Subject – Math AI(Higher Level) Topic - Statistics and Probability Year - May 2021 – Nov 2022 Paper -2 Answers

Question 1

(a) (i)
$$P(Y) = 0.8 \times 0.1 + 0.2 \times 0.3$$
 M1
= 0.14 A1
(ii) $P(\text{Star} | Y) = \frac{0.8 \times 0.1}{0.14}$ M1
= $0.571 \left(\frac{4}{7}, 0.571428...\right)$ A1

[4 marks]

A1

(b) the colours of the sweets are distributed according to manufacturer specifications

[1 mark]

(C)

Colour	Brown	Red	Green	Orange	Yellow	Purple
Expected Frequency	12	20	16	16	8	8

Note: Award A2 for all 6 correct expected values, A1 for 4 or 5 correct values, A0 otherwise.

[2 marks] (d) 5 A1 [1 mark] 0.469 (0.4688117...) A2 (e) [2 marks] (f) since 0.469 > 0.05R1 fail to reject the null hypothesis. There is insufficient evidence to reject the manufacturer's specifications A1 Note: Award R1 for a correct comparison of their correct p-value to the test level, award A1 for the correct result from that comparison. Do not award ROA1. [2 marks]

Total [12 marks]

(a)	(i)	evidence of correct probability e.g. sketch OR correct probability statement $P(X < 6.5)$	(M1)
		0.0151	A1
	(ii)	0.0228	A1
Not	e: A	nswers should be given to 4 decimal place.	
			[3 marks]
b)	(i)	multiplying their probability by 1000 451.7	(M1) A1
	(ii)	510.5	A1
	to en la cr	PD.	[3 marks]
Not	e: A	nswers should be given to 4 sf.	
		101	
c)	H ₀ :	stopping distances can be modelled by $N(6.76, 0.12^2)$	
		stopping distances cannot be modelled by $N(6.76, 0.12^2)$	A1A1
	0.000		
NOT		ward A1 for correct H_0 , including reference to the mean and s	standard deviation.
	A	ward A1 for the negation of their H_0 .	
			[2 marks]
d)	15	.1 or 22.8 seen	(M1)
	0.0	0727 (0.0726542, 7.27%)	A2
		3 - 5	[3 marks]
e)	0.05	5<0.0727	R1
	ther	e is insufficient evidence to reject H_0 (or "accept H_0 ")	A1
Not	e: D	o not award <i>R0A1</i> .	
			[2 marks]
			Total [12 marks]

Total [13 marks]

