Subject - Math AA(Standard Level) Topic - Number and Algebra Year - May 2021 - Nov 2022 Paper -1 Questions

Question 1

[Maximum mark: 8]

(a) Show that
$$\log_9(\cos 2x + 2) = \log_3 \sqrt{\cos 2x + 2}$$
. [3]

(b) Hence or otherwise solve
$$\log_3(2\sin x) = \log_9(\cos 2x + 2)$$
 for $0 < x < \frac{\pi}{2}$. [5]

Question 2

[Maximum mark: 5]

(a) Show that
$$(2n-1)^2 + (2n+1)^2 = 8n^2 + 2$$
, where $n \in \mathbb{Z}$. [2]

(b) Hence, or otherwise, prove that the sum of the squares of any two consecutive odd integers is even. [3]

Question 3

[Maximum mark: 5]

Consider an arithmetic sequence where $u_8 = S_8 = 8$. Find the value of the first term, u_1 , and the value of the common difference, d.

Question 4

[Maximum mark: 4]

The diameter of a spherical planet is $6 \times 10^4 km$.

(a) Write down the radius of the planet.

The volume of the planet can be expressed in the form $\pi(a \times 10^k) \, \mathrm{km}^3$ where $1 \le a < 10$ and $k \in \mathbb{Z}$.

(b) Find the value of a and the value of k. [3]

[1]

Question 5

[Maximum mark: 4]

Consider two consecutive positive integers, n and n + 1.

Show that the difference of their squares is equal to the sum of the two integers.

Question 6

[Maximum mark: 15]

Consider the series $\ln x + p \ln x + \frac{1}{3} \ln x + \dots$, where $x \in \mathbb{R}$, x > 1 and $p \in \mathbb{R}$, $p \neq 0$.

- (a) Consider the case where the series is geometric.
 - (i) Show that $p = \pm \frac{1}{\sqrt{3}}$.
 - (ii) Given that p>0 and $S_{\infty}=3+\sqrt{3}$, find the value of x. [5]
- (b) Now consider the case where the series is arithmetic with common difference d.
 - (i) Show that $p = \frac{2}{3}$.
 - (ii) Write down d in the form $k \ln x$, where $k \in \mathbb{Q}$.
 - (iii) The sum of the first n terms of the series is $-3 \ln x$.

Find the value of n. [10]

Question 7

[Maximum mark: 15]

Consider the function $f(x) = a^x$ where $x, a \in \mathbb{R}$ and x > 0, a > 1.

The graph of f contains the point $\left(\frac{2}{3},4\right)$.

- (a) Show that a = 8.
- (b) Write down an expression for $f^{-1}(x)$. [1]
- (c) Find the value of $f^{-1}(\sqrt{32})$. [3]
- (d) Consider the arithmetic sequence $\log_8 27$, $\log_8 p$, $\log_8 q$, $\log_8 125$, where p>1 and q>1.
 - (i) Show that 27, p, q and 125 are four consecutive terms in a geometric sequence.
 - (ii) Find the value of p and the value of q. [9]

Question 8

[Maximum mark: 7]

Consider the binomial expansion $(x+1)^7 = x^7 + ax^6 + bx^5 + 35x^4 + ... + 1$ where $x \neq 0$ and $a, b \in \mathbb{Z}^+$.

(a) Show that b = 21.

[2]

The third term in the expansion is the mean of the second term and the fourth term in the expansion.

(b) Find the possible values of x.

[5]

Question 9

[Maximum mark: 6]

Consider any three consecutive integers, n-1, n and n+1.

(a) Prove that the sum of these three integers is always divisible by 3.

[2]

(b) Prove that the sum of the squares of these three integers is never divisible by 3.

[4]

Question 10

[Maximum mark: 5]

The n^{th} term of an arithmetic sequence is given by $u_n = 15 - 3n$.

(a) State the value of the first term, u_1 .

[1]

(b) Given that the n^{th} term of this sequence is -33, find the value of n.

[2]

(c) Find the common difference, d.

[2]

Question 11

[Maximum mark: 15]

- (a) Calculate the value of each of the following logarithms:
 - (i) $\log_2 \frac{1}{16}$;
 - (ii) log₉ 3;
 - (iii) $\log_{\sqrt{3}} 81$. [7]
- (b) It is given that $\log_{ab}a=3$, where a , $b\in\mathbb{R}^+$, $ab\neq 1$.
 - (i) Show that $\log_{ab} b = -2$.
 - (ii) Hence find the value of $\log_{ab} \frac{\sqrt[3]{a}}{\sqrt{b}}$. [8]

