Subject - Math AA(Standard Level) Topic - Calculus Year - May 2021 - Nov 2022 Paper -1 Questions

Question 1

[Maximum mark: 16]

Let
$$f(x) = \frac{\ln 5x}{kx}$$
 where $x > 0$, $k \in \mathbb{R}^+$.

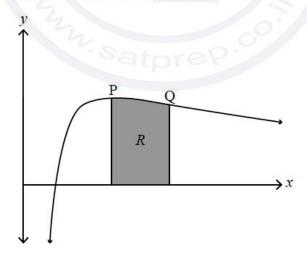
(a) Show that
$$f'(x) = \frac{1 - \ln 5x}{kx^2}$$
. [3]

The graph of f has exactly one maximum point P.

The second derivative of f is given by $f''(x) = \frac{2 \ln 5x - 3}{kx^3}$. The graph of f has exactly one point of inflexion Q.

(c) Show that the *x*-coordinate of Q is
$$\frac{1}{5}e^{\frac{3}{2}}$$
. [3]

The region R is enclosed by the graph of f, the x-axis, and the vertical lines through the maximum point P and the point of inflexion Q.



(d) Given that the area of R is 3, find the value of k.

[Maximum mark: 16]

Let $f(x) = \frac{1}{3}x^3 + x^2 - 15x + 17$.

(a) Find f'(x). [2]

The graph of f has horizontal tangents at the points where x = a and x = b, a < b.

- (b) Find the value of a and the value of b. [3]
- (c) (i) Sketch the graph of y = f'(x).
 - (ii) Hence explain why the graph of f has a local maximum point at x = a. [2]
- (d) (i) Find f''(b).
 - (ii) Hence, use your answer to part (d)(i) to show that the graph of f has a local minimum point at x = b. [4]

The normal to the graph of f at x = a and the tangent to the graph of f at x = b intersect at the point (p, q).

(e) Find the value of p and the value of q. [5]

Question 3

[Maximum mark: 5]

Let
$$f'(x) = \frac{8x}{\sqrt{2x^2 + 1}}$$
. Given that $f(0) = 5$, find $f(x)$.

[Maximum mark: 16]

Let
$$y = \frac{\ln x}{x^4}$$
 for $x > 0$.

(a) Show that
$$\frac{dy}{dx} = \frac{1 - 4 \ln x}{x^5}$$
. [3]

Consider the function defined by $f(x) = \frac{\ln x}{x^4}$ for x > 0 and its graph y = f(x).

- (b) The graph of f has a horizontal tangent at point P. Find the coordinates of P. [5]
- (c) Given that $f''(x) = \frac{20 \ln x 9}{x^6}$, show that P is a local maximum point. [3]
- (d) Solve f(x) > 0 for x > 0. [2]
- (e) Sketch the graph of f, showing clearly the value of the x-intercept and the approximate position of point P. [3]

Question 5

[Maximum mark: 7]

Consider the functions $f(x) = -(x-h)^2 + 2k$ and $g(x) = e^{x-2} + k$ where $h, k \in \mathbb{R}$.

(a) Find
$$f'(x)$$
. [1]

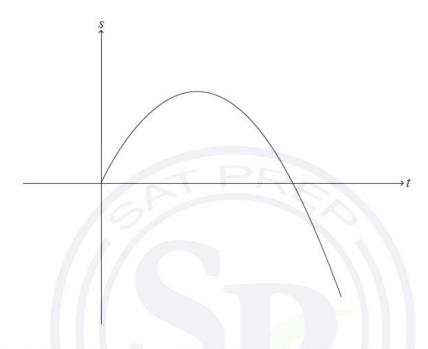
The graphs of f and g have a common tangent at x=3 .

(b) Show that
$$h = \frac{e+6}{2}$$
. [3]

(c) Hence, show that
$$k = e + \frac{e^2}{4}$$
. [3]

[Maximum mark: 14]

Particle A travels in a straight line such that its displacement, s metres, from a fixed origin after t seconds is given by $s(t) = 8t - t^2$, for $0 \le t \le 10$, as shown in the following diagram.



Particle A starts at the origin and passes through the origin again when t = p.

(a) Find the value of p.

[2]

Particle A changes direction when t = q.

- (b) (i) Find the value of q.
 - (ii) Find the displacement of particle A from the origin when t = q.

[4]

(c) Find the distance of particle A from the origin when t = 10.

[2]

The total distance travelled by particle A is given by d.

(d) Find the value of d.

[2]

A second particle, particle B, travels along the same straight line such that its velocity is given by v(t) = 14 - 2t, for $t \ge 0$.

When t = k, the distance travelled by particle B is equal to d.

