1	cao for correct discriminant and correct conclusion
4(i)	<i>a</i> = 256	B1	
	$8 \times 2^7 \times bx [= 256x] \text{oe}$	M1	
	or $\frac{8 \times 7 \times 2^6 \times (bx)^2}{2} \left[= cx^2 \right]$ oe		
	$b = \frac{1}{4}$ oe, $c = 112$	A2	A1 for each
4(ii)	$(256+256x+112x^2)(4x^2-12+\frac{9}{x^2})$	B1	for $\left(4x^2-12+\frac{9}{x^2}\right)$
	Terms independent of x are $(256 \times (-12)) + (112 \times 9)$ = -3072 + 1008	M1	adding and selecting $(their 256 \times their (-12)) + (their 112 \times their 9)$
	= -2064	A1	
5(i)	$v = 20 \times \frac{1}{\sqrt{3^2 + 4^2}} \begin{pmatrix} 3\\4 \end{pmatrix} \text{ oe}$	M1	finding and using the magnitude of $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$
	$v = \begin{pmatrix} 12\\ 16 \end{pmatrix}$	A1	
5(ii)	$\boldsymbol{r}_p = \begin{pmatrix} 1\\2 \end{pmatrix} + \begin{pmatrix} 12\\16 \end{pmatrix} t$	M1	correct use of position vector and <i>their</i> velocity vector
		A1	

Question	Answer	Marks	Guidance
5(iii)	$\binom{17}{18} + \binom{8}{12}t = \binom{1}{2} + \binom{12}{16}t$ Leading to 17 + 8t = 1 + 12t or $18 + 12t = 2 + 16t$	M1	equating position vectors of both particles at time <i>t</i> and solve either equation for <i>t</i>
	<i>t</i> = 4	A1	
	Position vector of collision $\begin{pmatrix} 49\\ 66 \end{pmatrix}$	A1	
6	Method 1		
	$3x^2 - 2x + 1 = 2x + 5$ leading to	M1	equating the equations of the line and the curve and rearranging to obtain a three term quadratic equated to zero
	$3x^2 - 4x - 4 = 0$	A1	
	$x = -\frac{2}{3}$ and $x = 2$	A1	
	$\int_{-\frac{2}{3}}^{2} \left(2x + 5 - \left(3x^2 - 2x + 1 \right) \right) dx$	M1	subtraction (either way round)
	$\int_{-\frac{2}{3}}^{2} \left(4 + 4x - 3x^{2}\right) dx$	M1	integration to $Ax + Bx^2 + Cx^3$
	$\left[4x + 2x^2 - x^3\right]_{-\frac{2}{3}}^2$	A1	for $4x + 2x^2 - x^3$ oe
	$ (8+8-8) - \left(-\frac{8}{3} + \frac{8}{9} + \frac{8}{27}\right) = 8\frac{40}{27} $	M1	Dep on preceding M1 correct use of limits
	27		
	$=\frac{256}{27}$ or 9.48 or $9\frac{13}{27}$	A1	

Question	Answer	Marks	Guidance
6	$\frac{\text{Method } 2}{3x^2 - 2x + 1} = 2x + 5$ leading to	M1	equating the line and the curve and rearranging to obtain a three term quadratic equated to zero
	$3x^2 - 4x - 4 = 0$	A1	
	$x = -\frac{2}{3}$ and $x = 2$	A1	
	Area of trapezium = $\frac{1}{2}\left(\frac{11}{3}+9\right) \times \frac{8}{3}$	B1	area of the trapezium, allow unsimplified
	Area under curve = $\int_{-\frac{2}{3}}^{2} 3x^2 - 2x + 1 dx$	M1	integration to $Ax + Bx^2 + Cx^3$
	$= \left[x^{3} - x^{2} + x \right]_{-\frac{2}{3}}^{2}$	A1	for $x^3 - x^2 + x$
	$= \left(\left(8 - 4 + 2\right) - \left(-\frac{8}{27} - \frac{4}{9} - \frac{2}{3}\right) \right)$ $6\frac{38}{27}$	M1	DepM1 for correct use of limits.
	Shaded Area = $\frac{152}{9} - \frac{200}{27}$ = $\frac{256}{27}$ or 9.48 or $9\frac{13}{27}$	A1	
7(a)	$\frac{\text{Method 1}}{\log_3 x + \frac{\log_3 x}{\log_3 9}} = 12$	B1	change to base 3 logarithm
	$\frac{3\log_3 x}{2} = 12$ x = 3 ⁸ or $\sqrt[3]{3^{24}}$	M1	simplification and dealing with base 3 logarithms to obtain a power of 3
	<i>x</i> = 6561	A1	

Question	Answer	Marks	Guidance
7(a)	$\frac{\text{Method } 2}{\log_9 x} + \log_9 x = 12$	B1	change to base 9
	$3\log_9 x = 12$ $x = 9^4 \text{ or } \sqrt[3]{9^{12}}$	M1	simplification and dealing with base 9 logarithms to obtain a power of 9
	<i>x</i> = 6561	A1	
7(b)	$\frac{\text{Method 1}}{\log_4 (3y^2 - 10)} = \log_4 (y - 1)^2 + \frac{1}{2}$	B1	use of power rule
	$\log_4 \frac{3y^2 - 10}{(y - 1)^2} = \frac{1}{2}$	B1	DepB1 for use of division rule
	$\frac{3y^2 - 10}{(y - 1)^2} = 2$	B1	for $\frac{1}{2} = \log_4 2$
	$y^2 + 4y - 12 = 0$	M1	Dep on first two B marks simplification to a three term quadratic.
	y = 2 only	A1	
7(b)	$\frac{\text{Method } 2}{\log_4 (3y^2 - 10)} = \log_4 (y - 1)^2 + \frac{1}{2}$	B1	use of power rule
	$\log_4 (3y^2 - 10) = \log_4 (y - 1)^2 + \log_4 2$	B1	for log ₄ 2
	$3y^2 - 10 = 2(y - 1)^2$	B1	Dep on first B1 use of the multiplication rule
	$y^2 + 4y - 12 = 0$	M1	Dep on first and third B marks. simplification to a 3 term quadratic
	y = 2 only	A1	

Question	Answer	Marks	Guidance
8(i)	f > -1	B1	or $f(x) > -1$, $y > -1$, $(-1,\infty)$, $\{y: y > -1\}$
8(ii)	$e^{v} = \frac{x+1}{5} \text{ oe}$	M1	a complete valid method to obtain the inverse function
	$y = \ln\left(\frac{x+1}{5}\right)$ or $f^{-1}(x) = \ln\left(\frac{x+1}{5}\right)$ oe	A1	
	Domain $x > -1$ or $(-1, \infty)$	B1	FT <i>their</i> (i) or correct
8(iii)	g(1) = 5 so $fg(1) = f(5)$	M1	evaluation using correct order of operations
	$5e^5 - 1 = 741$	A1	awrt 741 or 5e ⁵ –1
8(iv)	$g^{2}(x) = (x^{2} + 4)^{2} + 4$	M1	correct use of g ²
	$x^{4} + 8x^{2} + 16 + 4 = 40$ (x ² + 4) ² = 36 or x ⁴ + 8x ² - 20 = 0 (x ² + 10)(x ² - 2) = 0	M1	DepM1 for forming and solving a quadratic in x^2
	$x = \pm \sqrt{2}$ only	A1	
9(i)	Method 1		
	$600\pi = 2\pi r^2 + 2\pi rh$	B1	
	$h = \frac{600\pi - 2\pi r^2}{2\pi r}$	M1	making <i>h</i> subject from a two term expression for SA.
	$V = \pi r^{2} h$ $V = \pi r^{2} \left(\frac{600\pi \cdot 2\pi r^{2}}{2\pi r} \right)$ $V = \pi r^{2} \left(\frac{300}{r} - r \right)$ $V = 300\pi r - \pi r^{3}$	A1	correct substitution and manipulation to obtain given answer

Question	Answer	Marks	Guidance
9(i)	Method 2		
	$600\pi = 2\pi r^2 + 2\pi rh$	B1	
	$600\pi r = 2\pi r^3 + 2\pi r^2 h$	M1	multiplying both sides by r
	$\frac{600\pi r \cdot 2\pi r^3}{2} = \pi r^2 h$	A1	correct manipulation to obtain $\pi r^2 h$
	$V = \pi r^2 h$ $V = 300\pi r - \pi r^3$		
9(ii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 300\pi - 3\pi r^2$	M1	differentiation of given formula to $A+Br^2$
	When $\frac{\mathrm{d}V}{\mathrm{d}r} = 300\pi - 3\pi r^2 = 0$	M1	equating to zero and attempt to solve
	<i>r</i> = 10	A1	
	$V = 2000\pi$ or 6280 or 6283	A1	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = -6\pi r \; , \frac{\mathrm{d}^2 V}{\mathrm{d}r^2} < 0$	B1	cao for $\frac{d^2 V}{dr^2} = -6\pi r$, $\frac{d^2 V}{dr^2} = -60\pi$ or other
	so maximum		correct method leading to maximum
10(i)	Method 1		
	$\lg y = A + Bx^2$	B1	statement soi
	16 = A + 6B $4 = A + 2B$	M1	one correct equation
	leading to $A = -2$ and $B = 3$	A2	A1 for each
10(i)	Method 2		
	$\lg y = A + Bx^2$	B1	statement soi
	Gradient = B B = 3	B1	
	16 = A + 6B or $4 = A + 2B$	M1	a correct equation
	A = -2	A1	

Question	Answer	Marks	Guidance
10(i)	<u>Method 3</u> $\lg y - 4 = 3(x^2 - 2)$ or $\lg y - 16 = 3(x^2 - 6)$	M1	correct equation or for correct method for finding constant.
	OR 4 = 3(2) + c		
	or $16 = 3(6) + c$		
	$\lg y = A + Bx^2$	B1	statement soi by <i>their A</i> and <i>B</i>
	Hence $y = 10^{3x^2 - 2}$ B = 3	B1	
	A = -2	A1	
10(ii)	$y = 10^{-2+3\left(\frac{1}{\sqrt{3}}\right)^2}$	M1	correct use of <i>their A</i> and <i>B</i>
	y = 0.1 oe	A1	
10(iii)	$2 = 10^{3x^2 - 2}$	M1	correct use of <i>their A</i> and <i>B</i>
	$lg 2 = 3x^2 - 2$ $x = \sqrt{\frac{lg 2 + 2}{3}}$	M1	complete correct method to solve for <i>x</i>
	x = 0.876	A1	

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = (x^2 + 1)(2x - 3)^{-\frac{1}{2}} + 2x(2x - 3)^{\frac{1}{2}}$	M1	differentiation of a product
		B1	for $\frac{d}{dx}(2x-3)^{\frac{1}{2}} = \frac{1}{2} \times 2(2x-3)^{-\frac{1}{2}}$ oe
		A1	all else correct i.e. $\frac{dy}{dx} = (x^2 + 1)f(x) + 2x(2x - 3)^{\frac{1}{2}}$
	$= (2x-3)^{-\frac{1}{2}} (x^{2}+1+2x(2x-3))$	M1	correctly taking out a factor of $(2x-3)^{-\frac{1}{2}}$
			or correctly using $(2x-3)^{\frac{1}{2}}$ as denominator
	$=\frac{5x^2-6x+1}{(2x-3)^{\frac{1}{2}}}$	A1	
11(ii)	When $x = 2$, $y = 5$	B 1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 9$, so gradient of normal $= -\frac{1}{9}$	M1	substitution to obtain gradient and correct method for gradient of normal
	Equation of normal $y-5 = -\frac{1}{9}(x-2)$	M1	DepM1 for equation of normal
	x+9y-47=0 or $-x-9y+47=0$	A1	Must be in this form

ADDITIONAL MATHEMATICS

0606/12 May/June 2019

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Guidance
1(a)	E Contraction of the second se	B1	
		B1	

Question	Answer	Marks	Guidance
1(b)	$P = \{30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}\}$	B1	May be seen or implied in a Venn diagram Allow without set notation
	$Q = \{30^\circ, 150^\circ\}$	B1	May be seen or implied in a Venn diagram Allow without set notation
	$P \cap Q = \{30^\circ, 150^\circ\}$	B1	Dep on both previous B marks Must be in set notation
2	Either: $(2x+3)^2(x-1) = 3(2x+3)$ $(2x+3)(2x^2+x-6)(=0)$	M1	For attempt to equate line and curve and attempt to simplify to $2x+3 \times a$ quadratic factor or cancelling $2x+3$ and obtaining a quadratic factor
	$(2x+3)(2x^{2}+x-6) = 0$ (2x+3)(2x-3)(x+2) = 0	M1	Dep for attempt at 3 linear factors from a linear term and a quadratic term
	$\left(-\frac{3}{2},0\right)$	B1	
	$\left(\frac{3}{2}, 18\right)$	A1	Dep on first M mark only
	(-2, -3)	A1	Dep on first M mark only
	Or: $(2x+3)^2(x-1) = 3(2x+3)$ $4x^3 + 8x^2 - 9x - 18(=0)$	M1	For attempt to equate line and curve and attempt to simplify to a cubic equation, by collecting like terms
	$(x+2)(4x^{2}-9)$ $(2x-3)(2x^{2}+7x+6)$ $(2x+3)(2x^{2}+x-6)$ $(2x+3)(2x-3)(x+2)(=0)$	M1	Dep For attempt to find a factor from a 4 term cubic equation (usually $x + 2$), do long division oe to obtain a quadratic factor and factorise this quadratic factor
	$\left(-\frac{3}{2},0\right)$	A1	
	$\left(\frac{3}{2}, 18\right)$	A1	
	(-2, -3)	A1	
3(i)	1000	B1	

Question	Answer	Marks	Guidance
3(ii)	$\frac{\mathrm{d}B}{\mathrm{d}t} = 400\mathrm{e}^{2t} - 1600\mathrm{e}^{-2t}$	B1	
	$3 = e^{2t} - 4e^{-2t}$ oe	M1	For equating an equation of the form $ae^{2t} + be^{-2t}$ to 1200 and dividing by 400
	$e^{4t} - 3e^{2t} - 4 = 0$	A1	
3(iii)	$(e^{2t}+1)(e^{2t}-4)=0$	M1	For attempt to factorise and solve, dealing with exponential correctly, to obtain $e^{2t} =$
	$t = \ln 2$, $\frac{1}{2} \ln 4$ or awrt 0.693 only isw if appropriate	A1	
4(a)	$a = \frac{5}{2}$	B1	
	$b = -\frac{3}{2}$	B1	
	$c = \frac{11}{2}$	B1	
4(b)	$9x^{\frac{1}{2}} - 3y^{-\frac{1}{2}} = 12$ $4x^{\frac{1}{2}} + 3y^{-\frac{1}{2}} = 14$	M1	For attempt to solve simultaneous equations. Must reach $kx^{\frac{1}{2}} = \dots$ or $ky^{-\frac{1}{2}} = \dots$ oe
	<i>x</i> = 4	A1	
	$y = \frac{1}{4}$	A1	
5(i)	9.6 = 12 <i>θ</i>	M1	For use of arc length
	$\theta = 0.8$	A1	

Question	Answer	Marks	Guidance
5(ii)	Either $\tan \theta = \frac{AB}{12}$, ($AB = 12.36$) Or $OB = \frac{12}{\cos \theta}$ ($OB = 17.22$)	M1	For attempt to find AB or OB using <i>their</i> θ May be implied by a correct triangle area Allow if using degrees consistently
	Either Area $\triangle OAB = \frac{1}{2} \times 12 \times$ their 12.36 Or Area $\triangle OAB = \frac{1}{2} \times 12 \times$ their 17.22 $\times \sin\theta$ (= 74.1 or 74.2)	M1	Allow if using degrees consistently For attempt to find area of triangle using <i>their</i> θ
	Area of sector $OAC = \frac{1}{2} \times 12^2 \times 0.8$ = 57.6	B1	Allow unsimplified
	Area of shaded region = 16.5 or 16.6	A1	
6(a)(i)	40320	B1	
6(a)(ii)	No. of ways with maths books as 1 unit = 5! or $5 \times 4!$ or ${}^{5}P_{5}$ or 120	B1	
	No. of ways maths books can be arranged amongst themselves = 4! or ${}^{4}P_{4}$ or 24	B1	
	$Total = (5! \times 4! oe) = 2880$	B1	
6(a)(iii)	No. of ways with maths books as 1 unit and geography books as 1 unit = $3!$ or ${}^{3}P_{3}$ or $3 \times 2!$ or 6	B1	
	No. of ways maths books can be arranged amongst themselves and geography books can be arranged amongst themselves = $4! \times 3!$ or ${}^{4}P_{4} \times {}^{3}P_{3}$ or 144	B1	
	$Total = (3! \times 4! \times 3! \text{ oe})$ = 864	B1	
6(b)(i)	$^{12}C_6 = 924$	B1	

Question	Answer	Marks	Guidance
6(b)(ii)	Either: 924 – ⁸ C ₆	M1	For <i>their</i> (i) – the number of teams of just men
	Total = 896	A1	
	Or: $5M 1W : {}^{8}C_{5} \times {}^{4}C_{1}$ (= 224) $4M 2W : {}^{8}C_{4} \times {}^{4}C_{2}$ (= 420) $3M 3W : {}^{8}C_{3} \times {}^{4}C_{3}$ (= 224) $2M 4W : {}^{8}C_{2} \times {}^{4}C_{4}$ (= 28)	M1	For a complete method
	Total = 896	A1	
7(i)	$\begin{array}{c} 120\\ \hline \beta & 35\\ 650\\ \hline \alpha \\ \end{array}$	B1	For correct triangle, may be implied by a correct sine rule or cosine rule.
	$\frac{120}{\sin \alpha}$ or $\frac{120}{\sin(55-\theta)} = \frac{650}{\sin 35}$ or $\frac{650}{\sin 145}$	M1	For use of a correct sine rule to obtain $\alpha =$ or $\theta =$ Or for a correct cosine rule leading to a value for v, followed by a correct sine rule leading to one of the other angles
	$\alpha = 6.08^{\circ} \text{ or } \beta = 138.9$	A1	May be implied by a correct $\theta = awrt 49^{\circ}$
	Bearing is 048.9° or 049°	A1	
7(ii)	Either $\frac{v_r}{\sin(145 - their\alpha)} = \frac{650}{\sin 35} \text{ or } \frac{120}{\sin(their\alpha)}$ Or $v_r^2 = 650^2 + 120^2 - (2 \times 650 \times 120)\cos(145 - their\alpha)$	M1	For use of sine rule or cosine rule to find resultant velocity Do not allow for a right-angled triangle May be seen in (i)
	v _r = 745	A1	For correct resultant velocity, allow awrt 745
	Time taken = $\frac{1250}{their 744.7}$	M1	For correct attempt at finding time using <i>their</i> v , $\neq 650$, 120, 770 or 530
	=1.68 hours or I hour 41 mins or 101 mins	A1	

Question	Answer	Marks	Guidance
8(i)	$e^{y} = \frac{m}{x} + c$	B1	May be implied by subsequent work
	Either $20 = 2m + c$ 8 = 4m + c	M1	For at least 1 correct equation
		M1	Dep For attempt to solve <i>their</i> 2 equations simultaneously to obtain at least one unknown
	leading to $m = -6$, $c = 32$	A1	For both
	$y = \ln\left(32 - \frac{6}{x}\right)$	A1	Must have correct brackets Mark the final answer given
	Or: Gradient = $m = (-6)$	M1	For attempt to find gradient and equate it to <i>m</i>
	20 = 2m + c or 8 = 4m + c or $e^y - 8 = m\left(\frac{1}{x} - 4\right)$ or $e^y - 20 = m\left(\frac{1}{x} - 2\right)$	M1	For at least 1 correct equation, may be using <i>their m</i>
	leading to $c = 32$ and $m = -6$	A1	For both $m = -6$, $c = 32$
	$y = \ln\left(32 - \frac{6}{x}\right)$	A1	
8(ii)	$x > \frac{3}{16}$ oe	B1	
8(iii)	$y = \ln 30$ isw	B1	
8(iv)	$2 = \ln\left(32 - \frac{6}{x}\right)$	M1	For a correct substitution and attempt to re-arrange using 2, <i>their</i> 32 and <i>their</i> – 6, keeping exactness to obtain $x =$
	$x = \frac{6}{32 - e^2} \text{oe}$	A1	Must be exact

Question	Answer	Marks	Guidance
9(i)	$5 = 4 + 2\cos 3x$	M1	For attempt to solve trig equation to obtain one correct solution
	$\frac{\pi}{9}$	A1	
	$-\frac{\pi}{9}$	A1	
9(ii)	Either: $\int_{-\frac{\pi}{9}}^{\frac{\pi}{9}} 4 + 2\cos 3x - 5 dx$	M1	For use of subtraction method
	$\left[\frac{2}{3}\sin 3x - x\right]_{-\frac{\pi}{9}}^{\frac{\pi}{9}}$	M1	For attempt to integrate to obtain the form $a \sin 3x + bx$
		B1	For $\frac{2}{3}\sin 3x$
		B1	For $-x$, may be implied by $4x - 5x$
	$\left(\frac{\sqrt{3}}{3} - \frac{\pi}{9}\right) - \left(-\frac{\sqrt{3}}{3} + \frac{\pi}{9}\right)$	M1	Dep on previous M mark for correct application of <i>their</i> limits in radians from (i) retaining exactness
	Shaded area = $\frac{2\sqrt{3}}{3} - \frac{2\pi}{9}$ oe isw	A1	

Question	Answer	Marks	Guidance
9(ii)	Or: Area of rectangle = $5 \times \frac{2\pi}{9}$	M1	$5 \times$ the difference of <i>their</i> limits in exact radians
	Area under curve = $\left[4x + \frac{2}{3}\sin 3x\right]_{-\frac{\pi}{9}}^{\frac{\pi}{9}}$	M1	For attempt to integrate to obtain the form $a \sin 3x + bx$
		B1	For $\frac{2}{3}\sin 3x$
		B1	For 4x
	$\left(\frac{\sqrt{3}}{3} + \frac{4\pi}{9}\right) - \left(-\frac{\sqrt{3}}{3} - \frac{4\pi}{9}\right)$ $\left(=\frac{2\sqrt{3}}{3} + \frac{8\pi}{9}\right)$	M1	Dep on previous M mark for correct application of <i>their</i> limits in exact radians from (i) retaining exactness
	Shaded area = $\frac{2\sqrt{3}}{3} - \frac{2\pi}{9}$ oe isw	A1	
10(i)	$800 = 4x^2h$	B1	
	$h = \frac{800}{4x^2}$ oe or $xh = \frac{800}{4x}$ oe	B1	
	$(S=)2hx+8xh+4x^2 \text{oe}$	M1	Allow if <i>h</i> is substituted at this point
	$S = 4x^2 + \left(\frac{2000}{x}\right)$	A1	Leading to AG, must have $S = \text{or}$ surface area = at some point and no errors

Question	Answer	Marks	Guidance
10(ii)	$\left(\frac{\mathrm{d}S}{\mathrm{d}x}\right) = 8x - \frac{2000}{x^2}$	B1	For correct differentiation
	When $\frac{dS}{dx} = 0$, $x = \sqrt[3]{250}$ oe (6.30)	M1	For equating to zero and attempt to solve, must get as far as $x =,$ must be using the form $ax + \frac{b}{x^2}$
		A1	For correct positive <i>x</i>
	S = 476 only	A1	
	$\frac{d^2S}{dx^2} = 8 + \frac{4000}{x^3}$ $\frac{d^2S}{dx^2} > 0 \text{ or } 24 \text{ so minimum}$	B1	For a correct convincing method, with enough detail to reach a correct conclusion of a minimum. Must be using $x = \sqrt[3]{250}$ oe
11		M1	For attempt at differentiating a product
		B1	For $\frac{2}{3} \times 3(3x+1)^{-\frac{1}{3}}$
	$\left(\frac{dy}{dx}\right) = \left(x-2\right) \times \frac{2}{3} \times 3\left(3x+1\right)^{\frac{1}{3}} + \left(3x+1\right)^{\frac{2}{3}}$	A1	For all other terms correct
	$y = \frac{4}{3}$	B1	
	When $x = \frac{7}{3}, \ \frac{dy}{dx} = \frac{13}{3}$	M1	For attempt at normal equation using $-\frac{1}{their m}$ and <i>their y</i> when $x = \frac{7}{3}$
	Equation of normal: $y - \frac{4}{3} = -\frac{3}{13}\left(x - \frac{7}{3}\right)$	A1	For correct normal equation, may be implied by a correct final answer
	At y-axis, $y = \frac{73}{39}$	A1	
	$\left(0,\frac{73}{39}\right)$ isw		

ADDITIONAL MATHEMATICS

0606/13 May/June 2019

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Guidance
1	$A \cap B = \emptyset$	B1	
	$Z \subset (X \cap Y)$	B2	B1 for identifying $X \cap Y$
2	$a = \frac{3}{2}$	B1	
	$b = \frac{7}{3}$	B1	
	<i>c</i> = 3	B 1	
3	$x^2 + (3 - m)x + m - 4 = 0$	M1	For equating line and curve and attempting to obtain a quadratic equation equated to zero
	Discriminant: $(3-m)^2 - 4(m-4)$	M1	Dep For use of $b^2 - 4ac$, could be implied by use of quadratic formula
	$(m-5)^2$	A1	
	Always positive or zero for any <i>m</i> , so line and curve will always touch or intersect	A1	For a suitable comment/conclusion
4(i)		B1	For $\frac{6x^3}{(2x^3+5)}$
		M1	For attempt to differentiate a quotient
	$\frac{dy}{dx} = \frac{(x-1)\frac{6x^2}{(2x^3+5)} - \ln(2x^3+5)}{(x-1)^2}$	A1	For all other terms correct
	When $x = 2$, $\frac{dy}{dx} = \frac{24}{21} - \ln 21$ or $\frac{8}{7} - \ln 21$, or -1.90	A1	
4(ii)	-1.90 <i>p</i> oe	B1	

Question	Answer	Marks	Guidance
5(i)		B1	For shape with maximum in 1 st quadrant
	1	B1	For $\left(-\frac{1}{3},0\right)$ and $(5,0)$
		B1	For (0, 5)
	-08	B1	All correct with cusps and correct shape for $x < -\frac{1}{3}$ and $x > 5$
5(ii)		M1	For attempt to find maximum point
	Maximum point when $x = \frac{7}{3}$	A1	For $x = \frac{7}{3}$
	$y = \frac{64}{3}$ so $k = \frac{64}{3}$	A1	
6(i)	$\frac{1}{\cos\theta} - \frac{\sin\theta}{\cos\theta} \times \sin\theta \text{oe}$	M1	For dealing with sec, tan and cosec in terms of sin and cos
	$\frac{1-\sin^2\theta}{\cos\theta}$	M1	For simplification and use of identity
	$\frac{\cos^2\theta}{\cos\theta}$	A1	For simplification to AG
6(ii)	$\cos 2\theta = \frac{\sqrt{3}}{2}$	M1	For use of part (i) and attempt to solve to get as far as $2\theta =$
	$2\theta = 30^{\circ}, 330^{\circ}$	M1	For dealing with double angle correctly, may be implied by one correct solution
	$\theta = 15^{\circ}, 165^{\circ}$	A1	For both
6(iii)	$\sin\left(\phi + \frac{\pi}{3}\right) = \pm \frac{1}{\sqrt{2}}$ $\phi + \frac{\pi}{3} = \frac{\pi}{4}, \ \frac{3\pi}{4}, \ \frac{5\pi}{4}, \ \frac{7\pi}{4}, \ \frac{9\pi}{4}$	M1	For correct attempt to solve, may be implied by $\phi + \frac{\pi}{3} = \frac{\pi}{4}$
	^r 3 4' 4' 4' 4' 4		
		M1	Dep For dealing with compound angle correctly
	$\phi = \frac{5\pi}{12}, \ \frac{11\pi}{12}, \ \frac{17\pi}{12}, \ \frac{23\pi}{12}$	A2	A1 for one correct pair, A1 for a second correct pair with no extra solutions in the range.

Question	Answer	Marks	Guidance
7(i)	$AC^{2} = \left(2\sqrt{5} - 1\right)^{2} + \left(2 + \sqrt{5}\right)^{2}$	M1	For use of Pythagoras' theorem and attempt to expand brackets
	$= 20 - 4\sqrt{5} + 1 + 4 + 4\sqrt{5} + 5$	A1	For correct unsimplified, must be convinced of non-calculator use
	$AC = \sqrt{30}$	A1	
7(ii)	$\tan ACB = \frac{2\sqrt{5} - 1}{2 + \sqrt{5}} \times \frac{2 - \sqrt{5}}{2 - \sqrt{5}}$	M1	For attempt at tan <i>ACB</i> and rationalisation
	$=\frac{4\sqrt{5}-2-10+\sqrt{5}}{4-5}$ oe	M1	Dep For seeing at least 3 terms in the numerator
	$=12-5\sqrt{5}$	A1	
7(iii)	$\sec^{2} ACB = \tan^{2} ACB + 1$ = 144 - 120\sqrt{5} + 125 + 1	M1	For use of identity using <i>their</i> (ii)
	$=270-120\sqrt{5}$	A1	
8(i)	$g \ge 1$	B1	Must be using correct notation
8(ii)	$g\left(\sqrt{62}\right) = 125$	B1	
	$f^{-1}(x) = \frac{1}{3} \ln x$	B1	
	$\frac{1}{3}\ln 125 = \ln 5$	B1	For correct order and manipulation to obtain the given answer, need to see $\frac{1}{3}\ln 125$
8(iii)	$3e^{3x} = 24$	M1	For dealing with derivatives correctly
	$x = \frac{1}{3}\ln 8$	A1	
	$x = \ln 2$	A1	
8(iv)		B3	B1 for correct g with intercept B1 for $y = x$ and/or implication of symmetry B1 for correct g^{-1} with intercept
9(a)(i)	7!= 5040	B1	

Question	Answer	Marks	Guidance
9(a)(ii)	Treating the 4 trophies as 1 unit so there are 4! ways	B1	Maybe implied by a correct answer
	There are also 4! ways of arranging the football trophies amongst themselves	B1	
	$Total = 4! \times 4! = 576$	B1	
9(a)(iii)	Treating the 4 football trophies as 1 unit and the 2 cricket trophies as 1 unit so there are 3! ways	B1	Maybe implied by a correct answer
	There are also 4! ways of arranging the football trophies amongst themselves and 2 ways of arranging the cricket trophies	B1	Maybe implied by a correct answer
	$Total = 3! \times 4! \times 2 = 288$	B1	
9(b)(i)	3003	B1	
9(b)(ii)	28	B1	
9(b)(iii)	3003 - 1	M1	For <i>their</i> (i) – 1
	3002	A1	FT
10(i)		M1	Attempt to integrate to obtain $k(2x+3)^{\frac{1}{2}}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x+3)^{\frac{1}{2}} (+c)$	A1	All correct, condone omission of $+c$
	5 = 3 + c	M1	Dep For attempt at <i>c</i>
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x+3)^{\frac{1}{2}} + 2$	M1	For a further attempt to integrate
	$y = \frac{1}{3}(2x+3)^{\frac{3}{2}} + 2x(+d)$	A1	All correct, condone omission of $+d$
	$-\frac{1}{3} = \frac{8}{3} + 1 + d$	M1	For attempt at <i>d</i>
	$y = \frac{1}{3}(2x+3)^{\frac{3}{2}} + 2x - 4$	A1	Must have <i>y</i> =

Question	Answer	Marks	Guidance
10(ii)	When $x = 3, y = 11$	M1	For attempt to find <i>y</i> using <i>their</i> (i)
		M1	Dep For attempt at normal
	Normal: $y - 11 = -\frac{1}{5}(x - 3)$	A1	All correct unsimplified
	x + 5y - 58 = 0	A1	For correct form
11(i)	120	B1	For correct triangle, may be implied by subsequent work
	600 130 α		
	$\frac{120}{\sin\alpha} = \frac{600}{\sin 130}$	M1	For use of the correct sine rule
	$\alpha = 8.81^{\circ}$	A1	Allow greater accuracy
	Bearing 041.2° or 041°	A1	Allow greater accuracy
11(ii)	$\frac{v_r}{\sin 41.19} = \frac{600}{\sin 130} = \frac{120}{\sin \alpha}$	M1	For use of sine rule using <i>their</i> α or cosine rule
	$v_r = 515.8$ awrt 516	A1	
	Time taken = $\frac{2500}{515.8}$	M1	For attempt to find time using <i>their</i> v_r , not 600, 720 or 480
	= 4.85 or 4.84	A1	

ADDITIONAL MATHEMATICS

0606/22 March 2019

Paper 22 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Partial Marks
1(i)	1081575	B1	
1(ii)	40320	B1	
1(iii)	2730	B1	
2(i)	$\frac{\mathrm{d}}{\mathrm{d}x} \frac{(\ln x)}{x} = \frac{1}{x}, \frac{\mathrm{d}}{\mathrm{d}x} \frac{(\mathrm{e}^x)}{x} = \mathrm{e}^x \text{ soi}$	B2	B1 for each
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^{x} \times their \frac{1}{x} - (\ln x) \times their \mathrm{e}^{x}}{\left(\mathrm{e}^{x}\right)^{2}}$	M1	
	correct completion to given answer, $\frac{dy}{dx} = \frac{1 - x \ln x}{x e^x}$	A1	
2(ii)	$\delta y = \left(\frac{1 - 2\ln 2}{2e^2}\right) \times h \text{ soi}$	M1	
	-0.0261[] <i>h</i> isw	A1	
3(i)	Fully correct curve $ \begin{array}{c} $	Β3	 B1 for correct shape for sine with <i>y</i>-intercept at -1 B1 for curve with period 120° B1 for curve with amplitude 5 Maximum of 2 marks if not fully correct.
3(ii)	a = -1 $b = 5$ $c = 3$	B2	B1 for any 2 correct
4(a)	Expands, rearranges to form a 3-term quadratic on one side $4x^2 + x - 3[*0]$	M1	
	Critical values $\frac{3}{4}$ and -1	A1	
	$-1 \leqslant x \leqslant \frac{3}{4}$ final answer	A1	FT their critical values

Question	Answer	Marks	Partial Marks
4(b)	$k^2 - 4\left(\frac{1}{4}\right)\left(k^2 + 1\right)$	M1	
	-1	A1	
	discriminant independent of k and negative oe	A1	FT <i>their</i> –1
5	$[m_{AB} =] \frac{2+4}{3-7}$ oe or $-\frac{3}{2}$ soi	M1	
	$[m_{CD} =] their \frac{2}{3}$ oe, soi	M1	
	<i>their</i> $\frac{2}{3} = \frac{3+3}{k-2}$ oe or 3+3 = <i>their</i> $\frac{2}{3}(x-2)$ oe	M1	
	k = 11 nfww	A1	
	$\left(\frac{(their11)+2}{2},\frac{3+-3}{2}\right) \text{ oe}$	M1	
	$y = -\frac{3}{2}(x - 6.5)$ oe isw	A1	FT <i>their</i> m_{AB} and (<i>their</i> 6.5, 0)
6(i)	Takes logs, to any base, of both sides and applies the addition/multiplication law for logs $\ln y = \ln(Ab^x) \Rightarrow \ln y = \ln A + \ln b^x$	M1	
	$\Rightarrow \ln y = \ln A + x \ln b$	A1	
6(ii)	$\ln y = 1.4x + 2.2 \text{ oe} \text{or } \ln y = x \ln 4 + \ln 9 \text{ oe}$	B2	B1 for either $m = 1.4$ or $\ln b = 1.4$ or $c = 2.2$ or $\ln A = 2.2$
	$[A = e^{their 2.2} =] 9$ and $[b = e^{their 1.4} =] 4$	B2	FT <i>their</i> 2.2 and <i>their</i> 1.4
	$[b = e^{-b} =]4$		B1 FT for $A = e^{their 2.2}$ or $b = e^{their 1.4}$ or correct FT decimal rounded to more than 1 sf
6(iii)	ln y = 6 or $y = their9(their4^{2.7})$ or $y = e^{their2.2}(e^{their1.4\times2.7})$ or $ln y = their1.4(2.7) + their2.2$ or $ln y = (2.7)ln(their4) + ln(their9)$	M1	
	awrt 400 correct to 1 sf	A1	

Question	Answer	Marks	Partial Marks
7(i)	$\frac{d}{dx}\left(\sqrt{x^{2}+1}\right) = \frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}} \times 2x$	B2	B1 for $\frac{d}{dx}(\sqrt{x^2+1}) = kx(x^2+1)^{-\frac{1}{2}}$ where $k \neq 1$
	$\sqrt{x^{2}+1}$ $+ x \times their\left(\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}} \times 2x\right)$	M1	
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{2x^2 + 1}{\left(x^2 + 1\right)^{\frac{1}{2}}}$ or $a = 2, b = 1, p = \frac{1}{2}$ nfww	A1	
7(ii)	Complete argument e.g. For stationary points $\frac{dy}{dx} = 0$ and when <i>a</i> and <i>b</i> are positive, $ax^2 + b$ cannot be 0 or $2x^2$ cannot be -1	B2	FT <i>their</i> positive <i>a</i> and <i>b</i> B1 FT for a partially correct argument e.g. Because $\frac{dy}{dx}$ cannot be 0.
8(i)	6i - 4j - (2i + 12j) oe 4i - 16j oe, isw	M1 A1	
8(ii)	$\left[\overrightarrow{OC} = \right]\overrightarrow{OA} + \frac{1}{4}\overrightarrow{AB} \text{ oe}$ or $\left[\overrightarrow{OC} = \right]\overrightarrow{OB} - \frac{3}{4}\overrightarrow{AB}$ oe or $\left[\overrightarrow{OC} = \right]\frac{1}{4}\overrightarrow{OB} + \frac{3}{4}\overrightarrow{OA}$ oe or $3(x-2) = 6-x$ and 3(y-12) = -4-y	M1	
	$3\mathbf{i} + 8\mathbf{j}$ oe $\left \overrightarrow{OC}\right = \sqrt{their3^2 + their8^2}$	A1 M1	
	their $\frac{3\mathbf{i}+8\mathbf{j}}{\sqrt{73}}$	A1	FT <i>their</i> $3\mathbf{i} + 8\mathbf{j}$ and <i>their</i> $\sqrt{73}$
8(iii)	$-\frac{\lambda}{1+\lambda}(2\mathbf{i}+12\mathbf{j})$ oe, isw	B2	B1 for $\frac{\lambda}{1+\lambda} (2\mathbf{i}+12\mathbf{j})$ seen or $\overrightarrow{OD} = \frac{1}{1+\lambda} (2\mathbf{i}+12\mathbf{j})$ oe

Question	Answer	Marks	Partial Marks
9(a)(i)	Valid explanation e.g. Each x is mapped to a unique value of y [and so g is a function] but the inverse does not exist because it is many to one oe	B2	B1 for either each x is mapped to a unique value of y oe or for inverse does not exist because it is many to one oe
9(a)(ii)	$\begin{bmatrix} g^2(x) = \end{bmatrix} 6(6x^4 + 5)^4 + 5 \text{ isw}$ for all real x	B2	B1 for $[g^2(x) =] 6(6x^4 + 5)^4 + 5$ isw B1 for correct domain
9(a)(iii)	[k =] 0	B1	
9(a)(iv)	$x^4 = \frac{y-5}{6}$ soi	M1	or $y^4 = \frac{x-5}{6}$
	$x = \pm \sqrt[4]{\frac{y-5}{6}}$	A1	or $y = \pm \sqrt[4]{\frac{x-5}{6}}$
	$h^{-1}(x) = -\sqrt[4]{\frac{x-5}{6}}$	A1	If M1 A0 A0 , allow SC1 for an answer of $h^{-1}(x) = \sqrt[4]{\frac{x-5}{6}}$ or $y = \sqrt[4]{\frac{x-5}{6}}$
9(b)(i)	p > 2	B1	
9(b)(ii)	For p: Correct exponential shape tending to $y = 2$ passing through (0, 5)	B2	B1 for each
	For the inverse function: Approximate reflection of p in the dotted line passing through (<i>their</i> 5, 0)	B1	
9(b)(iii)	Valid explanation e.g. The graphs do not intersect and so there are no solutions oe	B1	
10(i)	Eliminates x or y e.g. $3x + 3 = x + 5\sqrt{x} + 1$ or $3 + 3u^2 = u^2 + 5u + 1$	M1	
	Rearranges to a 3-term quadratic e.g. $0 = 2x - 5\sqrt{x} + 2$ or $0 = 2u^2 - 5u + 2$	A1	
	Factorises or solves $0 = 2x - 5\sqrt{x} + 2$ oe or $0 = 2u^2 - 5u + 2$ oe	M1	
	$\sqrt{x} = 0.5$, $\sqrt{x} = 2$ or $u = 0.5$, $u = 2$	A1	

Question	Answer	Marks	Partial Marks
	A(0.25, 3.75) B(4, 15) oe	A2	A1 for each or for $x = 0.25$ and $x = 4$

Question	Answer	Marks	Partial Marks			
10(ii)	Method 1: Finding the area of the trapezium and subtracting					
	Valid method to find the area of the trapezium soi	M1				
	$\frac{1125}{32} \text{ or } 35\frac{5}{32} \text{ or } 35.2 \text{ or } 35.15625 \text{ rot to 4 or} $ more figs, soi	A1				
	Attempts to integrate $\int_{their0.25}^{their4} (x + 5\sqrt{x} + 1) dx [-their35.2]$	M1				
	$\left[\frac{x^2}{2} + \frac{5x^2}{\frac{3}{2}} + x\right]_{their0.25}^{their4} [-their35.2] \text{ oe}$	A1				
	F(their 4) – F(their 0.25) [–their 35.2]	M1				
	$\frac{45}{16} \text{ or } 2\frac{13}{16} \text{ or } 2.8125 \text{ isw}$ or 2.81, or 2.812	A1				
	Method 2: Finding the difference of two integrals					
	Attempts to integrate $\int_{their0.25}^{their4} (x + 5\sqrt{x} + 1 - (3 + 3x)) dx$ or $\int_{their0.25}^{their4} (-2x + 5\sqrt{x} - 2) dx$ oe	M2	M1 for an attempt to form the difference with at most one error and attempts to integrate			
	$\left[their \left(\frac{-2x^2}{2} + \frac{5x^2}{\frac{3}{2}} - 2x \right) \right]_{their 0.25}^{their 4} \text{ oe}$	A1	FT dep on at least M1 already awarded; must be at least 3 terms and, if FT, must be of equivalent difficulty			
	F(their 4) - F(their 0.25)	M1				
	$\frac{45}{16}$ or $2\frac{13}{16}$ or 2.81, 2.812 or 2.8125	A2				

Question	Answer	Marks	Partial Marks
11(a)	$\frac{x^2(x^6+1)}{x^6} = x^2 + \frac{1}{x^4}$ soi	B1	
	$\frac{x^3}{3} + \frac{x^{-3}}{-3} + c$ oe, isw	B2	B1 for any two out of three terms correct
11(b)(i)	$k\sin(4\theta - 5)$ where $k > 0$ or $k = -\frac{1}{4}$	M1	
	$\frac{\sin(4\theta-5)}{4}(+c)$	A1	
11(b)(ii)	$\frac{\sin(4(2)-5)}{4} - \frac{\sin(4(1.25)-5)}{4}$ or $\frac{\sin(3)}{4} - \frac{\sin(0)}{4}$	M1	FT <i>their</i> (b)(i), dep on M1 awarded in (b)(i)
	0.0353 or 0.03528[] oe, cao	A1	

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME

Maximum Mark: 80

0606/21 October/November 2018

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dependent dep FT follow through after error ignore subsequent working isw not from wrong working nfww oe or equivalent rounded or truncated rot SC Special Case seen or implied soi

Question	Answer	Marks	Partial Marks
1	$x^{2} + 7x - 8 (> 0)$	2	M1 for expanding and collecting terms
	x < -8 or $x > 1$	2	M1 for factorising (x+8)(x-1) > 0
2(a)	Take logs: $\left(\frac{x}{2} - 1\right)\log 3 = \log 10$	M1	
	Make x the subject: $x = 2\left(\frac{\log 10}{\log 3} + 1\right)$	M1	
	6.19	A1	
2(b)	$e^{5y+1} = \frac{2}{3}$	2	M1 for attempt to combine exponential terms
	-0.281	2	M1 for taking natural logs: $5y+1 = \ln\left(\frac{2}{3}\right)$
3(a)	Expand 4 terms: $8 + 8\sqrt{10} - 3\sqrt{10} - 30$	M1	
	-22	A1	
	5√10	A1	
3(b)	$\frac{\left(4-3\sqrt{6}\right)}{\left(\sqrt{3}+\sqrt{2}\right)} \times \frac{\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)}$	M1	Multiply numerator and denominator by $\left(\sqrt{3} - \sqrt{2}\right)$
	$\frac{4\sqrt{3} - 3\sqrt{18} - 4\sqrt{2} + 3\sqrt{12}}{3 - 2}$	M1	Expand
	$10\sqrt{3} - 13\sqrt{2}$	A2	A1 for each term

Question	Answer	Marks	Partial Marks
4	$\frac{1}{\cos x} = \frac{\cos x}{\sin x} - 5\frac{\sin x}{\cos x}$	B1	Correctly converts 3 terms into sinx and cosx
		M1	Uses $\cos^2 x = 1 - \sin^2 x$
	$6\sin^2 x + \sin x - 1 = 0$	A1	
	$(3\sin x - 1)(2\sin x + 1) = 0$	M1	
	19.5°, 160.5°, 210°, 330°	A2	A1 for 2 correct A1 for further 2 correct
5(i)	$A^{2} = \begin{pmatrix} 7 & 8 \\ -4 & -1 \end{pmatrix}$	2	Minus 1 each error.
5(ii)	7p+3q = 1 8p+2q = 0 -4p-q = 0, -p+q = 1	2	M1 forms two equations in p and q A1 Both correct
	$p = -\frac{1}{5}, q = \frac{4}{5}$	2	M1 solves equations to find p and q
6(i)	120	2	B2 $5 \times 4 \times 3 \times 2$ or B1 for pattern n(n-1)(n-2)(n-3)
6(ii)	720	2	B1 $4 \times 3 \times 2$ B1 dep $\times 6 \times 5 = 720$
6(iii)	2520	2	B1 $4 \times \times \times 3$ B1 Dep $\times 7 \times 6 \times 5 = 2520$
7(i)	$\frac{(1+\cos x)-(1-\cos x)}{(1-\cos x)(1+\cos x)}$	M1	Taking common denominator
	$=\frac{2\cos x}{1-\cos^2 x}$	A1	
	$=\frac{2\cos x}{\sin^2 x}$	M1	Using $1 - \cos^2 x = \sin^2 x$
	$=\frac{2\cos x}{\sin x} \times \frac{1}{\sin x}$ $= 2\csc x \cot x$	A1	Fully correct completion AG

Question	Answer	Marks	Partial Marks
7(ii)	$2\operatorname{cosecxcot} x = \operatorname{secx}$	M1	
	$\cot^2 x = \frac{1}{2}$	A1	
	0.955, 2.19, 4.10, 5.33	A2	A1 for 2 correct values A1 for further 2 correct values
8(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - 2\mathrm{e}^{2-5x}$	B1	
	$x = 2.5 \rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -1 \text{ and } y = 3.5$	B1	
	Grad of normal = $\frac{-1}{\frac{dy}{dx}}$	M1	
	y = x + 1	A1	Equation of normal
8(ii)	Area of trapezium = $\frac{1}{2} \times 2.5 \times 4.5$	M1	
	5.625 sq units	A1	
	$\int_{2.5}^{5} x + e^{(5-2x)} dx$	M1	Area under curve
	$= \left[\frac{x^2}{2} - \frac{1}{2}e^{(5-2x)}\right]_{2.5}^5$	A1	
		M1	insert limits and subtract (= 9.87)
	Shaded area $= 15.5$	A1	5.625 + 9.87
9(i)	$2y + 2r + \pi r = 5$	B1	
	$y = \frac{5 - 2r - \pi r}{2}$	B1	Dep

Question	Answer	Marks	Partial Marks
9(ii)	$A = 2yr + \frac{\pi r^2}{2}$	M1	
	$=r\left(5-2r-\pi r\right)+\frac{\pi r^2}{2}$	A1	
	$=5r-2r^2-\frac{\pi r^2}{2}$		
9(iii)		M1	differentiate
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 5 - \pi r - 4r$	A1	
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 0$	M1	set to zero and attempt to solve
	$r = \frac{5}{\pi + 4} = 0.7$	A1	
	A = 1.75	A1	
10(i)	$12 - 2x = k + 6 + kx - x^{2}$ $\rightarrow x^{2} - (2 + k)x + 6 - k = 0$	M1	* Equate and collect terms
	$b^{2}-4ac = 0$ $\rightarrow (2+k)^{2} = 4(6-k)$	M1	Dep*
	$k^2 + 8k - 20 = 0$	A1	
	(k+10)(k-2)=0	M1	
	k = -10 or 2	A1	
10(ii)	(-4, 20) and (2, 8)	3	M1 Insert values of k in equations and solve for x A1 $x^2 + 8x + 16 = 0 \rightarrow x = -4$ $\rightarrow y = 20$ A1 $x^2 - 4x + 4 = 0$ $\rightarrow x = 2 \rightarrow y = 8$

Question	Answer	Marks	Partial Marks
10(iii)	Grad of perpendicular $=\frac{1}{2}$	B1	
	Midpoint $(-1, 14)$	B1	FT
	Eqn $\frac{y-14}{x+1} = \frac{1}{2} \rightarrow y = \frac{1}{2}x + 14.5$	B1	FT
11	$\mathbf{n}\big(\big(R \cap H\big) \cap N'\big) = 14 - x$	B1	
	$\mathbf{n}\big(\big(R \cap N\big) \cap H'\big) = 5$	B1	
	$\mathbf{n}(N \cap (\mathbf{R} \cup H)') = 21 - x$	B1	
	x+9+x+15+14-x+5+21-x+x-2 = 70	M1	correctly form equation in x and attempt to solve
	<i>x</i> = 8	A1	
	$n(N \cap (\mathbf{R} \cup H)') = 13$	A1	

ADDITIONAL MATHEMATICS

0606/22 October/November 2018

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Partial Marks
1	$x^2 + x - 12 > x + 13$	M1	expand and simplify
	$\rightarrow x^2 \dots 25$	A1	
	x > 5 or x < -5 or $x > 5$, $x < -5$ or $x > 5$ and $x < -5$	A1	
2	$\mathbf{n}(F \cap C) = \mathbf{n}(F \cup C)' = x$	B1	
	$n(C \cap F') = 40 - x$	B1	
	$n(F \cap C') = 80 - 2x$ or $2(40 - x)$	B1	
	x + x + 40 - x + 80 - 2x = 105	M1	
	<i>x</i> = 15	A1	cao
3(i)	$\frac{3x^2\sin 2x - x^3 \times 2\cos 2x}{\left(\sin 2x\right)^2}$	3	M1 Quotient rule A2/1/0 minus one each error isw
3(ii)	$y = \frac{\pi^3}{64} [= 0.48]$	B1	
	$\frac{dy}{dx} = \frac{3\pi^2}{16}$ [=1.85] oe	B1	
	$y = \frac{3\pi^2}{16}x - \frac{\pi^3}{32}$	B1	cao
	[y = 1.85x - 0.97]		
4(i)	Take logs : $(3x-1)\log 2 = \log 6$	M1	
	Make x the subject : $x = \frac{\frac{\log 6}{\log 2} + 1}{3}$ oe	A1	
	awrt 1.19 or awrt 1.195	A1	

Question	Answer	Marks	Partial Marks
4(ii)	$1 = \log_3 3$	B1	
	$\frac{2}{\log_y 3} = 2\log_3 y$	B1	
	$3y^2 - y - 14 = 0$	B1	
	(3y-7)(y+2)=0	M1	Solve a three term quadratic
	$y = \frac{7}{3}$ only	A1	
5	$\frac{2^{3(p+1)}}{2^{2q}} = 2^{11} \text{ or } \frac{3^{2p+5}}{3^{3\left(\frac{1}{3}\right)}} = 3^{2(3q)}$	M1	
	Use $\frac{x^a}{x^b} = x^{a-b}$ or $x^a \times x^b = x^{a+b}$	M1	
	3p + 3 - 2q = 11 and $2p + 5 - 1 = 6q$	A1	Allow unsimplified
		M1	solve
	p = 4 and $q = 2$	A1	
6(a)	Number first = $7 \times 6 \times 5 \times 6 \times 5$ or ${}^{7}P_{3} \times {}^{6}P_{2}$ or 6300	B1	
	Letter first = $6 \times 5 \times 4 \times 7 \times 6$ or ${}^{6}P_{3} \times {}^{7}P_{2}$ or 5040	B1	
	6300 + 5040 = 11 340	B1	
6(b)	With 2 sisters = ${}^{7}C_{5} \times {}^{3}C_{2} = 63$ With 1 sister = ${}^{7}C_{6} \times {}^{3}C_{1} = 21$ With no sister = ${}^{7}C_{7} = 1$ and Total 85	3	B1 One combination evaluatedB1Another combinationevaluatedB1 Third combination and 85
	OR		
	Total no of ways = ${}^{10}C_7 = 120$	B1	
	With 3 sisters = ${}^7C_4 = 35$	B1	
	Without 3 sisters = $120 - 35 = 85$	B1	

Question	Answer	Marks	Partial Marks
7	$\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right) = -2$	B1	
		M1	* uses quadratic formula
	$x = \frac{-1 \pm \sqrt{1 - 4\left(1 - \sqrt{3}\right)\left(1 + \sqrt{3}\right)}}{2\left(1 - \sqrt{3}\right)}$	A1	
		M1	Dep * × numerator and denominator by <i>their</i> $(1+\sqrt{3})$
	$x = 1 + \sqrt{3}$ or $x = -\frac{1}{2} - \frac{\sqrt{3}}{2}$	A2	A1 for each
8(i)	$\frac{(1+\sin x) - (1-\sin x)}{(1-\sin x)(1+\sin x)}$	M1	
	$\frac{2\mathrm{sin}x}{1-\mathrm{sin}^2x}$	A1	
	$\frac{2\mathrm{sin}x}{\mathrm{cos}^2 x}$	M1	
	$\frac{2\text{sinx}}{\cos x} \times \frac{1}{\cos x} = 2\text{tanxsecx}$	A1	AG
8(ii)		M1	equate 2secxtanx = cosecx
	$\tan^2 x = \frac{1}{2}$	A1	
	35.3°, 144.7°, 215.3°, 324.7°	2	A1 two correct
9(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-\frac{1}{2}}$	B1	
	$x = 4 \longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$	B1	
	grad of normal $= -2$	M1	
	$\frac{y-4}{x-4} = -2 \to [y = -2x + 12]$	A1	

Question	Answer	Marks	Partial Marks
9(ii)	(6, 0)	B1	FT
9(iii)	Area of triangle = $\frac{1}{2} \times 2 \times 4 = 4$	B1	FT
	Area under curve $=\int 2x^{\frac{1}{2}} dx$	M1	
	$=\frac{4}{3}x^{\frac{3}{2}}$	A1	
	Total area = $14\frac{2}{3}$ [14.7]	A1	FT
	OR		
	Area of trapezium <i>OBAP</i> = $\frac{1}{2}(6+4) \times 4 = 20$	B1	FT
	Area between curve and y- axis = $\int \frac{y^2}{4} dy$	M1	
	$=\frac{y^3}{12}$	A1	
	Total area = $14\frac{2}{3}$ [14.7]	A1	FT

Question	Answer	Marks	Partial Marks
10(i)	$2k + 1 - kx = 12 - 4x - x^{2}$ $x^{2} + 4x - kx + 2k - 12 + 1$	M1	*
	$b^{2} - 4ac$ $\rightarrow (4-k)^{2} - 4(2k-11)$	M1	Dep*
	$k^2 - 16k + 60$	A1	
	(k-6)(k-10)	M1	
	k = 6 or 10	A1	
	OR		
	k = 4 + 2x	M1	*
	$-4x - 2x^{2} + 8 + 4x + 1 = 12 - 4x - x^{2}$ or $2k + 1 - k\left(\frac{k-4}{2}\right) = 12 - 2(k-4) - \left(\frac{k-4}{2}\right)^{2}$	M1	Dep*
	$ \begin{array}{c} x^2 - 4x + 3 \\ \text{or} k^2 - 16k + 60 \end{array} $	A1	
	(x-1)(x-3) or $(k-6)(k-10)$	M1	
	$x = 1 \text{ or } x = 3 \rightarrow k = 6 \text{ or } 10$	A1	
10(ii)	$k = 6 \rightarrow [y] = 13 - 6x$	B1	FT
	$k = 10 \rightarrow [y] = 21 - 10x$	B1	FT
		M1	solve
	x = 2, y = 1.	2	cao
11(i)	$gf(x) = \frac{2(4x-3)+1}{3(4x-3)-1}$	M1	
	$=\frac{8x-5}{12x-10}$	A1	

Question	Answer	Marks	Partial Marks
11(ii)	y(3x-1) = 2x + 1 or $x(3y-1) = 2y + 1$	B1	
	(3y-2)x = y+1 or $(3x-2)y = x+1$	M1	
	$g^{-1}(x) = \frac{x+1}{3x-2}$	A1	
11(iii)	$4\left(\frac{2x+1}{3x-1}\right) - 3\left[=x-1\right]$	B1	
	$3x^2 - 3x - 6$ oe	B1	
	3(x+1)(x-2)	M1	
	x = 2 only	A1	

Question	Answer	Marks	Partial Marks
12	Identifying angle with downward vertical of wind as 50°	B1	
	Triangle drawn with sides 260,40 and included angle of 50°.	B1	
	Cosine rule : $(v_r)^2 = 260^2 + 40^2 - 2 \times 260 \times 40 \cos 50^\circ$	M1	*
	$v_r = 236$	A1	
	Sine rule : $\frac{\sin \alpha}{40} = \frac{\sin 50^{\circ}}{v_r}$ or Cosine rule : $40^2 = 260^2 + 236^2 - 2 \times 260 \times 236 \cos \alpha$	M1	dep*
		A1	
	$\alpha = 7.5^{\circ}$	AI	
	OR Using components		
	Identifying angle with downward vertical of wind as 50°	B1	
	$v_w = \begin{pmatrix} 40\cos 40^\circ \\ -40\cos 50^\circ \end{pmatrix}$	B1	
	$v_r = \sqrt{(40\cos 40^\circ)^2 + (260 - 40\cos 50)^2}$	M1	
	$v_r = 236$	A1	
	$\tan \alpha = \frac{40\cos 40^\circ}{260 - 40\cos 50^\circ}$	M1	
	$\alpha = 7.5^{\circ}$	A1	

ADDITIONAL MATHEMATICS

0606/23 October/November 2018

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Partial Marks
1	<i>x</i> = 2	B1	
	3-5x = -3x+13 oe	M1	
	x = -5	A1	
2		3	B1 for each correct diagram
3(i)	$\frac{81}{4} - \left(x - \frac{7}{2}\right)^2$	3	B1 $b = \frac{7}{2}$ M1 $\pm 8 \pm \left(\frac{7}{2}\right)^2$ seen or expand given form and equate for 8 or 7 A1 fully correct
3(ii)	maximum <i>their</i> $\frac{81}{4}$ when $x = their \frac{7}{2}$ from <i>their</i> correct form	2	B1 B1
3(iii)	$\left(z^2 - \frac{7}{2}\right)^2 = \frac{81}{4} \text{ oe}$	M1	replace x by z^2 in <i>their</i> (i) and equate to zero.
	$z^2 = \frac{7}{2} \pm \frac{9}{2}$	M1	
	$z = \pm \sqrt{8}$	A1	

