Subject – Math AA(Higher Level) Topic - Calculus Year - May 2021 – Nov 2022 Paper -2 Answers

Question 1

(a) METHOD 1

using $I(t) = e^{\int P(t)dt}$	M1
$e^{\int \frac{1}{t+1}dt}$	
$= e^{\ln(t+1)}$	A1
$= e^{\ln(t+1)}$ $= t+1$	A1 AG

METHOD 2

attempting product rule differentiation on $\frac{d}{dt}(x(t+1))$ M1

$$\frac{d}{dt}(x(t+1)) = \frac{dx}{dt}(t+1) + x$$

$$= (t+1)\left(\frac{dx}{dt} + \frac{x}{t+1}\right)$$
A1
so $t+1$ is an integrating factor for this differential equation
AG

[2 marks]

(M1)

(b) attempting to multiply through by (t+1) and rearrange to give

dr $\frac{1}{2}$	
$(t+1)\frac{dx}{dt} + x = 10(t+1)e^{-\frac{t}{4}}$	A1
Cli	

$$\frac{d}{dt}(x(t+1)) = 10(t+1)e^{-\frac{t}{4}}$$

$$x(t+1) = \int 10(t+1)e^{-t} dt$$
attempting to integrate the RHS by parts
M1

attempting to integrate the RHS by parts $-\frac{t}{2}$

$$= -40(t+1)e^{-4} + 40\int e^{-4} dt$$

= -40(t+1)e^{-\frac{t}{4}} - 160e^{-\frac{t}{4}} + C A1

Note: Condone the absence of C.

EITHER

substituting
$$t = 0, x = 0 \implies C = 200$$
 M1
$$x = \frac{-40(t+1)e^{\frac{t}{4}} - 160e^{\frac{t}{4}} + 200}{t+1}$$
 A1

using $-40e^{\frac{t}{4}}$ as the highest common factor of $-40(t+1)e^{\frac{t}{4}}$ and $-160e^{\frac{t}{4}}$ M1

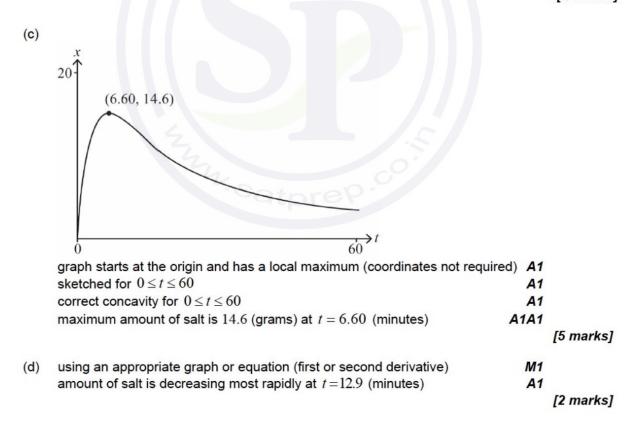
OR

using
$$-40e^{-\frac{t}{4}}$$
 as the highest common factor of $-40(t+1)e^{-\frac{t}{4}}$ and $-160e^{-\frac{t}{4}}$ giving $x(t+1) = -40e^{-\frac{t}{4}}(t+5) + C$ (or equivalent) M1A1 substituting $t = 0, x = 0 \Rightarrow C = 200$

THEN

$$x(t) = \frac{200 - 40e^{\frac{1}{4}}(t+5)}{t+1}$$
 AG

[8 marks]



(e) **EITHER**

attempting to form an integral representing the amount of salt that left the tank

$$\int_{0}^{60} \frac{x(t)}{t+1} dt$$

$$\int_{0}^{60} \frac{200 - 40e^{-\frac{t}{4}}(t+5)}{(t+1)^{2}} dt$$
A1

M1

OR

attempting to form an integral representing the amount of salt that entered the tank minus the amount of salt in the tank at t = 60 (minutes) M1

amount of salt that left the tank is
$$\int_{0}^{60} 10e^{-\frac{t}{4}} dt - x(60)$$
 A1
THEN

THEN

	= 36.7 (grams)	A2	[4 marks]
		Total [2	21 marks]
Ques	tion 2		
(a)	use of a graph to find the coordinates of the local minimum $s = -16.513$ maximum distance is 16.5 cm (to the left of O)	(M1) (A1) A1	[3 marks]
(b)	attempt to find time when particle changes direction <i>eg</i> considering the first maximum on the graph of <i>s</i> or the first <i>t</i> – intercept on the graph of <i>s'</i> . t = 1.51986 attempt to find the gradient of <i>s'</i> for their value of <i>t</i> , <i>s''</i> (1.51986) = -8.92 (cm/s ²)	(M1) (A1) (M1) A1	
	$=-8.92 \text{ (cm/s^2)}$	A1	[4 marks]
		Total	[7 marks]

(a)
$$\frac{1}{x(k-x)} \equiv \frac{a}{x} + \frac{b}{k-x}$$
$$a(k-x) + bx = 1$$
(A1)

attempt to compare coefficients OR substitute x = k and x = 0 and solve (M1)

$$a = \frac{1}{k} \text{ and } b = \frac{1}{k}$$

$$f'(x) = \frac{1}{kx} + \frac{1}{k(k-x)}$$
A1

(b) attempt to integrate their
$$\frac{a}{x} + \frac{b}{k-x}$$
 (M1)

$$f(x) = \frac{1}{k} \int \left(\frac{1}{x} + \frac{1}{k-x}\right) dx$$

$$= \frac{1}{k} (\ln|x| - \ln|k-x|)(+c) \left(= \frac{1}{k} \ln \left|\frac{x}{k-x}\right|(+c) \right)$$
A1A1
[3 marks]

(c) attempt to separate variables and integrate both sides

$$5k\int \frac{1}{P(k-P)} dP = \int 1 dt$$

$$5(\ln P - \ln(k-P)) = t + c$$

Note: There are variations on this which should be accepted, such as $\frac{1}{k} \left(\ln P - \ln (k - P) \right) = \frac{1}{5k}t + c.$ Subsequent marks for these variations should be awarded as appropriate.