2)	V.	- Po(3.1)				
a)		2005 - C0050 - 1		173340	A1	
	P(A	(1 = 4) =	0.175 (0.	173349)	AI	Id month
						[1 mark
))	(i)	$X_2 \sim \mathbf{F}$	Po(3×3.1)	= Po(9.3)	(M1)	
2	.,	373		0799 (0.0798950)	A1	
		- (2		2		
	(ii)	$(\mathbf{P}(X_1$	$> 0))^2 \times \mathbf{P}$	$P(X_1 = 0)$	(M1)	
		0.9549	$5^2 \times 0.045$	505	(A1)	
		= 0.04	11 (0.041	.0817)	A1	
						[5 marks
1	D(V	(-0) =	0.04505		(11)	
)	12	• 050			(A1)	
	$X_1 \sim$	в(12, 0	0.04505)	97	(M1)(A1)	
lot	e: Av	ward M1	for recog	nizing binomial probability, and A1	for correct parameters.	
	= 0.0	0133 (0.	013283	.)	A1	12/2 201
	= 0.0	0133 (0.	013283	.)	A1	[4 marks
1)				.)	A1	[4 marks
I)		0133 (0.			A1	[4 marks _]
I)				$P(X \ge 30)$	A1	[4 marks _]
I)		n	NE λ	P(<i>X</i> ≥ 30)	A1	[4 marks
)		n 10	NE λ 24.1	P(X≥30) 0.136705	A1	[4 marks _]
)		n	NE λ	P(<i>X</i> ≥ 30)		[4 marks
)		n 10	NE λ 24.1	P(X≥30) 0.136705	A1 (M1)(A1)(A1)	[4 marks
	MET	n n 10 11	NE λ 24.1 26.2	P(X≥30) 0.136705	(M1)(A1)(A1)	[4 marks
	MET	n 10 11	NE λ 24.1 26.2 for evider	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(M1)(A1)(A1)	[4 marks
	MET	n 10 11	NE λ 24.1 26.2 for evider	$P(X \ge 30)$ 0.136705 0.253384 nce of a cumulative Poisson with λ	(M1)(A1)(A1)	[4 marks
	MET	n 10 11 ward M1 1 for 0.11	NE λ 24.1 26.2 for evider 36705 and	$P(X \ge 30)$ 0.136705 0.253384 nce of a cumulative Poisson with λ	(M1)(A1)(A1)	[4 marks
	MET	<i>n n</i> 10 11 ward <i>M1 f</i> for 0.11 equire 12	NE λ 24.1 26.2 for evider 36705 and 2 magpies	$P(X \ge 30)$ 0.136705 0.253384 nce of a cumulative Poisson with λ d A1 for 0.253384.	(M1)(A1)(A1) = 3.1+2.1n,	[4 marks
	MET	n n 10 11 ward M1 for 0.1: equire 12 12	NE λ 24.1 26.2 for evider 36705 and 2 magpies VO	$P(X \ge 30)$ 0.136705 0.253384 nce of a cumulative Poisson with λ d A1 for 0.253384. (including Bill)	(M1)(A1)(A1) = 3.1+2.1n, A1	[4 marks
	MET e: Av Ar so re MET evide	n n 10 11 ward M1 1 for 0.11 equire 12 HOD TV ence of a	NE λ 24.1 26.2 for evider 36705 and 2 magpies NO a cumulat	$P(X \ge 30)$ 0.136705 0.253384 nce of a cumulative Poisson with λ d <i>A1</i> for 0.253384. (including Bill) (ive Poisson with $\lambda = 3.1 + 2.1n$	(M1)(A1)(A1) = 3.1+2.1n , A1 (M1)	[4 marks
	MET	n n 10 11 ward M1 1 f for 0.1: 1 equire 12 1 THOD TW 1 ence of a choic current of current of current of choic current of cu	NE λ 24.1 26.2 for evider 36705 and 2 magpies NO a cumulative and y	$P(X \ge 30)$ 0.136705 0.253384 nce of a cumulative Poisson with λ d A1 for 0.253384. (including Bill) (ive Poisson with $\lambda = 3.1 + 2.1n$ $= 0.2$	(M1)(A1)(A1) = 3.1+2.1n, A1 (M1) (A1)	[4 marks
	MET e: Av Ar so re MET evide skete (inte	n n 10 11 11 11 ward M1 1 for 0.11 equire 12 12 "HOD TWence of a ch of curred of	NE λ 24.1 26.2 for evider 36705 and 2 magpies NO a cumulative and $y =$ 10.5810	$P(X \ge 30)$ 0.136705 0.253384 nce of a cumulative Poisson with λ d A1 for 0.253384. (including Bill) (ive Poisson with $\lambda = 3.1 + 2.1n$ $= 0.2$	(M1)(A1)(A1) = 3.1+2.1n , A1 (M1)	[4 marks
	MET e: Av A so re MET evide skete (inte roun	n n 10 11 11 11 ward M1 1 f for 0.1: 12 equire 12 12 'HOD TW 12 ence of a chof current o	NE λ 24.1 26.2 for evider 36705 and 2 magpies NO a cumulative and y = 10.5810 gives $n =$	$P(X \ge 30)$ 0.136705 0.253384 nce of a cumulative Poisson with λ d A1 for 0.253384. (including Bill) (ive Poisson with $\lambda = 3.1 + 2.1n$ $= 0.2$	(M1)(A1)(A1) = 3.1+2.1n, A1 (M1) (A1)	[4 marks
	MET e: Av A so re MET evide skete (inte roun	n n 10 11 11 11 ward M1 1 f for 0.1: 12 equire 12 12 'HOD TW 12 ence of a chof current o	NE λ 24.1 26.2 for evider 36705 and 2 magpies NO a cumulative and y = 10.5810 gives $n =$	$P(X \ge 30)$ 0.136705 0.253384 nce of a cumulative Poisson with λ d <i>A1</i> for 0.253384. (including Bill) (ive Poisson with $\lambda = 3.1 + 2.1n$ $= 0.2$ 11	(M1)(A1)(A1) = 3.1+2.1n, A1 (M1) (A1) (A1) (A1)	[4 marks

