Subject - Math AA(Higher Level) Topic - Geometry and Trigonometry Year - May 2021 - Nov 2022 Paper -1 Question

Question 1

[Maximum mark: 7]

The plane Π has the Cartesian equation 2x + y + 2z = 3.

The line L has the vector equation $\mathbf{r} = \begin{pmatrix} 3 \\ -5 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -2 \\ p \end{pmatrix}, \ \mu, p \in \mathbb{R}$. The acute angle between

the line L and the plane Π is 30° .

Find the possible values of p.

Question 2

[Maximum mark: 19]

Consider the line L_1 defined by the Cartesian equation $\frac{x+1}{2} = y = 3-z$.

- (a) (i) Show that the point (-1,0,3) lies on L_1 .
 - (ii) Find a vector equation of L_1 .

Consider a second line L_2 defined by the vector equation $\mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} a \\ 1 \\ -1 \end{pmatrix}$,

where $t \in \mathbb{R}$ and $a \in \mathbb{R}$.

(b) Find the possible values of a when the acute angle between L_1 and L_2 is 45° . [8]

[4]

It is given that the lines L_1 and L_2 have a unique point of intersection, A, when $a \neq k$.

(c) Find the value of k, and find the coordinates of the point A in terms of a. [7]

[Maximum mark: 4]

It is given that $\csc\theta = \frac{3}{2}$, where $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$. Find the exact value of $\cot \theta$.

Question 4

[Maximum mark: 8]

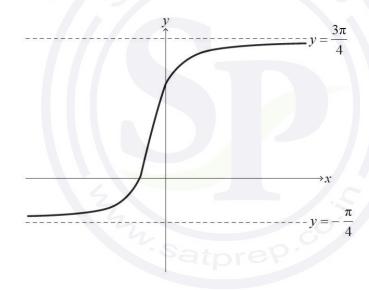
(a) Show that
$$\sin 2x + \cos 2x - 1 = 2\sin x(\cos x - \sin x)$$
. [2]

(b) Hence or otherwise, solve
$$\sin 2x + \cos 2x - 1 + \cos x - \sin x = 0$$
 for $0 < x < 2\pi$. [6]

Question 5

[Maximum mark: 19]

The following diagram shows the graph of $y = \arctan(2x+1) + \frac{\pi}{4}$ for $x \in \mathbb{R}$, with asymptotes at $y = -\frac{\pi}{4}$ and $y = \frac{3\pi}{4}$.



- (a) Describe a sequence of transformations that transforms the graph of $y = \arctan x$ to the graph of $y = \arctan(2x+1) + \frac{\pi}{4}$ for $x \in \mathbb{R}$. [3]
- (b) Show that $\arctan p + \arctan q \equiv \arctan \left(\frac{p+q}{1-pq} \right)$ where p, q > 0 and pq < 1. [4]
- (c) Verify that $\arctan(2x+1) = \arctan\left(\frac{x}{x+1}\right) + \frac{\pi}{4}$ for $x \in \mathbb{R}$, x > 0. [3]
- (d) Using mathematical induction and the result from part (b), prove that $\sum_{r=1}^{n}\arctan\left(\frac{1}{2r^{2}}\right)=\arctan\left(\frac{n}{n+1}\right) \text{ for } n\in\mathbb{Z}^{+}.$ [9]

[Maximum mark: 8]

The lines l_1 and l_2 have the following vector equations where λ , $\mu \in \mathbb{R}$.

$$l_1: \mathbf{r}_1 = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}$$

$$l_2: \mathbf{r}_2 = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

- (a) Show that l_1 and l_2 do not intersect.
- (b) Find the minimum distance between l_1 and l_2 . [5]

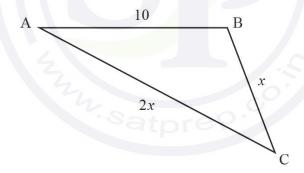
Question 7

[Maximum mark: 7]

The following diagram shows triangle ABC, with AB = 10, BC = x and AC = 2x.

diagram not to scale

[3]



Given that $\cos \hat{C} = \frac{3}{4}$, find the area of the triangle.