EITHER

attempt to substitute
$$t = 0$$
, $P = 1200$ into an equation involving c M1
 $c = 5(\ln 1200 - \ln(k - 1200)) \left(= 5\ln\left(\frac{1200}{k - 1200}\right) \right)$ A1
 $5(\ln P - \ln(k - P)) = t + 5(\ln 1200 - \ln(k - 1200))$ A1
 $\ln\left(\frac{P(k - 1200)}{k - 1200}\right) = \frac{t}{2}$

$$\frac{P(k-1200(k-P))}{1200(k-P)} = e^{\frac{t}{5}}$$
A1

[3 marks]

M1

A1

$$\ln\left(\frac{P}{k-P}\right) = \frac{t+c}{5}$$

$$\frac{P}{k-P} = Ae^{\frac{t}{5}}$$
attempt to substitute $t = 0, P = 1200$

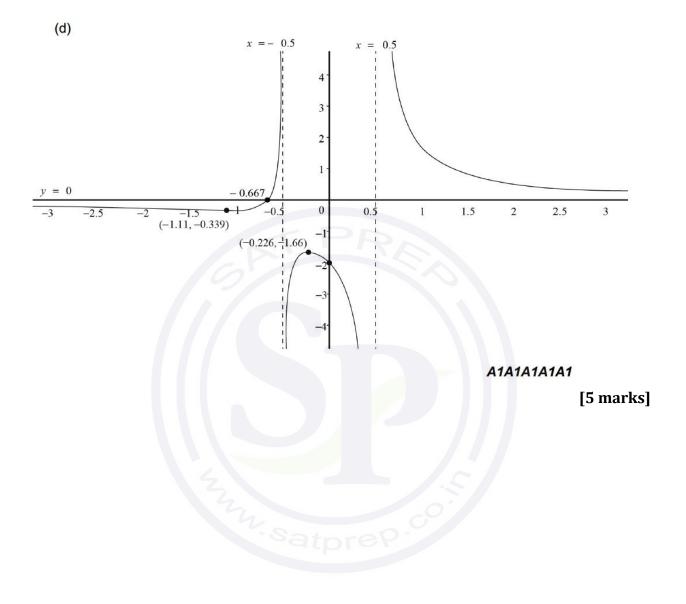
$$\frac{1200}{k-1200} = A$$
A1

$$\frac{P}{k-P} = \frac{1200e^{\frac{t}{5}}}{k-1200}$$
 A1

OR

THEN

	attempt to rearrange and isolate P	M1	
	$Pk - 1200P = 1200ke^{\frac{t}{5}} - 1200Pe^{\frac{t}{5}} \text{ OR } Pke^{-\frac{t}{5}} - 1200Pe^{-\frac{t}{5}} = 1200k - 1200P$ $OR \frac{k}{P} - 1 = \frac{k - 1200}{1200e^{\frac{t}{5}}}$		
	$P\left(k-1200+1200e^{\frac{t}{5}}\right) = 1200ke^{\frac{t}{5}} OR P\left(ke^{\frac{t}{5}}-1200e^{\frac{t}{5}}+1200\right) = 1200k$	A1	
	$P = \frac{1200k}{(k-1200)e^{-\frac{t}{5}} + 1200}$	AG	
			[8 marks]
(d)	attempt to substitute $t = 10$, $P = 2400$	(M1)	
	$2400 = \frac{1200k}{(k - 1200)e^{-2} + 1200}$	(A1)	
	k = 2845.34 k = 2845	A1	
Note	: Award (M1)(A1)A0 for any other value of k which rounds to 2850		
			[3 marks]
(e)	attempt to find the maximum of the first derivative graph OR zero		
	of the second derivative graph OR that $P = \frac{k}{2} (= 1422.67)$	(M1)	
	<i>t</i> =1.57814		
	=1.58 (days)	A2	
Note	: Accept any value which rounds to 1.6.		
		Total	[3 marks] [20 marks]



e)
$$x = -\frac{2}{3}(=-0.667)$$
 A1

(oblique asymptote has) gradient
$$\frac{4}{3}(=1.33)$$
 (A1)

appropriate method to find complete equation of oblique asymptote

$$\frac{\frac{4}{3}x - \frac{8}{9}}{3x + 2\sqrt{4x^2 + 0x - 1}}$$

$$\frac{4x^2 + \frac{8}{3}x}{-\frac{8}{3}x - 1}$$

$$-\frac{\frac{8}{3}x - \frac{16}{9}}{\frac{7}{9}}$$

$$y = \frac{4}{3}x - \frac{\frac{8}{9}(=1.33x - 0.889)}{41}$$

Note: Do not award the final A1 if the answer is not given as an equation.

[4 marks]

M1

f) attempting to find at least one critical value
$$(x = -0.568729..., x = 1.31872...)$$
 (M1)
 $-\frac{2}{3} < x < -0.569$ OR $-0.5 < x < 0.5$ OR $x > 1.32$ A1A1A1

Note: Only penalize once for use of \leq rather than <.

[4 marks] Total [20 marks]

= 5.57

(a) attempt to find the point of intersection of the graph of f and the line y = x (M1) x = 5.56619...

A1

(b) $f'(x) = -45e^{-0.5x}$ A1 attempt to set the gradient of f equal to -1 (M1) $-45e^{-0.5x} = -1$ Q has coordinates $(2\ln 45, 2)$ (accept $(-2\ln \frac{1}{45}, 2)$ A1A1 Note: Award A1 for each value, even if the answer is not given as a coordinate pair. Do not accept $\frac{\ln \frac{1}{45}}{-0.5}$ or $\frac{\ln 45}{0.5}$ as a final value for x. Do not accept 2.0 or 2.00 as a final value for y.

		[4 marks]
(c)	attempt to substitute coordinates of Q (in any order) into an appropriate equation	(M1)
	$y-2 = -(x-2\ln 45)$ OR $2 = -2\ln 45 + c$	A1
	equation of L is $y = -x + 2 \ln 45 + 2$	AG
		[2 marks]

(d) (i) $x = \ln 45 + 1 (= 4.81)$

(ii) appropriate method to find the sum of two areas using integrals of the difference of two functions (M1)

Note: Allow absent or incorrect limits.

$$\int_{4.806...}^{5.566...} \left(x - \left(-x + 2\ln 45 + 2\right)\right) dx + \int_{5.566...}^{7.613...} \left(90e^{-0.5x} - \left(-x + 2\ln 45 + 2\right)\right) dx \quad (A1)(A1)$$

Note: Award A1 for one correct integral expression including correct limits and integrand.
 Award A1 for a second correct integral expression including correct limits and integrand.

=1.51965... =1.52

A1 [5 marks]

= 3.03930	
0.00000.	
= 3.04	A1
Note: Accept any answer that rounds to 3.0 (but do not accept 3).	

[2 marks] Total [15 marks]

(a)	$\tan \theta = \frac{50}{v-x} \text{ OR } \cot \theta = \frac{v-x}{50}$	A1	
	$y = x + 50 \cot \theta$	AG	
Note	y - x may be identified as a length on a diagram, and not written explicitly.]
			[1 mark]
(b)	attempt to differentiate with respect to t	(M1)	
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}t} - 50\left(\operatorname{cosec}\theta\right)^2 \frac{\mathrm{d}\theta}{\mathrm{d}t}$	A1	
	attempt to set speed of B equal to double the speed of A	(M1)	
	$2\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}t} - 50(\operatorname{cosec}\theta)^2 \frac{\mathrm{d}\theta}{\mathrm{d}t}$ $\frac{\mathrm{d}x}{\mathrm{d}t} = -50(\operatorname{cosec}\theta)^2 \frac{\mathrm{d}\theta}{\mathrm{d}t}$	A1	
	$\theta = \arctan 5 (= 1.373 = 78.69^{\circ}) \text{ OR } \operatorname{cosec}^2 \theta = 1 + \cot^2 \theta = 1 + \left(\frac{1}{5}\right)^2 = \frac{26}{25}$	(A1)	
	Note: This A1 can be awarded independently of previous marks.		
	$\frac{dx}{dt} = -50 \left(\frac{26}{25}\right) \times -0.1$ So the speed of boat A is 5.2 (ms ⁻¹)	A1	
53	Note: Accept 5.20 from the use of inexact values.		
		Total	[6 marks] [7 marks]