	4.6 5.1 5.6 6.1 6.6 7.1 7.6	A1A1	
Not	e: Award A1 for a normal curve with mean labelled 6.1 or μ , A1 for indication SD (0.5): marks on horizontal axis at 5.6 and/or 6.6 OR μ -0.5 and/or μ on the correct side and approximately correct position.		
	TPR		[2 marks]
(b)	$X \sim N(6.1, 0.5^2)$		
	P(5.5 < X < 6.5) OR labelled sketch of region		
		(M1)	
	= 0.673 (0.673074)	A1	10 markal
			[2 marks]
(c)	(P(X < 5.3) =) 0.0547992	(A1)	
	0.0547992×80	(M1)	
	= 4.38 (4.38393)	A1	10
			[3 marks]
(d)	(i) $Y \sim N(4.5, 0.45^2)$,		
	(P(Y > 4.62) =) 0.394862	(A1)	
	use of binomial seen or implied	(M1)	
	using B(10, 0.394862) 0.0430 (0.0429664)	(M1)	
	0.0430 (0.0429664)	A1	
	(ii) $np(1-p) = 2.39$ (2.38946)	A1	
			[5 marks]
(e)	$P(F \cap (W > 4.7)) = 0.5 \times 0.3284 \ (= 0.1642)$	(A1)	
	attempt use of tree diagram OR use of $P(F W > 4.7) = \frac{P(F \cap (W > 4.7))}{P(W > 4.7)}$	(M1)	
	0.5×0.3284	(A1)	
	$0.5 \times 0.9974 + 0.5 \times 0.3284$		
	= 0.248 (0.247669)	A1	
			[4 marks]
		Total	[16 marks]

(i)	let <i>X</i> be the random variable "number of patients arriving in a minute $X \sim Po(m)$.	,	
	$H_0: m = 1.5$	A1	
	$H_1: m > 1.5$	A1	
Note:	Allow a value of 270 for m . Award at most A0A1 if it is not clear the population mean being referred to e.g H ₀ : The number of patients is equal to 1.5 every minute	nat it is	
	H_1 : The number of patients exceeds 1.5 every minute.		
	Referring to the "expected" number of patients or the use of μ or sufficient for A1A1 .	λis	
(ii)	under H_0 let Y be the number of patients in 3 hours		
	$Y \sim Po(270)$	(A1)	
	$P(Y \ge 320) (=1-P(Y \le 319)) = 0.00166 (0.00165874)$	(M1)A1	
	since $0.00166 < 0.05$ (reject H ₀)	R1	
	Loreto should employ more staff	A1	[7 n
			1
(i)	$\mathrm{H_{0}}$: The probability of a patient waiting less than 20 minutes is 0.95	5 A1	
	$\mathrm{H_{i}}$: The probability of a patient waiting less than 20 minutes is less	than 0.9	95
		A1	
(ii)	under H_0 let W be the number of patients waiting more than 20 mi	nutes	
	$W \sim B(150, 0.05)$	(A1)	1
	$P(W \ge 11) = 0.132 (0.132215)$	(M1)A1	
	since $0.132 > 0.1$ (fail to reject H_0)	R1	
	insufficient evidence to suggest they are not meeting their target	A1	
Note:	Do not accept "they are meeting target" for the A1 . Accept use of B(150, 0.95) and P($W \le 139$) and any consistent use	use of a	
	random variable, appropriate <i>p</i> -value and significance level.		