0606/23

Question	Answer	Marks	Partial Marks
4(i)	integrate: increase in powers of at least one term	M1	*
	$\frac{dy}{dx} = x^{2} - \frac{1}{(x+1)^{3}} + (C)$	A1	
	$C = \frac{1}{8}$	A1	
4(ii)	integrate <i>their</i> (i): increase in powers of at least one term	M1	Dep*
	$y = \frac{1}{3}x^{3} + \frac{1}{2(x+1)^{2}} + \frac{1}{8}x + (D)$	A1	two correct terms in <i>x</i>
	$D = \frac{29}{12}$	A1	
5(i)	$\frac{1}{5} \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$	2	$B1 \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$ $B1 \frac{1}{5}$
5(ii)	post multiply by \mathbf{A}^{-1} $\mathbf{C} = \mathbf{B}\mathbf{A}^{-1}$	M1	
	$\frac{1}{5} \begin{pmatrix} 0 & 5 \\ -13 & 16 \end{pmatrix}$	A1	
5(iii)	$\mathbf{I} - \mathbf{B} = \begin{pmatrix} 0 & -4 \\ 2 & -4 \end{pmatrix} \text{or} \mathbf{AB} = \begin{pmatrix} -4 & 23 \\ -7 & 24 \end{pmatrix}$	B1	
	$\mathbf{D} = \mathbf{A} (\mathbf{I} - \mathbf{B})$ or $\mathbf{D} = \mathbf{A} - \mathbf{A}\mathbf{B}$	M1	
	$\mathbf{D} = \begin{pmatrix} 6 & -20\\ 8 & -20 \end{pmatrix}$	A1	

0606/23

Question	Answer	Marks	Partial Marks
6	$\log_2 8 = 3 \text{ or } \log 3x - \log y = \log \frac{3x}{y} \text{ (any base)}$ or $\log_2 2 = 1 \text{ soi}$	B1	implied by one correct equation
	x + 2y = 8	B1	
	$\frac{3x}{y} = 2$	B1	
	solve correct equations for <i>x</i> or <i>y</i>	M1	
	x = 2 and $y = 3$	A1	
7(i)	167 960	1	
7(ii)	evidence of selecting from 16	M1	
	$[^{16}C_7 =] 11 440$	A1	
7(iii)	$2 \times {}^{n}C_{r}$ with $n = 16$ or $r = 9$	M1	
	$\left[2\times^{16} C_9 =\right] 22880$	A1	
7(iv)	$4 \times {}^{n}C_{r}$ with $n = 16$ or $r = 9$	M1	
	$\left[4\times^{16} C_9 = \right] 45760$	A1	
8(i)	$\frac{12.1 - 5.5}{3.7 - 1.5} \ [= 3]$	B1	correct expression for gradient
	$\frac{y^2 - 5.5}{e^{2x} - 1.5} = their \text{ grad}$ or correctly use $y^2 = (their m) e^{2x} + c$ with one point to find c	M1	
	$y = [\pm]\sqrt{3e^{2x} + 1}$	A1	
8(ii)	[±]34.8	1	

Question	Answer	Marks	Partial Marks
8(iii)	$50 = \sqrt{(their3)e^{2x} + their1}$ or	B1	*
	$2500 = (their3)e^{2x} + their1$		
	$2x = \ln\left(\frac{2499}{3}\right)$	M1	Dep * obtain 2x explicitly
	3.36 cao	A1	
9(a)	$x + \frac{\pi}{4} = \frac{\pi}{3}$	M1	
	$\frac{\pi}{12}$ and $\frac{5\pi}{12}$ (0.262 and 1.31)	A2	A1 for one correct
9(b)	correctly use $\sec y = \frac{1}{\cos y}$ and $\csc y = \frac{1}{\sin y}$	M1	
	$\tan y = \frac{4}{3}$	A1	obtain expression for tany or y explicitly
	53.1° and 233.1°	A1	
9(c)	correctly rewrite equation in terms of sinz and cosz	M1	
	use $\sin^2 z = 1 - \cos^2 z$	M1	appropriate use of pythagorean identity for forming an equation in one trig ratio
	$8\cos^2 z - 2\cos z - 1 = 0$ oe	A1	
	$(4\cos z + 1)(2\cos z - 1) = 0$	M1	solve 3 term quadratic in cosz
	60° and 300° and 104.5° and 255.5°	A2	A1 for any two correct
10(i)	$\frac{d}{dx}\sqrt{3+x} = \frac{1}{2}(3+x)^{-\frac{1}{2}}$	B1	
	correctly substitute <i>their</i> $\frac{1}{2}(3+x)^{-\frac{1}{2}}$	M1	
	and <i>their</i> 2x into product rule		
	$\frac{dy}{dx} = x^2 \times \frac{1}{2} (3+x)^{-\frac{1}{2}} + 2x(3+x)^{\frac{1}{2}}$	A1	

0606/23

Question	Answer	Marks	Partial Marks
10(ii)	<i>y</i> = 2	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{17}{4}$	B1	
	$\frac{y-2}{x-1} = \frac{17}{4} \qquad (y = \frac{17}{4}x - \frac{9}{4}) \text{ oe} \\ \text{or use } y = mx + c \text{ and find } c$	B1	FT on <i>their</i> 2 and <i>their</i> $\frac{17}{4}$ from <i>their</i> $\frac{dy}{dx}$
10(iii)	set their $\frac{dy}{dx} = 0$	M1	
	obtain correct quadratic equation $5x^2 + 12x [= 0]$ soi	A1	
	(0, 0) and (-2.4, 4.46)	A2	A1 for one point or two correct values of x
11(i)	$-5x + k + 5 = 7 - kx - x^2$	M1	*
	$b^2 - 4ac (= 0) \rightarrow (k-5)^2 - 4(k-2) (= 0)$	M1	Dep*
	$k^2 - 14k + 33 (=0)$	A1	
	(k-11)(k-3) (=0)	M1	Dep dep * solve quadratic in k
	k = 11 and $k = 3$	A1	
11(ii)	$y = -5x + 16$ and $y = 7 - 11x - x^{2}$ $y = -5x + 8$ and $y = 7 - 3x - x^{2}$	B2	FT <i>their k</i> B1 for any two correct
	solve one tangent/curve pair for one variable from quadratic equation with repeated root	M1	
	(-3, 31) and (1, 3)	A2	A1 for one correct point or two correct <i>x</i> values
11(iii)	find distance between any two points found in (ii)	M1	
	$\sqrt{800}$ oe	A1	

ADDITIONAL MATHEMATICS

0606/21 May/June 2018

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to correct answer only cao dep dependent follow through after error FT ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Partial Marks
1(i)(a)	A is not a [proper] subset of B oe	B1	
1(i)(b)	A and C are mutually exclusive oe or A intersection C is the empty set oe	B1	
1(ii)(a)	$n(A \cup B) = 3$	B1	
1(ii)(b)	$x \in (A \cap C')$ oe	B1	
2(i)	$k \times \frac{1}{3x-1}$	M1	
	$3 \times \frac{1}{3x-1}$	A1	
2(ii)	$x = \frac{11}{15} \text{ soi}$	B1	
	$0.125 \approx their \frac{dy}{dx}\Big _{x=their \frac{11}{15}} \times \delta x$ oe	M1	
	0.05 nfww	A1	
3(i)	$({}^{12}P_7 =)$ 3 991 680	B1	
3(ii)	$(4 \times {}^{11}P_6 =) \ 1 \ 330560$	B1	
3(iii)	4! × 4! × 2 oe	M2	M1 for $4! \times 4!$ oe only or ${}^{4}P_{4} \times {}^{4}P_{3}$ oe only
	1152	A1	

Question	Answer	Marks	Partial Marks
4(i)	$2(-4)^{3} + 3(-4)^{2} - 4a - 12 = 0$ with one correct interim step leading to a = -23	B1	Note: = 0 must be seen or may be implied by e.g. $-92 = 4a$ or $92 = -4a$ or convincingly showing that $2(-4)^3 + 3(-4)^2 - 4(-23) - 12 = 0$ or correct synthetic division at least as far as $-4 \begin{vmatrix} 2 & 3 & a & -12 \\ -8 & 20 & -4a - 80 \\ 2 & -5 & a + 20 & 0 \end{vmatrix}$ then $a = -23$ or correct long division to, e.g. verify -23, at least as far as $\frac{2x^2 - 5x - 3}{x + 4\sqrt{2x^3 + 3x^2 - 23x - 12}}$ $\frac{2x^3 + 8x^2}{-5x^2 - 23x}$ $-\frac{5x^2 - 20x}{-3x - 12}$ $\frac{-3x - 12}{0}$
	p(1) = 2 + 3 - 23 - 12 b = -30	B1	
4(ii)	finds a correct quadratic factor e.g. $(2x^2 - 5x - 3)$	B2	 B1 for quadratic factor with 2 correct terms OR B1 for finding (x - 3) using factor theorem B1 for convincingly finding (2x + 1) as third factor
	Product of three linear factors $(2x + 1)(x - 3)(x + 4)$	M1	
	$x = -\frac{1}{2}, x = 3, x = -4$ nfww	A1	If M0 then SC1 if quadratic factorised correctly but does not show full factorisation but does give all 3 solutions correctly
5(i)	Putting $y = f(x)$, changing subject to x and swopping x and y or vice versa	M1	
	$f^{-1}(x) = \frac{1}{2} \left(\frac{1}{x} + 5 \right)$ or $\frac{5x+1}{2x}$ oe isw	A1	
5(ii)	x > 0 oe	B1	

Question	Answer	Marks	Partial Marks
5(iii)	$\frac{1}{2\left(\frac{1}{2x-5}\right)-5}$	B1	
	$\frac{\frac{1}{2-5(2x-5)}}{2x-5}$ oe	M1	FT if expression of equivalent difficulty e.g. $\frac{1}{\left(\frac{1}{2x-5}\right)-5}$
	Completes to $\frac{2x-5}{-10x+27}$ oe final answer	A1	
6(i)	16x = 40 oe	M1	
	x = 2.5 oe (radians)	A1	
6(ii)	$\frac{1}{2}(16)^2(2.5)$ oe	M1	
	320	A1	
6(iii)	$\frac{1}{2}r^2$ (<i>their</i> 2.5) = (<i>their</i> 320) - 140 oe	M1	FT provided <i>their</i> 320 > 140
	correct simplification to $r^2 = \dots$	M1	dep on first M1
	12	A1	
7(i)	$4\tan x + 4x\sec^2 x$ isw	B2	Fully correct B1 for one correct term as part of e.g. a sum of 2 terms
7(ii)	$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{e}^{3x+1}) = 3\mathrm{e}^{3x+1}$	B1	
	$\frac{(x^2-1)(their 3e^{3x+1}) - their (2x)e^{3x+1}}{(x^2-1)^2}$	M1	
	$\frac{(x^2 - 1)(3e^{3x+1}) - 2xe^{3x+1}}{(x^2 - 1)^2}$ oe isw	A1	
8(i)	Takes logs of both sides	M1	
	$\ln y = \ln a + n \ln x$ or $\lg y = \lg a + n \lg x$	A1	

Question	Answer	Marks	Partial Marks
8(ii)	n = -0.2 to -0.3 nfww	B1	
	attempts to equate <i>y</i> -intercept to ln <i>a</i> or forms <i>their</i> ln equation with <i>their</i> gradient and a point on the line or uses two points on the line to form a pair of simultaneous equations	M1	
	$a = e^{4.7}$ isw or 110 or 109.9[47]	A1	maximum of 2 marks if no coordinates stated
8(iii)	use of $\ln(50)$ and $\ln x = 3$ to 3.2	M1	or for $\frac{50}{theira} = x^{their n}$ or better or for $\ln 50 = \ln(theira) + (their n) \ln x$ oe
	awrt 22 or 23 to 2 significant figures	A1	implies M1
9(i)	$5\left(x-\frac{7}{5}\right)^2-\frac{64}{5}$	B3	B1 for each of p , q , r correct in correct format; allow correct equivalent values.
			If B0 , then SC2 for $5\left(x-\frac{7}{5}\right)-\frac{64}{5}$ or SC1 for correct values but incorrect format
9(ii)		B4	 B2 for fully correct shape in correct position or B1 for fully correct shape translated parallel to the <i>x</i>-axis B1 for <i>y</i>-intercept at (0, 3) marked on graph B1 for roots marked on graph at -0.2 and 3
9(iii)	$0 < k < \left their\left(-\frac{64}{5}\right) \right $	B2	FT <i>their</i> (i) B1 for any inequality using <i>their</i> $\frac{64}{5}$ or max y value is <i>their</i> 12.8soi
10(i)	$v = \frac{\mathrm{d}s}{\mathrm{d}t} = -3\sin 3t$	B1	
	When $v = 0$, $t = \frac{\pi}{3}$	B1	

Question	Answer	Marks	Partial Marks
10(ii)	Finding <i>s</i> when $t = \frac{\pi}{4}$ and $t = \frac{\pi}{2}$	M1	
	Finding <i>s</i> when $t = their \frac{\pi}{3}$ and correct plan	M1	Using <i>their</i> (i) correctly
	1.29 nfww	A1	
10(iii)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = -9\cos 3t$	B1	
	9	B1	FT their $k \cos 3t$
11(a)	$10(1 - \sin^2 x) + 3\sin x = 9$	M1	
	Solves $10\sin^2 x - 3\sin x - 1 = 0$ oe	M1	dep on first M1 Solves <i>their</i> three term quadratic in sin <i>x</i>
	$\sin x = \frac{1}{2}, \ \sin x = -\frac{1}{5}$	A1	
	30°, 150° and 191.5°, 348.5° awrt	A2	A1 for any two correct solutions
11(b)	$3\frac{\sin 2y}{\cos 2y} = 4\sin 2y \text{ oe}$	M1	
	Solves $3\sin 2y - 4\sin 2y \cos 2y = 0$	M1	dep on first M1
	$\sin 2y = 0 \cos 2y = \frac{3}{4}$	A1	
	Any two of π , 0.72273, 5.56045 nfww	A1	
	$\frac{\pi}{2}$, 0.361, 2.78 awrt nfww	A1	SC: cancels out sin2y after M1M0 allow SC1 for 0.72273 and 5.56045 and SC1 for 0.361 and 2.78
12(i)	$\tan 30 = \frac{h}{\frac{x}{2}} \text{ oe}$	M1	
	Correct completion to given answer	A1	
	$V = 5\sqrt{3} h^2$ isw	B1	

Question	Answer	Marks	Partial Marks
12(ii)(a)	$\frac{\mathrm{d}V}{\mathrm{d}h} = their 10\sqrt{3} h \text{ or } \frac{5\sqrt{3}}{2}$	B1	FT their $V = k h^2$
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \text{ soi}$	M1	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{their\left(\frac{\mathrm{d}V}{\mathrm{d}h}\right)} \times 0.5$	M1	
	0.115 or 0.11547 to 0.1155 oe	A1	
12(ii)(b)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \right) 2\sqrt{3} \times their \frac{1}{5\sqrt{3}}$	M1	
	$\frac{2}{5}$	A1	

ADDITIONAL MATHEMATICS

0606/22 May/June 2018

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Partial Marks
1(i)	Uses $\cot \theta = \frac{\cos \theta}{\sin \theta}$ $\frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta}$ Uses $\cos^2 \theta + \sin^2 \theta = 1$ Completes to $\frac{1}{\sin \theta} = \csc \theta$	B3	B1 for using $\cot \theta = \frac{\cos \theta}{\sin \theta}$ oe or $\tan \theta = \frac{\sin \theta}{\cos \theta}$ oe at some stage B1 for use of $\cos^2 \theta + \sin^2 \theta = 1$ oe B1 for common denominator of $\sin \theta$ oe either in a compound fraction or in two partial fractions or for writing $\frac{1-\sin^2 \theta}{\sin \theta}$ as $\frac{1}{\sin \theta} - \frac{\sin^2 \theta}{\sin \theta}$ oe Maximum of 2 marks if not fully correct or does not complete to cosec θ
1(ii)	$\sin\theta = \frac{1}{4}$	M1	
	14.5° or 14.47[751] rot to 4 or more figures isw	A1	Not from wrong working
2(a)		B1	
2(b)	$ \begin{array}{c} $	B3	 B1 for 8 correctly placed and all the empty regions correct B1 for 11, 2, 5 correctly placed B1 for 4 correctly placed maximum of 2 marks if fully correct but other values such as 30, 21 and/or 15 present within the diagram
	their 12	B 1	STRICT FT their Venn diagram

Question	Answer	Marks	Partial Marks
3	p(-3) = 0 or $p(2) = -15$ stated or implied	M1	
	-54 + 9a + 72 + b = 0 or better	A1	finds one correct equation; implies M1
	16 + 4a - 48 + b = -15 or better	A1	finds another correct equation; implies M1
	Solves a pair of simultaneous equations in <i>a</i> and <i>b</i>	M1	dep on first M1 condone one sign or arithmetic error in <i>their</i> solution; as far as finding one unknown
	a = -7, b = 45	A1	
	60 cao	A1	
4	Eliminates one of the unknowns	M1	
	Simplifies to a correct 3-term quadratic: $2x^2 + 4x - 16 = 0$ oe or $2y^2 - 6y - 36 = 0$ oe	A1	
	Factorises or solves (x+4)(x-2) = 0 oe or (y+3)(y-6) = 0 oe	M1	FT <i>their</i> 3-term quadratic in <i>x</i> or <i>y</i> ;
	(2, 6) and (-4, -3) oe	A2	Not from wrong working
			A1 for either (2, 6) or $(-4, -3)$ or A1 for $x = 2$ and $x = -4$ or $y = 6$ and $y = -3$
5(a)	$^{7}P_{4}$ or $7 \times 6 \times 5 \times 4$ oe	M1	
	840	A1	
5(b)(i)	20	B1	
5(b)(ii)	${}^{5}C_{1} \times {}^{4}C_{1} \times {}^{2}C_{1}$ or $5 \times 4 \times 2$ oe	M1	
	40	A1	
5(b)(iii)	${}^{5}C_{3} + {}^{4}C_{3}$ oe	M1	
	14	A1	

0606/22

Question	Answer	Marks	Partial Marks
6(i)	(Arc length =) 1.5×5 oe soi	M1	implied by 7.5
	$(DE =) 10\sin(0.75)$ oe soi	M1	implied by awrt 6.82
	34.3 or answer in range 34.31 to 34.32	A1	
6(ii)	(Area sector =) $\frac{1}{2} \times 5^2 \times 1.5$ oe	M1	implied by 18.75
	(Area triangle =) $\frac{1}{2} \times 5^2 \times \sin(1.5)$ oe	M1	implied by awrt 12.47
	31.2 or answer in range 31.21 to 31.22	A1	
7(i)	$ their(\mathbf{a} + \mathbf{c}) = \sqrt{their(5^2 + 14^2)}$	M1	
	$\sqrt{221}$	A1	mark final answer
7(ii)	$[(2+m)\mathbf{i} + (3-5m)\mathbf{j} \text{ therefore}]$	M1	for attempting to form $\mathbf{a} + m\mathbf{b}$ and equate the scalar of the i component to 0
	their (2+m) = 0		
	m = -2 only	A1	implies M1
7(iii)	$[(2n-1)\mathbf{i} + (3n+5)\mathbf{j} = 3\mathbf{i} + 11\mathbf{j}$ or $n(2\mathbf{i} + 3\mathbf{j}) = (3\mathbf{i} + 11\mathbf{j}) + (\mathbf{i} - 5\mathbf{j})$ oe leading to]	M1	
	2n - 1 = 3 or $3n + 5 = 11$ oe, soi		
	n = 2 only	A1	implies M1

Question	Answer	Marks	Partial Marks
8(a)	$\begin{pmatrix} -2 & 6\\ 1 & 12 \end{pmatrix}$	B2	B1 for a 2 by 2 matrix with 2 or 3 correct elements
	their $\left[\frac{1}{-30}\begin{pmatrix}12 & -6\\-1 & -2\end{pmatrix}\right]$ oe isw	B2	FT their non-singular BA B1 FT for either $\frac{1}{their(-30)}$ or × their $\begin{pmatrix} 12 & -6 \\ -1 & -2 \end{pmatrix}$ If their BA is singular, B0 then SC1 for × their $\begin{pmatrix} 12 & -6 \\ -1 & -2 \end{pmatrix}$ OR Alternative method A ⁻¹ B ⁻¹ : B2 for A ⁻¹ = $\frac{1}{-5}\begin{pmatrix} -3 & 1 \\ -1 & 2 \end{pmatrix}$ isw or B ⁻¹ = $\frac{1}{6}\begin{pmatrix} -5 & 2 \\ -3 & 0 \end{pmatrix}$ isw or B1 for a multiplier of $\frac{1}{-5}$ or for $\begin{pmatrix} -3 & 1 \\ -1 & 2 \end{pmatrix}$ or for a multiplier of $\frac{1}{6}$ or for $\begin{pmatrix} -5 & 2 \\ -3 & 0 \end{pmatrix}$ B2 FT for A ⁻¹ B ⁻¹ = their $\frac{1}{-30} \times their \begin{pmatrix} 12 & -6 \\ -1 & -2 \end{pmatrix}$ or B1 FT for a 2 by 2 matrix with 2 or 3 correct elements Maximum of 3 marks if not fully correct
8(b)(i)	2 × 3	B1	
8(b)(ii)	$\begin{pmatrix} 2 & -\frac{1}{2} \end{pmatrix}$ oe isw	B2	B1 for each correct element; must be in a 1 by 2 matrix or M1 for a full method as far as finding values for the two elements

Question	Answer	Marks	Partial Marks
9(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sqrt{\sin x}\right) = \frac{1}{2}\left(\sin x\right)^{-\frac{1}{2}}\left(\cos x\right) \text{ oe}$	B2	B1 for $\frac{1}{2}(\sin x)^{-\frac{1}{2}} \times$ or for $\frac{1}{2}(\sin x)^{-\frac{1}{2}}$ or for $\frac{1}{2}()^{-\frac{1}{2}} \times \cos x$ or for their $\frac{1}{2}(\sin x)^{(their\frac{1}{2})^{-1}} \times \cos x$
	their $(4x^3)\sqrt{\sin x}$ + $x^4 \left(their \frac{1}{2}(\sin x)^{-\frac{1}{2}}(\cos x) \right)$ oe	M1	Applies correct form of product rule
	$4x^{3}\sqrt{\sin x} + x^{4}\left(\frac{1}{2}(\sin x)^{-\frac{1}{2}}(\cos x)\right)$ oe isw	A1	Not from wrong working
9(ii)	$\int (4x^3 \sqrt{\sin x}) dx$ + $\int \left(x^4 \times \frac{1}{2} (\sin x)^{-\frac{1}{2}} (\cos x) \right) dx$ = $x^4 \sqrt{\sin x}$ oe	M1	or $\int x dx + 2 \int \left(\frac{x^4 \cos x}{2\sqrt{\sin x}} + 4x^3 \sqrt{\sin x} \right) dx$ oe FT their (i)
	$\frac{x^2}{2} + 2x^4 \sqrt{\sin x} \ [+c]$	A2	A1 for $\int x dx + 2x^4 \sqrt{\sin x}$
10(a)(i)		B2	B1 for correct shape B1 for roots marked on the graph or seen nearby provided graph drawn and one root is negative and one is positive
10(a)(ii)	Any correct domain	B1	
10(b)(i)	$\frac{4}{3x-1}$	B1	mark final answer

Question	Answer	Marks	Partial Marks
10(b)(ii)	Correct method for finding inverse function e.g. swopping variables <u>and</u> changing subject or vice versa; or indicates $(hg)^{-1}(x) = g^{-1}h^{-1}(x)$ and finds $g^{-1}(x) = \frac{x+1}{3}$ and $h^{-1}(x) = \frac{4}{x}$	M1	FT only if <i>their</i> hg(x) of the form $\frac{a}{bx+c}$ where <i>a</i> , <i>b</i> and <i>c</i> are integers
	$[(hg)^{-1}(x) =]\frac{1}{3}(\frac{4}{x}+1)$ oe isw or	A1	FT their $(hg)^{-1}(x) = \frac{a - cx}{bx}$ oe
	$\left[(hg)^{-1}(x) = \right] \frac{4+x}{3x} \text{ oe isw}$		If M0 then SC1 for <i>their</i> $hg(x)$ of the form
			$y = \frac{a}{x} + b$ oe leading to <i>their</i> (hg) ⁻¹ (x) of the
			form $y = \frac{a}{x-b}$ isw
10(c)	<i>a</i> cao	B 1	
11(a)	$\frac{(2x-1)^{\frac{4}{3}}}{\frac{4}{3} \times 2}$ [+c] oe isw	B2	B1 for $k \times \frac{(2x-1)^{\left(\frac{1}{3}+1\right)}}{\left(\frac{1}{3}+1\right)}$ where $k \neq 0$
11(b)(i)	$k\cos 4x [+c]$ where $k < 0$ or $k = \frac{1}{4}$	M1	
	$-\frac{1}{4}\cos 4x[+c]$	A1	
11(b)(ii)	Sight of correct substitution of limits: 1 - 4 - (-1 - 4 -)	M1	FT <i>their</i> $k \cos 4x$ from (b)(i)
	$-\frac{1}{4}\cos\frac{4\pi}{4} - \left(-\frac{1}{4}\cos\frac{4\pi}{8}\right)$ oe		dep on M1 awarded in (b)(i)
	$\frac{1}{4}$	A1	does not imply M1

Question	Answer	Marks	Partial Marks
11(c)	$\int e^{\frac{x}{3}} dx = k e^{\frac{x}{3}} [+c]$	M1	<i>k</i> any non-zero constant
	<i>k</i> = 3	A1	
	Sight of correct substitution of limits: their $ke^{\frac{\ln 8}{3}}$ - their ke^{0} oe	M1	dep on first M1
	Shows how to deal with the power of the first term e.g. $\frac{\ln 8}{3} = \ln 8^{\frac{1}{3}} \text{ or } \frac{\ln 8}{3} = \ln 2 \text{ or } 3(\sqrt[3]{8})$ seen	B1	
	6 - 3 = 3	A1	Not from wrong working
12(i)	$\tan\frac{\pi}{12} = \frac{r}{h} \text{ oe}$	M1	
	$r = h(2 - \sqrt{3})$ or $r = h \tan \frac{\pi}{12}$ oe	A1	
	$[V =] \frac{1}{3} \pi (2 - \sqrt{3})^2 h^2 \times h$ oe	M1	Correctly uses <i>their</i> expression for r in terms of h in formula for volume of a cone dependent on finding an expression connecting r and h
	$[V =] \frac{\pi (4 - 4\sqrt{3} + 3)h^3}{3} \text{ oe}$ correctly leading to $[V =] \frac{\pi (7 - 4\sqrt{3})h^3}{3} \text{ AG}$	A1	
12(ii)	Correct derivative of V e.g. $\frac{3\pi(7-4\sqrt{3})h^2}{3}$ oe isw	B1	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \text{ soi}$	B1	
	$\frac{1}{their\left(\frac{\mathrm{d}V}{\mathrm{d}h}\right)\Big _{h=5}} \times 30$	M1	if correct implies B1 B1; if incorrect, a correct FT statement implies the second B1
	5.32	A1	

ADDITIONAL MATHEMATICS

0606/23 May/June 2018

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to correct answer only cao dep dependent follow through after error FT ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Partial Marks
1(i)(a)	A is not a [proper] subset of B oe	B1	
1(i)(b)	A and C are mutually exclusive oe or A intersection C is the empty set oe	B1	
1(ii)(a)	$n(A \cup B) = 3$	B1	
1(ii)(b)	$x \in (A \cap C')$ oe	B1	
2(i)	$k \times \frac{1}{3x-1}$	M1	
	$3 \times \frac{1}{3x-1}$	A1	
2(ii)	$x = \frac{11}{15} \text{ soi}$	B1	
	$0.125 \approx their \frac{dy}{dx}\Big _{x=their \frac{11}{15}} \times \delta x$ oe	M1	
	0.05 nfww	A1	
3(i)	$({}^{12}P_7 =) 3991680$	B1	
3(ii)	$(4 \times {}^{11}P_6 =) \ 1 \ 330560$	B1	
3(iii)	$4! \times 4! \times 2$ oe	M2	M1 for $4! \times 4!$ oe only or ${}^{4}P_{4} \times {}^{4}P_{3}$ oe only
	1152	A1	

Question	Answer	Marks	Partial Marks
4(i)	$2(-4)^{3} + 3(-4)^{2} - 4a - 12 = 0$ with one correct interim step leading to a = -23	B1	Note: = 0 must be seen or may be implied by e.g. $-92 = 4a$ or $92 = -4a$ or convincingly showing that $2(-4)^3 + 3(-4)^2 - 4(-23) - 12 = 0$ or correct synthetic division at least as far as $-4 \begin{vmatrix} 2 & 3 & a & -12 \\ -8 & 20 & -4a - 80 \\ 2 & -5 & a + 20 & 0 \end{vmatrix}$ then $a = -23$ or correct long division to, e.g. verify -23, at least as far as $\frac{2x^2 - 5x - 3}{x + 4\sqrt{2x^3 + 3x^2 - 23x - 12}}$ $\frac{2x^3 + 8x^2}{-5x^2 - 23x}$ $-\frac{5x^2 - 20x}{-3x - 12}$ $\frac{-3x - 12}{0}$
	p(1) = 2 + 3 - 23 - 12 b = -30	B1	
4(ii)	finds a correct quadratic factor e.g. $(2x^2 - 5x - 3)$	B2	 B1 for quadratic factor with 2 correct terms OR B1 for finding (x - 3) using factor theorem B1 for convincingly finding (2x + 1) as third factor
	Product of three linear factors $(2x + 1)(x - 3)(x + 4)$	M1	
	$x = -\frac{1}{2}, x = 3, x = -4$ nfww	A1	If M0 then SC1 if quadratic factorised correctly but does not show full factorisation but does give all 3 solutions correctly
5(i)	Putting $y = f(x)$, changing subject to x and swopping x and y or vice versa	M1	
	$f^{-1}(x) = \frac{1}{2} \left(\frac{1}{x} + 5 \right)$ or $\frac{5x+1}{2x}$ oe isw	A1	
5(ii)	x > 0 oe	B1	

Question	Answer	Marks	Partial Marks
5(iii)	$\frac{1}{2\left(\frac{1}{2x-5}\right)-5}$	B1	
	$\frac{\frac{1}{2-5(2x-5)}}{2x-5}$ oe	M1	FT if expression of equivalent difficulty e.g. $\frac{1}{\left(\frac{1}{2x-5}\right)-5}$
	Completes to $\frac{2x-5}{-10x+27}$ oe final answer	A1	
6(i)	16x = 40 oe	M1	
	x = 2.5 oe (radians)	A1	
6(ii)	$\frac{1}{2}(16)^2(2.5)$ oe	M1	
	320	A1	
6(iii)	$\frac{1}{2}r^2$ (<i>their</i> 2.5) = (<i>their</i> 320) - 140 oe	M1	FT provided <i>their</i> 320 > 140
	correct simplification to $r^2 = \dots$	M1	dep on first M1
	12	A1	
7(i)	$4\tan x + 4x\sec^2 x$ isw	B2	Fully correct B1 for one correct term as part of e.g. a sum of 2 terms
7(ii)	$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{e}^{3x+1}) = 3\mathrm{e}^{3x+1}$	B1	
	$\frac{(x^2-1)(their 3e^{3x+1}) - their (2x)e^{3x+1}}{(x^2-1)^2}$	M1	
	$\frac{(x^2 - 1)(3e^{3x+1}) - 2xe^{3x+1}}{(x^2 - 1)^2}$ oe isw	A1	
8(i)	Takes logs of both sides	M1	
	ln y = ln a + n ln x or $lg y = lg a + n lg x$	A1	

Question	Answer	Marks	Partial Marks
8(ii)	n = -0.2 to -0.3 nfww	B1	
	attempts to equate <i>y</i> -intercept to ln <i>a</i> or forms <i>their</i> ln equation with <i>their</i> gradient and a point on the line or uses two points on the line to form a pair of simultaneous equations	M1	
	$a = e^{4.7}$ isw or 110 or 109.9[47]	A1	maximum of 2 marks if no coordinates stated
8(iii)	use of $\ln(50)$ and $\ln x = 3$ to 3.2	M1	or for $\frac{50}{theira} = x^{their n}$ or better or for $\ln 50 = \ln(theira) + (their n) \ln x$ oe
	awrt 22 or 23 to 2 significant figures	A1	implies M1
9(i)	$5\left(x-\frac{7}{5}\right)^2-\frac{64}{5}$	B3	B1 for each of p , q , r correct in correct format; allow correct equivalent values.
			If B0 , then SC2 for $5\left(x-\frac{7}{5}\right)-\frac{64}{5}$ or SC1 for correct values but incorrect format
9(ii)		B4	 B2 for fully correct shape in correct position or B1 for fully correct shape translated parallel to the <i>x</i>-axis B1 for <i>y</i>-intercept at (0, 3) marked on graph B1 for roots marked on graph at -0.2 and 3
9(iii)	$0 < k < \left their\left(-\frac{64}{5}\right) \right $	B2	FT <i>their</i> (i) B1 for any inequality using <i>their</i> $\frac{64}{5}$ or max y value is <i>their</i> 12.8soi
10(i)	$v = \frac{\mathrm{d}s}{\mathrm{d}t} = -3\sin 3t$	B1	
	When $v = 0$, $t = \frac{\pi}{3}$	B1	

Question	Answer	Marks	Partial Marks
10(ii)	Finding <i>s</i> when $t = \frac{\pi}{4}$ and $t = \frac{\pi}{2}$	M1	
	Finding <i>s</i> when $t = their \frac{\pi}{3}$ and correct plan	M1	Using <i>their</i> (i) correctly
	1.29 nfww	A1	
10(iii)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = -9\cos 3t$	B1	
	9	B1	FT <i>their</i> $k \cos 3t$
11(a)	$10(1 - \sin^2 x) + 3\sin x = 9$	M1	
	Solves $10\sin^2 x - 3\sin x - 1 = 0$ oe	M1	dep on first M1 Solves <i>their</i> three term quadratic in sin <i>x</i>
	$\sin x = \frac{1}{2}, \ \sin x = -\frac{1}{5}$	A1	
	30°, 150° and 191.5°, 348.5° awrt	A2	A1 for any two correct solutions
11(b)	$3\frac{\sin 2y}{\cos 2y} = 4\sin 2y \text{ oe}$	M1	
	Solves $3\sin 2y - 4\sin 2y \cos 2y = 0$	M1	dep on first M1
	$\sin 2y = 0 \ \cos 2y = \frac{3}{4}$	A1	
	Any two of π, 0.72273, 5.56045 nfww	A1	
	$\frac{\pi}{2}$, 0.361, 2.78 awrt nfww	A1	SC: cancels out sin2 <i>y</i> after M1M0 allow SC1 for 0.72273 and 5.56045 and SC1 for 0.361 and 2.78
12(i)	$\tan 30 = \frac{h}{\frac{x}{2}} \text{ oe}$	M1	
	Correct completion to given answer	A1	
	$V = 5\sqrt{3} h^2$ isw	B1	

Question	Answer	Marks	Partial Marks
12(ii)(a)	$\frac{\mathrm{d}V}{\mathrm{d}h} = their 10\sqrt{3} h \text{ or } \frac{5\sqrt{3}}{2}$	B1	FT their $V = k h^2$
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \text{ soi}$	M1	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{their\left(\frac{\mathrm{d}V}{\mathrm{d}h}\right)} \times 0.5$	M1	
	0.115 or 0.11547 to 0.1155 oe	A1	
12(ii)(b)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \right) 2\sqrt{3} \times their \frac{1}{5\sqrt{3}}$	M1	
	$\frac{2}{5}$	A1	

ADDITIONAL MATHEMATICS

0606/22 March 2018

Paper 22 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Partial Marks
1(a)	$(P\cup Q)\cap R'$ oe	B1	
1(b)(i)	$\begin{array}{c} & A \\ & 7 \\ & 6 \\ & 5 \\ & 10 \\ & 3 \\ & 4 \\ & 1 \\ & C \end{array}$	B3	B3, 2, 1, 0: key statements: 2 correctly placed 3, 4, 8 correctly placed 1, 5, 7, 6, 10 correctly placed 9 correctly placed
1(b)(ii)	1	B1	FT <i>their</i> (b)(i); do not allow (1) or $\{1\}$ etc.
2	$(2k-3)^2 - 4(3-2k)(1)$	M1	
	$4k^2 - 4k - 3$	A1	
	(2k-3)(2k+1)	M1	
	critical values are -0.5 and 1.5	A1	
	(their(-0.5) < k < their1.5	A1	FT <i>their</i> distinct critical values provided both M marks awarded; mark final answer; allow a pair of correctly connected inequalities e.g. $k > -0.5$ and $k < 1.5$
3(i)	${}^{3}P_{2} \times {}^{3}P_{1}$ or $3 \times 2 \times 3$ oe soi	M1	
	18	A1	If M0 then SC1 for ${}^{3}P_{2} \times {}^{2}P_{1} = 12$ or $3 \times 2 \times 2 = 12$
3(ii)	24	B1	
3(iii)	$2 \times 4!$ oe soi	M1	
	48	A1	If M0 then SC1 for an answer following one omitted or incorrect factor/factorial e.g. $4! = 24$ or ${}^{4}P_{4} = 24$ or ${}^{3}P_{3} \times 4 = 24$ or $2! \times 3! = 12$ or $2! \times 4 = 8$ or $(2! \times 3!) \times 3 = 36$
4(a)(i)	15	B1	
4(a)(ii)	180° or π (radians)	B1	
4(b)(i)	tanx, -tanx	B2	B1 for each
4(b)(ii)	4	B1	

Question	Answer	Marks	Partial Marks
5	$\frac{104}{1.6}$ oe	M1	or e.g. $\frac{104}{\cos 17.354} \div \sqrt{1.6^2 + 0.5^2}$
	65 or 64.9 to 65.1 (seconds)	A1	
	0.5 × <i>their</i> 65 oe	M1	or $\sqrt{\left(\frac{104}{\cos 17.354}\right)^2 - 104^2}$ or finds a correct angle using trigonometry and then uses trigonometry again to find <i>BC</i> e.g. 104 × tan 17.354
	32.5 or 32.49 to 32.6(metres)	A1	
6(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\tan\left(\frac{x}{3}\right)\right) = k \sec^2\left(\frac{x}{3}\right)$	M1	
	$\frac{1}{3}\sec^2\left(\frac{x}{3}\right)$ cao	A1	
6(ii)	$3\tan\left(\frac{x}{3}\right) + c$ oe	B2	B1 for $3\tan\left(\frac{x}{3}\right) + 3$
			or M1 for $\int their \frac{dy}{dx} dx = tan\left(\frac{x}{3}\right) + a constant$
7(i)	$\frac{1}{2} \times 8^2 \times \theta = 20 \text{ or } \pi \times 8^2 \times \frac{\theta}{360} = 20$	M1	
	$[\theta =] \frac{5}{8}$ or 0.625 rads oe	A1	
7(ii)	$8 \times their \ \theta$ oe	M1	
	5 (cm) cao	A1	
7(iii)	$\frac{1}{2} \times 8^2 \times 1.4$ and $\frac{1}{2} \times 8^2 \times \sin 1.4$ soi	M2	M1 for either area seen
	13.3 or 13.26 to 13.27 [cm ²]	A1	
8(a)(i)	$3x + 4 = \ln\left(\frac{14}{5}\right) \text{ oe}$	M1	
	OR $3x + 4 = \ln 14 - \ln 5$ oe		
	x = -0.99(012) isw or exact equivalent	A1	

Question	Answer	Marks	Partial Marks
8(a)(ii)	$\lg(2y^2 - 7y) = \lg 3^2 \operatorname{soi}$	B2	B1 for each of 2 correct moves
	$2y^2 - 7y - 9 = 0$ and attempt to solve	M1	
	y = 4.5 oe only	A1	
8(b)	$\log_2\left(\frac{p}{q}\right)$ as final answer www	B2	B1 for numerator correctly simplified to $\log_2 p - \log_2 q = \log_2\left(\frac{p}{q}\right)$ or change of base $\log_r 2 = \frac{1}{\log_2 r}$ oe soi
9(i)	$m_{PQ} = \frac{6-2}{11-8}$ or better	M1	
	$m_L = \frac{-1}{their \frac{4}{3}}$ oe	M1	
	$y-2 = -\frac{3}{4}(x-8)$ isw or	A1	
	$y = -\frac{3}{4}x + c c = 8 \text{ isw}$		

Question	Answer	Marks	Partial Marks
9(ii)	$PQ^2 = (11 - 8)^2 + (6 - 2)^2$	M1	or attempts to solve $\frac{1}{2}\begin{vmatrix}8 & 11 & x & 8\\2 & 6 & -\frac{3}{4}x + 8 & 2\end{vmatrix} = [\pm]12.5 \text{ oe}$ or $\frac{1}{2}\begin{vmatrix}8 & 11 & x & 8\\2 & 6 & y & 2\end{vmatrix} = [\pm]12.5$
	PQ = 5 soi	A1	or expands correctly $\frac{1}{2} \left(8(6) + 11 \left(-\frac{3}{4}x + 8 \right) + 2x - 2(11) - 6x - 8 \left(-\frac{3}{4}x + 8 \right) \right) = [\pm]12.5 \text{ oe}$ or $\frac{1}{2} \left(8(6) + 11y + 2x - 2(11) - 6x - 8y \right) = [\pm]12.5 \text{ oe}$
	PR = 5 soi	A1	or simplifies to $\frac{1}{2} \left(-\frac{25}{4}x + 50 \right) = [\pm]12.5$ oe or $4x - 3y = 51$ or $3y - 4x = -1$ oe
	Valid method of solution e.g. $R(8 \pm 4, 2 \mp 3)$ or attempts to solve <i>their</i> $y = -\frac{3}{4}x + 8$ and $25 = (x-8)^2 + (y-2)^2$ oe or attempts to solve e.g. 4x - 3y = 51 $3x + 4y = 32$ oe	M1	
	(4, 5) (12, -1)	A2	A1 for each or for $x = 4$, $x = 12$ or $y = 5$, $y = -1$
10(a)(i)	Valid comment referencing the graph e.g. the function f is not one to one, as shown by the fact that the graph has a turning point	B1	or equivalent statement or arrows marked on a diagram; must validly reference the graph in some way.
10(a)(ii)	$\sqrt{1 + \left(\sqrt{1 + x^2}\right)^2}$	M1	
	$\sqrt{2+x^2}$	A1	mark final answer; must be simplified as far as possible
10(b)(i)	Any value greater than or equal to 0	B1	
10(b)(ii)	Correct method for finding inverse	M1	
	$g^{-1}(x) = \sqrt{x^2 - 1}$	A1	mark final answer

Question	Answer	Marks	Partial Marks
10(c)	fully correct pair of graphs y = x	B4	B1 for exponential shape of h; must cross <i>y</i> -axis B1 for an attempt at the graph of h and (0, 6) soi B1 for correct reflection of <i>their</i> h in the line $y = x$ or logarithmic shape of inverse B1 for an attempt at the graph of h ⁻¹ and (6, 0) soi Max 3 marks if not fully correct
11(a)(i)	$(1 - \sin A)(1 + \sin A)$ = $1 - \sin^2 A$ = $\cos^2 A$	M1	
	$\frac{\cos^2 A}{\sin A \cos A} = \frac{\cos A}{\sin A} (= \cot A)$	A1	
11(a)(ii)	$\frac{1}{\tan 3x} = \frac{1}{2}$ or better	M1	
	Any triple angle correct from 63.4(349) 243.4(349) 423.4(349)	M1	
	21.1(4) 81.1(4) 141.1(4)	A2	A1 for 21.1(4) and 81.1(4) or for 141.1(4)
11(b)	$10(\sec^2 y - 1) - \sec y - 1 \ (= 0)$ soi	M1	
	$(10\sec y - 11)(\sec y + 1)$ oe	M1	
	$\cos y = \frac{10}{11} \cos y = -1 \text{ nfww}$	A1	
	π, 0.43[0], 5.85	A2	A1 for any one correct
12(i)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2 \mathrm{soi}$	B1	
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \text{ oe attempted}$	M1	
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1}{their 4\pi (10)^2} \times 200 \text{ soi}$	M1	
	0.159 isw or 0.1591(54) rot to 4 or more figs	A1	

Question	Answer	Marks	Partial Marks
12(ii)	$\frac{\mathrm{d}S}{\mathrm{d}r} = 8\pi r \text{ soi}$	B1	
	$\frac{\mathrm{d}S}{\mathrm{d}t} = 8\pi(10) \times their 0.159$	M1	
	awrt 40	A1	following correct solution

ADDITIONAL MATHEMATICS

0606/21 October/November 2017

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to correct answer only cao dependent dep follow through after error FT isw ignore subsequent working not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC soi seen or implied

Question	Answer	Marks	Guidance
1	$x^2 - 6x - 7(> 0)$	B1	
	(x-7)(x+1)(>0)	M1	
	Critical values 7 and –1	A1	
	x > 7 or x < -1	A1	
2	$\frac{(1+\sin\theta)-(1-\sin\theta)}{(1-\sin\theta)(1+\sin\theta)}$	M1	Dealing with fractions
	$=\frac{2\mathrm{sin}\theta}{\left(1-\mathrm{sin}^2\theta\right)}$	A1	Simplification
	$=\frac{2\mathrm{sin}\theta}{\mathrm{cos}^2\theta}$	M1	Use of identity (seen anywhere)
	$=2\tan\theta\sec\theta$	M1	Use of $\tan\theta = \frac{\sin\theta}{\cos\theta}$ and $\sec\theta = \frac{1}{\cos\theta}$ (seen anywhere)
3	$2 = \log_5 25$	B1	
	$log_5 25 + log_5 (x - 7) = log_5 25 (x - 7)$ $10x + 5 = 25 (x - 7)$	M1	
	180 = 15x	M1	Equate, clear brackets and collect terms.
	12 = x	A1	

Question	Answer	Marks	Guidance
4	$x - 2\left(4 - \sqrt{3}x\right) = 5\sqrt{3}$	M1	Eliminate <i>y</i>
	$x = \frac{5\sqrt{3} + 8}{2\sqrt{3} + 1}$	A1	
	$x = \frac{(5\sqrt{3}+8)(2\sqrt{3}-1)}{(2\sqrt{3}+1)(2\sqrt{3}-1)}$	M1	Multiply by $(a\sqrt{b}+c)$ as appropriate
	$x = 2 + \sqrt{3}$	A1	
	$y = 1 - 2\sqrt{3}$	A1	
	Alternative method		
	$\sqrt{3}\left(5\sqrt{3}+2y\right)+y=4$	M1	Eliminate <i>x</i>
	$y = \frac{-11}{\left(2\sqrt{3} + 1\right)}$	A1	
	$y = \frac{-11(2\sqrt{3}-1)}{(2\sqrt{3}+1)(2\sqrt{3}-1)}$	M1	Multiply by $(a\sqrt{b} + c)$ as appropriate
	$y = 1 - 2\sqrt{3}$	A1	
	$x = 2 + \sqrt{3}$	A1	
5(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{5}{3x+2}\right) = -5\left(3x+2\right)^{-2} \times 3$	M1	$-5(3x+2)^{-2}$
		A1	×3
5(ii)	$\int \frac{30}{(3x+2)^2} \mathrm{d}x = \left[\frac{-10}{(3x+2)}\right]$	M1	$\frac{1}{(3x+2)}$
		A1	×-10
5(iii)	$\left[\frac{-10}{(3x+2)}\right]_{1}^{2} = -\frac{10}{8} + \frac{10}{5}$	M1	Insert limits and subtract
	$=\frac{3}{4}$	A1	
6(i)	2q + 3p = 13	B1	

Question	Answer	Marks	Guidance
6(ii)	Multiply matrices correctly	M1	
	2p + pq = 12	A1	
6(iii)	4p + p(13 - 3p) = 24	M1	Eliminate q
	$3p^2 - 17p + 24 = 0$	A1	
	(3p-8)(p-3)=0	M1	Solve
	p = 3, q = 2	A1	
7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - \frac{1}{x^2}(+C)$	B2	B1 for $3x^2$ B1 for $-\frac{1}{x^2}$.
	$x=1, \frac{\mathrm{d}y}{\mathrm{d}x}=1 \rightarrow C=-1$	B1	
	$y = x^{3} + \frac{1}{x} - x + D$ $x = 1, y = 3 \rightarrow D = 2$	B2	B1 for two correct terms in <i>x</i>
	$y = x^3 + \frac{1}{x} - x + 2$	B1	
8	$z^{2} = a^{2} + 3(a+3)^{2} + 2a(a+3)\sqrt{3}$ = 79 + b\sqrt{3}	M1	
	$a^{2}+3(a+3)^{2}=79$ and $2a(a+3)=b$	A1	FT Equate correctly to obtain both eqns
	$a^{2} + 3a^{2} + 18a + 27 = 79$ $4a^{2} + 18a - 52 = 0$	M1	Expand and simplify to obtain 3 term quadratic
	(a-2)(4a+26)=0	M1	
	a=2, b=20	A2	A1 for each
9(i)	$1 + 4x + 6x^2 + 4x^3 + x^4$	B1	
9(ii)	$1296 - 864x + 216x^2 - 24x^3 + x^4$	B2	Minus 1 each error.
9(iii)	$1295 - 868x + 210x^2 - 28x^3 = 175$	M1	Subtract and equate to 1
	$28x^3 - 210x^2 + 868x - 1120 = 0$	A1	

Question	Answer	Marks	Guidance
9(iv)	$28(2)^{3} - 210(2)^{2} + 868(2) - 1120$	M1	Inserts $x = 2$
	= 224 - 840 + 1736 - 1120 = 0 (x - 2) is a factor	A1	
	$(x-2)(28x^2-154x+560)$	M1A1	M1 for 28 and 560 seen oe A1 for -154
	$b^2 - 4ac < 0$ shown	B1	
10(i)	$\mathbf{r}_{A} = (2\mathbf{i} + 4\mathbf{j}) + t(\mathbf{i} + \mathbf{j})$	B1	
10(ii)	$\mathbf{r}_{B} = (10\mathbf{i} + 14\mathbf{j}) + t(-2\mathbf{i} - 3\mathbf{j})$	B1	
10(iii)	$\mathbf{r}_{B} - \mathbf{r}_{A} = (8\mathbf{i} + 10\mathbf{j}) + t(-3\mathbf{i} - 4\mathbf{j})$	M1	
	$X^{2} = (8-3t)^{2} + (10-4t)^{2}$	M1A1	
10(iv)	Differentiate	M1	
	$\frac{\mathrm{d}X^2}{\mathrm{d}t} = 2(8-3t)(-3) + 2(10-4t)(-4)$ oe	A1	
	$\frac{\mathrm{d}X^2}{\mathrm{d}t} = 0 \rightarrow t = 2.56$ $\rightarrow X = 0.4$	B2	B1 for value of <i>t</i> B1 for value of <i>X</i> .
11(i)	$x^2 - 2x + (kx + 3)^2 = 8$	M1	Eliminate y
	$(1+k^2)x^2+(6k-2)x+1=0$	A1	
	$b^{2} - 4ac = 0 \rightarrow (6k - 2)^{2} - 4(1 + k^{2}) = 0$	M1	
	$k = \frac{3}{4}$	A1	Answer given
11(ii)	$x = \frac{-b}{2a} \rightarrow x = \frac{-2.5}{2 \times 1.5625}$	M1	
	=-0.8	A1	
	$y = 0.75 \times -0.8 + 3 = 2.4$	A1	FT

Question	Answer	Marks	Guidance
11(iii)	Eqn of $PQ \frac{y-2.4}{x+0.8} = \frac{-4}{3}$	M1	
	\rightarrow 3y = 4 - 4x	A1	
12(i)	$\frac{\mathrm{d}(\cos x)^{-1}}{\mathrm{d}x} = \frac{1}{\cos^2 x} \times \sin x$	M1	$\frac{1}{\cos^2 x}$
		A1	$\times \sin x$
12(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x + \frac{4\sin x}{\cos^2 x}$	B1	$\sec^2 x$
		B1	$\frac{4\mathrm{sin}x}{\mathrm{cos}^2 x}$
12(iii)	$\frac{1}{\cos^2 x} + \frac{4}{\cos x} \times \frac{\sin x}{\cos x} = 4$	M1	Equate <i>their</i> (i) to 4 and multiply by $\cos^2 x$
	$\rightarrow 1 + 4\sin x = 4\cos^2 x$	M1	Use of identity and simplify
	$4\sin^2 x + 4\sin x - 3 = 0$	A1	
	$(2\sin x - 1)(2\sin x + 3) = 0$	M1	Solve
	$x = \frac{\pi}{6}, \frac{5\pi}{6}$	A2	A1 for each

ADDITIONAL MATHEMATICS

0606/22 October/November 2017

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to correct answer only cao dependent dep follow through after error FT isw ignore subsequent working not from wrong working nfww or equivalent oe rounded or truncated rot
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1	$z^2 = 7 + 4\sqrt{3}$	B1	Accept $4+3+4\sqrt{3}$
	$a\left(7+4\sqrt{3}\right)+b\left(2+\sqrt{3}\right)=1+\sqrt{3}$	M1	Equate both $\sqrt{3}$ terms and constant terms to obtain two equations in <i>a</i> and <i>b</i> .
	7a + 2b = 1 $4a + b = 1$	A1	Both correct. Accept equation with a multiple of $\sqrt{3}$
	Attempt to solve a pair of linear simultaneous eqns to $a =$ or $b =$	M1	M1dep
	a = 1 and $b = -3$	A1	
2	$2x^{1.5} + 6x^{-0.5} = x(x^{0.5} + 5x^{-0.5})$	M1	Attempt to multiply by $x^{0.5} + 5x^{-0.5}$ or $x^{0.5}$ or divide by $x^{0.5}$
	$2x^{1.5} + 6x^{-0.5} = x^{1.5} + 5x^{0.5} \text{ or}$ $x^{1.5} - 5x^{0.5} + 6x^{-0.5} = 0$ or $\frac{2x^2 + 6}{x + 5} = x \text{ or } \frac{2x + \frac{6}{x}}{1 + \frac{5}{x}} = x$	A1	Simplified numerical powers
	$x^2 - 5x + 6 = 0$	M1	M1dep obtain a three term quadratic. Allow errors in signs and coefficients but not powers
	(x-3)(x-2) = 0	M1	Solve a three term quadratic
	x = 3 or 2 only	A1	
3	Correctly obtain a value of $x = 2$	B1	Inequality not required
	Correctly obtain a value of $x = -\frac{1}{2}$	B1	Inequality not required
	$x > 2$ and $x < -\frac{1}{2}$	B1	B1dep mark final answer(s). Allow $2 < x < -\frac{1}{2}$

Question	Answer	Marks	Partial Marks
4	$x + 4 = y^2$	B1	
	7y - x = 16 $7y - 16 + 4 = y^2$	B1	allow 2 ⁴ for 16
	$y^{2} - 7y + 12 \rightarrow (y - 3)(y - 4)(= 0)$ or $x^{2} - 17x + 60 \rightarrow (x - 5)(x - 12)(= 0)$	M1	Attempt to eliminate x or y to obtain a three term quadratic.
	Solve a three term quadratic	M1	M1dep
	$\rightarrow y = 3, x = 5 \text{ or } y = 4 x = 12$	A1	Allow for values seen even if correct pairs not clear.
5(i)	$^{10}C_4 = 210$	B1	
5(ii)	2 Mystery 2 others = ${}^{5}C_{2} \times {}^{5}C_{2} = 100$ 3 Mystery 1 other = ${}^{5}C_{3} \times {}^{5}C_{1} = 50$ 4 Mystery = ${}^{5}C_{4} = 5$ Total 155	B3	 B1 for one combination, unsimplified B1 for second combination, unsimplified B1 for third combination, unsimplified and total
	Alternative Method		
	All – 0 Mystery – 1 Mystery	B1	All minus 0 or 1 or both
	$= 210 - {}^{5}C_{4} - {}^{5}C_{1} \times {}^{5}C_{3}$	B1	B1dep 1Mystery and 0 mystery unsimplified
	$=210-5-5\times10=155$	B1	B1dep final answer
5(iii)	$2M1C1R = {}^{5}C_{2} \times {}^{3}C_{1} \times {}^{2}C_{1} = 60$ $1M2C1R = {}^{5}C_{1} \times {}^{3}C_{2} \times {}^{2}C_{1} = 30$ $1M1C2R = {}^{5}C_{1} \times {}^{3}C_{1} \times {}^{2}C_{2}$ = 15 Total 105	B3	 B1 for one combination, unsimplified B1 for second combination, unsimplified B1 for third combination, unsimplified and total
6(i)	$\pi x^2 h = 500 \longrightarrow h = \frac{500}{\pi x^2}$	B1	Ignore units Condone r for x
6(ii)	$A = 2\pi x^2 + 2\pi x h$	M1	Correct expression for <i>A</i> and insert for <i>their h</i> .
	$= 2\pi x^{2} + 2\pi x \times \frac{500}{\pi x^{2}} = 2\pi x^{2} + \frac{1000}{x}$	A1	Answer given Condone r for x .

