Subject – Math AI(Higher Level) Topic - Number and Algebra Year - May 2021 – Nov 2022 Paper -1 Answers

Question 1

$\log A = x \log B + y \log C + \log k$	(M1)
$\log 5.74 = x \log 2.1 + y \log 3.4 + \log k$	
$\log 2.88 = x \log 1.5 + y \log 2.4 + \log k$	
$\log 0.980 = x \log 0.8 + y \log 1.9 + \log k$	M1A1
Allow any consistent base, allow numerical equivalents.	
attempting to solve their system of equations	(M1)
x = 1.53, y = 0.505	A1
k = 0.997	A1 Total [6 marks]
Question 2	
(a) (i) $4e^{\frac{\pi}{2}i}$, $8e^{\frac{3\pi}{4}i}$, $16e^{\pi i}$ (= 4i, $-4\sqrt{2} + 4\sqrt{2}i$, -16)	(M1)A1
(ii)	
10-	
4*	
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 Re	
A3	
	[5 marks]
(b) $2^2 + 1^2 = a^2$	M1

 $a = \sqrt{5}$ (= 2.24)

A1

[2 marks]

Total [7 marks]

(Model A)

$$R = 3pe^{-0.5p}$$

predicted values

p	R
1	1.8196
2	2.2073
3	2.0082

(A1)

A1

$$SS_{res} = (1.8196 - 1.5)^2 + (2.2073 - 1.8)^2 + (2.0082 - 1.5)^2$$
(M1)

= 0.5263...

(Model B)

 $R = 2.5 \, p \mathrm{e}^{-0.6 \, p}$

predicted values

p	R
1	1.372
2	1.506
3	1.2397

3	(A1)
$SS_{res} = 0.170576$	A1
chose model B	A1

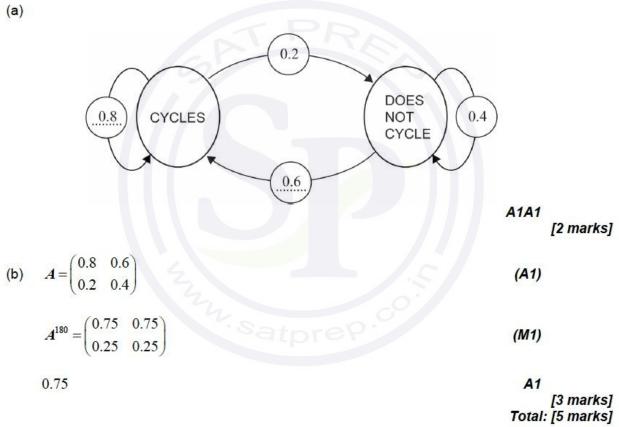
Total [7 marks]

M1

(a)	(i)	$i^2 = -1$ w = -2 + 1 = -1	(M1) A1	
	(ii)	w = -1 + i + 1 = i	A1	[3 marks]
(b)	EITH rotat	HER tion of 90° (anticlockwise, centre at the origin)	A1A1	

Note: Award A1 for "rotation" and A1 for "90°".		
followed by a translation of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	A1	
OR		
translation of $\begin{pmatrix} 0\\ -1 \end{pmatrix}$	A1	
followed by rotation of 90° (anticlockwise, centre at the origin)	A1A1	
Note: Award A1 for "rotation" and A1 for "90°".		
		[3 marks]
(c) EITHER		
move 1 to left to $1-i$	(M1)	
then rotate by -90° to $-1-i$	A1	
	~	
iz + 1 = 2 - i iz = 1 - i		
$z = \frac{1-i}{i}$	(M1)	
i -1-i Satore?	A1	
-I-I	AI	[2 marks]
	Total	[8 marks]

