Subject – Math AA(Higher Level) Topic - Number and Algebra Year - May 2021 – Nov 2022 Paper -2 Answers

Question 1

substituting $w = 2iz$ into $z^* - 3w = 5 + 5i$	M1
$z^* - 6iz = 5 + 5i$	A1
let $z = x + yi$	
comparing real and imaginary parts of $(x-yi)-6i(x+yi)=5+5i$	M1
to obtain $x + 6y = 5$ and $-6x - y = 5$	A1
attempting to solve for x and y	M1
x = -1 and $y = 1$ and so $z = -1 + i$	A1
hence $w = -2 - 2i$	A1

Question 2

(a)	$\left(1\!+\!\frac{5.5}{4\!\times\!100}\right)^{\!\!4}$	(M1)(A1)	
	=1.056	A1	[3 marks]

(b) **EITHER**

$$2P = P \times \left(1 + \frac{5.5}{100 \times 4}\right)^{4n}$$
 OR $2P = P \times (\text{their } (a))^{m}$ (M1)(A1)

Note: Award (M1) for substitution into loan payment formula. Award (A1) for correct substitution.

OR

$PV = \pm 1$ $FV = \mp 2$ I% = 5.5 P/Y = 4 C/Y = 4 n = 50.756	(M1)(A1)
OR	
$PV = \pm 1$	
$FV = \mp 2$	
I% = 100 (their (a) - 1)	
P/Y = 1	
C/Y = 1	(M1)(A1)
THEN	
\Rightarrow 12.7 years	
Laurie will have double the amount she invested during 2032	A1
	[3 marks]
	Total [6 marks]

Question 3

(a)	(zw =)16	A1	[1 mark]
(b)	attempt to find $\arg(z) + \arg(w)$ $\arg(zw) = \arg(z) + \arg(w)$	(M1)	
	$= \frac{\pi}{5} - \frac{2k\pi}{5} \left(= \frac{(1-2k)\pi}{5} \right)$	A1	
			[2 marks]

- (c) (i) $zw \in Z \Rightarrow \arg(zw)$ is a multiple of π (M1) $\Rightarrow 1-2k$ is a multiple of 5 (M1) k=3 A1
 - (ii) $zw = 16(\cos(-\pi) + i\sin(-\pi))$ -16

A1 [4 marks] Total [7 marks]

Question 4 METHOD 1

product of a binomial coefficient, a power of 3 (and a power of x^2) seen evidence of correct term chosen ${}^{n+1}C_2 \times 3^{n+1-2} \times (x^2)^2 \left(=\frac{n(n+1)}{2} \times 3^{n-1} \times x^4\right) \text{ OR } n-r=1$	(M1) (A1)
equating their coefficient to 20412 or their term to $20412x^4$	(M1)
EITHER	
$^{n+1}C_2 \times 3^{n-1} = 20412$	(A1)
OR	
$^{r+2}C_r \times 3^r = 20412 \Longrightarrow r = 6$	(A1)
THEN	
<i>n</i> = 7	A1
METHOD 2	
$3^{n+1}\left(1+\frac{x^2}{3}\right)^{n+1}$	
$3^{n+1}\left(1+\frac{x^2}{3}\right)^{n+1}$	(M1)
	(M1) (A1)
$3^{n+1} \left(1 + \frac{x^2}{3}\right)^{n+1}$ product of a binomial coefficient and a power of $\frac{x^2}{3}$ OR $\frac{1}{3}$ seen	•
$3^{n+1}\left(1+\frac{x^2}{3}\right)^{n+1}$ product of a binomial coefficient and a power of $\frac{x^2}{3}$ OR $\frac{1}{3}$ seen evidence of correct term chosen	•
$3^{n+1} \left(1 + \frac{x^2}{3}\right)^{n+1}$ product of a binomial coefficient and a power of $\frac{x^2}{3}$ OR $\frac{1}{3}$ seen evidence of correct term chosen $3^{n+1} \times {}^{n+1}C_2 \times \left(\frac{x^2}{3}\right)^2 \left(=3^{n-1}\frac{n(n+1)}{2}x^4\right)$	(A1)

Total [5 marks]