Question	Answer	Marks	Partial Marks
6(iii)	Differentiate: at least one power reduced by 1	M1	
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 4\pi x - \frac{1000}{x^2}$	A1	
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 0 \longrightarrow x = \sqrt[3]{\frac{1000}{4\pi}} \text{ isw } \mathrm{or}\left(x = 4.3(0)\right)$	A1	
	$A = 2\pi (4.3)^2 + \frac{1000}{4.3} = 349 \mathrm{cm}^2$	A1	awrt 349
	$\frac{d^2 A}{dx^2} = 4\pi + \frac{2000}{x^3} (>0) \text{ or a positive value}$ (\rightarrow min)	B1	Correct second differential (need not be evaluated) and conclusion. or Examine correct gradient either side of $x = 4.3$ and conclusion
7(i)	(Gradient or $\frac{dy}{dx}$) = $\frac{3x-1}{\sqrt{x}}$	B1	Gradient = Negative reciprocal. Can be implied.
	$=3x^{\frac{1}{2}}-x^{-\frac{1}{2}}$	B1	± One correct term
	$y = 2x^{\frac{3}{2}} - 2x^{\frac{1}{2}}(+C)$	M1	at least 1 fractional power increased by1.
	$-10 = 2 - 2 + C \rightarrow C = -10$	A1	one term correct with simplified coefficients
	$y = 2x^{\frac{3}{2}} - 2x^{\frac{1}{2}} - 10$	A1	For <i>C</i> from correct working.
7(ii)	$x = 4 \rightarrow y = 16 - 4 - 10 = 2$	B1	
	$\rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 6 - \frac{1}{2} = 5.5$	B1	
	Eqn with <i>their</i> grad and point (4,)	M1	
	Eqn of tangent: $\frac{y-2}{x-4} = 5.5 \rightarrow y = 5.5x - 20$ oe	A1	Must be in the form $y = mx + c$ but accept $2y = 11x - 40$
8(i)	$2\mathbf{A} = \begin{pmatrix} 4 & 2 \\ 8 & 6 \end{pmatrix}$	B1	
	$(2\mathbf{A})^{-1} = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ -8 & 4 \end{pmatrix}$	B2	B1 for $\begin{pmatrix} 6 & -2 \\ -8 & 4 \end{pmatrix}$
			B1 for $\frac{1}{8}$

Question	Answer	Marks	Partial Marks
8(ii)	4x + 2y = -5 $8x + 6y = -9$	B1	
	Pre multiply $\begin{pmatrix} -5\\ -9 \end{pmatrix}$ by a 2×2 matrix.	M1	Allow recovery
	$\binom{x}{y} = \frac{1}{8} \binom{6}{-8} \binom{-2}{-9} \binom{-5}{-9}$	M1	Pre multiply <i>their</i> $\begin{pmatrix} -5 \\ -9 \end{pmatrix}$ by <i>their</i> answer to (i)
	$\binom{x}{y} = \frac{1}{8} \binom{-12}{4} = \binom{-1.5}{0.5}$	A2	A1 for x value A1 for y value oe Allow both unsimplified
9(i)	$\frac{\mathrm{d}}{\mathrm{d}x}(x\mathrm{ln}x) = x \times \frac{1}{x} + \mathrm{ln}x \text{ isw}$	M1A1	Product rule. One correct term + another term. Allow unsimplified.
9(ii)	$\int 1 + \ln x dx = x \ln x$	M1	Correct use of (i) and must be dealing with 2 terms. soi
	$\int \ln x dx = x \ln x - x + (C)$	A1	Correct answer with no working is fine.
9(iii)	$\int_{k}^{2k} \ln x dx = [2k \ln 2k - 2k] - [k \ln k - k]$ $= k(2\ln 2k - lnk - 1)$	M1	Insert limits and subtract correctly using <i>their</i> result from (ii) which must contain an ln function
	$=k\Big(\ln\big(2k\big)^2-\ln k-1\Big)$	M1	Uses $n \ln a = \ln a^n$ somewhere oe
	$=k\left(\ln\left(\frac{4k^2}{k}\right)-1\right)$	M1	Uses $\ln a - \ln b = \ln \left(\frac{a}{b}\right)$ or $\ln a + \ln b = \ln ab$ somewhere
	$=k(\ln 4k-1)$	A1	Answer given Correct completion.

Question	Answer	Marks	Partial Marks
10(i)	$c = 1 \rightarrow 6(1)^3 - 7(1)^2 + 1 = 0 \rightarrow (c-1)$ is a factor.	B1	Or correct division. Finding or using one correct factor.
	Attempt to factorise or use long division to obtain $6c^2\pm 1$ or $6c^2\pm c$ respectively	M1	
	$(c-1)(6c^2-c-1)=0$	A1	
	(c-1)(2c-1)(3c+1)=0	A1	
	$c = 1, \frac{1}{2}, -\frac{1}{3}$	A1	FT From three different linear factors
10(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x + 6\cos x$	B2	B1 for each term
10(iii)	$\frac{1}{\cos^2 x} + 6\cos x = 7$	B1	B1dep Replaces $\sec^2 x$ by $\frac{1}{\cos^2 x}$
	$\rightarrow 6\cos^3 x - 7\cos^2 x + 1 = 0$	B1	B1dep Answer given so all steps must be correct.
10(iv)	$cosx = 1, \frac{1}{2}, -\frac{1}{3}.$ → $x = 0, 1.05 \left(or \frac{\pi}{3} \right), 1.91$	A2	A1 for 2 values awrt A1 for third value and no others in range. No credit for answers in degrees
11(i)	$y = 0 \rightarrow (x - 4)(x + 1) = 0$	M1	Solve
	$\rightarrow A ext{ is}(4,0) ext{ nfww}$	A1	Indication somewhere that $x = 4$ when $y = 0$
11(ii)	$4+3x-x^{2} = mx+8x^{2} + (m-3)x + 4 = 0$	M1	Eliminate y.
	$b^2 - 4ac(=0) \rightarrow (m-3)^2 = 16$	M1	M1dep Use of discriminant
	m = -1	A1	Do not award if $m = 7$ is not discarded
11(iii)	Obtain quadratic $x^2 + (m-3)x + 4 = 0$ using <i>their m</i> and attempt to solve.	M1	Working must be seen for any marks to be awarded. Must not be awarded if <i>m</i> is not obtained correctly
	Point <i>B</i> (2, 6)	A1	

Question	Answer	Marks	Partial Marks
11(iv)	Area under curve $= \int_{2}^{4} (4 + 3x - x^2) dx$ Integrate powers increased in at least 2 terms	M1	
	$= \left[4x + \frac{3}{2}x^2 - \frac{1}{3}x^3 \right]_2^4$	A1	
	$= \left[16 + 24 - \frac{64}{3} \right] - \left[8 + 6 - \frac{8}{3} \right]$ $= 7\frac{1}{3}$	M1	M1dep Insert limits of <i>their</i> 2 and 4 and subtract in correct order. May be implied by $18\frac{2}{3}$
	Intercept is (8,0) so area of triangle = $\frac{6 \times 6}{2} = 18$	M1	Area of triangle using their $B = \frac{(their_B - x_B)}{2} \times y_B$ or Attempt to find other suitable areas to result in a complete method.
	Shaded area = $18 - 7\frac{1}{3} = 10\frac{2}{3}$	A1	Accept 10.7. Must not be awarded if point B is not obtained correctly.

ADDITIONAL MATHEMATICS

0606/23 October/November 2017

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dependent dep FT follow through after error ignore subsequent working isw not from wrong working nfww oe or equivalent rounded or truncated rot SC Special Case seen or implied soi

Question	Answer	Marks	Guidance
1(a)		B2	B1 for each
1(b)	n(P') = 18	B1	
	$\mathbf{n}((Q \cup R) \cap P) = 11$	B1	
	$n(Q' \cup P) = 29$	B1	
2	$3x - 1 = 5 + x \qquad x = 3$	B1	
	3x - 1 = -5 - x oe	M1	M1 not earned if incorrect equation(s) present
	x = -1	A1	
3	$\frac{p(\sqrt{3}+1) + (\sqrt{3}-1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = q + 3\sqrt{3}$	M1	on LHS take common denominator or rationalise each term or multiply throughout
	$p(\sqrt{3}+1)+(\sqrt{3}-1)=2q+6\sqrt{3}$ oe	A1	correct eqn with no surds in denominators of LHS
	equate surd/non surd parts	M1	equate and solve for p or q ($\neq 0$)
	p = 5 and $q = 2$	A1	
4	$\log_3 3 = 1$ or $\log_3 9 = 2$	B1	implied by one correct equation
	x+1=3y	B1	
	x - y = 9	B1	
	solve correct equations for x or y	M1	
	x = 14 and $y = 5$	A1	
5(i)	$\overrightarrow{OX} = \lambda (1.5\mathbf{b} + 3\mathbf{a})$	B1	
5(ii)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} \text{ or } \overrightarrow{BA} = \mathbf{a} - \mathbf{b}$	B1	
	$\overrightarrow{OX} = \mathbf{a} + \mu (\mathbf{b} - \mathbf{a})$	B1	
5(iii)	$1.5\lambda = \mu$ or $3\lambda = 1 - \mu$	M1	$\overrightarrow{OX} = \overrightarrow{OX}$ and equate for a or b
	$\mu = \frac{1}{3} \qquad \lambda = \frac{2}{9}$	A2	A1 for each

Question	Answer	Marks	Guidance
5(iv)	$\frac{AX}{XB} = \frac{1}{2}$	B1	Accept 1:2 but not $\frac{1}{2}$:1
5(v)	$\frac{OX}{XD} = \frac{2}{7}$	B1	Accept 2:7 but not $\frac{2}{7}$:1
6(i)	$f^2 = f(f)$ used algebraic $([(x + 2)^2 + 1] + 2)^2 + 1$	M1	numerical or algebraic
	17	A1	
6(ii)	$x = \frac{y-2}{2y-1}$	M1	change <i>x</i> and <i>y</i>
	$2xy - x = y - 2 \rightarrow y(2x - 1) = x - 2$	M1	M1dep multiply, collect <i>y</i> terms, factorise
	$y = \frac{x-2}{2x-1} \qquad \left[= g(x) \right]$	A1	correct completion
6(iii)	$gf(x) = \frac{\left[(x+2)^2 + 1 \right] - 2}{2\left[(x+2)^2 + 1 \right] - 1} \text{ oe}$	B1	
	$\frac{(x+2)^2 - 1}{2(x+2)^2 + 1} = \frac{8}{19}$	M1	<i>their</i> gf = $\frac{8}{19}$ and simplify to
	$3(x+2)^2 = 27$ oe $3x^2 + 12x - 15 = 0$		quadratic equation
	solve quadratic	M1	M1dep Must be of equivalent form
	x=1 $x=-5$	A1	
7(i)	$v = 0 \rightarrow \cos 2t = \frac{1}{3}$	M1	set $v = 0$ and solve for $\cos 2t$
	$\rightarrow t = 0.615$ or 0.616	A1	
7(ii)	$s = \frac{3}{2}\sin 2t - t (+c)$	M1A1	M1 for $\sin 2t$ and $\pm t$
	$t = \frac{\pi}{4} \rightarrow \qquad s = 1.5 - \frac{\pi}{4} \qquad (= 0.715)$	A1	
7(iii)	$a = -6\sin 2t$	M1A1	M1 for -sin2t
	$t = 0.615 \rightarrow a = -5.66 \text{ or } -5.65 \text{ or } -2\sqrt{8}$	A1	condone substitution of degrees

Question	Answer	Marks	Guidance
8(i)	$\cos \alpha = \frac{1}{3}$ oe	M1	
	$\alpha = 70.5^{\circ}$	A1	
8(ii)	speed = $\sqrt{3^2 - 1^2}$	M1	Pythagoras/trig ratio/cosine rule
	$\sqrt{8}$ or $2\sqrt{2}$ or 2.83 m s ⁻¹	A1	
8(iii)	time = $\frac{50}{their\sqrt{8}}$	M1	
	$\frac{25\sqrt{2}}{2}$ or 17.7s	A1	
8(iv)	<i>their</i> 8(iii) seen	B1	
	$BC = 10\sqrt{2}$ or 14.1 m or 14.2 m	B1	
9(i)	$\frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$ and	B1	seen
	$\frac{d}{dx}x^3 = 3x^2$ or $\frac{d}{dx}x^{-3} = -3x^{-4}$		
	Substitution of <i>their</i> derivatives into quotient rule	M1	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{ln}x}{x^3}\right) = \frac{x^3 \times \frac{1}{x} - 3x^2 \mathrm{ln}x}{x^6} \mathrm{oe}$	A1	correct completion
9(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \longrightarrow 1 - 3\ln x = 0 \qquad \qquad \ln x = \frac{1}{3}$	M1	equate given $\frac{dy}{dx}$ to zero and solve for lnx or x
	$x = e^{\frac{1}{3}}$	A1	seen
	$y = \frac{1}{3e}$	A1	seen
9(iii)	$\frac{\ln x}{x^3} = \int \frac{1 - 3\ln x}{x^4} dx \text{oe}$	M1	use given statement in (i)
	$\int \frac{1}{x^4} \mathrm{d}x = \frac{-1}{3x^3}$	B1	seen anywhere
	$\int \frac{\ln x}{x^4} dx = -\frac{1}{9x^3} - \frac{\ln x}{3x^3} (+C) \text{oe}$	A2	A1 for each term

Question	Answer	Marks	Guidance
10(a)	LHS = $\frac{\sin^2 x + (1 + \cos x)^2}{\sin x (1 + \cos x)}$	B1	correct addition of fractions
	$=\frac{1+2\cos x+1}{\sin x(1+\cos x)}$	B1	expansion and use of identity
	$=\frac{2(1+\cos x)}{\sin x(1+\cos x)}=2\csc x$	B1	factorisation and completion
10(b)(i)	$\csc^2 y - 1 + \csc y - 5 = 0$ $\csc^2 y + \csc y - 6 = 0$	M1	use of identity for $\cot^2 y$ to obtain quadratic in $\csc y$
	$(\operatorname{cosec} y - 2)(\operatorname{cosec} y + 3) = 0$	M1	solve 3 term quadratic for cosecy
	$\sin y = \frac{1}{2}, \sin y = -\frac{1}{3}$	M1	obtain values for siny
	<i>y</i> = 30°, 150°, 199.5°, 340.5°	A2	A1 for 2 values
10(b)(ii)	$2z + \frac{\pi}{4} = \frac{5\pi}{6}$ or $\frac{7\pi}{6}$ (2.6, 3.6)	M2	M1 equate to $\frac{5\pi}{6}$
			M1 equate to $\frac{7\pi}{6}$
	$z = \frac{7\pi}{24}$ or $\frac{11\pi}{24}$ (0.916, 1.44)	A2	A1 for 1 value
11(i)	Other root $= 4$	B1	
	$f(x) = (x-3)(x-3)(x-4) = x^3 - 10x^2 + 33x - 36$	M1	multiply out $(x-3)(x-3)(x\pm p)$
	a = -10 $b = 33$	A2	A1 for each Can be implied by correct cubic
11(ii)	x = 6, x = 6, x = 1	B4	B1 for each of first two sets
	x = 2, x = 2, x = 9		B2 for third set
	x = 1, x = 1, x = 36		

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/21 May/June 2017

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Guidance
1	Integrates	M1	must be clear attempt to integrate at least one term
	$[y=]x^4 + x(+c)$	A1	Both terms correct
	$17 = 2^4 + 2 + c$	DM1	Substitution of $x = 2$, $y = 17$ to find c
	$y = x^4 + x - 1 \text{cao}$	A1	must have $y =$
2(a)	$2\sqrt{6} \times 3\sqrt{3} = 6\sqrt{18} \text{oe}$	M1	method must be shown – simplifies and combines product
	$18\sqrt{2}$	A1	If all over common denominator then consider the product for M1A1
	$9\sqrt{2}$ oe soi leading to final answer of $27\sqrt{2}$	B1	
2(b)	$\left[x=\right]\frac{6+\sqrt{3}}{2-\sqrt{3}}$	M1	Expanding and making x subject – condone slips but must be of equivalent difficulty
	$[x =] \frac{6 + \sqrt{3}}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}}$ oe and multiplies out numerator and denominator	M1	numerator at least 3 terms; $12 + 2\sqrt{3} + 6\sqrt{3} + 3$
	$15+8\sqrt{3}$	A1	
3(i)	$\frac{2x}{x^2+1}$ final answer	B2	B1 for $\frac{1}{x^2+1} \times (ax+b)$, <i>a</i> or <i>b</i> must be non-zero
3(ii)	$\delta y = their\left(\frac{2(3)}{(3)^2 + 1}\right) \times h$ or better	M1	Substitutes $x = 3$ into their $\frac{dy}{dx}$ and multiplies by h
	$\frac{6}{10}h$ oe	A1	
4(a)(i)	36	B1	
4(a)(ii)	7	B1	
4(b)	$[y=]5\sin 4x+7$	B4	B1 for each of 5, 4 and 7 and B1 for sine Accept $a = 5$, $b = 4$, $c = 7$ for B3

Question	Answer	Marks	Guidance
5(i)	$16 + 32ax + 24a^2x^2 + 8a^3x^3 + a^4x^4$	B2	B1 for at most 2 terms incorrect or missing or for correct but unsimplified form SC1 for $16 + 32ax + 24ax^2 + 8ax^3 + ax^4$ or all terms correct listed
5(ii)	$24a^2 = 8a^3$ and solves to given answer	B1	or verifies that $a = 3$ leads to coeff of 216 for both terms must be from correct terms in (i)
5(iii)	x = -0.01 or $ax = -0.03$ soi	M1	
	$\frac{16 + 32(3)(-0.01) + 24(9)(-0.01)^2 \text{ leading to}}{16 - 0.96 + 0.0216 \text{ or } 15.06\text{ isw}}$	A1	Must show clear substitution into their expansion for A1 and reach a value which rounds to 15.1
6(i)	$ (\mathbf{M} =) \begin{pmatrix} 90 & 10 & 30 \\ 0 & 45 & 0 \\ 25 & 0 & 15 \\ 10 & 0 & 100 \end{pmatrix} $	B1	columns and/or rows may be interchanged but must be consistent
6(ii)	$(\mathbf{LM} =)(1 \ 1 \ 1 \ 1) \begin{pmatrix} 90 \ 10 \ 30 \\ 0 \ 45 \ 0 \\ 25 \ 0 \ 15 \\ 10 \ 0 \ 100 \end{pmatrix} = (125 \ 55 \ 145)$	B1	Answer must be of correct order and must be consistent with a correct M
6(iii)	The total numbers of each type of ticket sold by all 4 cinemas oe	B1	
6(iv)	$\left(\mathbf{N}=\right) \begin{pmatrix} 5\\4\\3 \end{pmatrix}$	B1	Calculation not required
	The total income of all (4) cinemas or other valid comment e.g. total income from all ticket sales	B1	Total cost/value of tickets etc.
7(a)		B2	B1 for each
7(b)(i)	$n(M \cap D) = 0 \text{ or } M \cap D = \emptyset$	B1	No additional brackets e.g. $M \cap D = \{\emptyset\}$ is B0

Question	Answer	Marks	Guidance
7(b)(ii)	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	Β3	 B1 correct intersection of circles with 12 and 25 correct B1 33, 2, 11 correctly placed B1FT 17; must be on the Venn diagram and identified as the required answer FT on 100– (sum of <i>their</i> 5 correctly positioned values)
8(a)	$\begin{bmatrix} {}^{30}P_2 = \end{bmatrix} 870$	B1	
8(b)(i)	$^{2}C_{1} \times {}^{14}C_{10}$ oe (2 × 1001)	M1	Condone $\begin{pmatrix} 14\\4 \end{pmatrix}$ for $\begin{pmatrix} 14\\10 \end{pmatrix}$
	2002	A1	implies M1
8(b)(ii)	$ \begin{pmatrix} {}^{2}C_{1} \times {}^{5}C_{4} \times {}^{9}C_{6} \end{pmatrix} + \begin{pmatrix} {}^{2}C_{1} \times {}^{5}C_{5} \times {}^{9}C_{5} \end{pmatrix} \text{ oe } (840 + 252) $ or $ \begin{pmatrix} {}^{2}C_{1} \times {}^{14}C_{10} - \\ ({}^{2}C_{1} \times {}^{5}C_{1} \times {}^{9}C_{9} + {}^{2}C_{1} \times {}^{5}C_{2} \times {}^{9}C_{8} + {}^{2}C_{1} \times {}^{5}C_{3} \times {}^{9}C_{7} \end{pmatrix} $ $ \{ 2002 - (10 + 80 + 720) \} $	М3	 M3 for fully correct method soi M2 for all necessary products but not summed with no extra products seen soi M1 for one correct three term product soi
	1092	A1	implies M3
9(i)	Substitution of $y = 2(1-x)$	M1	Must be attempt at full substitution. Condone one sign error in substitution. Condone omission of = 0 or incorrect rhs
	$-3x^{2} + 2x + 1 = 0$ oe $(3x^{2} - 2x - 1 = 0)$	A1	Terms collected
	Solving <i>their</i> quadratic found from eliminating one variable $(3x+1)(1-x)$ or $(3x+1)(x-1)$	M1	can be implied by a correct pair of x values
	$\left(-\frac{1}{3},\frac{8}{3}\right)$ oe and $(1,0)$ oe isw nfww	A2	A1 for each or A1 for a correct pair of x- coordinates or a correct pair of y-coordinates

Question	Answer	Marks	Guidance
9(ii)	$[m=]\frac{1}{2}$ cao	B1	
	$\left(\frac{1}{3},\frac{4}{3}\right)$	B1	FT
	$y-their\frac{4}{3} = their\frac{1}{2}\left(x-their\frac{1}{3}\right)$	M1	or $y = their \frac{1}{2}x + c$ and substitutes their midpoint and reaches $c = \dots$
	6y - 3x = 7	A1	allow any equivalent form with integer coeffs/constant
10(i)	t11.522.5 $\ln P$ 1.482.122.763.4(0)	M1	allow ln <i>P</i> values to 1 dp rounded or truncated (1.5, 2.1, 2.8, 3.4)
	single ruled line drawn within tolerance at least for <i>t</i> between 1 and 2.5	A1	All points within 1 square of line / must not pass through origin
10(ii)	e ^{their 3}	M1	
	18 to 22.2	A1	
10(iii)	$(0, c)$ with $0.1 \le c \le 0.3 (0.2)$	B1	allow $y = c$ condone $c =$
	<i>m</i> in the range $1.25 \le m \le 1.34$ (1.28)	B1	
10(iv)	$\ln P = (their 1.28)t + their 0.2$	M1	or $\ln P = (\ln b)t + \ln a$
	$P = e^{(their 1.28)t + their 0.2}$	M1	or $\ln b = m = their 1.28$ and $\ln a = c = their 0.2$
	$P = e^{their 0.2} e^{(their 1.28)t}$	A1	or $1.10 \le a \le 1.35$ $3.49 \le b \le 3.82$
10(v)	$1000 * e^{their 0.2} \times e^{their 1.28t}$ or 1000 * their a × their b ^t	M1	A correct relationship e.g. $1.3t * \ln(1000) - 0.2$ where * is = or an inequality sign
	5.3	A1	5.2 to 5.5 must be to 1dp

Question	Answer	Marks	Guidance
11(i)	$\frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} = \frac{\cos^2 x + \sin^2 x}{\sin x \cos x} \text{ oe}$	B2	B1 for either $\cot x = \frac{\cos x}{\sin x}$ or $\tan x = \frac{\sin x}{\cos x}$ used B1 for correctly placing over a common denominator or for splitting into 3 correct terms not just for stating or working from both sides
	Valid use of Pythagorean identity e.g. $\cos^2 x + \sin^2 x = 1$	B1	
	Simplification to secx (correct solution only)	B1	not if working from both sides
11(ii)	$\cos x = \frac{1}{2} \operatorname{soi}$	M1	
	60, 300	A1	Correct pair
	$\cos x = -\frac{1}{2} \operatorname{soi}$	M1	
	120, 240	A1	Correct pair
12(i)	$\left[v = \frac{d(3t - \cos 5t + 1)}{dt} = \right]3 + 5\sin 5t$	B2	B1 for either with no other terms or for both with 1 extra
	$their(3+5\sin 5t)=0$	M1	Must be from an attempt to differentiate
	awrt 0.76	A1	0.7570187525
	awrt 1.13	A1	1.12793684
	substitutes <i>their t</i> values into <i>s</i> (4.07, 3.58)	DM1	must be two values
	0.48 to 0.49 [m]	A1	Final A1 may imply earlier A1s
12(ii)	25cos 5 <i>t</i>	M1	Differentiating <i>their v</i> correctly providing at least 2 terms with one trig function
	-25	A1	Ignore +25 following -25

ADDITIONAL MATHEMATICS

0606/22 May/June 2017

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Partial Marks
1	5x + 3 = 3x - 1 oe or $5x + 3 = 1 - 3x$ oe	M1	
	x = -2 and $x = -0.25$ only mark final answer	A2	nfww A1 for $x = -2$ ignoring extras implies M1 if no extras seen
			If M0 then SC1 for any correct value with at most one extra value
	Alternative method		
	$(5x+3)^2 = (1-3x)^2$ oe soi	M1	
	$16x^2 + 36x + 8 = 0$ oe	A1	
	x = -0.25, $x = -2$ only; mark final answer	A1	
2	Without using a calculator Sufficient evidence must be seen to be convinced that a calculator has not been used. Withhold the mark for any step that is unsupported.		
	deals with the negative index soi	B1	e.g. $\left(\frac{3-\sqrt{5}}{1+\sqrt{5}}\right)^2$
	rationalises $\frac{3-\sqrt{5}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}$ oe	M1	allow for $\frac{1+\sqrt{5}}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}}$
	multiplies out correctly $\frac{3-4\sqrt{5}+5}{1-5}$ oe	A1	allow for $\frac{3+4\sqrt{5}+5}{9-5}$
	squares correct binomial $\left(-2 + \sqrt{5}\right)^2 = \left(4 - 4\sqrt{5} + 5\right) \text{ oe}$	A1	allow for $(2+\sqrt{5})^2 = (4+4\sqrt{5}+5)$
	$9-4\sqrt{5}$ cao	A1	dep on all previous marks awarded

Question	Answer	Marks	Partial Marks
2	Alternative method 1:		
	dealing with the negative index soi	B1	
	correctly squaring with at least 3 terms in the numerator and denominator $\frac{3-\sqrt{5}}{1+\sqrt{5}} \times \frac{3-\sqrt{5}}{1+\sqrt{5}} = \frac{9-6\sqrt{5}+5}{1+2\sqrt{5}+5}$ oe	B1	
	rationalising their $\left(\frac{14-6\sqrt{5}}{6+2\sqrt{5}} \times \frac{6-2\sqrt{5}}{6-2\sqrt{5}}\right)$ oe	M1	
	multiplying out correctly; at least 3 terms in the numerator but condone a single value for the denominator $\frac{84-64\sqrt{5}+60}{36-20}$ oe	A1	
	$9 - 4\sqrt{5}$ cao	A1	
	Alternative method 2		
	dealing with the negative index soi	B1	
	$9 - 6\sqrt{5} + 5 = (a + b\sqrt{5})(1 + 2\sqrt{5} + 5)$	M1	
	$ \begin{array}{c} 14 = 6a + 10b \\ -6 = 2a + 6b \end{array} \text{oe} \\ \end{array} $	A1	
	a=9 cao	A1	
	b = -4 cao	A1	
	Alternative method 3		
	for dealing with the negative index soi	B1	
	$[3 - \sqrt{5} = (c + d\sqrt{5})(1 + \sqrt{5}) \text{ leading to}]$ c + 5d = 3 c + d = -1	M1	
	c = -2 and $d = 1$	A1	
	$(-2+\sqrt{5})^2 = 4-4\sqrt{5}+5$ 9-4\sqrt{5} cao	A1	
	$9 - 4\sqrt{5}$ cao	A1	

Question	Answer	Marks	Partial Marks
3	Correctly finding a correct linear factor or root	B1	from a valid method, e.g. factor theorem used or long division or synthetic division: $f(2) = 10(2^{3}) - 21(2^{2}) + 4 = 0$ $10x^{2} - x - 2$ or $x - 2\overline{\smash{\big)}10x^{3} - 21x^{2}} + 4$ $10x^{3} - 20x^{2}$ $-x^{2}$ $-x^{2}$ $-x^{2}$ $-2x + 4$ $-2x + 4$ 0 o or 2 10 -21 0 4 \downarrow 20 -2 -4
			10 -1 -2 0
	correct linear factor stated or implied by, e.g. $(x-2)(10x^2 - x - 2)$	B1	(x-2) or $(2x-1)$ or $(5x+2)do not allow \left(x-\frac{1}{2}\right) or \left(x+\frac{2}{5}\right)$
	Correct quadratic factor $(10x^2 - x - 2)$ or $(5x^2 - 8x - 4)$ or $(2x^2 - 5x + 2)$	B2	found using any valid method; B1 for any 2 terms correct
	(x-2)(2x-1)(5x+2) mark final answer	B1	must be written as a correct product of all 3 linear factors; only award the final B1 if all previous marks have been awarded
			If quadratic factor is not found but correct remaining linear factors are found using e.g. the factor theorem or long division or synthetic division etc. with correct, sufficient, complete working to justify that no calculator has been used allow: B1 for correctly finding a correct linear factor or root
			B1 for a correct linear factor stated or implied
			SC3 for the full, complete and correct working to find the remaining two linear factors and arrive at the correct product of 3 linear factors

Question	Answer	Marks	Partial Marks
4	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x - 7$ soi	B1	
	$m_{\rm normal} = -\frac{1}{5}$ soi	B1	finds or uses correct gradient of normal
	$m_{\text{tangent}} = 5 \text{ soi or } (6x-7)\left(-\frac{1}{5}\right) = -1 \text{ oe}$	M1	uses $m_1 m_2 = -1$ with numerical gradients
	$6x - 7 = 5$ oe $\Rightarrow x = 2$	A1	
	<i>y</i> = 9	A1	
	<i>k</i> = 47	A1	
	Alternative method		
	$m_{\rm normal} = -\frac{1}{5}$	B1	
	$m_{\rm tangent} = 5$	M1	
	$3x^2 - 12x + 11 - c = 0 \text{ oe}$	A1	
	solving $3x^2 - 12x + 12 = 0$ oe to find $x = 2$	A1	
	<i>y</i> = 9	A1	
	<i>k</i> = 47	A1	
5(i)	$\left(their 2x^4\right)(0.2 - \ln 5x) + 0.4x^5\left(their \frac{-5}{5x}\right)$ oe or	M1	clearly applies correct form of product rule
	their $0.4x^4 - \left(\left(their 2x^4 \right) \ln 5x + 0.4x^5 \left(their \frac{5}{5x} \right) \right)$ oe		
	$-2x^4 \ln 5x$ isw	A1	nfww
5(ii)	$3\ln 5x$ or $\ln 5x + \ln 5x + \ln 5x$	B1	

Question	Answer	Marks	Partial Marks
5(iii)	$\frac{3}{-2}\int (-2x^4\ln 5x)dx \text{ oe}$	M1	FT $k = 2$ from (i) allow for $\frac{3}{2} \int (2x^4 \ln 5x) dx$ or, when $k = -2$, for $\int (x^4 \ln 5x) dx = -0.2x^5 (0.2 - \ln 5x)$ or $-\frac{2}{3} \int (3x^4 \ln 5x) dx = 0.4x^5 (0.2 - \ln 5x)$ oe or, when FT $k = 2$, for $\int (x^4 \ln 5x) dx = 0.2x^5 (0.2 - \ln 5x)$ or $\frac{2}{3} \int (3x^4 \ln 5x) dx = 0.4x^5 (0.2 - \ln 5x)$ oe
	$-\frac{3}{2}(0.4x^5(0.2 - \ln 5x))[+c]$ oe isw cao	A1	nfww; implies M1 An answer of $0.6x^5(0.2 - \ln 5x)$ following k = 2 from (i) implies M1 A0
6	Uses $b^2 - 4ac$	M1	
	$\left(p-q\right)^2 - 4(p)(-q)$	A1	implies M1
	$p^2 + 2pq + q^2$	M1	correctly simplifies
	$(p+q)^2 \ge 0$ oe cao isw	A1	
	Alternative method $(px-q)(x+1) = 0$ or $\frac{-(p-q) \pm \sqrt{(p+q)^2}}{2p}$	M2	or M1 for $(px+q)(x-1)$ [=0] or $\frac{-(p-q) \pm \sqrt{(p-q)^2 - 4(p)(-q)}}{2p}$
	$x = \frac{q}{p}, x = -1$	A1	
	for conclusion, e.g. p and q are real therefore $\frac{q}{p}$ is real [and -1 is real]	A1	
7(a)(i)	7	B1	
7(a)(ii)	$\frac{1}{7}$ or $\frac{1}{their7}$	B1	FT <i>their</i> 7 must not be 1 if following through

Question	Answer	Marks	Partial Marks
7(b)	$y = 81^{-\frac{1}{4}}$ or $y = 3^{-1}$ or $y = 9^{-\frac{1}{2}}$ oe	M1	Anti-logs
	$y = \frac{1}{3}$ only or 0.333[3] only	A1	nfww; implies the M1; $y = \dots$ must be seen at least once
			If M0 then SC1 for e.g. $81^{-\frac{1}{4}} = \frac{1}{3}$ as final
			answer
7(c)	$\frac{2^{5(x^2-1)}}{(2^2)^{x^2}} \text{ or } \frac{4^{\frac{5}{2}(x^2-1)}}{4^{x^2}} \text{ or } \frac{32^{x^2} \times 32^{-1}}{4^{x^2}}$	B1	converts the terms given left hand side to powers of 2 or 4; may have cross- multiplied
	or $\log 32^{x^2-1} - \log 4^{x^2} = \log 16$ oe		or separates the power in the numerator correctly
			or applies a correct log law
	$2^{3x^2-5} = 16 \text{ oe} \Longrightarrow 3x^2 - 5 = 4 \text{ oe}$	M1	combines powers and takes logs or equates powers;
	or $4^{\frac{3}{2}x^2 - \frac{5}{2}} = 16 \text{ oe} \Rightarrow \frac{3}{2}x^2 - \frac{5}{2} = 2 \text{ oe}$ or $\frac{8^{x^2}}{32} = 16 \text{ oe} \Rightarrow x^2 \log 8 = \log 512 \text{ oe}$		or brings down all powers for an equation already in logs
	or $32^{-10} \log 32 - x^2 \log 4 = \log 16$ oe		condone omission of necessary brackets for M1; condone one slip
	$[x=]\pm\sqrt{3}$ isw cao or ± 1.732050 rot to 3 or more figs. isw	A1	
8(i)	$y-8 = -\frac{8}{12}(x-(-8))$ oe isw	B2	B1 for $m_{AB} = -\frac{8}{12}$ oe
	or $y[-0] = -\frac{8}{12}(x-4)$ oe isw		or M1 for $\frac{8-0}{-8-4}$ oe
	or $3y = -2x + 8$ oe isw		
8(ii)	$(-8-4)^2 + (8[-0])^2$ oe	M1	any valid method
	$\sqrt{208}$ isw or $4\sqrt{13}$ isw or 14.4222051 rot to 3 or more sf	A1	implies M1 provided nfww

Question	Answer	Marks	Partial Marks
8(iii)	[coordinates of $D=$] (-2, 4) soi	B1	If coordinates of <i>D</i> not stated then a calculation for m_{CD} or a relevant length with the coordinates clearly embedded must be shown to imply B1
	Gradient methods:	M1	or Length of sides methods:
	$\begin{bmatrix} m_{CD} = \frac{7 - their4}{0 - their(-2)} = \end{bmatrix} their\left(\frac{3}{2}\right)$		finds or states $AC^2 = 65$ or $AC = \sqrt{65}$ or $AC^2 = (-8-0)^2 + (8-7)^2$ oe or $AC = \sqrt{(-8-0)^2 + (8-7)^2}$ oe and $CD^2 = their 13$ or $CD = their \sqrt{13}$ or $CD^2 = (0 - their (-2))^2 + (7 - their 4)^2$ oe or $CD = \sqrt{(0 - their (-2))^2 + (7 - their 4)^2}$ oe and $AD^2 = their 52$ or $AD = their 2\sqrt{13}$
			or $AD^2 = (-8 - their(-2))^2 + (8 - their4)^2$ or $AD = \sqrt{(-8 - their(-2))^2 + (8 - their4)^2}$ or uses a valid method with <i>their</i> coordinates of <i>D</i> to find the exact area of the triangle and equates to $\frac{1}{2}(AD)(CD)\sin(ADC)$
	states $\frac{3}{2} \times \left(-\frac{8}{12}\right) = -1$ oe or $\frac{3}{2}$ is the negative reciprocal of $-\frac{2}{3}$ oe or finds the equation of the perpendicular bisector of <i>AB</i> as $y = \frac{3}{2}x + 7$ independently of <i>C</i> and states that <i>C</i> lies on this line.	A1	applies Pythagoras to confirm, using integer values, that $65 = 13 + 52$ or finds e.g. $AC = \sqrt{65}$ using $\sqrt{(2\sqrt{13})^2 + (\sqrt{13})^2}$ or solves $\frac{1}{2}(2\sqrt{13})(\sqrt{13})\sin ADC = 13$ or $(\sqrt{65})^2 = (2\sqrt{13})^2 + (\sqrt{13})^2$ $-2(2\sqrt{13})(\sqrt{13})\cos ADC$ to show ADC is a right angle
8(iv)	$\begin{pmatrix} -4\\ 1 \end{pmatrix}$ or $-4\mathbf{i} + \mathbf{j}$	B1	condone coordinates

Question	Answer	Marks	Partial Marks
8(v)	Full valid method e.g. for showing that e.g. $\overrightarrow{CB} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 7 \end{pmatrix} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}$	B2	B1 for incomplete method e.g. for stating that $\overrightarrow{CB} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}$
	or showing that e.g. $\overrightarrow{AC} = \begin{pmatrix} 0 \\ 7 \end{pmatrix} - \begin{pmatrix} -8 \\ 8 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \end{pmatrix} \text{ oe}$ and $\overrightarrow{EB} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} - \begin{pmatrix} -4 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \end{pmatrix} \text{ oe}$		or $\overrightarrow{AC} = \begin{pmatrix} 8 \\ -1 \end{pmatrix} = \overrightarrow{EB}$
	and $EB = \begin{pmatrix} 0 \end{pmatrix}^{-} \begin{pmatrix} -1 \end{pmatrix}^{-} \begin{pmatrix} -1 \end{pmatrix}^{-} \begin{pmatrix} 0 \end{pmatrix}^{-} \begin{pmatrix} 0$		or just showing that one pair of opposite sides is parallel or has the same length
	or comparing gradients of both pairs of opposite sides and showing they are pairwise the same or comparing the lengths of both pairs of		or just showing that length DC = length DE or just showing that C , D and E are collinear
	opposite sides and showing that they are pairwise the same		A(-8,8) $m_{AC} = -\frac{1}{8} \sqrt{65}$ C(0,7)
	or showing that length AC = length AE or that the length BC = length BE		$\sqrt{65}$ $m_{BC} = -\frac{7}{4}$
	or comparing the gradients and lengths of a pair of opposite sides		$m_{AE} = -\frac{7}{4}$ E(-4, 1)
	or showing that <i>D</i> is the midpoint of <i>CE</i> or showing that length DC = length <i>DE</i> and		$\sqrt{65} m_{EB} = -\frac{1}{8} B(4, 0)$
	that C , D and E are collinear		
9(i)	$2(x-1.5)^2 + 0.5$ isw	B3	or B3 for $a = 2$ and $b = 1.5$ and $c = 0.5$ provided not from wrong format isw
			or B2 for $2(x-1.5)^2 + c$ where $c \neq 0.5$ or $a = 2$ and $b = 1.5$
			or SC2 for $2(x-1.5)+0.5$ or $2(x-1.5)^2+1$
			$2\left(\left(x-1.5\right)^2+\frac{1}{4}\right)$ seen
			or B1 for $(x-1.5)^2$ seen or for $b = 1.5$ or for $c = 0.5$
			or SC1 for 3 correct values seen in incorrect format e.g. $2(x-1.5x)+0.5$ or $2(x^2-1.5)+0.5$
			$2(x^2-1.5)+0.5$

Question	Answer	Marks	Partial Marks
9(ii)	5 5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	B3	B1 for correct graph for f over correct domain or correct graph for $f - 1$ over correct domain B1 for vertex marked for f or $f - 1$ and intercept marked for f or $f - 1$ B1 for idea of symmetry – either symmetrical by eye, ignoring any scale or line $y = x$ drawn and labelled Maximum of 2 marks if not fully correct
9(iii)	$\frac{x - 0.5}{2} = (y - 1.5)^2$	M1	FT their a,b,c, provided their $a \neq 1$ and a,b,c are all non-zero constants or $\frac{y-0.5}{2} = (x-1.5)^2$ and reverses variables at some point
	$f^{-1}(x) = 1.5 - \sqrt{\frac{x - 0.5}{2}}$ oe	A1	must have selected negative square root only; condone $y =$ etc.; must be in terms of x
			If M0 then SC2 for $f^{-1}(x) = \frac{6 - \sqrt{8x - 4}}{4}$ oe
			or SC1 for $f^{-1}(x) = \frac{-(-6) \pm \sqrt{36 - 4(2)(5 - x)}}{2(2)}$ oe
	$x \ge \frac{1}{2}$ oe	B1	
10(i)	$\sin^{-1}\left(\frac{3}{4}\right)$ soi	M1	implied by 0.848[06]
	0.848[06] rot to 3 or more figs or 2.29[35] rot to 3 or more figs	M1	implied by a correct answer of acceptable accuracy
	0.544 486 rot to 3 or more figs isw	A1	
	1.03 or 1.02630 rot to 4 or more figs isw	A1	Maximum 3 marks if extra angles in range; no penalty for extra values outside range $0 \le x \le \frac{\pi}{2}$

Question	Answer	Marks	Partial Marks
10(ii)	Correctly uses $\tan^2 y = \sec^2 y - 1$ and/or $\frac{\sin y}{\cos y}$ and $\sin^2 y = 1 - \cos^2 y$	M1	for using correct relationship(s) to find an equation in terms of a single trigonometric ratio
	$3\sec^{2} y - 14\sec y - 5 = 0$ $\Rightarrow (3\sec y + 1)(\sec y - 5)$ or $5\cos^{2} y + 14\cos y - 3 = 0$ $\Rightarrow (5\cos y - 1)(\cos y + 3)$	DM1	for factorising or solving their 3-term quadratic dependent on the first M1 being awarded
	$[\cos y = -3] \cos y = \frac{1}{5}$	A1	
	78.5 or 78.4630 rot to 2 or more decimal places isw	A1	
	281.5 or 281.536 rot to 2 or more decimal places isw	A1	Maximum 4 marks if extra angles in range; no penalty for extra values outside range $0 \le x \le 360$
11(i)	$\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} + 5x[+c]$ isw	B2	B1 for any 3 correct terms
11(ii)	$x^{3} + 4x^{2} - 5x + 5 = 5$ and rearrange to $x(x^{2} + 4x - 5) = 0$ oe soi	B1	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\$
	Solves their $x^2 + 4x - 5 [= 0]$ soi	M1	
	x = -5, x = 1 soi	A1	
	OEAB = 25, OBCD = 5	A1	

Question	Answer	Marks	Partial Marks
11(iii)	Correct or correct FT substitution of 0, <i>their</i> -5 seen in $\left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} + 5x\right]_{their-5}^{0}$	M1	dependent on at least B1 in (i)
	Correct or correct FT substitution of <i>their</i> 1, 0 seen in $\left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} + 5x\right]_0^{their1}$	M1	dependent on at least B1 in (i)
	their $\frac{1175}{12}$ - their OEAB + their OBCD - their $\frac{49}{12}$ oe	M1	for the strategy needed to combine the areas; may be in steps; $97.91\dot{6} - 25 + 5 - 4.08\dot{3}$
	$\frac{886}{12}$ oe or $73\frac{5}{6}$ oe or 73.83 rot to 3 or more sig figs	A1	all method steps must be seen; not from wrong working
			If M0 then allow SC3 for $\int_{-5}^{0} (x^3 + 4x^2 - 5x) dx - \int_{0}^{1} (x^3 + 4x^2 - 5x) dx \text{oe}$ $\begin{bmatrix} x^4 & 4x^3 & 5x^2 \end{bmatrix}^{0} \begin{bmatrix} x^4 & 4x^3 & 5x^2 \end{bmatrix}^{1}$
			$= \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2}\right]_{-5}^0 - \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2}\right]_{-5}^0$ $= \left[0 - \left(\frac{625}{4} - \frac{500}{3} - \frac{125}{2}\right)\right] - \left[\left(\frac{1}{4} + \frac{4}{3} - \frac{5}{2}\right) - 0\right]$ $= \frac{443}{6} \text{oe}$
			or SC2 for $\int_{iheir(-5)}^{0} (x^3 + 4x^2 - 5x) dx - \int_{0}^{iheir(-1)} (x^3 + 4x^2 - 5x) dx \text{ oe}$ $= \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{iheir(-5)}^{0} - \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{0}^{iheir(-1)}$ $= \left[F(0) - F(iheir(-5)) \right] - \left[F(iheir(-5)) - F(0) \right]$
12(i)	$-6(2x+1)^{-2}$ or $\frac{-6}{(2x+1)^2}$ oe isw	B1	Allow $-3(2x+1)^{-2} \times 2 \text{ or } \frac{-3 \times 2}{(2x+1)^2}$ oe
	Denominator or $(2x+1)^2$ is positive [and numerator negative therefore $g'(x)$ is always negative] oe	B1	FT their g'(x) of the form $\frac{-k}{(2x+1)^2}$ oe where $k > 0$; Allow $(2x+1)^{-2}$ is always positive
12(ii)	g > 0	B1	
12(iii)	$\frac{3k}{2x+1}$ + 3 oe isw	B1	

Question	Answer	Marks	Partial Marks
12(iv)	$\frac{3k}{2(0)+1} + 3 = 5$	B1	
	$k = \frac{2}{3}$ isw	B1	implies the first B1
12(v)	$x > -\frac{1}{2}$	B1	

ADDITIONAL MATHEMATICS

0606/23 May/June 2017

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw nfww not from wrong working or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Guidance
1(a)	$\log_7 2.5 = 2x + 5$ or $\log_7 \left(\frac{2.5}{7^5}\right) = 2x$ or $(2x+5)\log 7 = \log 2.5$	M1	correct first anti-logging step
	$[x=]\frac{\log_7 2.5 - 5}{2}$	M1	isolates x
	or $\frac{1}{2}\log_7\left(\frac{2.5}{7^5}\right) = x$		
	or $x = \frac{1}{2} \left(\frac{\log 2.5}{\log 7} - 5 \right)$		
	-2.26(4)	A1	
1(b)	$5^2 p^{-3} q^{\frac{5}{4}}$ oe	B3	B1 for each term If B0 then allow M1 for numerator of $125q^{\frac{3}{2}}$ or denominator of $5p^3q^{\frac{1}{4}}$
2(i)	<i>B</i> and <i>C</i> with valid reason	B2	B1 for one graph and valid reason or both graphs and no reason
2(ii)	<i>B</i> only with valid reason	B2	B1 for graph <i>B</i> or valid reason
3	$[m=]\frac{13-5}{1-0.2}$ or 10 soi	M1	or $13 = m + c$ and $5 = 0.2m + c$ and subtracting/substituting to solve for <i>m</i> or <i>c</i> , condone one error
	$Y - 13 = their \ 10(X - 1)$ or $Y - 5 = their \ 10(X - 0.2)$	M1	or using <i>their m</i> or <i>their c</i> to find <i>their c</i> or <i>their m</i> , without further error
	or $13 = their \ 10 + c \text{ or } 5 = their \ 10 \times 0.2 + c$		
	$\sqrt[3]{y} = (their m)\frac{1}{x} + (their c)$ or	M1	<i>their m</i> and <i>c</i> must be validly obtained
	$\sqrt[3]{y} = (their m)\left(\frac{1}{x} - 1\right) + 13 \text{ or}$		
	$\sqrt[3]{y} = (their \ m)\left(\frac{1}{x} - 0.2\right) + 5$		
	$y = \left(\frac{10}{x} + 3\right)^3$	A1	
	or $y = \left(10\left(\frac{1}{x} - 1\right) + 13\right)^3$		
	or $y = \left(10\left(\frac{1}{x} - 0.2\right) + 5\right)^3$ cao, isw		

Question	Answer	Marks	Guidance
4(a)(i)	$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	B1	
4(a)(ii)	$\sqrt{11^2 + (-15)^2}$ or better	M1	
	$\frac{1}{\sqrt{346}} \begin{pmatrix} 11\\-15 \end{pmatrix}$	A1	
4(b)	$\overrightarrow{OR} = \overrightarrow{OP} + \frac{3}{4}\overrightarrow{PQ}$ soi	M1	or $\overrightarrow{OR} = \overrightarrow{OQ} - \frac{1}{4}\overrightarrow{PQ}$ soi
	$\left[\overline{OR}\right]\mathbf{p} + \frac{3}{4}(\mathbf{q} - \mathbf{p})$	M1	or $\left[\overline{OR}\right] \mathbf{q} - \frac{1}{4}(\mathbf{q} - \mathbf{p})$
	$\left[\overline{OR} = \right] \frac{1}{4}\mathbf{p} + \frac{3}{4}\mathbf{q} \text{ oe}$	A1	
5(a)	$(9 \times 8 \times 7 \times 6 \times 1) + (8 \times 8 \times 7 \times 6 \times 1)$ soi	M2	M1 for one correct product of the sum
	5712	A1	
5(b)	${}^{9}C_{4} \times {}^{5}C_{4} + {}^{9}C_{3} \times {}^{5}C_{5}$ oe	M2	M1 for one correct product of the sum
	[630 + 84 =] 714	A1	
6	$64 = 2^n$	M1	
	<i>n</i> = 6	A1	
	$their6(2)^{their(6-1)} \times (-a) = -16b$ oe	M1	
	<i>their</i> $\frac{6 \times (6-1)}{2} (2)^{their(6-2)} \times (-a)^2 = 100b$ oe	M1	
	attempts to solve	DM1	dep on both M1 marks being awarded; must have correctly or correct FT eliminated one unknown
	<i>a</i> = 5	A1	
	b = 60	A1	

Question	Answer	Marks	Guidance
7(i)	$k(1+4x)^9$	M1	
	$4 \times 10(1+4x)^9$ or better	A1	
	$(1+4x)^{10}(their - \sin x) +$	M1	clearly applies product rule
	$\cos x \left(their \left(4 \times 10 \times \left(1 + 4x \right)^9 \right) \right)$		
	$(1+4x)^{10}(-\sin x) + \cos x (4 \times 10 \times (1+4x)^9)$	A1	all correct
7(ii)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{4x-5}\right) = 4\mathrm{e}^{4x-5} \mathrm{soi}$	B1	
	$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x \mathrm{soi}$	B1	
	clearly applies correct form of quotient rule $\tan x (their 4e^{4x-5}) - e^{4x-5} (their \sec^2 x)$	M1	or correct form of product rule to $e^{4x-5}(\tan x)^{-1}$
	$\frac{(\tan x (\tan x)^2 - (\tan x)^2)}{(\tan x)^2}$		$4e^{4x-5}(\tan x)^{-1} + e^{4x-5}(\tan x)^{-2} \times \sec^2 x$
	$\frac{\tan x (4e^{4x-5}) - e^{4x-5} (\sec^2 x)}{(\tan x)^2} \text{ isw}$	A1	all correct
8(i)	$\frac{\pi}{3}$	B1	
	6 [cm]	B1	
8(ii)	$[\text{major arc} =] \left(2\pi - their \frac{\pi}{3} \right) their r$	M1	
	$10\pi + 6$ cao	A1	
8(iii)	$\frac{1}{2}(their 6)^2 \left(2\pi - their \frac{\pi}{3}\right)$	M1	$\frac{1}{2}(their 6)^2 \left(their \frac{\pi}{3}\right)$
	$\frac{1}{2}(their 6)^2 \sin\left(their\frac{\pi}{3}\right)$	M1	$\frac{1}{2}(their 6)^2 \sin\left(their\frac{\pi}{3}\right)$
	Sector + triangle	M1	$\pi \times their6^2$ – (Sector – triangle)
	$30\pi + 9\sqrt{3}$	A1	

Question	Answer	Marks	Guidance
9(i)	$\frac{y}{9} = \sqrt{x-1}$ with attempt to swop x and y at some point or $\frac{x}{9} = \sqrt{y-1}$	M1	attempt to swop; may be in later work that contains an error
	$\left[\mathbf{f}^{-1}(x) = \right] \left(\frac{x}{9}\right)^2 + 1 \text{ oe}$	A1	condone $y = \dots$ etc; must be a function of x
	<i>x</i> > 0	B1	
9(ii)	f(51)	M1	or $fg(x) = 9\sqrt{x^2 + 1}$
	$9\sqrt{50}$ oe	A1	
9(iii)	$\left[gf(x)=\right]\left(9\sqrt{x-1}\right)^2+2$	M1	
	[gf(x) =]81(x-1) + 2 or better	A1	
	their (81x - 79) = 5x ² + 83x - 95 → their (5x ² + 2x - 16 [= 0])	M1	provided <i>their</i> ($81x - 79$) of the form $ax + b$ for non-zero <i>a</i> and <i>b</i>
	1.6 oe only	A1	must disregard other solution
10(a)	$\sin x = 0.5$, $\sin x = -0.5$	M1	
	$\frac{\pi}{6}, -\frac{\pi}{6}, \frac{5\pi}{6}, -\frac{5\pi}{6}$ oe	A2	A1 for any correct pair of angles if M0 then SC1 for a correct pair of angles
10(b)	$2y + 15 = \tan^{-1}\left(\frac{1}{3}\right)$ soi	M1	
	18.43(49) and 198.43(49)	M1	
	1.7, 91.7	A2	A1 for each

Question	Answer	Marks	Guidance
10(c)	Uses $\cot^2 z = \csc^2 z - 1$ oe	M1	for using correct identity or identities to obtain an equation in terms of a single trigonometric ratio
	$2\operatorname{cosec}^{2} z + 7\operatorname{cosec} z - 4 = 0 \Longrightarrow$ $(2\operatorname{cosec} z - 1)(\operatorname{cosec} z + 4)$	DM1	for dealing with quadratic
	$[\sin z = 2] \sin z = -\frac{1}{4}$	M1	
	194.5, 345.5	A2	A1 for each
11(i)	$5 + \sqrt{10x} = \frac{5x + 20}{4} \to 20 + 4\sqrt{10x} = 5x + 20$	M1	or better; equates and solves as far as clearing the fraction
	$\left[\frac{x}{\sqrt{x}}\right] = \sqrt{x} = \frac{4\sqrt{10}}{5} \text{ oe}$	M1	Simplifies as far as $\sqrt{x} = \cdots$
	x = 6.4 cao	A1	squares and simplifies to 6.4
	[<i>y</i> =]13	B1	
11(ii)	(area of trapezium =) <i>their</i> 57.6	B1	FT $x = their 6.4$, $y = their 13$ using any valid method
	$\int_0^{6.4} \left(5 + \sqrt{10x}\right) \mathrm{d}x$	M1	
	$\int (10x)^{\frac{1}{2}} dx = k (10x)^{\frac{3}{2}} \text{ or}$	M1	or $\int \sqrt{10} x^{\frac{1}{2}} dx = k \sqrt{10} (x)^{\frac{3}{2}}$
	$\left[5x + \frac{2(10x)^{\frac{3}{2}}}{3 \times 10}\right]$	A1	or $\left[5x + \frac{2(10)^{\frac{1}{2}}(x)^{\frac{3}{2}}}{3}\right]$
	$their\left[5(6.4) + \frac{2(10 \times 6.4)^{\frac{3}{2}}}{3 \times 10}\right] - their 57.6 \text{ oe}$	M1	limits used correctly or correct FT and subtraction of trapezium; $their \frac{992}{15} - their 57.6$
	$\frac{128}{15}$ or 8.53 oe	A1	allow 8.5333333 rot to 4 or more sf

ADDITIONAL MATHEMATICS Paper 22 MARK SCHEME

Maximum Mark: 80

0606/22 March 2017

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

Question	Answer	Marks	Guidance
1	$-\frac{5}{3}$ isw	B1	or exact equivalent
	Solve $5 - 3x = -10$ or $(5 - 3x)^2 = 100$	M1	
	<i>x</i> = 5	A1	
2 (i)	\$12000	B1	
(ii)	$\frac{8000}{12000} = e^{-0.2t} \text{oe}$	M1	
	[t =] 2(.0273) years	A1	

Question	Answer	Marks	Guidance
3 (i)	multiply out correctly	B1	or divide out correctly
(ii)	Finding another factor	B1	(x-1) or $(x+2)$ or $(x-2)$; method must be seen
	Either $(x-1)^2(x^2-4)$ Or $(x-1)(x+2)(x^2-2x+2)$		
	$(x-1)(x+2)(x^2-3x+2)$ Or $(x-1)(x-2)(x^2+x-2)$	B1	For stating a relevant quadratic factor for <i>their</i> linear factors
	Attempts to factorise quadratic	M1	
	$(x-1)^2(x+2)(x-2)$ oe	A1	mark final answer
			 Alternative method: B1 for finding a second linear factor using any valid method and B1 for finding a third linear factor using any valid method and B1 for finding the final linear factor using any valid method and B1 for fully correct product stated; mark final answer
			If fully correct product stated but no method shown then B1 only.
4	Eliminates y $3x + k = 2x^2 - 3x + 4$	M1	Alternative calculus method: Equates gradients 4x - 3 = 3
	Collects terms $2x^2 - 6x + 4 - k = 0$ soi	A1	Finds point of tangency (1.5, 4)
	Applies $b^2 - 4ac$ $(-6)^2 - 4(2)(4-k)$ or better	M1	Substitutes into $y = 3x + k$ 4 = 3(1.5) + k
	$k < -\frac{1}{2}$ oe	A1	

Question	Answer	Marks	Guidance
5	$\sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}$ seen	B1	may be later in working; must be convinced that calculator has not been used
	$(3+\sqrt{5})x+\frac{1}{2}x(their 2\sqrt{5})=13+5\sqrt{5}$ oe		
	leading to $(3 + their 2\sqrt{5})x = 13 + 5\sqrt{5}$	M1	equates <i>their</i> area to given area and factorises to collect <i>x</i> terms; may still have $\sqrt{20}$
	$[x=]\frac{13+5\sqrt{5}}{3+their 2\sqrt{5}} \times \frac{3-their 2\sqrt{5}}{3-their 2\sqrt{5}}$	M1	divides and attempts to rationalise; may still have $\sqrt{20}$
			or forms a pair of simultaneous equations e.g. 3p+10q=13 $2p+3q=5$
	$[x=]\frac{39-26\sqrt{5}+15\sqrt{5}-50}{9-20}$	M1	numerator must have at least 3 terms; denominator may be -11
			or solves their simultaneous equations to find one unknown
	$1 + \sqrt{5}$ www	A1	or $p = 1, q = 1$
6 (a) (i)	$-2x^{\frac{5}{2}}$ oe or $a = -2$ and $b = \frac{5}{2}$ oe	B2	mark final answer B1 for -2 and B1 for $\frac{5}{2}$
(ii)	$[x=]\left(\frac{-6250}{their(-2)}\right)^{their\frac{2}{5}}$ oe	M1	may be in steps
	25	A1	
(b) (i)	Valid explanation	B1	e.g. If $x > 0.75$ then all the arguments are positive as required. oe
(ii)	$1 = \log_a a$	M1	may be seen in e.g. $\log_a(ax) = 1 + \log x$
	$2\log_a(4x-3) = \log_a(4x-3)^2$ soi	M1	
	completion to given result	A1	

Question	Answer	Marks	Guidance
(iii)	$x^{2}(16x-24) = 0$ oe or $x(16x-24) = 0$ oe	M1	e.g. equates, anti-logs, rearranges and factorises or divides OR rearranges, combines using correct log law, anti-logs and factorises or divides
	$[x=]\frac{24}{16}$ or $\frac{3}{2}$ oe	A1	inclusion of $x = 0$ is A0
7 (a)	$[r^{2} =] 5^{2} + 10^{2} - 2 \times 5 \times 10 \times \cos 120 \text{ oe}$	M1	or for $[r^2 =]5^2 + 10^2 - 2 \times 5 \times 10 \times \cos 60^\circ$ or for $[r^2 =]5^2 + 10^2 - 2 \times 5 \times 10 \times \cos 240^\circ$
	[<i>r</i> =] 13.2 or 13.22875 rot to 4 or more sf	A1	not from wrong working
	$\frac{\sin x}{5} = \frac{\sin 120}{their 13.2}$ or better	M1	or $\frac{\sin y}{10} = \frac{\sin 120}{their 13.2}$ or better
	[<i>x</i> =] awrt 19.1	A1	or [<i>y</i> =] awrt 40.9
	360 - 120 - their x	A1FT	or 180 + <i>their y</i>
(b)	94 [km/h] west	B2	B1 for 94 [km/h]
8 (i)	$y - (-4) = \frac{1}{6}(x - 6)$ $[m_{AB} =]\frac{7 - 4}{3 - 8} \text{ or } -\frac{3}{5} \text{ oe}$	B1	or $y = \frac{1}{6}x + c$ and $c = -5$
	$[m_{AB} =] \frac{7-4}{3-8}$ or $-\frac{3}{5}$ oe	M1	
	$y-7 = -\frac{3}{5}(x-3)$ or $y-4 = -\frac{3}{5}(x-8)$	A1	or $y = -\frac{3}{5}x + c$ and $c = \frac{44}{5}$
	$y-7 = -\frac{3}{5}(x-3)$ or $y-4 = -\frac{3}{5}(x-8)$ their $\left(\frac{1}{6}x-5\right) = their\left(-\frac{3}{5}x+\frac{44}{5}\right)$	M1	valid method of solution for <i>their</i> equations; must be of equivalent difficulty
	x = 18	A1	
	y = -2 isw	A1	

(Question	Answer	Marks	Guidance
	(ii)	$[m=]-\frac{3}{2}$	M1	
		$y-their(-2) = -\frac{3}{2}(x-their18)$ isw	A1FT	FT their D; $y = -\frac{3}{2}x + c$ and $c = their 25$
9	(a)	$ke^{2x+1}(+c)$	M1	for some non-zero integer <i>k</i> where $k \neq 2$
		$k = \frac{1}{2}$	A1	
	(b) (i)	$\frac{\mathrm{d}(\ln x)}{\mathrm{d}x} = \frac{1}{x} \mathrm{soi}$	B1	
		$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{(their1)\ln x - x\left(their\frac{1}{x}\right)}{\left(\ln x\right)^2}$	M1	correct form of quotient rule or equivalent product rule applied; brackets may be omitted or misplaced for M1
		correct, isw	A1	may be unsimplified; allow recovery of brackets
	(ii)	$\int \frac{\ln x - 1}{(\ln x)^2} dx + \int \frac{1}{x^2} dx = \frac{x}{\ln x} + \int \frac{1}{x^2} dx$ $\int \frac{1}{x^2} dx = -\frac{1}{x} (+c)$	M1	rearranges and uses their answer to (i)
		$\int \frac{1}{x^2} \mathrm{d}x = -\frac{1}{x} (+c)$	B 1	
		$\frac{x}{\ln x} + \left(their - \frac{1}{x}\right)(+c)$	A1FT	correct or correct FT completion; <i>their</i> $-\frac{1}{x}$ must not be $\frac{1}{x^2}$
				x ²

Question	Answer	Marks	Guidance
10 (i)	$\tan(2x-10) = \frac{4}{3}$	B1	
	$2x - 10 = \tan^{-1}\left(\frac{4}{3}\right)$ soi	M1	
	31.6 and 121.6 isw	A1	or for 31.6 and 211.6 isw
	211.6 and 301.6 isw	A1	or for 121.6 and 301.6 isw
			Penalty of 1 mark if all 4 angles given correctly but prematurely approximated OR if any extra angles are given besides the correct 4
			If A0 A0 then allow SC1 for 53.1(30), 233.1(30), 413.1(30), 593.1(30) seen OR for 63.1(30), 243.1(30), 423.1(30), 603.1(30) seen
(ii)	$1 - \cos^2 x - \cos^2 x = \cos x$	M1	uses $\sin^2 x = 1 - \cos^2 x$
	$2\cos^2 x + \cos x - 1 = 0$ oe	A1	
	$(2\cos x - 1)(\cos x + 1)[= 0]$	M1	factorises or solves <i>their</i> 3-term quadratic in $\cos x$
	[x =] 60, 300, 180	A2	A1 for any two correct
11 (i)	$g \ge -\frac{1}{2}$	B1	
(ii)	$g(1) = 0$ valid comment e.g. domain of f is $x \ge 2$	B1 B1	B1 for either
(iii)	$\frac{\left(\frac{x^2-2}{x}\right)^2-1}{2}$	M1	or $\frac{\left(x-\frac{2}{x}\right)^2-1}{2}$
	$\left(\frac{x^2 - 2}{x}\right)^2 = \frac{x^4 - 4x^2 + 4}{x^2}$ soi	B1	or $\left(x - \frac{2}{x}\right)^2 = x^2 - 4 + \frac{4}{x^2}$
	$\frac{1}{2}x^2 - \frac{5}{2} + \frac{2}{x^2}$	A1	or correct 3 term equivalent or $a = 0.5$, $b = -2.5$, $c = 2$

Question	Answer	Marks	Guidance
(iv)	$x \ge 2$	B 1	
(v)	$x^2 - yx - 2 = 0$	B1	or $y^2 - xy - 2 = 0$
	$[x=]\frac{-(-y)\pm\sqrt{(-y)^2-4(1)(-2)}}{2}$	M1	or $[y=]\frac{-(-x)\pm\sqrt{(-x)^2-4(1)(-2)}}{2}$
	Explains why negative square root should be discarded	B1	at some point
	$f^{-1}(x) = \frac{x + \sqrt{x^2 + 8}}{2}$	A1	allow $y = \frac{x + \sqrt{x^2 + 8}}{2}$
			If zero scored, allow SC2 for showing correctly that the inverse of the given f^{-1} is f.
12 (i)	[length of rectangle =] $\frac{20 - 3x}{2}$	B1	
	$[A =] x \times their \frac{20 - 3x}{2} - \frac{1}{2} \times x \times x \times \sin 60 \text{ oe}$	M1	
	Correct completion to given answer $A = 10x - \left(\frac{6 + \sqrt{3}}{4}\right)x^2$	A1	
(ii)	$10 - 2\left(\frac{6 + \sqrt{3}}{4}\right)x \text{ oe}$	B1	
	their $\left(10 - 2\left(\frac{6 + \sqrt{3}}{4}\right)x\right) = 0$ oe	M1	
	<i>x</i> = 2.6	A1	allow 2.586635 rot to 3 or more sf
	<i>A</i> = 13	A1	allow 12.9331 rot to 3 or more sf

ADDITIONAL MATHEMATICS

0606/21 October/November 2016

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0606	21

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

Question	Answer	Marks	Part Marks
1	$4x-3 = x \rightarrow x = 1$ 4x-3 = -x x = 0.6	B1 M1 A1	www use of $-x$ or $-(4x-3)$ but not both.
	OR $(4x-3)^2 = x^2$ $15x^2 - 24x + 9 = 0$ 3(x-1)(5x-3) = 0	B1 M1	solve correct 3 term quadratic
	x = 1 and x = 0.6	A1	WWW
2	$a(\sqrt{3}-1)+b(\sqrt{3}+1)$ $=(\sqrt{3}-3)(\sqrt{3}-1)(\sqrt{3}+1)$ $2(\sqrt{3}-2)(\sqrt{3}-1)(\sqrt{3}+1)$	M1	Common denominator or $\times (\sqrt{3} - 1)(\sqrt{3} + 1)$
	$= 2(\sqrt{3} - 3) \text{ oe}$ a + b = 2 -a + b = -6	DM1 A1 DM1	equate constant terms and $\sqrt{3}$ terms. both correct solve two linear equations to obtain $a = $ or b =
	b = -2 and $a = 4$	A1	b = both correct
3	$2\lg x = \lg x^{2}$ $1 = \lg 10$ $\lg x^{2} = \lg \left(\frac{x+10}{2} \right) = \lg \left(\frac{2x^{2}}{2} \right)$	B1 B1	soi anywhere soi anywhere
	$\lg x^{2} - \lg \left(\frac{x+10}{2}\right) = \lg \left(\frac{2x^{2}}{x+10}\right) \text{ oe}$ $2x^{2} - 10x - 100 = 0 \rightarrow 2(x+5)(x-10) = 0$	B1 M1	soi division; logs may be removed obtain correct 3 term quadratic equation and attempt to solve
	x = 10 only	A1	x = -5 must not remain.