(a)	(i)	attempt to find u_{20} using an arithmetic sequence e.g. $u_1 = 500$ and $d = 100$ OR $u_{20} = 500 + 1900$ OR $500,60$	(M1) 0,700,
		(Charlie ran) 2400 m	A1
	(ii)	(r =) 1.02 attempt to find u_{20} using a geometric sequence e.g. identifying $u_1 = 500$ and a value for r OR $500 \times r^{19}$ OR	(A1) (M1) 500, 510, 520.2,
		(Daniella ran) 728 m (728.405)	A1 [5 marks]
(b)	500	$\times 1.02^{n-1} > 500 + (n-1) \times 100$	(M1)
		npt to solve inequality 184.215	(M1)
	n = 1		A1 [3 marks]
			Total [8 marks]
Ques	tion	6	
(a)	(i)	$z_1^3 = 27e^{\frac{i\pi}{4}} (= 27e^{0.785398i})$	A1A1
	Not	e: Award A1 for 27 and A1 for the angle in the correct form.	
	(ii)	$\left(\frac{z_1}{z_2}\right)^4 = \left(\frac{81}{16}\right) e^{\frac{i\pi}{2}} (= 5.0625 e^{1.57079i})$	A1A2
	Note	e: Award A1 for $\frac{81}{16}$, A2 for the angle in the correct form and	
		A1 for the angle in incorrect form e.g. $\operatorname{cis} \frac{\pi}{2}$ and/or $\frac{5\pi}{2}$.	
		Award A1 if i is given in place of $\operatorname{cis} \frac{\pi}{2}$.	
			[5 marks]
(b)		$= 6 \operatorname{cis}\left(\frac{3\pi}{4} + \frac{n\pi}{16}\right)$	(M1)
	= 6 c	$\operatorname{is}\left(\frac{12\pi+n\pi}{16}\right)$	
		$+n\pi = 32\pi$	(M1)
	<i>n</i> = 2	.0	A1 [3 marks]
			Total [9 marks]

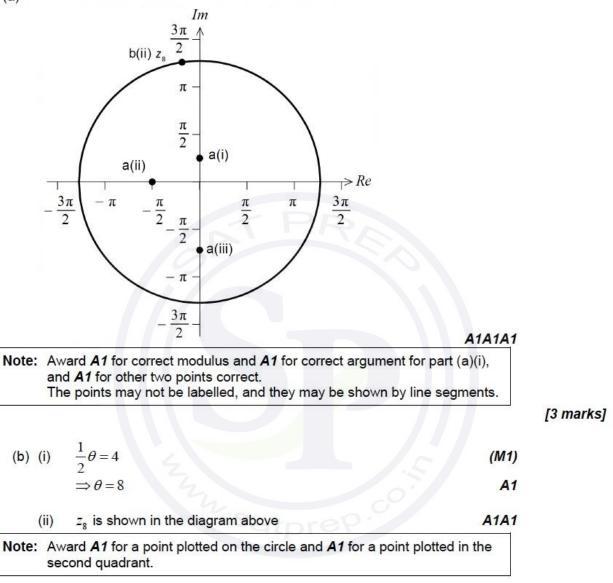

Total [8 marks]