[7 marks] Total: [14 marks]

a) ((i)	Let X be the random variable "distance from O". $X \sim N(10, 3^2)$		
		P(X < 13) = 0.841 (0.841344)	(M1)A1	
((ii)	(P(X > 15) =) 0.0478 (0.0477903)	A1	
				[3 marks
)	P(X	$(X > 15) \times P(X > 15)$	(M1)	
	= 0.0	00228 (0.00228391)	A1	
				[2 marks
:)]	1-((0.8143) ³	(M1)	
-	= <mark>0</mark> .4	460 (0.460050)	A1	
				[2 marks
l) ((i)	let Y be the random variable "number of points scored"		
		evidence of use of binomial distribution $Y \sim B(10, 0.539949)$	(M1) (A1)	
		$(E(Y) =)10 \times 0.539949)$	(M1)	
		= 5.40	A1	
		- 5.40		
((ii)	$(P(Y \ge 5) =) 0.717 (0.716650)$	A1	
((iii)	$P(5 \le Y < 8)$	(M1)	
		= 0.628 (0.627788)	A1	

(iv) $\frac{P(5 \le Y < 8)}{P(Y \ge 5)} \left(= \frac{0.627788}{0.716650} \right)$	(M1)
= 0.876 (0.876003)	A1
	[9 marks]
	Total: [16 marks]

(a) (let *T* be the number of passengers who arrive)

	(P($T > 72) = P(T \ge 73)$ OR $1 - P(T \le 72)$	(A1)	
	$T \sim$	B(74, 0.9) OR $n = 74$	(M1)	
	= 0.	00379 (0.00379124)	A1	
Note		ing the distribution $B(74, 0.1)$, to work with the 10% that do not arrive the flight, here and throughout this question, is a valid approach.		
				[3 marks]
(b)	(i)	72×0.9	(M1)	
		64.8	A1	
	(ii)	$n \times 0.9 = 72$	(M1)	
		80	A1	
				[4 marks]

(c) METHOD 1

EITHER

when selling 74 tickets

	$T \le 72$	<i>T</i> = 73	T = 74	
Income minus compensation (I)	11100	10800	10500	
Probability	0.9962	0.003380	0.0004110	
top row bottom row				A
		rect. Award A1 for o	ne correct	

 $E(I) = 11100 \times 0.9962... + 10800 \times 0.00338... + 10500 \times 0.000411 \approx 11099$ (M1)A1

OR income is $74 \times 150 = 11100$	(A1)
expected compensation is 0.003380×300+0.0004110×600 (=1.26070)	(M1)A1A1
Note: The <i>(M1)</i> is for an attempt to work out expected compensation by multiplying a probability for tickets sold by either 300 or 600.	
expected income when selling 74 tickets is 11100-1.26070	(M1)
Note: Award (M1) for subtracting their expected compensation from 111	00.
=11098.73 (= \$11099)	A
THEN	
income for 72 tickets = $72 \times 150 = 10800$ so expected gain $\approx 11099 - 10800 = 299	(A1) A1
METHOD 2	
for 74 tickets sold, let C be the compensation paid out $P(T = 72) = 0.002328014$ $P(T = 74) = 0.000411008$	A1A1
P(T = 73) = 0.00338014, P(T = 74) = 0.000411098	AIAI
$E(C) = 0.003380 \times 300 + 0.0004110 \times 600 $ (=1.26070)	(M1)A1A1
extra expected revenue = $300 - 1.01404 0.246658$ ($300 - 1.26$	6070) (A1)(M1)
Note: Award A1 for the 300 and M1 for the subtraction.	
= \$299 (to the nearest dollar)	A1

METHOD 3 let D be the change in income when selling 74 tickets.