A1

$$\frac{1+z}{1-z} = \frac{1+\cos\theta + i\sin\theta}{1-\cos\theta - i\sin\theta}$$

attempt to use the complex conjugate of their denominator

$$=\frac{(1+\cos\theta+i\sin\theta)(1-\cos\theta+i\sin\theta)}{(1-\cos\theta-i\sin\theta)(1-\cos\theta+i\sin\theta)}$$
A1

$$\operatorname{Re}\left(\frac{1+z}{1-z}\right) = \frac{1-\cos^2\theta - \sin^2\theta}{\left(1-\cos\theta\right)^2 + \sin^2\theta} \left(=\frac{1-\cos^2\theta - \sin^2\theta}{2-2\cos\theta}\right)$$
M1A1

>te: Award M1 for expanding the numerator and A1 for a correct numerator. Condone either an incorrect denominator or the absence of a denominator.

using $\cos^2 \theta + \sin^2 \theta = 1$ to simplify the numerator

$$\operatorname{Re}\left(\frac{1+z}{1-z}\right) = 0$$

(M1)

M1

AG

[5 marks]

Ques		
(a)	Jack and Andrea finish in that order (as a unit) so we are considering the arrangement of 7 objects	(M1)
	7! $(=5040)$ ways	A1
		[2 marks]
(b)	METHOD 1	
	the number of ways that Andrea finishes in front of Jack is equal to the number of ways that Jack finishes in front of Andrea	(M1)
	total number of ways is 8!	(A1)
	n a faluati Entrati - entrati Entrati - Entrati - Entrativa - Entrativa - Entrativa - Entrativa - Entrativa - E	
	$\frac{8!}{2}$ (= 20160) ways	A1 [3 marks]
		A1
	$\frac{8!}{2}$ (= 20160) ways	A1
	8! (= 20160) ways METHOD 2	A1 [3 marks]
	$\frac{8!}{2} (= 20160) \text{ ways}$ METHOD 2 the other six runners can finish in 6! (= 720) ways	A1 [3 marks]

hence there are $(7+6+5+4+3+2+1) \times 6!$ ways

$28 \times 6! (= 20160)$ ways	A1
-------------------------------	----

[3 marks] Total [5 marks]

(a)	attempt to use $u_1 + (n-1)d = 0$	(M1)
	60 - 2.5(k - 1) = 0	
	<i>k</i> = 25	A1
		[2 marks]

(b) METHOD 1

attempting to express S_n in terms of n	(M1)
use of a graph or a table to attempt to find the maximum sum	(M1)
= 750	A1

METHOD 2

EITHER recognizing maximum occurs at $n = 25$	(M1)
$S_{25} = \frac{25}{2} (60+0), \ S_{25} = \frac{25}{2} (2 \times 60 + 24 \times -2.5)$	(A1)
OR attempting to calculate S ₂₄	(M1)
$S_{24} = \frac{24}{2} \left(2 \times 60 + 23 \times -2.5 \right)$	(A1)
THEN = 750	A1

[3 marks] Total [5 marks]

METHOD 1	
$(p+q)^3 - 3pq(p+q) \equiv p^3 + q^3$	
attempts to expand $\left(p+q ight) ^{3}$	
$p^3 + 3p^2q + 3pq^2 + q^3$	
$(p+q)^{3}-3pq(p+q) \equiv p^{3}+3p^{2}q+3pq^{2}+q^{3}-3pq(p+q)$	
$\equiv p^3 + 3p^2q + 3pq^2 + q^3 - 3p^2q - 3pq^2$	
$\equiv p^3 + q^3$	
Note: Condone the use of equals signs throughout.	
METHOD 2	
$(p+q)^3 - 3pq(p+q) \equiv p^3 + q^3$	
attempts to factorise $(p+q)^3 - 3pq(p+q)$	
$\equiv (p+q)\left((p+q)^2 - 3pq\right) \left(\equiv (p+q)\left(p^2 - pq + q^2\right)\right)$	
$\equiv p^{3} - p^{2}q + pq^{2} + p^{2}q - pq^{2} + q^{3}$	
$\equiv p^3 + q^3$	
Note: Condone the use of equals signs throughout.	
METHOD 3	
$p^{3} + q^{3} \equiv (p+q)^{3} - 3pq(p+q)$	
attempts to factorise $p^3 + q^3$	
$\equiv (p+q)(p^2 - pq + q^2)$	
$\equiv (p+q)((p+q)^2 - 3pq)$	
$\equiv (p+q)^3 - 3pq(p+q)$	

(b)