(a)	recognition of geometric sequence $eg r = 0.82$	(M1)	
	$S_{10} = \frac{450(1-0.82^{10})}{1-0.82}$	(14)	
	$S_{10} = \frac{1}{1 - 0.82}$	(A1)	
	= 2160 m (2156.37)	A1	
			[3 marks]
(b)	$S_{\infty} = \frac{450}{1 - 0.82}$	(M1)	
	1-0.82 = 2500 < 2520 so the balloon will not reach the required height.	A1	
			[2 marks
			-
(C)	horizontal motion not taken into account, rate of cooling will not likely be linear,		
	balloon is considered a point mass / size of balloon not considered	ed,	
	effects of wind/weather unlikely to be consistent,		
	a discrete model has been used, whereas a continuous one may		
	offer greater accuracy	R1	
Note	e: Accept any other sensible answer.		
Note	e: Accept any other sensible answer.		[1 mark]
Note	e: Accept any other sensible answer.	Tota	[1 mark] I [6 marks]
	tion 8	Tota	-
		Tota (M1)A1	-
)ues	tion 8		l [6 marks]
)ues (a)	tion 8 $\pounds 495 \times 0.9^5 = \pounds 292 \ (\pounds 292.292)$	(M1)A1	l [6 marks]
)ues	tion 8 $\pounds 495 \times 0.9^{5} = \pounds 292 \ (\pounds 292.292)$ $495 \times 0.9^{k} = 2200 \times 0.85^{k}$	(M1)A1 (M1)	-
)ues (a) (b)	tion 8 $\pounds 495 \times 0.9^{5} = \pounds 292 \ (\pounds 292.292)$ $495 \times 0.9^{k} = 2200 \times 0.85^{k}$ $k = 26.1 \ (26.0968)$	(M1)A1	l [6 marks]
)ues (a) (b)	tion 8 $\pounds 495 \times 0.9^{5} = \pounds 292 \ (\pounds 292.292)$ $495 \times 0.9^{k} = 2200 \times 0.85^{k}$	(M1)A1 (M1)	l [6 marks] [2 marks]
)ues (a) (b)	tion 8 $\pounds 495 \times 0.9^{5} = \pounds 292 \ (\pounds 292.292)$ $495 \times 0.9^{k} = 2200 \times 0.85^{k}$ $k = 26.1 \ (26.0968)$	(M1)A1 (M1)	l [6 marks] [2 marks]
)ues (a) (b)	tion 8 $\pounds 495 \times 0.9^{5} = \pounds 292 \ (\pounds 292.292)$ $495 \times 0.9^{k} = 2200 \times 0.85^{k}$ $k = 26.1 \ (26.0968)$	(M1)A1 (M1) A1 time period)	l [6 marks]
)ues (a) (b) Note	tion 8 $\pounds 495 \times 0.9^{5} = \pounds 292 \ (\pounds 292.292)$ $495 \times 0.9^{k} = 2200 \times 0.85^{k}$ $k = 26.1 \ (26.0968)$ e: Award <i>M1A0</i> for $k-1$ in place of k . depreciation rates unlikely to be constant (especially over a long state)	(M1)A1 (M1) A1 time period) R1	l [6 marks] [2 marks]
Ques (a) (b) Note	tion 8 $\pounds 495 \times 0.9^5 = \pounds 292 \ (\pounds 292.292)$ $495 \times 0.9^k = 2200 \times 0.85^k$ $k = 26.1 \ (26.0968)$ e: Award <i>M1A0</i> for $k-1$ in place of k . depreciation rates unlikely to be constant (especially over a long the second se	(M1)A1 (M1) A1 time period) R1	l [6 marks] [2 marks]
)ues (a) (b) Note	tion 8 $\pounds 495 \times 0.9^{5} = \pounds 292 \ (\pounds 292.292)$ $495 \times 0.9^{k} = 2200 \times 0.85^{k}$ $k = 26.1 \ (26.0968)$ e: Award <i>M1A0</i> for $k-1$ in place of k . depreciation rates unlikely to be constant (especially over a long state)	(M1)A1 (M1) A1 time period) R1	l [6 marks] [2 marks]

Total [5 marks]

(a)	m = -0.695 (-0.695383); b = 4.63 (4.62974)	A1A1
		[2 marks]
(b)	$\ln x = -0.695(\ln 25) + 4.63$	M1
	$\ln x = 2.39288$	(A1)
	<i>x</i> = 10.9%	A1
		[3 marks]

[3 marks] Total: [5 marks]



Question 11	
(a) $10 = \frac{2}{1-r}$	(M1)
r = 0.8	A1
	[2 marks
(b) $2 \times (0.8)^{n-1} < 0.5$ OR $2 \times (0.8)^{n-1} = 0.5$	(M1)
(<i>n</i> >) 7.212	(A1)
<i>n</i> = 8	A1
Note: If $n = 7$ is seen, with or without seeing the value 7.212 then as	ward M1A1A0.
	[3 marks Total: [5 marks
Question 12	
(a) $N = 360$	
<i>I</i> % = 3.8	
$PV = (\pm)170000$	
FV = 0	
P/Y = 12 C/Y = 12	(M4)(A4)
C/T = 12	(M1)(A1)
(<i>PMT</i> =) 792.13 AUD	A
	[3 marks
(b) (i) $N = 120$	
I% = 3.8	
$PV = (\pm)170000$	
$PMT = (\mp)792.13$	
P/Y = 12	
C/Y = 12	(M1)(A1)
(FV =) 133019.94 AUD	A1
(ii) amount of money paid: 120×792.13 (=95055.60)	(M1)
loan paid off: 170000-133019.94 (= 36980.06)	(M1)
interest paid: (95055.60-36980.06=) 58075.54 AUD	A1
	[6 marks

