Subject - Math AI(Higher Level)
 Topic - Statistics and Probability
 Year - May 2021 - Nov 2022
 Paper - 2
 Answers

Question 1

(a) (i) $\mathrm{P}(Y)=0.8 \times 0.1+0.2 \times 0.3 \quad$ M1

$$
=0.14 \quad \text { A1 }
$$

(ii) $\mathrm{P}(\operatorname{Star} \mid Y)=\frac{0.8 \times 0.1}{0.14}$ M1
$=0.571\left(\frac{4}{7}, 0.571428 \ldots\right)$ A1
(b) the colours of the sweets are distributed according to manufacturer specifications
(c)

Colour	Brown	Red	Green	Orange	Yellow	Purple
Expected Frequency	12	20	16	16	8	8

Note: Award A2 for all 6 correct expected values, A1 for 4 or 5 correct values, $\boldsymbol{A O}$ otherwise.
(d) 5

A1
[1 mark]
(e) $0.469(0.4688117 \ldots)$

A2
(f) since $0.469>0.05$
fail to reject the null hypothesis. There is insufficient evidence to reject the manufacturer's specifications

Note: Award R1 for a correct comparison of their correct p-value to the test level, award A1 for the correct result from that comparison. Do not award ROA1.

R1

A1
[2 marks]
[2 marks]

Question 2

(a) (i) evidence of correct probability e.g. sketch OR correct probability statement $\mathrm{P}(X<6.5)$ 0.0151 A1
(ii) 0.0228

Note: Answers should be given to 4 decimal place.
[3 marks]
(b) (i) multiplying their probability by 1000
451.7

A1
(ii) 510.5

A1
[3 marks]

Note: Answers should be given to 4 sf .
(c) H_{0} : stopping distances can be modelled by $\mathrm{N}\left(6.76,0.12^{2}\right)$
H_{1} : stopping distances cannot be modelled by $\mathrm{N}\left(6.76,0.12^{2}\right)$
A1A1
Note: Award A1 for correct H_{0}, including reference to the mean and standard deviation. Award $\boldsymbol{A} 1$ for the negation of their H_{0}.
[2 marks]
(d) $\quad 15.1$ or 22.8 seen
(M1)
0.0727 ($0.0726542 \ldots, 7.27 \%$)
(e) $0.05<0.0727$

R1
there is insufficient evidence to reject H_{0} (or "accept H_{0} ") A1
Note: Do not award R0A1.

Question 3

(a) $\quad X_{1} \sim \operatorname{Po}(3.1)$

$$
\mathrm{P}\left(X_{1}=4\right)=0.173(0.173349 \ldots) \quad \text { A1 }
$$

[1 mark]
(M1) A1
(ii) $\quad\left(\mathrm{P}\left(X_{1}>0\right)\right)^{2} \times \mathrm{P}\left(X_{1}=0\right)$
(M1)
$0.95495^{2} \times 0.04505$
(A1)
$=0.0411$ ($0.0410817 \ldots$...)
(c) $\quad \mathrm{P}\left(X_{1}=0\right)=0.04505$

$$
X_{1} \sim \mathrm{~B}(12,0.04505)
$$

Note: Award $\boldsymbol{M 1}$ for recognizing binomial probability, and $\boldsymbol{A} 1$ for correct parameters.

$$
=0.0133(0.013283 \ldots .)
$$

A1
(d) METHOD ONE

n	λ	$\mathrm{P}(X \geq 30)$
\ldots	\ldots	\ldots
10	24.1	0.136705
11	26.2	0.253384

Note: Award $\boldsymbol{M} 1$ for evidence of a cumulative Poisson with $\lambda=3.1+2.1 n$, A1 for 0.136705 and $\boldsymbol{A} 1$ for 0.253384 .
so require 12 magpies (including Bill)
METHOD TWO
evidence of a cumulative Poisson with $\lambda=3.1+2.1 n$
sketch of curve and $y=0.2$
(intersect at) 10.5810...
rounding up gives $n=11$
so require 12 magpies (including Bill)
(A1)

