Subject – Math AA(Higher Level) **Topic - Functions** Year - May 2021 - Nov 2022 Paper -3 Questions

Question 1

[Maximum mark: 25]

In this question you will explore some of the properties of special functions f and g and their relationship with the trigonometric functions, sine and cosine.

Functions f and g are defined as $f(z) = \frac{e^z + e^{-z}}{2}$ and $g(z) = \frac{e^z - e^{-z}}{2}$, where $z \in \mathbb{C}$. Consider t and u, such that t, $u \in \mathbb{R}$.

(a)	Verify that $u = f(t)$ satisfies the differential equation	$\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} = u .$	[2]
-----	--	--	-----

(b) Show that
$$(f(t))^2 + (g(t))^2 = f(2t)$$
. [3]

- Using $e^{iu} = \cos u + i \sin u$, find expressions, in terms of $\sin u$ and $\cos u$, for (C)
 - f(iu);[3] (i)

(ii)
$$g(iu)$$
. [2]

- Hence find, and simplify, an expression for $(f(iu))^2 + (g(iu))^2$. (d) [2]
- Show that $(f(t))^2 (g(t))^2 = (f(iu))^2 (g(iu))^2$. (e)

The functions $\cos x$ and $\sin x$ are known as circular functions as the general point $(\cos \theta, \sin \theta)$ defines points on the unit circle with equation $x^2 + y^2 = 1$.

The functions f(x) and g(x) are known as hyperbolic functions, as the general point $(f(\theta), g(\theta))$ defines points on a curve known as a hyperbola with equation $x^2 - y^2 = 1$. This hyperbola has two asymptotes.

Sketch the graph of $x^2 - y^2 = 1$, stating the coordinates of any axis intercepts and the (f) equation of each asymptote.

The hyperbola with equation $x^2 - y^2 = 1$ can be rotated to coincide with the curve defined by $xy = k, k \in \mathbb{R}$.

(g) Find the possible values of k.

[5]

[4]

[4]