(a)	attempt at using trapezoidal rule formula	(M1)	
	$\frac{1}{2} \left(\frac{2-0}{5} \right) (30+50+2(50+60+40+20))$	A1	
	(total carbon =) 84 tonnes	A1 [3 marks]
(b)	$\left \frac{84-72}{72}\right \times 100\%$	(M1)	
Not	e: Award <i>(M1)</i> for correct substitution of final answer in part (a) into percentage error formula.		
	=16.7% (16.6666%)	A1 Total:	[2 marks] [5 marks]
Ques	tion 14		
(a)	$\log_{10} 100 = a - 3$	(M1)	
	<i>a</i> = 5	A1	[2 marks]
(b)	EITHER $N = 10^{5-M}$ $= \frac{10^{5}}{10^{M}} \left(= \frac{100000}{10^{M}} \right)$	(M1)	
	OR		
	$OR = \frac{b}{10^3}$	(M1)	
	THEN $b = 100000 \ (=10^5)$	A1	[2 marks]
(c)	$N = \frac{10^5}{10^{72}} = 0.00631 (0.0063095)$	A1	

(a)	$\lambda = 1$	
	$ \begin{pmatrix} -0.8 & 0.7 \\ 0.8 & -0.7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ OR } \begin{pmatrix} 0.2 & 0.7 \\ 0.8 & 0.3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} $	(M1)
	0.8x = 0.7y	(A1)
	an eigenvector is $\begin{pmatrix} 7\\8 \end{pmatrix}$ (or equivalent with integer values)	A1 [3 marks]
(b)	EITHER (the long-term probability matrix is given by the eigenvector corresponding to the eigenvalue equal to 1, scaled so that the sum of the entries is 1) 8+7=15	[3 marks] (M1)
	$ \begin{pmatrix} 0.2 & 0.7 \\ 0.8 & 0.3 \end{pmatrix} \begin{pmatrix} p \\ 1-p \end{pmatrix} = \begin{pmatrix} p \\ 1-p \end{pmatrix} $	(M1)
	OR considering high powers of the matrix e.g. $\begin{pmatrix} 0.2 & 0.7 \\ 0.8 & 0.3 \end{pmatrix}^{50}$	(M1)
	$ \begin{pmatrix} \frac{7}{15} & \frac{7}{15} \\ \frac{8}{15} & \frac{8}{15} \end{pmatrix} $	
	THEN Satpre?	
	probability of being in state A is $\frac{7}{15}$	A1
		[2 marks] [Total 5 marks]

[4 marks] [Total 7 marks]

(a)	use of geometric sequence with $r = 0.85$	M1
	EITHER ($(0.85)^6(1.8)$ OR $(0.678869$ OR $(0.85)^5(1.53)$ = 0.68 m	A1
	= 68 cm	AG
	$(0.85)^6(180)$ OR $(0.85)^5(153)$	A1
	= 68 cm	AG [2 marks]
(b)	EITHER	
194 - E.C.	$(0.85)^{n}(1.8) > 0.1$ OR $(0.85)^{n-1}(1.53) > 0.1$	(M1)
Note	e: If 1.8 m (or 180 cm) is used then <i>(M1)</i> only awarded for use of If 1.53 m (or 153 cm) is used then <i>(M1)</i> only awarded for use	
	17	A1
	OR	
	$(0.85)^{17}(1.8) = 0.114 \text{ m}$ and $(0.85)^{18}(1.8) = 0.0966 \text{ m}$	(M1)
	17	A1

OR

	solving $(0.85)^n(1.8) = 0.1$ to find $n = 17.8$	(M1)
	17	A1
Note:	Evidence of solving may be a graph OR the "solver" to solve the equation. Working may use cm.	function OR use of logs

[2 marks]

