Subject - Math AI(Higher Level)
 Topic - Statistics and Probability
 Year - May 2021 - Nov 2022
 Paper -1
 Answers

Question 1

(a) $\mathrm{P}(X=8)$
(M1)
Note: Award (M1) for evidence of recognizing binomial probability.
eg, $\mathrm{P}(X=8), X \sim \mathrm{~B}\left(20, \frac{6}{15}\right)$.

$$
=0.180(0.179705 \ldots)
$$

A1
[2 marks]
(b) let x be the number of male students
recognize that probability of selecting a male is equal to $\frac{x}{80}$
$\left(\right.$ set up equation $\left.{ }^{20} \mathrm{C}_{8}\left(\frac{x}{80}\right)^{8}\left(\frac{80-x}{80}\right)^{12}=\right) 0.153357$
(M1)
number of male students $=37$
Note: Award (M1)AO for 27.
[4 marks]
Total [6 marks]

Question 2

(a) $\mathrm{H}_{0}: m=3, \mathrm{H}_{1}: m<3$

A1
(b) (let X be the number of fish caught) $\mathrm{P}(X \leq 1 \mid m=3)=0.199 \quad$ M1A1
(c) $\quad \mathrm{P}(X \geq 2 \mid m=2.5)(=1-\mathrm{P}(X \leq 1 \mid m=2.5))$ $=0.713$

M1A1 A1
[3 marks]
Total [6 marks]

Question 3

let T be the time to serve both customers and T_{i} the time to serve the i th customer
assuming independence of T_{1} and $T_{2} \quad$ R1
T is normally distributed and $T=T_{1}+T_{2}$
$E(T)=1.5+1.5=3$
(M1)
A1
$\operatorname{Var}(T)=0.4^{2}+0.4^{2}=0.32$ M1A1
$P(T<4)=0.961$

Total [6 marks]

Question 4

(a) $s_{n-1}=\sqrt{\frac{10}{9}} \times 0.0196=0.02066 \ldots$
(M1)A1
[2 marks]
(b) $(1.463,1.493)$
(M1)A1
Note: If s_{n} used answer is $(1.464,1.492)$, award M1AO.
(c) 95% of the time these results would be produced by a population with mean of less than 1.5 kg , so it is likely the mean weight is less than 1.5 kg

R1
[1 mark]
Total [5 marks]

Question 5

(a) $\frac{4}{18}\left(\frac{2}{9}\right)$
(b) $-3 \times \frac{1}{18}+(-1) \times \frac{4}{18}+0 \times \frac{3}{18}+\ldots+5 \times \frac{7}{18}$

Note: Award (M1) for their correct substitution into the formula for expected value.

$$
=1.83\left(\frac{33}{18}, 1.83333 \ldots\right)
$$

(c) $2 \times \frac{1}{18} \times \frac{3}{18}$
(M1)(M1)

Note: Award (M1) for $\frac{1}{18} \times \frac{3}{18}$, award (M1) for multiplying their product by 2 .

$$
=\frac{1}{54}\left(\frac{6}{324}, 0.0185185 \ldots, 1.85 \%\right)
$$

A1
[3 marks]
Total [6 marks]

Question 6

(a) discrete
A1
(b) $\frac{24+60+3 k+40+15+6}{88+k}=2$
M1A1
Note: Award $\boldsymbol{M 1}$ for substitution into the formula for the mean, award $\boldsymbol{A 1}$ for a correct equation.
attempt to solve their equation

$$
\begin{equation*}
k=31 \tag{M1}
\end{equation*}
$$

A1
[4 marks]
(c) systematicA1

Question 7

(a) $158 \times 6=948(\mathrm{~g})$
(M1)A1
[2 marks]
(b) variance 6×13^{2}
$\mathrm{SD}=31.8(\mathrm{~g})(13 \sqrt{6}, 31.8433 \ldots)$
(M1)
A1
[2 marks]
(c) $\quad X \sim \mathrm{~N}\left(948,31.8433 \ldots{ }^{2}\right)$
$\mathrm{P}(X>1000)=0.0512 \quad(0.0512350 \ldots)$

(M1)A1

[2 marks]

Total [6 marks]

Question 8

(a) Convenience A1
[1 mark]
(b) $\quad \mathrm{H}_{0}: 1 \%$ of the toys produced are faulty H_{1} : More than 1% are faulty

A1
A1
[2 marks]
(c) $\quad X \sim \mathrm{~B}(200,0.01)$
(M1)
A1
Note: Any attempt using Normal approximation to find p-value is awarded MOAO.
(d) $14 \%>10 \%$

R1
so there is insufficient evidence to reject H_{0}.
A1
Note: Do not award R0A1. Accept "fail to reject H_{0} " or "accept H_{0} ".