Page 3

Mark Scheme Cambridge IGCSE – October/November 2016

SyllabusPaper060621

Qu	estion	Answer	Marks	Part Marks
4	(i)	$t = 10 \rightarrow N = 7000 + 2000e^{-0.5}$ = 8213 or 8210	B1	Do not accept non integer responses.
	(ii)	$N = 7500 \rightarrow 7500 = 7000 + 2000e^{-0.05t}$ $e^{-0.05t} = \frac{500}{2000}$	M1	insert and make e ^{-0.05t} subject
		$-0.05t = \ln 0.25 \rightarrow t = \frac{\ln 0.25}{-0.05}$ $= 27.7 \text{ (days)}$	M1 A1	take logs and make <i>t</i> the subject awrt 27.7
	(iii)	$\frac{\mathrm{d}N}{\mathrm{d}t} = -100\mathrm{e}^{-0.05t}$ $t = 8 \longrightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \pm 67 \ (.0)$	M1 A1 A1	$ke^{-0.05t}$ where k is a constant $k = -100$ or -0.05×2000 awrt ± 67 mark final answer
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 4x - 7$	B1	
		$\frac{dy}{dx} = 3x^2 + 4x - 7$ $x = -2 \rightarrow \frac{dy}{dx} = 12 - 8 - 7 = -3$	M1	insert $x = -2$ into <i>their</i> gradient and use $(-2, 16)$ and <i>their</i> gradient of tangent in
		Equation of tangent : $\frac{y-16}{x+2} = -3 \rightarrow y = -3x+10$	A1	equation of line.
	(ii)	Tangent cuts curve again $x^{3} + 2x^{2} - 7x + 2 = -3x + 10$ $x^{3} + 2x^{2} - 4x - 8 = 0$	M1 A1	equate curve and <i>their</i> linear answer from (i).
		(x+2)(x+2)(x-2) = 0	M1	factorise: $(x \pm 2)$ and a two or three term
		x = 2, y = 4	A1A1	quadratic is sufficient. Allow long division withhold final A1 if (2, 4) not clearly identified as their sole answer.
6	(i)	$\frac{\cos x}{1+\tan x} - \frac{\sin x}{1+\cot x} = \frac{\cos x}{1+\frac{\sin x}{1+\frac{\sin x}{1+\frac{\cos x}{1+\cos x$	M1	$\tan x = \frac{\sin x}{\cos x}$ and $\cot x = \frac{\cos x}{\sin x}$
		$=\frac{\cos^2 x}{\cos x + \sin x} - \frac{\sin^2 x}{\cos x + \sin x}$	M1 A1	Attempt to multiply by cosx and sinx
		$=\frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x + \sin x)}$	A1	AG
	(ii)	$-\sin x + \cos x = 3\sin x - 4\cos x$ $5\cos x = 4\sin x$	M1	equate and collect sinx and cosx oe
		$\tan x = \frac{5}{4}$	A1	
		$4 x = 51.3^{\circ}, -128.7^{\circ}$	A1A1	FT from tan $x = k$

Page 4

Mark Scheme Cambridge IGCSE – October/November 2016

Syllabus	Paper
0606	21

Question	Answer	Marks	Part Marks
7 (i)	$h = \sqrt{9 - x^2}$ $A = \frac{\sqrt{9 - x^2}}{2} (14 + x + x) = \sqrt{9 - x^2} (7 + x)$	B2/1/0	Must be clear that $\sqrt{9-x^2}$ is the height of the trapezium. $14+2x$ oe must be seen AG
(ii)	$\frac{dA}{dx} = \sqrt{9 - x^2} + (7 + x)\frac{1}{2}(9 - x^2)^{-0.5} \times -2x$	M1 A2/1/0	product rule on correct function minus 1 each error, allow unsimplified.
	$\frac{dA}{dx} = 0 \rightarrow 9 - x^2 = 7x + x^2$ $2x^2 + 7x - 9 = 0$	M1 A1	equate to 0 and simplify to a linear or quadratic equation. correct three term quadratic obtained
	x=1 $A=16\sqrt{2}$ or $8\sqrt{8}$ or $\sqrt{512}$ or 22.6	A1 A1	Extra positive answer loses penultimate A1. ignore negative solution.
8 (i)	$f'(x) = \frac{(x^3 + 1)9x^2 - (3x^3 - 1)3x^2}{(x^3 + 1)^2}$	M1 A1	quotient rule or product rule all correct
	$=\frac{12x^2}{\left(x^3+1\right)^2}$	A1	www beware $9x^6 - 9x^6$ gets A0
(ii)	$\int_{1}^{2} \frac{x^{2}}{\left(x^{3}+1\right)^{2}} dx = \frac{1}{12} \left[\frac{3x^{3}-1}{x^{3}+1}\right]_{1}^{2}$		$c \times \frac{3x^3 - 1}{x^3 + 1}$
		A1	FT $c = \frac{1}{their 12}$
	$=\frac{1}{12}\left[\frac{23}{9}-\frac{2}{2}\right]$	DM1	top limit – bottom limit in <i>their</i> integral.
	$=\frac{7}{54}$	A1	or 0.130 or 0.1296 or 0.12
(iii)	$x = \frac{3y^{3} - 1}{y^{3} + 1}$ $y^{3} = \frac{x + 1}{3 - x}$	B1	make y^3 or x^3 the subject
	$f^{-1}(x) = \sqrt[3]{\frac{x+1}{3-x}}$ Domain : $-1 \le x \le 2\frac{6}{7}$	B1	FT take cube root (as long as y^3 or x^3 equals a fraction with terms in <i>x</i> or <i>y</i> only) oe
	Domain : $-1 \le x \le 2\frac{6}{7}$	B1 B1	FT change x and y – can be done at any time Allow upper limit of 2.86. Do not isw

 Page 5
 Mark Scheme
 Syllabus
 Paper

 Cambridge IGCSE – October/November 2016
 0606
 21

Question	Answer	Marks	Part Marks
9 (i)	tangent touches circle $x^{2} + (kx - 4)^{2} - 2(kx - 4) = 8$	M1	eliminate y or x allow unsimplified
	$k^2x^2 + x^2 - 8kx - 2kx + 16 = 0$ or better	A1	
	Equal roots as tangent touches circle : $b^2 = 4ac$	DM1	use of discriminant on 3 term quadratic soi
	$(-10k)^2 = 4(k^2+1) \times 16$	A1	
	$36k^2 = 64$ $k = +\frac{4}{3}$ only	A1	oe any inequality loses last A1
(ii)	$x = \frac{-b}{2a} \rightarrow x = \frac{\frac{4}{3} \times 10}{\frac{25}{9}}$	M1	use $x = \frac{-b}{2a}$
	$x = \frac{12}{5} \qquad y = -\frac{4}{5}$	A1A1	
	OR tangent $y = \frac{4}{3}x - 4$ cuts radius	M1	find equation of radius and attempt to solve with tangent
	$y = -\frac{3}{4}x + 1$		
	at $x = \frac{12}{5}$	A1	
	$y = -\frac{4}{5}$	A1	
	OR Obtain $25x^2 - 120x + 144 = 0$ oe	M1	obtain any 3 term quadratic using <i>their</i> non zero k and reach $x = \dots$
	(5x-12)(5x-12) = 0 $x = \frac{12}{5} \rightarrow y = -\frac{4}{5}$		
	$x = \frac{12}{5} \rightarrow y = -\frac{4}{5}$	A1A1	
(iii)	$TP = \sqrt{\left(0 - 2.4\right)^2 + \left(-4 + 0.8\right)^2} = 4$	M1A1	M1 for using <i>their</i> T and $(0, -4)$. Signs must be correct.

Page 6

Mark Scheme Cambridge IGCSE – October/November 2016

SyllabusPaper060621

Question	Answer	Marks	Part Marks
10 (i)	$r_j = \begin{pmatrix} 5000\\1000p \end{pmatrix} + \begin{pmatrix} -2\cos 40\\2\cos 50 \end{pmatrix} t$	B1 B1	x coordinate oe y coordinate oe
(ii)	$2.5t\cos 70 = 5000 - 2t\cos 40$	M1	equate <i>their x</i> values (must be 3 terms)
	$t = \frac{5000}{2.5\cos 70 + 2\cos 40}$	DM1	make t the subject allow one sign error
	= 2095 awrt or 2090 or 2100 ($2.5\cos 20 - 2\cos 50$) × 2095 = 1000 p	A1 M1	equate <i>their</i> y values(must be 3 terms) and insert <i>their</i> t or $ t $.
	p = 2.23 awrt	A1	
11 (i)	Free choice : no. of ways ${}^{6}C_{4} \times {}^{5}C_{2} = 15 \times 10$ = 150	B1 B1	${}^{6}C_{4} \times \text{another } {}^{n}C_{r} \text{ term only}$ $\times {}^{5}C_{2}$ and answer or vice versa
(ii)	Both Mr and Mrs Coldicott ${}^{5}C_{3} \times {}^{4}C_{1} = 10 \times 4$ = 40	B1 B1	${}^{5}C_{3} \times \text{another } {}^{n}C_{r} \text{ term only}$ $\times {}^{4}C_{1}$ and answer or vice versa
(iii)	Mr C and not Mrs C ${}^{5}C_{3} \times {}^{4}C_{2} (= 60)$ Not Mr C and Mrs C ${}^{5}C_{4} \times {}^{4}C_{1} (= 20)$ Total = 80	B1 B1 B1	An incorrect final answer does not affect the awarding of the first two B1 marks. www
	OR Total = (i) - (ii) - neither Neither = ${}^{5}C_{4} \times {}^{4}C_{2} = 30$ Total = 150 - 40 - 30 = 80	M1 A1 A1	

ADDITIONAL MATHEMATICS

0606/22 October/November 2016

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0606	22

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
	· · · · · · · · · · · · · · · · · · ·

Question	Answer	Marks	Part Marks
1	$4x - 3 = x \rightarrow x = 1$ 4x - 3 = -x x = 0.6	B1 M1 A1	www use of $-x$ or $-(4x-3)$ but not both.
	$\mathbf{OR} \left(4x - 3\right)^2 = x^2$	B 1	
	$15x^{2} - 24x + 9 = 0$ 3(x-1)(5x-3) = 0 x = 1 and x = 0.6	M1 A1	solve correct 3 term quadratic www
2	$a\left(\sqrt{3}-1\right)+b\left(\sqrt{3}+1\right)$	M1	Common denominator or
	$= \left(\sqrt{3} - 3\right)\left(\sqrt{3} - 1\right)\left(\sqrt{3} + 1\right)$		$\times (\sqrt{3}-1)(\sqrt{3}+1)$
	$=2(\sqrt{3}-3)$ oe		
	a+b=2-a+b=-6	DM1 A1 DM1	equate constant terms and $\sqrt{3}$ terms. both correct solve two linear equations to obtain $a = $ or
	b = -2 and $a = 4$	A1	<i>b</i> = both correct
3	$2\lg x = \lg x^2$ $1 = \lg 10$	B1 B1	soi anywhere soi anywhere
	$\lg x^2 - \lg \left(\frac{x+10}{2}\right) = \lg \left(\frac{2x^2}{x+10}\right) \text{ oe}$	B1	soi division; logs may be removed
	$2x^{2} - 10x - 100 = 0 \rightarrow 2(x+5)(x-10) = 0$	M1	obtain correct 3 term quadratic equation and attempt to solve
	x = 10 only	A1	x = -5 must not remain.

Mark Scheme Cambridge IGCSE – October/November 2016

Qu	estion	Answer	Marks	Part Marks
4	(i)	$t = 10 \rightarrow N = 7000 + 2000e^{-0.5}$ = 8213 or 8210	B1	Do not accept non integer responses.
	(ii)	$N = 7500 \rightarrow 7500 = 7000 + 2000e^{-0.05t}$ $e^{-0.05t} = \frac{500}{2000}$	M1	insert and make e ^{-0.05t} subject
		$-0.05t = \ln 0.25 \rightarrow t = \frac{\ln 0.25}{-0.05}$ $= 27.7 \text{ (days)}$	M1 A1	take logs and make <i>t</i> the subject awrt 27.7
	(iii)	$\frac{\mathrm{d}N}{\mathrm{d}t} = -100\mathrm{e}^{-0.05t}$ $t = 8 \longrightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \pm 67 \ (.0)$	M1 A1 A1	$ke^{-0.05t}$ where k is a constant $k = -100$ or -0.05×2000 awrt ± 67 mark final answer
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 4x - 7$	B1	
		$\frac{dy}{dx} = 3x^2 + 4x - 7$ $x = -2 \rightarrow \frac{dy}{dx} = 12 - 8 - 7 = -3$	M1	insert $x = -2$ into <i>their</i> gradient and use $(-2, 16)$ and <i>their</i> gradient of tangent in
		Equation of tangent : $\frac{y-16}{x+2} = -3 \rightarrow y = -3x+10$	A1	equation of line.
	(ii)	Tangent cuts curve again $x^{3} + 2x^{2} - 7x + 2 = -3x + 10$ $x^{3} + 2x^{2} - 4x - 8 = 0$	M1 A1	equate curve and <i>their</i> linear answer from (i).
		(x+2)(x+2)(x-2) = 0	M1	factorise: $(x \pm 2)$ and a two or three term
		x = 2, y = 4	A1A1	quadratic is sufficient. Allow long division withhold final A1 if (2, 4) not clearly identified as their sole answer.
6	(i)	$\frac{\cos x}{1+\tan x} - \frac{\sin x}{1+\cot x} = \frac{\cos x}{1+\frac{\sin x}{1+\frac{\sin x}{1+\frac{\cos x}{1+\cos x$	M1	$\tan x = \frac{\sin x}{\cos x}$ and $\cot x = \frac{\cos x}{\sin x}$
		$=\frac{\cos^2 x}{\cos x + \sin x} - \frac{\sin^2 x}{\cos x + \sin x}$	M1 A1	Attempt to multiply by cosx and sinx
		$=\frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x + \sin x)}$	A1	AG
	(ii)	$-\sin x + \cos x = 3\sin x - 4\cos x$ $5\cos x = 4\sin x$	M1	equate and collect sinx and cosx oe
		$\tan x = \frac{5}{4}$	A1	
		$4 x = 51.3^{\circ}, -128.7^{\circ}$	A1A1	FT from tan $x = k$

Mark Scheme Cambridge IGCSE – October/November 2016

Syllabus	Paper
0606	22

Question	Answer	Marks	Part Marks
7 (i)	$h = \sqrt{9 - x^2}$ $A = \frac{\sqrt{9 - x^2}}{2} (14 + x + x) = \sqrt{9 - x^2} (7 + x)$	B2/1/0	Must be clear that $\sqrt{9-x^2}$ is the height of the trapezium. $14+2x$ oe must be seen AG
(ii)	$\frac{dA}{dx} = \sqrt{9 - x^2} + (7 + x)\frac{1}{2}(9 - x^2)^{-0.5} \times -2x$	M1 A2/1/0	product rule on correct function minus 1 each error, allow unsimplified.
	$\frac{dA}{dx} = 0 \rightarrow 9 - x^2 = 7x + x^2$ $2x^2 + 7x - 9 = 0$	M1 A1	equate to 0 and simplify to a linear or quadratic equation. correct three term quadratic obtained
	x=1 $A=16\sqrt{2}$ or $8\sqrt{8}$ or $\sqrt{512}$ or 22.6	A1 A1	Extra positive answer loses penultimate A1. ignore negative solution.
8 (i)	$f'(x) = \frac{(x^3 + 1)9x^2 - (3x^3 - 1)3x^2}{(x^3 + 1)^2}$	M1 A1	quotient rule or product rule all correct
	$=\frac{12x^2}{\left(x^3+1\right)^2}$	A1	www beware $9x^6 - 9x^6$ gets A0
(ii)	$\int_{1}^{2} \frac{x^{2}}{\left(x^{3}+1\right)^{2}} dx = \frac{1}{12} \left[\frac{3x^{3}-1}{x^{3}+1}\right]_{1}^{2}$		$c \times \frac{3x^3 - 1}{x^3 + 1}$
		A1	$\mathbf{FT} \ c = \frac{1}{their 12}$
	$=\frac{1}{12}\left[\frac{23}{9}-\frac{2}{2}\right]$	DM1	top limit – bottom limit in <i>their</i> integral.
	$=\frac{7}{54}$	A1	or 0.130 or 0.1296 or 0.12
(iii)	$x = \frac{3y^3 - 1}{y^3 + 1}$ $y^3 = \frac{x + 1}{3 - x}$	B1	make y^3 or x^3 the subject
	$f^{-1}(x) = \sqrt[3]{\frac{x+1}{3-x}}$	B 1	FT take cube root (as long as y^3 or x^3 equals a fraction with terms in x or y only) oe
	$f^{-1}(x) = \sqrt[3]{\frac{x+1}{3-x}}$ Domain : $-1 \le x \le 2\frac{6}{7}$	B1 B1	FT change x and y – can be done at any time Allow upper limit of 2.86. Do not isw

 Page 5
 Mark Scheme
 Syllabus
 Paper

 Cambridge IGCSE – October/November 2016
 0606
 22

Question	Answer	Marks	Part Marks
9 (i)	tangent touches circle $x^{2} + (kx - 4)^{2} - 2(kx - 4) = 8$	M1	eliminate y or x allow unsimplified
	$k^2x^2 + x^2 - 8kx - 2kx + 16 = 0$ or better	A1	
	Equal roots as tangent touches circle : $b^2 = 4ac$	DM1	use of discriminant on 3 term quadratic soi
	$(-10k)^2 = 4(k^2+1) \times 16$	A1	
	$36k^2 = 64$ $k = +\frac{4}{3}$ only	A1	oe any inequality loses last A1
(ii)	$x = \frac{-b}{2a} \rightarrow x = \frac{\frac{4}{3} \times 10}{\frac{25}{9}}$	M1	use $x = \frac{-b}{2a}$
	$x = \frac{12}{5} \qquad y = -\frac{4}{5}$	A1A1	
	OR tangent $y = \frac{4}{3}x - 4$ cuts radius	M1	find equation of radius and attempt to solve with tangent
	$y = -\frac{3}{4}x + 1$		
	at $x = \frac{12}{5}$	A1	
	$y = -\frac{4}{5}$	A1	
	OR Obtain $25x^2 - 120x + 144 = 0$ oe	M1	obtain any 3 term quadratic using <i>their</i> non zero k and reach $x = \dots$
	(5x-12)(5x-12) = 0 $x = \frac{12}{5} \rightarrow y = -\frac{4}{5}$		
	$x = \frac{12}{5} \rightarrow y = -\frac{4}{5}$	A1A1	
(iii)	$TP = \sqrt{\left(0 - 2.4\right)^2 + \left(-4 + 0.8\right)^2} = 4$	M1A1	M1 for using <i>their</i> T and $(0, -4)$. Signs must be correct.

Mark Scheme Cambridge IGCSE – October/November 2016

Question	Answer	Marks	Part Marks
10 (i)	$r_j = \begin{pmatrix} 5000\\1000p \end{pmatrix} + \begin{pmatrix} -2\cos 40\\2\cos 50 \end{pmatrix} t$	B1 B1	x coordinate oe y coordinate oe
(ii)	$2.5t\cos 70 = 5000 - 2t\cos 40$	M1	equate <i>their x</i> values (must be 3 terms)
	$t = \frac{5000}{2.5\cos 70 + 2\cos 40}$	DM1	make t the subject allow one sign error
	= 2095 awrt or 2090 or 2100 ($2.5\cos 20 - 2\cos 50$) × 2095 = 1000 p	A1 M1	equate <i>their</i> y values(must be 3 terms) and insert <i>their</i> t or $ t $.
	p = 2.23 awrt	A1	
11 (i)	Free choice : no. of ways ${}^{6}C_{4} \times {}^{5}C_{2} = 15 \times 10$ = 150	B1 B1	${}^{6}C_{4} \times \text{another } {}^{n}C_{r} \text{ term only}$ $\times {}^{5}C_{2}$ and answer or vice versa
(ii)	Both Mr and Mrs Coldicott ${}^{5}C_{3} \times {}^{4}C_{1} = 10 \times 4$ = 40	B1 B1	${}^{5}C_{3} \times \text{another } {}^{n}C_{r} \text{ term only}$ $\times {}^{4}C_{1}$ and answer or vice versa
(iii)	Mr C and not Mrs C ${}^{5}C_{3} \times {}^{4}C_{2} (= 60)$ Not Mr C and Mrs C ${}^{5}C_{4} \times {}^{4}C_{1} (= 20)$ Total = 80	B1 B1 B1	An incorrect final answer does not affect the awarding of the first two B1 marks. www
	OR Total = (i) - (ii) - neither Neither = ${}^{5}C_{4} \times {}^{4}C_{2} = 30$ Total = 150 - 40 - 30 = 80	M1 A1 A1	

ADDITIONAL MATHEMATICS

0606/23 October/November 2016

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	23

awrt	answers which round to
cao	correct answer only
dep	dependent
\overline{FT}	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

Question	Answer	Mark	Part Marks
1	$\frac{\left(\sqrt{5}+3\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)} \times \frac{\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)}$	M1	rationalise with $(\sqrt{5} - \sqrt{3})$
	$=\frac{5+3\sqrt{15}-\sqrt{15}-9}{5-3}$	A1	numerator (3 or 4 terms)
	$=\frac{2\sqrt{15}-4}{2}=\sqrt{15}-2$	A1	denominator and completion
2	$lne^{3x} = ln6e^{x}$ $3x = ln6e^{x}$ $3x = ln6 + lne^{x}$ 3x = ln6 + x	M1 M1	one law of indices/logs second law of indices/logs
	$x = \frac{1}{2} \ln 6 \text{ or } \ln \sqrt{6} \text{ or } 0.896$	A1	www oe in base 10
3 (i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\sin x}{1+\cos x}\right) = \frac{(1+\cos x)\cos x + \sin x \sin x}{\left(1+\cos x\right)^2}$	M1 A1	Quotient Rule (or Product Rule from $(\sin x)(1 + \cos x)^{-1}$) correct unsimplified
	$= \frac{\cos x + \cos^2 x + \sin^2 x}{\left(1 + \cos x\right)^2}$	B 1	use of $\sin^2 x + \cos^2 x = 1$ oe
	$=\frac{1+\cos x}{\left(1+\cos x\right)^2}$	A1	completion
(ii)	$\int_0^2 \left(\frac{1}{1+\cos x}\right) dx = \left[\frac{\sin x}{1+\cos x}\right]_0^2$	M1	correct integrand
	awrt 1.56	A1	

Page 3Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2016060623

Que	estion	Answer	Mark	Part Marks
4	(i)	$p(2) = 0 \rightarrow 8 + 4a + 2b - 24 = 0$	B1	
		$\rightarrow (4a+2b=16)$		
		$p(1) = -20 \rightarrow 1 + a + b - 24 = -20$	B 1	
		$\rightarrow (a+b=3)$	M1	solve their linear equations for a or b
		a = 5 and $b = -2$	A1	solve <i>their</i> linear equations for <i>a</i> or <i>b</i>
	(ii)	$p(x) = x^3 + 5x^2 - 2x - 24$	M1	find quadratic factor
		$=(x-2)(x^2+7x+12)$	A1	correct quadratic factor soi
		=(x-2)(x+3)(x+4)	M1	factorise quadratic factor and write as product of 3 linear factors
		$p(x) = 0 \rightarrow x = 2, -3, -4.$	A1	if 0 scored, SC2 for roots only
5	(i)	$AB^{2} = \left(\sqrt{3} + 1\right)^{2} + \left(\sqrt{3} - 1\right)^{2}$	M1	use cosine rule
		$-2(\sqrt{3}+1)(\sqrt{3}-1)\cos 60$		
		$= 3 + 1 + 2\sqrt{3} + 3 + 1 - 2\sqrt{3} - 2$ = 6	A1 A1	at least 7 terms correct completion AG
	(ii)	$\frac{\sin A}{\sqrt{3}-1} = \frac{\sin 60}{\sqrt{6}}$	M1	sine rule (or cosine rule)
		$\sin A = \frac{\left(\sqrt{3} - 1\right)\sin 60}{\sqrt{6}} = \frac{\sqrt{6} - \sqrt{2}}{4} \text{ oe or } 0.259$ or 0.2588	A1	correct explicit expression for sinA AG
((iii)	Area = $\frac{1}{2}(\sqrt{3}+1)(\sqrt{3}-1)\sin 60$	M1	correct substitution into $\frac{1}{2}ab\sin C$
		$=\frac{\sqrt{3}}{2}$	A1	
6	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x$	B1	
		$\frac{dy}{dx} = \sec^2 x$ $x = \frac{\pi}{4} \rightarrow \frac{dy}{dx} = \sec^2 \frac{\pi}{4} = 2$	B1	evaluated
		<i>y</i> = 8	B 1	
		Equation of tangent $\frac{y-8}{x-\frac{\pi}{4}} = 2$	B 1	
		I I		
		$(4-2y=\pi-16, y=2x+6.429, \pi$		
		$\frac{\pi}{4} = 0.7853)$		

 Page 4
 Mark Scheme
 Sylla

 Cambridge IGCSE – October/November 2016
 06

Question	Answer	Mark	Part Marks
(ii)	$sec^{2}x = tanx + 7$ $tan^{2}x - tan x - 6 = 0 \text{ oe}$ (tanx - 3)(tanx + 2) = 0 tan x = 3 or tan x = -2 x = 1.25, 2.03	M1 M1 A1A1	use $\sec^2 x = 1 + \tan^2 x$ to obtain a 3 term quadratic in $\tan x$ solve three term quadratic for $\tan x$ extras in range lose final A1
7 (i)	$r^{2} + h^{2} = (0.5h + 2)^{2}$ oe $r^{2} = 0.25h^{2} + 2h + 4 - h^{2}$ $r^{2} = 2h + 4 - 0.75h^{2}$	M1 A1	correct expansion and r^2 subject and completion www AG
(ii)	$V = \frac{1}{3}\pi r^{2}h = \frac{\pi}{3}(2h^{2} + 4h - 0.75h^{3})$ $\frac{dV}{dh} = \frac{\pi}{3}(4h + 4 - 2.25h^{2})$ $\frac{dv}{dh} = 0 \rightarrow 2.25h^{2} - 4h - 4 = 0$ $h = 2.49 \text{ only}$	B1 M1 A1 M1 A1	any correct form in terms of h only differentiate V correct differentiation equate to 0 and solve 3 term quadratic cao
(iii)	$\frac{d^2 V}{dh^2} = \frac{\pi}{3} (4 - 4.5h) \text{ when } h = 2.49$ (-7.545) < 0 so maximum	M1 A1	differentiate <i>their</i> 3 term $\frac{dV}{dh}$ and substitute <i>their h</i> draw correct conclusion www
8 (i)	$\cos TOA = \frac{6}{10} \rightarrow$ $TOA = 0.927$	M1 A1	any method
(ii)	area of major sector = $\frac{1}{2}6^{2} (2\pi - 2 \times their 0.927) \qquad (= 79.7)$	M2	or M1 for $\frac{1}{2} 6^2 (2 \times their \ 0.927)$ DM1 for $\pi \times 6^2 - \frac{1}{2} 6^2 (2 \times their \ 0.927)$
	area of half kite = $\frac{1}{2}(6)\sqrt{10^2 - 6^2}$ (=24) area of kite × 2 (=48)	M1 DM1	any method
(iii)	complete correct plan awrt 128 arc length =	DM1 A1	<i>their</i> major sector + <i>their</i> kite
	$6 \times (2\pi - 2 \times their 0.927) + 2 \times \sqrt{10^2 - 6^2})$ awrt 42.6	M1 A1	complete correct method

Page 5	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	23

Question	Answer	Mark	Part Marks
9 (i)	<i>p</i> = 4	B1	
(ii)	$\tan \alpha = \pm \frac{1}{3}$ or ± 3 or 18.4° or 71.6° seen 108	M1 A1	could use cos or sin
	$\boldsymbol{r}_{A} = \begin{pmatrix} 1\\ 5 \end{pmatrix} + t \begin{pmatrix} their \ p\\ -3 \end{pmatrix}$	B1	
	$\boldsymbol{r}_{\boldsymbol{B}} = \begin{pmatrix} q \\ -15 \end{pmatrix} + t \begin{pmatrix} 3 \\ -1 \end{pmatrix}$	B1	
(v)	5 - 3t = -15 - t $\rightarrow t = 10$	M1 A1	$r_A = r_B$ and equate y/j and solve for t
(vi)	$\begin{pmatrix} 41 \\ -25 \end{pmatrix}$ only	B 1	
(vii)	q = 11 only	B1	
10 (i)	$\mathrm{fg}(x) = \ln(2\mathrm{e}^x + 3) + 2$	B1	isw
(ii)	$\mathrm{ff}(x) = \ln(\ln x + 2) + 2$	B1	isw
(iii)	$x = 2e^{y} + 3$	M1	change x and y and make e^{y} the subject
	$e^{y} = \frac{x-3}{2}$ $g^{-1}(x) = \ln\left(\frac{x-3}{2}\right)$ oe	A1	
(iv)	e ² or 7.39	B1	
(v)	$gf(x) = 2e^{(\ln x+2)} + 3 = 20$	B1	gf correct and equation set up correctly
	$2e^{\ln x}e^2 + 3 = 20$ $2xe^2 = 17$	M1 M1	one law of indices/logs second law of indices/logs
	$x = \frac{17}{2e^2}$ or 1.15	A1	www if 0 scored, SC2 for 17.3

Page 6	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	23

Question	Answer	Mark	Part Marks
11 (i)	$\mathbf{A}^{2} = \begin{pmatrix} 2 & q \\ p & 3 \end{pmatrix} \begin{pmatrix} 2 & q \\ p & 3 \end{pmatrix} = \begin{pmatrix} 4+pq & 2q+3q \\ 2p+3p & pq+9 \end{pmatrix}$	B2,1,0	-1 each error
	$\mathbf{A}^2 - 5\mathbf{A} = 2\mathbf{I} \rightarrow 4 + pq - 10 = 2$ or $9 + pq - 15 = 2$	M1	equate top left or bottom right elements
	$\rightarrow pq = 8$	A1	accept $p = \frac{8}{q}, q = \frac{8}{p}$
(ii)	$\det \mathbf{A} = 6 - pq$	B1	
	6 - pq = -3p and solve	M1	<i>their</i> det $\mathbf{A} = -3p$ and use <i>their</i> $pq = k$ oe to solve for p or q
	$ p = \frac{2}{3} $ $ q = 12 $	A1	
	q = 12	A1	FT from <i>their</i> $pq = k$

ADDITIONAL MATHEMATICS Paper 2 0606/21 May/June 2016

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	21

answers which round to
correct answer only
dependent
follow through after error
ignore subsequent working
or equivalent
rounded or truncated
Special Case
seen or implied
without wrong working

Q	uestion	Answer	Marks	Guidance
1		$x^2 - 2x - 15$	M1	expands and rearranges to form a 3 term quadratic
		critical values –3 and 5	A1	not from wrong working
		x < -3 x > 5	A1	mark final inequality; A0 if spurious attempt to combine e.g. 5 < x < -3
2	(a)		B1	It must be clear how the sets are nested
	(b) (i)	$h \in P$	B1	Allow $\{m, a, t, h, s\}$ for <i>P</i>
	(ii)	$n(P \cap Q) = 2$ cao	B 1	
	(iii)	{ t, h, s}	B 1	
3	(i)	-2	B1	
	(ii)	- <i>n</i>	B 1	
	(iii)	$\frac{\lg 5}{\log_5 10} = [(\lg y)^2] \text{ or } \frac{\lg 20 - \lg 4}{\lfloor / \lg 5} = [(\lg y)^2]$	M1	One log law used correctly
		correct completion to $(\lg 5)^2$ isw	A1	answer only does not score
	(iv)	$[\log_r]6x^2 = [\log_r]600$	B 1	Condone base missing
		x = 10 only	B 1	

Mark Scheme Cambridge IGCSE – May/June 2016

Q	uestion	Answer	Marks	Guidance
4	(i)	$\frac{\pi}{3}$ isw	B1	
	(ii)	[Area triangle $ABC =$] $\frac{1}{2} \times 10^2 \times \sin\left(their\frac{\pi}{3}\right)$ oe	M1	seen or implied by $25\sqrt{3}$ or $43.3(0)$
		[Area 1 sector =] $\frac{1}{2} \times 5^2 \times their \frac{\pi}{3}$ oe or $\pi \times 5^2 \times \frac{their 60^\circ}{360}$	M1	seen or implied by $\frac{25\pi}{6}$ or 13.0(8) or 13.09
		Complete correct plan	M1	e.g. <i>their</i> triangle – 3(<i>their</i> sector)
		4.03(1) or $25\sqrt{3} - \frac{25\pi}{2}$ isw	A1	Units not required
5	(a)	$\frac{\sqrt{8}}{\left(\sqrt{7}-\sqrt{5}\right)} \times \frac{\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)} \text{ and attempt to}$ multiply	M1	
		$\frac{\sqrt{56} + \sqrt{40}}{2} \text{oe}$	A1	not from wrong working
		$\sqrt{14} + \sqrt{10}$ $q^2 + 4q\sqrt{3} + 12 \text{soi}$	A1	
	(b)	$q^2 + 4q\sqrt{3} + 12$ soi	B 1	
		$28 = q^2 + 12$ oe	M1	can be implied by 4 and 16 or -4 and -16
		q = 4, -4 p = 16, -16	A1	all values
6	(i)	$4(x+1)^2-9$	B3,2, 1,0	one mark for each of p , q , r correct in a correctly formatted expression; allow correct equivalent values;
				If B0 then SC2 for $4(x+1)-9$ or SC1 for correct 3 values seen in incorrect format e.g. $4(x+1x)-9$ or $4(x^2+1)-9$ or for a correct completed square form of the original expression in a different but correct format. e.g. $2(\sqrt{2}x+\sqrt{2})^2-9$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016		21

Question	Answer	Marks	Guidance
(ii)	(-1,9)	B2FT	B1FT $(-q, -r)$ $r < 0$ for each correct coordinate
(iii)		B1	Correct symmetric W shape with cusps on <i>x</i> -axis
	6 5 5	B1	<i>y</i> -intercept marked at 5 only or coords indicated on graph
	-2.5 -1 + 0.5	B1	<i>x</i> -intercepts marked at -2.5 and 0.5 only <i>x</i> -axis or coords indicated on graph or close by
7 (i) (a)	q – p	B1	
(b)	$2\mathbf{q} - 2\mathbf{p}$ or $2(\mathbf{q} - \mathbf{p})$	B 1	
(ii)	The points are collinear oe	B 1	
	\overrightarrow{PQ} is a (scalar) multiple of \overrightarrow{QR} and they have a point in common. oe	B 1	Condone \overrightarrow{PQ} is parallel to \overrightarrow{QR} and
(iii)	$\left[\overline{OR}=\right]4\mathbf{i}-3\mathbf{j}$ oe soi	B 1	
	$\sqrt{4^2 + (-3)^2}$ (=5)	M1	condone $\sqrt{4^2 + 3^2}$; may be implied by correct answer or correct FT answer
	$\frac{1}{5}(4\mathbf{i}-3\mathbf{j})$ oe	A1	
8 (a) (i)	$a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ final answer	B2,1,0	-1 each error/omission
(ii)	$6(2x)^2 \left(\frac{1}{5x}\right)^2 \text{ soi}$ $\frac{24}{25} \text{ or } 0.96 \text{ isw}$	M1	Could be in full expansion
	$\frac{24}{25}$ or 0.96 isw	A1	Must be explicitly identified
(b)	$\frac{1}{8} \left(\frac{n(n-1)(n-2)}{6} \right) = \frac{5n}{12} \text{ soi leading to a}$ cubic or quadratic $(n^2 - 3n - 18 = 0)$	M1	Must attempt to expand and remove fractions
	Solves <i>their</i> quadratic $[(n-6)(n+3)]$	M1	must have come from a valid attempt
	[n =] 6 only, not from wrong working	A1	Must be <i>n</i> if labelled

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	21

Q	uestion	Answer	Marks	Guidance
9	(a)	a=2 $b=4$ $c=-2$	B3	B1 for each correct value
	(b) (i)		B3,2,1, 0	sinusoidal curve symmetrical about <i>y</i> -axis clear intent to have amplitude of 2 2 cycles If not fully correct max B2
	(ii)	$-\frac{\pi}{2}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{2}, -\frac{\pi}{3}, \frac{\pi}{3}$ cao	B2	B1 for any 4 correct
10	(a) (i)	$2 \times 4!$ or $\frac{2}{5} \times 5!$ oe	M1	
		48	A1	
	(ii)	${}^{5}P_{3}$ or $\frac{5!}{2!}$ or $5 \times 4 \times 3$ oe	M1	
		60	A1	
	(b) (i)	$4 \times 2[!] \times 30e$	M1	Correct first step implied by a correct product of two elements
		24	A1	
	(ii)	3! or 3×3 seen	M1	
		18	A1	
11	(i)	$\frac{3x^2}{2} - \frac{2x^{\frac{5}{2}}}{5}(+c)$ isw	B1+B1	
	(ii)	(9, 0) oe	B 1	Not just $x = 9$
	(iii)	Substitute (3, 9) into both lines	B1	$3 \times 3 = 9$ and $\frac{27 - 3 \times 3}{2} = 9$
		Or solves simultaneously $(6x = 27 - 3x \text{ oe})$ to get $x = 3$, $y = 9$		2

Ρ	age	e 6

Question	Answer	Marks	Guidance
(iv)	[Area $AOB =]\frac{1}{2} \times 9 \times 9$ oe $(\frac{81}{2} \text{ or } 40.5)$	M1	Uses <i>their</i> (ii). May split into 2 triangles (13.5 and 27). May integrate. Must be a complete method.
	their $\left[\frac{3(9)^2}{2} - \frac{2(9)^{\frac{5}{2}}}{5}\right] - [0]$ (= 24.3)	M1	lower limit may be omitted but must be correct if seen
	their $\frac{81}{2}$ - their $\frac{243}{10}$	M1	must be from genuine attempts at area of triangle and area under curve
	16.2	A1	
12 (i)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{2(x-1) - (2x-5)}{(x-1)^2}$	M1A1	Allow slips in $\frac{du}{dx}$ and $\frac{dv}{dx}$ but must be explicit. Allow $(x-1)^2 = x^2 - 2x + 1$
	– 12 isw	B1	
	ALT using $y = \frac{-12x^2 + 14x - 5}{x - 1}$ -24x + 14	B1	
	$\left[\frac{dy}{dx}\right] = \frac{(x-1)(-24x+14) - (-12x^2 + 14x - 5)}{(x-1)^2}$	M1	
	$\begin{bmatrix} u \\ x \end{bmatrix} \qquad (x-1)$	A1FT	FT on their derivative of 3 term quadratic
(ii)	$\left[\frac{d^2 y}{dx^2}\right] k (x-1)^{-3}$ k = -6 isw	M1	No additional terms
	k = -6 isw	A1	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	21

Question	Answer	Marks	Guidance
(iii)	their $\left[\frac{3}{(x-1)^2} - 12\right] = 0$ and find a value for x	M1	12 x2-24x + 9 = 0 oe (2x - 3)(2x - 1) = 0 oe
	x = 0.5 and $x = 1.5$	A1	
	y = 2 and $y = -22$	A1	if A0 A0 then A1 for a correct (x, y) pair
	$\frac{-6}{(-0.5)^3} > 0$ therefore min when $x = 0.5$ oe	B1	or $\left[\frac{-6}{(-0.5)^3}\right] = 48$ therefore min when $x = 0.5$ oe
	$\frac{-6}{(0.5)^3} < 0$ therefore max when $x = 1.5$ oe	B1	or $\left[\frac{-6}{(0.5)^3}\right] = -48$ therefore max when $x = 1.5$ oe
			M1A1 is possible from other methods

ADDITIONAL MATHEMATICS

0606/22 May/June 2016

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	22

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

Q	uestion	Answer	Marks	Guidance
1	(i)	$(2k)^{2} - 4(1)(4k - 3) [< 0]$ Correct completion to given inequality $k^{2} - 4k + 3 < 0$ isw	M1 A1	clear attempt at $b^2 - 4ac$
	(ii)	Critical values 1 and 3 soi 1 < k < 3 as final answer	M1 A1	May be implied by incorrect inequalities
2	(i)	Clear attempt at quotient rule or equivalent product rule $\left[\frac{dy}{dx}\right] = \frac{14}{(3-x)^2}$ or $\left[\frac{dy}{dx}\right] = \frac{14}{x^2 - 6x + 9}$ cao or correct simplified equivalent	M1 A1	condone omission of brackets allow recovery from bracketing errors or omissions if implied in correct work to the correct answer
	(ii)	[y = 9] x = 2 $\frac{0.07}{\delta x} \approx \left(their \frac{dy}{dx} \Big _{x=2} \right) oe$ 0.005 oe	B1 M1 A1	condone $\frac{0.07}{\delta x} = \left(their \frac{dy}{dx} \Big _{x=2} \right)$ not from wrong working; answer only does not score
3		Any one of: $\begin{bmatrix} {}^{6}C_{0} \times \end{bmatrix}^{7}C_{3} + {}^{6}C_{1} \times {}^{7}C_{2}$ or 35 + 126 or ${}^{13}C_{3} - {}^{6}C_{2} \times {}^{7}C_{1} - {}^{6}C_{3}$ or 286 - 105 - 20	M2	M1 for $\begin{bmatrix} {}^{6}C_{0} \times \end{bmatrix} {}^{7}C_{3}$ or ${}^{6}C_{1} \times {}^{7}C_{2}$ or ${}^{13}C_{3} - {}^{6}C_{2} \times {}^{7}C_{1}$ or ${}^{13}C_{3} - {}^{6}C_{3}$ or ${}^{6}C_{2} \times {}^{7}C_{1} + {}^{6}C_{3}$ or for the numerical equivalent of one of these calculations
		161	A1	If M0 then B3 for answer only of 161

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	22

Q	uestion	Answer	Marks	Guidance
4	(i)	$2(2)^3 - 3(2)^2 + 2q + 56 = 0$ with one correct interim step leading to $q = -30$	B1	allow for only $16 - 12 + 2q + 56 = 0$ q = -30
				NB = 0 must be seen or may be implied by e.g. $-60 = 2q$ or 60 = -2q;
				or convincingly showing $2(2)^3 - 3(2)^2 - 30(2) + 56 = 0$; allow for only 16 - 12 + 2(-30) + 56 = 0
				or correct synthetic division at least as far as $2 \begin{vmatrix} 2 & -3 & q & 56 \\ 4 & 2 & 2q+4 \end{vmatrix}$
				2 1 q+2 0 then $q = -30$
	(ii)	$2x^{2} + x - 28$ (x-2)(2x-7)(x+4)	B2 M1	B1 for any two terms correct For factorising the correct equation; condone = 0; condone $(2x-7)(x+4)$ only for M1 but for A1 must see all 3 factors in this part; do not allow $\left(x - \frac{7}{2}\right)$
		x = 2, x = -4, x = 3.5 oe	A1	not from wrong working; answers only do not score
5	(i)	(2, 8)	B1, B1	
	(ii)	$\frac{their8 - 0}{their2 - p} = -2 \text{ or better}$	M1	Condone $\frac{their8 - 0}{their2 - p} = \frac{-1}{their \text{ gradient } AB} \text{ oe}$
		[<i>p</i> =] 6	A1	

|--|

Syllabus	Paper
0606	22

Q	uestion	Answer	Marks	Guidance
	(iii)	$[MB =]\sqrt{(6 - their 2)^{2} + (10 - their 8)^{2}}$ soi $or \left[\frac{1}{2}AB = \frac{1}{2}\sqrt{(6 - 2)^{2} + (10 - 6)^{2}}\right]$	M1	implied by $[MB =]\sqrt{20}$ or $\left[\frac{1}{2}AB = \right]\frac{1}{2}\sqrt{80}$ e.g. 4.47,
		soi $[MC =]\sqrt{(their 2 - their p)^{2} + (their 8 - 0)^{2}}$ soi		or $[MC =]\sqrt{80}$ or e.g. 8.94 or 63.4° or equivalents
		or tan[] = $\frac{8}{4}$ soi or $4.47^2 = 8.94^2 + 10^2 - 2(8.94)(10) \cos[]$ or $8.94^2 = 10^2 + 10^2 - 2(10)(10) \cos[]$		
		$\sin^{-1}\left(\frac{\sqrt{20}}{10}\right)$ oe soi	M1	or $\cos^{-1}\left(\frac{\sqrt{80}}{10}\right)$
				or $\tan^{-1}\left(\frac{\sqrt{20}}{\sqrt{80}}\right)$ or $\tan^{-1}\left(\frac{4}{8}\right)$
				or $90 - \tan^{-1}\left(\frac{8}{4}\right)$ or equivalent complete correct method; implies first M1
		26.56 to 26.6° or 0.4636 to 0.464 rads cao	A1	Not from wrong working
6	(i)	Valid explanation	B1	e.g. arc length is greater than the radius or 7 is greater than 5
	(ii)	$7 = 5\theta$ $\theta = 1.4 \text{ oe}$	M1 A1	implies M1
	(iii)	$\frac{1}{2} \times 5^2 \times their 1.4 \text{ oe}$ 17.50e	M1 A1	

|--|

Question	Answer	Marks	Guidance	
(iv)	[triangle area =] $\frac{1}{2} \times 5^2 \times \sin their$ 1.4 or 12.3 to 12.32	M1	may be embedded in a difference calculation	
	or for $\left[\frac{1}{2} \times \text{base} \times \text{height=}\right]$ $\frac{1}{2} \times 6.4[4] \times 3.8[2]$ oe			
	5.18 to 5.2 inclusive	A1	implies M1	
7 (i)	$ \begin{pmatrix} 12 & 15 \\ 9 & 6 \end{pmatrix} + \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix} $ soi	M1	if no method shown, may be implied by their answer with at least 2 correct elements	
	$\begin{pmatrix} 16 & 17 \\ 10 & 9 \end{pmatrix}$	A1		
(ii)	$det \mathbf{A} = 4 \times 2 - 3 \times 5 = -7$ or $det \mathbf{B} = 4 \times 3 - 2 \times 1 = 10$	B1	allow for e.g. $(4 \times 2 - 3 \times 5) \times (4 \times 3 - 2 \times 1) = -70$	
			or det $A = 8 - 15 = -7$	
	(21 23)		or $\det \mathbf{B} = 12 - 2 = 10$	
	$\mathbf{AB} = \begin{pmatrix} 21 & 23\\ 14 & 12 \end{pmatrix}$	B2	or B1 for two elements correct	
	$\det(\mathbf{AB}) = 21 \times 12 - 23 \times 14 = -70$	B 1	allow for $det(AB) = 252 - 322 = -70$	
			For full marks must conclude that det AB = det A × det B or show the product $-7 \times 10 = -70$	
			otherwise max 3 marks	
(iii)	$\frac{1}{their \det \mathbf{AB}} \times their \begin{pmatrix} 12 & -23 \\ -14 & 21 \end{pmatrix} \text{ isw}$	B2	correct or correct FT ; FT <i>their</i> AB and <i>their non-zero</i> det AB ;	
			<i>their</i> AB must be an attempt at a matrix product e.g. $\begin{pmatrix} 16 & 10 \\ 3 & 6 \end{pmatrix}$	
			B1 for $\frac{1}{their \det AB} \times their$	
			or for $k \times their \begin{pmatrix} 12 & -23 \\ -14 & 21 \end{pmatrix}$	

Mark Scheme Cambridge IGCSE – May/June 2016

Syllabus	Paper
0606	22

Question	Answer	Marks	Guidance
8	Eliminates y e.g. $4 + \frac{5}{15x + 10} + \frac{3}{x} = 0$ or eliminates x e.g. $4 + \frac{5}{y} + \frac{3}{(y - 10)/15} = 0$	M1	allow even after incorrect rearrangement of the equation of the curve (dependent on resulting equation still in terms of x and y); condone substitution of e.g. $\frac{y+10}{15}$
	Rearrange to a 3-term quadratic $60x^2 + 90x + 30 = 0$ oe or $4y^2 + 10y - 50 = 0$ oe	M1 A1	condone sign slips/arithmetic slips
	Factorise or solve 3-term quadratic $x = -\frac{1}{2}, x = -1$ isw	M1 A1	or $y = 2\frac{1}{2}, y = -5$
	$x = -\frac{1}{2}, x = -1$ isw $y = 2\frac{1}{2}, y = -5$ isw	A1	or $x = -\frac{1}{2}, x = -1$
			If final A marks not awarded then A1 for a correct x , y pair
9 (a)	$\frac{x^2}{2} + x - \frac{1}{x}(+c)$ isw	B3	B1 for each term allow $\frac{x^2}{2} + x + \frac{x^{-1}}{-1}(+c)$ isw for B3
(b) (i)	$k\cos(5x + \pi) \text{ where } k < 0$ or $\frac{\cos(5x + \pi)}{5}$	M1	
	$\frac{-\cos(5x+\pi)}{5}(+c)$	A1	
(ii)	$\frac{-\cos(5(0) + \pi)}{5} - \frac{-\cos(5(-\pi/5) + \pi)}{5}$ or $\frac{-\cos(\pi)}{5} - \left(\frac{-\cos(0)}{5}\right)$	M1	correct substitution of the given limits into their expression of the form $k\cos(5x+\pi)$, dep on M1 in (b)(i)
	0.4 oe	A1	answer only does not score
10 (a)	2 = p - q and 14 = 4p - 2q oe $p = 5$ $q = 3$	M1 A1 A1	
(b)	Factorise $10^{2x} - 2(10^x) - 24 [= 0]$ or factorise $u^2 - 2u - 24 [= 0]$	M1	or applies the formula or completes the square
	$10^{x} = 6$ x = lg6 cao as final answer	A1 A1	ignore $10^x = -4$ for this mark or exact equivalent

Page 1	7
--------	---

Question	Answer	Marks	Guidance	
(c)	$\frac{x+1}{x} = 2^3 \text{ oe www}$	M2	combines logs and anti-logs or B1 for one correct log move (n+1)	
			e.g. $\log_2\left(\frac{x+1}{x}\right) = 3$	
			or $\log_2(x+1) - \log_2(x) = \log_2 8$	
	$x = \frac{1}{7}$ or 0.143 or 0.1428 to 0.1429		or $\log_2(x+1) - \log_2(x) = 3\log_2 2$	
	$\frac{x01}{7}$ 01 0.143 01 0.1428 10 0.1429	A1		
11 (a)	Valid method	M1	Completing the square as far as $(1)^2$	
			e.g. constant $-\left(x-\frac{1}{2}\right)^2$	
			or calculus as far as $1 - 2x = 0$	
			or finding roots $x = 0$ and $x = 1$ and using symmetry soi	
	when $x = \frac{1}{2}$	A1	Implies M1 if not clearly from wrong working	
	[greatest value =] $\frac{1}{4}$	B1		
(b)	Valid comment e.g. when $x \ge 1$, f' is always	B1	Allow e.g. a sketch with a comment such as the curve is one-one [when $x \ge 1$]	
	decreasing		or e.g. the curve is one-one when $x > \frac{1}{2}$	
(c) (i)	$k(10) = 8$ or $5 + \sqrt{10 - 1} = 8$ or stating $h(8)$	M1	or $[hk(x) =]lg(7 + \sqrt{x-1})$	
	h(8) = 1 or lg(8+2) = 1 cao	A1	$[hk(10) =] lg(7 + \sqrt{10 - 1}) = 1$	
(ii)	$\left(y-5\right)^2 = x-1$	M1	$\operatorname{or}\left(x-5\right)^2 = y-1$	
	$(y-5)^2 = x-1$ $k^{-1}(x) = (x-5)^2 + 1$ isw or $k^{-1}(x) = x^2 - 10x + 26$ isw	A1		
	or $k^{-1}(x) = x^2 - 10x + 26$ isw 5 < x < 15	B1, B1	B1 for $5 < x$ oe and B1 for $x < 15$ oe	
			allow (5, 15); one mark for each limit of the interval;	
			if B0 then SC1 for $5 \le x \le 15$ or '5 to 15' or [5, 15] etc.	
	$1 < k^{-1}(x) < 101$	B 1	allow (1, 101)	