(c) **EITHER**

distance (in one direction) travelled between first and fourth bounce

$=\frac{(1.8\times0.85)(1-0.85^3)}{(=3.935925)}$	(
$= \frac{1}{1-0.85}$ (= 3.935925)	(A1)
1-0.85	

recognizing distances are travelled twice except first distance (M1) 1.8 + 2(3.935925)A1

=9.67 m (9.67185... m)

OR

distance (in one direction) travelled between drop and fourth bounce 0.0.4 12 01/2

$=\frac{(1.8)(1-0.85^{\circ})}{1-0.85}$	(= 5.735925)	(A1)

recognizing distances are travelled twice except first distance	(M1)
2(5.735925)-1.8	
=9.67 m (9.67185 m)	A1

OR

distance (in one direction) travelled between first and fourth bounce	
$(0.85)(1.8) + (0.85)^{2}(1.8) + (0.85)^{3}(1.8) $ (= 3.935925)	(A1)
recognizing distances are travelled twice except first distance	(M1)
$1.8 + 2(0.85)(1.8) + 2(0.85)^{2}(1.8) + 2(0.85)^{3}(1.8)$	
=9.67 m (9.67185 m)	A1
Answers may be given in cm	

Note: Answers may be given in cm.

[3 marks] [Total 7 marks]

Question 18

(a)	x + y + z = 600	A1	
	15x + 10y + 12z = 7816	A1	
	x = 2y	A1	
Note	: Condone other labelling if clear, e.g. <i>a</i> (adult), <i>c</i> (child) and <i>s</i> (student). Accept equivalent, distinct equations e.g. $2y + y + z = 600$.		
		l	[3 marks]

(b)	x = 308, y = 154, z = 138	A1A1
lote:	Award A1 for all three correct values seen, A1 for co Accept answers written in words: e.g. 308 adult ticke	

[2 marks] [Total 5 marks]

(a) (one vector to the line is
$$\begin{pmatrix} 0 \\ c \end{pmatrix}$$
 therefore) $a = \begin{pmatrix} 0 \\ c \end{pmatrix}$ A1
the line goes m up for every 1 across
(so the direction vector is) $b = \begin{pmatrix} 1 \\ m \end{pmatrix}$ A1

Note: Although these are the most likely answers, many others are possible.

[2 marks]

(b) (from GDC OR $6 \times 2 - 4 \times 3$) |M| = 0 A1 [1 mark]

(c) METHOD 1

$ \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 6 & 3 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} x \\ mx+c \end{pmatrix} = \begin{pmatrix} 6x+3mx+3c \\ 4x+2mx+2c \end{pmatrix} $	M1A1
$= \begin{pmatrix} 3(2x+mx+c)\\ 2(2x+mx+c) \end{pmatrix}$	A1
therefore the new line has equation $3Y = 2X$	A1
which is independent of <i>m</i> or <i>c</i>	AG

Note: The AG line (or equivalent) must be seen for the final A1 line to be awarded.

METHOD 2
take two points on the line, e.g (0, c) and (1, m+c)**M1**
these map to $\begin{pmatrix} 6 & 3 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ c \end{pmatrix} = \begin{pmatrix} 3c \\ 2c \end{pmatrix}$ **M1**
these map to $\begin{pmatrix} 6 & 3 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ m+c \end{pmatrix} = \begin{pmatrix} 6+3m+3c \\ 4+2m+2c \end{pmatrix}$ **A1**
therefore a direction vector is $\begin{pmatrix} 6+3m \\ 4+2m \end{pmatrix} = (2+m) \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
(since $m \neq -2$) a direction vector is $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ **A1**
the line passes through $\begin{pmatrix} 3c \\ 2c \end{pmatrix} - c \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ therefore it always has the
origin as a jump-on vector**A1**
the vector equation is therefore $r = \mu \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ **A1**

 $\left(2\right)$

$$\mathbf{r} = \begin{pmatrix} 6 & 3\\ 4 & 2 \end{pmatrix} \begin{pmatrix} 0\\ c \end{pmatrix} + \lambda \begin{pmatrix} 1\\ m \end{pmatrix} = \begin{pmatrix} 3c\\ 2c \end{pmatrix} + \lambda \begin{pmatrix} 6+3m\\ 4+2m \end{pmatrix}$$
 M1A1

$$= c \binom{3}{2} + (2+m)\lambda \binom{3}{2}$$
A1

where $\mu = c + (2+m)\lambda$ is an arbitrary parameter.	A1
which is independent of m or c (as μ can take any value)	AG

Note: The AG line (or equivalent) must be seen for the final A1 line to be awarded.