Question 9

(a)

t	1	2	3	4	5	6
$\mathrm{P}(T=t)$	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$
$(0.027777 \ldots)$	$(0.083333 \ldots)$	$(0.138888 \ldots)$	$(0.194444 \ldots)$	(0.25)	$(0.305555 \ldots)$	

Note: Award $\boldsymbol{A} 1$ if three to five probabilities are correct.
[2 marks]
(b) (i) $\frac{32}{36}\left(\frac{8}{9}, 0.888888 \ldots, 88.9 \%\right)$
(A1)
(ii) use of conditional probability
(M1)
e.g. denominator of 32 OR denominator of $0.888888 \ldots$, etc.
$\frac{11}{32}(0.34375,34.4 \%)$
A1
[3 marks]
(c) $\frac{1 \times 1+3 \times 2+5 \times 3+\ldots+11 \times 6}{36}$
$=\frac{161}{36}\left(4 \frac{17}{36}, 4.47,4.47222 \ldots\right)$
(M1)

A1
[2 marks]
Total [7 marks]

Question 10

$X \sim \operatorname{Po}(8.8)$
(M1)
Note: Award (M1) for calculating the mean, 8.8, of the distribution
$\mathrm{P}(X>9)=\mathrm{P}(X \geq 10) \quad$ OR $\quad \mathrm{P}(X>9)=1-\mathrm{P}(X \leq 9)$
(M1)
$\mathrm{P}(X>9)=0.386$ ($0.386260 \ldots$...)
Note: Award (M1)(M0)(M1)AO for finding $\mathrm{P}(X \geq 9)=0.518$ ($0.517719 \ldots$) OR $\mathrm{P}(X \leq 9)=0.614$ ($0.613740 \ldots)$.

Question 11

(a) $\mathrm{H}_{0}: m=110, \mathrm{H}_{1}: m>110$

A1
Note: Accept other appropriate variables for the mean. Accept 22 in place of 110.
(b) $\mathrm{P}(X \geq 128)=0.05024$
(M1)(A1)
$\mathrm{P}(X \geq 129)=0.04153$
(M1)
(probability of making a type I error is) 0.0415
A1
Note: If other probabilities are seen, the final $\boldsymbol{A 1}$ cannot be awarded unless 0.0415 is clearly identified as the final answer.
[4 marks]
(c) $\quad X \sim \operatorname{Po}(110)$
$\mathrm{P}(X \geq 126)=0.072>0.05$ OR recognizing $126<129$ or $\leq 128 \quad \boldsymbol{R 1}$
so there is insufficient evidence to reject H_{0} A1
(ie there is insufficient evidence to suggest that the number of coffees being sold has increased)
Note: Accept 'Accept H_{0} '. Do not award R0A1.

Question 12

(a) $\bar{x}=\frac{\sum x}{n}=\frac{2506}{30}=83.5(83.5333 \ldots)$

A1
[1 mark]
(b) $\quad s_{n-1}^{2}=\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}=\left(\frac{209738-\frac{2506^{2}}{30}}{29}\right.$ $=13.9$ (13.9126...)
(c) $(82.1,84.9)(82.1405 \ldots, 84.9261 \ldots)$
(d) 85 is outside the confidence interval and therefore Talha would suggest that the manufacturer's claim is incorrect

R1
[1 mark]

Total [6 marks]