Question 4

(a)

A1A1
Note: Award $\boldsymbol{A} 1$ for a normal curve with mean labelled 6.1 or $\mu, \boldsymbol{A} 1$ for indication of SD (0.5): marks on horizontal axis at 5.6 and/or 6.6 OR $\mu-0.5$ and/or $\mu+0.5$ on the correct side and approximately correct position.
[2 marks]
(b) $\quad X \sim \mathrm{~N}\left(6.1,0.5^{2}\right)$
$\mathrm{P}(5.5<X<6.5)$ OR labelled sketch of region
$=0.673$ (0.673074...)
[2 marks]
(c) $\quad(\mathrm{P}(X<5.3)=0.0547992 \ldots$
(A1)
$0.0547992 \ldots \times 80$
$=4.38$ (4.38393 ...)
(M1)
A1
[3 marks]
(d) \quad (i) $\quad Y \sim \mathrm{~N}\left(4.5,0.45^{2}\right)$,

$$
(\mathrm{P}(Y>4.62)=) 0.394862 \ldots
$$

(A1)
use of binomial seen or implied
using $\mathrm{B}(10,0.394862 \ldots)$
(ii) $\quad n p(1-p)=2.39(2.38946 \ldots)$

A1
[5 marks]
(e) $\mathrm{P}(F \cap(W>4.7))=0.5 \times 0.3284(=0.1642)$
attempt use of tree diagram OR use of $\mathrm{P}(F \mid W>4.7)=\frac{\mathrm{P}(F \cap(W>4.7))}{\mathrm{P}(W>4.7)}$ (M1)
$\frac{0.5 \times 0.3284}{0.5 \times 0.9974+0.5 \times 0.3284}$
$=0.248$ ($0.247669 \ldots$..)
(A1)

A1

Question 7

(a) (i) let X be the random variable "number of patients arriving in a minute", such that $X \sim \operatorname{Po}(m)$.
$\mathrm{H}_{0}: m=1.5 \quad$ A1
$\mathrm{H}_{1}: m>1.5$ A1

Note: Allow a value of 270 for m. Award at most A0A1 if it is not clear that it is the population mean being referred to e.g
H_{0} : The number of patients is equal to 1.5 every minute
H_{1} : The number of patients exceeds 1.5 every minute.
Referring to the "expected" number of patients or the use of μ or λ is sufficient for A1A1.
(ii) under H_{0} let Y be the number of patients in 3 hours
$Y \sim \operatorname{Po}(270)$
(A1)
$\mathrm{P}(Y \geq 320)(=1-\mathrm{P}(Y \leq 319))=0.00166(0.00165874)$
since $0.00166<0.05$
R1
(reject H_{0})
Loreto should employ more staff
A1
[7 marks]
(b) (i) H_{0} : The probability of a patient waiting less than 20 minutes is 0.95 A1
H_{1} : The probability of a patient waiting less than 20 minutes is less than 0.95
A1
(ii) under H_{0} let W be the number of patients waiting more than 20 minutes $W \sim \mathrm{~B}(150,0.05)$
$\mathrm{P}(W \geq 11)=0.132$ ($0.132215 \ldots$)
since $0.132>0.1$
(M1)A1
(fail to reject H_{0})
insufficient evidence to suggest they are not meeting their target
A1

Note: Do not accept "they are meeting target" for the $\boldsymbol{A 1}$.
Accept use of $\mathrm{B}(150,0.95)$ and $\mathrm{P}(W \leq 139)$ and any consistent use of a random variable, appropriate p-value and significance level.
[7 marks]
Total: [14 marks]

Question 6

(a) (i) Let X be the random variable "distance from O ".

