Subject - Math AA(Higher Level) Topic - Calculus Year - May 2021 - Nov 2022 Paper -1 Questions

Question 1

[Maximum mark: 21]

The function f is defined by $f(x) = e^{\sin x}$.

- (a) Find the first two derivatives of f(x) and hence find the Maclaurin series for f(x) up to and including the x^2 term.
- (b) Show that the coefficient of x^3 in the Maclaurin series for f(x) is zero. [4]

[8]

- (c) Using the Maclaurin series for $\arctan x$ and $e^{3x} 1$, find the Maclaurin series for $\arctan(e^{3x} 1)$ up to and including the x^3 term. [6]
- (d) Hence, or otherwise, find $\lim_{x\to 0} \frac{f(x)-1}{\arctan\left(e^{3x}-1\right)}$. [3]

[Maximum mark: 16]

Let $f(x) = \frac{\ln 5x}{kx}$ where x > 0, $k \in \mathbb{R}^+$.

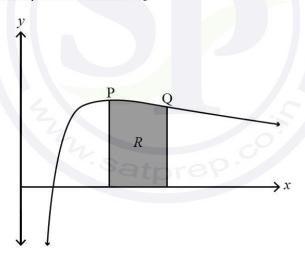
(a) Show that
$$f'(x) = \frac{1 - \ln 5x}{kx^2}$$
. [3]

The graph of f has exactly one maximum point P.

The second derivative of f is given by $f''(x) = \frac{2 \ln 5x - 3}{kx^3}$. The graph of f has exactly one point of inflexion Q.

(c) Show that the *x*-coordinate of Q is
$$\frac{1}{5}e^{\frac{3}{2}}$$
. [3]

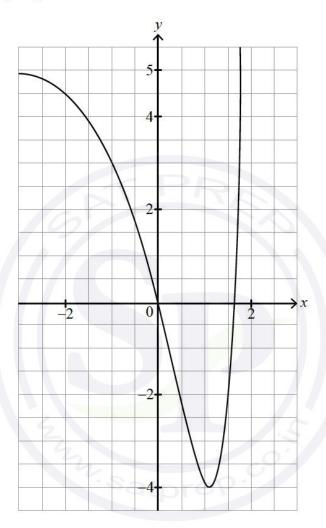
The region R is enclosed by the graph of f, the x-axis, and the vertical lines through the maximum point P and the point of inflexion Q.



(d) Given that the area of R is 3, find the value of k. [7]

[Maximum mark: 8]

The function f is defined by $f(x) = e^{2x} - 6e^x + 5$, $x \in \mathbb{R}$, $x \le a$. The graph of y = f(x) is shown in the following diagram.



- (a) Find the largest value of a such that f has an inverse function.
- (b) For this value of a, find an expression for $f^{-1}(x)$, stating its domain.

[3]

[5]

Question 4

[Maximum mark: 5]

Let
$$f'(x) = \frac{8x}{\sqrt{2x^2 + 1}}$$
. Given that $f(0) = 5$, find $f(x)$.

[Maximum mark: 20]

Let $f(x) = \sqrt{1+x}$ for x > -1.

(a) Show that
$$f''(x) = -\frac{1}{4\sqrt{(1+x)^3}}$$
. [3]

(b) Use mathematical induction to prove that
$$f^{(n)}(x) = \left(-\frac{1}{4}\right)^{n-1} \frac{\left(2n-3\right)!}{(n-2)!} (1+x)^{\frac{1}{2}n}$$
 for $n \in \mathbb{Z}$, $n \ge 2$. [9]

Let $g(x) = e^{mx}$, $m \in \mathbb{Q}$.

Consider the function h defined by $h(x) = f(x) \times g(x)$ for x > -1.

It is given that the x^2 term in the Maclaurin series for h(x) has a coefficient of $\frac{7}{4}$.

(c) Find the possible values of m. [8]

Question 6

[Maximum mark: 5]

Use l'Hôpital's rule to find $\lim_{x\to 0} \left(\frac{\arctan 2x}{\tan 3x} \right)$

Question 7

[Maximum mark: 7]

Consider the functions $f(x) = -(x - h)^2 + 2k$ and $g(x) = e^{x-2} + k$ where $h, k \in \mathbb{R}$.

(a) Find
$$f'(x)$$
. [1]

The graphs of f and g have a common tangent at x = 3.

(b) Show that
$$h = \frac{e+6}{2}$$
. [3]

(c) Hence, show that
$$k = e + \frac{e^2}{4}$$
. [3]

[Maximum mark: 20]

The acceleration, $a\,\mathrm{ms}^{-2}$, of a particle moving in a horizontal line at time t seconds, $t \ge 0$, is given by a = -(1+v) where $v\,\mathrm{ms}^{-1}$ is the particle's velocity and v > -1.

At t = 0, the particle is at a fixed origin O and has initial velocity $v_0 \, \text{ms}^{-1}$.