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	22

Q	Question	Answer	Marks	Guidance
12	(i)	$8(1 - \cos^2 A) + 2\cos A = 7$ or better Solves or factorises <i>their</i> 3-term quadratic in cosA	B1 M1	
		60, 104.477 rounded or truncated to 1 dp or more;	A2	with no extras in range; not from clearly wrong working but allow recovery from minor slips or A1 for either, ignoring extras
	(ii)	sin(3B+1) = 0.4 soi [3B + 1 =] 0.41 or better	B1 M1	may be implied by $\frac{1}{\sin(3B+1)} = 2.5$ implies B1
		0.577, 1.9[0], 2.67 or 0.57669, 1.89823 , 2.67108 rounded or truncated to 4 or more sf	A2	with no extras in range; or A1 for any one correct ignoring extras If M0 then B2 for all 3 correct angles found or B1 for 1 or 2 correct angles found

ADDITIONAL MATHEMATICS Paper 2 0606/23 May/June 2016

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0606	23

answers which round to
correct answer only
dependent
follow through after error
ignore subsequent working
or equivalent
rounded or truncated
Special Case
seen or implied
without wrong working

Q	uestion	Answer	Marks	Guidance
1		$x^2 - 2x - 15$	M1	expands and rearranges to form a 3 term quadratic
		critical values –3 and 5	A1	not from wrong working
		x < -3 x > 5	A1	mark final inequality; A0 if spurious attempt to combine e.g. 5 < x < -3
2	(a)		B1	It must be clear how the sets are nested
	(b) (i)	$h \in P$	B1	Allow $\{m, a, t, h, s\}$ for <i>P</i>
	(ii)	$n(P \cap Q) = 2$ cao	B 1	
	(iii)	{ t, h, s}	B 1	
3	(i)	-2	B1	
	(ii)	-n	B 1	
	(iii)	$\frac{\lg 5}{\log_5 10} = [(\lg y)^2] \text{ or } \frac{\lg 20 - \lg 4}{\lceil \lg 5 \rceil} = [(\lg y)^2]$	M1	One log law used correctly
		correct completion to $(\lg 5)^2$ isw	A1	answer only does not score
	(iv)	$[\log_r]6x^2 = [\log_r]600$	B 1	Condone base missing
		x = 10 only	B 1	

Mark Scheme Cambridge IGCSE – May/June 2016

Q	uestion	Answer	Marks	Guidance
4	(i)	$\frac{\pi}{3}$ isw	B1	
	(ii)	[Area triangle $ABC =$] $\frac{1}{2} \times 10^2 \times \sin\left(their\frac{\pi}{3}\right)$ oe	M1	seen or implied by $25\sqrt{3}$ or $43.3(0)$
		[Area 1 sector =] $\frac{1}{2} \times 5^2 \times their \frac{\pi}{3}$ oe or $\pi \times 5^2 \times \frac{their 60^\circ}{360}$	M1	seen or implied by $\frac{25\pi}{6}$ or 13.0(8) or 13.09
		Complete correct plan	M1	e.g. <i>their</i> triangle $-3(their \text{ sector})$
		4.03(1) or $25\sqrt{3} - \frac{25\pi}{2}$ isw	A1	Units not required
5	(a)	$\frac{\sqrt{8}}{\left(\sqrt{7}-\sqrt{5}\right)} \times \frac{\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)} \text{ and attempt to}$ multiply	M1	
		$\frac{\sqrt{56} + \sqrt{40}}{2} \text{oe}$	A1	not from wrong working
		$\sqrt{14} + \sqrt{10}$ $q^2 + 4q\sqrt{3} + 12 \text{soi}$	A1	
	(b)	$q^2 + 4q\sqrt{3} + 12$ soi	B1	
		$28 = q^2 + 12$ oe	M1	can be implied by 4 and 16 or -4 and -16
		q = 4, -4 p = 16, -16	A1	all values
6	(i)	$4(x+1)^2-9$	B3,2, 1,0	one mark for each of <i>p</i> , <i>q</i> , <i>r</i> correct in a correctly formatted expression; allow correct equivalent values;
				If B0 then SC2 for $4(x+1)-9$ or SC1 for correct 3 values seen in incorrect format e.g. $4(x+1x)-9$ or $4(x^2+1)-9$ or for a correct completed square form of the original expression in a different but correct format. e.g. $2(\sqrt{2}x+\sqrt{2})^2-9$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	23

Question	Answer	Marks	Guidance
(ii)	(-1,9)	B2FT	B1FT $(-q, -r)$ $r < 0$ for each correct coordinate
(iii)		B1	Correct symmetric W shape with cusps on <i>x</i> -axis
	6 5 5	B1	<i>y</i> -intercept marked at 5 only or coords indicated on graph
	-2.5 -1 + 0.5	B1	<i>x</i> -intercepts marked at -2.5 and 0.5 only <i>x</i> -axis or coords indicated on graph or close by
7 (i) (a)	q – p	B1	
(b)	$2\mathbf{q} - 2\mathbf{p}$ or $2(\mathbf{q} - \mathbf{p})$	B 1	
(ii)	The points are collinear oe	B 1	
	\overrightarrow{PQ} is a (scalar) multiple of \overrightarrow{QR} and they have a point in common. oe	B 1	Condone \overrightarrow{PQ} is parallel to \overrightarrow{QR} and
(iii)	$\left[\overline{OR}=\right]4\mathbf{i}-3\mathbf{j}$ oe soi	B 1	
	$\sqrt{4^2 + (-3)^2}$ (=5)	M1	condone $\sqrt{4^2 + 3^2}$; may be implied by correct answer or correct FT answer
	$\frac{1}{5}(4\mathbf{i}-3\mathbf{j})$ oe	A1	
8 (a) (i)	$a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ final answer	B2,1,0	-1 each error/omission
(ii)	$6(2x)^2 \left(\frac{1}{5x}\right)^2 \text{ soi}$ $\frac{24}{25} \text{ or } 0.96 \text{ isw}$	M1	Could be in full expansion
	$\frac{24}{25}$ or 0.96 isw	A1	Must be explicitly identified
(b)	$\frac{1}{8} \left(\frac{n(n-1)(n-2)}{6} \right) = \frac{5n}{12} \text{ soi leading to a}$ cubic or quadratic $(n^2 - 3n - 18 = 0)$	M1	Must attempt to expand and remove fractions
	Solves <i>their</i> quadratic $[(n-6)(n+3)]$	M1	must have come from a valid attempt
	[n =] 6 only, not from wrong working	A1	Must be <i>n</i> if labelled

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	23

Q	uestion	Answer	Marks	Guidance
9	(a)	a=2 $b=4$ $c=-2$	B3	B1 for each correct value
	(b) (i)		B3,2,1, 0	sinusoidal curve symmetrical about <i>y</i> -axis clear intent to have amplitude of 2 2 cycles If not fully correct max B2
	(ii)	$-\frac{\pi}{2}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{2}, -\frac{\pi}{3}, \frac{\pi}{3}$ cao	B2	B1 for any 4 correct
10	(a) (i)	$2 \times 4!$ or $\frac{2}{5} \times 5!$ oe	M1	
		48	A1	
	(ii)	${}^{5}P_{3}$ or $\frac{5!}{2!}$ or $5 \times 4 \times 3$ oe	M1	
		60	A1	
	(b) (i)	$4 \times 2[!] \times 30e$	M1	Correct first step implied by a correct product of two elements
		24	A1	
	(ii)	3! or 3×3 seen	M1	
		18	A1	
11	(i)	$\frac{3x^2}{2} - \frac{2x^{\frac{5}{2}}}{5}(+c)$ isw	B1+B1	
	(ii)	(9, 0) oe	B 1	Not just $x = 9$
	(iii)	Substitute (3, 9) into both lines	B1	$3 \times 3 = 9$ and $\frac{27 - 3 \times 3}{2} = 9$
		Or solves simultaneously $(6x = 27 - 3x \text{ oe})$ to get $x = 3, y = 9$		2

Ρ	age	e 6

Question	Answer	Marks	Guidance
(iv)	[Area $AOB =]\frac{1}{2} \times 9 \times 9$ oe $(\frac{81}{2} \text{ or } 40.5)$		Uses <i>their</i> (ii). May split into 2 triangles (13.5 and 27). May integrate. Must be a complete method.
	their $\left[\frac{3(9)^2}{2} - \frac{2(9)^{\frac{5}{2}}}{5}\right] - [0]$ (= 24.3)	M1	lower limit may be omitted but must be correct if seen
	their $\frac{81}{2}$ - their $\frac{243}{10}$	M1	must be from genuine attempts at area of triangle and area under curve
	16.2	A1	
12 (i)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{2(x-1) - (2x-5)}{(x-1)^2}$	M1A1	Allow slips in $\frac{du}{dx}$ and $\frac{dv}{dx}$ but must be explicit. Allow $(x-1)^2 = x^2 - 2x + 1$
	– 12 isw	B1	
	ALT using $y = \frac{-12x^2 + 14x - 5}{x - 1}$ -24x + 14	B1	
	$\left[\frac{dy}{dx}\right] = \frac{(x-1)(-24x+14) - (-12x^2 + 14x - 5)}{(x-1)^2}$	M1	
	$\lfloor ux \rfloor$ $(x-1)$	A1FT	FT on their derivative of 3 term quadratic
(ii)	$\left[\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right] k \left(x-1\right)^{-3}$	M1	No additional terms
	k = -6 isw	A1	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0606	23

Question	Answer	Marks	Guidance
(iii)	their $\left[\frac{3}{(x-1)^2} - 12\right] = 0$ and find a value for x	M1	12 x2-24x + 9 = 0 oe (2x - 3)(2x - 1) = 0 oe
	x = 0.5 and $x = 1.5$	A1	
	y = 2 and $y = -22$	A1	if A0 A0 then A1 for a correct (x, y) pair
	$\frac{-6}{(-0.5)^3} > 0$ therefore min when $x = 0.5$ oe	B1	or $\left[\frac{-6}{(-0.5)^3}\right] = 48$ therefore min when $x = 0.5$ oe
	$\frac{-6}{(0.5)^3} < 0$ therefore max when $x = 1.5$ oe	B1	or $\left[\frac{-6}{(0.5)^3}\right] = -48$ therefore max when $x = 1.5$ oe
			M1A1 is possible from other methods

MARK SCHEME for the March 2016 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 22, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	22

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

Question	Answer	Marks	Guidance
1 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = k(x-9)^{-\frac{3}{2}}$	M1	If M0 then SC1 for the correct answer with an extra term.
	$k = -\frac{5}{2}$ isw	A1	condone $5 \times -\frac{1}{2}$
(ii)	$\delta y = their\left(\frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=13}\right) \times h$	M1	
	-0.3125 <i>h</i> oe	A1	
2	$\begin{array}{c c} & & & \\ & & \\ & & \\ \hline & & \\$	B3,2,1,0	 B2 for <i>C</i> as a proper subset of <i>A</i> <i>A</i> and <i>B</i> with an intersection <i>B</i> and <i>C</i> mutually exclusive Or B1 for any two of the these and B1 for the number of elements correctly placed
	5	B1FT	FT their 5
3	Integrates $9x^2 - 3x^{-2}$	M1	condone one rearrangement error
	$(y=)\frac{9x^3}{3} - \frac{3x^{-1}}{-1}(+c)$	A1	
	Substitute $x = 1$ and $y = 7$ into <i>their</i> expression with 'c'	M1	<i>their</i> expression must be from an attempt to integrate
	$y = 3x^3 + 3x^{-1} + 1$ oe isw	A1	condone $y = 3x^3 + 3x^{-1} + c$ and $c = 1$ seen, isw

Page			Syllabus Paper
	Cambridge IGCSE – March 2016		0606 22
Question	Answer	Marks	Guidance
4 (a)	a = 10 b = 6 c = 4 or $10\cos 6x + 4$	B2,1,0	for B1 allow correct FT of <i>c</i> from <i>a</i> e.g. <i>their</i> $c = 14 - their a$
(b)	y 1 0 45° 90° 135° 180° x -2 -5	B3,2,1,0	Correct shape; two cycles; both maximum at 1 and minimum at -5 ; starting at $(0, -2)$ and ending at $(180, -2)$
5 (i)	$2187 + 5103kx + 5103k^2x^2$	B3	1 for each term; ignore extra terms
(ii)	$2(5103k) = 5103k^2$	M1	must not include x, x^2
	<i>k</i> = 2	A1	A0 if $k = 0$ also given as a solution
6	$\frac{x}{1+3\sqrt{3}} = \frac{5-\sqrt{3}}{6+2\sqrt{3}}$ oe soi	M1	
	$(x=)\frac{-4+14\sqrt{3}}{6+2\sqrt{3}}$ oe	M1	
	$(x=)\frac{-4+14\sqrt{3}}{6+2\sqrt{3}} \times \frac{6-2\sqrt{3}}{6-2\sqrt{3}}$	M1	
	p = -27, q = 23 isw	A1 + A1	allow $(x =) \frac{-27 + 23\sqrt{3}}{6}$

	Page 4	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – March 2016		0606 22
Qı	uestion	Answer	Marks	Guidance
		$ \begin{pmatrix} 4 & 6 & 8 \\ -2 & 0 & 4 \end{pmatrix} - \begin{pmatrix} 18 & 3 & 6 \\ 21 & -6 & 3 \end{pmatrix} $	M1	for attempt to multiply and subtract
		$ \begin{pmatrix} -14 & 3 & 2 \\ -23 & 6 & 1 \end{pmatrix} $ $ -\frac{1}{2} \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix} oe $	A1	
	(b) (i)	$-\frac{1}{2} \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix}$ oe	B1 + B1	1 mark for $-\frac{1}{2}$ and 1 mark
				for $k \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix}$
	(ii)	Valid method	M1	$\mathbf{X}\mathbf{D}^{-1}\mathbf{D}=\mathbf{C}\mathbf{D}$
		$\begin{pmatrix} -8 & -6 \\ 13 & 7 \end{pmatrix}$	A2,1,0	-1 each error
				If M0 then SC1 for
				$\mathbf{DC} = \begin{pmatrix} 4 & 3 \\ -14 & -5 \end{pmatrix}$
8	(i)	Eliminate <i>x</i> (or <i>y</i>)	M1	$3(2y-2)^{2} + (2y-2)y - y^{2} = 12$
				$3x^{2} + x\left(\frac{x+2}{2}\right) - \left(\frac{x+2}{2}\right)^{2} = 12$
		$13y^2 - 26y = 0$ or $\frac{13}{4}x^2 - 13 = 0$ oe	A1	
		$13y(y-2)$ or $x^2 = 4$	M1	
		$x = -2, \qquad \qquad x = 2$	A1	or for $(-2, 0)$ or $(2, 2)$ from correct
		y=0 $y=2$ isw	+ A1FT	working FT <i>their x</i> or <i>y</i> values to find <i>their</i>
				<i>y</i> or <i>x</i> values; or A1 for (-2, 0) and (2, 2)
	(ii)	their $m_{AB} = \frac{1}{2}$ or their $m_{BC} = -2$ soi	M1	may be unsimplified or Pythagoras' theorem correctly applied to <i>their</i> $(0, -2)$, <i>their</i> $(2, 2)$ and $(0, 6)$
		use of $(m_{AB}) \times (m_{BC}) = -1$ and conclusion	A1	or use of $h^2 = a^2 + b^2$ and conclusion

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	22

Question	Answer	Marks	Guidance
9 (i)	$RT = \frac{1}{\tan \theta}$	B1	or $RT = \cot \theta$
	$RS = \frac{1}{\sin \theta}$	B1	or $RS = \csc \theta$
	$x = 1 - \frac{1}{2\tan\theta} - \frac{1}{2\sin\theta}$ oe or $x = 1 - \frac{\cot\theta}{2} - \frac{\csc\theta}{2}$ oe	B1FT	FT <i>their RT</i> and <i>their RS</i> , provided both are functions of trig ratios
(ii)	$A = x + \frac{1}{2}\cot\theta$ oe soi	M1	
	correct completion to given answer $A = 1 - \frac{\csc \theta}{2}$	A1	
(iii)	$\csc \theta = \frac{2\sqrt{3}}{3}$ oe $\theta = \frac{\pi}{3}$ cao	M1	equivalent must be exact
	$\theta = \frac{\pi}{3}$ cao	A1	implies M1
10 (a) (i)	$(\alpha + \beta)\mathbf{i} - 20\mathbf{j} = 15\mathbf{i} + (2\alpha - 24)\mathbf{j}$	M1	implied by $\alpha + \beta = 15$ or $2\alpha - 24 = -20$
	$\alpha = 2$	A1	
	$\beta = 13$ $\sqrt{(their\alpha + their\beta)^2 + (-20)^2} \text{ oe}$	A1	
(ii)	$\sqrt{(their\alpha + their\beta)^2 + (-20)^2}$ oe	M1	
	$\frac{15\mathbf{i}-20\mathbf{j}}{25}$ oe	A1FT	FT <i>their</i> $\alpha + \beta$ provided non-zero
(b)	$\overrightarrow{OC} = \overrightarrow{OA} + \lambda \overrightarrow{AB}$ or $\overrightarrow{OC} = OB + (1 - \lambda)\overrightarrow{BA}$	B1	
	$[\overrightarrow{OC} =] \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) \text{ or}$ $[\overrightarrow{OC} =] \mathbf{b} + (1 - \lambda)(\mathbf{a} - \mathbf{b})$ $[\overrightarrow{OC} =] (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$ $\frac{2}{\mu + 3} = \frac{\mu}{9}$	M1	
	$[\overrightarrow{OC} =] (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$	A1	
(c)	$\frac{2}{\mu+3} = \frac{\mu}{9}$	M1	or multiplies one of the vectors by a general scale factor and finds a pair of simultaneous equations to solve
	Solves $\mu^2 + 3\mu - 18 = 0$	M1	or solves <i>their</i> correct equation to find <i>their</i> scale factor and attempts to use it to find μ
	$\mu = 3$	A1	A0 if -6 not discarded

Page			Syllabus Paper
	Cambridge IGCSE – March 2016		0606 22
Question	Answer	Marks	Guidance
11 (i)	$\frac{dy}{dx} = \frac{(x^2 + 1)(1) - (x)(2x)}{(x^2 + 1)^2} \text{oe}$	M1*	Attempts to differentiate using the quotient rule
		A1	correct; allow unsimplified
	$their(1-x^2) = 0$	M1 dep*	
	x = 1, x = -1	A1	from correct working only
	y = 0.5, $y = -0.5$ oe	A1	from correct working only
			or A1 for each of $(1, 0.5)$, (-1, -0.5) oe from correct working;
			unsupported answers do not score
(ii)	$\frac{d}{dx} \left(\left(x^2 + 1 \right)^2 \right) = 2 \left(x^2 + 1 \right) (2x) \text{ soi}$		$\frac{d}{dx}(x^4 + 2x^2 + 1) = 4x^3 + 4x$
	$\frac{d^2 y}{dx^2} = (x^2 + 1) \frac{(x^2 + 1)(their - 2x) - (their(1 - x^2))2(2x)}{(x^2 + 1)^4}$	M1	Applies quotient rule and factors out
	Correct completion to given answer $\frac{d^2 y}{dx^2} = \frac{2x^3 - 6x}{(x^2 + 1)^3}$	A1	
	When $x = 1$ their $\frac{d^2 y}{dx^2}\Big _{x=1} = \frac{2(1)^3 - 6(1)}{(1^2 + 1)^3}$ oe < 0 therefore	B1FT	Complete method including comparison to 0; FT <i>their</i> first or second derivative
	When $x = -1$ their $\frac{d^2 y}{dx^2}\Big _{x=-1} = \frac{2(-1)^3 - 6(-1)}{((-1)^2 + 1)^3}$ or $0 = 0$ therefore minimum	B1FT	Complete method including comparison to 0; FT <i>their</i> first or second derivative

Page 7	Mark Scheme Cambridge IGCSE – Marc	h 2016	Syllabus Paper 0606 22
Question	Answer	Answer Marks	
12 (i)	$9t^{2} - 63t + 90 = 0$ (9t - 18)(t - 5)	M1	
	showing that $t = 2$ is smaller value of t	A1	must see evidence of solving e.g. $t = 5$ and $t = 2$ or factors
(ii)	$(a=)\frac{\mathrm{d}v}{\mathrm{d}t}$ attempted	M1	
	18(3.5) - 63 = 0 cao	A1	
(iii)	$\int (9t^2 - 63t + 90) \mathrm{d}t$	M1	
	$(s=)\frac{9t^3}{3} - \frac{63t^2}{2} + 90t$ isw	A2,1,0	-1 for each error or for $+c$ left in
(iv) (a)	$(s=)\frac{9(2)^3}{3} - \frac{63(2)^2}{2} + 90(2)$	M1	or $\left[\frac{9t^3}{3} - \frac{63t^2}{2} + 90t\right]_0^2$ FT their (iii)
	78 [m]	A1	
(b)	$(s=)\frac{9(3)^3}{3} - \frac{63(3)^2}{2} + 90(3) = 67.5$	M1	FT their (iii)
	<i>their</i> 78 + 10.5 = 88.5 [m]	A1FT	

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/21

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	21

.

answers which round to
correct answer only
dependent
follow through after error
ignore subsequent working
not from wrong working
or equivalent
rounded or truncated
Special Case
seen or implied
without wrong working

1	(i)	f(-2) = -32 - 16 + 30 + 18 = 0	B1	All four evaluated terms must be seen. Allow if correct long division used
	(ii)	$f(x) = (x+2)(4x^2 - 12x + 9)$	M1 A1	Coefficients 4 and 9 Coefficient –12
		=(x+2)(2x-3)(2x-3)	A1	All three factors together
		$f(x) = 0 \rightarrow x = -2, 1.5$ nfww	A1	Allow 1.5 mentioned just once
2	(i)	$(2-3x)^6 = 64 - 576x + 2160x^2$ isw	B1B1B1	
	(ii)	$2160 - 2 \times 576 = 1008$	M1 A1	<i>their</i> final $2160 + 2 \times their$ final -576
3	(i)	$\overrightarrow{AB} = \begin{pmatrix} -15\\ 8 \end{pmatrix}$	B1	Allow \overrightarrow{BA} May be implied by later work.
		$ AB = \sqrt{15^2 + 8^2} (=17)$	M1	Use of Pythagoras on their AB
		Speed = $17 \times 3 = 51$ km/hr	A1	Must be exact
	(ii)	$\overrightarrow{BC} = \begin{pmatrix} 16\\ -30 \end{pmatrix}$	B1	Allow \overline{CB}
		$ BC = \sqrt{16^2 + 30^2} (= 34)$	M1	Use of Pythagoras on <i>their BC</i>
		Time taken = $\frac{34}{51} \times 60 = 40$ mins (or $\frac{2}{3}$ hrs)	A1	Allow answers which round to 40 to 2sf. Accept 0.66 or 0.67 hrs. Mark final answer.

Pa	age 3	Mark Scheme		Syllabus	Paper	
		Cambridge IGCSE – October/No	vember 2		0606	21
4	(a)	$2\mathbf{B}\mathbf{A} = 2 \begin{pmatrix} 1 & -2 & 4 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & 5 \\ 7 & 4 \end{pmatrix}$ $= 2 \begin{pmatrix} 24 & 5 \\ 5 & 17 \end{pmatrix} = \begin{pmatrix} 48 & 10 \\ 10 & 34 \end{pmatrix}$	B3,2,1,0	-1 each error ir multiply by 2 is		t. Failure to
	(b) (i)	$\mathbf{C}^{-1} = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ 1 & 1 \end{pmatrix}$ isw	B1 B1	$\frac{1}{8}$ Matrix		
	(ii)	$\mathbf{I} - \mathbf{D} = \begin{pmatrix} -2 & 2\\ -1 & -3 \end{pmatrix}$	B1			
		$\mathbf{X} = \mathbf{C}^{-1} \left(\mathbf{I} - \mathbf{D} \right) = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2 \\ -1 & -3 \end{pmatrix}$	M1	Pre multiply the	<i>eir</i> I – D wit	h their \mathbf{C}^{-1}
		$=\frac{1}{8}\begin{pmatrix} -10 & 18\\ -3 & -1 \end{pmatrix}$ isw	A1			
5	(a)	$2^{3(q-1)} \times 2^{2p+1} = 2^{14}$	B1	Correct powers isw	of 2 allow ı	insimplified
		$3^{2(p-4)} \times 3^q = 3^4$	B1	Correct powers isw	of 3 allow u	unsimplified
		Solve $3q + 2p = 16$ q + 2p = 12	M1	Attempt to solve by eliminating of		•
		p = 5, q = 2	A1	Both correct		
	(b)	(3x-2)(x+1)	M1	LHS oe isw		
		= 50	A1	50 from correct	processing	of $2 - \lg 2$
		$3x^{2} + x - 52 = 0 \rightarrow (3x + 13)(x - 4)$	M1	Solution of <i>thei</i> Roots must be c		
		x = 4	A1	quadratic		
		$x = -\frac{13}{3}$ discarded	A1			

Page 4	Mark Scheme	Syllabus Paper	
	Cambridge IGCSE – October/No	vember 2	015 0606 21
F			l
6 (i)	a = 3, b = 2, c = 4	B1B1B1	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8\cos 4x$ isw	M1 A1FT	$\pm k \cos cx$ and no other term in $x c \neq 1$ $bc \times \cos cx$ and no other term
(iii)	$x = \frac{\pi}{2} \rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 8\cos 2\pi = 8$	DM1	Find <i>their</i> correct numerical $\frac{dy}{dx}$
	Eqn: $\frac{y-3}{x-\frac{\pi}{2}} = -\frac{1}{8} \qquad \left(\rightarrow y = -\frac{1}{8}x + 3.20 \right)$	M1	Find equation with <i>their</i> numerical normal gradient ie $\frac{-1}{\frac{dy}{dx}}$ and point
		A1	$\left(\frac{\pi}{2}, 3\right)$ All correct isw
7 (i)	$\frac{h}{8} = \frac{6-r}{6} \to h = \frac{4}{3}(6-r)$	M1 A1	Uses correct ratio. Cannot be implied
(ii)	$V = \pi r^{2} h = \pi r^{2} \times \frac{4}{3} (6 - r)$ $= 8\pi r^{2} - \frac{4}{3}\pi r^{3}$	B1	AG all steps must be seen Penalise missing brackets at any point in working
(iii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 16\pi r - 4\pi r^2$	M1 A1	Differentiate at least one power reduced by one
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 0 \longrightarrow r = 4$	M1 A1	Attempt to solve – must get $r =$ Correct value of r . Ignore $r = 0$
	$V = \frac{128}{3}\pi \qquad \left(=42.7\pi\right)$	A1	Correct value of V. Condone 134. $\frac{d^2V}{dr^2}$ must be correct and some
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = 16\pi - 8\pi r < 0 \text{ when } r = 4 \to \max$	B1	dr ⁻ indication of a negative value seen plus maximum stated

Page 5	Mark Scheme	Syllabus Paper			
	Cambridge IGCSE – October/No				
8 (i)	Gradient $AB = \frac{8-2}{9+3}$ $\left(=\frac{1}{2}\right)$ isw	B1			
	Equation AB and $x = 0 \rightarrow \frac{y-2}{0+3} = \frac{1}{2} \qquad \left(\rightarrow y = \frac{1}{2}x + 3.5 \right)$	M1	Find equation with <i>their</i> gradient and set $x = 0$		
	$\rightarrow y = 3.5$	A1			
(ii)	<i>D</i> is (3, 5)	B1			
(iii)	Gradient perpendicular = -2	M1	Use of $m_1 \times m_2 = -1$ on gradient used for <i>their</i> line in (i)		
	Equation perpendicular $\frac{y-5}{x-3} = -2$ $\rightarrow (y = -2x + 11)$	A1			
(iv)	E is (0, 11)	A1FT			
(v)	Area of $ABE = \frac{1}{2} \begin{vmatrix} -3 & 9 & 0 & -3 \\ 2 & 8 & 11 & 2 \end{vmatrix}$	M1	For area of <i>ABE</i> or <i>ECD</i> . $\frac{1}{2}$ and <i>their</i> correct 8 elements must be seen.		
	$=\frac{1}{2} -24+99-18+33 =45$	A1	45 condone from $E(0, -4)$		
	Area of $EDC = \frac{1}{2} \begin{vmatrix} 3 & 0 & 0 & 3 \\ 5 & 3.5 & 11 & 5 \end{vmatrix}$				
	$=\frac{1}{2} -10.5+33 =11.25$	A1	11.25 condone from $E(0, -4)$		

 Page 6
 Mark Scheme
 Syllabus
 Paper

 Cambridge IGCSE – October/November 2015
 0606
 21

9 (i)	$\tan 2x = -\frac{5}{4}$	M1	For obtaining and using
	(2x = 128.7, 308.7)		$\tan 2x = \pm \frac{5}{4} \text{ or } \pm \frac{4}{5}$
			resulting in $2x =$
	x = 64.3 awrt	A1	$\tan x = \dots$ gets M0
	154.3 awrt	A1FT	<i>their</i> $64.3^{\circ} + 90^{\circ}$
(ii)	$\csc^2 y + 3\csc y - 4 = 0$ or	B1	In any form as a three term quadratic.
	$4\sin^2 y - 3\sin y - 1 = 0$		
	$(\operatorname{cosec} y + 4)(\operatorname{cosec} y - 1) = 0$ or		
	$(4\sin y+1)(\sin y-1)=0$		
	$\sin y = -\frac{1}{4}$ or $\sin y = 1$	M1	Solve three term quadratic in $\operatorname{cosec} y$
	7	. 1 . 1 . 1	or $\sin y$
	<i>y</i> = 194.5, 345.5, 90	A1A1A1	Answers must be obtained from the correct quadratic
(iii)	$z + \frac{\pi}{4} = \pi - \frac{\pi}{3}$ or	B1	Accept 2.09, 2.10, $\pi - 1.05$, $\pi - 1.04$ on
			RHS. Could be implied by final answer
	$z + \frac{\pi}{4} = \pi + \frac{\pi}{3}$	B1	Accept 4.19, 4.18, π +1.05, π +1.04 on DUS Could be implied by final ensure
	$z = \frac{5\pi}{12}, \frac{13\pi}{12}$	B1B1	RHS. Could be implied by final answer Answers must be correct multiples of π .
	12, 12		
10 (i)	$s = \frac{1}{2}e^{2t} + 3e^{-2t} - t + (c)$	M1	Integrate : coefficient of $\frac{1}{2}$ or 3 seen
	2		with no change in powers of e. Ignore $-t$
	$t = 0, \ s = 0 \rightarrow c = -3.5$. 1	
	$t = 0, \ s = 0 \to c = -3.5$ $\left(s = \frac{1}{2}e^{2t} + 3e^{-2t} - t - 3.5\right)$	A1 A1	All correct and simplified
(ii)	$v = 0 \rightarrow u^2 - u - 6 = 0$ oe	M1	Obtain three term quadratic in u or e^{2t}
			Condone sign errors.
	(u-3)(u+2)=0	DM1	Solve three term quadratic
	$v = 0 \rightarrow u^{2} - u - 6 = 0 \text{ oe}$ $(u - 3)(u + 2) = 0$ $\rightarrow u = 3 \rightarrow t = \frac{1}{2} \ln 3 \text{ or } 0.549$	A1	Accept 0.55 No second answer
(iii)	$t = \frac{1}{2} \ln 3 \rightarrow a = 2e^{2t} + 12e^{-2t}$ = 6 + 4 = 10	B 1	Correct differentiation
	=6+4=10	B1	Allow awrt 10.0 or 9.99. No second
			answer.
	•	•	•

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	2 Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2015	0606	22

answers which round to
correct answer only
dependent
follow through after error
ignore subsequent working
not from wrong working
or equivalent
rounded or truncated
Special Case
seen or implied
without wrong working

1	(i)	f(-2) = -32 - 16 + 30 + 18 = 0	B1	All four evaluated terms must be seen. Allow if correct long division used
	(ii)	$f(x) = (x+2)(4x^2 - 12x + 9)$	M1 A1	Coefficients 4 and 9 Coefficient –12
		=(x+2)(2x-3)(2x-3)	A1	All three factors together
		$f(x) = 0 \rightarrow x = -2, 1.5$ nfww	A1	Allow 1.5 mentioned just once
2	(i)	$(2-3x)^6 = 64 - 576x + 2160x^2$ isw	B1B1B1	
	(ii)	$2160 - 2 \times 576 = 1008$	M1 A1	<i>their</i> final $2160 + 2 \times their$ final -576
3	(i)	$\overrightarrow{AB} = \begin{pmatrix} -15\\ 8 \end{pmatrix}$	B1	Allow \overrightarrow{BA} May be implied by later work.
		$ AB = \sqrt{15^2 + 8^2} (=17)$	M1	Use of Pythagoras on <i>their AB</i>
		Speed = $17 \times 3 = 51 \text{ km/hr}$	A1	Must be exact
	(ii)	$\overrightarrow{BC} = \begin{pmatrix} 16\\ -30 \end{pmatrix}$	B1	Allow \overrightarrow{CB}
		$ BC = \sqrt{16^2 + 30^2} (= 34)$	M1	Use of Pythagoras on <i>their BC</i>
		$ BC = \sqrt{16^2 + 30^2}$ (= 34) Time taken = $\frac{34}{51} \times 60 = 40$ mins (or $\frac{2}{3}$ hrs)	A1	Allow answers which round to 40 to 2sf. Accept 0.66 or 0.67 hrs. Mark final answer.

	ge 3	Mark Scheme			Syllabus	Paper		
		Cambridge IGCSE – October/No	vember 2		0606	22		
4	(a)	$2\mathbf{B}\mathbf{A} = 2 \begin{pmatrix} 1 & -2 & 4 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & 5 \\ 7 & 4 \end{pmatrix}$ $= 2 \begin{pmatrix} 24 & 5 \\ 5 & 17 \end{pmatrix} = \begin{pmatrix} 48 & 10 \\ 10 & 34 \end{pmatrix}$	B3,2,1,0	-1 each error in multiply by 2 is		t. Failure to		
	(b) (i)	$\mathbf{C}^{-1} = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ 1 & 1 \end{pmatrix}$ isw	B1 B1	$\frac{1}{8}$ Matrix				
	(ii)	$\mathbf{I} - \mathbf{D} = \begin{pmatrix} -2 & 2\\ -1 & -3 \end{pmatrix}$	B1					
		$\mathbf{X} = \mathbf{C}^{-1} \left(\mathbf{I} - \mathbf{D} \right) = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2 \\ -1 & -3 \end{pmatrix}$	M1	Pre multiply the	<i>eir</i> I − D wit	h their \mathbf{C}^{-1}		
		$=\frac{1}{8}\begin{pmatrix} -10 & 18\\ -3 & -1 \end{pmatrix}$ isw	A1					
5	(a)	$2^{3(q-1)} \times 2^{2p+1} = 2^{14}$	B1	Correct powers isw	of 2 allow u	unsimplified		
		$3^{2(p-4)} \times 3^q = 3^4$	B1	Correct powers isw	of 3 allow u	unsimplified		
		Solve $3q + 2p = 16$ q + 2p = 12	M1	Attempt to solv by eliminating				
		p = 5, q = 2	A1	Both correct				
	(b)	(3x-2)(x+1)	M1	LHS oe isw				
		= 50	A1	50 from correct	t processing	of $2 - \lg 2$		
		$3x^{2} + x - 52 = 0 \rightarrow (3x + 13)(x - 4)$	M1	Solution of <i>thei</i> Roots must be o		1		
		x = 4	A1	quadratic				
		$x = -\frac{13}{3}$ discarded	A1					

Page 4	Mark Scheme		Syllabus Paper		
	Cambridge IGCSE – October/No	vember 2	015 0606 22		
		[
6 (i)	a = 3, b = 2, c = 4	B1B1B1			
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8\cos 4x$ isw	M1 A1FT	$\pm k \cos cx$ and no other term in $x c \neq 1$ $bc \times \cos cx$ and no other term		
(iii)	$x = \frac{\pi}{2} \to \frac{\mathrm{d}y}{\mathrm{d}x} = 8\cos 2\pi = 8$	DM1	Find <i>their</i> correct numerical $\frac{dy}{dx}$		
	Eqn: $\frac{y-3}{x-\frac{\pi}{2}} = -\frac{1}{8} \qquad \left(\rightarrow y = -\frac{1}{8}x + 3.20 \right)$	M1	Find equation with <i>their</i> numerical normal gradient is $\frac{-1}{\frac{dy}{dt}}$ and point		
		A1	$\begin{pmatrix} \frac{\pi}{2}, 3 \end{pmatrix}$ All correct isw		
7 (i)	$\frac{h}{8} = \frac{6-r}{6} \to h = \frac{4}{3}(6-r)$	M1 A1	Uses correct ratio. Cannot be implied		
(ii)	$V = \pi r^{2} h = \pi r^{2} \times \frac{4}{3} (6 - r)$ $= 8\pi r^{2} - \frac{4}{3}\pi r^{3}$	B1	AG all steps must be seen Penalise missing brackets at any point in working		
(iii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 16\pi r - 4\pi r^2$	M1 A1	Differentiate at least one power reduced by one		
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 0 \longrightarrow r = 4$	M1 A1	Attempt to solve – must get $r =$ Correct value of r . Ignore $r = 0$		
	$V = \frac{128}{3}\pi \qquad \left(=42.7\pi\right)$	A1	Correct value of V. Condone 134. $\frac{d^2V}{dr^2}$ must be correct and some		
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = 16\pi - 8\pi r < 0 \text{ when } r = 4 \to \max$	B1	dr ² indication of a negative value seen plus maximum stated		

Page 5	Mark Scheme		Syllabus Paper		
	Cambridge IGCSE – October/No				
8 (i)	Gradient $AB = \frac{8-2}{9+3}$ $\left(=\frac{1}{2}\right)$ isw	B1			
	Equation AB and $x = 0 \rightarrow \frac{y-2}{0+3} = \frac{1}{2} \qquad \left(\rightarrow y = \frac{1}{2}x + 3.5 \right)$	M1	Find equation with <i>their</i> gradient and set $x = 0$		
	$\rightarrow y = 3.5$	A1			
(ii)	<i>D</i> is (3, 5)	B1			
(iii)	Gradient perpendicular = -2	M1	Use of $m_1 \times m_2 = -1$ on gradient used		
	Equation perpendicular $\frac{y-5}{x-3} = -2$ $\rightarrow (y = -2x + 11)$	A1	for <i>their</i> line in (i)		
(iv)	<i>E</i> is (0, 11)	A1FT			
(v)	Area of $ABE = \frac{1}{2} \begin{vmatrix} -3 & 9 & 0 & -3 \\ 2 & 8 & 11 & 2 \end{vmatrix}$	M1	For area of <i>ABE</i> or <i>ECD</i> . $\frac{1}{2}$ and <i>their</i> correct 8 elements must be seen.		
	$=\frac{1}{2} -24+99-18+33 =45$	A1	45 condone from $E(0, -4)$		
	Area of $EDC = \frac{1}{2} \begin{vmatrix} 3 & 0 & 0 & 3 \\ 5 & 3.5 & 11 & 5 \end{vmatrix}$				
	$=\frac{1}{2} -10.5+33 =11.25$	A1	11.25 condone from $E(0, -4)$		

 Page 6
 Mark Scheme
 Syllabus
 Paper

 Cambridge IGCSE – October/November 2015
 0606
 22

9 (i)	$\tan 2x = -\frac{5}{4}$	M1	For obtaining and using
	(2x = 128.7, 308.7)		$\tan 2x = \pm \frac{5}{4} \text{ or } \pm \frac{4}{5}$
			resulting in $2x =$
	x = 64.3 awrt	A1	$\tan x = \dots$ gets M0
	154.3 awrt	A1FT	<i>their</i> $64.3^{\circ} + 90^{\circ}$
(ii)	$\csc^2 y + 3\csc y - 4 = 0$ or	B1	In any form as a three term quadratic.
	$4\sin^2 y - 3\sin y - 1 = 0$		
	$(\operatorname{cosec} y + 4)(\operatorname{cosec} y - 1) = 0$ or		
	$(4\sin y+1)(\sin y-1)=0$		
	$\sin y = -\frac{1}{4}$ or $\sin y = 1$	M1	Solve three term quadratic in $\operatorname{cosec} y$
	7	. 1 . 1 . 1	or $\sin y$
	<i>y</i> = 194.5, 345.5, 90	A1A1A1	Answers must be obtained from the correct quadratic
(iii)	$z + \frac{\pi}{4} = \pi - \frac{\pi}{3}$ or	B1	Accept 2.09, 2.10, $\pi - 1.05$, $\pi - 1.04$ on
			RHS. Could be implied by final answer
	$z + \frac{\pi}{4} = \pi + \frac{\pi}{3}$	B1	Accept 4.19, 4.18, π +1.05, π +1.04 on DUS Could be implied by final ensure
	$z = \frac{5\pi}{12}, \frac{13\pi}{12}$	B1B1	RHS. Could be implied by final answer Answers must be correct multiples of π .
	12, 12		
10 (i)	$s = \frac{1}{2}e^{2t} + 3e^{-2t} - t + (c)$	M1	Integrate : coefficient of $\frac{1}{2}$ or 3 seen
	2		with no change in powers of e. Ignore $-t$
	$t = 0, \ s = 0 \rightarrow c = -3.5$. 1	
	$t = 0, \ s = 0 \to c = -3.5$ $\left(s = \frac{1}{2}e^{2t} + 3e^{-2t} - t - 3.5\right)$	A1 A1	All correct and simplified
(ii)	$v = 0 \rightarrow u^2 - u - 6 = 0$ oe	M1	Obtain three term quadratic in u or e^{2t}
			Condone sign errors.
	(u-3)(u+2)=0	DM1	Solve three term quadratic
	$v = 0 \rightarrow u^{2} - u - 6 = 0 \text{ oe}$ $(u - 3)(u + 2) = 0$ $\rightarrow u = 3 \rightarrow t = \frac{1}{2} \ln 3 \text{ or } 0.549$	A1	Accept 0.55 No second answer
(iii)	$t = \frac{1}{2} \ln 3 \rightarrow a = 2e^{2t} + 12e^{-2t}$ = 6 + 4 = 10	B 1	Correct differentiation
	=6+4=10	B1	Allow awrt 10.0 or 9.99. No second
			answer.
	•	•	•

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	2 Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2015	0606	23

awrt	answers which round to
cao	correct answer only
1	1

- depdependentFTfollow through after error
- isw ignore subsequent working
- oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

www without wrong working

1	$y = x^{3} + 3x^{2} - 5x - 7$ $\frac{dy}{dx} = 3x^{2} + 6x - 5$ $x = 2 \rightarrow \frac{dy}{dx} = 19$ $y = 3$ eqn of tangent: $\frac{y - 3}{x - 2} = 19 \rightarrow (y = 19x - 35)$	M1 A1 A1FT B1 A1FT	Differentiate on <i>their</i> $\frac{dy}{dx}$
2	$2x + k + 2 = 2x^{2} + (k + 2)x + 8$ $2x^{2} + kx + 6 - k (= 0)$ $b^{2} - 4ac = k^{2} - 4 \times 2(6 - k)$ $k^{2} + 8k - 48 (> 0)$ (k + 12)(k - 4) (> 0) k < -12 or k > 4	M1 A1 M1 DM1 A1 A1	eliminate y or x correct quadratic use discriminant attempt to solve 3 term quadratic k = -12 and $k = 4$
3 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(2-x^2)3x^2 - x^3(-2x)}{(2-x^2)^2} = \left(\frac{6x^2 - x^4}{(2-x^2)^2}\right)$	M1 A2,1,0	For quotient rule (or product rule on correct y)
(b)	$\frac{dy}{dx} = x \times \frac{1}{2} (4x+6)^{-0.5} \times 4 + (4x+6)^{0.5}$ $= \frac{6(x+1)}{(4x+6)^{0.5}} \rightarrow k = 6$	M1 A1 A1	product rule
4	$x(4 - \sqrt{3}) = 13$ $x = \frac{13(4 + \sqrt{3})}{(4 - \sqrt{3})(4 + \sqrt{3})}$ $= 4 + \sqrt{3}$ $y = 1 - 2\sqrt{3}$	M1 A1 M1 A1 A1	eliminate <i>y</i> or <i>x</i> simplified rationalisation

Page			Syllabus Paper
	Cambridge IGCSE – October/Nove	mber 201	5 0606 23
5	(x-3)(x-3)(x-1) = 0 x ³ -7x ² +15x-9=0	M1	
	x - 7x + 15x - 9 = 0 a = -7	A1	
	$\begin{array}{l} a = -7 \\ b = 15 \end{array}$	Al	
	c = -9	A1	AG for <i>c</i>
6	$\log_x 2 = \frac{\log_2 2}{\log_2 x}$	B1	
	$2\log_2 x = \log_2 x^2$	B1	
	$3 = \log_2 8$	B1	
	$8x^2 - 29x + 15 \ (=0)$	M1	obtain quadratic and attempt to solve
	$\rightarrow (8x-5)(x-3) \ (=0)$		
	$x = \frac{5}{8}$ or $x = 3$	A1	
7 (i)	$a = -\frac{20}{\left(t+2\right)^3}$	M1 A1	$k(t+2)^{-3}$ oe k = -20
	$t = 3 \rightarrow a = -0.16 \text{ m/s}^2$	A1FT	
(ii)	$\frac{10}{(t+2)^2}$ is never zero.	B1	
(iii)	$s = -\frac{10}{t+2} + 5$	M1	integrate $\frac{k}{t+2}$
	t+2	A1	k = -10
		A1	+5
(iv)	$s = \left[-\frac{10}{t+2}\right]_3^8 = -1+2$	M1	insert limits and subtract
	=1	A1	

Page 4	Mark Scheme				Paper
	Cambridge IGCSE – October/Nover	mber 201	5	0606	23
8 (i)	$\sec^{2} x + \csc^{2} x = \frac{1}{\cos^{2} x} + \frac{1}{\sin^{2} x}$	B1			
	$=\frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x}$	B1	add fraction	ns	
	$=\frac{1}{\sin^2 x \cos^2 x}$	B1	use of sin ²	$x + \cos^2 x = 1$	
(!!)	$= \sec^2 x \csc^2 x$	B1	fully correc	et solution	
(ii)	$\frac{1}{\cos^2 x \sin^2 x} = 4 \frac{\sin^2 x}{\cos^2 x}$	M1			
	$\rightarrow 4\sin^2 x = 1$ $\sin x = \pm \frac{1}{\sqrt{2}}$	A1	correct sim	plified equati	on
	$\sqrt{2}$ $x = 135^{\circ}, 225^{\circ}$	A1, A1			
9 (i)	$f(x) = 3x^{2} + 12x + 2 = 3(x + 2)^{2} - 10$ a = 3 b = 2 c = -10	B1 B1 B1			
(ii)	minimum $f(x) = -10$ at $x = -2$	B1FT B1FT			
(iii)	$f\left(\frac{1}{y}\right) = 0 \rightarrow \left(\frac{1}{y}\right) = (\pm)\sqrt{\frac{10}{3}} - 2$	M1	obtain expl	icit expressio	on for $\frac{1}{y}$ or y
	y = -5.74, -0.26	A1, A1			

Page 5	Mark Scheme Syllabus Paper				
	Cambridge IGCSE – October/Nover	mber 201	5 0606 23		
10 (i)	$\frac{d}{dx}(e^{2-x^2}) = -2xe^{2-x^2}$	B1	<i>k</i> = -2		
(ii)	$-\frac{3e^{2-x^2}}{2}+c$	M1	De^{2-x^2} $D = \frac{-3}{2} \text{ or } \frac{3}{k}$		
		A1FT	$D = \frac{1}{2}$ or $\frac{1}{k}$		
(iii)	$\left[\left[-\frac{3e^{2-x^2}}{2} \right]_{1}^{\sqrt{2}} = -\frac{3}{2} + \frac{3}{2}e^{-\frac{3}{2}x^2} + \frac{3}{2}e^{-\frac{3}{2}$	M1	insert limits on <i>their</i> (ii) and subtract		
	2.58	A1			
(iv)	$y = 3xe^{2-x^2}$	M1 A1	product rule		
	$\frac{dy}{dx} = 3x(-2xe^{2-x^2}) + 3e^{2-x^2}$				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \rightarrow x = \pm \frac{1}{\sqrt{2}} = \pm 0.707$	A1	both x or a pair		
	$\begin{bmatrix} -\frac{3e^{2-x^2}}{2} \end{bmatrix}_{1}^{\sqrt{2}} = -\frac{3}{2} + \frac{3}{2}e$ 2.58 $y = 3xe^{2-x^2}$ $\frac{dy}{dx} = 3x(-2xe^{2-x^2}) + 3e^{2-x^2}$ $\frac{dy}{dx} = 0 \rightarrow \qquad x = \pm \frac{1}{\sqrt{2}} = \pm 0.707$ $y = \pm \frac{3}{\sqrt{2}}e^{1.5} = \pm 9.51$ $\log N = \log A - t \log b$	A1	both <i>y</i>		
11 (i)	$\log N = \log A - t \log b$	B1			
(ii)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 M1	find logs of N plot log N or ln N against t or $-t$		
		A1	straight line passing through five		
			points		
(iii)	gradient = $-\log b = \frac{2.415 - 3.3}{5} \rightarrow b = 1.5$	DM1	set gradient = $-\log b$ and solve		
	intercept = $\log A = 3.47 \rightarrow A = 2950$	DM1 A1	set intercept = log <i>A</i> and solve both values correct		
(iv)	$t = 10 \rightarrow N = \frac{2950}{1.5^{10}} = 51$	B1			
(v)	$N = 10 \rightarrow 1.5^{t} = 295 \rightarrow t = \frac{\log 295}{\log 1.5}$	M1	substitute $N = 10$, their A, b into given or transformed equation		
	= 14 years	A1			

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	23

12	$v_{p} = \begin{pmatrix} 250\cos 20^{\circ} \\ 250\sin 20^{\circ} \end{pmatrix}, v_{r} = \begin{pmatrix} V\cos 30^{\circ} \\ V\sin 30^{\circ} \end{pmatrix}, v_{w} = \begin{pmatrix} 0 \\ w \end{pmatrix}$	B1	
	$ v_r = v_p + v_w \begin{pmatrix} V\cos 30^\circ \\ V\sin 30^\circ \end{pmatrix} = \begin{pmatrix} 250\cos 20^\circ \\ 250\sin 20^\circ \end{pmatrix} + \begin{pmatrix} 0 \\ w \end{pmatrix} $		
	$V = \frac{250\cos 20^{\circ}}{\cos 30^{\circ}}$ $= 271 \text{km/hr}$	M1 A1	equate x components and solve
	$w = V \sin 30^\circ - 250 \sin 20^\circ$ $= 50.1 \text{ km/hr}$	M1 A1	equate y components and solve
	OR triangle with sides $250 V w$ opposite angles $60^{\circ} 110^{\circ} 10^{\circ}$	B1	
	sine rule: $\frac{w}{\sin 10^{\circ}} = \frac{250}{\sin 60^{\circ}}$ $w = 50.1 \text{ km/hr}$	M1 A1	apply to correct triangle and solve
	$\frac{V}{\sin 110^{\circ}} = \frac{250}{\sin 60^{\circ}}$ $V = 271 \text{ km/hr}$	M1 A1	apply to correct triangle and solve

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/21

Paper 2 (Paper 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	21

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1	(a)	$\frac{\log_3 x}{\log_3 27}$ $\frac{\log_3 x}{3}$ isw	M1 A1	Can use other interim bases if all correct but M1 when in base 3 only NOT $\log_3 x \div 3$
	(b)	$\log_a 15 - \log_a 3 = \log_a 5 \text{ soi}$	M1	
		$\log_a 5^3$ or $\log_a a$	M1	
		$\log_a y = \log_a 125a \implies y = 125a$	A1	
2	(a)	[f(x)=]2x-4 and $[f(x)=]-2x+4$	B1,B1	Condone $y = \dots$
	(b)		B1 B1 B1	correct shape; y intercept marked or seen nearby; intent to tend to $y = 3$ (i.e. not tending to or cutting x-axis)
3	(a)	$\mathbf{A} = \frac{1}{4} \begin{bmatrix} 51 & -8 & 19\\ 31 & 2 & 65 \end{bmatrix} - \begin{pmatrix} 20 & 0 & -5\\ 15 & -10 & 25 \end{bmatrix}$	M1	
		$\mathbf{A} = \begin{pmatrix} 8 & -2 & 6 \\ 4 & 3 & 10 \end{pmatrix}$	A1	Integer values
	(b) (i)	The (total) value of the stock in each of the 3 shops	B1	Must have "each" oe
	(ii)	The total value of the stock in all 3 shops	B1	Must have "total" oe

Page 3Mark SchemeSyllabusPaperCambridge IGCSE – May/June 2015060621

4	(i)	$\frac{PT}{8} = \tan\left(\frac{3\pi}{8}\right) \text{ oe}$	M1	$\frac{PT}{\sin\frac{3\pi}{8}} = \frac{8}{\sin\frac{\pi}{8}}$
		<i>PT</i> =19.3	A1	awrt 19.3
	(ii)	$\frac{1}{2} \times 8^2 \times \frac{3\pi}{4}$ oe (75.4)	M1	or $\frac{1}{2} \times 8^2 \times \frac{3\pi}{8}$
		$8 \tan\left(\frac{3\pi}{8}\right) \times 8 - their \text{ sector } \text{ oe } (=154.5-`75.4`)$	M1	$8 \times their PT - their sector$
		79.1	A1	awrt 79.1
	(iii)	$8\left(\frac{3\pi}{4}\right) \text{ oe } (18.8)$ $\left[6\pi + 16\tan\left(\frac{3\pi}{8}\right)\right] = 57.5$	M1	
		$\left[6\pi + 16\tan\left(\frac{3\pi}{8}\right)\right] = 57.5$	A1	Accept 57.4 to 57.5
5	(a)	Permutation because the order matters oe	B1	
	(b) (i)	${}^{6}C_{4} + {}^{5}C_{4} + {}^{7}C_{4}$ 55	M1 A1	3 correct terms added
	(ii)	$^{2}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}$ 420	M1 A1	4 correct terms multiplied
	(iii)	${}^{6}C_{3} \times {}^{2}C_{1}$ or ${}^{2}C_{2} \times {}^{5}C_{1} \times {}^{6}C_{1}$	M1	for either correct product
		summation 70	M1 A1	adding two correct products
				If 0 scored, then SC1for 1,1,1,0 and 0,0,2,1 seen
6	(i)	$2t^2 - 14t + 12 = 0$	M1	Can use formula, etc.
		(t-1)(t-6) oe (t=) 1	A1	If $t = 1$ with no working, then M1A1
	(ii)	$\int (2t^2 - 14t + 12) \mathrm{d}t$	M1	
		$2t^{2} - 14t + 12 = 0$ (t-1)(t-6) oe (t=) 1 $\int (2t^{2} - 14t + 12) dt$ (s=) $\frac{2t^{3}}{3} - \frac{14t^{2}}{2} + 12t$	A2,1,0	-1 for each error or for $+c$ left in or limits introduced
	(iii)	$(a=)\frac{dv}{dt}$ (4t-14) [4(3)-14=]-2 cao	M1	
		[4(3) - 14 =] -2 cao	A1	

	Page 4	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – May/Jun	e 2015	0606 21
7	(a)	$\overrightarrow{AB} = 15\mathbf{b} - 5\mathbf{a} = 5(3\mathbf{b} - \mathbf{a})$ or	B1	Any correct simplified vector
		$\overrightarrow{BC} = 24\mathbf{b} - 3\mathbf{a} - 15\mathbf{b} = 3(3\mathbf{b} - \mathbf{a})$ or	B1	Any second simplified vector
		$\overrightarrow{AC} = 24\mathbf{b} - 3\mathbf{a} - 5\mathbf{a} = 8(3\mathbf{b} - \mathbf{a})$		
		Comment: e.g. the vectors are scalar multiples of each other AND they have a common point (A , B or C as appropriate)	B1dep	Dep on both B marks being awarded.
	(b) (i)	2 i + 11 j soi	B1	
		$\Rightarrow \sqrt{2^2 + 11^2}$		
		$\sqrt{125}$ or $5\sqrt{5}$ or 11.2 (3 s.f.) or better)	B1fT	ft <i>their</i> $2\mathbf{i} + 11\mathbf{j}$ (not \overrightarrow{OP} or \overrightarrow{OQ})
	(ii)	$\frac{1}{5\sqrt{5}} (2\mathbf{i} + 11\mathbf{j}) \text{ isw}$	B1fT	ft <i>their</i> answers from (i)
	(iii)	$\frac{\mathbf{i} - 4\mathbf{j} + 3\mathbf{i} + 7\mathbf{j}}{2} \text{or} \mathbf{i} - 4\mathbf{j} + \frac{2\mathbf{i} + 11\mathbf{j}}{2} \text{or}$	M1	
		$3\mathbf{i}+7\mathbf{j}-\frac{2\mathbf{i}+11\mathbf{j}}{2}$		
		2 i +1.5 j	A1	
8	(a) (i)	$ke^{4x+3}(+c)$ oe	M1	any constant, non-zero k
		$k = \frac{1}{4} \text{ oe}$	A1	
	(ii)	$\frac{1}{4} \left(e^{4(3)+3} - e^{4(2,5)+3} \right) \text{ or better}$	DM1	ft their integral attempt
		706650.99 = 707000 to 3 sf or better	A1	Accept $\frac{1}{4} \left(e^{15} - e^{13} \right)$
	(b) (i)	$k\sin\left(\frac{x}{2}\right)$ (+ c)	M1	any constant, non-zero k
		k=3	A1	
	(ii)	$k \sin\left(\frac{x}{3}\right) (+c)$ k = 3 $3 \sin\left(\frac{\pi}{6} \times \frac{1}{3}\right) - 3\sin(0)$	DM1	Dep on <i>their</i> integral attempt in sin; condone omission of lower limit
		0.520944 = 0.521 to 3 sf or better	A1	Accept $3\sin\left(\frac{\pi}{18}\right)$
	(c)	$\int \left(x^{-2} + 2 + x^2\right) dx = \frac{x^{-1}}{-1} + 2x + \frac{x^3}{3}$	B1 M1 A1	Expands – accept unsimplified integration of <i>their</i> 3 term expansion Fully correct
		+c	AI B1	+ c
				~

