Subject - Math AA(Higher Level) Topic - Functions Year - May 2021 - Nov 2022 Paper -1 Questions

Question 1

[Maximum mark: 5]

The functions f and g are defined such that $f(x) = \frac{x+3}{4}$ and g(x) = 8x + 5.

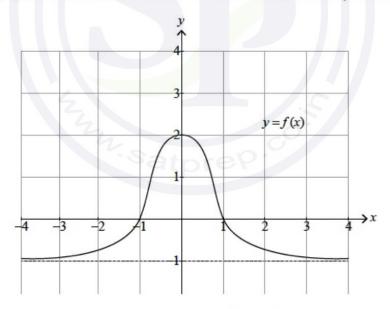
(a) Show that
$$(g \circ f)(x) = 2x + 11$$
. [2]

(b) Given that
$$(g \circ f)^{-1}(a) = 4$$
, find the value of a . [3]

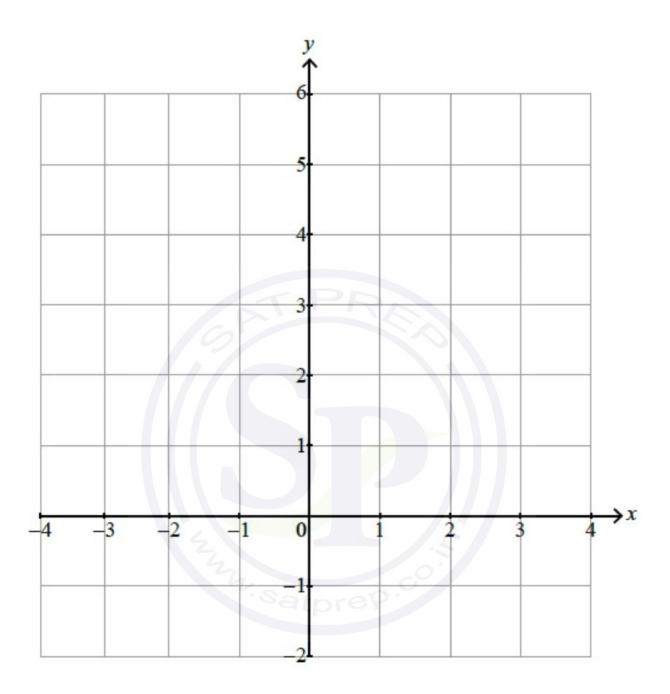
Question 2

[Maximum mark: 5]

The following diagram shows the graph of y = f(x). The graph has a horizontal asymptote at y = -1. The graph crosses the x-axis at x = -1 and x = 1, and the y-axis at y = 2.

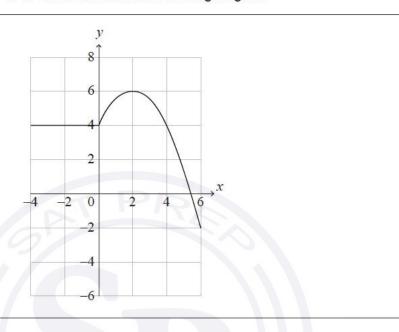


On the following set of axes, sketch the graph of $y = [f(x)]^2 + 1$, clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima.



[Maximum mark: 5]

The graph of y = f(x) for $-4 \le x \le 6$ is shown in the following diagram.



[2]

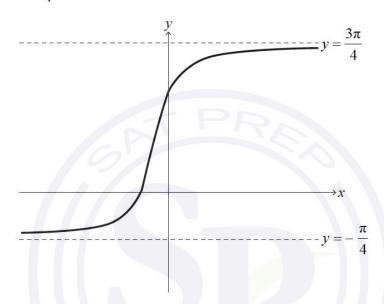
- (a) Write down the value of
 - (i) f(2);

(ii) $(f \circ f)(2)$.

(b) Let $g(x) = \frac{1}{2}f(x) + 1$ for $-4 \le x \le 6$. On the axes above, sketch the graph of g. [3]

[Maximum mark: 19]

The following diagram shows the graph of $y = \arctan\left(2x+1\right) + \frac{\pi}{4}$ for $x \in \mathbb{R}$, with asymptotes at $y = -\frac{\pi}{4}$ and $y = \frac{3\pi}{4}$.



- (a) Describe a sequence of transformations that transforms the graph of $y = \arctan x$ to the graph of $y = \arctan(2x+1) + \frac{\pi}{4}$ for $x \in \mathbb{R}$. [3]
- (b) Show that $\arctan p + \arctan q \equiv \arctan \left(\frac{p+q}{1-pq} \right)$ where p, q > 0 and pq < 1. [4]

(c) Verify that
$$\arctan(2x+1) = \arctan\left(\frac{x}{x+1}\right) + \frac{\pi}{4}$$
 for $x \in \mathbb{R}$, $x > 0$. [3]

(d) Using mathematical induction and the result from part (b), prove that

$$\sum_{r=1}^{n} \arctan\left(\frac{1}{2r^2}\right) = \arctan\left(\frac{n}{n+1}\right) \text{ for } n \in \mathbb{Z}^+.$$
 [9]

[Maximum mark: 9]

The function f is defined by $f(x) = \frac{2x+4}{3-x}$, where $x \in \mathbb{R}$, $x \neq 3$.

- (a) Write down the equation of
 - (i) the vertical asymptote of the graph of f;
 - (ii) the horizontal asymptote of the graph of f.