Question 13

(a) $\quad\left(\frac{74+97+91+86+112}{5}\right)=92$

A1
[1 mark]
(b) (i) $\mathrm{H}_{0}:$ The data satisfies the model $\boldsymbol{A 1}$
H_{1} : The data does not satisfy the model A1
Note: Do not accept " H_{0} : The same number of copies will be sold each day" but accept a similar statement if the word 'expect' or 'expected' is included. Similarly for H_{1}.
(ii) 4 A1
(iii) $\chi_{\text {calc }}^{2}=8.54(8.54347 \ldots)$ OR p-value $=0.0736(0.0735802 \ldots) \quad$ A2
$8.54<9.49$ OR $0.0736>0.05 \quad \mathbf{R 1}$
therefore there is insufficient evidence to reject H_{0} A1
(i.e. the data satisfies the model)
[7 marks]

Question 14

(a) (let $\mu_{\mathrm{c}}=$ population mean for chinchilla rabbits, $\mu_{\mathrm{s}}=$ population mean for sable rabbits)
$\mathrm{H}_{0}: \mu_{\mathrm{c}}=\mu_{\mathrm{s}}$
$\mathrm{H}_{1}: \mu_{\mathrm{c}}>\mu_{\mathrm{s}}$
Note: Accept an equivalent statement in words, must include mean and reference to "population mean" / "mean for all chinchilla rabbits" for the first $\boldsymbol{A} 1$ to be awarded. The terms "on average" and "generally" are also acceptable to indicate populations.
Do not accept an imprecise "the means are equal".
(b) p-value $=0.0408(0.0408065 \ldots)$

A2
Note: Award A1 for an answer of $0.041565 \ldots$, from "unpooled" settings on GDC.
[2 marks]
(c) $0.0408<0.05$.

R1
(there is sufficient evidence to) reject (or not accept) H_{0} A1
(there is sufficient evidence to suggest that chinchilla rabbits are (generally) heavier than sable rabbits)
Note: Do not award R0A1. Accept 'accept H_{1} '.

Question 15

(a) let X be the random variable "the weight of a sack of potatoes"
$\mathrm{P}(X<50)$
(M1)
$=0.588 \mathrm{~kg} \quad(0.587929 \ldots)$
(b) $\mathrm{P}(X<l)=0.25$

$$
49.2 \mathrm{~kg}(49.1929 \ldots)
$$

(M1)
A1
[2 marks]
(c) attempt to sum 10 independent random variables
(M1)
$Y=\sum_{i=1}^{10} X_{i} \sim \mathrm{~N}\left(498,10 \times 0.9^{2}\right)$
$\mathrm{P}(Y>500)=0.241$
A1
[3 marks]
Total: [7 marks]

Question 16

(a) 75

A1
[1 mark]
(b) recognition that all entries add up to 120
(M1)
$a=120-6-13-26-b \quad$ OR $\quad a=75-b$

A1
[2 marks]
(c) (i) $\frac{6 \times 1+13 \times 2+26 \times 3+(75-b) \times 4+b \times 5}{120}=3.65$
(M1)(A1)

Note: Award (M1) for attempt to substitute into mean formula, LHS expression is sufficient for the M mark. Award (A1) for correct substitutions in one variable OR in two variables, followed by evidence of solving simultaneously with $a+b=75$.

$$
(b=) 28
$$

(ii) 120 - their part (c)(i) seen (e.g. 92 indicated on graph)

Question 17

(a) $\quad X \sim \operatorname{Po}(324)$

A1
Note: Both distribution and mean must be seen for $\boldsymbol{A 1}$ to be awarded.
(b) $\mathrm{P}(X \leq 300)$
$=0.0946831 \ldots \approx 0.0947$
(c) (mean number of cars $=) 4.5 \times 60=270$