- (a) By solving an appropriate differential equation, show that the particle's velocity at time t is given by $v(t) = (1 + v_0)e^{-t} 1$. [6]
- (b) Initially at O, the particle moves in the positive direction until it reaches its maximum displacement from O. The particle then returns to O.

Let s metres represent the particle's displacement from ${\rm O}$ and $s_{\rm max}$ its maximum displacement from ${\rm O}.$

- (i) Show that the time T taken for the particle to reach $s_{\rm max}$ satisfies the equation ${\bf e}^T=1+v_0$.
- (ii) By solving an appropriate differential equation and using the result from part (b) (i), find an expression for s_{max} in terms of v_0 . [7]

Let v(T-k) represent the particle's velocity k seconds before it reaches s_{max} , where

$$v(T-k) = (1+v_0)e^{-(T-k)} - 1$$
.

(c) By using the result to part (b) (i), show that $v(T-k) = e^k - 1$. [2]

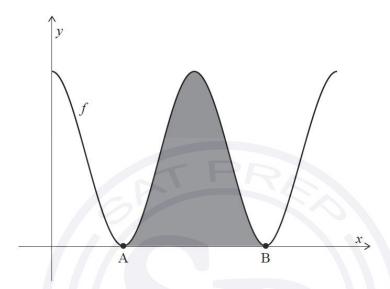
Similarly, let v(T+k) represent the particle's velocity k seconds after it reaches s_{\max} .

- (d) Deduce a similar expression for v(T+k) in terms of k. [2]
- (e) Hence, show that $v(T-k) + v(T+k) \ge 0$. [3]

[Maximum mark: 15]

Consider the function f defined by $f(x) = 6 + 6\cos x$, for $0 \le x \le 4\pi$.

The following diagram shows the graph of y = f(x).

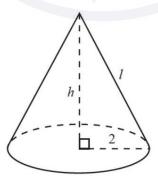


The graph of f touches the x-axis at points A and B, as shown. The shaded region is enclosed by the graph of y = f(x) and the x-axis, between the points A and B.

- (a) Find the x-coordinates of A and B. [3]
- (b) Show that the area of the shaded region is 12π . [5]

The right cone in the following diagram has a total surface area of 12π , equal to the shaded area in the previous diagram.

The cone has a base radius of 2, height h, and slant height l.



- (c) Find the value of 1. [3]
- (d) Hence, find the volume of the cone. [4]

[Maximum mark: 7]

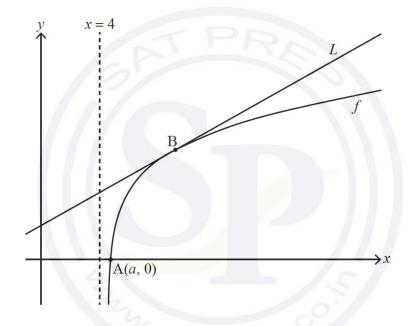
By using the substitution $u = \sin x$, find $\int \frac{\sin x \cos x}{\sin^2 x - \sin x - 2} dx$.

Question 11

[Maximum mark: 9]

Consider the function f defined by $f(x) = \ln(x^2 - 16)$ for x > 4.

The following diagram shows part of the graph of f which crosses the x-axis at point A, with coordinates (a, 0). The line L is the tangent to the graph of f at the point B.



- (a) Find the exact value of a.
- (b) Given that the gradient of L is $\frac{1}{3}$, find the x-coordinate of B. [6]

[3]

[Maximum mark: 14]

(a) Prove by mathematical induction that
$$\frac{d^n}{dx^n}(x^2e^x) = [x^2 + 2nx + n(n-1)]e^x$$
 for $n \in \mathbb{Z}^+$. [7]

- (b) Hence or otherwise, determine the Maclaurin series of $f(x) = x^2 e^x$ in ascending powers of x, up to and including the term in x^4 . [3]
- (c) Hence or otherwise, determine the value of $\lim_{x\to 0} \left[\frac{\left(x^2 e^x x^2\right)^3}{x^9} \right]$. [4]

Question 13

[Maximum mark: 16]

A particle P moves along the x-axis. The velocity of P is $v \, {\rm m \, s}^{-1}$ at time t seconds, where $v(t) = 4 + 4t - 3t^2$ for $0 \le t \le 3$. When t = 0, P is at the origin O.

- (a) (i) Find the value of t when P reaches its maximum velocity.
 - (ii) Show that the distance of P from O at this time is $\frac{88}{27}$ metres. [7]
- (b) Sketch a graph of v against t, clearly showing any points of intersection with the axes. [4]
- (c) Find the total distance travelled by P. [5]

Question 14

[Maximum mark: 7]

Solve the differential equation $\frac{dy}{dx} = \frac{\ln 2x}{x^2} - \frac{2y}{x}$, x > 0, given that y = 4 at $x = \frac{1}{2}$.