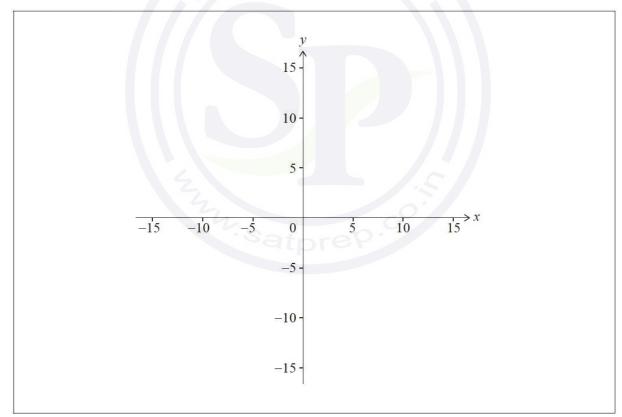
[2]

- (b) Find the coordinates where the graph of f crosses
 - (i) the x-axis;
 - (ii) the y-axis.

[2]

(c) Sketch the graph of f on the axes below.

[1]



The function g is defined by $g(x) = \frac{ax+4}{3-x}$, where $x \in \mathbb{R}$, $x \neq 3$ and $a \in \mathbb{R}$.

(d) Given that $g(x) = g^{-1}(x)$, determine the value of a.

[4]

[Maximum mark: 7]

Consider $f(x) = 4\sin x + 2.5$ and $g(x) = 4\sin\left(x - \frac{3\pi}{2}\right) + 2.5 + q$, where $x \in \mathbb{R}$ and q > 0.

The graph of g is obtained by two transformations of the graph of f.

(a) Describe these two transformations. [2]

The *y*-intercept of the graph of g is at (0, r).

Given that $g(x) \ge 7$, find the smallest value of r.

[5]

Question 7

[Maximum mark: 7]

Consider the functions $f(x) = \sqrt{3} \sin x + \cos x$ where $0 \le x \le \pi$ and g(x) = 2x where $x \in \mathbb{R}$.

(a) Find
$$(f \circ g)(x)$$
. [2]

(b) Solve the equation
$$(f \circ g)(x) = 2\cos 2x$$
 where $0 \le x \le \pi$. [5]

Question 8

[Maximum mark: 20]

A function f is defined by $f(x) = \frac{1}{x^2 - 2x - 3}$, where $x \in \mathbb{R}$, $x \neq -1$, $x \neq 3$.

Sketch the curve y = f(x), clearly indicating any asymptotes with their equations. State (a) the coordinates of any local maximum or minimum points and any points of intersection with the coordinate axes

[6]

[7]

A function g is defined by $g(x) = \frac{1}{x^2 - 2x - 3}$, where $x \in \mathbb{R}$, x > 3.

- The inverse of g is g^{-1} . (b)
 - (i) Show that $g^{-1}(x) = 1 + \frac{\sqrt{4x^2 + x}}{x}$.
 - (ii) State the domain of g^{-1} .

A function h is defined by $h(x) = \arctan \frac{x}{2}$, where $x \in \mathbb{R}$.

(c) Given that $(h \circ g)(a) = \frac{\pi}{4}$, find the value of a.

Give your answer in the form
$$p + \frac{q}{2}\sqrt{r}$$
, where $p, q, r \in \mathbb{Z}^+$. [7]

[Maximum mark: 8]

A function f is defined by $f(x) = \frac{2x-1}{x+1}$, where $x \in \mathbb{R}$, $x \neq -1$.

(a) The graph of y = f(x) has a vertical asymptote and a horizontal asymptote.

Write down the equation of

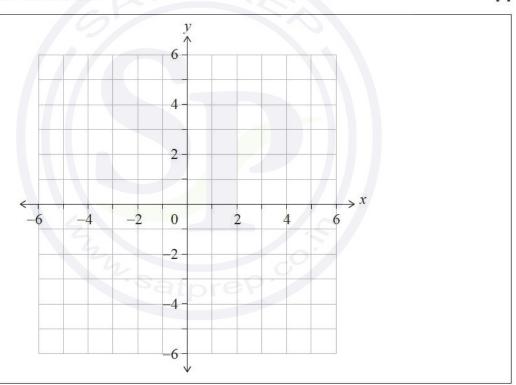
- (i) the vertical asymptote;
- (ii) the horizontal asymptote.

[2]

(b) On the set of axes below, sketch the graph of y = f(x).

On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.

[3]



(c) Hence, solve the inequality
$$0 < \frac{2x-1}{x+1} < 2$$
. [1]

(d) Solve the inequality
$$0 < \frac{2|x|-1}{|x|+1} < 2$$
. [2]

[Maximum mark: 5]

Let $f(x) = \cos(x - k)$, where $0 \le x \le a$ and $a, k \in \mathbb{R}^+$.

(a) Consider the case where $k = \frac{\pi}{2}$.

By sketching a suitable graph, or otherwise, find the largest value of $\,a\,$ for which the inverse function $\,f^{^{-1}}$ exists.

[2]

(b) Find the largest value of a for which the inverse function f^{-1} exists in the case where $k=\pi$.

[1]

(c) Find the largest value of a for which the inverse function f^{-1} exists in the case where $\pi < k < 2\pi$. Give your answer in terms of k.

[2]