Note: Award $\boldsymbol{M 1}$ for using $\lambda=270$ to evaluate a probability.

```
P(X\geq301) OR 1-P(X\leq300)
=0.0334207...\approx0.0334

\section*{Question 18}
(a) \(\log _{10} 100=a-3\)
(M1)
\(a=5\)
A1
(M1)
\(N=10^{5-M}\)
\(=\frac{10^{5}}{10^{M}}\left(=\frac{100000}{10^{M}}\right)\)
OR
\(100=\frac{b}{10^{3}}\)

\section*{THEN}
\(b=100000\left(=10^{5}\right)\) A1
(c) \(\quad N=\frac{10^{5}}{10^{7.2}}=0.00631(0.0063095 \ldots)\)

Note: Do not accept an answer of \(10^{-2.2}\).
(d) METHOD 1
\(Y>100 \Rightarrow\) no earthquakes in the first 100 years

\section*{EITHER}
let \(X\) be the number of earthquakes of at least magnitude 7.2 in a year \(X \sim \operatorname{Po}(0.0063095 \ldots\)..)
\((\mathrm{P}(X=0))^{100}\)

\section*{OR}
let \(X\) be the number of earthquakes in 100 years
\(X \sim \operatorname{Po}(0.0063095 \ldots \times 100)\)
\(\mathrm{P}(X=0)\)

\section*{THEN}
0.532 (0.532082...)

\section*{METHOD 2}
\(Y>100 \Rightarrow\) no earthquakes in the first 100 years
let \(X\) be the number of earthquakes in 100 years
since \(n\) is large and \(p\) is small
\(X \sim \mathrm{~B}(100,0.0063095 \ldots)\)
\(\mathrm{P}(X=0)\)
0.531 ( \(0.531019 \ldots\) )
[2 marks]
(b) EITHER

> [1 mark]

A1
(M1)
(M1)
A1
[3 marks]
[Total 8 marks]

\section*{Question 19}
(a) let \(X\) be the weight of sugar in the bag
\[
\mathrm{P}(X<950)=0.308537 \ldots \approx 0.309
\]
(b) METHOD 1
let \(\bar{X}\) be the mean weight of 5 bags of sugar
\(\mathrm{E}(\bar{X})=1000\)
(A1)
use of \(\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}\)
(M1)
\(\operatorname{Var}(\bar{X})=\frac{100^{2}}{5}(=2000)\)
(A1)
\(\bar{X} \sim \mathrm{~N}(1000,2000)\)
\(\mathrm{P}(\bar{X}>950)=0.868223 \ldots \approx 0.868(86.8 \%)\)

\section*{METHOD 2}
let \(T\) be the total weight of 5 bags of sugar
\(\mathrm{E}(T)=5000\)
(A1)
use of \(\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)\) for independent random variables
\(\operatorname{Var}(T)=5 \times 100^{2} \quad(=50000)\) (A1)
\(T \sim \mathrm{~N}(5000,50000)\)
\(\mathrm{P}(T>4750)=0.868223 \ldots \approx 0.868\) ( \(86.8 \%\) )
[4 marks] [Total 6 marks]

\section*{Question 20}
(a)


\section*{A1A1}
[2 marks] (M1)

A1
[2 marks]
M1

A1

A1
[3 marks]
[Total 7 marks]

\section*{Question 21}
(a) \(\mathrm{H}_{0}\) : The die is fair OR P (any number) \(=\frac{1}{6}\) OR probabilities are equal \(\mathrm{H}_{1}\) : The die is not fair OR \(\mathrm{P}(\) any number \() \neq \frac{1}{6}\) OR probabilities are not equal \(\boldsymbol{A} 1\)
[1 mark]
(b) 5

A1
(c) 10

A1
[1 mark]
[1 mark]
(d) \((p\)-value \(=) 0.287(0.28724163 \ldots\).

A2
[2 marks]
(e) \(0.287>0.05\)

\section*{EITHER}

Insufficient evidence to reject the null hypothesis
OR
Insufficient evidence to reject that the die is fair

\section*{Question 22}
(a) \(\mathrm{P}(\) Type I error \()=\mathrm{P}\) (stating female when male)
\[
\begin{aligned}
& =\mathrm{P}\left(W_{\text {Male }}>11.5\right) \\
& =0.00135 \quad(0.00134996 \ldots)
\end{aligned}
\]
(M1)
A1
[2 marks]
(b) \(\mathrm{P}(\) Type II error \()=\mathrm{P}(\) stating male when female \()\)
\[