$$
\begin{aligned}
& X \sim \mathrm{~N}\left(10,3^{2}\right) \\
& \mathrm{P}(X<13)=0.841 \quad(0.841344 \ldots)
\end{aligned}
$$

(M1)A1
(ii) $\quad(\mathrm{P}(X>15)=) 0.0478$ (0.0477903)
(b) $\mathrm{P}(X>15) \times \mathrm{P}(X>15)$
$=0.00228$ ($0.00228391 \ldots$)
(M1)
A1
[2 marks]
(c) $1-(0.8143)^{3}$
$=0.460$ ($0.460050 \ldots$)
(M1)
A1
[2 marks]
(d) (i) let Y be the random variable "number of points scored" evidence of use of binomial distribution
(M1)
$Y \sim \mathrm{~B}(10,0.539949 \ldots)$
(A1)
$(\mathrm{E}(Y)=) 10 \times 0.539949 \ldots$

$$
=5.40
$$

(M1) A1
(ii) $\quad(\mathrm{P}(Y \geq 5)=) 0.717(0.716650 \ldots)$

A1
(iii) $\mathrm{P}(5 \leq Y<8)$
$=0.628$ ($0.627788 \ldots$)
(M1)
A1
Note: Award M1 for a correct probability statement or indication of correct lower and upper bounds, 5 and 7 .
(iv) $\frac{\mathrm{P}(5 \leq Y<8)}{\mathrm{P}(Y \geq 5)}\left(=\frac{0.627788 \ldots}{0.716650 \ldots}\right)$ $=0.876$ ($0.876003 \ldots$)
(M1)
A1
[9 marks]
Total: [16 marks]

Question 7

(a) (let T be the number of passengers who arrive)

$$
(\mathrm{P}(T>72)=) \quad \mathrm{P}(T \geq 73) \quad \mathrm{OR} \quad 1-\mathrm{P}(T \leq 72)
$$

$T \sim \mathbf{B}(74,0.9) \mathbf{O R} n=74$
$=0.00379$ (0.00379124...) A1
Note: Using the distribution B $(74,0.1)$, to work with the 10% that do not arrive for the flight, here and throughout this question, is a valid approach.
(b) (i) 72×0.9
(M1)
64.8

A1
(ii) $\quad \begin{aligned} & n \times 0.9=72 \\ & 80\end{aligned}$
(M1) A1
[4 marks]
(c) METHOD 1

EITHER
when selling 74 tickets

	$T \leq 72$	$T=73$	$T=74$
Income minus compensation (I)	11100	10800	10500
Probability	$0.9962 \ldots$	$0.003380 \ldots$	$0.0004110 \ldots$

top row
A1A1
bottom row
A1A1
Note: Award A1A1 for each row correct. Award A1 for one correct entry and $\boldsymbol{A 1}$ for the remaining entries correct.

$$
\mathrm{E}(I)=11100 \times 0.9962 \ldots+10800 \times 0.00338 \ldots+10500 \times 0.000411 \approx 11099 \quad \text { (M1)A1 }
$$

OR
income is $74 \times 150=11100$
expected compensation is
$0.003380 \ldots \times 300+0.0004110 \ldots \times 600(=1.26070 \ldots)$
Note: The (M1) is for an attempt to work out expected compensation by multiplying a probability for tickets sold by either 300 or 600 .
expected income when selling 74 tickets is $11100-1.26070 \ldots$
(M1)
Note: Award (M1) for subtracting their expected compensation from 11100.

$$
=11098.73 . .(=\$ 11099)
$$

THEN

income for 72 tickets $=72 \times 150=10800$
so expected gain $\approx 11099-10800=\$ 299$

METHOD 2

for 74 tickets sold, let C be the compensation paid out $\mathrm{P}(T=73)=0.00338014 \ldots, \mathrm{P}(T=74)=0.000411098 \ldots$
$\mathrm{E}(C)=0.003380 \ldots \times 300+0.0004110 \ldots \times 600(=1.26070 \ldots)$
(M1)A1A1
extra expected revenue $=300-1.01404 \ldots-0.246658 \ldots(300-1.26070 \ldots)$
(A1)(M1)
Note: Award A1 for the 300 and $\boldsymbol{M 1}$ for the subtraction.
$=\$ 299$ (to the nearest dollar)
A1

METHOD 3

let D be the change in income when selling 74 tickets.