[4 marks] Total [7 marks]

METHOD 2 converting given expressions to cos form $V_T = 2\cos 3t + 5\cos (3t + 4)$	(M1)
(from graph) $A = 3.99$ (3.99088)	A1
$V_T = 3.99 \cos(Bt + C)$ either by considering transformations or inserting points	
B=3	A1
C = -1.89 (-1.89418)	A1

Note: Accept arguments differing by 2π e.g. 4.38900....

maximum voltage is 3.99 (3.99088...) (units)

(so, $V_T = 3.99 \cos(3t - 1.89)$ (3.99088... $\cos(3t - 1.89418...)$))

Note: It is possible to have A = 3.99, B = -3 with C = 1.89 OR A = -3.99, B = 3 with C = 1.25OR A = -3.99, B = -3 with C = -1.25 due to properties of the cosine curve.

[4 marks]

A1 [1 mark] Total [5 marks]

Question 20

(b)

(a)	METHOD 1	
	recognizing that the real part is distributive	(M1)
	$V_T = \operatorname{Re}\left(2e^{3ti} + 5e^{3ti+4i}\right)$	
	$=\operatorname{Re}\left(\operatorname{e}^{3ti}\left(2+5\operatorname{e}^{4i}\right)\right)$	(A1)
	(from the GDC) $2 + 5e^{4i} = 3.99088e^{-1.89418i}$	(A1)

therefore $V_T = 3.99 \cos(3t - 1.89)$ (3.99088... $\cos(3t - 1.89418...)$) **A1**

METHOD 2

converting given expressions to cos form	(M1)	
$V_T = 2\cos 3t + 5\cos \left(3t + 4\right)$		
(from graph) $A = 3.99$ (3.99088)	A1	
$V_T = 3.99\cos\left(Bt + C\right)$		
either by considering transformations or inserting points		
<i>B</i> = 3	A1	
C = -1.89 (-1.89418)	A1	
$(so, V_T = 3.99 \cos(3t - 1.89) (3.99088 \cos(3t - 1.89418)))$		

[4 marks]

(b) maximum voltage is 3.99 (3.99088...) (units)

A1 [1 mark] Total [5 marks]

(a)	METHOD 1 – (<i>With FV</i> =4000)
	EITHER N= 10
	I=1.5
	FV = 4000
	P/Y=1
	C/Y=1
Note	e: Award A1 for $(3.5-2=)$ 1.5 seen and M1 for all other entries correct.
	OR
	$4000 = A(1+0.015)^{10}$

Note: Award A1 for 1.5 or 0.015 seen, M1 for attempt to substitute into compound interest formula and equating to 4000.

THEN

(PV =) \$3447

Note: Award A0 if not rounded to a whole number or a negative sign given.

METHOD 2 – (With FV including inflation) calculate FV with inflation 4000×1.02^{10} (=4875.977)	(A1)
EITHER	

 $4000 \times 1.02^{10} = PV \times 1.035^{10}$ (A1) OR N = 10I= 3.5 FV= 4875.977...

Note: Award M1 for their FV and all other entries correct.

THEN (PV =) \$3457

P/Y=1C/Y=1

A1

(M1)

(A1)(M1)

(A1)(M1)

A1

Note: Award A0 if not rounded to a whole number or a negative sign given.