	Page 5	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – May/Jun	e 2015	0606 21
9	(a)	$(4x-1)(x+5) [\leqslant 0]$	M1	Solves quadratic
		critical values $\frac{1}{4}$ and -5 soi	A1	
		$-5 \leqslant x \leqslant \frac{1}{4}$	A1	Accept: $\left[-5, \frac{1}{4}\right]$; $-5 \le x$ AND $x \le 0.25$
	(b) (i)	$(x+4)^2 - 25$ or $a = 4$ and $b = -25$	B1, B1	
	(ii)	(Greatest value =) 25 x = -4	B1ft B1ft	Must be clear
	(iii)		B1 B1	Correct shape with maximum in second quadrant and crossing positive and negative axes correctly All 3 intercepts correctly shown on graph
10	(i)	$\ln y = \ln(Ab^{x}) \implies \ln y = \ln A + \ln b^{x}$ $\implies \ln y = \ln A + x \ln b$	M1 A1	
	(ii)	$\ln A = 11.4 \Longrightarrow A = e^{iheir 11.4}$	M1	condone misread of scale for M1 (11.2
		$A = 90000 \text{ cao}$ $\ln b = -1$ $b = 0.4 \text{ cao}$	A1 M1 A1	only) Allow awrt –1
	(iii)	$x = 2.5 \implies \ln y = 9$ $y = e^9 \text{ or } 8000 \text{ to } 1 \text{ sf}$	M1 A1	Allow awrt 8100
11	(i)	7 - x, x, 6 - x oe	B1	
		<i>their</i> attempt at $7-x+x+6-x+16=25$ oe	M1	
		x = 4	A1	Condone $x = 4$ for all 3 marks
	(ii)	23 - y, y, 9 - y oe	B1	or $n(A \cup C) = 48 - 16 = 32$
		48 = 30 + 25 + 15 - 7 - 6 - (their 4 + y) + their 4 oe soi	M1	or $32 = 30 + 15 - (their 4 + y)$ or $48 = (23 - y) + 3 + 16 + y + 4$ + 2 + (9 - y)
		<i>y</i> = 9	A1	Condone $y = 9$ for all 3 marks
	(iii)	$n(C) = 15 \text{ and } y + n(B \cap C) = 9 + 6 = 15$ [and so $A' \cap B' \cap C = \emptyset$].	B1	or equivalent deduction

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0606	22

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

1	(i)	$ \begin{array}{c} $	B3,2,1,0	2 correctly placed in Venn diagram; 1, 3, 4, 6 correctly placed; 12, 8, 0, 7, 9, 10 correctly placed; 11, 5 correctly placed
	(ii)	3	B1ft	correct or correct ft <i>their</i> (i), provided non-zero
	(iii)	{4, 6}	B1ft	correct or correct ft <i>their</i> (i), provided not the empty set
2	(i)	$[\mathbf{P} =] \begin{pmatrix} 60 & 70 & 58 \\ 50 & 52 & 34 \end{pmatrix}$ and $[\mathbf{Q} =] (120 300)$	B2	or $[\mathbf{P} =] \begin{pmatrix} 50 & 52 & 34 \\ 60 & 70 & 58 \end{pmatrix}$ and $[\mathbf{Q} =] (300 120)$
	(ii)	(22200 24000 17160)	B2	or B1 if one error may be written as an unevaluated product; B0 if choice of P and Q offered must have brackets and must not have commas; must be a 1 by 3 matrix; must be from correct product; working may be seen in (i) or B1 for any two elements correct
	(iii)	The total (amount of revenue) from all (three) flights. oe	B1	do not accept, e.g. The total amount from each flight; must be a comment not just a figure; must not contain a contradiction

Page 3	Mark Scheme	Syllabus Paper	
	Cambridge IGCSE – May	June 201	5 0606 22
3 (i)	$\frac{\left(36+15\sqrt{5}\right)}{\left(6+3\sqrt{5}\right)} \times \frac{\left(6-3\sqrt{5}\right)}{\left(6-3\sqrt{5}\right)} \text{ oe}$	M1	or $\frac{\left(12+5\sqrt{5}\right)}{\left(2+\sqrt{5}\right)} \times \frac{\left(2-\sqrt{5}\right)}{2-\sqrt{5}}$ oe
	$\frac{216 + 90\sqrt{5} - 108\sqrt{5} - 225}{-9}$	DM1	or $\frac{24+10\sqrt{5}-12\sqrt{5}-25}{-1}$
	$1 + 2\sqrt{5}$ cao	A1	or $-(24+10\sqrt{5}) - 12\sqrt{5} - 25$
	1 + 2 \ 5 \ \ \ 6 \ \ 1 \ \ 6 \	AI	allow $a = 1$ and $b = 2$
	Alternative method: $36 + 15\sqrt{5} = (6a + 15b) + (3a + 6b)\sqrt{5}$	M1	
	6a + 15b = 36 3a + 6b = 15	DM1	
	a = 1 and $b = 2$	A1	or $1 + 2\sqrt{5}$
(ii)	$\left[AC^{2} = \left(6 + 3\sqrt{5}\right)^{2} + their\left(1 + 2\sqrt{5}\right)^{2}\right]$ = 36 + 36\sqrt{5} + 45 + their\left(1 + 4\sqrt{5} + 20\right)	M1	correct or correct ft expansions, using Pythagoras with $(6+3\sqrt{5})$ and <i>their BC</i>
	$= 36 + 36\sqrt{5} + 45 + their(1 + 4\sqrt{5} + 20)$		
	$102 + 40\sqrt{5}$ cao	A1	ignore attempts to square root after correct answer seen
4 (i)			Alternatively
	$\cos(x) = \frac{2}{3}$ oe soi	M1	$\sin(y) = \frac{2}{3}$ oe soi
	48.189° or 131.810° or 0.8410 rad or 2.3(00) rad oe isw	A1	41.810° or 0.7297 or 0.73(0) rad oe isw
	with reference axis indicated by comment, e.g. "to the bank" or "upstream", etc. or clearly marked on a diagram		with reference axis indicated by comment, e.g. "to the perpendicular with the bank", etc. or clearly marked on a diagram
			If M0 then SC1 for an unsupported answer of 138.189° or 2.4118 rad or 318.189° or 5.5534 rad with reference axis indicated by comment, e.g. "on a bearing of" or "from North" or clearly marked on a diagram

Page 4	Mark Scheme	5 Syllabus	Paper	
	Cambridge IGCSE – May/June 2015			22
(ii)	Speed = $\sqrt{9-4} \left(=\sqrt{5}\right)$ or $3\sin 48.2$ or	B1	Or Distance $=\frac{80}{\sin 48.2}=107.$	(33)
	$2 \tan 48.2 \text{ or } 3\cos 41.8 \text{ or } \frac{2}{\tan 41.8} \text{ or}$			oe soi
	$\sqrt{2^2 + 3^2 - 2 \times 2 \times 3 \cos 48.2}$ oe			
	or 2.236(0) rot to 4 or more figs or 2.24 [m/s] soi			
	time = $\frac{80}{their \sqrt{5}}$ oe	M1	time = $\frac{their 107.33}{3}$	
	35.66 to 35.8 (seconds) oe	A1	ignore subsequent rounding or conversion to, e.g. minutes but answer spoiled by continuation	A0 if
			if no working, so B0 M0, then for an answer 35.66 to 35.8 oe	
5	Substitution of either $4 - x$ or $4 - y$ into equation of curve and brackets expanded	M1	condone one sign error or slip equation of curve or expansion brackets; condone omission of 4 - x or $4 - y$ must be correct	n of
	$12x^2 - 52x + 48 = 0$ or $12y^2 - 44y + 32 = 0$ oe	A1		
	Solve their 3-term quadratic	M1	dep on a valid substitution atte	mpt
	$x = \frac{4}{3}$ and 3 isw	A1	or $x = \frac{4}{3}$ $y = \frac{8}{3}$	
	5		not from wrong working	
	$y = \frac{8}{3}$ and 1 isw	A1	or $x = 3$ $y = 1$ not from wrong working	
			if no working, allow full mark correct answer only.	s for fully
6 (a)	$(x-2) \log 6 = \log \left(\frac{1}{4}\right)$ oe or $\log_6 \left(\frac{1}{4}\right) = x - 2$ oe	M1	or $x \log 6 = \log\left(\frac{36}{4}\right)$ oe	
	$\log_6\left(\frac{1}{4}\right) = x - 2 \text{ oe}$		or $x \log 6 - \log 36 = \log 1 - \log 1$	g4 oe
	1.23 or 1.226(29) rot to 4 or more figures isw	A1	correct answer or 1.22 implies	M1

Page 5	Mark Scheme			Syllabus	Paper
	Cambridge IGCSE – May/June 2015			0606	22
(b)	Method 1 $\log\left(\frac{8 \times 2y^2 \times 16y}{64y}\right) = \log 4^2 \text{ oe}$	В3	or B2 if at most o or B1 if at most t steps	wo errors or c	
	y = 2	B1	not from wrong v	vorking	
	Method 2 $\log 2 + 2 \log y + 3 \log 2 + 4 \log 2 + \log y - 6 \log 2 - \log y = 4 \log 2$	B3,2,1,0	<u>LHS terms</u> $log 2y^2 = log 2 + 1$ log 8 = 3 log 2; log 16y = 4 log 2 + 1 -log 64y = -6 log <u>RHS term</u>	$+\log y;$	
	<i>y</i> = 2	B1	$2\log 4 = 4\log 2$ not from wrong v	vorking	
7	$\frac{n(n-1)(n-2)(n-3)(2^4)}{4\times 3\times 2\times 1} = 10\frac{n(n-1)(2^2)}{2\times 1}$ or better	M3	condone omitting $n-1$; must have		
			M2 if one slip/on or M1 if two slips		
			or B1 for $\frac{n(n-1)}{2}(2$	$(x^2)^2 [x^2]$ seen	
			and B1 for $\frac{n(n-1)(n-1)}{2}$		$4 \left[x^4 \right]$
	$n^2 - 5n - 24 = 0$ oe	A1	seen equivalent must b $n^2 - 5n = 24$	be 3-terms, e.g	<u>7</u> .
	(n+3)(n-8) = 0	M1	or any valid meth 3-term quadratic	nod of solution	n for their
	n = 8 only	A1	A0 if -3 also give not discarded If zero scored, all unsupported or w	low SC1 for n	= 8

Page 6	Mark Scheme		Syllabus Paper	
	Cambridge IGCSE – May	5 0606 22		
0				
8	Method 1 (Separate areas subtracted)			
	$[x_B = x_C =]$ 7 soi	B1		
	$\left[\int (x^2 - 6x + 10) dx = \right] \frac{x^3}{3} - \frac{6x^2}{2} + 10x$	M2	or M1 for at least one term correct	
	Correct or correct ft substitution of limits 0 and <i>their</i> 7 into <i>their</i> $\left[\frac{x^3}{3} - \frac{6x^2}{2} + 10x\right]$	DM1	dep on at least M1 being earned; evidence of substitution must be seen in <i>their</i> integral which must be at least two terms; condone omission of lower limit;	
	$\frac{1}{2}(10+17) \times 7 \text{ oe or}$ $\int_{0}^{7} (x+10) dx = \left[\frac{x^{2}}{2} + 10x\right]_{0}^{7} = \frac{(7)^{2}}{2} + 10(7)$ oe	B2	or M1 for $\frac{1}{2}(their \ 10 + their \ 17) \times their \ 7 \text{ oe}$ or B1 for $\int (x+10) dx = \frac{x^2}{2} + 10x$	
	$their\left(\frac{189}{2} - \frac{112}{3}\right)$	M1	dep on a genuine attempt to integrate the equation of the curve; must be <i>their</i> area trapezium/under the line – <i>their</i> attempt at area under curve	
	$\frac{343}{6}$ or 57 $\frac{1}{6}$ or 57.2 to 3 sf or 57.16(6) rot to 4 figs isw	A1	from full and correct working with no omitted steps	
	Method 2 (Subtracting and using integration once)			
	$\left[x_B = x_c = \right]$ 7 soi	B1		
	$\int \left(-x^2 + 7x\right) dx$	B1	condone omission of dx	
	$\int \left(-x^2 + 7x\right) dx$ $\left[-\frac{x^3}{3} + \frac{7x^2}{2}\right] \text{ oe or } \left[\frac{x^3}{3} - \frac{7x^2}{2}\right] \text{ oe }$	M3	or M2 for $\int (px^{2} + qx) dx = \frac{px^{3}}{3} + \frac{qx^{2}}{2}$ or either with $p = \pm 1$ or $q = \pm 7$	
	Correct or correct ft substitution of limits 0 and <i>their</i> 7 into <i>their</i> $\left[-\frac{x^3}{3} + \frac{7x^2}{2}\right]$	M2	or M1 for $\int (px^2 + qx) dx = \frac{px^3}{3} + \frac{qx^2}{2}$ with non-zero constants <i>p</i> and <i>q</i> , with $p \neq \pm 1$ and $q \neq \pm 7$ dep on a valid integration attempt; evidence of substitution must be seen; condone omission of lower limit;	
	$\frac{343}{6}$ or 57 $\frac{1}{6}$ or 57.2 to 3 sf or 57.16(6) rot to 4 figs isw	A1	from full and correct working with no omitted steps	

Page 7	Mark Scheme	Syllabus	Paper		
	Cambridge IGCSE – May	5	0606	22	
9 (i)	10 = 2m + 4 soi	M1	or $[m=]\frac{10-4}{2-0}$ of	e soi	
	m = 3	A1			
(ii)	1	B1			
(iii)	$\frac{10 - y_R}{2 - 1} = 1$ oe soi	M1	or $y = x + 8$ oe		
	(-1, 7) or $x = -1$ and $y = 7$	A1	if $y = 7$ only state x = -1 is soi in we	-	
			if M0 then B1 for working	y = 7 only w	rith no
(iv)	Use of $m_1 m_2 = -1$ with <i>their m</i> from (i)	M1	may be implied b seen in equation		lar gradient
	$y - 10 = \left(their - \frac{1}{3}\right)(x - 2)$	A1	or $\left(their - \frac{1}{3}\right)x + 10 = \left(their - \frac{1}{3}\right)2$	c and	
			, ,		
	3y + x = 32 isw	A1	allow for correct coefficients in any		
(v)	$\left(\frac{1}{2}, their\frac{11}{2}\right)$ oe isw	B1,B1ft	ft <i>their</i> y_Q		
			or M1 for $\left(\frac{2-1}{2}\right)$,	$\left(\frac{10+1}{2}\right)$ seen	
(vi)	4.5 oe cao	B2	not from wrong w	vorking	
			or M1 for any con coordinates	rrect method	with correct
10 (a)		B2,1,0	correct sinusoidal shape, all above x all maximum poin	c-axis with in	tent to have
	<i>o</i> 90 180 270 360		2 maximum point height only over (l equal
			all max points cle	early at $y = 1$;	
			cusp at 180		

(b)(i) $\left[hg(x) = \right] \frac{e^{\ln(4x-3)} + 3}{4}$	M1	Alternative method $y = \ln(4x - 3)$ and change of subject to x
	fully correct and completion to $[hg(x) =] x$	A1	fully correct and comment that $h(x) = g^{-1}(x)$ oe
(ii	y = h(x) y = g(x) 1	B2,1,0	correct shape; 1 marked on the <i>y</i> -axis or (0, 1) stated close by; curve with positive gradient in first quadrant only
(iii	$x \ge 0 \text{ or } [0,\infty)$	B1	not domain ≥ 0
(iv	$y \ge 1 \text{ or } [1,\infty)$	B1	or $h(x) \ge 1$, $h \ge 1$ etc.
11 (i)	$\frac{8-h}{8} \text{ or } 8:8-h \text{ soi}$	M1	or $\frac{8}{8-h}$ or $8-h$: 8 soi
	$\frac{8-h}{8} \times 4$ oe	A1	or $4 \div \frac{8}{8-h}$ oe
	$h\left(\frac{8-h}{8}\times4\right)^2$ oe	M1	<i>h</i> must be in the numerator of the expression for this mark;
	expand and simplify to $\frac{h^3}{4} - 4h^2 + 16h$ AG	A1	
(ii)	$\frac{3}{4}h^2 - 8h + 16$ oe	B1	
	their $\left(\frac{3}{4}h^2 - 8h + 16\right) = 0$ and attempt to solve	M1	must be a 3-term quadratic; must be an attempt at a derivative
	$\frac{8}{3}$ oe only	A2	or A1 for $h = \frac{8}{3}$ and 8
			allow 2.67 or 2.66(6) rot to 4 or more figs for $\frac{8}{3}$

Page 9	Mark Scheme	Syllabus Paper	
	Cambridge IGCSE – May	/June 201	5 0606 22
12 (i)	-120 + 104 + 22 - 6 = 0	B1	or correct synthetic division
	or correct unsimplified form, e.g. $15(-2)^3 + 26(-2)^2 - 11(-2) - 6 = 0$ or 15(-8) + 26(4) - 11(-2) - 6 = 0		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(ii)	Substituting $x = 3$ into $15x^3 + 26x^2 - 11x - 6$	M1	or correct synthetic division $3 \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	600	A1	correct answer implies M1; must be explicitly identified as answer if using synthetic/long division methods by e.g. circling
(iii)	$(x-1)(15x^3+26x^2-11x-6)$ soi	B1	by inspection or division; may be implied by e.g. $(ax + b)(15x^3 + 26x^2 - 11x - 6)$ and $a = 1, b = -1$ seen in later work comparing coefficients
	Multiply out $(x \pm 1)(15x^3 + 26x^2 - 11x - 6)$ and compare coefficients of x^3 or x to quartic	M1	or multiply out, e.g. $(ax + b)(15x^3 + 26x^2 - 11x - 6)$ and compare coefficients of x^3 or x to quartic
	p = 11 $q = 5$	A1 A1	correct p or q implies M1; correct p and q www implies B1 M1

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2 (Paper 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – May/June 2015		23

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1	(a)	$\frac{\log_3 x}{\log_3 27}$ $\frac{\log_3 x}{3} \text{ isw}$	M1 A1	Can use other interim bases if all correct but M1 when in base 3 only NOT $\log_3 x \div 3$
	(b)	$\log_a 15 - \log_a 3 = \log_a 5 \text{ soi}$	M1	
		$\log_a 5^3$ or $\log_a a$	M1	
		$\log_a y = \log_a 125a \implies y = 125a$	A1	
2	(a)	[f(x)=]2x-4 and $[f(x)=]-2x+4$	B1,B1	Condone $y = \dots$
	(b)		B1 B1 B1	correct shape; y intercept marked or seen nearby; intent to tend to $y = 3$ (i.e. not tending to or cutting x-axis)
3	(a)	$\mathbf{A} = \frac{1}{4} \begin{bmatrix} 51 & -8 & 19\\ 31 & 2 & 65 \end{bmatrix} - \begin{pmatrix} 20 & 0 & -5\\ 15 & -10 & 25 \end{bmatrix}$	M1	
		$\mathbf{A} = \begin{pmatrix} 8 & -2 & 6 \\ 4 & 3 & 10 \end{pmatrix}$	A1	Integer values
	(b) (i)	The (total) value of the stock in each of the 3 shops	B1	Must have "each" oe
	(ii)	The total value of the stock in all 3 shops	B 1	Must have "total" oe

Page 3Mark SchemeSyllabusPaperCambridge IGCSE – May/June 2015060623

4	(i)	$\frac{PT}{8} = \tan\left(\frac{3\pi}{8}\right) \text{ oe}$	M1	$\frac{PT}{\sin\frac{3\pi}{8}} = \frac{8}{\sin\frac{\pi}{8}}$
		<i>PT</i> =19.3	A1	awrt 19.3
	(ii)	$\frac{1}{2} \times 8^2 \times \frac{3\pi}{4}$ oe (75.4)	M1	or $\frac{1}{2} \times 8^2 \times \frac{3\pi}{8}$
		$8 \tan\left(\frac{3\pi}{8}\right) \times 8 - their \text{ sector } \text{ oe } (=154.5-`75.4`)$	M1	$8 \times their PT - their sector$
		79.1	A1	awrt 79.1
	(iii)	$8\left(\frac{3\pi}{4}\right) \text{ oe } (18.8)$ $\left[6\pi + 16\tan\left(\frac{3\pi}{8}\right)\right] = 57.5$	M1	
		$\left[6\pi + 16\tan\left(\frac{3\pi}{8}\right)\right] = 57.5$	A1	Accept 57.4 to 57.5
5	(a)	Permutation because the order matters oe	B1	
	(b) (i)	${}^{6}C_{4} + {}^{5}C_{4} + {}^{7}C_{4}$ 55	M1 A1	3 correct terms added
	(ii)	$^{2}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}$ 420	M1 A1	4 correct terms multiplied
	(iii)	${}^{6}C_{3} \times {}^{2}C_{1}$ or ${}^{2}C_{2} \times {}^{5}C_{1} \times {}^{6}C_{1}$	M1	for either correct product
		summation 70	M1 A1	adding two correct products
				If 0 scored, then SC1for 1,1,1,0 and 0,0,2,1 seen
6	(i)	$2t^2 - 14t + 12 = 0$	M1	Can use formula, etc.
		(t-1)(t-6) oe (t=) 1	A1	If $t = 1$ with no working, then M1A1
	(ii)	$\int (2t^2 - 14t + 12) \mathrm{d}t$	M1	
		$2t^{2} - 14t + 12 = 0$ (t-1)(t-6) oe (t=) 1 $\int (2t^{2} - 14t + 12) dt$ (s=) $\frac{2t^{3}}{3} - \frac{14t^{2}}{2} + 12t$	A2,1,0	-1 for each error or for $+c$ left in or limits introduced
	(iii)	$(a=)\frac{dv}{dt}$ (4t-14) [4(3)-14=]-2 cao	M1	
		[4(3) - 14 =] -2 cao	A1	

	Page 4	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – May/June 2015		0606 23
7	(a)	$\overrightarrow{AB} = 15\mathbf{b} - 5\mathbf{a} = 5(3\mathbf{b} - \mathbf{a})$ or	B1	Any correct simplified vector
		$\overrightarrow{BC} = 24\mathbf{b} - 3\mathbf{a} - 15\mathbf{b} = 3(3\mathbf{b} - \mathbf{a})$ or	B1	Any second simplified vector
		$\overrightarrow{AC} = 24\mathbf{b} - 3\mathbf{a} - 5\mathbf{a} = 8(3\mathbf{b} - \mathbf{a})$		
		Comment: e.g. the vectors are scalar multiples of each other AND they have a common point (A , B or C as appropriate)	B1dep	Dep on both B marks being awarded.
	(b) (i)	2 i + 11 j soi	B1	
		$\Rightarrow \sqrt{2^2 + 11^2}$		
		$\sqrt{125}$ or $5\sqrt{5}$ or 11.2 (3 s.f.) or better)	B1fT	ft <i>their</i> $2\mathbf{i} + 11\mathbf{j}$ (not \overrightarrow{OP} or \overrightarrow{OQ})
	(ii)	$\frac{1}{5\sqrt{5}} (2\mathbf{i} + 11\mathbf{j}) \text{ isw}$	B1fT	ft <i>their</i> answers from (i)
	(iii)	$\frac{\mathbf{i} - 4\mathbf{j} + 3\mathbf{i} + 7\mathbf{j}}{2} \text{or} \mathbf{i} - 4\mathbf{j} + \frac{2\mathbf{i} + 11\mathbf{j}}{2} \text{or}$	M1	
		$3\mathbf{i}+7\mathbf{j}-\frac{2\mathbf{i}+11\mathbf{j}}{2}$		
		2i+1.5j	A1	
8	(a) (i)	$ke^{4x+3}(+c)$ oe	M1	any constant, non-zero k
		$k = \frac{1}{4} \text{ oe}$	A1	
	(ii)	$\frac{1}{4} \left(e^{4(3)+3} - e^{4(2,5)+3} \right) \text{ or better}$	DM1	ft <i>their</i> integral attempt
		706650.99 = 707000 to 3 sf or better	A1	Accept $\frac{1}{4} \left(e^{15} - e^{13} \right)$
	(b) (i)	$k\sin\left(\frac{x}{2}\right)$ (+ c)	M1	any constant, non-zero k
		k=3	A1	
	(ii)	$k \sin\left(\frac{x}{3}\right) (+c)$ k = 3 $3 \sin\left(\frac{\pi}{6} \times \frac{1}{3}\right) - 3\sin(0)$	DM1	Dep on <i>their</i> integral attempt in sin; condone omission of lower limit
		0.520944 = 0.521 to 3 sf or better	A1	Accept $3\sin\left(\frac{\pi}{18}\right)$
	(c)	$\int \left(x^{-2} + 2 + x^2\right) dx = \frac{x^{-1}}{-1} + 2x + \frac{x^3}{3}$	B1 M1 A1	Expands – accept unsimplified integration of <i>their</i> 3 term expansion Fully correct
		+ <i>c</i>	B1	+c
			BI	+C

	Page 5	Mark Scheme		Syllabus Paper
		Cambridge IGCSE – May/Jun	e 2015	0606 23
9	(a)	$(4x-1)(x+5) [\leqslant 0]$	M1	Solves quadratic
		critical values $\frac{1}{4}$ and -5 soi	A1	
		$-5 \leqslant x \leqslant \frac{1}{4}$	A1	Accept: $\left[-5, \frac{1}{4}\right]$; $-5 \le x$ AND $x \le 0.25$
	(b) (i)	$(x+4)^2 - 25$ or $a = 4$ and $b = -25$	B1, B1	
	(ii)	(Greatest value =) 25 x = -4	B1ft B1ft	Must be clear
	(iii)		B1 B1	Correct shape with maximum in second quadrant and crossing positive and negative axes correctly All 3 intercepts correctly shown on graph
10	(i)	$\ln y = \ln(Ab^{x}) \implies \ln y = \ln A + \ln b^{x}$ $\implies \ln y = \ln A + x \ln b$	M1 A1	
	(ii)	$\ln A = 11.4 \Longrightarrow A = e^{their 11.4}$	M1	condone misread of scale for M1 (11.2
		$A = 90000 \text{ cao}$ $\ln b = -1$ $b = 0.4 \text{ cao}$	A1 M1 A1	only) Allow awrt –1
	(iii)	$x = 2.5 \implies \ln y = 9$ $y = e^9 \text{ or } 8000 \text{ to } 1 \text{ sf}$	M1 A1	Allow awrt 8100
11	(i)	7 - x, x, 6 - x oe	B1	
		<i>their</i> attempt at $7-x+x+6-x+16=25$ oe	M1	
		x = 4	A1	Condone $x = 4$ for all 3 marks
	(ii)	23 - y, y, 9 - y oe	B1	or $n(A \cup C) = 48 - 16 = 32$
		48 = 30 + 25 + 15 - 7 - 6 - (their 4 + y) + their 4 oe soi	M1	or $32 = 30 + 15 - (their 4 + y)$ or $48 = (23 - y) + 3 + 16 + y + 4$ + 2 + (9 - y)
		<i>y</i> = 9	A1	Condone $y = 9$ for all 3 marks
	(iii)	$n(C) = 15 \text{ and } y + n(B \cap C) = 9 + 6 = 15$ [and so $A' \cap B' \cap C = \emptyset$].	B1	or equivalent deduction

MARK SCHEME for the March 2015 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2 (Paper 22), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE[®], components.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – March 2015	0606	22

1	(i)	4	B1	
		360	B1	or 2 7
	(ii)		DI	or 2π
	(iii)	-5 -5 -5 -5 -5 -5 -5 -5	B2	Correct symmetrical shape; one cycle; both maximums at 1 and minimum at –7
2	(a) (i)	$({}^{9}C_{3} =)$ 84	B1	
		$({}^{9}P_{5} =)$ 15120	B1	
	(b)	$\frac{2}{6} \times 6!$ or $5! + 5!$ oe	M1	or clear indication of method
		240	A1	
3		Eliminate <i>x</i> or <i>y</i>	M1	
		$3x^2 + 2x - 8 = 0 \text{ or } 12y^2 - 44y + 32 = 0 \text{ oe}$	A1	
		Factorise 3 term quadratic oe	M1	correct method
		$x = \frac{4}{3}$ and -2	A1	
		$y = \frac{8}{3}$ and 1	A1	Or allow A1 A1 for each (x, y) pair
				If second M0 then SC1 for one (x, y) pair found by inspection i.e. with no method or with no incorrect method shown

Page 3	Mark Scheme		Syllabus Paper
	Cambridge IGCSE – Ma	5 0606 22	
4 (i)	$\sin x (their(-\sin x)) + \cos x (their\cos x)$	M1	clearly applies correct form of product rule
	$-\sin^2 x + \cos^2 x \text{ oe}$	A1	
	$1-2\sin^2 x$ oe	A1	If M1 A0 A0 then allow SC1 for $\sin^2 x - \cos^2 x = 2\sin^2 x - 1$
	f (2)		
(ii)	$\int (1 - 2\sin^2 x) dx = \sin x \cos x (+c)$	M1	or $\int \sin^2 x dx = \frac{1}{2} \left(\int (-2\sin^2 x + 1) dx - \int 1 dx \right) dx$
			$\int \sin^2 x dx = \frac{1}{-2} \left(\int (-2\sin^2 x + 1) dx - \int 1 dx \right) oe$
	$-2\int \sin^2 x dx = \sin x \cos x - \int 1 dx$	M1	$\int \sin^2 x dx = \frac{1}{-2} \sin x \cos x - \frac{1}{-2} \int 1 dx$
	$\frac{x}{2} - \frac{1}{2}\sin x \cos x$ [+ c] oe isw	A1	
	2 2		
5 (i)	6i + 2j - (-2i + 17j)	B1	
	$= 8\mathbf{i} - 15\mathbf{j}$	DI	
(ii)	$\sqrt{their 8^2 + their (-15)^2}$	M1	
	$\frac{their(8i-15j)}{100}$	A1ft	ft their \overline{AB}
	their17		
(iii)	-2i + 17j + m(6i + 2j) leading to 17 + 2m = 0	M1	
	m = -8.5 oe	M1	
	-53i	A1	If M0 , allow SC1 for $6m - 2 = 0$ leading to 53.
			$\frac{53}{3}\mathbf{j}$
6 (i)	$15\pi = 20\theta$	M1	
	$\theta = \frac{3}{4}\pi$ or exact equivalent form isw	A1	
(ii)	Sector plus triangle approach:		Semicircle less segment approach:
. /	Area sector $=\frac{1}{2} \times 20^2 \times \left(their \frac{3}{4} \pi \right)$ soi	B1	Area sector = $\frac{1}{2} \times 20^2 \times \left(their \frac{1}{4} \pi \right)$ soi
	- (.)		
	Area triangle = $\frac{1}{2} \times 20^2 \times \sin\left(their\frac{1}{4}\pi\right)$ soi	B1	
	<i>their</i> sector area + <i>their</i> triangle area	M1	$\pi(20)^2$
	men sector area + men triangre area	1711	$\frac{\pi(20)^2}{2}$ - (<i>their</i> area sector - <i>their</i> area
	613 or 612.6(60254) rot to 4 sig figs	A1	triangle) soi

Page 4	Mark Scheme S		Paper
	Cambridge IGCSE – March 2015	0606	22

	, (-14 45)		
7 (i)	$\mathbf{A}^2 = \begin{pmatrix} -27 & 85 \end{pmatrix}$ seen	M1	condone one error
	$\mathbf{A}^{2} = \begin{pmatrix} -14 & 45\\ -27 & 85 \end{pmatrix} \text{ seen}$ $\begin{pmatrix} -11 & 50\\ -23 & 95 \end{pmatrix}$	A1	
(ii)	10	B1	
(iii)	$\frac{1}{their10} \text{ or } \begin{pmatrix} 10 & -5 \\ -4 & 3 \end{pmatrix} \text{ oe, seen}$	B1	
	$\frac{1}{10} \begin{pmatrix} 10 & -5 \\ -4 & 3 \end{pmatrix} \text{ oe isw}$	B1	
(iv)	$\mathbf{X} = \mathbf{B}^{-1}\mathbf{A}$ soi	M1	
	$\begin{pmatrix} 0.5 & 0 \\ -0.5 & 1 \end{pmatrix}$ oe	A1ft	ft their B ⁻¹
8 (i)	(4, 2)	B1	allow unsimplified
	$m_{AB} = \frac{3}{2} \Longrightarrow m_{Perp} = -\frac{2}{3}$	M1	allow arithmetic slips provided method is correct
	$y-2 = -\frac{2}{3}(x-4)$ oe 2x+3y=14	M1	ft their mid-point and perpendicular gradient
	2x + 3y = 14	A1	allow any correct equivalent form with integer <i>a</i> , <i>b</i> , <i>c</i>
(ii)	m_{AB} used $y + 2 = their \ m_{AB}(x - 10)$	M1 A1ft	
(iii)	$(10-6)^2 + (5-(-2))^2$ oe	M1	any valid method
	$\sqrt{65}$ or 8.0622577 rot to 3 or more sf	A1	
(iv)	$AC^2 = (2-10)^2 + (-1-(-2))^2$ and $AC^2 = BC^2 = 65$ or showing <i>C</i> lies on the perpendicular bisector of <i>AB</i> or showing line from <i>C</i> to (4, 2) is perpendicular to <i>AB</i>	B1	any valid method

Page 5	Mark Scheme		Paper
	Cambridge IGCSE – March 2015	0606	22

9 (i)	$k(2x+1)^{-3}$ $-8(2x+1)^{-3} \times 2 \text{ oe}$ $+ 2$ $their \frac{dy}{dx} = 0 \text{ and solves}$ $x = \frac{1}{2}, y = 2$	M1 A1 B1 M1 A1	
(ii)	$y = 4 \times \frac{1}{2} = 2$	B 1	or equivalent correct method
(iii)	$y = 4 \times \frac{1}{2} = 2$ $\int \left(\frac{4}{(2x+1)^2} + 2x\right) dx$ $4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{2} \text{ or better}$	M1	Alternative method: M1 for $\int \left(\frac{4}{(2x+1)^2} + 2x - 4x\right) dx$
	$4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{2}$ or better	A1	A1 for $4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{2} - 2x^2$ or better
	$\left[their \left(4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{2} \right) \right]_0^{their 0.5}$ Substitution of correct limits seen, leading	M1 A1	M1 for $\left[their \left(4 \times \frac{(2x+1)^{-1}}{-2} - \frac{2x^2}{2} \right) \right]_0^{their 0.5}$
	to $1\frac{1}{4}$		M1 for subst of <i>their</i> limits into <i>their</i> genuine attempt at an integralA1 for subst of correct limits into correct
	Shaded area = their $1\frac{1}{4}$ - their $\frac{1}{2}$ $\frac{3}{4}$	M1 A1	expression A1 for for $\frac{3}{4}$

Pa	ge 6				Syllabus	Paper
		Cambridge IGCSE – Ma	arch 201	5	0606	22
10 (a)(i)		B3	B1 correct shape B1 through (0, -4) B1 through (ln5, 0)		
	(ii)	$k \leq -5$	B1			
(b)	$\frac{1}{2}\log_a 2 + 3\log_a 2 - \log_a 2 \text{ or}$				
		$\log_a\left(2^{\frac{1}{2}} \times 2^3 \times 2^{-1}\right) \text{ oe }$	M1	condone one error		
		$2\frac{1}{2}\log_a 2$ oe	A1			
((c)	$\log_9 4x = \frac{\log_3 4x}{\log_3 9}$ or $\log_3 x = \frac{\log_9 x}{\log_9 3}$	B1	soi		
		$\log_3 x - \frac{\log_3 4x}{2} = 1$ or $\frac{\log_9 x}{\frac{1}{2}} - \log_9 4x = 1$	M1			
		$\log_3 \frac{x}{(4x)^{\frac{1}{2}}} = \log_3 3$ or $\log_9 \frac{x^2}{4x} = \log_9 9$ oe	M1			
		<i>x</i> = 36	A1			

Page 7	Mark Scheme			Syllabus	Paper
	Cambridge IGCSE – Mar	ch 2015		0606	22
11 (a)(i)	$v \operatorname{ms}^{4}$	B2	Horizontal line of deceleration corre on horizontal axis	ectly drawn;	
(ii)	$450 = \frac{1}{2} \times 30 \times k$	M1			
	$k = 30^{2}$	A1			
	$a = \frac{their30}{30}$	M1			
	$a = 1 [\mathrm{ms}^{-2}]$	A1			
(b)	$v = \int a dt = \int (3t^2 + 6) dt$ $(v =) t^3 + 6t + 5$	M1			
	$\left(v=\right)t^3+6t+5$	A2	A1 for two terms	correct	
	When $t = 3$, $v = 3^{3} + 6(3) + 5$	M1			
	50 [ms ⁻¹]	A1			

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/21

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	21

1 (a)		B1	
		B1	
(b)	No.in <i>H</i> only = $50 - x$; No in <i>F</i> only = $60 - x$ Sum: $50 - x + 60 - x + x + 30 - 2x = 98$ x = 14	B1 M1 A1	Both written or on diagram Add at least 3 terms each with <i>x</i> involved and equate to 98 soi
2	$9x^{2} + 2x - 1 < (x + 1)^{2}$ $8x^{2} < 2 \text{ oe isw}$ $-\frac{1}{2} < x < \frac{1}{2}$	M1 A1 A1	Expand and collect terms
3	$log_{2}(x+3) = log_{2} y+2 \rightarrow x+3 = 4y$ $log_{2}(x+y) = 3 \rightarrow x+y = 8$ x+3 = 4(8-x) $5x = 29 \rightarrow x = 5.8, \text{ oe}$ y = 2.2 oe	B1 B1 M1 A1 A1	Eliminate y or x from two linear three term equations

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	21

4 (i)	f(37) = 3 or gf(x) = $\frac{\sqrt{x-1}-3-2}{2(\sqrt{x-1}-3)-3}$	B1	
	$gf(37) = \frac{3-2}{6-3} = \frac{1}{3}$	B1	
(ii)	$y = \sqrt{x-1} - 3 \rightarrow (y+3)^2 = x-1$	M1	Rearrange and square in any order
	$(x+3)^2 + 1 = f^{-1}(x)$ oe isw	A1	Interchange <i>x</i> and <i>y</i> and complete
(iii)	$y = \frac{x-2}{2x-3}$		
	$2xy - 3y = x - 2 \rightarrow 2xy - x = 3y - 2$	M1	Multiply and collect like terms
	$\frac{3x-2}{2x-1} = g^{-1}(x)$ oe	A1	Interchange and complete Mark final answer
5 (i)	<i>B</i> = 900	B1	
(ii)	$B = 500 + 400e^2 = 3455 \text{ or } 3456 \text{ or } 3460$	B1	3455.6 scores B0
(iii)	$\left(\frac{\mathrm{d}B}{\mathrm{d}t}\right) = 80\mathrm{e}^{0.2t}$	B1	
	$t = 10 \rightarrow \frac{\mathrm{d}B}{\mathrm{d}t} = 80\mathrm{e}^2 = 591(/\mathrm{day})$	B1	awrt
(iv)	$10000 = 500 + 400e^{0.2t} \rightarrow e^{0.2t} = (23.75)$	M1	$e^{0.2t} = k$
	$0.2t = \ln 23.75$ t = 15.8 (days)	DM1	take logs: $0.2t = \ln k$
	(- 10.0 (udys)	A1	awrt

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	21

6 (i) $(x+2)^2 + x^2 = 10$ $x^2 + 2x - 3 = 0 \rightarrow (x+3)(x-1) = 0$ Points $(1, 3), (-3, -1)$ isw or elimination of x leads to $y^2 - 2y - 3 = 0$, then as above (ii) $m^2x^2 + 10mx + 25 + x^2 = 10$ $(m^2 + 1)x^2 + 10mx + 15 = 0$ $b^2 - 4ac = (0) \rightarrow 100m^2 - 60(m^2 + 1) = 0$ $m = \pm \sqrt{\frac{3}{2}}$ oe isw Alternative solution: $\frac{dy}{dx} = \frac{-x}{\sqrt{10-x^2}}$ or $\frac{dy}{dx} = -\frac{x}{y}$ Result: $y^2 = x^2 + 5y$ after inserted in $y = mx + 5$ Attempt to solve with $x^2 + y^2 = 10$ M1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B	
(ii) Points (1, 3), (-3, -1) isw or elimination of x leads to $y^2 - 2y - 3 = 0$, then as above (ii) $m^2 x^2 + 10mx + 25 + x^2 = 10$ $(m^2 + 1)x^2 + 10mx + 15 = 0$ $b^2 - 4ac = (0) \rightarrow 100m^2 - 60(m^2 + 1) = 0$ $m = \pm \sqrt{\frac{3}{2}}$ oe isw Alternative solution: $\frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^2}}$ or $\frac{dy}{dx} = -\frac{x}{y}$ Result: $y^2 = x^2 + 5y$ after inserted in $y = mx + 5$ the set of the solution is the set of the se	
(ii) $m^2 x^2 + 10mx + 25 + x^2 = 10$ $(m^2 + 1)x^2 + 10mx + 15 = 0$ $b^2 - 4ac = (0) \rightarrow 100m^2 - 60(m^2 + 1) = 0$ $m = \pm \sqrt{\frac{3}{2}}$ oe isw Alternative solution: $\frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^2}}$ or $\frac{dy}{dx} = -\frac{x}{y}$ Result: $y^2 = x^2 + 5y$ after inserted in $y = mx + 5$ x = x + 5y after inserted in $y = mx + 5x = x + 5y$ after inserted in $y = mx + 5$	
(ii) then as above $m^{2}x^{2} + 10mx + 25 + x^{2} = 10$ $(m^{2} + 1)x^{2} + 10mx + 15 = 0$ $b^{2} - 4ac = (0) \rightarrow 100m^{2} - 60(m^{2} + 1) = 0$ $m = \pm \sqrt{\frac{3}{2}} \text{ oe isw}$ Alternative solution: $\frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^{2}}} \text{ or } \frac{dy}{dx} = -\frac{x}{y}$ Result: $y^{2} = x^{2} + 5y \text{ after inserted in } y = mx + 5$ $m = x + 5 = 10$ B1	
$\begin{pmatrix} (m^{2} + 1)x^{2} + 10mx + 15 = 0 \\ b^{2} - 4ac = (0) \rightarrow 100m^{2} - 60(m^{2} + 1) = 0 \\ m = \pm \sqrt{\frac{3}{2}} \text{ oe isw} \\ \text{Alternative solution:} \\ \frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^{2}}} \text{ or } \frac{dy}{dx} = -\frac{x}{y} \\ \text{Result:} \\ y^{2} = x^{2} + 5y \text{ after inserted in } y = mx + 5 \\ \text{Alternative solution} = 160 \\ Alter$:
$b^{2} - 4ac = (0) \rightarrow 100m^{2} - 60(m^{2} + 1) = 0$ $m = \pm \sqrt{\frac{3}{2}} \text{ oe isw}$ Alternative solution: $\frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^{2}}} \text{ or } \frac{dy}{dx} = -\frac{x}{y}$ Result: $y^{2} = x^{2} + 5y \text{ after inserted in } y = mx + 5$ $b = x^{2} + 5y \text{ after inserted in } y = mx + 5$ $b = x^{2} + 5y \text{ after inserted in } y = mx + 5$:
$b^{2} - 4ac = (0) \rightarrow 100m^{2} - 60(m^{2} + 1) = 0$ $m = \pm \sqrt{\frac{3}{2}} \text{ oe isw}$ Alternative solution: $\frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^{2}}} \text{ or } \frac{dy}{dx} = -\frac{x}{y}$ Result: $y^{2} = x^{2} + 5y \text{ after inserted in } y = mx + 5$ $b = x^{2} + 5y \text{ after inserted in } y = mx + 5$ $b = x^{2} + 5y \text{ after inserted in } y = mx + 5$,
Alternative solution: $\frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^2}} \text{ or } \frac{dy}{dx} = -\frac{x}{y}$ Result: $y^2 = x^2 + 5y \text{ after inserted in } y = mx + 5$ $y = mx + 5$	
$\frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^2}} \text{ or } \frac{dy}{dx} = -\frac{x}{y}$ Result: $y^2 = x^2 + 5y$ after inserted in $y = mx + 5$ $\frac{dy}{dx} = -\frac{x}{y}$ B1 allow unsimplified	
Result: $y^2 = x^2 + 5y$ after inserted in $y = mx + 5$	
Result: $y^2 = x^2 + 5y$ after inserted in $y = mx + 5$	
$y^2 = x^2 + 5y$ after inserted in $y = mx + 5$	
Attempt to solve with $r^2 + v^2 = 10$	
Attempt to solve with $x^2 + y^2 = 10$ M1 Eliminate x or y	
$y = 2, x = \pm \sqrt{6}$ A1 both	
$m = \pm \frac{3}{\sqrt{6}}$ oe A1	
7 (i) $v = 2\cos t + 1$ B1mark final answer	
(ii) $2\cos t + 1 = 0$ M1 equate their v to zero (must be a differential) and attempt to solve to	find
$t = \frac{2\pi}{3}$ or 2.09 A1 an angle awrt	
(iii) $t = \frac{2\pi}{3} \rightarrow x = 2\sin\left(\frac{2\pi}{3}\right) + \frac{2\pi}{3} = 3.83 \text{ m}$ B1 awrt	
$a = -2\sin t$ B1ft ft <i>their</i> v (2 nd differential)	
$a = -2 \sin t$ $t = \frac{2\pi}{3}a = -\sqrt{3} = -\frac{1.73}{4} \text{ms}^{-2}$ B1ft ft <i>their</i> v (2 nd differential) DB1ft ft using <i>their</i> angle t in correct a average the transformation of	′rt
8 (i) $\frac{dy}{dx} = \frac{(2+x^2) \times 2x - x^2 \times 2x}{(2+x^2)^2} = \frac{4x}{(2+x^2)^2}$ M1 apply quotient or product rule unsimplified	
k = 4 k = 4 k = 4 does not need to be specifically identified	
(ii) $\int \frac{x}{(2+x^2)^2} dx = \frac{1}{4} \times \frac{x^2}{2+x^2} + (c) \text{ isw}$ B1 B1 B1 B1 B1 dentified $\frac{1}{their k} \times \text{ original function}$	

Page 5			Syllabus	Paper	
	Cambridge IGCSE – October/No	vember	2014	0606	21
0					
9	$(a+3\sqrt{5})^2 = a^2 + 3\sqrt{5}a + 3\sqrt{5}a + 45$ oe	B1	anywhere		
	Equate: $a^2 + a + 45 = 51$ and $6a - b = 0$	B1 B1			
	(a+3)(a-2) = 0	M1	Attempt to solve three term quadratic with integer coefficients obtained by		
	a = -3, 2 b = -18, 12	A1 A1	equating coeffs Both <i>a</i> s correct or one correct pair Both <i>b</i> s correct		
10 (i)	$\sec x \csc x = \frac{1}{\cos x \sin x}$	B1	anywhere		
	$\cot x = \frac{\cos x}{\sin x}$	B1	anywhere		
	LHS = $\frac{1 - \cos^2 x}{\cos x \sin x}$ oe	B1ft	correct addition of <i>their</i> terms		
	$=\frac{\sin^2 x}{\cos x \sin x} = \tan x \qquad \text{AG}$	B1	use of identity a	and cancel	
(ii)	$3\cot x - \cot x = \tan x \rightarrow 2\cot x = \tan x$	M1	equate and colle errors	ect like terms	, allow sign
	$\tan^2 x = 2 \text{ oe} x = 54.7, 125.3, 234.7, 305.3$	A1 A1 A1	2 values	und autor	
		AI	only 2 more val	ues. awrt	
11 (i)	Area of sector = $\frac{1}{2} \times x^2 \times 0.8 \left(= 0.4x^2 \text{ cm}^2\right)$	B1	anywhere	1	
	$SR = 5 \sin 0.8 (= 3.59)$ or $OR = 5 \cos 0.8 (= 3.48)$	B1	SR may be seen	in stated $\frac{1}{2}a$	b sin C
	Area of triangle =				
	$\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \mathrm{cm}^2$	M1	insert correct te	rms into corr	ect area
	$0.08x^2 = 6.247$	A1	formulae		
	$x = 8.837 \mathrm{cm}$ AG	A1			
(ii)	$SQ = 8.84 - 5 (= 3.84 \mathrm{cm})$				
	$PR = 8.84 - 5\cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})$	B1	two lengths from	n <i>SQ, PR, PQ</i>	2 awrt
	$PQ = 8.84 \times 0.8 (= 7.07 \mathrm{cm})$	B1	third length awr	t	
	Perimeter = 19.84 to 19.86 cm or rounded to 19.8 or 19.9	B 1	sum		
(iii)	Area $PQSR = 4 \times 6.247$	M1			
	$=25\mathrm{cm}^2$	A1	24.95 to 25		

Page 6	Mark Scheme			Syllabus	Paper	
	Cambridge IGCSE – October/November 2014			0606	21	
12 (i)	$f(2) = 3(2^3) - 14(2^2) + 32 = 0$ Or complete long division	B1				
(ii)	$f(x) = (x-2)(3x^2 - 8x - 16)$	M1 A1 M1	$3x^2$ and 16 8x and correct signs Factorise three term quadratic			
(iii)	f(x) = (x-2)(x-4)(3x+4) x = 2, 4	A1 B1	first 2 terms third term correct unsimplified			
(iv)	$\int 3x - 14 + \frac{32}{x^2} dx = 1.5x^2 - 14x - \frac{32}{x} (+ c)$ Area = $\left[1.5x^2 - 14x - \frac{32}{x} \right]_{0}^{4}$	B1 B1				
	$ \begin{array}{c} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline \end{array} \\ = (-) 2 \end{array} $	M1 A1	Limits of 2 and	4 and subtrac	t	

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	22

1 (a)		B1	
		B1	
(b)	No.in <i>H</i> only = $50 - x$; No in <i>F</i> only = $60 - x$ Sum: $50 - x + 60 - x + x + 30 - 2x = 98$ x = 14	B1 M1 A1	Both written or on diagram Add at least 3 terms each with <i>x</i> involved and equate to 98 soi
2	$9x^{2} + 2x - 1 < (x + 1)^{2}$ $8x^{2} < 2 \text{ oe isw}$ $-\frac{1}{2} < x < \frac{1}{2}$	M1 A1 A1	Expand and collect terms
3	$\log_{2}(x+3) = \log_{2} y+2 \rightarrow x+3 = 4y$ $\log_{2}(x+y) = 3 \rightarrow x+y = 8$ x+3 = 4(8-x) $5x = 29 \rightarrow x = 5.8, \text{ oe}$ y = 2.2 oe	B1 B1 M1 A1 A1	Eliminate y or x from two linear three term equations

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	22

4 (i)	f(37)=3 or gf(x) = $\frac{\sqrt{x-1}-3-2}{2(\sqrt{x-1}-3)-3}$	B1	
	$gf(37) = \frac{3-2}{6-3} = \frac{1}{3}$	B1	
(ii)	$y = \sqrt{x-1} - 3 \rightarrow (y+3)^2 = x-1$	M1	Rearrange and square in any order
	$(x+3)^2 + 1 = f^{-1}(x)$ oe isw	A1	Interchange <i>x</i> and <i>y</i> and complete
(iii)	$y = \frac{x-2}{2x-3}$		
	$2xy - 3y = x - 2 \rightarrow 2xy - x = 3y - 2$	M1	Multiply and collect like terms
	$\frac{3x-2}{2x-1} = g^{-1}(x)$ oe	A1	Interchange and complete Mark final answer
5 (i)	<i>B</i> = 900	B1	
(ii)	$B = 500 + 400e^2 = 3455 \text{ or } 3456 \text{ or } 3460$	B1	3455.6 scores B0
(iii)	$\left(\frac{\mathrm{d}B}{\mathrm{d}t}\right) = 80\mathrm{e}^{0.2t}$	B 1	
	$t = 10 \rightarrow \frac{\mathrm{d}B}{\mathrm{d}t} = 80\mathrm{e}^2 = 591(/\mathrm{day})$	B 1	awrt
(iv)	$10000 = 500 + 400e^{0.2t} \rightarrow e^{0.2t} = (23.75)$	M1	$e^{0.2t} = k$
	$0.2t = \ln 23.75$	DM1	take logs: $0.2t = \ln k$
	$t = 15.8 (\mathrm{days})$	A1	awrt

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	22

6 (i)	$(x+2)^2 + x^2 = 10$	B1	
	$x^{2} + 2x - 3 = 0 \rightarrow (x + 3)(x - 1) = 0$	M1	3 term quadratic with attempt to solve
	Points (1, 3), (-3, -1) isw	A1	both x or a pair
	or elimination of x leads to $y^2 - 2y - 3 = 0$,	A1	both y or second pair
	then as above		
(ii)	$m^2x^2 + 10mx + 25 + x^2 = 10$	B1	
	$(m^2 + 1)x^2 + 10mx + 15 = 0$		
	$b^2 - 4ac = (0) \rightarrow 100m^2 - 60(m^2 + 1) = 0$	M1 A1	attempt to use discriminant on three term quadratic. Allow unsimplified
	$m = \pm \sqrt{\frac{3}{2}}$ oe isw	A1	$cao \pm is required$
	Alternative solution:		
	$\frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^2}} \text{ or } \frac{dy}{dx} = -\frac{x}{y}$	B1	allow unsimplified
	Result: $x = x + y$		
	$y^2 = x^2 + 5y$ after inserted in $y = mx + 5$		
	Attempt to solve with $x^2 + y^2 = 10$	M1	Eliminate <i>x</i> or <i>y</i>
	$y = 2, x = \pm \sqrt{6}$	A1	both
	$m = \pm \frac{3}{\sqrt{6}}$ oe	A1	
7 (i)	$v = 2\cos t + 1$	B1	mark final answer
(ii)	$2\cos t + 1 = 0$	M1	equate their v to zero (must be a differential) and attempt to solve to find
	$t = \frac{2\pi}{3} \text{ or } 2.09$	A1	an angle awrt
(iii)	$t = \frac{2\pi}{3} \rightarrow x = 2\sin\left(\frac{2\pi}{3}\right) + \frac{2\pi}{3} = 3.83 \mathrm{m}$	B1	awrt
	$a = -2\sin t$	B1ft	ft <i>their</i> v (2 nd differential)
	$a = -2\sin t$ $t = \frac{2\pi}{3}a = -\sqrt{3} = -\frac{1.73}{4} \text{ms}^{-2}$	DB1ft	ft using <i>their</i> angle <i>t</i> in correct <i>a</i> awrt
8 (i)	$\frac{dy}{dx} = \frac{(2+x^2) \times 2x - x^2 \times 2x}{(2+x^2)^2} = \frac{4x}{(2+x^2)^2}$	M1 A1	apply quotient or product rule unsimplified
	k = 4	A1	<i>k</i> =4 does not need to be specifically identified
(ii)	$\int \frac{x}{(2+x^2)^2} dx = \frac{1}{4} \times \frac{x^2}{2+x^2} + (c) \text{ isw}$	B1 B1	$\frac{1}{their k}$ × original function