(M1) recognising v = 0(a) *t* = 6.74416... = 6.74 (sec) A1 Note: Do not award A1 if additional values are given. [2 marks] (b) $\int_0^{10} |v(t)| dt$ **OR** $-\int_0^{6.74416...} v(t) dt + \int_{6.74416...}^{9.08837...} v(t) dt - \int_{9.08837...}^{10} v(t) dt$ (A1) = 37.0968... = 37.1 (m) A1 [2 marks] recognising acceleration at t = 7 is given by v'(7)(M1) (C) acceleration = 5.93430... $= 5.93 \text{ (ms}^{-2}\text{)}$ A1 [2 marks] Total [6 marks]

(a) attempt to use
$$V = \pi \int_{a}^{b} (f(x))^{2} dx$$
 (M1)

$$V = \pi \int_{0}^{\ln 16} \left(\frac{ke^{\frac{x}{2}}}{1+e^{x}}\right)^{2} dx \left(V = k^{2}\pi \int_{0}^{\ln 16} \frac{e^{x}}{(1+e^{x})^{2}} dx\right)$$
EITHER

applying integration by recognition (M1)

$$=k^2\pi\left[-\frac{1}{1+\mathrm{e}^x}\right]_0^{\mathrm{hl}6}$$

OR

$$u = 1 + e^{x} \Rightarrow du = e^{x} dx \tag{A1}$$

when x = 0, u = 2 and when $x = \ln 16$, u = 17

$$V = k^{2} \pi \int_{2}^{17} \frac{1}{u^{2}} du$$
(A1)
$$= k^{2} \pi \left[-\frac{1}{u} \right]_{2}^{17}$$
A1

OR

$$u = e^x \Rightarrow du = e^x dx$$
 (A1)

attempt to express the integral in terms of u

when x=0, u=1 and when $x=\ln 16$, u=16

$$V = k^{2} \pi \int_{1}^{10} \frac{1}{(1+u)^{2}} du$$
(A1)
$$= k^{2} \pi \left[-\frac{1}{1+u} \right]_{1}^{16}$$
(A1)

Note: Accept equivalent working with indefinite integrals and original limits for x.

THEN

$$=k^{2}\pi\left(\frac{1}{2}-\frac{1}{17}\right)$$
so the volume of the solid formed is $\frac{15k^{2}\pi}{34}$ cubic units

Note: Award (M1)(A0)(M0)(A0)(A0)(A1) when $\frac{15}{34}$ is obtained from GDC

[6 marks]

(M1)

(M1)

(b) a valid algebraic or graphical attempt to find k

$$k^{2} = \frac{300 \times 34}{15\pi}$$

$$k = 14.7 \left(= 2\sqrt{\frac{170}{\pi}} = \sqrt{\frac{680}{\pi}} \right) \text{ (as } k \in \mathbb{R}^{+} \text{)}$$
A1

Note: Candidates may use their GDC numerical solve feature.

[2 marks]

(c) (i) attempting to find
$$OA = f(0) = \frac{k}{2}$$

with $k = 14.712... \left(= 2\sqrt{\frac{170}{\pi}} = \sqrt{\frac{680}{\pi}} \right)$ (M1)
 $OA = 7.36 \left(= \sqrt{\frac{170}{\pi}} \right)$ A1
(ii) attempting to find $BC = f(\ln 16) = \frac{4k}{17}$

with
$$k = 14.712... \left(= 2\sqrt{\frac{170}{\pi}} = \sqrt{\frac{680}{\pi}} \right)$$
 (M1)

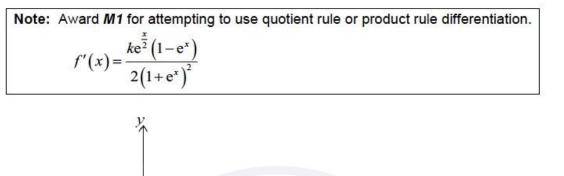
BC = 3.46
$$\left(=\frac{8}{17}\sqrt{\frac{170}{\pi}}=\frac{8\sqrt{10}}{\sqrt{17\pi}}\right)$$
 A1

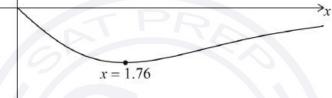
[4 marks]

(M1)

(d) (i) EITHER

recognising to graph y = f'(x) (M1)



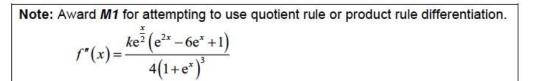


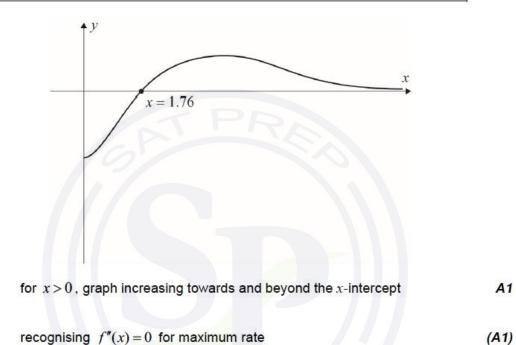
for x > 0 graph decreasing to the local minimum

before increasing towards the x-axis

A1

recognising to graph y = f''(x)





THEN

$$x = 1.76 \left(= \ln(2\sqrt{2} + 3)\right)$$

Note: Only award A marks if either graph is seen.

(ii) attempting to find f(1.76...) (M1)

the cross-sectional radius at this point is 5.20
$$\left(\sqrt{\frac{85}{\pi}}\right)$$
 (cm) A1

[6 marks] Total [18 marks]

(M1)

(a) $1-t+t^2$

e: Accept 1, -t and t^2 .

[1 mark]

(b)
$$\sec x = \frac{1}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} (-...)} \left(= \left(1 - \frac{x^2}{2!} + \left(\frac{x^4}{4!} (-...) \right) \right)^{-1} \right)$$
 (M1)

$$t = \cos x - 1$$
 or $\sec x = 1 - (\cos x - 1) + (\cos x - 1)^2$ (M1)

$$=1-\left(-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}(-...)\right)+\left(-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}(-...)\right)^{2}$$
A1

$$=1+\frac{x^2}{2}-\frac{x^4}{24}+\frac{x^4}{4}$$
 A1

so the Maclaurin series for sec x up to and including the term in x^4 is $1 + \frac{x^2}{2} + \frac{5x^4}{24}$ AG

Note: Condone the absence of '...'