Note: Award a maximum of A1M0A0A1M0A0 for m = -95 and n = 8 found by using $\alpha, \beta = \frac{5 \pm \sqrt{17}}{4}$ ($\alpha, \beta = 0.219..., 2.28...$). Condone, as appropriate, solutions that state but clearly do not use the values of α and β . Special case: Award a maximum of A1M1A0A1M0A0 for m = -95 and n = 8 obtained by solving simultaneously for α and β from product of roots and sum of roots equations.

product of roots of
$$x^2 - \frac{5}{2}x + \frac{1}{2} = 0$$

 $\alpha\beta = \frac{1}{2}$ (seen anywhere) A1
considers $\left(\frac{1}{\alpha^3}\right)\left(\frac{1}{\beta^3}\right)$ by stating $\frac{1}{(\alpha\beta)^3}(=n)$ M1
Note: Award M1 for attempting to substitute their value of $\alpha\beta$ into $\frac{1}{(\alpha\beta)^3}$.
 $\frac{1}{(\alpha\beta)^3} = \frac{1}{\left(\frac{1}{2}\right)^3}$
 $n = 8$ A1
sum of roots of $x^2 - \frac{5}{2}x + \frac{1}{2} = 0$

considers
$$\frac{1}{\alpha^3} + \frac{1}{\beta^3}$$
 by stating $\frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{(\alpha\beta)^3} \left(\left(\frac{\alpha + \beta}{\alpha\beta} \right)^3 - \frac{3(\alpha + \beta)}{(\alpha\beta)^2} \right) (= -m)$ M1

Note: Award *M1* for attempting to substitute their values of $\alpha + \beta$ and $\alpha\beta$ into their expression. Award *M0* for use of $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ only.

 $\alpha + \beta = \frac{5}{2}$ (seen anywhere)

$$= \frac{\left(\frac{5}{2}\right)^{3} - \left(\frac{3}{2}\right)\left(\frac{5}{2}\right)}{\frac{1}{8}} (=125 - 30 = 95)$$

$$m = -95$$

$$\left(x^{2} - 95x + 8 = 0\right)$$
A1

[6 marks] Total [8 marks]

A1

(a)
$$u_1 = S_1 = \frac{2}{3} \times \frac{7}{8}$$
 (M1)

$$=\frac{14}{24}\left(=\frac{7}{12}=0.583333...\right)$$
 A1

[2 marks]

(b)
$$r = \frac{7}{8} (= 0.875)$$
 (A1)

substituting their values for u_1 and r into $S_{\infty} = \frac{u_1}{1-r}$ (M1)

$$=\frac{14}{3}(=4.66666...)$$
 A1
[3 marks]

(c) attempt to substitute their values into the inequality or formula for S_n (M1)

$$\frac{14}{3} - \sum_{r=1}^{n} \frac{2}{3} \left(\frac{7}{8}\right)^{r} < 0.001 \text{ OR } S_{n} = \frac{\frac{7}{12} \left(1 - \left(\frac{7}{8}\right)^{n}\right)^{r}}{\left(1 - \frac{7}{8}\right)^{n}}$$

attempt to solve their inequality using a table, graph or logarithms (must be exponential)

(M1)

Note: Award (*M0*) if the candidate attempts to solve $S_{\infty} - u_n < 0.001$.

 correct critical value or at least one correct crossover value
 (A1)

 $63.2675...OR S_{\infty} - S_{63} = 0.001036...OR S_{\infty} - S_{64} = 0.000906...$ OR $S_{\infty} - S_{63} - 0.001 = 0.0000363683...OR S_{\infty} - S_{64} - 0.001 = -0.0000931777...$

 least value is n = 64 A1

 [4 marks]

Total [9 marks]

	6×5!	(A1)(A1)
	= 720 (accept 6!)	A1
		[3 marks]

(b) METHOD 1

(Peter apart from girls, in an end seat) ${}^{8}P_{4}(=1680)$ OR	
(Peter apart from girls, not in end seat) ${}^{7}P_{4}(=840)$	(A1)
case 1: Peter at either end	
$2 \times {}^{8}P_{4}(=3360) \text{ OR } 2 \times {}^{8}C_{4} \times 4!(=3360)$	(A1)
case 2: Peter not at the end	
$8 \times {}^{7}P_{4} (= 6720) \text{ OR } 8 \times {}^{7}C_{4} \times 4! (= 6720)$	(A1)
Total number of ways $= 3360 + 6720$	
=10080	A1
METHOD 2	
(Peter next to girl, in an end seat) $4 \times {}^{8}P_{3}(=1344)$ OR	
(Peter next to one girl, not in end seat) $2 \times 4 \times {}^{7}P_{3}(=1680)$ OR	
(Peter next to two girls, not in end seat) $4 \times 3 \times {}^7P_2 (=504)$	(A1)
case 1: Peter at either end	
$2 \times 4 \times {}^{\$}P_3 (= 2688)$	(A1)
case 2: Peter not at the end	
$8(2 \times 4 \times {}^{7}P_{3} + 4 \times 3 \times {}^{7}P_{2})(=17472)$	(A1)
Total number of ways $= {}^{10}P_5 - (2688 + 17472)$	
=10080	A1
	[4 marks]

