Subject - Math AI(Higher Level)
 Topic - Function
 Year - May 2021 - Nov 2022
 Paper-1
 Questions

Question 1

[Maximum mark: 6]
Professor Vinculum investigated the migration season of the Bulbul bird from their natural wetlands to a warmer climate.

He found that during the migration season their population, P could be modelled by $P=1350+400(1.25)^{-t}, t \geq 0$, where t is the number of days since the start of the migration season.
(a) Find the population of the Bulbul birds,
(i) at the start of the migration season.
(ii) in the wetlands after 5 days.
(b) Calculate the time taken for the population to decrease below 1400 .
(c) According to this model, find the smallest possible population of Bulbul birds during the migration season.

Question 2

[Maximum mark: 5]
The perimeter of a given square P can be represented by the function $P(A)=4 \sqrt{A}, A \geq 0$, where A is the area of the square. The graph of the function P is shown for $0 \leq A \leq 25$.

(a) Write down the value of $P(25)$.
(b) On the axes above, draw the graph of the inverse function, P^{-1}.
(c) In the context of the question, explain the meaning of $P^{-1}(8)=4$.

Question 3

[Maximum mark: 7]
The graph of the function $f(x)=\ln x$ is translated by $\binom{a}{b}$ so that it then passes through the points $(0,1)$ and $\left(\mathrm{e}^{3}, 1+\ln 2\right)$.

Find the value of a and the value of b.

Question 4

[Maximum mark: 6]
Professor Wei observed that students have difficulty remembering the information presented in his lectures.

He modelled the percentage of information retained, R, by the function $R(t)=100 \mathrm{e}^{-p t}, t \geq 0$, where t is the number of days after the lecture.

He found that 1 day after a lecture, students had forgotten 50% of the information presented.
(a) Find the value of p.
(b) Use this model to find the percentage of information retained by his students 36 hours after Professor Wei's lecture.

Based on his model, Professor Wei believes that his students will always retain some information from his lecture.
(c) State a mathematical reason why Professor Wei might believe this.
(d) Write down one possible limitation of the domain of the model.

Question 5

[Maximum mark: 7]
A geometric transformation $T:\binom{x}{y} \mapsto\binom{x^{\prime}}{y^{\prime}}$ is defined by

$$
T:\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
7 & -10 \tag{2}\\
2 & -3
\end{array}\right)\binom{x}{y}+\binom{-5}{4} .
$$

(a) Find the coordinates of the image of the point $(6,-2)$.
(b) Given that $T:\binom{p}{q} \mapsto 2\binom{p}{q}$, find the value of p and the value of q.
(c) A triangle L with vertices lying on the $x y$ plane is transformed by T.

Explain why both L and its image will have exactly the same area.

Question 6

[Maximum mark: 7]
Consider the function $f(x)=a x^{2}+b x+c$. The graph of $y=f(x)$ is shown in the diagram. The vertex of the graph has coordinates $(0.5,-12.5)$. The graph intersects the x-axis at two points, $(-2,0)$ and $(p, 0)$.

diagram not to scale

(a) Find the value of p.
(b) Find the value of
(i) a.
(ii) b.
(iii) c.
(c) Write down the equation of the axis of symmetry of the graph.

Question 7

[Maximum mark: 7]
A function is defined by $f(x)=2-\frac{12}{x+5}$ for $-7 \leq x \leq 7, x \neq-5$.
(a) Find the range of f.
(b) Find an expression for the inverse function $f^{-1}(x)$. The domain is not required.
(c) Write down the range of $f^{-1}(x)$.

Question 8

[Maximum mark: 4]
The graph of $y=f(x)$ is given on the following set of axes. The graph passes through the points $(-2,6)$ and $(0,1)$, and has a horizontal asymptote at $y=0$.

(a) Find $g(0)$.
(b) On the same set of axes draw the graph of $y=g(x)$, showing any intercepts and asymptotes.

Question 9

[Maximum mark: 7]
Let the function $h(x)$ represent the height in centimetres of a cylindrical tin can with diameter $x \mathrm{~cm}$.

$$
h(x)=\frac{640}{x^{2}}+0.5 \text { for } 4 \leq x \leq 14 .
$$

(a) Find the range of h.

The function h^{-1} is the inverse function of h.
(b) (i) Find $h^{-1}(10)$.
(ii) In the context of the question, interpret your answer to part (b)(i).
(iii) Write down the range of h^{-1}.

Question 10

[Maximum mark: 5]
The height of a baseball after it is hit by a bat is modelled by the function

$$
h(t)=-4.8 t^{2}+21 t+1.2
$$

where $h(t)$ is the height in metres above the ground and t is the time in seconds after the ball was hit.
(a) Write down the height of the ball above the ground at the instant it is hit by the bat.
(b) Find the value of t when the ball hits the ground.
(c) State an appropriate domain for t in this model.

Question 11

[Maximum mark: 5]
The function $f(x)=\ln \left(\frac{1}{x-2}\right)$ is defined for $x>2, x \in \mathbb{R}$.
(a) Find an expression for $f^{-1}(x)$. You are not required to state a domain.
(b) Solve $f(x)=f^{-1}(x)$.

Question 12

[Maximum mark: 5]
Gloria wants to model the curved edge of a butterfly wing. She inserts a photo of the wing into her graphing software and finds the coordinates of four points on the edge of the wing.

\boldsymbol{x}	\boldsymbol{y}
-3	2
-1	3.2
1.7	2.1
3.1	0

Gloria thinks a cubic curve will be a good model for the butterfly wing.
(a) Find the equation of the cubic regression curve for this data.

For the photo of a second butterfly wing, Gloria finds the equation of the regression curve is $y=0.0083 x^{3}-0.075 x^{2}-0.58 x+2.2$.

Gloria realizes that her photo of the second butterfly is an enlargement of the life-size butterfly, scale factor 2 and centred on $(0,0)$.
(b) Find the equation of the cubic curve that models the life-size wing.

Question 13

[Maximum mark: 5]
Celeste heated a cup of coffee and then let it cool to room temperature. Celeste found the coffee's temperature, T, measured in ${ }^{\circ} \mathrm{C}$, could be modelled by the following function,

$$
T(t)=71 \mathrm{e}^{-0.0514 t}+23, t \geq 0,
$$

where t is the time, in minutes, after the coffee started to cool.
(a) Find the coffee's temperature 16 minutes after it started to cool.
(b) Write down the room temperature.
(c) Given that $T^{-1}(50)=k$, find the value of k.

