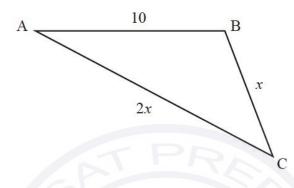

# Subject – Math AA(Standard Level) Topic - Geometry and Trigonometry Year - May 2021 – Nov 2022 Paper -1 Questions

## **Question 1**

[Maximum mark: 5]

The following diagram shows triangle ABC, with AB = 6 and AC = 8.




(b) Hence or otherwise, solve  $\sin 2x + \cos 2x - 1 + \cos x - \sin x = 0$  for  $0 < x < 2\pi$ . [6]

[Maximum mark: 7]

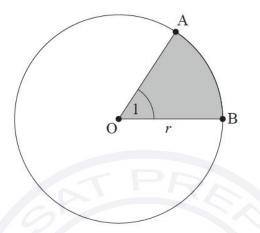
The following diagram shows triangle ABC, with AB = 10, BC = x and AC = 2x.

#### diagram not to scale



Given that  $\cos \hat{C} = \frac{3}{4}$ , find the area of the triangle. Give your answer in the form  $\frac{p\sqrt{q}}{2}$  where  $p, q \in \mathbb{Z}^+$ .

#### **Question 4**


[Maximum mark: 6]

- (a) Show that the equation  $2\cos^2 x + 5\sin x = 4$  may be written in the form  $2\sin^2 x 5\sin x + 2 = 0$ . [1]
- (b) Hence, solve the equation  $2\cos^2 x + 5\sin x = 4$ ,  $0 \le x \le 2\pi$ . [5]

[Maximum mark: 6]

The following diagram shows a circle with centre O and radius r.

diagram not to scale



Points A and B lie on the circumference of the circle, and  $\hat{AOB} = 1$  radian .

The perimeter of the shaded region is 12.

| (a) | Find the value of <i>r</i> .                                | [3] |
|-----|-------------------------------------------------------------|-----|
| (b) | Hence, find the exact area of the <b>non-shaded</b> region. | [3] |

## **Question 6**

[Maximum mark: 7]

(a) Show that 
$$2x - 3 - \frac{6}{x-1} = \frac{2x^2 - 5x - 3}{x-1}$$
,  $x \in \mathbb{R}$ ,  $x \neq 1$ . [2]

(b) Hence or otherwise, solve the equation 
$$2\sin 2\theta - 3 - \frac{6}{\sin 2\theta - 1} = 0$$
 for  $0 \le \theta \le \pi$ ,  $\theta \ne \frac{\pi}{4}$ . [5]

### **Question 7**

[Maximum mark: 7]

Consider the functions  $f(x) = \sqrt{3} \sin x + \cos x$  where  $0 \le x \le \pi$  and g(x) = 2x where  $x \in \mathbb{R}$ .

- (a) Find  $(f \circ g)(x)$ . [2]
- (b) Solve the equation  $(f \circ g)(x) = 2\cos 2x$  where  $0 \le x \le \pi$ . [5]

[Maximum mark: 5]

Consider the points A(-2, 20), B(4, 6) and C(-14, 12). The line *L* passes through the point A and is perpendicular to [BC].

(a) Find the equation of L.

The line L passes through the point (k, 2).

(b) Find the value of k.

#### **Question 9**

[Maximum mark: 5]

Find the least positive value of x for which  $\cos\left(\frac{x}{2} + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$ .

#### **Question 10**

[Maximum mark: 5]

Let *a* be a constant, where a > 1.

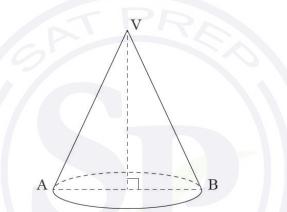
- (a) Show that  $a^2 + \left(\frac{a^2 1}{2}\right)^2 = \left(\frac{a^2 + 1}{2}\right)^2$ . [3] Consider a right-angled triangle with sides of length a,  $\left(\frac{a^2 - 1}{2}\right)$  and  $\left(\frac{a^2 + 1}{2}\right)$ .
- (b) Find an expression for the area of the triangle in terms of *a*.

[3]

[2]

[Maximum mark: 7]

Consider a circle with a diameter AB, where A has coordinates (1, 4, 0) and B has coordinates (-3, 2, -4).


(a) Find

- (i) the coordinates of the centre of the circle;
- (ii) the radius of the circle.

[4]

The circle forms the base of a right cone whose vertex V has coordinates (-1, -1, 0).

diagram not to scale



(b) Find the exact volume of the cone.

[3]