	$T \leq 72$	T = 73	T = 74	
Change in income	300	01010	-300	
	I		I	(A1)(A1)
		ever award A1A1 if		it mention that
T = 73 wo	uld result in $D = 0$	and the other two a	are correct.	
$P(T \le 73) =$	0.9962, $P(T = T)$	74) = 0.000411098		A1A1
		$74) = 0.000411098$ $003380 300 \times 0.00$		A1A1 (M1)A1A1
E(D) = 300				(M1)A1A1

A1 [1 ma	A1	quota		
11)A1	(M1)A1	27.125 ≈ 27.1	(b)	
A1 [3 mar		8.29815≈8.30		

(c) (let μ be the national mean)

	$H_1: \mu > 25.2$	A1	
Note	e: Accept hypotheses in words if they are clearly expressed and 'populat mean' or 'school mean' is referred to. Do not accept H ₀ : $\mu = \mu_0$ unless is explicitly defined as "national standard mark" or given as 25.2.		
	recognizing <i>t</i> -test	(M1)	
	<i>p</i> -value = 0.279391	A1	
	0.279391 > 0.05	R1	
Note	The D4 month is far the commentance of their much so with 0.05		
	e: The R1 mark is for the comparison of their <i>p</i> -value with 0.05.		
	insufficient evidence to reject the null hypothesis (that the mean for the school is 25.2) e: Award the final A1 only if the null hypothesis is also correct (e.g. $\mu_0 =$ (population) mean = 25.2) and the conclusion is consistent with both the direction of the inequality and the alternative hypothesis.		IE mar
Note	insufficient evidence to reject the null hypothesis (that the mean for the school is 25.2) e: Award the final A1 only if the null hypothesis is also correct (e.g. $\mu_0 =$ (population) mean = 25.2) and the conclusion is consistent with both the school is co	25.2 or	[5 mar
	insufficient evidence to reject the null hypothesis (that the mean for the school is 25.2) e: Award the final A1 only if the null hypothesis is also correct (e.g. $\mu_0 =$ (population) mean = 25.2) and the conclusion is consistent with both the school is co	25.2 or	[5 mari

OR
the quota might not be representative of the student populationR1For example:
the school may have only 4 boys and 400 girls.Note: Do not accept 'the sample is too small'.[1 mark](e) (i) $(28.1 \times 2 + 20 =)$ 76.2A1(ii) 8.4×2
= 16.8(A1)
A1

[3 marks] [Total 13 marks]

(a)	wood layer, $W \sim N(7, 0.3^2)$; plastic, $P \sim N(3, 0.16^2)$		
	door: $X = W + P$ E(X) = 10 (mm)	(11)	
	E(X) = 10 (mm) $Var(X) = Var(W) + Var(P) = 0.1156 \text{ (mm}^2)$	(A1) (M1)(A1)	
	recognizing the distribution is Normal, with their mean and variance $X \sim N(10, 0.34^2)$	(M1)	
	P(X < 9.5) = 0.0707 (0.07070125)	A1	[5 marks]
(b)	F(T) = 80	(41)	

E(T) = 80	(A1)
$\operatorname{Var}(T)(=0.1156 \times 8) = 0.9248$	(M1)(A1)
$T \sim N(80, 0.9248)$	
P(T > 82) = 0.0188 (0.0187753)	A1
	[4 marks]
	$\operatorname{Var}(T)(=0.1156 \times 8) = 0.9248$ $T \sim N(80, 0.9248)$

(c) (i) 6.93 mm (6.93428...)