\begin{aligned}
& =\mathrm{P}\left(W_{\text {Female }}<11.5\right) \\
& =0.309 \quad(0.308537 \ldots)
\end{aligned}
\]
(M1)
A1
[2 marks]
(c) attempt to use the total probability
\[
\mathrm{P}(\text { error })=0.9 \times 0.00134996 \ldots+0.1 \times 0.308537 \ldots
\]
(M1)
\[
=0.0321 \quad(0.0320687 \ldots)
\]

A1
[2 marks]

\section*{Question 23}
(a) \(\bar{x}=4.63(4.62686 \ldots) \quad\) A1
(b) \(\quad s_{n-1}=1.098702\)
\(s_{n-1}^{2}=1.21\) (1.207146..)
Note: Award AOAO for an answer of 1.19 from biased estimate.
(c) (i) \(H_{1}: \mu>4.4\)

A1
(ii) METHOD 1
using a \(z\)-test
(M1)
\(p=0.0454992 \ldots\)
\(p<0.05\)
reject null hypothesis A1
(therefore there is significant evidence that the IB HL math students know more digits of \(\pi\) than the population in general)

Note: Do not award R0A1. Allow R1A1 for consistent conclusion following on from their \(p\)-value.

METHOD 2
using a \(t\)-test
\(p=0.0478584 \ldots\)
\(p<0.05\)
(M1)
reject null hypothesis R1
(therefore there is significant evidence that the IB HL math students know more digits of \(\pi\) than the population in general)

Note: Do not award R0A1. Allow R1A1 for consistent conclusion following on from their \(p\)-value.

\section*{Question 24}
(a) Accept any one of the following (or equivalent): one minimum and one maximum point three \(x\)-intercepts or three roots (or zeroes)
one point of inflexion

R1
Note: Do not accept "S shape" as a justification.
(b) (i) \(\quad(d=)-5\)

A1
(ii) \(8=a+b+c\)
\(4=8 a+4 b+2 c\)
\(0=27 a+9 b+3 c\)
Note: Award A2 if all three equations are correct.
Award A1 if at least one is correct. Award A1 for three correct equations that include the letter " \(d\) ".
(iii) \(\quad a=2, b=-12, c=18\)

A1
[4 marks]
(M1)
(A1)
\(0=2 t^{3}-12 t^{2}+18 t-5\)
\(t=0.358216 \ldots, 1.83174 \ldots, 3.81003 \ldots\)
(so total time in debt is \(3.81003 \ldots-1.83174 \ldots+0.358216 \approx\) )
2.34 (2.33650 \(\ldots\) ) years

A1
[3 marks] Total [8 marks]

\section*{Question 25}
(a) \(\quad(\mathrm{E}(X)=) 10 \times 0.8\)
(M1)
8 (people)
(b) recognition of binomial probability 0.0881 ( \(0.0880803 \ldots\)...)
(c) 0.8 and 6 seen OR 0.2 and 3 seen
(c) attempt to use binomial probability 0.121 ( \(0.120873 \ldots\) )

A1
[2 marks]
(M1)
A1
[2 marks]
(A1)
(M1)
A1
[3 marks]
Total [7 marks]

\section*{Question 26}
(a) \(\quad\left(\frac{17+25}{130}=\right) \frac{42}{130}\left(\frac{21}{65}, 0.323076 \ldots\right)\)

A1
[1 mark]
(b) \(\left(\frac{17}{17+25}=\right) \frac{17}{42}(0.404761 \ldots)\)

A1A1

Note: Award \(\boldsymbol{A 1}\) for correct numerator and \(\boldsymbol{A 1}\) for correct denominator.
Award A1A0 for working of \(\frac{17 / 130}{\text { their answer to (a) }}\) if followed by an incorrect answer.
[2 marks]
(c) \(\frac{41}{130} \times \frac{40}{129}\)

A1M1

Note: Award A1 for two correct fractions seen, M1 for multiplying their fractions.
\[
=\frac{1640}{16770} \approx 0.0978\left(0.0977936 \ldots, \frac{164}{1677}\right)
\]

A1
[3 marks] Total [6 marks]

\section*{Question 27}
(a) \(D=S-R\)

METHOD 1