METHOD 3 (Uping formula to coloulate real rate of return)	
METHOD 3 – (Using formula to calculate real rate of return) (real rate of return =) 1.47058(%)	(A1)
EITHER	
$4000 = PV \times 1.0147058^{10}$	(A1)
OR	
N=10	
I=1.47058	
FV= 4000	
P/Y= 1 C/Y= 1	(M1)
Note: Award <i>M1</i> for all entries correct.	
THEN	
(PV =) \$3457	A1
	[3 marks]
(b) METHOD 1 – (Finding the future value of the investment using PV from	part (a))
N=10	
I=3.5 PV= 3446.66(from Method 1) OR 3456.67(from Methods 2, 3)	
P/Y=1	
C/Y=1	(M1)
Note: Award <i>M1</i> for interest rate 3.5 and answer to part (a) as PV.	
(EXI-) \$4961.97 OB \$4975.07	(14)
(FV=) \$4861.87 OR \$4875.97 so payment required (from TVM) will be \$294 OR \$295	(A1) A1
so payment required (nonn r vivi) will be \$254 OK \$255	
Note: Award A0 if a negative sign given, unless already penalized in part (a)	· _
METHOD 2 – (Using FV) N= 10	
I=3.5	
PV = -1000	
FV= 4875.977	
P/Y=1	
C/Y=1	(A1)(M1)
Note: Award A1 for I=3.5 and FV= ±4875.977, M1 for all other entries con	rect
and opposite PV and FV signs.	2.5.52
(PMT =) \$295 (295.393)	A1
Note: Correct 3 of answer is 205 howover appoint an answer of 206 sives the	t the
Note: Correct 3sf answer is 295, however accept an answer of 296 given that context supports rounding up. Award A0 if a negative sign given, unle	
already penalized in part (a).	
	[3 marks]
	Total [6 marks]

Total [6 marks]

(a)
$$\pi \times 2^2 \times \frac{30}{360}$$
 (M1)
= 1.047 cm² A1

$$=1.047$$
 cm²

(M1)

(b) attempt to substitute any two values from 1.5, 2.5, 25 or 35 into area of sector formula

upper bound =
$$\pi \times 2.5^2 \times \frac{35}{360} = 1.91 \text{ cm}^2$$
 (1.90895...) A1

$$\left[\text{lower bound} = \pi \times 1.5^2 \times \frac{25}{360} = \right] \ 0.491 \ \text{cm}^2 \quad (0.490873...)$$

Note: Given the nature of the question, accept correctly rounded **OR** correctly truncated 3 significant figure answers.

[3 marks]

(c) $\left(\left \frac{1.047 - 1.90895}{1.90895} \right \times 100 = \right) 45.2$ (%) (45.1532)	A1
$\left(\left \frac{1.047 - 0.490873}{0.490873} \right \times 100 = \right) 113 (\%) (113.293)$	A1
so the largest percentage error is 113 %	A1
Note: Accept 45.1 (%) (45.1428), from use of full accuracy answers. Given the nature of the question, accept correctly rounded OR correctly truncated 3 significant figure answers. Award <i>A0A1A0</i> if 113% is the only value found.	
52	[3 marks] Total [8 marks]

METHOD 1

 $\frac{u_1}{1-r} = 9$ A1 therefore $u_1 = 9 - 9r$ $u_1 = 4 + u_1 r$ A1

substitute or solve graphically:

M1

R1

A1

9-9r = 4 + (9-9r)r OR $\frac{4}{(1-r)^2} = 9$ $9r^2 - 18r + 5 = 0$ $r = \frac{1}{3}$ or $r = \frac{5}{3}$ only $r = \frac{1}{3}$ is possible as the sum to infinity exists

then
$$u_1 = 9 - \left(9 \times \frac{1}{3}\right) = 6$$

 $u_3 = 6 \times \frac{1^2}{3} = \frac{2}{3}$

METHOD 2

$$\frac{u_{1}}{1-r} = 9$$

$$r = \frac{u_{1}-4}{u_{1}}$$
attempt to solve
$$\frac{u_{1}}{1-\left(\frac{u_{1}-4}{u_{1}}\right)} = 9$$

$$\frac{u_{1}}{\left(\frac{4}{u_{1}}\right)} = 9$$

$$\left(u_{1}\right)^{2} = 36$$

$$u_{1} = \pm 6$$
attempting to solve both possible sequences
$$6, 2, \dots \text{ or } -6, -10 \dots$$

$$r = \frac{1}{3} \quad \text{ or } r = \frac{5}{3}$$
only $r = \frac{1}{3}$ is possible as the sum to infinity exists
$$R1$$