(ii) $(s_{n-1} =) 0.404$ $(s_{n-1}^2 =) 0.163 \text{ mm}^2 (0.162928...)$

(d)
$$H_0: \mu_A = \mu_B$$
 and $H_1: \mu_A > \mu_B$

A1A1

A1

(A1)

A1

[3 marks]

Note: Award A1 for use of μ or in words "population mean", and A1 for both correct equality in null hypothesis and correct inequality in alternative hypothesis. Accept an equivalent statement in words, must include mean and reference to "population mean" / "mean for all Machine B layers" for the first A1 to be awarded.

use a two-sample <i>t</i> -test <i>p</i> -value = 0.406975 since 0.406975 > 0.05 OR <i>p</i> -value > 0.05	(M1) A1 R1
Do not reject H_0 (Insufficient evidence to support the employee's claim)	A1
Note: Accept a <i>p</i> -value of 0.415861 from use of 3sf values from part (c). Follow through within the question for the final R1 and A1 for their <i>p</i> -value provided $0 \le p \le 1$. Do not award R0A1 .	

[6 marks] Total [18 marks]

(a) Note	(i) e: Th	$\frac{2}{1}$ is (<i>M1</i>) can also be awarded for either a correct Q_3 or a correct Q_1	M1)	
	in j	part (a)(ii).		
		Q ₃ = 421	A1	
	(ii)	their part (a)(i) – their Q_1 (clearly stated) ((M1)	
		IQR = (421 - 318 =) 103	A1	
				[4 marks
(b)	(Q ₃	$+1.5(IQR) =) 421 + (1.5 \times 103)$ ((M1)	
	= 57			
		e 498<575.5 nerlands is not an outlier	R1 A1	
Note		e R1 is dependent on the (M1). Do not award R0A1.	AI	
Hold		e Aris dependent on the (Mr). Do not award NOAN.		[3 mark
(c)		appropriate ("no" is sufficient)	A1	
	as r	is too close to zero / too weak a correlation	R1	[2 marks
(d)	(i)	6	A1	
	(ii)	4.5	A1	
	(iii)	4.5	A1	
	. ,			[3 marks
(e)	(i)	$r_s = 0.683 \ (0.682646)$	A2	
	(ii)	EITHER		
		there is a (positive) association between the population size and the score	A1	
		OR		
		there is a (positive) linear correlation between the ranks of the population and the ranks of the secret (when compared with the PMCC of 0.240)	n siz	e
		and the ranks of the scores (when compared with the PMCC of 0.249)	AT	[3 marks
(f)	lowe	aring the top score by 20 does not change its rank so r_s is unchanged	R1	•
Note	Co	cept "this would not alter the rank" or "Netherlands still top rank" or similar indone any statement that clearly implies the ranks have not changed, for ample: "The Netherlands still has the highest score."		

(a)	(i)	(m =) 54(%)	A1	
	(ii)	(n =) 14(%)	A1	
	(iii)	(p =) 22(%)	A1	
	(iv)	(q =) 10(%)	A1	
Note	not	sed on their n , follow through for parts (i) and (iii), but only if it does contradict the given information. Follow through for part (iv) but y if the total is 100%.		
				[4 marks]
(b)	(i)	$0.54\left(\frac{54}{100},\frac{27}{50},54\% ight)$	A1	
	(ii)	$\frac{54}{64}\left(0.844, \frac{27}{32}, 84.4\%, 0.84375\right)$	A1A1	
	Note	 Award A1 for a correct denominator (0.64 or 64 seen), A1 for the correct final answer. 		
	ļ			[3 marks]
(c)	(i)	recognizing Binomial distribution with correct parameters $X \sim B(10, 0.68)$	(M1)	
		(P(X = 5) =) 0.123 (0.122940, 12.3%)	A1	
	(ii)	$1-P(X \le 3)$ OR $P(X \ge 4)$ OR $P(4 \le X \le 10)$ 0.984 (0.984497, 98.4%)	(M1) A1	
	(iii)	$(0.68)^9 \times 0.32$	(M1)	
		recognition of two possible cases $2 \times ((0.68)^9 \times 0.32)$	(M1)	
		0.0199 (0.0198957, 1.99%)	A1	[7 marks]
(d)	EITH the p OR	IER probability is not constant	A1	
	the e	events are not independent	A1	
	OR the e	events should be modelled by the hypergeometric distribution instead	A1	Id month?
			Total [[1 mark] [15 marks]