Total [7 marks]

(a) product of roots
$$=\frac{2k+9}{k}$$
 A1

[1 mark]

(b) recognition that the product of the roots will be negative (M1)

$$\frac{2k+9}{k} < 0$$
(A1)

$$-\frac{9}{2} < k < 0$$
[3 marks]
Total [4 marks]

(a)
$$9 \times 9 \times 8 \times 7 \times 6 \times 5 (= 9 \times {}^{9}P_{5})$$
 (M1)

$$=136080\left(=9\times\frac{9!}{4!}\right)$$

Note: Award *M1A0* for $10 \times 9 \times 8 \times 7 \times 6 \times 5 \left(= {}^{10}P_6 = 151200 = \frac{10!}{4!} \right)$

Note: Award *M1A0* for ${}^{9}P_{6} = 60480$

[2 marks]

METHOD 1 (b)

EITHER

every unordered subset of 6 digits from the set of 9 non-zero digits can be arranged in exactly one way into a 6-digit number with the digits in increasing order. A1

OR ⁹ C ₆ (×1)	A1
THEN = 84	A1

METHOD 2

EITHER

removes 3 digits from the set of 9 non-zero digits and these 6 remaining digits can be arranged in exactly one way into a 6-digit number with the digits in increasing order.

OR

= 84

⁹ C ₃ (×1)	A1
THEN	

A1 [2 marks] Total [4 marks]

A1

Note: Do not award any marks if there is clear evidence of adding instead of multiplying, for example ${}^{9}C_{r} + (ax)^{9-r} + (1)^{r}$.

valid approach for expansion (must be the product of a binomial coefficient with n = 9and a power of ax)

$${}^{9}C_{r}(ax)^{9-r}(1)^{r}$$
 OR ${}^{9}C_{9-r}(ax)^{r}(1)^{9-r}$ OR ${}^{9}C_{0}(ax)^{0}(1)^{9} + {}^{9}C_{1}(ax)^{1}(1)^{8} + \dots$

recognizing that the term in x^6 is needed

$$\frac{\text{Term in } x^6}{21x^2} = kx^4 \text{ OR } r = 6 \text{ OR } r = 3 \text{ OR } 9 - r = 6$$

correct term or coefficient in binomial expansion (seen anywhere)

$${}^{9}C_{6}(ax)^{6}(1)^{3}$$
 OR ${}^{9}C_{3}a^{6}x^{6}$ OR $84(a^{6}x^{6})(1)$ OR $84a^{6}$

EITHER

correct term in x^4 or coefficient (may be seen in equation) (A1)

$$\frac{{}^{9}C_{6}}{21}a^{6}x^{4}$$
 OR $4a^{6}x^{4}$ OR $4a^{6}$

 $\frac{{}^{9}C_{3}}{21}a^{6}x^{4} = \frac{8}{7}a^{5}x^{4} \text{ OR } 4a^{6} = \frac{8}{7}a^{5}$

Set their term in x^4 or coefficient of x^4 equal to $\frac{8}{7}a^5x^4$ or $\frac{8}{7}a^5$ (do not accept other

powers of x)

(M1)

(M1)

(M1)

(A1)

$$86.4 = 50r^3$$
 (A1)

$$r = 1.2 \left(= \sqrt[3]{\frac{86.4}{50}} \right) \text{ seen anywhere}$$
 (A1)

$$\frac{50(1.2^n - 1)}{0.2} > 33500 \text{ OR } 250(1.2^n - 1) = 33500$$
 (A1)

attempt to solve their geometric S_n inequality or equation

(M1)

sketch OR n > 26.9045, n = 26.9 OR $S_{26} = 28368.8$ OR $S_{27} = 34092.6$ OR algebraic

manipulation involving logarithms

n = 27 (accept $n \ge 27$)

A1

Total [5 marks]