(c)
$$\arctan 2x = 2x - \frac{(2x)^3}{3} + \dots$$

$$\lim_{x \to 0} \left(\frac{x \arctan 2x}{\sec x - 1} \right) = \lim_{x \to 0} \left(\frac{x \left(2x - \frac{(2x)^3}{3} + \dots \right)}{\left(1 + \frac{x^2}{2} + \frac{5x^4}{24} \right) - 1} \right)$$

$$M1$$

$$= \lim_{x \to 0} \left(\frac{2x^2 - \frac{8x^4}{3} + \dots}{\frac{x^2}{2} + \frac{5x^4}{24}} \right)$$

$$A1$$

$$= \lim_{x \to 0} \left(\frac{2x^2 \left(1 - \frac{4x^2}{3} \right)}{\frac{x^2}{2} \left(1 + \frac{5x^2}{12} \right)} \right)$$

$$= 4$$
Note: Condone missing 'lim' and errors in higher derivatives.
Do not award M1 unless x is replaced by 2x in arctan.

[3 marks] Total [8 marks]

A1

(a) METHOD 1

attempts to differentiate implicitly including at least one application of the product rule (M1)

$$u = xy, \ v = \ln(xy), \ \frac{du}{dx} = x\frac{dy}{dx} + y, \ \frac{dv}{dx} = \left(x\frac{dy}{dx} + y\right)\frac{1}{xy}$$
$$\frac{dy}{dx} = 1 - \left[\frac{xy}{xy}\left(x\frac{dy}{dx} + y\right) + \left(x\frac{dy}{dx} + y\right)\ln(xy)\right]$$
A1

Note: Award (M1)A1 for implicitly differentiating $y = x(1 - y \ln(xy))$ and obtaining $\frac{dy}{dx} = 1 - \left[\frac{xy}{xy}\left(x\frac{dy}{dx} + y\right) + x\frac{dy}{dx}\ln(xy) + y\ln(xy)\right].$

$$\frac{dy}{dx} = 1 - \left[\left(x \frac{dy}{dx} + y \right) + \left(x \frac{dy}{dx} + y \right) \ln(xy) \right]$$

$$\frac{dy}{dx} = 1 - \left(x \frac{dy}{dx} + y \right) (1 + \ln(xy))$$

$$\frac{dy}{dx} + \left(x \frac{dy}{dx} + y \right) (1 + \ln(xy)) = 1$$
AG

METHOD 2

 $y = x - xy \ln x - xy \ln y$

attempts to differentiate implicitly including at least one application of the product rule (M1)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - \left(\frac{xy}{x} + \left(x\frac{\mathrm{d}y}{\mathrm{d}x} + y\right)\ln x\right) - \left(\frac{xy}{y}\frac{\mathrm{d}y}{\mathrm{d}x} + \left(x\frac{\mathrm{d}y}{\mathrm{d}x} + y\right)\ln y\right)$$

or equivalent to the above, for example

$$\frac{dy}{dx} = 1 - \left(x \ln x \frac{dy}{dx} + (1 + \ln x)y\right) - \left(y \ln y + x \left(\ln y \frac{dy}{dx} + \frac{dy}{dx}\right)\right)$$
$$\frac{dy}{dx} = 1 - x \frac{dy}{dx} (\ln x + \ln y + 1) - y (\ln x + \ln y + 1)$$
A1

or equivalent to the above, for example

$$\frac{dy}{dx} = 1 - x \frac{dy}{dx} (\ln(xy) + 1) - y (\ln(xy) + 1)$$

$$\frac{dy}{dx} + \left(x \frac{dy}{dx} + y\right) (1 + \ln(xy)) = 1$$
AG

METHOD 3

attempt to differentiate implicitly including at least one application of the product rule M1

$$u = x \ln(xy), \ v = y, \ \frac{du}{dx} = \ln(xy) + \left(x\frac{dy}{dx} + y\right)\frac{x}{xy}, \ \frac{dv}{dx} = \frac{dy}{dx}$$
$$\frac{dy}{dx} = 1 - \left(x\frac{dy}{dx}\ln(xy) + y\ln(xy) + \frac{xy}{xy}\left(x\frac{dy}{dx} + y\right)\right)$$
A1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - x \frac{\mathrm{d}y}{\mathrm{d}x} \left(\ln\left(xy\right) + 1 \right) - y \left(\ln\left(xy\right) + 1 \right)$$
 A1

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \left(x\frac{\mathrm{d}y}{\mathrm{d}x} + y\right)\left(1 + \ln\left(xy\right)\right) = 1$$
AG

METHOD 4

lets
$$w = xy$$
 and attempts to find $\frac{dy}{dx}$ where $y = x - w \ln w$ M1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - \left(\frac{\mathrm{d}w}{\mathrm{d}x} + \frac{\mathrm{d}w}{\mathrm{d}x}\ln w\right) \left(= 1 - \frac{\mathrm{d}w}{\mathrm{d}x}(1 + \ln w)\right)$$
 A1

$$\frac{\mathrm{d}w}{\mathrm{d}x} = x\frac{\mathrm{d}y}{\mathrm{d}x} + y \tag{A1}$$

$$\frac{dy}{dx} = 1 - \left(x\frac{dy}{dx} + y + \left(x\frac{dy}{dx} + y\right)\ln(xy)\right) \left(= 1 - \left(x\frac{dy}{dx} + y\right)(1 + \ln(xy))\right)$$
$$\frac{dy}{dx} + \left(x\frac{dy}{dx} + y\right)(1 + \ln(xy)) = 1$$
AG

[3 marks]

METHOD 1 (b)

substitutes
$$x = 1$$
 into $y = x - xy \ln(xy)$ (M1)

$$y = 1 - y \ln y \Rightarrow y = 1$$
 A1

substitutes x = 1 and their non-zero value of y into $\frac{dy}{dx} + \left(x\frac{dy}{dx} + y\right)\left(1 + \ln(xy)\right) = 1$ (M1)

$$2\frac{\mathrm{d}y}{\mathrm{d}x} = 0\left(\frac{\mathrm{d}y}{\mathrm{d}x} = 0\right)$$

equation of the tangent is y = 1

METHOD 2

substitutes
$$x = 1$$
 into $\frac{dy}{dx} + \left(x\frac{dy}{dx} + y\right)\left(1 + \ln(xy)\right) = 1$ (M1)

$$\frac{dy}{dx} + \left(\frac{dy}{dx} + y\right) (1 + \ln(y)) = 1$$

correctly substitutes $\ln y = \frac{1-y}{y}$ into $\frac{\mathrm{d}y}{\mathrm{d}x}$ $\frac{\mathrm{d}y}{\mathrm{d}x}$ $+ y \left| (1 + \ln(y)) \right| = 1$ A1

$$\frac{\mathrm{d}y}{\mathrm{d}x}\left(1+\frac{1}{y}\right) = 0 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \quad (y=1)$$

OR

correctly substitutes
$$y + y \ln y = 1$$
 into $\frac{dy}{dx} + \left(\frac{dy}{dx} + y\right)(1 + \ln(y)) = 1$ A1

$$\frac{dy}{dx}(2+\ln y) = 0 \Rightarrow \frac{dy}{dx} = 0 \ (y=1)$$

THEN

substitutes x = 1 into $y = x - xy \ln(xy)$ (M1)

 $y = 1 - y \ln y \Rightarrow y = 1$

equation of the tangent is y = 1

A1

A1

[5 marks] Total [8 marks]

(a) attempt to use Euler's method

$$x_{n+1} = x_n + 0.1; \quad y_{n+1} = y_n + 0.1 \times \frac{dy}{dx}, \text{ where } \frac{dy}{dx} = \frac{y^2 - 2x^2}{x^2}$$

correct intermediate y-values

3.7, 4.63140..., 5.92098..., 7.79542...