	$T \leq 72$	$T=73$	$T=74$
Change in income	300	0	-300

(A1)(A1)
Note: Award A1 for one error, however award A1A1 if there is no explicit mention that $T=73$ would result in $D=0$ and the other two are correct.

$$
\begin{array}{lr}
\mathrm{P}(T \leq 73)=0.9962 \ldots, \mathrm{P}(T=74)=0.000411098 \ldots & \text { A1A1 } \\
\mathrm{E}(D)=300 \times 0.9962 \ldots+0 \times 0.003380 \ldots-300 \times 0.0004110 & \text { (M1)A1A1 } \\
=\$ 299 & \text { A1 }
\end{array}
$$

Question 8

(a) quota A1
(b) (i) $27.125 \approx 27.1$
(M1)A1
(ii) $8.29815 \ldots \approx 8.30 \quad \boldsymbol{A 1}$ [3 marks]
(c) (let μ be the national mean)
$\mathrm{H}_{0}: \mu=25.2$
$\mathrm{H}_{1}: \mu>25.2$
Note: Accept hypotheses in words if they are clearly expressed and 'population mean' or 'school mean' is referred to. Do not accept $\mathrm{H}_{0}: \mu=\mu_{0}$ unless μ_{0} is explicitly defined as "national standard mark" or given as 25.2 .
recognizing t-test
(M1)
p-value $=0.279391 \ldots$
A1
$0.279391 \ldots>0.05$ R1
Note: The R1 mark is for the comparison of their p-value with 0.05 .
insufficient evidence to reject the null hypothesis (that the mean for the school is 25.2)
Note: Award the final $\boldsymbol{A} 1$ only if the null hypothesis is also correct (e.g. $\mu_{0}=25.2$ or (population) mean $=25.2$) and the conclusion is consistent with both the direction of the inequality and the alternative hypothesis.
(d) EITHER
the sampling process is not random
R1
For example:
the school asked for volunteers
the students were selected from a single class
OR
the quota might not be representative of the student population R1
For example:
the school may have only 4 boys and 400 girls.
Note: Do not accept 'the sample is too small'.
[1 mark]
(e) (i) $(28.1 \times 2+20=76.2 \quad \boldsymbol{A 1}$
(ii) 8.4×2 (A1) $=16.8$ A1

Question 8

(a) wood layer, $W \sim \mathrm{~N}\left(7,0.3^{2}\right)$; plastic, $P \sim \mathrm{~N}\left(3,0.16^{2}\right)$
door: $X=W+P$
$\mathrm{E}(X)=10(\mathrm{~mm})$
(A1)
$\operatorname{Var}(X)=\operatorname{Var}(W)+\operatorname{Var}(P)=0.1156\left(\mathrm{~mm}^{2}\right)$
(M1)(A1)
recognizing the distribution is Normal, with their mean and variance
(M1) $X \sim \mathrm{~N}\left(10,0.34^{2}\right)$
$\mathrm{P}(X<9.5)=0.0707$ (0.07070125 $\ldots)$
A1
[5 marks]
(b) $\mathrm{E}(T)=80$
(A1)
(M1)(A1)
(c) (i) $6.93 \mathrm{~mm}(6.93428 \ldots)$

A1
(ii) $\quad\left(s_{n-1}=\right) 0.404$
$\left(s_{n-1}^{2}=\right) 0.163 \mathrm{~mm}^{2}(0.162928 \ldots)$
(A1)
A1
[3 marks]
(d) $\mathrm{H}_{0}: \mu_{A}=\mu_{B}$ and $\mathrm{H}_{1}: \mu_{A}>\mu_{B}$

