Subject – Math AA(Higher Level) Topic - Calculus Year - May 2021 – Nov 2022 Paper -3 Questions

Question 1

[Maximum mark: 25]

This question asks you to investigate some properties of the sequence of functions of the form $f_n(x) = \cos(n \arccos x), -1 \le x \le 1$ and $n \in \mathbb{Z}^+$.

Important: When sketching graphs in this question, you are **not** required to find the coordinates of any axes intercepts or the coordinates of any stationary points unless requested.

- (a) On the same set of axes, sketch the graphs of $y = f_1(x)$ and $y = f_3(x)$ for $-1 \le x \le 1$. [2]
- (b) For odd values of n > 2, use your graphic display calculator to systematically vary the value of n. Hence suggest an expression for odd values of n describing, in terms of n, the number of
 - (i) local maximum points;
 - (ii) local minimum points.
- (c) On a new set of axes, sketch the graphs of $y = f_2(x)$ and $y = f_4(x)$ for $-1 \le x \le 1$. [2]

[4]

- (d) For even values of n > 2, use your graphic display calculator to systematically vary the value of n. Hence suggest an expression for even values of n describing, in terms of n, the number of
 - (i) local maximum points;
 - (ii) local minimum points. [4]
- (e) Solve the equation $f'_n(x) = 0$ and hence show that the stationary points on the graph of $y = f_n(x)$ occur at $x = \cos \frac{k\pi}{n}$ where $k \in \mathbb{Z}^+$ and 0 < k < n. [4]

The sequence of functions, $f_n(x)$, defined above can be expressed as a sequence of polynomials of degree n.

(f) Use an appropriate trigonometric identity to show that $f_2(x) = 2x^2 - 1$. [2]

Consider $f_{n+1}(x) = \cos((n+1) \arccos x)$.

- (g) Use an appropriate trigonometric identity to show that $f_{n+1}(x) = \cos(n \arccos x) \cos(\arccos x) \sin(n \arccos x) \sin(\arccos x)$. [2]
- (h) Hence
 - (i) show that $f_{n+1}(x) + f_{n-1}(x) = 2xf_n(x), n \in \mathbb{Z}^+$;
 - (ii) express $f_3(x)$ as a cubic polynomial.

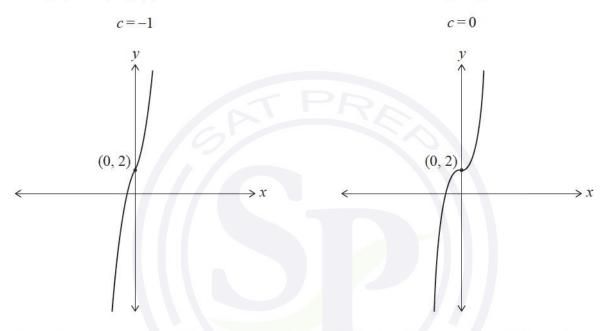
[5]

[Maximum mark: 27]

This question asks you to explore the behaviour and key features of cubic polynomials of the form $x^3 - 3cx + d$.

Consider the function $f(x) = x^3 - 3cx + 2$ for $x \in \mathbb{R}$ and where *c* is a parameter, $c \in \mathbb{R}$.

The graphs of y = f(x) for c = -1 and c = 0 are shown in the following diagrams.



(a) On separate axes, sketch the graph of y = f(x) showing the value of the *y*-intercept and the coordinates of any points with zero gradient, for

(i)	c = 1;	[3]
(ii)	c = 2.	[3]

(b) Write down an expression for f'(x). [1]

(c)	Hence, or otherwise, find the set of values of c such that the graph of $y = f(x)$ has			
	(i)	a point of inflexion with zero gradient;	[1]	
	(ii)	one local maximum point and one local minimum point;	[2]	
	(iii)	no points where the gradient is equal to zero.	[1]	
(d)) Given that the graph of $y = f(x)$ has one local maximum point and one local minimum point, show that			
	(i)	the <i>y</i> -coordinate of the local maximum point is $2c^{\frac{3}{2}} + 2$;	[3]	
	(ii)	the <i>y</i> -coordinate of the local minimum point is $-2c^{\frac{3}{2}} + 2$.	[1]	
(e)	Hence, for $c > 0$, find the set of values of c such that the graph of $y = f(x)$ has			
	(i)	exactly one <i>x</i> -axis intercept;	[2]	
	(ii)	exactly two <i>x</i> -axis intercepts;	[2]	
	(iii)	exactly three <i>x</i> -axis intercepts.	[2]	
Consider the function $g(x) = x^3 - 3cx + d$ for $x \in \mathbb{R}$ and where $c, d \in \mathbb{R}$.				
(f)	Find all conditions on c and d such that the graph of $y = g(x)$ has exactly one x -axis intercept, explaining your reasoning.		[6]	

[Maximum mark: 31]

This question asks you to explore the behaviour and some key features of the function $f_n(x) = x^n(a-x)^n$, where $a \in \mathbb{R}^+$ and $n \in \mathbb{Z}^+$.