Note: A1 for any two correct y -values seen

y = 10.6958...

y = 10.7

Note: For the final *A1*, the value 10.7 must be the last value in a table or a list, or be given as a final answer, not just embedded in a table which has further lines.

(b)
$$y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$
 (A1)
replacing y with vx and $\frac{dy}{dx}$ with $v + x \frac{dv}{dx}$ M1
 $x^2 \frac{dy}{dx} = y^2 - 2x^2 \Rightarrow x^2 \left(v + x \frac{dv}{dx} \right) = v^2 x^2 - 2x^2$ A1
 $v + x \frac{dv}{dx} = v^2 - 2$ (since $x > 0$)
 $x \frac{dv}{dx} = v^2 - v - 2$ AG
[3 marks]

(A1)(A1)

(M1)

[4 marks]

A1

(c) (i) attempt to separate variables v and x

$$\int \frac{dv}{v^2 - v - 2} = \int \frac{dx}{x}$$

$$\int \frac{dv}{(v - 2)(v + 1)} = \int \frac{dx}{x}$$
(A1)

(M1)

M1

M1

attempt to express in partial fraction form

$$\frac{1}{(v-2)(v+1)} \equiv \frac{A}{v-2} + \frac{B}{v+1}$$

$$\frac{1}{(v-2)(v+1)} = \frac{1}{3} \left(\frac{1}{v-2} - \frac{1}{v+1} \right)$$

$$\frac{1}{3} \int \left(\frac{1}{v-2} - \frac{1}{v+1} \right) dv = \int \frac{dx}{x}$$

$$\frac{1}{3} (\ln|v-2| - \ln|v+1|) = \ln|x|(+c)$$
A1

Note: Condone absence of modulus signs throughout.

EITHER

attempt to find c using x = 1, y = 3, v = 3

$$c = \frac{1}{3}\ln\frac{1}{4}$$

$$\frac{1}{3}\left(\ln|v-2| - \ln|v+1|\right) = \ln|x| + \frac{1}{3}\ln\frac{1}{4}$$
expressing both sides as a single logarithm (M1)

$$\ln\left|\frac{v-2}{v+1}\right| = \ln\left(\frac{|x|^3}{4}\right)$$

OR

expressing both sides as a single logarithm (M1)

$$\ln\left|\frac{v-2}{v+1}\right| = \ln\left(A|x|^3\right)$$

attempt to find A using x = 1, y = 3, v = 3

$$A = \frac{1}{4}$$

THEN

$$\left|\frac{v-2}{v+1}\right| = \frac{1}{4}x^3$$
 (since $x > 0$)

substitute $v = \frac{y}{x}$ (seen anywhere)

$$\frac{\frac{y}{x}-2}{\frac{y}{x}+1} = \frac{1}{4}x^3 \text{ (since } y > 2x\text{)}$$
$$\left(\Rightarrow \frac{y-2x}{y+x} = \frac{1}{4}x^3\right)$$

attempt to make y the subject

$$y - \frac{x^3 y}{4} = 2x + \frac{x^4}{4}$$
 A1

$$y = \frac{8x + x^4}{4 - x^3}$$
 AG

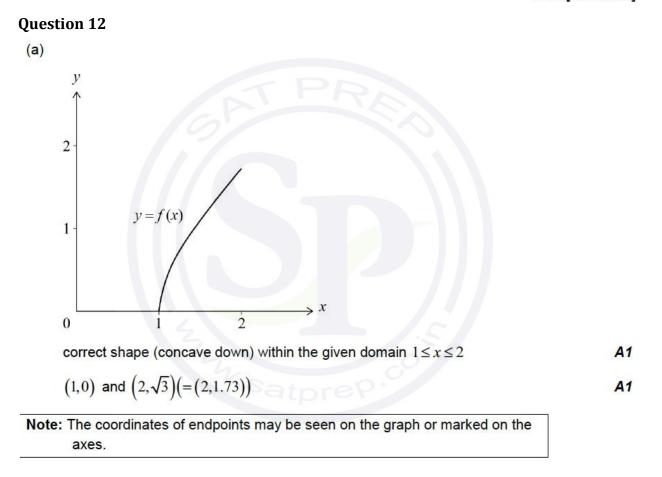
M1

M1

(ii) actual value at y(1.5) = 27.3

(iii) gradient changes rapidly (during the interval considered) OR
the curve has a vertical asymptote at
$$x = \sqrt[3]{4} (=1.5874...)$$

[12 marks] Total [19 marks]



(b) (i) interchanging x and y (seen anywhere)

$$x = \sqrt{y^2 - 1}$$

$$x^2 = y^2 - 1$$
 A1

$$y = \sqrt{x^2 + 1}$$

$$f^{-1}(x) = \sqrt{x^2 + 1} \qquad \qquad \text{AG}$$

(ii)
$$0 \le x \le \sqrt{3} \text{ OR domain } [0, \sqrt{3}] (= [0, 1.73])$$
 A1

$$1 \le y \le 2 \text{ OR } 1 \le f^{-1}(x) \le 2 \text{ OR range } [1,2]$$
 A1
[5 marks]

[5 marks]

M1

(c) (i) attempt to substitute
$$x = \sqrt{y^2 + 1}$$
 into the correct volume formula (M1)

$$V = \pi \int_{0}^{n} \left(\sqrt{y^{2} + 1} \right)^{2} dy \left(= \pi \int_{0}^{n} (y^{2} + 1) dy \right)$$
 A1

$$=\pi \left[\frac{1}{3}y^3 + y\right]_0^h$$

$$=\pi\left(\frac{1}{3}h^3+h\right)$$

Note: Award marks as appropriate for correct work using a different variable e.g. $\pi \int_{2}^{n} \left(\sqrt{x^2 + 1} \right)^2 \mathrm{d}x$

(ii) attempt to substitute
$$h = \sqrt{3}$$
 (=1.732...) into V (M1)

V = 10.8828...

$$V = 10.9 \text{ (m}^3) \left(= 2\sqrt{3}\pi\right) \text{ (m}^3)$$
 A1

[5 marks]

(d) METHOD 1

time =
$$\frac{10.8828...}{0.4} \left(= \frac{2\sqrt{3}\pi}{0.4} \right)$$
 (M1)
= 27.207...
= 27.2 $\left(= 5\sqrt{3}\pi\right)(s)$ A1

[2 marks]