Give your answer in the form y = f(x).

[Maximum mark: 7]

The function f is defined for all $x \in \mathbb{R}$. The line with equation y = 6x - 1 is the tangent to the graph of f at x = 4.

(a) Write down the value of
$$f'(4)$$
. [1]

(b) Find
$$f(4)$$
. [1]

The function g is defined for all $x \in \mathbb{R}$ where $g(x) = x^2 - 3x$ and h(x) = f(g(x)).

(c) Find
$$h(4)$$
. [2]

(d) Hence find the equation of the tangent to the graph of
$$h$$
 at $x = 4$. [3]

Question 16

[Maximum mark: 4]

Given that
$$\frac{dy}{dx} = \cos\left(x - \frac{\pi}{4}\right)$$
 and $y = 2$ when $x = \frac{3\pi}{4}$, find y in terms of x .

Question 17

[Maximum mark: 21]

The function f is defined by $f(x) = e^x \sin x$, where $x \in \mathbb{R}$.

(a) Find the Maclaurin series for
$$f(x)$$
 up to and including the x^3 term. [4]

(b) Hence, find an approximate value for
$$\int_0^1 e^{x^2} \sin(x^2) dx$$
. [4]

The function g is defined by $g(x) = e^x \cos x$, where $x \in \mathbb{R}$.

(c) (i) Show that
$$g(x)$$
 satisfies the equation $g''(x) = 2(g'(x) - g(x))$.

(ii) Hence, deduce that
$$g^{(4)}(x) = 2(g'''(x) - g''(x))$$
. [5]

(d) Using the result from part (c), find the Maclaurin series for
$$g(x)$$
 up to and including the x^4 term. [5]

(e) Hence, or otherwise, determine the value of
$$\lim_{x\to 0} \frac{e^x \cos x - 1 - x}{x^3}$$
. [3]

[Maximum mark: 5]

Consider the curve with equation $y = (2x - 1)e^{kx}$, where $x \in \mathbb{R}$ and $k \in \mathbb{Q}$.

The tangent to the curve at the point where x = 1 is parallel to the line $y = 5e^k x$.

Find the value of k.

Question 19

[Maximum mark: 5]

Find the value of $\int_1^9 \left(\frac{3\sqrt{x} - 5}{\sqrt{x}} \right) dx$.

Question 20

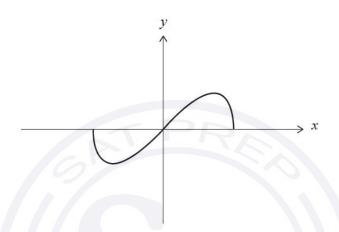
[Maximum mark: 6]

By using the substitution $u = \sec x$ or otherwise, find an expression for $\int_{0}^{3} \sec^{n} x \tan x \, dx$ in terms of n, where n is a non-zero real number.

[Maximum mark: 8]

A function f is defined by $f(x) = x\sqrt{1-x^2}$ where $-1 \le x \le 1$.

The graph of y = f(x) is shown below.



(a) Show that f is an odd function. [2]

The range of f is $a \le y \le b$, where $a, b \in \mathbb{R}$.

(b) Find the value of a and the value of b. [6]

Question 22

[Maximum mark: 20]

The function f is defined by $f(x) = \cos^2 x - 3\sin^2 x$, $0 \le x \le \pi$.

(a) Find the roots of the equation f(x) = 0. [5]

(b) (i) Find f'(x).

(ii) Hence find the coordinates of the points on the graph of y = f(x) where f'(x) = 0. [7]

(c) Sketch the graph of y = |f(x)|, clearly showing the coordinates of any points where f'(x) = 0 and any points where the graph meets the coordinate axes. [4]

(d) Hence or otherwise, solve the inequality |f(x)| > 1. [4]

[Maximum mark: 10]

Consider the homogeneous differential equation $\frac{dy}{dx} = \frac{y^2 - 2x^2}{xy}$, where x, $y \neq 0$.

It is given that y = 2 when x = 1.

(a) By using the substitution y = vx, solve the differential equation. Give your answer in the form $y^2 = f(x)$. [8]

The points of zero gradient on the curve $y^2 = f(x)$ lie on two straight lines of the form y = mx where $m \in \mathbb{R}$.

(b) Find the values of m. [2]

Question 24

[Maximum mark: 7]

Consider the curve with equation $(x^2 + y^2)y^2 = 4x^2$ where $x \ge 0$ and -2 < y < 2.

Show that the curve has no local maximum or local minimum points for x > 0.

Question 25

[Maximum mark: 5]

The derivative of the function f is given by $f'(x) = \frac{6x}{x^2 + 1}$

The graph of y = f(x) passes through the point (1, 5). Find an expression for f(x).

Question 26

[Maximum mark: 4]

The function g is defined by $g(x) = e^{x^2 + 1}$, where $x \in \mathbb{R}$

Find g'(-1).