In parts (a) and (b), only consider the case where a = 2.

Consider $f_1(x) = x(2-x)$.

(a) Sketch the graph of $y = f_1(x)$, stating the values of any axes intercepts and the coordinates of any local maximum or minimum points.

Consider $f_n(x) = x^n(2-x)^n$, where $n \in \mathbb{Z}^+$, n > 1.

- (b) Use your graphic display calculator to explore the graph of $y = f_n(x)$ for
 - the odd values n = 3 and n = 5;
 - the even values n = 2 and n = 4.

Hence, copy and complete the following table.

Number of local
maximum pointsNumber of local
minimum pointsNumber of points of
inflexion with zero gradientn = 3 and n = 5n = 2 and n = 4

Now consider $f_n(x) = x^n(a-x)^n$ where $a \in \mathbb{R}^+$ and $n \in \mathbb{Z}^+$, n > 1.

(c) Show that
$$f'_n(x) = nx^{n-1}(a-2x)(a-x)^{n-1}$$
. [5]

- (d) State the three solutions to the equation $f'_n(x) = 0$.
- (e) Show that the point $\left(\frac{a}{2}, f_n\left(\frac{a}{2}\right)\right)$ on the graph of $y = f_n(x)$ is always above the [3]

[6]

[2]

[3]

- (f) Hence, or otherwise, show that $f'_n\left(\frac{a}{4}\right) > 0$, for $n \in \mathbb{Z}^+$. [2]
- (g) By using the result from part (f) and considering the sign of $f'_n(-1)$, show that the point (0, 0) on the graph of $y = f_n(x)$ is
 - (i) a local minimum point for even values of n, where n > 1 and $a \in \mathbb{R}^+$; [3]
 - (ii) a point of inflexion with zero gradient for odd values of n, where n > 1 and $a \in \mathbb{R}^+$. [2]

Consider the graph of $y = x^n(a-x)^n - k$, where $n \in \mathbb{Z}^+$, $a \in \mathbb{R}^+$ and $k \in \mathbb{R}$.

(h) State the conditions on *n* and *k* such that the equation $x^n(a-x)^n = k$ has four solutions for *x*. [5]

[Maximum mark: 30]

In this question you will be exploring the strategies required to solve a system of linear differential equations.

Consider the system of linear differential equations of the form:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x - y$$
 and $\frac{\mathrm{d}y}{\mathrm{d}t} = ax + y$,

where $x, y, t \in \mathbb{R}^+$ and *a* is a parameter.

First consider the case where a = 0.

- (a) (i) By solving the differential equation $\frac{dy}{dt} = y$, show that $y = Ae^t$ where A is a constant. [3]
 - (ii) Show that $\frac{\mathrm{d}x}{\mathrm{d}t} x = -A\mathrm{e}^t$. [1]
 - (iii) Solve the differential equation in part (a)(ii) to find x as a function of t. [4]

Now consider the case where a = -1.

(b) (i) By differentiating
$$\frac{dy}{dt} = -x + y$$
 with respect to t , show that $\frac{d^2y}{dt^2} = 2\frac{dy}{dt}$. [3]

(ii) By substituting
$$Y = \frac{dy}{dt}$$
, show that $Y = Be^{2t}$ where B is a constant. [3]

[2]

(iii) Hence find y as a function of t.

(iv) Hence show that
$$x = -\frac{B}{2}e^{2t} + C$$
, where *C* is a constant. [3]

Now consider the case where a = -4.

(c) (i) Show that
$$\frac{d^2 y}{dt^2} - 2\frac{dy}{dt} - 3y = 0$$
. [3]

From previous cases, we might conjecture that a solution to this differential equation is $y = Fe^{\lambda t}$, $\lambda \in \mathbb{R}$ and *F* is a constant.

(ii) Find the two values for
$$\lambda$$
 that satisfy $\frac{d^2 y}{dt^2} - 2\frac{dy}{dt} - 3y = 0$. [4]

Let the two values found in part (c)(ii) be λ_1 and λ_2 .

(iii) Verify that $y = Fe^{\lambda_1 t} + Ge^{\lambda_2 t}$ is a solution to the differential equation in (c)(i), where *G* is a constant. [4]

[Maximum mark: 28]

This question asks you to explore properties of a family of curves of the type $y^2 = x^3 + ax + b$ for various values of a and b, where $a, b \in \mathbb{N}$.

- (a) On the same set of axes, sketch the following curves for $-2 \le x \le 2$ and $-2 \le y \le 2$, clearly indicating any points of intersection with the coordinate axes.
 - (i) $y^2 = x^3, x \ge 0$ [2]
 - (ii) $y^2 = x^3 + 1, x \ge -1$ [2]
- (b) (i) Write down the coordinates of the two points of inflexion on the curve $y^2 = x^3 + 1$. [1]
 - By considering each curve from part (a), identify two key features that would distinguish one curve from the other.

Now, consider curves of the form $y^2 = x^3 + b$, for $x \ge -\sqrt[3]{b}$, where $b \in \mathbb{Z}^+$.