(e) attempt to find the height of the tank when $V = 5.4414... \left(=\sqrt{3}\pi\right)$ (M1)

$$\pi \left(\frac{1}{3}h^3 + h\right) = 5.4414... \left(=\sqrt{3}\pi\right)$$

h = 1.1818... (A1)

attempt to use the chain rule or differentiate $V = \pi \left(\frac{1}{3}h^3 + h\right)$ with respect to t (M1)

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{\pi(h^2 + 1)} \times \frac{\mathrm{d}V}{\mathrm{d}t} \text{ OR } \frac{\mathrm{d}V}{\mathrm{d}t} = \pi(h^2 + 1)\frac{\mathrm{d}h}{\mathrm{d}t}$$
(A1)

attempt to substitute their
$$h$$
 and $\frac{\mathrm{d}V}{\mathrm{d}t} = 0.4$ (M1)

$$\frac{dh}{dt} = \frac{0.4}{\pi (1.1818...^2 + 1)} = 0.053124...$$

$$= 0.0531 \text{ (m s}^{-1)}$$

A1

[6 marks] Total [20 marks]

(a) recognizing at rest v = 0 (M1) t = 3.34692... t = 3.35 (seconds) A1 Note: Award (M1)A0 for any other solution to v = 0 eg t = -0.205 or t = 6.08.

- (b) recognizing particle changes direction when v = 0 OR when t = 3.34692... (M1) a = -4.71439... $a = -4.71 \text{ (ms}^{-2)}$ A2 [3 marks]
- (c) distance travelled = $\int_0^6 |v| dt$ OR

$$\int_{0}^{3.34...} \left(e^{\sin(t)} + 4\sin(t) \right) dt - \int_{3.34...}^{6} \left(e^{\sin(t)} + 4\sin(t) \right) dt \quad (= 14.3104... + 6.44300...)$$
(A1)

= 20.7534...

= 20.8 (metres)

A1

[2 marks]

[2 marks]

Total [7 marks]

(a) rate of growth (change) of the (marsupial) population (with respect to time) A1

[1 mark]

(b) METHOD 1

attempts implicit differentiation on $\frac{dP}{dt} = kP - \frac{kP^2}{N}$ by expanding $kP\left(1 - \frac{P}{N}\right)$ (M1)

$$\frac{\mathrm{d}^2 P}{\mathrm{d}t^2} = k \frac{\mathrm{d}P}{\mathrm{d}t} - 2 \frac{kP}{N} \frac{\mathrm{d}P}{\mathrm{d}t}$$
 A1A1

$$=k\frac{\mathrm{d}P}{\mathrm{d}t}\left(1-\frac{2P}{N}\right)$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = kP\left(1 - \frac{P}{N}\right) \text{ and so } \frac{\mathrm{d}^2 P}{\mathrm{d}t^2} = k^2 P\left(1 - \frac{P}{N}\right)\left(1 - \frac{2P}{N}\right)$$

METHOD 2

attempts implicit differentiation (product rule) on
$$\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right)$$
 M1

$$\frac{\mathrm{d}^2 P}{\mathrm{d}t^2} = k \frac{\mathrm{d}P}{\mathrm{d}t} \left(1 - \frac{P}{N} \right) + k P \left(-\left(\frac{1}{N}\right) \frac{\mathrm{d}P}{\mathrm{d}t} \right)$$

substitutes
$$\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right)$$
 into their $\frac{d^2P}{dt^2}$ M1

$$\frac{d^2 P}{dt^2} = k \left(kP \left(1 - \frac{P}{N} \right) \right) \left(1 - \frac{P}{N} \right) + kP \left(- \left(\frac{1}{N} \right) kP \left(1 - \frac{P}{N} \right) \right)$$
$$= k^2 P \left(1 - \frac{P}{N} \right)^2 - k^2 P \left(1 - \frac{P}{N} \right) \left(\frac{P}{N} \right)$$
$$= k^2 P \left(1 - \frac{P}{N} \right) \left(1 - \frac{P}{N} - \frac{P}{N} \right)$$
A1

so
$$\frac{\mathrm{d}^2 P}{\mathrm{d}t^2} = k^2 P \left(1 - \frac{P}{N} \right) \left(1 - \frac{2P}{N} \right)$$
 AG

[4 marks]

(c)
$$\frac{\mathrm{d}^2 P}{\mathrm{d}t^2} = 0 \Longrightarrow k^2 P\left(1 - \frac{P}{N}\right) \left(1 - \frac{2P}{N}\right) = 0 \tag{M1}$$

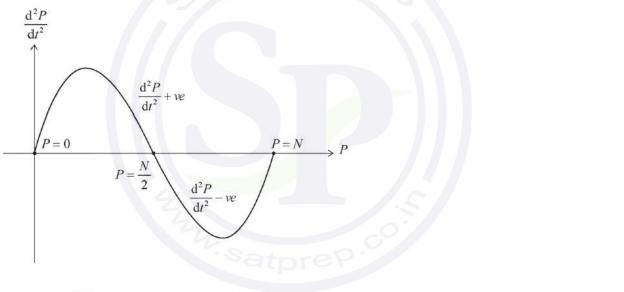
$$P = 0, \frac{N}{2}, N$$

Note: Award **A1** for $P = \frac{N}{2}$ only.

uses the second derivative to show that concavity changes at $P = \frac{N}{2}$ or the first derivative to show a local maximum at $P = \frac{N}{2}$

EITHER

a clearly labelled correct sketch of $\frac{d^2 P}{dt^2}$ versus P showing $P = \frac{N}{2}$ corresponding to a local maximum point for $\frac{dP}{dt}$



OR

a correct and clearly labelled sign diagram (table) showing $P = \frac{N}{2}$ corresponding to a local maximum point for $\frac{dP}{dt}$ R1

for example,
$$\frac{d^2 P}{dt^2} = \frac{3k^2 N}{32} (>0)$$
 with $P = \frac{N}{4}$ and $\frac{d^2 P}{dt^2} = -\frac{3k^2 N}{32} (<0)$ with $P = \frac{3N}{4}$
showing $P = \frac{N}{2}$ corresponds to a local maximum point for $\frac{dP}{dt}$ **R1**

so the population is increasing at its maximum rate when $P = \frac{N}{2}$ **AG**

[5 marks]

(d) substitutes
$$P = \frac{N}{2}$$
 into $\frac{dP}{dt}$ (M1)
 $\frac{dP}{dt} = k \left(\frac{N}{2}\right) \left(1 - \frac{N}{2}\right)$
the maximum value of $\frac{dP}{dt}$ is $\frac{kN}{4}$ [2 marks]

OR

(e) METHOD 1

attempts to separate variables

$$\int \frac{N}{P(N-P)} dP = \int k \, dt$$
attempts to write $\frac{N}{P(N-P)}$ in partial fractions form
$$M1$$

$$\frac{N}{P(N-P)} = \frac{A}{P} + \frac{B}{(N-P)} \Longrightarrow N = A(N-P) + BP$$

$$A=1, B=1$$

$$A1$$

$$\frac{N}{P(N-P)} = \frac{1}{P} + \frac{1}{(N-P)}$$

$$\int \left(\frac{1}{P} + \frac{1}{(N-P)}\right) dP = \int k \, dt$$

$$\Rightarrow \ln P - \ln(N-P) = kt(+C)$$

$$A1A1$$
Award A1 for $-\ln(N-P)$ and A1 for $\ln P$ and $kt(+C)$. Absolute value

Note: signs are not required.

attempts to find $\,C\,$ in terms of $\,N\,$ and $\,P_{\!0}\,$ M1

when
$$t = 0$$
, $P = P_0$ and so $C = \ln P_0 - \ln (N - P_0)$

$$kt = \ln\left(\frac{P}{N-P}\right) - \ln\left(\frac{P_0}{N-P_0}\right) \left(= \ln\left(\frac{\frac{P}{N-P}}{\frac{P_0}{N-P_0}}\right) \right)$$

so
$$kt = \ln \frac{P}{P_0} \left(\frac{N - P_0}{N - P} \right)$$
 AG

[7 marks]

.