Give your answer in the form $\frac{p\sqrt{q}}{2}$ where p , $q\in\mathbb{Z}^{\scriptscriptstyle{+}}$.

Question 8

[Maximum mark: 4]

Given any two non-zero vectors, \mathbf{a} and \mathbf{b} , show that $|\mathbf{a} \times \mathbf{b}|^2 = |\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2$.

[Maximum mark: 7]

Solve the equation $2\cos^2 x + 5\sin x = 4$, $0 \le x \le 2\pi$.

Question 10

[Maximum mark: 7]

(a) Show that
$$2x-3-\frac{6}{x-1}=\frac{2x^2-5x-3}{x-1}, x \in \mathbb{R}, x \neq 1$$
. [2]

(b) Hence or otherwise, solve the equation $2\sin 2\theta - 3 - \frac{6}{\sin 2\theta - 1} = 0$ for $0 \le \theta \le \pi$, $\theta \ne \frac{\pi}{4}$. [5]

Question 11

[Maximum mark: 15]

Consider the three planes

$$\Pi_1 : 2x - y + z = 4$$

$$\Pi_2 : x - 2y + 3z = 5$$

$$\Pi_3 : -9x + 3y - 2z = 32$$

- (a) Show that the three planes do not intersect.
- (b) (i) Verify that the point P(1,-2,0) lies on both \prod_1 and \prod_2 .
 - (ii) Find a vector equation of L, the line of intersection of Π_1 and Π_2 . [5]

[4]

(c) Find the distance between L and Π_3 . [6]

Question 12

[Maximum mark: 7]

Consider the functions $f(x) = \sqrt{3} \sin x + \cos x$ where $0 \le x \le \pi$ and g(x) = 2x where $x \in \mathbb{R}$.

(a) Find
$$(f \circ g)(x)$$
. [2]

(b) Solve the equation
$$(f \circ g)(x) = 2\cos 2x$$
 where $0 \le x \le \pi$. [5]

[Maximum mark: 5]

Find the least positive value of x for which $\cos\left(\frac{x}{2} + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$.

Question 14

[Maximum mark: 20]

The function f is defined by $f(x) = \cos^2 x - 3\sin^2 x$, $0 \le x \le \pi$.

- (a) Find the roots of the equation f(x) = 0. [5]
- (b) (i) Find f'(x).
 - (ii) Hence find the coordinates of the points on the graph of y = f(x) where f'(x) = 0. [7]
- (c) Sketch the graph of y = |f(x)|, clearly showing the coordinates of any points where f'(x) = 0 and any points where the graph meets the coordinate axes. [4]
- (d) Hence or otherwise, solve the inequality |f(x)| > 1. [4]

Question 15

[Maximum mark: 5]

Let a be a constant, where a > 1.

(a) Show that
$$a^2 + \left(\frac{a^2 - 1}{2}\right)^2 = \left(\frac{a^2 + 1}{2}\right)^2$$
. [3] Consider a right-angled triangle with sides of length a , $\left(\frac{a^2 - 1}{2}\right)$ and $\left(\frac{a^2 + 1}{2}\right)$.

(b) Find an expression for the area of the triangle in terms of a. [2]

[Maximum mark: 7]

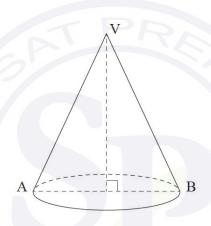
Consider a circle with a diameter AB, where A has coordinates (1,4,0) and B has coordinates (-3,2,-4).

- (a) Find
 - (i) the coordinates of the centre of the circle;
 - (ii) the radius of the circle.

[4]

The circle forms the base of a right cone whose vertex V has coordinates (-1, -1, 0).

diagram not to scale



(b) Find the exact volume of the cone.

[3]