Cambridge IGCSE - October/November 20140606229 $(a + 3\sqrt{5})^2 = a^2 + 3\sqrt{5}a + 3\sqrt{5}a + 45$ oeB1anywhereEquate: $a^2 + a + 45 = 51$ and $6a - b = 0$ B1Attempt to solve three term quadratic with integer coefficients obtained by equating coeffs $(a + 3)(a - 2) = 0$ M1Attempt to solve three term quadratic with integer coefficients obtained by equating coeffs $(a + 3)(a - 2) = 0$ M1Attempt to solve three term quadratic with integer coefficients obtained by equating coeffs $a = -3, 2$ $b = -18, 12$ A1B0th as correct or one correct pair Both as correct or one correct pair Both bs correct10(i)seccosecx = $\frac{1}{\cos x \sin x}$ $\cos x \sin x$ B1anywhere $LHS = \frac{1 - \cos^2 x}{\cos x \sin x}$ $\cos x \sin x = \tan x$ B1anywhere(ii) $3 \cot x - \cot x = \tan x \rightarrow 2 \cot x = \tan x$ $x = 54.7, 125.3, 234.7, 305.3$ B1use of identity and cancel(iii) $3 \cot x - \cot x = \tan x \rightarrow 2 \cot x = \tan x$ $x = 54.7, 125.3, 234.7, 305.3$ B1anywhere 31 11(i)Area of sector = $\frac{1}{2} \times x^2 \times 0.8(-0.4x^2 \operatorname{cm}^2)$ $0.8x^2 = 6.247$ $x = 8.837 \operatorname{cm}$ B1anywhere 31 (iii) $SQ = 8.84 - 5(=3.84 \operatorname{cm})$ $PQ = 8.84 - 5(=3.84 \operatorname{cm})$ $PQ = 8.84 \times 0.8(-7.07 \operatorname{cm})$ B1insert correct terms into correct area formulae(iii) $SQ = 8.84 - 5(=3.84 \operatorname{cm})$ $PQ = 8.84 \times 0.8(-7.07 \operatorname{cm})$ B1two lengths from SQ , PR , PQ awrt third length awrt sum(iii) $Area PQSR = 4 \times 6.247$ $1.9.8 \operatorname{cm}$ B124.95 to 25	Page 5				Syllabus	Paper	
$ \begin{bmatrix} (a + 5\sqrt{5}) = a^2 + 3\sqrt{5}a + 5\sqrt{5}a + 45 \text{ see} \\ \text{Equate: } a^2 + a + 45 = 51 \\ \text{and } 6a - b = 0 \\ (a + 3)(a - 2) = 0 \\ (a + 3)(a - 2) = 0 \\ \text{MI} \\ a = -3, 2 \\ b = -18, 12 \\ \end{bmatrix} $ $ \begin{array}{l} Attempt to solve three term quadratic with integer coefficients obtained by equating coeffs Both as correct or one correct pair Both as correct or division and the process of the process of$		Cambridge IGCSE – October/No	vember	2014	0606	22	
$ \begin{bmatrix} (a + 5\sqrt{5}) = a^2 + 3\sqrt{5}a + 5\sqrt{5}a + 45 \text{ see} \\ \text{Equate: } a^2 + a + 45 = 51 \\ \text{and } 6a - b = 0 \\ (a + 3)(a - 2) = 0 \\ (a + 3)(a - 2) = 0 \\ \text{MI} \\ a = -3, 2 \\ b = -18, 12 \\ \end{bmatrix} $ $ \begin{array}{l} Attempt to solve three term quadratic with integer coefficients obtained by equating coeffs Both as correct or one correct pair Both as correct or division and the process of the process of$	0						
and $6a - b = 0$ (a + 3)(a - 2) = 0 a = -3, 2 b = -18, 12 10 (i) $seccosecx = \frac{1}{\cos x \sin x}$ $cot x = \frac{\cos x}{\sin x}$ $LHS = \frac{1 - \cos^2 x}{\cos x \sin x}$ ec $= \frac{\sin^2 x}{\cos x \sin x}$ ec $LHS = \frac{1 - \cos^2 x}{\cos x \sin x}$ ec $= \frac{\sin^2 x}{\cos x \sin x}$ ec $a = \sin x$ AG (ii) $3 \cot x - \cot x = \tan x \rightarrow 2 \cot x = \tan x$ M1 $\tan^2 x = 2 \cot x$ x = 54.7, 125.3, 234.7, 305.3 11 (i) Area of sector $= \frac{1}{2 \times x^2 \times 0.8 (= 0.4x^2 \text{ cm}^2)}$ $SR = 5\sin 0.8 (= 3.59) \text{ or}$ $OR = 5\cos 0.8 (= 3.48)$ Area of triangle = $\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \text{ cm}^2$ (ii) SQ = 8.84 - 5 (= 3.84 cm) $PR = 8.84 - 5\cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})$ $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ (iii) Area $PQSR = 4 \times 6.247$ (iii) Area $PQSR = 4 \times 6.247$ (iv) Area $PQSR = 4 \times 6.247$ (iv) (iv) Area $PQSR = 4 \times 6.247$ (iv) Area $PQSR = 4 \times 6.247$ (iv) Area $PQSR = 4 \times 6.247$ (iv) Area $PQSR = 4 \times 6.247$ (iv) (iv) Area $PQSR = 4 \times 6.247$ (iv) (iv) Area $PQSR = 4 \times 6.247$ (iv) (9	$(a+3\sqrt{5})^2 = a^2 + 3\sqrt{5}a + 3\sqrt{5}a + 45$ oe	B 1	anywhere			
$(a+3)(a-2)=0$ M1Attempt to solve three term quadratic with integer coefficients obtained by equating coeffic as correct on one correct pair Both <i>is</i> correct on one correct pair10 (i)secxcosecx = $\frac{1}{\cos x \sin x}$ B1anywhere11 (i)secxcosecx = $\frac{1}{\cos x \sin x}$ oe $\cos x \sin x$ B1anywhere11 (i) $3 \cot x - \cot x = \tan x \rightarrow 2 \cot x = \tan x$ $x = 54.7, 125.3, 234.7, 305.3$ B1use of identity and cancel(ii) $3 \cot x - \cot x = \tan x \rightarrow 2 \cot x = \tan x$ $x = 54.7, 125.3, 234.7, 305.3$ B1anywhere11 (i)Area of sector = $\frac{1}{2} \times x^2 \times 0.8 (= 0.4x^2 \text{ cm}^2)$ $SR = 5 \sin 0.8 (= 3.59)$ or $OR = 5 \cos 0.8 (= 3.48)$ B1anywhere11 (i)Sector = $\frac{1}{2} \times x^2 \times 0.8 (= 0.4x^2 \text{ cm}^2)$ $SR = 5 \sin 0.8 = 6.247 \text{ cm}^2$ $0.08x^2 = 6.247$ $x = 8.837 \text{ cm}$ B1anywhere(ii) $SQ = 8.84 - 5 (= 3.84 \text{ cm})$ $PR = 8.84 - 5 \cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})$ $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ B1insert correct terms into correct area formulae(iii) $Area 0 PQSR = 4 \times 6.247$ $N1 = 0.98 \text{ cm} 19.99 $		Equate: $a^2 + a + 45 = 51$	B1				
(i) $(1 + 1)(1 + 1) = 0$ a = -3, 2 b = -18, 12 (i) $secrecescer = \frac{1}{\cos x \sin x}$ $cot x = \frac{\cos x}{\sin x}$ $LHS = \frac{1 - \cos^2 x}{\cos x \sin x}$ oc $\frac{\sin^2 x}{\cos x \sin x} = \tan x$ AG (ii) $3\cot x - \cot x = \tan x \rightarrow 2\cot x = \tan x$ $\tan^2 x = 2 \text{ oe} x^2 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + $		and $6a - b = 0$	B1				
$a = -3, 2$ $b = -18, 12$ A1 A1Both as correct or one correct pair Both bs correct10 (i)seccrosect = $\frac{1}{\cos x \sin x}$ $\cot x = \frac{\cos x}{\sin x}$ $LHS = \frac{1 - \cos^2 x}{\cos x \sin x}$ oe $= \frac{\sin^2 x}{\cos x \sin x}$ oe $= \frac{\sin^2 x}{\cos x \sin x} = \tan x$ AGB1 anywhere(ii) $3\cot x - \cot x = \tan x \rightarrow 2\cot x = \tan x$ $\tan^2 x = 2$ oe $x = 54.7, 125.3, 234.7, 305.3$ B1 anywhereuse of identity and cancel(iii)Area of sector $= \frac{1}{2} \times x^2 \times 0.8 (= 0.4x^2 \text{ cm}^2)$ $SR = 5\sin 0.8 (= 3.59)$ or $OR = 5\cos 0.8 (= 3.48)$ B1 anywhereanywhere anywhere11 (i)Area of triangle = $\frac{1}{2}$ 5cos 0.8 (= 5.35 or 5.36 cm) $PR = 8.84 - 5\cos 0.8 (= 5.35 or 5.36 cm)$ $PQ = 8.84 \times 0.8 (= 7.07 cm)$ B1 anywhere and anywhere(iii) $SQ = 8.84 - 5 (= 3.84 cm)$ $PQ = 8.84 \times 0.8 (= 7.07 cm)$ B1 anywhere and anywhere(iii) $Area PQSR = 4 \times 6.247$ $NR = 8.92 (= 0.427)$ $NR = 19.9 (= 19.84 to 19.86 cm or rounded to19.8 \text{ or } 19.9 (= 19.84 \text{ or } 19.86 \text{ or } 19.9 (= 19.84 \text{ or } 19.86 \text{ or } 19.9 (= 19.84 \text{ or } 19.86 \text{ or } 19.9 (= 19.84 \text{ or } 19.86 \text{ or } 19.9 (= 19.84 \text{ or } 10.86 \text{ or } 1$		(a+3)(a-2)=0	M1	with integer coe			
$b = -18, 12$ A1Both bs correct10 (i)secxcosecx = $\frac{1}{\cos x \sin x}$ B1anywhere $\cot x = \frac{\cos x}{\sin x}$ B1anywhere $LHS = \frac{1 - \cos^2 x}{\cos x \sin x}$ oeB1anywhere $= \frac{\sin^2 x}{\cos x \sin x} = \tan x$ AGB1use of identity and cancel(ii) $3\cot x - \cot x = \tan x \rightarrow 2\cot x = \tan x$ M1equate and collect like terms, allow signed and $x = 54.7, 125.3, 234.7, 305.3$ (iii) $3\cot x - \cot x = \frac{1}{2} \times x^2 \times 0.8 (= 0.4x^2 \operatorname{cm}^2)$ B1anywhere $x = 54.7, 125.3, 234.7, 305.3$ B1anywhere11(i)Area of sector $= \frac{1}{2} \times x^2 \times 0.8 (= 0.4x^2 \operatorname{cm}^2)$ B1 $SR = 5\sin 0.8 (= 3.59)$ or $OR = 5\cos 0.8 (= 3.48)$ B1anywhereArea of triangle = $\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \operatorname{cm}^2$ M1 (ii) $SQ = 8.84 - 5 (= 3.84 \operatorname{cm})$ $PQ = 8.84 \times 0.8 (= 7.07 \operatorname{cm})$ B1 $Pa = 8.84 - 5\cos 0.8 (= 5.35 \operatorname{or} 5.36 \operatorname{cm})$ B1two lengths from SQ, PR, PQ awrt $Pa = 8.84 - 5\cos 0.8 (= 5.47 \operatorname{cm})$ B1two lengths from SQ, PR, PQ awrt $Pa = 8.84 - 5\cos 0.8 (= 5.35 \operatorname{or} 5.36 \operatorname{cm})$ B1two lengths from SQ, PR, PQ awrt $Pa = 8.84 - 5\cos 0.8 (= 5.47 \operatorname{cm})$ B1two lengths from SQ, PR, PQ awrt $Pa = 8.84 - 5\cos 0.8 (= 5.47 \operatorname{cm})$ B1two lengths from SQ, PR, PQ awrt $Pa = 8.84 - 5\cos 0.8 (= 5.35 \operatorname{or} 5.36 \operatorname{cm})$ B1two lengths from SQ, PR, PQ awrt $Pa = 19.98$ $Pa = 0.287 = 4 \times 6.247$ M1		a = -3.2	A1		or one correc	t pair	
B1anywhere $\cot x = \frac{\cos x}{\sin x}$ B1anywhere $\operatorname{LHS} = \frac{1 - \cos^2 x}{\cos x \sin x}$ B1anywhere $\operatorname{LHS} = \frac{1 - \cos^2 x}{\cos x \sin x}$ B1correct addition of their terms $= \frac{\sin^2 x}{\cos x \sin x} = \tan x$ AGB1use of identity and cancel(ii) $3\cot x - \cot x = \tan x \rightarrow 2\cot x = \tan x$ M1equate and collect like terms, allow signer errors $\tan^2 x = 2$ oeA1A1A1 $\tan^2 x = 2$ oeA1A1only 2 more values. awrt11(i)Area of sector $= \frac{1}{2} \times x^2 \times 0.8 (= 0.4x^2 \operatorname{cm}^2)$ B1anywhere $SR = 5\sin 0.8 (= 3.59)$ orB1anywhere $OR = 5\cos 0.8 (= 3.48)$ B1anywhere $Area of triangle =$ $\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \operatorname{cm}^2$ M1 $0.08x^2 = 6.247$ A2M1 $x = 8.837 \operatorname{cm}$ AGM1 $PQ = 8.84 - 5 (= 3.84 \operatorname{cm})$ B1two lengths from SQ, PR, PQ awrt $PQ = 8.84 \times 0.8 (= 7.07 \operatorname{cm})$ B1two lengths from SQ, PR, PQ awrt $PQ = 8.84 \times 0.8 (= 7.07 \operatorname{cm})$ B1two lengths from SQ, PR, PQ awrt $PR = 19.94$ $19.86 \operatorname{cm}$ or rounded toB1two lengths from SQ, PR, PQ awrt $PR = 19.94 \times 0.92$ $19.86 \operatorname{cm}$ or rounded toB1two lengths from SQ, PR, PQ awrt $PR = 19.94 \times 0.92$ $19.86 \operatorname{cm}$ or rounded toB1two length awrt $PR = 19.94 \times 0.27 \times 10^{-2}$ M1third length awrt		,			01 0110 00110	, pan	
LHS = $\frac{1 - \cos^2 x}{\cos x \sin x}$ oeB1ftcorrect addition of their terms $= \frac{\sin^2 x}{\cos x \sin x} = \tan x$ AGB1use of identity and cancel(ii) $3\cot x - \cot x = \tan x \rightarrow 2\cot x = \tan x$ M1equate and collect like terms, allow signed errors $\tan^2 x = 2$ oe $x = 54.7, 125.3, 234.7, 305.3$ A12 values11 (i)Area of sector = $\frac{1}{2} \times x^2 \times 0.8 (= 0.4x^2 cm^2)$ B1anywhere $SR = 5\sin 0.8 (= 3.59)$ or $OR = 5\cos 0.8 (= 3.48)$ B1anywhere $Rea of triangle =$ $\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 cm^2$ M1insert correct terms into correct area(ii) $SQ = 8.84 - 5 (= 3.84cm)$ A1insert correct terms into correct area $PQ = 8.84 + 0.8 (= 7.07 cm)$ B1two lengths from SQ, PR, PQ awrt $PQ = 8.84 \times 0.8 (= 7.07 cm)$ B1two lengths from SQ, PR, PQ awrt(iii)Area $PQSR = 4 \times 6.247$ M1	10 (i)	$\sec x \csc x = \frac{1}{\cos x \sin x}$	B1	anywhere			
LHS = $\frac{1 - \cos^2 x}{\cos x \sin x}$ oeB1ftcorrect addition of their terms= $\frac{\sin^2 x}{\cos x \sin x} = \tan x$ AGB1use of identity and cancel(ii) $3\cot x - \cot x = \tan x \rightarrow 2\cot x = \tan x$ M1equate and collect like terms, allow signed errors $\tan^2 x = 2$ oe $x = 54.7, 125.3, 234.7, 305.3$ A12 values11 (i)Area of sector = $\frac{1}{2} \times x^2 \times 0.8 (= 0.4x^2 cm^2)$ B1anywhere $SR = 5\sin 0.8 (= 3.59)$ orB1anywhere $OR = 5\cos 0.8 (= 3.48)$ B1insert correct terms into correct area(ii) $SQ = 8.84 - 5 (= 3.84 cm)$ A1 $PR = 8.84 - 5\cos 0.8 (= 5.35 or 5.36 cm)$ B1insert correct terms into correct area(iii) $SQ = 8.84 - 5 (= 3.84 cm)$ B1 $PQ = 8.84 \times 0.8 (= 7.07 cm)$ B1H1H1H1H1H1H1H1H1(iii)Area $PQSR = 4 \times 6.247$ H1		$\cot x = \frac{\cos x}{\sin x}$	B1	anywhere			
(ii) $3\cot x - \cot x = \tan x \rightarrow 2\cot x = \tan x$ $\tan^2 x = 2 \text{ oe}$ $x = 54.7, 125.3, 234.7, 305.3$ (i) Area of sector $= \frac{1}{2} \times x^2 \times 0.8 (= 0.4x^2 \text{ cm}^2)$ $SR = 5\sin 0.8 (= 3.59) \text{ or}$ $OR = 5\cos 0.8 (= 3.48)$ (i) Area of triangle $=$ $\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \text{ cm}^2$ $0.08x^2 = 6.247$ x = 8.837 cm AG (ii) $SQ = 8.84 - 5 (= 3.84 cm)PR = 8.84 - 5\cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})PQ = 8.84 \times 0.8 (= 7.07 \text{ cm}) (ii) Area PQSR = 4 \times 6.247 (iii) Area PQSR = 4 \times 6.247 (iii) Area PQSR = 4 \times 6.247 (iv) Area PSR = 4 \times 6.$		LHS = $\frac{1 - \cos^2 x}{\cos^2 x}$ oe	B1ft	correct addition	of <i>their</i> term	S	
(ii) $\begin{aligned} & \lim_{x=54,7, 125,3, 234,7, 305,3} & \prod_{A1}^{A1} & \lim_{A1}^{A1} &$		$=\frac{\sin^2 x}{\cos x \sin x} = \tan x \qquad \text{AG}$	B 1	use of identity a	and cancel		
x = 54.7, 125.3, 234.7, 305.3 A1 A1 2 values only 2 more values. awrt 11 (i) Area of sector = $\frac{1}{2} \times x^2 \times 0.8 (= 0.4x^2 \text{ cm}^2)$ $SR = 5 \sin 0.8 (= 3.59) \text{ or}$ $OR = 5 \cos 0.8 (= 3.48)$ B1 anywhere SR may be seen in stated $\frac{1}{2}ab\sin C$ Area of triangle = $\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \text{ cm}^2$ $0.08x^2 = 6.247$ x = 8.837 cm AG M1 A1 insert correct terms into correct area formulae (ii) $SQ = 8.84 - 5(= 3.84 \text{ cm})$ $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Perimeter = 19.84 to 19.86 cm or rounded to 19.8 or 19.9 B1 H1 two lengths from SQ , PR , PQ awrt third length awrt sum (iii) Area $PQSR = 4 \times 6.247$ $25 = 3^2$ M1 A1 Image: match and a model to the state of	(ii)		M1	-	ect like terms	, allow sign	
A1only 2 more values. awrt11 (i)Area of sector $= \frac{1}{2} \times x^2 \times 0.8 (= 0.4x^2 \text{cm}^2)$ B1anywhere $SR = 5 \sin 0.8 (= 3.59)$ or $OR = 5 \cos 0.8 (= 3.48)$ B1 SR may be seen in stated $\frac{1}{2}ab \sin C$ Area of triangle = $\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \text{cm}^2$ $0.08x^2 = 6.247$ $x = 8.837 \text{cm}$ M1 A1insert correct terms into correct area formulae(ii) $SQ = 8.84 - 5 (= 3.84 \text{cm})$ $PQ = 8.84 - 5 \cos 0.8 (= 5.35 \text{or } 5.36 \text{cm})$ $PQ = 8.84 \times 0.8 (= 7.07 \text{cm})$ B1 B1 B1two lengths from SQ , PR , PQ awrt third length awrt sum(iii)Area $PQSR = 4 \times 6.247$ $PR = 8.4 - 5 \cos 0.8 (= 5.35 \text{or } 5.36 \text{cm})$ B1 B1 B1two lengths from SQ , PR , PQ awrt third length awrt sum				2 1			
$SR = 5\sin 0.8 (= 3.59) \text{ or}$ $OR = 5\cos 0.8 (= 3.48)$ Area of triangle = $\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \text{ cm}^2$ $0.08x^2 = 6.247$ $x = 8.837 \text{ cm}$ AG AI $SQ = 8.84 - 5 (= 3.84 \text{ cm})$ $PR = 8.84 - 5\cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})$ $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ $Perimeter = 19.84 \text{ to } 19.86 \text{ cm or rounded to}$ BI BI WI BI $Wo \text{ lengths from } SQ, PR, PQ \text{ awrt}$ $Hird \text{ length awrt}$ Sum WI WO WI WO WI WO WI WO WI WI WI WI WI WI		x = 54.7, 125.3, 234.7, 305.3			ues. awrt		
$SR = 5\sin 0.8 (= 3.59) \text{ or}$ $OR = 5\cos 0.8 (= 3.48)$ Area of triangle = $\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \text{ cm}^2$ $0.08x^2 = 6.247$ $x = 8.837 \text{ cm}$ AG AI $SQ = 8.84 - 5 (= 3.84 \text{ cm})$ $PR = 8.84 - 5\cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})$ $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Perimeter = 19.84 to 19.86 cm or rounded to 19.8 or 19.9 $Area PQSR = 4 \times 6.247$ MI RI BI BI BI BI BI BI BI B	11 (i)	Area of sector = $\frac{1}{2} \times x^2 \times 0.8 (= 0.4x^2 \text{ cm}^2)$	B1	anywhere			
(ii) $\begin{array}{c} OR = 5\cos 0.8 \left(= 3.48\right) \\ Area of triangle = \\ \frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \mathrm{cm}^2 \\ 0.08x^2 = 6.247 \\ x = 8.837 \mathrm{cm} \mathrm{AG} \end{array}$ (i) $\begin{array}{c} SQ = 8.84 - 5 \left(= 3.84 \mathrm{cm}\right) \\ PR = 8.84 - 5\cos 0.8 \left(= 5.35 \mathrm{or} 5.36 \mathrm{cm}\right) \\ PQ = 8.84 \times 0.8 \left(= 7.07 \mathrm{cm}\right) \\ Perimeter = 19.84 \mathrm{to} 19.86 \mathrm{cm} \mathrm{or} \mathrm{rounded} \mathrm{to} \\ 19.8 \mathrm{or} 19.9 \end{array}$ (ii) $\begin{array}{c} \mathrm{Area} \ PQSR = 4 \times 6.247 \\ \mathrm{Area} \ PQSR = 4 \times 6.247 \\ \mathrm{M1} \end{array}$ (ii) $\begin{array}{c} \mathrm{Area} \ PQSR = 4 \times 6.247 \\ \mathrm{M1} \end{array}$			B1	SR may be seen	in stated $\frac{1}{2}a$	$b \sin C$	
$\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \mathrm{cm}^2$ M1 A1insert correct terms into correct area formulae(ii) $SQ = 8.84 - 5(= 3.84 \mathrm{cm})$ $PR = 8.84 - 5\cos 0.8(= 5.35 \mathrm{or} 5.36 \mathrm{cm})$ $PQ = 8.84 \times 0.8(= 7.07 \mathrm{cm})$ B1 B1two lengths from SQ , PR , PQ awrt third length awrt sum(iii)Area $PQSR = 4 \times 6.247$ $25 - 2$ M1					2		
$\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \mathrm{cm}^2$ M1 A1insert correct terms into correct area formulae(ii) $SQ = 8.84 - 5(= 3.84 \mathrm{cm})$ $PR = 8.84 - 5\cos 0.8(= 5.35 \mathrm{or} 5.36 \mathrm{cm})$ $PQ = 8.84 \times 0.8(= 7.07 \mathrm{cm})$ B1 B1two lengths from SQ , PR , PQ awrt third length awrt sum(iii)Area $PQSR = 4 \times 6.247$ $25 - 2^2$ M1		Area of triangle =					
(ii) $SQ = 8.84 - 5 (= 3.84 \text{ cm})$ $PR = 8.84 - 5 \cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})$ $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Perimeter = 19.84 to 19.86 cm or rounded to 19.8 or 19.9 (iii) Area $PQSR = 4 \times 6.247$ $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Primeter = 19.84 to 19.86 cm or rounded to $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Primeter = 19.84 to 19.86 cm or rounded to $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Primeter = 19.84 to 19.86 cm or rounded to $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Primeter = 19.84 to 19.86 cm or rounded to $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Primeter = 19.84 to 19.86 cm or rounded to $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Primeter = 19.84 to 19.86 cm or rounded to $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Primeter = 19.84 to 19.86 cm or rounded to $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Primeter = 19.84 to 19.86 cm or rounded to $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Primeter = 19.84 to 19.86 cm or rounded to $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ PQ =					rms into corre	ect area	
(ii) $SQ = 8.84 - 5 (= 3.84 \text{ cm})$ $PR = 8.84 - 5 \cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})$ $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ Perimeter = 19.84 to 19.86 cm or rounded to 19.8 or 19.9 (iii) Area $PQSR = 4 \times 6.247$ $25 = 3^{2}$ M1		2^{2} 0.08 x^{2} = 6.247	A1	formulae			
$PR = 8.84 - 5\cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})$ B1 two lengths from SQ, PR, PQ awrt $PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ B1 third length awrt Perimeter = 19.84 to 19.86 cm or rounded to B1 third length awrt 19.8 or 19.9 M1 M1		$x = 8.837 \mathrm{cm}$ AG	A1				
$PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ B1 third length awrt Perimeter = 19.84 to 19.86 cm or rounded to B1 sum (iii) Area $PQSR = 4 \times 6.247$ M1	(ii)	SQ = 8.84 - 5 (= 3.84 cm)		two lengths from SQ, PR, PQ awrt			
$PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$ B1 third length awrt Perimeter = 19.84 to 19.86 cm or rounded to B1 sum (iii) Area $PQSR = 4 \times 6.247$ M1		$PR = 8.84 - 5\cos 0.8 (= 5.35 \text{ or } 5.36 \text{ cm})$	B 1				
Perimeter = 19.84 to 19.86 cm or rounded to B1 sum (iii) Area $PQSR = 4 \times 6.247$ M1		$PQ = 8.84 \times 0.8 (= 7.07 \mathrm{cm})$	B1	_			
$= 25 \mathrm{cm}^2$ A1 24.95 to 25	(iii)	Area $PQSR = 4 \times 6.247$	M1				
		$=25\mathrm{cm}^2$	A1	24.95 to 25			

Page 6	Mark Scheme				Paper	
	Cambridge IGCSE – October/Nov	vember	2014	0606	22	
12 (i)	$f(2) = 3(2^3) - 14(2^2) + 32 = 0$ Or complete long division	B1				
(ii)	$f(x) = (x-2)(3x^2-8x-16)$	M1 A1 M1	$3x^2$ and 16 8x and correct signs Factorise three term quadratic			
(iii)	f(x) = (x-2)(x-4)(3x+4) x = 2, 4	A1				
(III)	л 2, т	B1				
(iv)	$\int 3x - 14 + \frac{32}{x^2} dx = 1.5x^2 - 14x - \frac{32}{x} (+ c)$	B1 B1	first 2 terms third term correct unsimplified Limits of 2 and 4 and subtract			
	Area = $\left[1.5x^2 - 14x - \frac{32}{x}\right]_2^4$ = (-) 2	M1 A1				

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Syllabus	Paper
	Cambridge IGCSE – October/Nov	vember 2	014 0606	23
1 (i)	$f(2)=0 \rightarrow 3(2)^3+8(2)^2-33(2)+p=0$	M1		
1 (1)	correct working to $p = 10$ AG	A1		
	method for quadratic factor	M1		
	$f(x) = (x-2)(3x^2 + 14x - 5)$	A1		
(ii)	f(x) = (x-2)(3x-1)(x+5)	M1	factorise or solve quadrat	ic factor $= 0$
	$f(x)=0 \rightarrow x=2, \ -5, \ \frac{1}{3}$	A1		
2 (i)	$^{12}C_{4} = 495$	B 1		
(ii)	${}^{7}C_{2} \times {}^{5}C_{2} = 21 \times 10$	M1		
	=210	A1		
(iii)	not K and B = ${}^{6}C_{2} \times {}^{4}C_{1} = 15 \times 4 = 60$	B 1		
	K and not B = ${}^{6}C_{1} \times {}^{4}C_{2} = 6 \times 6 = 36$	B1		
	60 + 36	M1		
	96	A1		
	OR			
	K and B = ${}^{6}C_{1} \times {}^{4}C_{1} = 6 \times 4 = 24$	B 1		
	not K and not B = ${}^{6}C_{2} \times {}^{4}C_{2} = 15 \times 6 = 90$	B1		
	210 - 90 - 24 96	M1		
		A1		
3 (i)	C is (1, 6)	B1		
	D is (1,6) + (12,9) = (13,15)	M1 A1ft		
	- (13, 13)			
(ii)	gradient of $CD = \frac{15-6}{13-1} \left(=\frac{3}{4}\right)$	B1ft		
	gradient of $AB = \frac{10-2}{-2-4} \left(= \frac{8}{-6} = \frac{-4}{3} \right)$	B 1		
	$\frac{3}{4} \times \frac{-4}{3} = -1$ lines are perpendicular	B 1	correct completion v	vww
(iii)	area = $\frac{1}{2} \times AB \times CD = \frac{1}{2} \times 10 \times 15$	M1	good attempt at two relev	ant lengths
	2 2		for $\frac{1}{2}$ base × height method	-
	=75	A1		
	or array method			
	,		1	

Page 3	Mark Scheme		Syllabus	Paper	
	Cambridge IGCSE – October/Novemb	oer 2014		0606	23
4 (i)	$2000 = 1000e^{a+b} \rightarrow a+b = \ln 2$	B1			
(ii)	$3297 = 1000e^{2a-b} \rightarrow 2a+b$ $= \ln 3.297 \text{oe}$	M1 A1	substitution of 2, 3297 and rearrange		
(iii)	Solve for one value $a = 0.5$ and $b = 0.193$ or 0.19	M1 A1			
(iv)	$n = 10 P = 1000e^{5.193} = \$180000.$	M1 A1			
5 (i)	$\overrightarrow{OX} = \mu \big(a + b \big)$	B1			
(ii)	$\overrightarrow{RP} = b - 3a$ or $\overrightarrow{RX} = \lambda(b - 3a)$ oe $\overrightarrow{OX} = 3a + \lambda(b - 3a)$	B1 B1			
(iii)	$\overrightarrow{OX} = \overrightarrow{OX} \text{ and equate both coefficients}$ $\mu = 3 - 3\lambda \qquad \mu = \lambda$ $\mu = \lambda = 0.75$ $\frac{RX}{XP} = 3 \text{ or } 3:1$	M1 A1 A1ft	$\frac{\lambda}{1-\lambda}$		
6 (i)	m = 4 equation of line is $\frac{\ln y - 39}{3^x - 9} = \frac{39 - 19}{9 - 4}$ ln y = 4(3 ^x) + 3	B1 M1 A1ft		uation of line	nt
(ii)	$x = 0.5 \rightarrow \ln y = 4\sqrt{3} + 3 = 9.928$ y = 20500	M1 A1	correct ex	pression for	lny
(iii)	Substitutes y and rearrange for 3^x Solve $3^x = 1.150$ x = 0.127	M1 M1 A1			

Page 4	Mark Scheme				Paper	
	Cambridge IGCSE – October/Novem	ber 2014		0606	23	
7 (i)	$x = \frac{2}{y} + 1 \rightarrow y = \frac{2}{x - 1}$ $f^{-1}(x) = \frac{2}{x - 1}$	M1 A1	any valid	any valid method		
(ii)	$gf(x) = \left(\frac{2}{x} + 1\right)^2 + 2$	B2/1/0	-1 each e	error		
(iii)	$\mathrm{fg}(x) = \frac{2}{x^2 + 2} + 1$	B2/1/0	-1 each e	error		
(iv)	$ff(x) = \frac{2}{\frac{2}{x}+1} + 1 = \frac{2x}{x+2} + 1$	M1	correct st	arting expres	sion	
	$=\frac{3x+2}{x+2}$	A1	correct al	gebra to give	n answer	
	$\frac{3x+2}{x+2} = x \rightarrow x^2 - x - 2 = 0$ $(x-2)(x+1) = 0$	M1	form and	l solve 3 term	quadratic	
	x = 2 only	A1				
8 (i)	$v = C + K \sin 2t \qquad C \neq 0$ $v = 5 + 6 \sin 2t \qquad a = 12 \cos 2t$	M1 A1 A1ft				
(ii)	$a = 0 \rightarrow \cos 2t = 0$ and solve	M1	set $a = 0$	and solve for	t	
	$t = \frac{\pi}{4}$ or 0.785 or 0.79	A1				
	$v = 5 + 6\sin\frac{\pi}{2} = 11$	A1ft	ft only or	n K		
(iii)	$v = 2 \rightarrow \sin 2t = -\frac{1}{2}$ and solve	M1	set $v = 2$	and solve for	t	
	$t = \frac{7\pi}{12}$ or 1.83-1.84	A1				
	$a = 12\cos\frac{7\pi}{6} = -6\sqrt{3}$ or -10.4	A1				

Pa	ge 5	Mark Scheme				Paper	
		Cambridge IGCSE – October/Novem	ber 2014		0606	23	
		1					
9	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - \frac{1}{\left(x-2\right)^2}$	B 1				
		$\frac{dy}{dx} = 0 \rightarrow (x-2)^2 = \frac{1}{4}$	M1		solve 3 term quadratic from dy		
		$(4x^2 - 16x + 15 = 0)$		$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$			
		x = 2.5 or 1.5 y = 12 or 4	A1 A1	x values o y values o	r 1 pair		
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\left(x-2\right)^{-3}$	M1	uл	with solutior	n from	
		$x = 2.5 \rightarrow \frac{d^2 y}{dx^2} > 0 \rightarrow \text{minimum}$ $x = 1.5 \rightarrow \frac{d^2 y}{dx^2} < 0 \rightarrow \text{maximum}$	A1	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$ both ident	ified	www	
	(ii)	$x=3 \rightarrow \frac{dy}{dx}=3$	B 1				
		Use $m_1m_2 = -1$ for gradient normal from gradient tangent	M1	must use i	numerical va	lues	
		Eqn of normal : $\frac{y-13}{x-3} = -\frac{1}{3}$	A1ft				
		Intersection of norm and curve $x = 1$			1	. 1.0	
		$14 - \frac{x}{3} = 4x + \frac{1}{x - 2}$ $13x^2 - 68x + 87 = 0$	M1 DM1	-	and attempt t solve 3 term		
		$x = \frac{29}{13}$ or 2.23	A1	1		I	
10	(i)	LHS = $\frac{1 + \cos x + 1 - \cos x}{(1 - \cos x)(1 + \cos x)}$	B1	correct fra	action		
		$=\frac{2}{1-\cos^2 x}$	B1	correct ev	aluation		
		$=\frac{2}{\sin^2 x} = \text{RHS}$	B1		$-\cos^2 x = \sin^2 x$ n of fully co		
	(ii)	$2\csc^2 x = 8$	M1	identity us	sed		
		$\sin^2 x = \frac{1}{4}$ $\sin x = \pm \frac{1}{2}$	A1				
		$\sin x = \pm \frac{1}{2}$	A1				
		$x = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$	A1				

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/21

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Page 2 Mark Scheme		Syllabus	Paper	
	IGCSE – May/June 2014		0606	21	
1	$x^{2} + x > 0$	M1	expands and rea	rranges	
-	$x^{-} + x [> 0]$ critical values 0 and -1 soi	A1	•		
	-1 < x < 0	A1	condone space, not "or" Mark f	comma, "and" but inal answer.	
2	$\frac{6}{(1+\sqrt{3})^2} \text{ or } 6 = (a+b\sqrt{3})(1+\sqrt{3})^2$	M1	for dealing with (condone treat negative index a		
	$\frac{6}{4+2\sqrt{3}}$ or $6 = (a+b\sqrt{3})(4+2\sqrt{3})$	M1	for squaring		
	$\frac{6}{4+2\sqrt{3}} \times \frac{4-2\sqrt{3}}{4-2\sqrt{3}}$ AND attempting to multiply out	M1	for rationalising pair of simultant 4a + 6b = 6 and	or for obtaining a eous equations	
	$6-3\sqrt{3}$ isw	A1	2a + 4b = 0		
3 (i)		B1 B1	tick marks, for e	ked or implied by example or seen e y intercept omitted	
(ii)	x = 1 (only) soi $y = \pm 9 \text{ (only)}$ 0 < k < 9	B1 B1 B1	can be implied by or $k = \pm 9, +9$ of must be strict in condone space, with or "or"	r –9 or both; equality in k ;	
4	Attempt to find f(4) or f(1) or division to a remainder	M1	condone one err	or	
	128 + 16a + 4b + 12 = 0 or better $(16a + 4b = -140)$	A1			
	2 + a + b + 12 = -12 or better $(a + b = -26)$	A1			
	Solves linear equations in <i>a</i> and <i>b</i>	M1			
	a = -3, b = -23	A1	both		

Page 3			Syllabus	Paper	
		IGCSE – May/Ju	0606	21	
5	(i)	$2\left(x-\frac{1}{4}\right)^2 + \frac{47}{8}(5.875)$ isw	B3,2,1,0	one mark for each of <i>p</i> , <i>q</i> , <i>r</i> correct; allow correct equivalent values. If B0 , then SC2 for $2\left(x-\frac{1}{4}\right)+\frac{47}{8}$, or SC1 for correct values but incorrect format strict ft <i>their</i> $\frac{47}{8}$ and <i>their</i> $\frac{1}{4}$; each value must be correctly attributed; condone $y = \frac{47}{8}$ for B1 , or $\left(\frac{1}{4}, \frac{47}{8}\right)$ for B1B1	
	(ii)	$\frac{47}{8}$ is min value when $x = \frac{1}{4}$	B1ft + B1ft		
6	(a)	${}^{8}C_{3} \times 3^{3} \times (\pm 2)^{5} \text{ or } 3^{8} \left[{}^{8}C_{3} \left(\pm \frac{2}{3} \right)^{5} \right]$	M1	condone ${}^{8}C_{5}, -2x^{5}$	
		-48384	A1	can be in expans	sion
	(b) (i)	$1 + 12x + 60x^2$	B2,1,0	-	nal terms. If B0 , correct unsimplified
	(ii)	Coefficient of x correct or correct ft (1 Coefficient of x^2 correct or correct ft (1		ft their $1 + 12x + $ ft their $1 + 12x + $	
		$1.5 \times their(12 + a) = their(60 + 12a)$ - 4	M1 A1	no x or x^2	
7	(i)	$-\frac{1}{x^2} + \frac{1}{x^{\frac{1}{2}}}$	B1 + B1	or equivalent wi	th negative indices
	(ii)	$-\frac{1}{x^2} + \frac{1}{x^{\frac{1}{2}}}$ $\frac{2}{x^3} - \frac{1}{2x^{\frac{3}{2}}}$	B1ft + B1ft	or equivalent wi Strict ft	ith negative indices.
	(iii)	Attempting to solve <i>their</i> $\frac{dy}{dx} = 0$	M1	must achieve <i>x</i> =	= (allow slips)
		x = 1 y = 3	A1	SC2 for (1, 3) st	ated, nfww
		Substitute <i>their</i> $x = 1$ into <i>their</i> $\frac{d^2 y}{dx^2}$; or	r examines M1	for using <i>their</i> v	alue from $\frac{dy}{dx} = 0$
		$\frac{dy}{dx}$ or y on both sides of <i>their</i> $x = 1$			
		Complete and correct determination of If correct, minimum.	f nature. A1	must be from co	rrect work

Page	4	Mark Scheme			Paper	
		IGCSE – May/June 2014		0606	21	
			1			
8 (i)		$\theta = 30 \text{ giving } \theta = \frac{30 - 2r}{r}$	M1	correct arc formula $+ (2)r$ rearranged		
	Substitute <i>their</i> expression for θ into $A = \frac{1}{2}r^2\theta$		M1			
	Corre	ct simplification to $A = 15r - r^2$ AG	A1			
(ii)	15 - 2	2r = 0	M1	their $\frac{dA}{dr} = 0$		
	<i>r</i> = 7.		A1	u/		
	56.25		A1	56.3 is A0 unles	· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·	for $A = 56.25$ with SC1 for $r = 7.5$	
				no working; or SC1 for $r = 7.5$ with no working		
9 (i)	(3, 5)		B1B1	column vector B0B1		
(ii)		$=\frac{6-4}{1-5} = -\frac{1}{2}$	M1	can be implied b	by second M1	
	m_{AC}	$= -1 \div -\frac{1}{2}$ seen or used	M1			
	<i>y</i> – 5	= 2(x-3) or $y = 2x + c$, $c = -1$ or better	A1			
(iii)	<i>p</i> = 1	q = 7 [A(1, 1) C(4, 7)]	M1	could be in (ii)		
	Metho	od for finding area numerically	M1	e.g.		
				$24 - \left(\frac{1}{2} \times 1 \times 3 + \right)$	$\left(\frac{1}{2} \times 1 \times 3 + \frac{1}{2} \times 4\right)$	
				or shoelace meth	nod	
	15		A1	SC2 for 15 with	no working	
10 (i)	- 2 sin	$n 2x$ and $\frac{1}{3}\cos\left(\frac{x}{3}\right)$	B1+B1	each trig functio differentiated	n correctly	
		pt at product rule	M1			
	$\frac{1}{3}\cos \left(\frac{1}{3} \cos \left(\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \cos \left(\frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac$	$2x\cos\left(\frac{x}{3}\right) - 2\sin 2x\sin\left(\frac{x}{3}\right)$ isw	A1ft	ft $k_1 \sin 2x$ and	$k_2 \cos\left(\frac{x}{3}\right)$	
				provided k_{1, k_2}	are non-zero	
(ii)	$\sec^2 x$ and $\frac{1}{x}$		B1 + B1			
	Attem	ppt at quotient rule (with given quotient)	M1	or rearrangemen	t to correct product	
	(\sec^2)	$x(1 + \ln x) - \frac{1}{(\tan x)}$		and attempt at p	roduct rule	
	\	$\frac{x(1 + \ln x) - \frac{1}{x}(\tan x)}{(1 + \ln x)^2}$ is w	A1	penalise poor bracketing if not recovered		

Page	e 5	Mark Scheme	Syllabus	Paper	
		IGCSE – May/June 2014		0606	21
11 (a)	$2^{x^2 - 5x} = 2^{-6}$ $x^2 - 5x + 6 = 0$		M1	Or $(x^2 - 5x)\ln 2$	$=\ln\left(\frac{1}{64}\right) = -6\ln 2$
	$x^2 - 4$	5x + 6 = 0	M1	their "6"	
	Corre quad	ect method of solution of their 3 term ratic	M1		
	x = 2	or $x = 3$	A1		
(b)	$\overline{\log_a}$ \log_a	ect change of base to $\frac{\log_a 4}{\log_a 2a}$ $\frac{\log_a 4}{2 + \log_a a}$ $a = 1 \text{ used soi}$ lification to $\log_a 4$	B1 M1 M1 A1	base <i>a</i> only at th recover at end for $\log 2a = \log 2a$	C C

Page 6		Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2014		0606	21
12 (i)	$f(3) = \frac{6}{4} oe$	M1 A1		or $fg(x) = \frac{2\sqrt{(x+1)}}{\sqrt{(x+1)+1}}$	
(ii)	$\frac{2\left(-\frac{2}{x}\right)}{\frac{2x}{x+1}}$	$\left(\frac{2x}{1+1}\right)$	M1	allow omission of numerator or () + 1 in den both.	of 2() in ominator, but not
	A co	rrect and valid step in simplification	dM1	e.g. multiplying denominator by	
				simplifying $\frac{2}{x+1}$ $\frac{2x+x+1}{x+1}$	$\frac{x}{-1} + 1$ to
	Corre	ectly simplified to $\frac{4x}{3x+1}$	A1	<i>x</i> + 1	
(iii)		ng $y = g(x)$, ging subject to x and swopping x and y or versa	M1	condone $x = y^2$ - attempt at correct	
	$g^{-1}(x)$	$x = x^2 - 1$	A1	condone $y = \dots$	$, f^{-1} = \dots$
	(Don (Ran	main) $x > 0$ ge) $g^{-1}(x) > -1$	B1 B1	condone $y > -1$	$f^{-1} > -1$
(iv)		y /	B1 + B1	correct graphs; -	-1 need not be
		x		labelled but cou 'one square'	ld be implied by
			B1	idea of reflection line $y = x$ must b	n or symmetry in be stated.

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2	Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2014		0606	22
1	rationalise the denominator to get $\frac{(2+\sqrt{5})^2(\sqrt{5}+1)}{5-1}$ or better squaring to get		M1	or squaring to get better	t $\frac{(4+4\sqrt{5}+5)}{\sqrt{5}-1}$ or
		$\frac{4\sqrt{5}+5}{their4} \sqrt{5} + 1 or better$	M1	or rationalising the get $\frac{their(9+4\sqrt{5})(\sqrt{3})}{5}$	the denominator to $(\overline{5}+1)$ or better
	$\frac{29}{4}$ +	$\frac{13}{4}\sqrt{5}$ oe isw	A1 + A1	$\frac{5-1}{5-1}$ correct simplification Allow $\frac{29+13\sqrt{5}}{4}$	ation
2		ectly eliminate y	M1	$-kx + 2 = 2x^2 - 9$	$\partial x + 4$ oe
		$-(k-9)x + 2[=0] \text{ oe}$ $b^2 - 4ac \text{ oe}$	A1 M1	condone = y p implies it should must be applie quadratic expres	ed to a 3 term sion containing k
		h <i>their</i> $(k-9 = \pm 4)$ or s <i>their</i> $(k^2 - 18k + 65) = 0$	M1	as a coefficient; of condone $9-k$ = inequality at this	$=\pm4$; condone an
	<i>k</i> = 5	and 13 cao	A1	mark final answe A0 if inequalities	r, do not isw; s for final answers

F	Page 3	Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2014		0606	22
3 (i)	3(-1) to <i>d</i> =	$b^{3} - 14(-1)^{2} - 7(-1) + d = 0$ with completion	B1	be seen in follow or convincingly s $3(-1)^3 - 14(-1)^2$ at least -3 - 14 + 7 + 10 or correct synthe as far as -1 3 $-14-3$	must be seen or d or = -d, may ring step. showing -7(-1)+10=0; = 0 tic division at least
(ii)	$3x^2$ -	-17x + 10 isw or $a = 3, b = -17, c = 10$ isw	B2 , 1, 0	-1 each error; must be seen or r even if found in (
(iii)	(x+1)	(x-5)(3x-2)	M1	for factorising quadratic ft correct; condone omission of $(x+1)$ or for ft correct use of formula or ft correct completing the square	
	-1, 5	$, \frac{2}{3}$	A1	If M0 then SC1 is stated without we verified/found by	orking or

	Page	4	Mark Scheme	Syllabus	Paper	
			IGCSE – May/June 2014		0606	22
4	(i)	12(x -	$\left(-\frac{1}{4}\right)^2 + \frac{17}{4}$ isw	B3, 2, 1,0		n of <i>p</i> , <i>q</i> , <i>r</i> correct natted expression; ivalent values;
					If B0 then SC2 for or	or $12\left(x-\frac{1}{4}\right)+\frac{17}{4}$
					SC1 for correct 3 incorrect format e	e.g.
					$12\left(x - \frac{1}{4}x\right) + \frac{17}{4}$ $12\left(x^2 - \frac{1}{4}\right) + \frac{17}{4}$	or
					or for a correct co form of the origin different but corre	nal expression in a
					$3\left(2x-\frac{1}{2}\right)^2+\frac{17}{4}$	
	(ii)	their -	$\frac{4}{7}$ or <i>their</i> 0.235	B1ft	1 /	must be a proper al rounded to 3sig uncated to 4 figs
		their 5	$c = \frac{1}{4}$ oe	B1ft	strict ft ; <i>x</i> must b attributed	be correctly
5	(i)	1-20.	$x + 160x^2$	B2, 1, 0	-1 each error	
					if B0 then M1 for seen; may be unsult 1, $5(-4x)$, $\frac{5 \times 4}{2}$	implified e.g.
	(ii)	a + (th	veir - 20) = -23 soi	M1	condone sign erro their –20 from (i)	• ·
		a = -3		A1	validly obtained	
		b + (th	eir - 20)a + (their 160) = 222 soi	M1	condone sign erro their -20 and the their a if used	ors only ; must be <i>ir</i> 160 from (i) and
		<i>b</i> = 2		A1	validly obtained	

	Page	5	Mark Scheme		Syllabus	Paper
			IGCSE – May/June 2014		0606	22
6	(a) (i) (ii)	1 $x = -$	1 or –2	B1 B1 + B1	as final answers	
	(b)	$\frac{\log_3 1}{\log_3 0}$	$\frac{5}{a}$ seen or implied	B1*	may be implied by $2\log_3 15 - \log_3 5$	уу
		$2\log_3 15 = \log_3 15^2$ seen or implied		B1		
		log ₃ 1	$15^2 - \log_3 5 = \log_3 \left(\frac{15^2}{5}\right)$	B1dep*	not from wrong w	working
		log ₃	45 cao	B1	must be 45 not e.	5
					with no wrong w	orking seen
7	(i)	$x^4 (3e$	$(2^{3x}) + 4x^3 e^{3x}$ isw	B1 + B1	each term of the be a sum of two	sum correct; must terms
	(ii)	$\frac{1}{2+c}$	$\frac{1}{\cos x} \times (-\sin x)$ isw	B2	or B1 for $\frac{1}{2 + \cos \theta}$	
	(iii)	$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{s})$	$(\operatorname{in} x) = \cos x \operatorname{soi}$	B1	and <i>k</i> a constant	
		$\frac{\mathrm{d}}{\mathrm{d}x}(1$	$(+\sqrt{x}) = \frac{1}{2} x^{-\frac{1}{2}}$ soi	B1		
		(l + v	$\frac{\sqrt{x}}{their}\cos x - \left(their\frac{1}{2}x^{-\frac{1}{2}}\right)\sin x}{\left(1+\sqrt{x}\right)^2}$ isw	B1ft	for correct form c their $\cos x$ and the	of quotient rule ft heir $\frac{1}{2}x^{-\frac{1}{2}}$;
					allow correct use chain rules to obt $\sin x \left(-\left(1 + \sqrt{x}\right)^{-2}\right)$	tain
					$\cos x \left(1 + \sqrt{x}\right)^{-1} $ o	e

	Page		Syllabus	Paper	
		IGCSE – May/June 2014	0606	22	
8		Substitution of either $x - 5$ or $y + 5$ into equation of curve and brackets expanded		condone one sign error in either equation of curve or expansion of brackets; condone omission of = 0, BUT $x - 5$ or $y + 5$ must be correct	
		$2x^2 - 8x - 10 = 0$ or $2y^2 + 12y = 0$ obtained	A1		
		Solving their quadratic	M1	dep on a valid sub	ostitution attempt
		(−1, −6) oe and (5, 0) oe isw	A1*+A1*	or A1 for correct coordinates or cor coordinates	-
		$\sqrt{72}$ or $6\sqrt{2}$ cao isw	B1dep*		
9	(i)	$[y =] \frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} (+c)$ oe	B2	or B1 for $(2x + 1)$	1 <u>+</u> +1
		$10 = \frac{2}{6} \left(2(4) + 1 \right)^{\frac{3}{2}} + c \text{ oe}$	M1	-	to find <i>c</i> ; condone n of power or sign
		$y = \frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} + c$ seen and $c = 1$ or	A1	must have $y = \dots$ $f(x) = \dots$; condone
	(ii)	$y = \frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} + 1$ isw			
		$\int \left(\frac{1}{3}(2x+1)^{\frac{3}{2}}+1\right) dx = \frac{1}{15}(2x+1)^{\frac{5}{2}} + x(+const)$	B1 + B1	B1 for $(2x+1)^{\frac{3}{2}+1}$,
				B1 for $\frac{1}{15}(2x+1)$	$\frac{5}{2}$
		$\left[\frac{1}{15}(2x+1)^{\frac{5}{2}}+x\right]_{0}^{1.5}=$	B1ft	B1 ft <i>their</i> c from $c \neq 0$	(i) provided
		$\left[\frac{1}{15}(2(1.5)+1)^{\frac{5}{2}}+(1.5)\right]-\left[\frac{1}{15}(2(0)+1)^{\frac{5}{2}}+0\right]$	M1	-F(0) in an attem	0) is 0 must see at -0 ; condone $+c$
		$\frac{107}{30}$ oe isw	A1	if decimal 3.57 or e.g. 3.566	more accurate

Pag	e 7	Mark Scheme IGCSE – May/June 2014		Syllabus 0606	Paper 22
		IGCSE – May/Julie 2014		0000	LL
10 (i)	Takiı	ng logs of both sides	M1	any base; must be correct statement	· ·
	log y	$p = \log A + x \log b$	A1		base; no recovery
(ii)	<i>b</i> : awrt 3 to one sf isw or awrt 4 to one sf isw		B2	or M1 for $b = e^{t}$ their gradient mu evaluated as rise/	st be correctly
	A: av	vrt 0.5 to one sf	B2	or B1 for $A = e^{-0}$.6
				or SC1 for $A = e$ an awrt 0.7)	$^{-0.3} = 0.7$ (giving
(iii)	Evid	ence of graph used at $\ln y = 5.4$ soi	M1	or $\frac{220}{their 0.5} = (the$	eir4) ^x
				or 5.39= <i>their</i> ((1.4)x + their - 0.6
				or $\ln(220) = x \ln(the$	$rir4) + \ln(their0.5)$
	awrt	4.4 to two sf	A1		

Page	8 Mark Scheme			
	IGCSE – May/June 20	IGCSE – May/June 2014		22
-				
11 (i)	$f(x) > 3 \text{ or } [f(x) \in](3, \infty)$	B1	condone $y > 3$	
(ii)	$x + 1 = 2^{y}$	M1	or $y + 1 = 2^x$	
	$f^{-1}(x) = \log_2(x+1)$	A1	mark final answe	
			or $\log_2(y+1) = x$	
			$f^{-1}(x) = \log_2(x + $	- 1)
			or for $f^{-1}(x) = \frac{lo}{dx}$	$\frac{\log(x+1)}{\log 2}$ (any base
			for this form)	C .
	Domain $x > 3$	B1ft	ft their range of mathematically v interval	f provided alid inequality or
	Range $f^{-1}(x) > 2$	B1	condone $f(x) > 2$	or $y > 2$
(iii)	$2^{x}(2^{x}-1)$ oe isw	B 1	e.g. $(2^x - 1)^2 + (2^x - 1)^2$	/
			or $2^{2x} - 2 \times 2^{x} +$	$1 + 2^x - 1$
	$2^{x}(2^{x}-1)=0$ leading to $2^{x}=0$, impossible	e oe B1	or $2^x = 0$ which of gf	is outside domain
	$2^x = 1 \Longrightarrow x = 0$	M1	or $2^{x}(2^{x}-1) = 2^{2x} - 1$	$-2^{x}=0$
			$\begin{bmatrix} 2^{x}(2^{x}-1) = 2^{2x} \\ 2^{2x} = 2^{x} \end{bmatrix} \Rightarrow x =$	= 0
	0 is not in the domain (and so $gf(x) = 0$ has solutions)	s no A1		

Page 9	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2014		0606	22
	$\frac{y}{x} = 3x^2 - 18x + 24$	B1		
by	Solving their $3x^2 - 18x + 24 \ge 0$ by factorising or quadratic formula or completing the square		attempt at differentiation resulti in quadratic expression with tw terms correct; allow = or \leq or $<$ > or \geq 0 omitted here.	
-	itical values 2 and 4 $\leq 2, x \geq 4$	A1 A1	A0 if spurious at mark final answe	tempt to combine; er
(ii) Ev	valuating their $\frac{dy}{dx}$ at $x = 3$	M1		
U	se of $m_1m_2 = -1$ to get $m_{normal} = -\frac{1}{their(-3)}$	M1	must be explicit gradient of norm equation	statement of al ; may be seen in
<i>y</i> =	= 18 soi	B1		
У	$-their 18 = \left(their \frac{1}{3}\right)(x-3)$ or			
у	$= their \frac{1}{3}x + c$ and $c = their 17$ isw	A1ft	ft <i>their m</i> provid attempt at m_{normal} $m = their m_{tangent}$	<i>l</i> ; no ft if
<i>P</i> (0, 17) cao	B1		

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme			Syllabus	Paper
			IGCSE – May/June 2014	•		0606	23
1	(i)	500 =	$=\frac{1}{2}r^{2}(1.6)$	M1			
		25 on	ly	A1	±2:	5 is A0	
	(ii)	their	$25 + their 25 + their 25 \times 1.6$ or better	M1	thei	r 25 must be positi	ve
		90		A1			
2		\log_x	$3 = \frac{1}{\log_3 x}$ oe soi	B 1	may	be implied by log	$a_x 3 = \frac{1}{u}$ oe
		$u^2 - 4$	u - 12 = 0 oe	M1	con	done sign errors	
		solve	their 3 term quadratic in <i>u</i>	M1			
		Solve	$x \log_3 x = 6 \text{ or } \log_3 x = -2 \text{ oe}$	M1			
		729 a	nd $\frac{1}{9}$	A1			
3			$ \begin{pmatrix} 1 & 4 \\ 3 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} $	B1			
		or (5	3 1) and $ \begin{pmatrix} 3 & 1 \\ 1 & 4 \\ 4 & 0 \end{pmatrix} $				
		Multi	plication of compatible matrices	M1		st be correct shape duct	from candidates
		$\begin{pmatrix} 22\\17 \end{pmatrix}$	or (22 17) as appropriate	A1			
	(ii)	(1 1)) with $\begin{pmatrix} 22\\ 17 \end{pmatrix}$ or $\begin{pmatrix} 22 & 17 \end{pmatrix}$ with $\begin{pmatrix} 1\\ 1 \end{pmatrix}$	B 1			

	Page 3				Syllabus	Paper
		IGCSE – May/June 20	14		0606	23
4	(a) (i)		B1			
	(ii)	or or	B1		/enn diagram sho n do not all overla	wing three circles
	(b) (i)	$50 \notin C$	B1			
	(ii)	$64 \in S \cap C$	B1ft	ft onl and ∈	y on use of $\not\subset$ and	l⊂instead of ∉
	(iii)	n(S') = 90	B1			
5	(i)	$\left(2\sqrt{2}+4\right)^2 = 8 + 16\sqrt{2} + 16$	B1			
		Correct completion	B1			
	(ii)	Use $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	M1	$\left(=\frac{\left(}{2\right)}\right)$	$\frac{2\sqrt{2}+4}{\left(2\sqrt{2}+3\right)}$	
		Multiply top and bottom by $2\sqrt{2} - 3$	M1			
		$2-\sqrt{2}$	A1	Or 4	$\sqrt{2} - 6$	
6		Eliminate <i>x</i> or <i>y</i>	M1			
		Rearrange to quadratic in x or y	M1			
		$x^{2} - 27x + 72 = 0$ or $y^{2} + 9y - 90 = 0$	A1			
		Factorise or solve 3 term quadratic	M1			
		x = 3, x = 24 or $y = 6, y = -15$	A1			
		y = 6, y = -15 or $x = 3, x = 24$	B 1			

	Page 4	4	Mark Scheme			Syllabus	Paper
			IGCSE – May/June 2014			0606	23
7	(a)	$\frac{\cos \theta}{1}$	$\frac{\partial}{\partial t} + \frac{\cos\theta}{\sin\theta}}{\frac{\partial}{\partial t} + \frac{1}{\sin\theta}}$	B1			
		denor	s the fractions in the numerator and ninator using common denominator $\frac{\theta + \cos^2 \theta}{\theta + \cos \theta}$ and completion	M1 A1			
	(b)	evide	nce of 13	B 1			
		sin x	$=\frac{5}{13}$	B1			
		$\cos x$	$=-\frac{12}{13}$	B1ft	ft oi	n <i>their</i> 13	
8	(i)	Atten	npt to find $b^2 - 4ac$	M1	-	be in formula ttempt to complet	te square
		Comp	bletely correct argument	A1			
	(ii)	m = 6	6(4) - 8(2) + 3	M1			
		<i>y</i> – 10	y = 11(x-2) or $y = 11x - 12$	A1			
	(iii)	Integ	rate to $2x^3 - 4x^2 + 3x(+c)$	B2,1,0			
		10 = 2	$2(2)^3 - 4(2)^2 + 3(2) + c$	M1		on <i>c</i> being a genu gration	uine constant of
		y = 2x	$x^3 - 4x^2 + 3x + 4$ soi	A1			

	Page 5		Mark Scheme		Syllabus	Paper
			IGCSE – May/June 2014		0606	23
9 ((i)	(0, 7)		B1		
		m_{AB} =	= 2	B 1		
		perpe	ndicular gradient $=-\frac{1}{2}$	M1		
		<i>y</i> = -	$\frac{1}{2}x + 7$	A1		
(i	ii)	<i>m_{AB}</i> =	-1	B 1		
		y = -z	x + 13	B 1		
		Solve	their $y = -x + 13$ and $y = -\frac{1}{2}x + 7$	M1		
		D(12	.1)	A1		
		Com	plete method for area	M1		
		84		A1		
10 ((i)	$\frac{d}{dr}$	$\left(\overline{x^2 + 21}\right) = \frac{x}{\sqrt{x^2 + 21}}$	B 1	Alt method using prod	uct rule
		ur <	$\sqrt{x^2 + 21}$		$\frac{\mathrm{d}}{\mathrm{d}x}\frac{1}{\left(\sqrt{x^2+21}\right)} = \frac{1}{\left(\sqrt{x}\right)^2}$	$\frac{-x}{x^{2}+21}\right)^{3}$ is B1
		Use c	f quotient rule	M1	then M1 A1 as in quot	ient
		$2\sqrt{x}$	$\frac{x^{2}+21)-2x \times \frac{x}{\sqrt{x^{2}+21}}}{(x^{2}+21)}$	A1		
		Multi	ply each term by $\sqrt{(x^2 + 21)}$	M1		
		$\frac{2(x^2)}{(x^2)}$	$(\frac{x+21}{2}-2x^2)$ leading to $k = 42$	A1		
(i			$\frac{2x}{\sqrt{x^2 + 21}}$	M1	<i>k</i> must be a constant	
		Use 1	imits in $C \times \frac{2x}{\sqrt{x^2 + 21}}$	M1		
		$\frac{8}{55}$ o	r 0.145	A1		

Page 6		Mark Scheme			Syllabus	Paper
		IGCSE – May/June 20 [°]	14		0606	23
11 (i)	\overrightarrow{OM} =	= a	B1			
	\overrightarrow{MB} =	$\overrightarrow{MB} = 5\mathbf{b} - \mathbf{a}$				
(ii)	$\overrightarrow{ON} =$	-3 <i>b</i>	B 1			
	$\overrightarrow{AP} =$	$\lambda (3\mathbf{b} - 2\mathbf{a})$	B1			
(iii)		$\overrightarrow{MA} + \overrightarrow{AP}$ (3b - 2a)	M1 A1			
(iv)		$\vec{AP} = \mu \vec{MB}$	M1			
	Equat	e components	ents M1			
	Solve	simultaneous equations	M1			
	$\lambda = \frac{5}{7}$		A1			
12 (i)	3 < f	< 7	B1,B1	If B	then SC1 for 3	< f < 7
(ii)	f(12)	= 5	B 1	$f^2(x)$) $\sqrt{\left(\sqrt{(x-3)}+2\right)}$	(-3) + 2 earns B1
	(f(5)=	=) $2 + \sqrt{2}$	B 1			
(iii)		indication of method = $(x-2)^2 + 3$	M1 A1	cond	lone $y = (x - 2)^2 + (x - 2)^2$	- 3
(iv)	$\operatorname{gf}(x)$	gf (x) = $\frac{120}{\sqrt{(x-3)}+2}$				
	Attem	apt to solve <i>their</i> gf $(x) = 20$	M1			
	x = 19)	A1			