METHOD 2

attempts to separate variables

$$\int \frac{1}{P\left(1 - \frac{P}{N}\right)} dP = \int k \, dt$$
attempts to write $\frac{1}{P\left(1 - \frac{P}{N}\right)}$ in partial fractions form
$$\begin{array}{l} M1 \\ \frac{1}{P\left(1 - \frac{P}{N}\right)} = \frac{A}{P} + \frac{B}{1 - \frac{P}{N}} \Longrightarrow 1 = A\left(1 - \frac{P}{N}\right) + BP \\ A = 1, B = \frac{1}{N} \\ A = 1, B = \frac{1}{N} \\ \frac{1}{P\left(1 - \frac{P}{N}\right)} = \frac{1}{P} + \frac{1}{N\left(1 - \frac{P}{N}\right)} \\ \int \frac{1}{P} + \frac{1}{N\left(1 - \frac{P}{N}\right)} dP = \int k \, dt \\ \Rightarrow \ln P - \ln\left(1 - \frac{P}{N}\right) = kt(+C) \end{array}$$
A1A1
Note: Award A1 for $-\ln\left(1 - \frac{P}{N}\right)$ and A1 for $\ln P$ and $kt(+C)$. Absolute value signs are not required.

$$\ln\left(\frac{P}{1-\frac{P}{N}}\right) = kt + C \Longrightarrow \ln\left(\frac{NP}{N-P}\right) = kt + C$$

attempts to find $\,C\,$ in terms of $\,N\,$ and $\,P_{\!0}\,$

when
$$t = 0$$
, $P = P_0$ and so $C = \ln\left(\frac{NP_0}{N - P_0}\right)$
 $kt = \ln\left(\frac{NP}{N - P}\right) - \ln\left(\frac{NP_0}{N - P_0}\right) \left(= \ln\left(\frac{\frac{P}{N - P}}{\frac{P_0}{N - P_0}}\right)\right)$
A1

$$kt = \ln \frac{P}{P_0} \left(\frac{N - P_0}{N - P} \right)$$

[7 marks]

METHOD 3

lets
$$u = \frac{1}{P}$$
 and forms $\frac{du}{dt} = -\frac{1}{P^2} \frac{dP}{dt}$ M1

multiplies both sides of the differential equation by $-\frac{1}{P^2}$ and makes the above

substitutions

$$\frac{1}{P^2}\frac{\mathrm{d}P}{\mathrm{d}t} = k\left(\frac{1}{N} - \frac{1}{P}\right) \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}t} = k\left(\frac{1}{N} - u\right)$$

$$\frac{\mathrm{d}u}{\mathrm{d}t} + ku = \frac{k}{N} \text{ (linear first-order DE)}$$
 A1

$$IF = e^{\int k \, dt} = e^{kt} \Longrightarrow e^{kt} \frac{du}{dt} + ke^{kt}u = \frac{k}{N}e^{kt}$$
(M1)

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(u\mathrm{e}^{kt}\right) = \frac{k}{N}\mathrm{e}^{kt}$$
$$u\mathrm{e}^{kt} = \frac{1}{N}\mathrm{e}^{kt}\left(+C\right)\left(\frac{1}{P}\mathrm{e}^{kt} = \frac{1}{N}\mathrm{e}^{kt}\left(+C\right)\right)$$
A1

attempts to find C in terms of N and P_0

M1

M1

when
$$t = 0$$
, $P = P_0$, $u = \frac{1}{P_0}$ and so $C = \frac{1}{P_0} - \frac{1}{N} \left(= \frac{N - P_0}{NP_0} \right)$

$$e^{kt} \left(\frac{N-P}{NP}\right) = \frac{N-P_0}{NP_0}$$

$$e^{kt} = \left(\frac{P}{N-P}\right) \left(\frac{N-P_0}{P_0}\right)$$

$$kt = \ln \frac{P}{P_0} \left(\frac{N-P_0}{N-P}\right)$$
AG

[7 marks]

(f) substitutes t = 10, $P = 3P_0$ and $N = 4P_0$ into $kt = \ln \frac{P}{P_0} \left(\frac{N - P_0}{N - P} \right)$ M1

$$10k = \ln 3 \left(\frac{4P_0 - P_0}{4P_0 - 3P_0} \right) (= \ln 9)$$

$$k = 0.220 \left(= \frac{1}{10} \ln 9, = \frac{1}{5} \ln 3 \right)$$

A1

[2 marks] Total [21 marks]

Question 15

(a)
$$(as \lim_{x \to 0} x^2 = 0, the indeterminate form $\frac{0}{0}$ is required for the limit to exist)
 $\Rightarrow \lim_{x \to 0} (\arctan(\cos x) - k) = 0$ M1
 $\arctan 1 - k = 0$ (k = arctan 1) A1
so $k = \frac{\pi}{4}$ AG$$

Note: Award *M1A0* for using $k = \frac{\pi}{4}$ to show the limit is $\frac{0}{0}$.

[2 marks]

(b)
$$\lim_{x \to 0} \frac{\arctan(\cos x) - \frac{\pi}{4}}{x^2} \left(= \frac{0}{0} \right)$$
$$= \lim_{x \to 0} \frac{-\sin x}{\frac{1 + \cos^2 x}{2x}}{2x}$$
A1A1

Note: Award A1 for a correct numerator and A1 for a correct denominator.

recognises to apply l'Hôpital's rule again

$$=\lim_{x\to 0}\frac{\frac{-\sin x}{1+\cos^2 x}}{2x}\left(=\frac{0}{0}\right)$$

Note: Award *M0* if their limit is not the indeterminate form $\frac{0}{0}$

EITHER

$$=\lim_{x\to 0} \frac{\frac{-\cos x (1+\cos^2 x) - 2\sin^2 x \cos x}{(1+\cos^2 x)^2}}{2}$$
 A1A1

Note: Award A1 for a correct first term in the numerator and A1 for a correct second term in the numerator.

OR

$$\lim_{x\to 0} \frac{-\cos x}{2(1+\cos^2 x) - 4x\sin x\cos x}$$

Note: Award A1 for a correct numerator and A1 for a correct denominator.