\(=\operatorname{Re}\left(1.15 \mathrm{e}^{(0.0165 t-2.97) \mathrm{i}}\right)-\operatorname{Re}\left(1.08 \mathrm{e}^{(0.0165 t+0.413) \mathrm{i}}\right)(+18.9-4.94) \quad\) (M1)(A1)
\(=\operatorname{Re}\left(\mathrm{e}^{0.0165 \mathrm{i}}\left(1.15 \mathrm{e}^{-2.97 \mathrm{i}}-1.08 \mathrm{e}^{0.413 \mathrm{i}}\right)\right)(+13.96) \quad\) (M1)
\(=\operatorname{Re}\left(\mathrm{e}^{0.0165 t \mathrm{i}}\left(2.21379 \ldots \mathrm{e}^{-2.85310 . \mathrm{i}}\right)\right)(+13.96)\)
\(=2.21 \cos (0.0165 t-2.85)+13.96(2.21379 \ldots \cos (0.0165 t-2.85310 \ldots)+13.96)\)
A1A1
\((a=2.21, b=-2.85, c=13.96)\)
Note: Award \(\boldsymbol{A} 1\) for \(2.21 \cos (0.0165 t-2.85)\) and \(\boldsymbol{A 1}\) for " +13.96 ". The \(\boldsymbol{A 1}\) for 13.96 is independent of the previous marks.

\section*{METHOD 2}
\(c=13.9-4.94 \ldots=13.96 \quad\) A1
using a graph of \(D \quad\) M1
maximum (172.915..., 16.1738...) (A1)
minimum ( \(-17.4842 \ldots, 11.7462 \ldots\) ) (A1)
EITHER
amplitude \(16.1738 \ldots-11.7462 \ldots=4.4276 \ldots\)
\(a=2.21\) (2.2138...)
A1
OR
\(a=16.1738 \ldots-13.96=2.21\) (2.2138 \(\ldots\) )

\section*{THEN}

EITHER
when \(t=0, D=11.8377 \ldots\)
\(11.8377 \ldots=2.2138 \cos (b)+13.96\)
\(b=-2.85 \quad(2.85309 \ldots)\)
A1
OR
\(b=-0.0165 \times 172.915 \ldots=-2.85 \quad(2.85309 \ldots) \quad\) A1
[6 marks]

Note: Accept an answer of "day 172 " for the second \(\boldsymbol{A 1}\).
[2 marks]
Total [8 marks]

\section*{Question 28}
(a) (let \(p\) be the probability of a student choosing healthy options)
\(\mathrm{H}_{0}: p=0.3\)
\(\mathrm{H}_{1}: p>0.3\)

Note: Award AOA1 for correct hypotheses with \(\mu\) in place of \(p\).
Accept equivalent hypotheses in words.
(b) a type I error is rejecting \(\mathrm{H}_{0}\) when \(\mathrm{H}_{0}\) is true
(let \(N=\) number of students choosing a healthy option) \(N \sim\) B ( \(80,0.3\) )
\(\mathrm{P}(31 \leq N \leq 80) \quad\) OR \(\quad \mathrm{P}(N \geq 31) \quad \mathrm{OR} \quad 1-\mathrm{P}(N \leq 30)\)
Note: Do not accept the use of the Normal approximation.
0.0587 (0.0587481...)

A1
[3 marks]
(M1)
(M1)
A1
[3 marks]
Total [8 marks]

\section*{Question 29}
\(\begin{array}{ll}\text { (a) } 0.5 \times 0.1+0.4 \times 0.4+0.1 \times 0.5 & \text { (M1)(M1)(M1) }\end{array}\)
Note: Award \(\boldsymbol{M} 1\) for \(0.5 \times 0.1\) or \(0.1 \times 0.5\), M1 for \(0.4 \times 0.4\), M1 for adding three correct products.

A1
[4 marks]
(M1)(M1)
(b) \(0=-8 \times 0.5+4 \times 0.4+0.1 \mathrm{k}\)

Note: Award M1 for correct substitution into the formula for expected value, award \(\boldsymbol{M} \mathbf{1}\) for the expected value formula equated to zero.
( \(k=\) ) 24 (points) A1

\section*{Question 30}
(a) The favourite breakfast/berry (of adults) is independent of (their) income (level). A1
(b) \(\chi^{2}=2.27(2.26821 \ldots)\)

A2
[2 marks]
(c) EITHER
\(2.27<7.78\) OR \(2.27<\) critical value R1 OR
\(0.687>0.1 \quad\) (using \(p\)-value)

\section*{THEN}
(Do not reject \(\mathrm{H}_{0}\) )
Insufficient evidence (at the \(10 \%\) significance level) that the favourite berry depends on income level.

A1
[2 marks]
Total [5 marks]```