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

www.tiremepapers.com

0606/21

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	21

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3	Mark Scheme		Syllabus	Paper
		IGCSE – October/November	0606	21	
1	(x +	6)(x-1)	M1	Attempt to solve a th quadratic	ree term
	Crit	ical values –6 and 1	A1		
	- 6	< x < 1	A1 [3]	Allow $x > -6$ AND or a comma. Mark fi	
2	(4)	$(\overline{5}-2)^2 = 80 - 16\sqrt{5} + 4$	M1	Attempt to expand, a must be in the form	
	Mul	tiply top and bottom by $\sqrt{5+1}$	M1	Must be attempt to e bottom.	
	17	5+1	A1 A1 [4]	Allow A1 for $\frac{68\sqrt{5}}{c}$	+4
	Lead	$\overline{5} - 2^2 = 80 - 16\sqrt{5 + 4}$ -1) $(p\sqrt{5} + q) = 5p - q + \sqrt{5(q - p)}$ ding to $5p - q = 84, q - p = -16$ 17 $q = 1$	M1 M1 A1 A1	Must get to a pair of equations for this ma	
3	(i) $\frac{\mathrm{d}y}{\mathrm{d}k}$ k = 2	$=k\left(\frac{1}{4}x-5\right)^{7}$	M1 A1 [2]		
	(ii) Use	$\partial y = \frac{\mathrm{d}y}{\mathrm{d}x} \times \partial x$ with $x = 12$ and $\partial x = p$	M1	\checkmark on <i>k</i> needs both M	marks
	-250	u <i>i</i>	A1√ [≜] [2]	$\sqrt[n]{}$ only for $-128kp$ are evaluated	nd must be
4	(i) 10		B1		
	(ii) –5		[1] B1	Not $\log_p 1-5$	
	(iii) log	$_{p}XY = \log_{p}X + \log_{p}Y = 7$	[1] B1	Or $\log_{XY} p = \frac{1}{\log_p X}$	Y
	$\frac{1}{7}$		B1√ [^] [2]	Do not allow just $\log \sqrt{1}$ on $\frac{1}{\log_p XY}$	$g_p X + \log_p Y = 7$

	Page 4	Mark Scheme	Syllabus	Paper	
		IGCSE – October/Novembe	0606	21	
5		x - 4y = 5 oe	B1		
3		2x + 2y = 5 oe	B1 B1		
		olve their linear simultaneous equations	M1	Each in two variable	s and not
	5		1711	quadratic as far as x	
	х	x = 3 or $y = -0.5$	A1,A1√ [*] [5]		
	C	DR from log	B1		
		0.602x - 2.408y = 3.01	B1		
		0.954x + 0.954y = 2.386			
		DR from ln $.386x - 5.545y = 6.931$	B 1		
		2.197x + 2.197y = 5.493	B 1		
		inal M1A1A1 follows as before			
6	(a) (i) –	8 or 20	B1	± 40 implies $\pm 2 \times 2$	0 or +160
		(2)		hence B1	
	-	$-160(x^3)$ isw	B1 [2]	OK if seen in expans	sion
	(ii) 6	$50(x^2)$	B1	Can be implied	
	(i	i) $+\frac{1}{2}$ (their 60)	M1		
		$-130(x^3)$	A1 [3]		
	(b) 1	$6x^2 + 32x + 24 + \frac{8}{x} + \frac{1}{x^2}$ oe	B3,2,1,0	Terms must be evalu B2 for 4 terms correct	ct.
			[3]	B1 for 2 or 3 terms c ISW once expansion	
7	(i) <i>l</i>	$=\frac{3500}{r^2}$	B 1	allow $lx^2 = 3500$	
		$L = 3 \times 4x + 2x + 2l$	B 1	RHS 3 terms e.g. 12	$x + 2x + 2\left(\frac{3500}{r^2}\right)$
				or better	
		ubstitute for <i>l</i> and correctly reach			
	1	$L = 14x + \frac{7000}{x^2}$	DB1ag [3]	Dependent on both p	revious B marks
		$\frac{dL}{dx} = 14 - \frac{14000}{x^3}$	M1A1	M1 either power red A1 both terms correc	
	E	Equate $\frac{dL}{dx}$ to 0 and solve	DM1	Must get $x^n =$	
	х	dx = 10 $L = 210$	A1	Both values	
		$\frac{d^2 y}{dx^2} = \frac{42000}{x^4}$ and minimum stated	B1 [5]	Or use of gradient ei turning point.	ther side of

	Page 5		Mark Scheme IGCSE – October/November 2013					Syllabus 0606	Paper 21
						0000	21		
8	(i)	x^2					Implied by axes or v May be seen in (ii)	Implied by axes or values in a table. May be seen in (ii)	
	(ii)	Plot -	<u>y</u> again	st x^2 w	vith linea	r scales		Must be linear scale	S
		x^2	4	16	36	64	B1	At least 3 correct points	ints plotted and
		$\frac{y}{x}$	4.8	9.6	Line must be ruled a least 2 correct points				
	(iii)		gradien $.4 \pm 0.02$			Condone use of corr table/graph to find g			
			$.2 \pm 0.4$	-			A1 B1 [3]	equation. Values rea must be correct.	
	(iv)	Read	$\frac{y}{x} = 12.$	5			M1	Obtaining $(x^2) = 22$	to 24 from graph
		or sul	ostitute i	in form	ıla			As far as $x^2 = +ve c$	constant
		4.8					A1 [2]	4.7 to 4.9 ignore	-4.8 or 0
9			s compo				M1 A1		
			$\sin \alpha = 40$ $\cos \alpha + 1$				A1		
		12vc	$\cos \alpha = 48$	8.4			M1A1 DM1		
		Solve $\alpha = 3$	for v or 9.6	α			A1 A1	Allow 0.691 radians	
		u = 5 v = 5					[8]	Allow 0.091 radialis	
		Meth	od B	70					
			Y	a	D	⇒ 40			
			$8 \times 12 = 0 - 21.6$		J.		B1 B1		
					3942.56)		M1		
		D = 6	52.8				A1		
		$V = \frac{1}{1}$	$\frac{D}{2}$				DM1		
		V = 5	.23				A1	5.23 or better	
		tan a	$=\frac{40}{48.4}$				M1		
		$\alpha = 3$					A1 [8]	Allow 0.691 radians	3

Page 6	Mark Scheme		Syllabus	Paper
	IGCSE – October/November	2013	0606	21
$v = \frac{1}{2}$ $\tan \delta$ $V^{2} = \frac{1}{2}$ $V = \frac{1}{2}$ $\frac{\sin \beta}{1}$ $\beta = \frac{1}{2}$	$\frac{v}{V}$ $\frac{v}{V}$ $\frac{40}{1.8}$ $\frac{70}{\sqrt{40^2 + 70^2}} (= 80.6)$ $\frac{\sqrt{40^2 + 70^2}}{12} (= 6.72)$ $\frac{4}{7} \rightarrow (\delta = 29.74) \text{ oe}$ $1.8^2 + 6.72^2 - 2 \times 1.8 \times 6.72 \cos 29.74$ $\frac{1.8^2}{5.23}$ $\frac{1.8}{5} = \frac{\sin 29.74}{5}.23$ $\frac{1.8}{5} = \frac{1.29.74}{5}.23$ $\frac{1.8}{5} = \frac{1.29.74}{5}.23$	B1 B1 B1 M1 A1 M1 A1	Or $\tan(90 - \delta) = \frac{7}{4}$ Allow 0.172 radians	
$\alpha = 2$	$29.74 + \beta = 39.6$	A1 [8]	Allow 0.691 radians	
x = 1 $\tan \delta$ $D^2 =$ V = ($z = \frac{B}{D}$ $\frac{\sqrt{40^2 + 70^2}}{21.6} (= 80.6)$ $8 \times 12 = 21.6$ $z = \frac{4}{7} \rightarrow (\delta = 29.74) \text{ oe}$ $z = 21.6^2 + 80.6^2 - 2.21.6.80.6 \cos 29.74$ $z = 21.6^2 + 80.6^2 - 2.21.6.80.6 \cos 29.74$	B1 B1 M1 A1	This method has extra this point the M mark equation in D but the value of V .	is for an
$\beta = 9$	$\frac{3}{6}.6 = \frac{\sin 29.74}{62}.8$ 9.8(3) or 9.8(2) 29.74 + β = 39.6	A1 A1 [8]	Allow 0.172 radians Allow 0.691 radians	

	Page 7	Mark Scheme	Syllabus Paper				
		IGCSE – October/November	IGCSE – October/November 2013				
10	(-)	$4B^2 = 12^2 + 12^2 - 2 \times 12 \times 12 \times \cos 1.4$	M1	$AB = 2 \times 12 \sin 0.7$			
		5.4 to 15.5 $\theta = 2\pi - 1.4 (= 4.88)$	A1 B1	May be implied May be implied			
		$J = 2\pi - 1.4(-4.86)$ $J = r\theta(=58.6)$	M1	12×4.9 or better oe			
		4.1	A1	12 × 4.9 01 better be			
	,	1.1	[5]				
	(ii) (i	Sector) $\frac{1}{2} \times 12^2 \times (2\pi - 1.4) (= 352)$ or	M1	May be implied .			
	1	$\tau \times 12^2 - \frac{1}{2} \times 12^2 \times 1.4$					
	(Triangle) = $\frac{1}{2} \times 12 \times 12 \times \sin 1.4 (= 70.9 \text{ or } 71)$	M1				
		Area of major sector + Area of triangle	M1	May be implied			
	4	22 or 423	A1				
			[4]				
11	(i) .	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}e^{\frac{1}{3}x}$	B 1				
	7	$n=\frac{1}{2}e^3$	M1	For insertion of $x = 9$ into			
	,	<i>n</i> - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	1711				
				their $\frac{dy}{dx}$. 6.7 or better if correct.			
	J	$v - e^3 = \frac{1}{3}e^3(x - 9)$	DM1	Using their evaluated <i>m</i> to find eqn			
		5		y = 6.7x - 40.2 or better if correct.			
	A	$\operatorname{At} Q y = 0, x = 6$	A1	Accept value that rounds to 6.0 to 2sf			
			[4]				
		Area triangle $1.5e^3$ or 30.1	B 1				
		$\int e^{\frac{1}{3}x} dx = 3e^{\frac{1}{3}x} \text{ oe}$	B 1				
	t	Uses limits of 0 and 9 in integrated function.	M1	\pm must see both values inserted if incorrect answer			
	3	$3e^3 - 3 \text{ or } 57.3$	A1				
		Area under curve subtract area of triangle	M1				
	1	$.5e^3 - 3 \text{ or } 27.1$	A1	Condone 27.2 if obtained from			
			[6]	57.3 – 30.1.			

	Page 8		Mark Scheme		Syllabus	Paper
			IGCSE – October/Novemb	er 2013	0606	21
12	(a)	cosed	$dx = \frac{1}{\sin x}$ inserted into equation	B1		
		tan x	$=-\frac{2}{7}$	DB1		
		164.1 344.1		B1 B1√ [*] [4]	One correct value. on $180 + (164.1)$ M tanx = Condone164 and 344 Deduct 1 mark for ex	4
	(b)	($2y - 1$) = 0.79or 2.34 Find y using radians 0.898 (or 0.9 or 0.90) 1.67, 4.04 and 4.81(45)		B1 M1 A1 A1 A1 [5]	Allow 0.8, 2.3 or 45 Add 1 then divide by angle One correct value Another correct valu Final two values Deduct 1 mark for ex	v 2 on a correct

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3	Mark Scheme		Syllabus Paper		
		IGCSE – October/November	0606 22			
1	(<i>x</i> +	(x-6)(x-1)	M1	Attempt to solve a three term quadratic		
	Crit	ical values –6 and 1	A1			
	-6	< x < 1	A1 [3]	Allow $x > -6$ AND $x < 1$ but not OR or a comma. Mark final answer.		
2	(4√	$\left(5-2\right)^2 = 80 - 16\sqrt{5} + 4$	M1	Attempt to expand, allow one error, must be in the form $a + b\sqrt{5}$.		
	Mu	Itiply top and bottom by $\sqrt{5} + 1$	M1	Must be attempt to expand top and bottom.		
	17	$\sqrt{5} + 1$	A1 A1 [4]	Allow A1 for $\frac{68\sqrt{5}+4}{c}$		
	Lea	$ (5-2)^2 = 80 - 16\sqrt{5} + 4 (-1)(p\sqrt{5} + q) = 5p - q + \sqrt{5}(q - p) ding to 5p - q = 84, q - p = -16 17 q = 1 $	M1 M1 A1 A1	Must get to a pair of simultaneous equations for this mark		
3	(i) $\frac{\mathrm{d}y}{\mathrm{d}k}$ k =	$=k\left(\frac{1}{4}x-5\right)^{7}$ 2	M1 A1 [2]			
	(ii) Use	$\partial y = \frac{dy}{dx} \times \partial x$ with $x = 12$ and $\partial x = p$	M1	$\sqrt[4]{}$ on <i>k</i> needs both M marks		
	-25	uλ	A1√ [≜] [2]	\checkmark only for $-128kp$ and must be evaluated		
4	(i) 10		B1			
	(ii) –5		[1] B1	Not $\log_p 1-5$		
	(iii) log	$_{p}XY = \log_{p}X + \log_{p}Y = 7$	[1] B1	Or $\log_{XY} p = \frac{1}{\log_p XY}$		
	$\frac{1}{7}$		B1√ [^] [2]	Do not allow just $\log_p X + \log_p Y = 7$ \checkmark on $\frac{1}{\log_p XY}$		

	Page 4		Mark Scheme	Syllabus	Paper	
		IGC	SE – October/November	0606	22	
5		x - 4y = 5 oe $2x + 2y = 5 oe$		B1 B1		
		Solve their linear $x = 3$ or $y = -0.5$	simultaneous equations	M1 A1,A1√ [≜]	Each in two variable quadratic as far as x	
		OR from log		[5]		
		0.602x - 2.408y = 0.954x + 0.954y = 0.954x		B1 B1		
		OR from ln 1.386x - 5.545y = 2.197x + 2.197y =	= 5.493	B1 B1		
6	(a) (i)	Final M1A1A1 \checkmark -8 or 20	follows as before	B1	± 40 implies $\pm 2 \times 2$	0 or +160
		$-160(x^3)$ isw		B1 [2]	hence B1 OK if seen in expans	
		$60(x^2)$		B1	Can be implied	
		(i) $+\frac{1}{2}$ (their 60) $-130(x^3)$		M1 A1		
	(b)	$16x^2 + 32x + 24 + $	$\frac{8}{x} + \frac{1}{x^2}$ oe	[3] B3,2,1,0	Terms must be evalu B2 for 4 terms correc B1 for 2 or 3 terms c	ct.
				[3]		
7	(i)	$l = \frac{3500}{x^2}$ $L = 3 \times 4x + 2x + 2x$		B1	allow $lx^2 = 3500$	(3500)
		$L = 3 \times 4x + 2x + z$	21	B1	RHS 3 terms e.g. 12. or better	$x + 2x + 2\left(\frac{1}{x^2}\right)$
		Substitute for <i>l</i> and $L = 14x + \frac{7000}{x^2}$	d correctly reach	DB1ag [3]	Dependent on both p	revious B marks
	(ii)	$\frac{\mathrm{d}L}{\mathrm{d}x} = 14 - \frac{14000}{x^3}$		M1A1	M1 either power red A1 both terms correc	
		Equate $\frac{\mathrm{d}L}{\mathrm{d}x}$ to 0 a	nd solve	DM1	Must get $x^n =$	
		x = 10 $L = 210$		A1	Both values	
		$\frac{d^2 y}{dx^2} = \frac{42000}{x^4}$ and	d minimum stated	B1 [5]	Or use of gradient ei turning point.	ther side of

Page 5		Mark Scheme IGCSE – October/November 2013					Syllabus 0606	Paper 22			
				IGCSE		ber/Nove	0000 22				
8	(i)	x^2					B1 [1]	Implied by axes or May be seen in (ii)	Implied by axes or values in a table. May be seen in (ii)		
	(ii)	Plot	$\frac{y}{x}$ again	st x^2 w	vith linea	r scales		Must be linear scales			
		x^2	4	16	36	64	B1	At least 3 correct po	ints plotted and		
		$\frac{y}{x}$	4.8	9.6	17.5	29	B1 [2]	no incorrect points Line must be ruled a least 2 correct point			
	(iii)		gradien 4 ± 0.02				M1	Condone use of corr table/graph to find g			
			$.2 \pm 0.02$				A1 B1 [3]	equation. Values rea must be correct.			
	(iv)	Read	$\frac{y}{x} = 12.$	5			M1	Obtaining $(x^2) = 22$	to 24 from graph		
		or su	bstitute i	n formı	ıla			As far as $x^2 = +ve$	constant		
		4.8					A1 [2]	4.7 to 4.9 ignore	-4.8 or 0		
9		12vs 12(ve 12vc	s compo in $\alpha = 40$ $\cos \alpha + 1$ $\cos \alpha = 48$ e for v or	(.8) = 70 8.4			M1 A1 A1 M1A1 DM1 A1 A1	Allow 0.691 radians			
		<i>v</i> = 5	.23				[8]				
		Meth	x	70 a	Dy	→ ↓ ↓					
			$.8 \times 12 =$ 0 - 21.6				B1 B1				
		•			942.56)		M1				
		D = 0					A1				
		$V = \frac{1}{2}$	2				DM1				
		V = 5	40				A1	5.23 or better			
		tan a	$c = \frac{1}{48.4}$				M1				
		$\alpha = 3$	59.6°				A1 [8]	Allow 0.691 radian	S		

Page 6	Mark Scheme	Syllabus	Paper	
	IGCSE – October/November	0606	22	
$v = \frac{1}{2}$ $\tan \delta$ $V^{2} = \frac{1}{2}$ $V = \frac{1}{2}$	$\frac{v}{V}$ $\frac{v}{V}$ $\frac{1.8}{70}$ $\frac{70}{\sqrt{40^2 + 70^2}} (= 80.6)$ $\frac{\sqrt{40^2 + 70^2}}{12} (= 6.72)$ $\frac{1.8^2 + 6.72^2 - 2 \times 1.8 \times 6.72 \cos 29.74}{5.23}$	B1 B1 B1 M1 A1	Or $\tan(90-\delta) = \frac{7}{4}$	
$\beta = 9$	$\frac{3}{5} \cdot 8 = \frac{\sin 29.74}{5} \cdot 23$ 9.8(3) or 9.8(2) 29.74 + $\beta = 39.6$	M1 A1 A1 [8]	Allow 0.172 radians Allow 0.691 radians	
Meth	od D			
$z = \sqrt{x}$ $x = 1$ $\tan \delta$ $D^{2} =$	$\frac{z}{D}$ $\frac{b}{21.6}$ $\frac{1}{40^{2} + 70^{2}} (= 80.6)$ $8 \times 12 = 21.6$ $\frac{1}{7} \rightarrow (\delta = 29.74) \text{ oe}$ $21.6^{2} + 80.6^{2} - 2.21.6.80.6 \cos 29.74$ $62.8/12) = 5.23$	B1 B1 B1 M1 A1	This method has extra this point the M mark equation in D but the value of V .	is for an
$\frac{\sin \mu}{21}$	$\frac{3}{6}.6 = \frac{\sin 29.74}{62}.8$			
•	9.8(3) or $9.8(2)29.74 + \beta = 39.6$	A1 A1 [8]	Allow 0.172 radians Allow 0.691 radians	

	Page 7	Mark Scheme	Syllabus Paper		
		IGCSE – October/November	IGCSE – October/November 2013		
			T		
10		$AB^{2} = 12^{2} + 12^{2} - 2 \times 12 \times 12 \times \cos 1.4$ 15.4 to 15.5 $\theta = 2\pi - 1.4 (= 4.88)$	M1 A1 B1	$AB = 2 \times 12 \sin 0.7$ May be implied May be implied	
		Use $s = r\theta(=58.6)$	M1	12×4.9 or better oe	
		74.1	A1		
			[5]		
	(ii)	(Sector) $\frac{1}{2} \times 12^2 \times (2\pi - 1.4) (= 352)$ or	M1	May be implied .	
		$\pi \times 12^2 - \frac{1}{2} \times 12^2 \times 1.4$			
		(Triangle) = $\frac{1}{2} \times 12 \times 12 \times \sin 1.4 (= 70.9 \text{ or } 71)$	M1		
		Area of major sector + Area of triangle	M1	May be implied	
	4	422 or 423	A1		
			[4]		
11	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3} \mathrm{e}^{\frac{1}{3}x}$	B1		
		$m = \frac{1}{3}e^3$	M1	For insertion of $x = 9$ into	
		5		their $\frac{dy}{dx}$. 6.7 or better if correct.	
		$y - e^3 = \frac{1}{3}e^3(x - 9)$	DM1	Using their evaluated <i>m</i> to find eqn $y = 6.7x - 40.2$ or better if correct.	
		At $O v = 0, x = 6$	A1	Accept value that rounds to 6.0 to 2sf	
			[4]		
	(ii) .	Area triangle $1.5e^3$ or 30.1	B1		
		$\int e^{\frac{1}{3}x} dx = 3e^{\frac{1}{3}x} \text{ oe}$	B1		
	1	Uses limits of 0 and 9 in integrated function.	M1	\pm must see both values inserted if incorrect answer	
		$3e^3 - 3 \text{ or } 57.3$	A1		
		Area under curve subtract area of triangle	M1		
		$1.5e^3 - 3 \text{ or } 27.1$	A1	Condone 27.2 if obtained from	
			[6]	57.3 – 30.1.	

	Page 8		Mark Scheme		Syllabus	Paper
			IGCSE – October/Novemb	IGCSE – October/November 2013		22
12	(a)	cose	$ex = \frac{1}{\sin x}$ inserted into equation	B1		
		tan x	$=-\frac{2}{7}$	DB1		
		164.1 344.1		B1 B1√ [≜]	One correct value. \checkmark on 180 + (164.1) M tanx = Condone164 and 344 Deduct 1 mark for ex	4
	(b)	Find 0.898	1) = 0.79or 2.34 y using radians (or 0.9 or 0.90) 4.04 and 4.81(45)	B1 M1 A1 A1 A1 A1 [5]	Allow 0.8, 2.3 or 45 Add 1 then divide by angle One correct value Another correct valu Final two values Deduct 1 mark for ex	.6° 7 2 on a correct e

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3			Syllabus Paper
	IGCSE – October/November 2013		0606 23
1	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 12x - 36$	B2, 1, 0	Allow B1 if 2 terms correct
	Equate to 0 and solve 3 term quadratic x = -2 and $x = 6y = 56$ and $y = -200$	M1 A1 A1 [5]	Or one coordinate pair For two y values
2 (a) (i)	840	B1 [1]	
(ii)	480	B1 [1]	
(iii)	Calculates any case(s) correctly Partitions all cases correctly 140	B1 M1 A1 [3]	e.g. $1 \times 5 \times 4 \times 3 = 60, 1 \times 5 \times 4 \times 4 = 80$
3	Eliminate <i>x</i> or <i>y</i>	M1*	
	Obtain $kx^2 + 8x + k - 6 (= 0)$	A1	
	Use $b^2 - 4ac^*0$	DM1	
	Obtain $-4k^2 + 24k + 64*0$ oe	A1	
	Solve 3 term quadratic ($k = 2, 8$) k < -2, k > 8	M1 A1 [1]	
4 (a) (i)	A = 3, B = 2	B1, B1	
(ii)	<i>C</i> = 4	B1	
(b)	$\frac{120 \text{ or } \frac{2\pi}{3}}{5}$	B1 B1	
5 (a) (i) (ii)		B1 [1]	
		B1 [1]	
(b)	$S \cap T'$ or $(S' \cup T)'$ oe	B1 [1]	Others will be seen but only accept completely correct set notation

Page 4	Mark Scheme			Syllabus	Paper
	IGCSE – October/Noven	nber 2	013	0606	23
(c)	3 <i>x</i> 18- <i>x x</i> 14- <i>x</i>	B1		B1 for any two of x , $3x$, in correct place (or implied equation)	
	18 - x + x + 14 - x + 3x = 40 x = 4	M1 A1	[3]		
6 (a) (i)	Equate $f(-3)$ to zero Equate $f(2)$ to 65	M1 M1			
	-54+9a-3b+21 = 0 (9a-3b = 33) or 16+4a+2b+21 = 65 (4a+2b=28)	A1			
	Solve simultaneous equations $a = 5, b = 4$	M1 A1	[5]		
(ii)	Calculate $f\left(-\frac{1}{2}\right) = -\frac{1}{4} + \frac{a}{4} - \frac{b}{2} + 21$	M1		Or use long division	
	20	A1	[2]		
7	Eliminate x or y Rearrange to quadratic in x or y correctly	M1 M1			
	$x^2 - 10x + 16 \ (= 0)$				
	or $y^2 + 8y - 128 (= 0)$ oe	A1			
	Solve 3 term quadratic	M1			
	x = 2, x = 8 y = 8, y = -16	A1 A1		Or one correct coordinat	e pair
	Correct method for at least one coordinate of <i>C</i>	M1		e.g. $x_c = \frac{1}{3} [2 (2) + 1 (8)]$ OC = OA + $\frac{1}{3}$ AB oe	ļ,
	<i>C</i> (4, 0)	A1	[8]		

	Page 5	Mark Scheme		Syllabus	Paper
		IGCSE – October/Noven	nber 2013	0606	23
				1	
8	(a) (i)	X(14, 12)	B1		
		$m_{AX} = \frac{1}{3}$	B1		
		Use $m_1m_2 = -1$ for grad <i>CD</i> from grad <i>AX</i>	M1		
		CD is y - 4 = -3(x - 10) or			
		y = -3x + 34	A1√	$\sqrt{\text{ on grad } AX}$	
		$AX \text{ is } y - 6 = \frac{1}{3}(x+4)$ or			
		3y - x = 22	В1√	on grad AX	
		Solve eqn for CD with eqn for AX D (8, 10)	M1 A1 [7]		
	(ii)	Method for area 100	M1 A1 [2]		
9	(a) (i)	9	B1 [1]		
	(ii)	$a = k \cos 2t$	M1	No other functions of t or co	onstants
		$12 \cos 2t$ -7.84	A1 A1√ [3]	$\sqrt{\text{ on } k \text{ only } \text{Must be negative}}$ or say "deceleration"	ve (if correct)
	(iii)	$t = \frac{7\pi}{12}$ or awrt 1.8	B1		
		$3t-3\cos 2t$	B1, B1		
		Use limits of 0 and their $\left(\frac{7\pi}{12}\right)$		Upper limit must be positive	e
		or finds $c \ (\neq 0)$ and substitutes their $\left(\frac{7\pi}{12}\right)$	M1		
		11.1 or $\frac{7\pi}{4} + \frac{3\sqrt{3}}{2} + 3$	A1 [5]		

Р	age 6	Mark Scheme			Syllabus Paper
		IGCSE – October/Noven	ber 2	013	0606 23
10 (a)) (i)	Radius is $\frac{h}{4}$	B1		
		Use $\frac{1}{3}\pi r^2 h$	M1		On water cone
		$\frac{1}{3}\pi \left(\frac{h}{4}\right)^2 \times h \left(=\frac{\pi h^3}{48}\right)$	Alag	[3]	
	(ii)	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\pi h^2}{16}$	B1		
		Use $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}h}{\mathrm{d}V}$			
		with $h = 50$, $\frac{\mathrm{d}V}{\mathrm{d}t} = 20\pi$	M1		
		0.128	A1	[3]	
	(iii)	$A = \frac{\pi h^2}{16} \frac{\mathrm{d}A}{\mathrm{d}h} = \frac{\pi h}{8}$	B1 M	1	
		Use $\frac{dA}{dt} = \frac{dh}{dt} \times \frac{dA}{dh}$ with substitution of h = 50, their 0.128	M1		
		0.8π or 2.51	A1	[3]	
11 (a)) (i)	$(2\mathbf{i}+4\mathbf{j})t$	B1		
		(-21i + 22j) + (5i + 3j)t	B1	[2]	
	(ii)	Subtract position vectors $((-21+3t)\mathbf{i}+(22-t)\mathbf{j})$	M1		Or use $t = 2$ to find position vectors of A , B $4\mathbf{i} + 8\mathbf{j}, -11\mathbf{i} + 28\mathbf{j}$
		Substitute $t = 2$ and use Pythagoras Correctly reach 25	M1 A1	[3]	Subtract position vectors and use Pythagoras
	(iii)	$(-21+3t)^2 + (22-t)^2 = 25^2$ oe	M1		Set expression for distance apart to 25
		$t^2 - 17t + 30 (= 0)$	A1		
		Solve 3 term quadratic	M1		Not essential to solve quadratic
		<i>t</i> = 15 (and 2)	A1		e.g. $t_1 + t_2 = 17$ and $t_1 = 2$
		13 hours	A1	[5]	

© Cambridge International Examinations 2013

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/21

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	age 2 Mark Scheme		Paper
	IGCSE – May/June 2013	0606	21

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	age 3 Mark Scheme		Paper
	IGCSE – May/June 2013	0606	21

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2013		0606	21
1	$\frac{2+2\sin^2\theta}{\cos^2\theta}$	B1	For all methods I – correct simplif	
	$\frac{2}{\cos^2\theta} = 2\sec\theta$	B1	$-\operatorname{correct} \operatorname{use} \operatorname{of} \operatorname{I}$ $-\operatorname{use} \operatorname{of} \tan = \frac{\operatorname{si}}{\operatorname{co}}$	Pythagoras n
	$\frac{\sin^2\theta}{\cos^2\theta} = 2\tan^2\theta$	B1	$-$ use of $\frac{1}{\cos} = \sin^2 \frac{1}{\cos^2}$	ec
	$2 \sec^2 \theta = 2 + 2 \tan^2 \theta$ and completion	B1	Award first 3 the final expression a correct method.	
			Inconsistent no a -1 (can recover).	
			If start from RHS similarly.	S award
	Or			
	$(\sec\theta + \tan\theta)^2 + (\sec\theta - \tan\theta)^2$	[B1, B1		
	$2\sec^2\theta + 2\tan^2\theta$	B1		
	$2(1 + \tan^2 \theta) + 2\tan^2 \theta$ and completion	B1]		
	$\frac{\mathbf{Or}}{\frac{2+2\sin^2\theta}{\cos^2\theta}}$	[B1		
	$\frac{2\left(\sin^2\theta + \cos^2\theta\right) + 2\sin^2\theta}{\cos^2\theta}$	B1		
	$\frac{4\sin^2\theta}{\cos^2\theta} = 4\tan^2\theta$	B1		
	$\frac{2\cos^2\theta}{\cos^2\theta} = 2 \text{ and completion}$	B1]		
2 (i)	3.2	B1		
(ii)	15	B1		
(iii)	uses area to find distance	M1	If split 2 or 3 cor and must be atten area	
	two of 40, 240 and 32	A1		
	312	A1	or A2 for 312 fro	om trapezium

Page 5 Mark Scheme		Syllabus	Paper		
	IGCSE – May/June 2013		0606	21	
3	$\frac{\mathrm{d}y}{\mathrm{d}x} = k \sin x \cos x$	M1			
	k = -8	A1			
	Attempt to find x when $y = 8$	M1	Must get to $x = 1$	numerical value	
	$\mathbf{x} = \frac{\pi}{4} \ (0.785)$	A1	$45^\circ = \mathbf{A0}$ (but ca 2 marks)	n still gain next	
	Uses $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$	M1	Must use numer and 0.2 for $\frac{dx}{dt}$	ical value for <i>x</i>	
	-0.8 (not rounded)	A1	(condone poor n correct terms mu		
4 (i)	Idea of modulus correct	B1	Two straight line touching <i>x</i> -axis	es above and	
	$\frac{1}{2}$ indicated on <i>x</i> -axis	B1	Must be a sketch	1	
	2 indicated on <i>y</i> -axis	B 1	Must be a sketch	1	
(ii)	$\frac{2}{3}$ (0.667)	B 1	0.67 is B0		
	Solve $4x - 2 = -x$ or $(4x - 2)^2 = x^2$	M1	As far as $x = nun$	merical value	
	$\frac{2}{5}$	A1	SC: If drawn the exact answers of	· · · · · · · · · · · · · · · · · · ·	
5 (i)	$(QR = PS =)\frac{96 - 3x}{2}$	B1	Can be implied statement	by next	
	Area = $\left(\frac{96-3x}{2}\right) \times x$	B1	AG		
(ii)	$\frac{dA}{dx} = \frac{96-6x}{2}$ or $48 - 3x$ o.e.	B1			
	Solving $\frac{dA}{dx} = \frac{96 - 6x}{2} = 0$	M1	As far as $x =$ numerical value		
	x = 16	A1			
	A = 384 and state maximum	A1			

Page 6	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2013		0606	21
6	Applies quotient rule correctly	M1	or product rul	e
	$\frac{(x-2)2x-(x^2+8)}{(x-2)^2}$	A1	$2x(x-2)^{-1}-$	$(x^2+8)(x-2)^{-2}$
	<i>y</i> = 12	B1		
	Uses $m_1m_2 = -1$	M1		
	(Gradient normal = $\frac{1}{2}$)			
	Uses equation of line for normal	M1	If uses $y = mx$ for M1	x + c must find c
	$y-12 = \frac{1}{2}(x-4)$ or $y = \frac{1}{2}x+10$	A1		
7 (i)	$64 + 192x + 240x^2 + 160x^3$ mark final answer	B3, 2, 0	2 terms correct Can be earned	ct earn B1
(ii)	Multiply out $(1 + 3x)(1 - x)$	M1		
	$1 + 2x - 3x^2$ o.e.	A1		
	$(1) \times (160) + (2) \times (240) + (-3) \times (192)$ o.e.	M1	3 terms	
	64	A1		
	Or Multiply out $(1 - x) (64 + 192x + 240x^2 + 160x^3)$	[M1	May be other for first M1 f term	variations: ind x^2 term or x^3
	$48x^2 - 80x^3$ o.e.	A1		
	Multiply by $1 + 3x$	M1	for second M relevant terms	1 must produce all s
	64	A1]		
	Or (1 + 3x) (64 + 192x + 240x ² + 160x ³)	[M1		
	$816x^2 + 880x^3$ o.e.	A1		
	Multiply by $1 - x$	M1		
	64	A1]		

Page 7	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2013		0606	21
8	Eliminates y (or x) and full attempt at expansion	M1		
	$4x^2 - 8x - 96 = 0 \text{or } y^2 + 12y - 64 = 0$	A1		
	Factorise 3 term relevant quadratic	M1	Or use correct fo	ormula
	x = -4 and 6 or $y = -16$ and 4	A1		
	y = -16 and 4 or $x = -4$ and 6	A1√		
	Uses Pythagoras for relevant points	M1		
	22.4 or $\sqrt{500}$ or $10\sqrt{5}$	A1	cao	
9 (i)	Attempt to solve 3 term quadratic	M1		
	-3 and 8	A1		
	-3 < x < 8	A1	Condone $-3 < x$	AND $x < 8$
(ii)	$4 < x \ (< 12)$	B 1		
	$S \cup T = -3 < x < 12$	B 1		
(iii)	$S \cap T = 4 < x < 8$ or $S' = -5 < x \le -3, 8 \le x < 12$ and $T' = -5 < x \le 4$	B1	Penalise confusion over $<$ and \leq (or $>$ and \geq) once only	
	$-5 < x \le 4$	B 1√	their 4	
	$8 \le x < 12$	B 1√	their 8 (Ignore A	ND/OR etc.)

Page 8		Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2013		0606	21
10	(i)	$\frac{\sin\alpha}{50} = \frac{\sin 58}{240}$	M1 A1	Use of sin rule/cc rule/resolving wi 58/32/122/148. Must be correct f	th 50, 240 and
		$\alpha = 10.2$	A1		
		Bearing (0)21.8 or (0)22	A1√	$\sqrt{1}$ for $32 - \alpha$	
	(ii)	$V^{2} = 240^{2} + 50^{2} - 2 \times 240 \times 50 \times \cos(122 - \alpha)$	M1	Correct use of sin rule/resolving	n rule/cosine
		V = 263 awt	A1	Can be in (i)	
		$T = \frac{500}{V}$	M1	Only allow if <i>V</i> of non right-angled	
		114 or 1 hour 54 mins	A1	Do not allow inc	orrect units
		Or $T = \frac{500\cos 32}{240\cos 21.8}$	[M1	Alternative for p Also can find dis (457) then 457/2	stance for 240
		500 cos 32	B 1		
		240 cos 21.8	B 1		
		114 or 1 hour 54 mins	A1]		
11	(i)	1	B 1	Not a range for k $x = 1$ and $x \ge 1$, but condone
	(ii)	$f \ge -5$	B 1	Not <i>x</i> , but condo	ne y
	(iii)	Method of inverse	M1	Do not reward po allow slips	oor algebra but
		$1 + \sqrt{x+5}$	A1	Must be $f^{-1} = \dots o$	or $y =$
	(iv)	f: Positive quadratic curve correct range and domain	B1	Must cross <i>x</i> -axis	
		f^{-1} : Reflection of f in $y = x$	B1 √	$\sqrt{their} f(x)$ sketch Condone slight in unless clear cont	naccuracies
	(v)	Arrange $f(x) = x$ or $f^{-1}(x) = x$ to 3 term quadratic = 0	M1		
		4 only www	A1	Allow $x = 4$ with Condone (4, 4). Do not allow fina also given in ans	al A mark if –1

Page 9			Mark Scheme		Syllabus	Paper
			IGCSE – May/June 2013		0606	21
12	(i)	f(3	(3) = (27 + 9 + 3a + b) = 0 or $3a + b = -36$	M1	Equate $f(3)$ to 0	
		f(-	(-1) = (-1 + 1 - a + b) = 20 or $-a + b = 20$	M1	Equate $f(-1)$ to 2	20
		So	lve equations	M1		
		a =	$=-14, \ b=6$	A1	If uses $b = 6$ then Need both value	
	(ii)	Fi	nd quadratic factor	M1	If division, must be complete with first 2 terms correct If writes down, must be $(x^2 + kx - 2)$	
		x^2	-4x-2	A1		
			se quadratic formula or completing square on levant 3 term quadratic	M1	If completing square, must read $\left(x + \frac{k}{2}\right)^2 = 2 \pm \left(\frac{k}{2}\right)^2$	
		_	$\frac{4 \pm \sqrt{16 + 8}}{2}$ or better	A 1√		
		-	$2 \pm \sqrt{6}$ isw	A1	cao	

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Page 2 Mark Scheme		Paper
	IGCSE – May/June 2013	0606	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Page 3 Mark Scheme		Paper
	IGCSE – May/June 2013	0606	22

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4		Mark S	cheme	Syllabus	Paper
		IGCSE – Ma	y/June 2013	0606	22
1		$m = \frac{18-3}{4-1}$ or 5 soi Y-3 = their 5(X-1) or Y-18 =	= <i>their</i> 5(<i>X</i> -4)	or $18 = 4m + c$ subtracting/subs for <i>m</i> or <i>c</i> , cond	stituting to solve
		or 3 = their 5 + c or 18 = their 5 $\sqrt{y} = (their m) x^2 + (their c) \text{ or}$	$\times 4 + c$ M1	-	e or <i>their c</i> to find <i>n</i> , without further
		$\sqrt{y} = (their m) (x^2 - 1) + 3 \text{ or}$ $\sqrt{y} = (their m) (x^2 - 4) + 18$	M1	their m and c motion obtained	ust be validly
		$y = (5x^2 - 2)^2$ or $y = (5(x^2 - 1) + 1)^2$ $y = (5(x^2 - 4) + 18)^2$ cao, isw	3) ² or A1		
2	(a)	$(p+1)\ln 3 = \ln 0.7$	M1	or $p + 1 = \log_3 0$ $p \ln 3 = \ln \left(\frac{0.7}{3} \right)^{-1}$	
		$p = \frac{\ln 0.7}{\ln 3} - 1$ or $p = \frac{\lg 0.7}{\lg 3} - 1$	M1	or $p = \log_3 0.7 - \frac{1}{3}$ or $p \ln 3 = \ln\left(\frac{0.7}{3}\right)$	- 1
		-1.32 cao	A1	allow M2 for <i>p</i> correct answer of	
	(b)	$2^{\frac{5}{2}} \times x^6 \times y^{-\frac{1}{2}}$ or $a = \frac{5}{2}, b = 6,$	$c = -\frac{1}{2} \qquad \qquad \mathbf{B3}$	B1 for each con	nponent
3	(a) (i)	A and E	B2	1 mark for each B1 for 1 extra, I extras	
	(ii)	C and D	B2	1 mark for each B1 if 1 extra, B (extras	
	(b)	5 ^y 5 ^y 5 ^x	B2		oints correct and ee points correct

	Page 5		Mark Scheme		Syllabus	Paper	
			IGCSE – May/June 2013		0606	22	
4	(i)		$\overrightarrow{OA} + \overrightarrow{AC}$ or $\overrightarrow{OA} = 3(\overrightarrow{OC} - \overrightarrow{OA})$ soi	B1	or $3\overrightarrow{AC} = 3(c_1 - 0.6)$ o.e. soi	$(-4)\mathbf{i} + 3(c_2 + 21)\mathbf{j}$	
			(1-9 j) o.e. or $\overrightarrow{OC} = \frac{2}{3}\overrightarrow{OA} + \frac{1}{3}\overrightarrow{OB}$	B1			
		_	$1\mathbf{j} + \frac{1}{3}(their(18\mathbf{i} - 9\mathbf{j}))$ o.e. or	M1	or $3(c_1 - 4) = their \ 18$ and $3(c_2 + 21) = their \ (-9)$		
		10 i – 1	$-21j) + \frac{1}{3}(22i - 30j)$ 24j cao	A1			
	(ii)		$=\sqrt{their10^2 + their(-24)^2}$ soi	M1	condone $\left \overrightarrow{OC} \right = \sqrt{their10}$	$t^2 + their(24)^2$	
		$\frac{1}{13}(5i)$	$(-12\mathbf{j})$ or $\frac{1}{26}(10\mathbf{i}-24\mathbf{j})$ isw	A1 FT	FT their $x\mathbf{i} + y\mathbf{j}$	o.e.	
5		AX =	$\sqrt{45}$	B1	may be implied	by $3\sqrt{5}$	
		AX =	3√5	B1	may be seen late	er	
		$\frac{1}{2}(4 +$	$-\sqrt{5}+2+x$)× <i>their</i> $\sqrt{45}$ soi	M1	may be implied by e.g. summation of rectangle and two triangles		
		15(√5 better	$(\overline{5}+2) = \frac{1}{2} (4 + \sqrt{5} + 2 + x) \times their \sqrt{45}$ or	M1			
		Corre	ctly divide <i>their</i> equation by <i>their</i> $\sqrt{5}$ or $\sqrt{45}$ and rationalise denominator	M1			
		comp	letion to $4 + 3\sqrt{5}$ www	A1	answer only doe	es not score	

	Page 6		Mark Scheme		Syllabus	Paper
			IGCSE – May/June 2013		0606	22
-		1				
6	(i)	arc 4	$AB = r\left(\frac{\pi}{3}\right)$	B1		
			d $AB = r$ with justification and summation completion to given answer	B1	$r\left(\frac{3+\pi}{3}\right)$	
	(ii)	r = 1		B1	must be seen; a	ccept awrt 12.7
		$\frac{1}{2}$ ×	their $r^2 \times \left(\frac{\pi}{3} - \sin\left(\frac{\pi}{3}\right)\right)$	M3	may be implied 84.45 69.84	····
					or M1 for $\frac{1}{2} \times t$	<i>heir</i> $r^2 \times \frac{\pi}{3}$ or
					84.45 and	
					M1 for $\frac{1}{2} \times thei$	$rr^2 \times \sin\frac{\pi}{3}$ o.e.
					or 69.84 and	
		awrt	14.6	A1	M1 for Area Se triangle attempt	
7	(i)	k(3	$(-5x)^{11}$	M1		
		5×1	$2(3-5x)^{11}$ or better, isw	A1		
	(ii)	$x^2(th$	$eir\cos x) + (their 2x)\sin x$	M1	clearly applies of product rule	correct form of
		$x^2 cc$	$ax + 2x \sin x$ isw	A1	F	
	(iii)	Quo	tient rule attempt:		Product rule att	empt:
		$\frac{\mathrm{d}}{\mathrm{d}x}($	$\tan x) = \sec^2 x$	B1	$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec x$	
		uл	$1+e^{2x}\Big)=2e^{2x}$	B1	$\frac{\mathrm{d}}{\mathrm{d}x}(1+\mathrm{e}^{2x})^{-1} =$	$-2e^{2x}(1+e^{2x})^{-2}$
		<u>(1+</u>	the set of	M1	$\tan x (their - 2e)$ $(1 + e^{2x})^{-1}(their)$	$e^{2x}(1+e^{2x})^{-2}) + \sec^2 x$
		<u>(1+</u>	$\frac{e^{2x})\sec^2 x - 2e^{2x}\tan x}{(1+e^{2x})^2}$ isw	A1	$\tan x \left(-2e^{2x}(1+(1+e^{2x})^{-1}(\sec^2 x)^{-1}(\sec^2 x)^{-1}(\csc^2 x)^$	$(e^{2x})^{-2} + (e^{2x})^{-2}$

	Page 7		Mark Scheme		Syllabus	Paper
			IGCSE – May/June 2013		0606	22
8	(i)	y - 2	$2 = \left(\frac{6-2}{2+6}\right)(x+6)$ o.e. soi	M1	or $y - 6 = \left(\frac{6 - 2}{2 + 1}\right)$	$\left(\frac{2}{6}\right)(x-2)$
		<i>y</i> = -	$\frac{1}{2}x + 5$ isw	A1		
	(ii)		of $m_1m_2 = -1$ b = (their -2)(x - 2) or better, isw	M1 A1 FT	or $y = (their - 2)$ c = their 10, isv	/ /
	(iii)	(<i>x</i> +	$(6)^{2} + (y-2)^{2} = 10^{2}$ o.e.	B1	or $(x-2)^2 + (y-1)^2$ o.e. or $(\sqrt{80})^2 - ((x-2)^2 + (y-1)^2)$	+
		Subs	stitute $y = their (-2x + 10)$	M1*	or identifying one point by inspection from the length equation and testing it in the equation of BC or vice versa	
		Solv	e their quadratic	M1 dep*	or identifying the second point by inspection from the length equation and testing it in the equation of <i>BC</i> or vice versa	
		(0, 1	0) and (4, 2) o.e. only	A1	answer only do	es not score
9	(a)	14 =	$k + c \text{ and } 6 = \frac{k}{9} + c \text{ o.e.}$	M1	for two equation be unsimplified slip in one equa	
		c = 5 $k = 9$		A1 A1		
	(b) (i)	79.2	or 79.158574 rot to 4 or more sf	B1		
	(ii)	$e^{2x} + (e^{x})^2$	$5e^{x} - 24(=0)$ or + $5e^{x} - 24(=0)$ o.e.	M1	condone one er	ror, but must be
	fact $e^x = x = x = rot t$		$+ 3e^{-24(-0)} 0.e.$ orise <i>their</i> 3 term quadratic	M1	or correct/corre	ct ft use of pleting the square
			3 n 3 or 1.1(0) or 1.0986122 o 3 or more sf as only answer from fully ect working	A1 A1	ignore $e^x = -8$ do not allow fin given from $e^x =$	al mark if value
						SC2 if $e^x = 3$ is leads to $x = \ln 3$ or 5122 rot to 3 or

Page 8	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2013		0606	22
10 (a) (i)	y 90 180 270 360 ^c	B1shape; cosine curve – end be approaching a turninB1be centred on $y = 1$ B1clear intent to have min max at 4B12 cycles		a turning point = 1
(ii)	3	B1		
(iii)	180	B1		
(b)	$\operatorname{cosec} x = \frac{1}{\sin x} \operatorname{soi}$	B1	or $1 + \tan^2 x = -\frac{1}{2}$	$\frac{1}{\cos^2 x}$
	$\sin x = \sqrt{1 - \cos^2 x} \text{ or } \sqrt{1 - p^2}$	B 1	or $\csc^2 x = 1 + $	$-\frac{1}{1-p^2/p^2}$ soi
	$\frac{-1}{\sqrt{1-p^2}}$ o.e.	B 1	$or - \sqrt{1 + \frac{p^2}{1 - p^2}}$	

Page 9		Mark Scheme		Syllabus	Paper		
		IGCSE – May/June 2013		0606	22		
				1			
11 (i	d	$\frac{y}{x} = 3 - 3(x - 4)^{-4}$ o.e. isw $\frac{y}{x^2} = (their \ 12)(x - 4)^{their \ (-5)}$ o.e.	B1 + B1 M1				
		$\frac{x^2}{x^2} = 12(x-4)^{-5}$ o.e. isw	A1	if M0 then SC1 one other term	for $12(x-4)^{-5}$ +		
(i		erifies $\frac{dy}{dx} = 0$ when $x = 3$ and $x = 5$ solves $3 - \frac{3}{(x-4)^4} = 0$ to obtain 3 and 5	M1	correctly solvin coordinate and gives rise to the	if M0 then SC1 for verifying or correctly solving to find one <i>x</i> coordinate and showing that it gives rise to the corresponding <i>y</i>		
	Sł	hows that $x = 3 \Rightarrow y = 8$ and $x = 5 \Rightarrow y = 16$	A1	coordinate			
(i		= 5 $\frac{d^2 y}{dx^2}$ (=12) > 0 \Rightarrow min or = 3 $\frac{d^2 y}{dx^2}$ (= -12) < 0 \Rightarrow max	M1	or, using first d x - $\frac{dy}{dx}$ min at $x = 5$ or x - $\frac{dy}{dx}$ max at $x = 3$	erivative e.g. 5 + 0 3 + 0		
	В	oth correct cao	A1				
(i	iv) $\frac{3}{3}$	$\frac{x^2}{2} - \frac{(x-4)^{-2}}{2}(+c)$ o.e. isw	B1 + B1	may be unsimp	lified		
(eir $\left[\frac{3(6)^2}{2} - \frac{1}{2(6-4)^2}\right] - \left(\frac{3(5)^2}{2} - \frac{1}{2(5-4)^2}\right)\right]$ 125	M1				
	16	5.875 to 3 or more sf or $\frac{135}{8}$ or $16\frac{7}{8}$ cao	A1				

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2013		0606	23
1	$\frac{2+2\sin^2\theta}{\cos^2\theta}$	B1	For all methods - correct simplif	
	$\frac{2}{\cos^2\theta} = 2\sec\theta$	B1	$-\operatorname{correct} \operatorname{use} \operatorname{of} I$ $-\operatorname{use} \operatorname{of} \tan = \frac{\operatorname{si}}{\operatorname{co}}$	Pythagoras n
	$\frac{\sin^2\theta}{\cos^2\theta} = 2\tan^2\theta$	B1	$-$ use of $\frac{1}{\cos} = \sin^2 \frac{1}{\cos^2}$	ec
	$2 \sec^2 \theta = 2 + 2 \tan^2 \theta$ and completion	B1	Award first 3 the final expression correct method.	
			Inconsistent no a -1 (can recover).	
			If start from RHS similarly.	S award
	Or			
	$(\sec\theta + \tan\theta)^2 + (\sec\theta - \tan\theta)^2$	[B1, B1		
	$2\sec^2\theta + 2\tan^2\theta$	B1		
	$2(1 + \tan^2 \theta) + 2\tan^2 \theta$ and completion	B1]		
	$\frac{\mathbf{Or}}{\frac{2+2\sin^2\theta}{\cos^2\theta}}$	[B1		
	$\frac{2\left(\sin^2\theta + \cos^2\theta\right) + 2\sin^2\theta}{\cos^2\theta}$	B1		
	$\frac{4\sin^2\theta}{\cos^2\theta} = 4\tan^2\theta$	B1		
	$\frac{2\cos^2\theta}{\cos^2\theta} = 2 \text{ and completion}$	B1]		
2 (i)	3.2	B1		
(ii)	15	B1		
(iii)	uses area to find distance	M1	If split 2 or 3 cor and must be atten area	
	two of 40, 240 and 32	A1		
	312	A1	or A2 for 312 fro	om trapezium

Page 5	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2013		0606	23
3	$\frac{\mathrm{d}y}{\mathrm{d}x} = k \sin x \cos x$	M1		
	k = -8	A1		
	Attempt to find x when $y = 8$	M1	Must get to $x = 1$	numerical value
	$\mathbf{x} = \frac{\pi}{4} \ (0.785)$	A1	$45^\circ = \mathbf{A0}$ (but ca 2 marks)	an still gain next
	Uses $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$	M1	Must use numer and 0.2 for $\frac{dx}{dt}$	ical value for <i>x</i>
	-0.8 (not rounded)	A1	(condone poor n correct terms mu	
4 (i)	Idea of modulus correct	B1	Two straight line touching <i>x</i> -axis	es above and
	$\frac{1}{2}$ indicated on <i>x</i> -axis	B1	Must be a sketcl	1
	2 indicated on <i>y</i> -axis	B 1	Must be a sketch	1
(ii)	$\frac{2}{3}$ (0.667)	B 1	0.67 is B0	
	Solve $4x - 2 = -x$ or $(4x - 2)^2 = x^2$	M1	As far as $x = nut$	merical value
	$\frac{2}{5}$	A1	SC: If drawn the exact answers of	· · · · · · · · · · · · · · · · · · ·
5 (i)	$(QR = PS =)\frac{96 - 3x}{2}$	B1	Can be implied statement	by next
	Area = $\left(\frac{96-3x}{2}\right) \times x$	B1	AG	
(ii)	$\frac{dA}{dx} = \frac{96 - 6x}{2}$ or $48 - 3x$ o.e.	B 1		
	Solving $\frac{dA}{dx} = \frac{96 - 6x}{2} = 0$	M1	As far as $x =$ numerical value	
	x = 16	A1		
	A = 384 and state maximum	A1		

Page 6	Mark Scheme	Syllabus 0606	Paper	
	IGCSE – May/June 2013	lune 2013		23
6	Applies quotient rule correctly	M1	or product ru	le
	$\frac{(x-2)2x-(x^2+8)}{(x-2)^2}$	A1	$2x(x-2)^{-1}-$	$(x^2+8)(x-2)^{-2}$
	<i>y</i> = 12	B1		
	Uses $m_1m_2 = -1$	M1		
	(Gradient normal = $\frac{1}{2}$)			
	Uses equation of line for normal	M1	If uses $y = m$ for M1	x + c must find c
	$y-12 = \frac{1}{2}(x-4)$ or $y = \frac{1}{2}x+10$	A1		
7 (i)	$64 + 192x + 240x^2 + 160x^3$ mark final answer	B3, 2, 0	2 terms correction 2 terms corre	ct earn B1
(ii)	Multiply out $(1 + 3x)(1 - x)$	M1		
	$1 + 2x - 3x^2$ o.e.	A1		
	$(1) \times (160) + (2) \times (240) + (-3) \times (192)$ o.e.	M1	3 terms	
	64	A1		
	Or Multiply out $(1 - x) (64 + 192x + 240x^2 + 160x^3)$	[M1		variations: ind x^2 term or x^3
	$48x^2 - 80x^3$ o.e.	A1		
	Multiply by $1 + 3x$	M1	for second M relevant term	1 must produce all s
	64	A1]		
	Or (1 + 3x) (64 + 192x + 240x ² + 160x ³)	[M1		
	$816x^2 + 880x^3$ o.e.	A1		
	Multiply by $1 - x$	M1		
	64	A1]		

Page 7	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2013		0606	23
8	Eliminates y (or x) and full attempt at expansion	M1		
	$4x^2 - 8x - 96 = 0 \text{or } y^2 + 12y - 64 = 0$	A1		
	Factorise 3 term relevant quadratic	M1	Or use correct for	ormula
	x = -4 and 6 or $y = -16$ and 4	A1		
	y = -16 and 4 or $x = -4$ and 6	A1√		
	Uses Pythagoras for relevant points	M1		
	22.4 or $\sqrt{500}$ or $10\sqrt{5}$	A1	cao	
9 (i)	Attempt to solve 3 term quadratic	M1		
	-3 and 8	A1		
	-3 x 8	A1	Condone – 3 x	x AND x = 8
(ii)	4 <i>x</i> (12)	B 1		
	$S \cup T = -3$ x 12	B 1		
(iii)	$S \cap T = 4$ x 8 or S' = -5 x $-3, 8$ x 12 and T' = -5 x 4	B1	Penalise confusi (or and)	on over and once only
	-5 x 4	B 1√	their 4	
	8 x 12	B 1√	their 8 (Ignore A	AND/OR etc.)

	Page 8	Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2013		0606	23
10	(i)	$\frac{\sin \alpha}{50} = \frac{\sin 58}{240}$	M1 A1	Use of sin rule/c rule/resolving wi 58/32/122/148. Must be correct	th 50, 240 and
		$\alpha = 10.2$	A1		
		Bearing (0)21.8 or (0)22	A1√	$\sqrt{1}$ for $32 - \alpha$	
	(ii)	$V^{2} = 240^{2} + 50^{2} - 2 \times 240 \times 50 \times \cos(122 - \alpha)$	M1	Correct use of sin rule/resolving	n rule/cosine
		V = 263 awt	A1	Can be in (i)	
		$T = \frac{500}{V}$	M1	Only allow if <i>V</i> of non right-angled	
		114 or 1 hour 54 mins	A1	Do not allow inc	orrect units
		Or $T = \frac{500\cos 32}{240\cos 21.8}$	[M1	Alternative for p Also can find dis (457) then 457/2	tance for 240
		500 cos 32	B 1		
		240 cos 21.8	B 1		
		114 or 1 hour 54 mins	A1]		
11	(i)	1	B1	Not a range for k x = 1 and $x = 1$, but condone
	(ii)	f -5	B 1	Not <i>x</i> , but condo	ne y
	(iii)	Method of inverse	M1	Do not reward po allow slips	oor algebra but
		$1 + \sqrt{x+5}$	A1	Must be $f^{-1} = \dots o$	r y =
	(iv)	f: Positive quadratic curve correct range and domain	B1	Must cross <i>x</i> -axis	S
		f^{-1} : Reflection of f in $y = x$	B1 √	$\sqrt{their} f(x)$ sketch Condone slight in unless clear cont	naccuracies
	(v)	Arrange $f(x) = x$ or $f^{-1}(x) = x$ to 3 term quadratic = 0	M1		
		4 only www	A1	Allow $x = 4$ with Condone (4, 4). Do not allow fina also given in ans	al A mark if –1

Page 9			Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2013			0606	23	
12	(i)	f(3	(3) = (27 + 9 + 3a + b) = 0 or $3a + b = -36$	M1	Equate $f(3)$ to 0	
		f(-	(-1) = (-1 + 1 - a + b) = 20 or $-a + b = 20$	M1	Equate $f(-1)$ to 2	20
		So	lve equations	M1		
		a =	$=-14, \ b=6$	A1	If uses $b = 6$ then Need both values	
	(ii)	Fi	nd quadratic factor	M1	If division, must be complete with first 2 terms correct If writes down, must be $(x^2 + kx - 2)$	
		x^2	-4x-2	A1		
			se quadratic formula or completing square on levant 3 term quadratic	M1	If completing sq $\left(x + \frac{k}{2}\right)^2 = 2 \pm \left(x + \frac{k}{2}\right)^2$	
		_	$\frac{4 \pm \sqrt{16 + 8}}{2}$ or better	A 1√		
		-	$2 \pm \sqrt{6}$ isw	A1	cao	