(c) By varying the value of
$$b$$
, suggest two key features common to these curves. [2]

Next, consider the curve $y^2 = x^3 + x$, $x \ge 0$.

(d) (i) Show that
$$\frac{dy}{dx} = \pm \frac{3x^2 + 1}{2\sqrt{x^3 + x}}$$
, for $x > 0$. [3]

(ii) Hence deduce that the curve $y^2 = x^3 + x$ has no local minimum or maximum points. [1]

The curve $y^2 = x^3 + x$ has two points of inflexion. Due to the symmetry of the curve these points have the same *x*-coordinate.

(e) Find the value of this *x*-coordinate, giving your answer in the form $x = \sqrt{\frac{p\sqrt{3} + q}{r}}$, where $p, q, r \in \mathbb{Z}$. [7]

P(x, y) is defined to be a rational point on a curve if x and y are rational numbers.

The tangent to the curve $y^2 = x^3 + ax + b$ at a rational point P intersects the curve at another rational point Q.

Let C be the curve $y^2 = x^3 + 2$, for $x \ge -\sqrt[3]{2}$. The rational point P(-1, -1) lies on C.

- (f) (i) Find the equation of the tangent to C at P. [2]
 - (ii) Hence, find the coordinates of the rational point Q where this tangent intersects C, expressing each coordinate as a fraction. [2]

[5]

(g) The point S(-1, 1) also lies on C. The line [QS] intersects C at a further point. Determine the coordinates of this point.

[Maximum mark: 27]

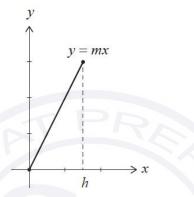
In this question you will investigate curved surface areas and use calculus to derive key formulae used in geometry.

Consider the straight line from the origin, y = mx, where $0 \le x \le h$ and m, h are positive constants.

When this line is rotated through 360° about the x-axis, a cone is formed with a curved surface area A given by:

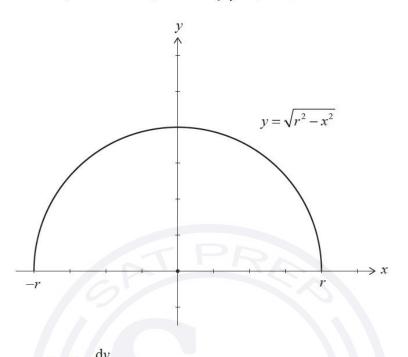
$$A = 2\pi \int_{0}^{h} y \sqrt{1 + m^2} \mathrm{d}x \,.$$

- (a) Given that m = 2 and h = 3, show that $A = 18\sqrt{5\pi}$.
- Now consider the general case where a cone is formed by rotating the line y = mx(b) where $0 \le x \le h$ through 360° about the *x*-axis.
 - Deduce an expression for the radius of this cone r in terms of h and m. (i) [1]
 - Deduce an expression for the slant height l in terms of h and m. (ii) [2]
 - (iii) Hence, by using the above integral, show that $A = \pi r l$. [3]



[2]

Consider the semi-circle, with radius *r*, defined by $y = \sqrt{r^2 - x^2}$ where $-r \le x \le r$.



(c) Find an expression for
$$\frac{dy}{dx}$$

A differentiable curve y = f(x) is defined for $x_1 \le x \le x_2$ and $y \ge 0$. When any such curve is rotated through 360° about the *x*-axis, the surface formed has an area *A* given by:

$$4 = 2\pi \int_{x_1}^{x_2} y \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \,\mathrm{d}x$$

(d) A sphere is formed by rotating the semi-circle $y = \sqrt{r^2 - x^2}$ where $-r \le x \le r$ through 360° about the *x*-axis. Show by integration that the surface area of this sphere is $4\pi r^2$.

[4]

[2]

(e) Let $f(x) = \sqrt{r^2 - x^2}$ where $-r \le x \le r$.

The graph of y = f(x) is transformed to the graph of y = f(kx), k > 0. This forms a different curve, called a semi-ellipse.

- (i) Describe this geometric transformation. [2]
- (ii) Write down the x-intercepts of the graph y = f(kx) in terms of r and k. [1]
- (iii) For y = f(kx), find an expression for $\frac{dy}{dx}$ in terms of x, r and k. [2]
- (iv) The semi-ellipse y = f(kx) is rotated 360° about the *x*-axis to form a solid called an ellipsoid.

Find an expression in terms of r and k for the surface area, A, of the ellipsoid.

Give your answer in the form $2\pi \int_{x}^{\infty} \sqrt{p(x)} dx$, where p(x) is a polynomial. [4]

- (v) Planet Earth can be modelled as an ellipsoid. In this model:
 - the ellipsoid has an axis of rotational symmetry running from the North Pole to the South Pole.
 - the distance from the North Pole to the South Pole is $12.714 \, \mathrm{km}$.
 - the diameter of the equator is 12 756 km.

By choosing suitable values for r and k, find the surface area of Earth in km² correct to 4 significant figures. Give your answer in the form $a \times 10^{q}$ where $1 \le a < 10$ and $q \in \mathbb{Z}^{+}$.

[4]