THEN

substitutes $x = 0$ into the correct expression to evaluate the limit	A1
Note: The final A1 is dependent on all previous marks.	
$=-\frac{1}{4}$	AG

[6 marks] Total [8 marks]

A1A1

(M1)

attempts to express x^2 in terms of y

$$V = \pi \int_{h}^{4} 36 \left(1 - \frac{(y-4)^2}{16} \right) dy$$
 A1

Note: Correct limits are required.

Attempts to solve
$$\pi \int_{h}^{4} 36 \left(1 - \frac{(y-4)^2}{16} \right) dy = 285$$
 for *h* (M1)

Note: Award *M1* for attempting to solve $36\pi \left(\frac{h^3}{48} - \frac{h^2}{4} + \frac{8}{3}\right) = 285$ or equivalent for *h*.

h = 0.7926...

h = 0.793 (cm)

A2 [5 marks]

(M1)

Ques		
(a)	recognises the need to find the value of t when $v = 0$	(M1)
	$t = 1.5707\left(=\frac{\pi}{2}\right)$	
	$t = 1.57 \left(=\frac{\pi}{2}\right) (s)$	A1
		[2 marks]
(b)	recognises that $a(t) = v'(t)$	(M1)
	$t_1 = 2.2627, t_2 = 2.9573$	
	$t_1 = 2.26$, $t_2 = 2.96$ (s)	A1A1
Note	e: Award M1A1A0 if the two correct answers are given with additional values outside $0 \le t \le 3$.	
		[3 marks]
(c)	speed is greatest at $t=3$	(A1)
	a = -1.8377	
	$a = -1.84 \text{ (m s}^{-2}\text{)}$	A1
		[2 marks]
		Total [7 marks]

METHOD 1

recognises that $g(x) = \int (3x^2 + 5e^x) dx$	(M1)
$g(x) = x^3 + 5e^x(+C)$	(A1)(A1)

Note: Award A1 for each integrated term.

substitutes $x = 0$ and $y = 4$ into their integrated function (must involve + <i>C</i>)	(M1)
$4 = 0 + 5 + C \Longrightarrow C = -1$	
$g(x) = x^3 + 5e^x - 1$	A1

METHOD 2

attempts to write both sides in the form of a definite integral	(M1)
$\int_{0}^{x} g'(t) dt = \int_{0}^{x} (3t^{2} + 5e^{t}) dt$	(A1)
$g(x) - 4 = x^3 + 5e^x - 5e^0$	(A1)(A1)
Note: Award A1 for $g(x) - 4$ and A1 for $x^3 + 5e^x - 5e^0$.	

$$g(x) = x^3 + 5e^x - 1$$

A1

[5 marks]

(a)	attempt to use product rule	(M
	$f'(x) = 3e^{2x} + 2e^{2x}(3x - 4)(=e^{2x}(6x - 5))$	A
Not	te: Award A1 for 2 out of 3 of $3e^{2x}$, $6xe^{2x}$ and $-8e^{2x}$ seen or implied.	
		[3 mark
(b)	f'(x) = 1	(M1
	<i>x</i> = 0.86299	
	<i>x</i> = 0.863	A
	<i>y</i> = -7.92719	
	y = -7.93	A
	(0.863,-7.93)	
		[3 marks
(c)	<i>x</i> -intercept is at $\frac{4}{3}(1.33)$	(A
	attempt to use formula for volume of revolution	(M
Not	e : Award (M1) for an integral involving π and $(f(x))^2$. Condone use of 2π and	
	incorrect or absent limits.	
	$\pi \int_{0}^{\overline{3}} (e^{2x}(3x-4))^2 dx$	(A
Not	e : This (A1) can be awarded if the dx is omitted.	
	=164.849	
	=165	,

[4 marks]

(d) (i) attempt to compose functions in the correct order (M1) $(f \circ g)(0) = f(g(0)) = f(1)$ = -7.38905... $= -7.39(= -e^2)$ A1 (ii) attempt to use the chain rule (M1)

$$(f \circ g)'(0) = f'(g(0))g'(0)$$

Note: For this (M1) to be awarded, multiplication of two derivatives should be seen or implied.

$$= 2f'(1)(= 2 \times 7.38905...)$$
(A1)
= 14.7781...
= 14.8(= 2e²)
A1
[5 marks]
Total [15 marks]

EITHER

$$\left(\frac{\mathrm{d}V}{\mathrm{d}h}\right) = 10\pi h - \pi h^2 \tag{A1}$$

Note: This **A1** may be implied by the value $\frac{dV}{dh} = 76.5616...$.

attempt to use chain rule to find a relationship between	$\frac{\mathrm{d}h}{\mathrm{d}t}$,	$\frac{\mathrm{d}V}{\mathrm{d}t}$ and	$\frac{\mathrm{d}V}{\mathrm{d}h}$	(M1)
--	-------------------------------------	---------------------------------------	-----------------------------------	------

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{\left(\frac{\mathrm{d}V}{\mathrm{d}h}\right)} \times \frac{\mathrm{d}V}{\mathrm{d}t}$$

OR

attempt to differentiate $V = 5\pi h^2 - \frac{1}{3}\pi h^3$ throughout with respect to t (M1)

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 10\pi h \frac{\mathrm{d}h}{\mathrm{d}t} - \pi h^2 \frac{\mathrm{d}h}{\mathrm{d}t} \tag{A1}$$

THEN

$$(10\pi h - \pi h^2)\frac{dh}{dt} = 2 \text{ OR } \frac{dh}{dt} = \frac{2}{10\pi h - \pi h^2}$$
 (A1)

Note: Award this **A1** if the correct expression is seen with their *h* already substituted.

attempt to solve
$$200 = 5\pi h^2 - \frac{1}{3}\pi h^3$$
 (M1)

h = 4.20648...

(A1)

Note: This (*M1*)(*A1*) can be awarded independently of all previous marks, and may be implied by the value $\frac{dV}{dh} = 76.5616...$ Ignore extra values of *h* -3.24 and 14.0.

 $\frac{\mathrm{d}h}{\mathrm{d}t} = 0.0261227...$

```
\frac{\mathrm{d}h}{\mathrm{d}t} = 0.0261 \left(\mathrm{cms}^{-1}\right)
```

A1

[6 marks]

(a)	(0.708519,0.639580)	
	(0.709, 0.640) (x = 0.709, y = 0.640)	A1A1
		[2 marks]
(b)	1.09885	

	x = 1.10 (accept (1.10,0))	A1
		[1 mark]
(c)	METHOD 1	
	$\int_0^2 f(x) dx$	(A1)
	4.61117	
	area = 4.61	A2

METHOD 2

$$-\int_{1.09885...}^{2} f(x) dx \text{ OR } \int_{1.09885...}^{2} |f(x)| dx \text{ OR } 4.17527...$$
(A1)

$$\int_{0}^{1.09885...} f(x) dx - \int_{1.09885...}^{2} f(x) dx \text{ OR } 0.435901... + 4.17527...$$
(A1)

4.61117...

area = 4.61

A1

[3 marks]

Total [6 marks]