$$u_{3} = 6 \times \left(\frac{1}{3}\right)^{2} = \frac{2}{3}$$

$$A1$$

$$Total [5 marks]$$

(a)	Gradient $=\frac{14.9+1.3}{6}$ (= 2.7)	(M1)	
	$\log_{10} Q = 2.7P - 1.3$	(A1)	
	$Q = 10^{2.7P-1.3}$ OR $Q = 0.0501 \times 10^{2.7P}$ (= 0.0501187×10 ^{2.7P})	A1	
			[3 marks]
(b)	$\ln R$ on one axis and Q on the other axis	A1	[1 mark]
(c)	$\log_{10} (4.3 \ln R + 12.1) = 2.7P - 1.3$ OR $10^{2.7P - 1.3} = 4.3 \ln R + 12.1$	(M1)	
	$P = \frac{\log_{10} \left(4.3 \ln R + 12.1\right) + 1.3}{2.7}$	A1	
	T PRA	Total	[2 marks] [6 marks]
Ques	tion 25		
(a)	$m = 1 - 2.5 \log_{10}(0.0525)$	(M1)	
	= 4.20 (4.19960)	A1	
			[2 marks]
(b)	attempt to solve $7 = 1 - 2.5 \log_{10}(b)$	(M1)	
No	ote: Accept a sketch from their GDC as an attempt to solve $7 = 1 - 2.5 \log_{10}(b)$		
	b = 0.00398 (0.00398107)	A1	[2 marks]
(c)		М1	
	$-3.2 = -2.5 \log_{10} \left(\frac{b_n}{b_p} \right)$	A1	
	$\frac{b_n}{b_p} = 19.1 \ (19.0546)$	A1	
	P	Total	[3 marks] [7 marks]

- (a) attempt to find det (M) (M1) = 14 $(12 \times 14) = 168 \text{ cm}^2$ A1 [2 marks]
- (b) let X have coordinates (x, y)**METHOD 1**

$$M\binom{x}{y} = \binom{2t-3}{6-5t} \tag{M1}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \boldsymbol{M}^{-1} \begin{pmatrix} 2t - 3 \\ 6 - 5t \end{pmatrix}$$
(A1)

$$M^{-1} = \frac{1}{14} \begin{pmatrix} 1 & 4 \\ -3 & 2 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{14} \begin{pmatrix} 2t - 3 + 24 - 20t \\ -6t + 9 + 12 - 10t \end{pmatrix}$$

$$\begin{pmatrix} M1 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{14} \begin{pmatrix} 21 - 18t \\ 21 - 16t \end{pmatrix}$$

$$OR \quad \left(\frac{21 - 18t}{14}, \frac{21 - 16t}{14}\right)$$

$$A1$$

METHOD 2(M1)2x - 4y = 2t - 3(A1)3x + y = 6 - 5t(A1)attempting to solve the equations(M1) $(x, y) = \left(\frac{3}{2} - \frac{9t}{7}, \frac{3}{2} - \frac{8t}{7}\right)$ A1A1[6 marks]Total [8 marks]

(a) I% = 7.5 $PV = \mp 800$ $PMT = \mp 500$ $FV = \pm 10\,000$ P/Y = 12C/Y = 12

(M1)(A1)

Note: Award **M1** for an attempt to use a financial app in their technology (e.g. at least four rows seen, but not necessarily correct), award **A1** for PMT = -500 or PMT = 500, with same sign to PV and opposite sign to FV.

17.3070	(A1)
(k =) 18	A1

Note: Award *(M0)(A0)(A0)A0* for a final answer of 17 with no working. The final answer must be an integer.

[4 marks]

(b) $10389 - (18 \times 500 + 800)$ **OR** 10389 - (9800)

Note: Award (A1) for 10389 (10389.38...) seen. Award (M1) for subtraction of their $(18 \times 500 + 800)$ from FV. **FT** from their value of k. Award **A0M1A0** for $10000 - (18 \times 500 + 800)$. Do not award the final **A1FT** if their answer is negative.

589 EUR

Note: Final answer must be to the nearest euro.

A1

(A1)(M1)

[3 marks] Total [7 marks]