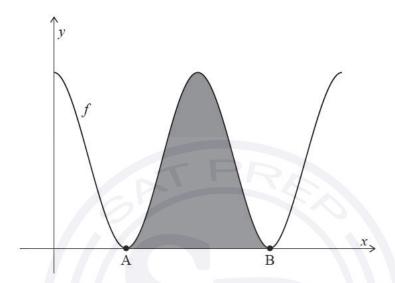
(e) Find the value of k.

[4]

[Maximum mark: 15]

Consider the function f defined by $f(x) = 6 + 6\cos x$, for $0 \le x \le 4\pi$.

The following diagram shows the graph of y = f(x).



The graph of f touches the x-axis at points A and B, as shown. The shaded region is enclosed by the graph of y = f(x) and the x-axis, between the points A and B.

(a) Find the x-coordinates of A and B.

[3]

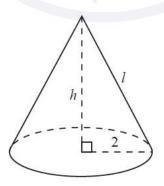
(b) Show that the area of the shaded region is 12π .

[5]

The right cone in the following diagram has a total surface area of 12π , equal to the shaded area in the previous diagram.

The cone has a base radius of 2, height h, and slant height l.

diagram not to scale



(c) Find the value of l.

[3]

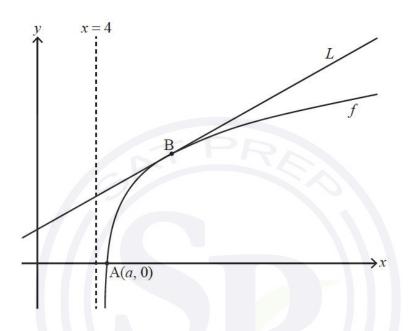
(d) Hence, find the volume of the cone.

[4]

[Maximum mark: 9]

Consider the function f defined by $f(x) = \ln(x^2 - 16)$ for x > 4.

The following diagram shows part of the graph of f which crosses the x-axis at point A, with coordinates (a,0). The line L is the tangent to the graph of f at the point B.



(a) Find the exact value of a.

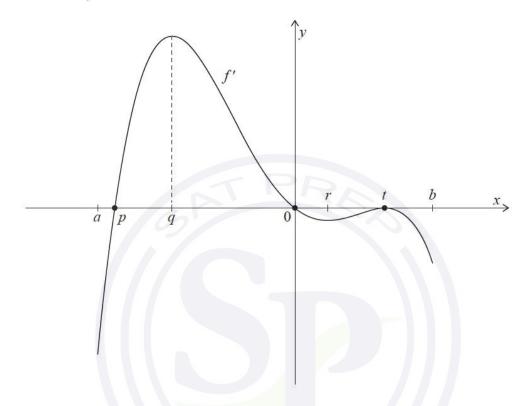
[3]

(b) Given that the gradient of L is $\frac{1}{3}$, find the x-coordinate of B.

[6]

[Maximum mark: 14]

Consider a function f with domain a < x < b. The following diagram shows the graph of f', the derivative of f.



The graph of f', the derivative of f, has x-intercepts at x = p, x = 0 and x = t. There are local maximum points at x = q and x = t and a local minimum point at x = r.

- (a) Find all the values of x where the graph of f is increasing. Justify your answer. [2]
- (b) Find the value of x where the graph of f has a local maximum. [1]
- (c) (i) Find the value of x where the graph of f has a local minimum. Justify your answer.
 - (ii) Find the values of x where the graph of f has points of inflexion. Justify your answer. [5]
- (d) The total area of the region enclosed by the graph of f', the derivative of f, and the x-axis is 20.

Given that
$$f(p) + f(t) = 4$$
, find the value of $f(0)$. [6]

[Maximum mark: 16]

A particle P moves along the x-axis. The velocity of P is $v \, {\rm m \, s}^{-1}$ at time t seconds, where $v(t) = 4 + 4t - 3t^2$ for $0 \le t \le 3$. When t = 0, P is at the origin O.

- (a) (i) Find the value of t when P reaches its maximum velocity.
 - (ii) Show that the distance of P from O at this time is $\frac{88}{27}$ metres. [7]
- (b) Sketch a graph of v against t, clearly showing any points of intersection with the axes. [4]
- (c) Find the total distance travelled by P. [5]

Question 11

[Maximum mark: 7]

The function f is defined for all $x \in \mathbb{R}$. The line with equation y = 6x - 1 is the tangent to the graph of f at x = 4.

- (a) Write down the value of f'(4). [1]
- (b) Find f(4). [1]

The function g is defined for all $x \in \mathbb{R}$ where $g(x) = x^2 - 3x$ and h(x) = f(g(x)).

- (c) Find h(4). [2]
- (d) Hence find the equation of the tangent to the graph of h at x = 4. [3]

Question 12

[Maximum mark: 4]

Given that $\frac{dy}{dx} = \cos\left(x - \frac{\pi}{4}\right)$ and y = 2 when $x = \frac{3\pi}{4}$, find y in terms of x.