Note: Award A1 for use of μ or in words "population mean", and A1 for both correct equality in null hypothesis and correct inequality in alternative hypothesis. Accept an equivalent statement in words, must include mean and reference to "population mean" / "mean for all Machine B layers" for the first $A 1$ to be awarded.
use a two-sample t-test
p-value $=0.406975 \ldots$
since $0.406975 \ldots>0.05$ OR p-value >0.05
R1
Do not reject H_{0} (Insufficient evidence to support the employee's claim) A1

Note: Accept a p-value of $0.415861 \ldots$ from use of 3 sf values from part (c). Follow through within the question for the final R1 and A1 for their p-value provided $0 \leq p \leq 1$. Do not award R0A1.

Question 9

(a) (i) $\frac{370+472}{2}$

Note: This (M1) can also be awarded for either a correct Q_{3} or a correct Q_{1} in part (a)(ii).

$$
\begin{equation*}
\mathrm{Q}_{3}=421 \tag{A1}
\end{equation*}
$$

(ii) their part (a)(i) - their $\mathrm{Q}_{1} \quad$ (clearly stated) \quad (M1)

$$
\text { IQR }=(421-318=) 103 \quad \text { A1 }
$$

(b) $\quad\left(\mathrm{Q}_{3}+1.5(\mathrm{IQR})=\right) 421+(1.5 \times 103)$
$=575.5$
since $498<575.5 \quad$ R1
Netherlands is not an outlier A1
Note: The R1 is dependent on the (M1). Do not award R0A1.
(c) not appropriate ("no" is sufficient)
(c) not appropriate ("no" is sufficient)
as r is too close to zero / too weak a correlation

A1 R1
[3 marks]
(d) (i) 6

A1
(ii) 4.5 A1
(iii) 4.5 A1
[2 marks]
[3 marks]
(e) (i) $r_{s}=0.683$ (0.682646 ...)

A2
(ii) EITHER
there is a (positive) association between the population size and the score

A1
OR
there is a (positive) linear correlation between the ranks of the population size and the ranks of the scores (when compared with the PMCC of 0.249) A1
[3 marks]
(f) lowering the top score by 20 does not change its rank so r_{s} is unchanged R1

Note: Accept "this would not alter the rank" or "Netherlands still top rank" or similar. Condone any statement that clearly implies the ranks have not changed, for example: "The Netherlands still has the highest score."

Question 10

(a) (i) $\quad(m=) 54(\%)$
(ii) $\quad(n=) 14(\%)$ A1
(iii) ($p=) 22(\%)$
(iv) $\quad(q=) 10(\%)$

A1
Note: Based on their n, follow through for parts (i) and (iii), but only if it does not contradict the given information. Follow through for part (iv) but only if the total is 100%.
(ii) $\frac{54}{64}\left(0.844, \frac{27}{32}, 84.4 \%, 0.84375\right)$

A1A1
Note: Award A1 for a correct denominator (0.64 or 64 seen), A1 for the correct final answer.
(c) (i) recognizing Binomial distribution with correct parameters $X \sim \mathrm{~B}(10,0.68)$ $(\mathrm{P}(X=5)=) 0.123$ (0.122940..., 12.3\%)

A1
(ii) 1- $\mathrm{P}(X \leq 3)$ OR $\mathrm{P}(X \geq 4)$ OR $\mathrm{P}(4 \leq X \leq 10)$
(M1) 0.984 (0.984497..., 98.4\%) A1
(iii) $(0.68)^{9} \times 0.32$
(M1)
recognition of two possible cases
$2 \times\left((0.68)^{9} \times 0.32\right)$
0.0199 ($0.0198957 . . ., 1.99 \%$)

(d) EITHER

the probability is not constant

OR

the events are not independent

OR

the events should be modelled by the hypergeometric distribution instead

A1
A1