[Maximum mark: 15]

- (a) (i) Expand and simplify $(1-a)^3$ in ascending powers of a.
 - (ii) By using a suitable substitution for a, show that $1 3\cos 2x + 3\cos^2 2x \cos^3 2x = 8\sin^6 x$. [6]

Consider $f(x) = 4\cos x (1 - 3\cos 2x + 3\cos^2 2x - \cos^3 2x)$.

- (b) (i) Show that $\int_0^m f(x) dx = \frac{32}{7} \sin^7 m$, where m is a positive real constant.
 - (ii) It is given that $\int_{m}^{\frac{\pi}{2}} f(x) dx = \frac{127}{28}$, where $0 \le m \le \frac{\pi}{2}$. Find the value of m. [9]

Question 14

[Maximum mark: 5]

Consider the curve with equation $y = (2x - 1)e^{kx}$, where $x \in \mathbb{R}$ and $k \in \mathbb{Q}$.

The tangent to the curve at the point where x = 1 is parallel to the line $y = 5e^kx$.

Find the value of k.

Question 15

[Maximum mark: 5]

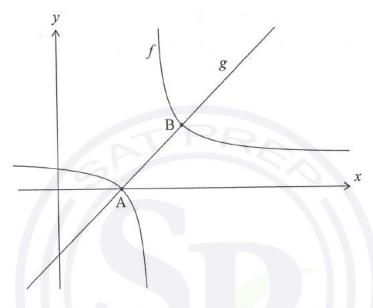
(a) The expression
$$\frac{3\sqrt{x}-5}{\sqrt{x}}$$
 can be written as $3-5x^p$. Write down the value of p . [1]

(b) Hence, find the value of
$$\int_1^9 \left(\frac{3\sqrt{x} - 5}{\sqrt{x}} \right) dx$$
. [4]

[Maximum mark: 15]

Consider the functions $f(x) = \frac{1}{x-4} + 1$, for $x \neq 4$, and g(x) = x - 3 for $x \in \mathbb{R}$.

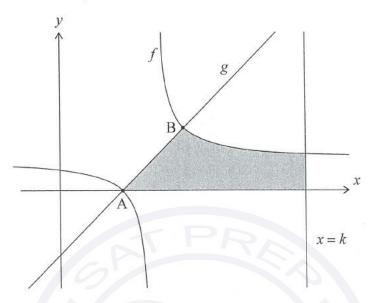
The following diagram shows the graphs of f and g .



The graphs of f and g intersect at points A and B. The coordinates of A are (3,0).

(a) Find the coordinates of ${\bf B}$.

In the following diagram, the shaded region is enclosed by the graph of f, the graph of g, the x-axis, and the line x = k, where $k \in \mathbb{Z}$.



The area of the shaded region can be written as $\ln(p) + 8$, where $p \in \mathbb{Z}$.

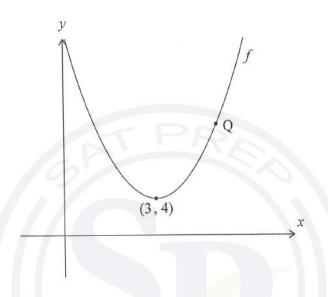
(b) Find the value of k and the value of p.

[10]

[Maximum mark: 15]

The following diagram shows part of the graph of a quadratic function $\,f_{\,\cdot\,}$

The graph of f has its vertex at (3, 4), and it passes through point Q as shown.



(a) Write down the equation of the axis of symmetry.

[1]

- (b) The function can be written in the form $f(x) = a(x h)^2 + k$.
 - (i) Write down the values of h and k.
 - (ii) Point Q has coordinates (5, 12). Find the value of a.

[4]

The line L is tangent to the graph of f at Q.

(c) Find the equation of L.

[4]

Now consider another function y = g(x). The derivative of g is given by g'(x) = f(x) - d, where $d \in \mathbb{R}$.

(d) Find the values of d for which g is an increasing function.

[3]

(e) Find the values of x for which the graph of g is concave-up.

[3]

[Maximum mark: 15]

The function f is defined by $f(x) = \cos^2 x - 3\sin^2 x$, $0 \le x \le \pi$.

- (a) Find the roots of the equation f(x) = 0. [5]
- (b) (i) Find f'(x).
 - (ii) Hence find the coordinates of the points on the graph of y = f(x) where f'(x) = 0. [7]
- (c) Sketch the graph of y = f(x), clearly showing the coordinates of any points where f'(x) = 0 and any points where the graph meets the coordinate axes. [3]

Question 19

[Maximum mark: 5]

The derivative of the function f is given by $f'(x) = \frac{6x}{x^2 + 1}$.

The graph of y = f(x) passes through the point (1, 5). Find an expression for f(x).

Question 20

[Maximum mark: 4]

The function g is defined by $g(x) = e^{x^2 + 1}$, where $x \in \mathbb{R}$.

Find g'(-1).